
1 INTRODUCTION 
 
The combination of visual and inertial sensors has 
been shown to be viable, and the significant perfor-
mance improvement over single sensor has attracted 
many researchers to get into the field. After the suc-
cess of (Weiss & Siegwart 2011), which enables 
world’s first autonomous unmanned aerial vehicle 
(UAV) in GPS-denied environments. (Blösch et al. 
2010) 
  In the past five years, world top research institutes 
paid high attention to developing advanced monocu-
lar visual- based simultaneous localization and map-
ping (mSLAM) algorithms based on structure from 
motion (SFM) theory (Klein & Murray 2007; Engel 
et al. 2014; Forster et al. 2014; Pizzoli et al. 2014; 
Vogiatzis & Hernández 2011; Roussillon et al. 
2011),which are suitable to modern onboard embed-
ded computer. Moreover, the visual scale problem, 
which was the main challenge of involving monocu-
lar vision into control loop, is addressed to various 
extents by fusing onboard inertial measurements 
(accelerometer and gyroscope), which is named as 
visual inertial navigation system (VINS) (Kelly & 
Sukhatme 2009; Lynen et al. 2013; Lobo & Dias 
2003; Li & Mourikis 2013; Jones & Soatto 2011; 
Weiss et al. 2012). 
  Almost all the visual-inertial fusion algorithms, to 
our knowledge, rely on nonlinear Kalman filter (ex-
tended Kalman filter, unscented Kalman filter etc.) 
to process both orientation and position measure-
ment in the same process, which results in a large 
state vector (mostly more than 20 states) and com-

plex nonlinear system model. Nevertheless, recent 
advance in computationally efficient IMU orienta-
tion estimation (Madgwick et al. 2011), shows a 
competitive accuracy against Kalman-based algo-
rithm. Thus, in this paper, a computationally effi-
cient visual- inertial fusion algorithm is proposed by 
separating orientation and position fusion process, 
which maintains the same level of accuracy with 
nonlinear Kalman filter. The algorithm is designed 
to perform six degree of freedom state estimation, 
based on a gyroscope, an accelerometer and a 
mSLAM measurement. It also recovers the visual 
scale for the mSLAM. 
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ABSTRACT: Because of the complementary nature of visual and inertial sensors, the combination of both is 
able to provide accurate and fast six degree-of-freedom (DOF) state estimation, which is the fundamental re-
quirement for robotic (especially unmanned aerial vehicle) navigation tasks in GPS-denied environments. 
This paper presents a computationally efficient visual-inertial fusion algorithm, by separating orientation fu-
sion from the position fusion process. It is designed to perform 6 DOF state estimation, based on a gyroscope, 
an accelerometer and a monocular visual-based simultaneous localization and mapping (mSLAM) algorithm 
measurement. It also recovers the visual scale for the mSLAM. In particular, the fusion algorithm treats the 
orientation fusion and position fusion as two separate processes, where the orientation fusion is based on a 
very efficient gradient descent algorithm, and position fusion is based on a 13-state linear Kalman filter. The 
elimination of a magnetometer avoids the problem of magnetic distortion, which makes it a power-on-and-go 
system once the gyroscope and accelerometer are factory calibrated. The resulting algorithm shows a signifi-
cant computation reduction over the conventional extended Kalman filter with competitive accuracy. Moreo-
ver, the separation between the orientation and position fusion process enables the algorithm to be easily im-
plemented into separate hardware, thus allowing the two fusion processes to be executed concurrently.

Figure 1 Algorithm Overview 
 



2 ALGORITHM OVERVIEW 
 
As shown in Figure.1, the visual-inertial fusion algo-
rithm assumes rotation, as well as an mSLAM algo-
rithm, which is treated as a black box, provides the 
un-scaled position. Moreover, it receives angular 
rates measurement from gyroscope, acceleration 
measurement from accelerometer. The output of the 
fusion process is to estimate the true rotation and po-
sition of sensor frame in the earth frame, Further-
more, the position filter also estimates the linear ve-
locity, linear acceleration, and accelerometer bias, as 
well as the metric scale of the mSLAM position 
measurement. 
  The fusion is separated into two fusion processes: 
orientation fusion process and position fusion pro-
cess. The orientation fusion is based on very effi-
cient gradient descent algorithm (Madgwick et al. 
2011), and position fusion is based on a 13-state lin-
ear Kalman filter. The following two sections will 
present the mathematical expression of the two algo-
rithms respectively.  

3 ORIENTATION FUSION PROCESS 
 
The orientation fusion algorithm is based on the gra-
dient descent algorithm in quaternion representation. 
The origin of the algorithm comes from (Madgwick 
et al. 2011), where the detailed mathematical deriva-
tion and proof is presented. However, different from 
the original algorithm, the following fusion deriva-
tion eliminates the magnetometer sensor, while, in- 
stead, the rotation correction about gravity vector is 
compensated by fusing the vision measurement. 
Therefore, it avoids the problem of magnetic field 
distortion, thus only factory calibration is required 
once for gyroscope and accelerometer before the 
system become fully self-contained. The essential 
mathematical expression of one iteration at time t is 
shown as follows. Note that the orientation estima-
tion from last iteration is assumed to be known, and 
the sampling period is denoted as ∆t.  
  As stated in (Madgwick et al. 2011), given that 
the convergence rate of the estimated orientation is 
equal or greater than the angular rate of the physical 
orientation, only one iteration is required to be com-
puted per sample time, ∆t. Therefore an unconven-
tional gradient descent algorithm is derived to fuse 
all the three sensor measurements. The process to 
compute the orientation in next time stamp is sum-
marized as  

 
qES,k+1 = qES,k + !qES,k+1Δt,  

 
!qES,k+1 = !qω,k+1 −βΔf ,  

 
where β is the only adjustable parameter of this fil-
ter. It represents the magnitude of the gyroscope 

measurement error, which is removed in the direc-
tion according to the accelerometer and vision sen-
sor. Moreover, since IMU and the vision sensor op-
erate in different speed, ∆f is the error direction 
when comparing with accelerometer or mSLAM vi-
sion orientation estimation, depending on which sen-
sor measurement is available.  

4 POSITION FUSION PROCESS 

This position fusion algorithm assumes the orienta-
tion of the sensors is known, thus it takes three in-
puts: (1) the orientation estimation in earth frame 
from the result of the orientation fusion process; (2) 
the raw sensor acceleration measurement from ac-
celerometer; (3) the un-scaled position and orienta-
tion in vision frame from the mSLAM. It outputs its 
state vector, which contains: position estimation, ve-
locity estimation and acceleration estimation, in 
earth frame, and accelerometer bias, as well as the 
metric scale λ > 0 of the mSLAM position estima-
tion. The position fusion algorithm is formed of a 
coordinate frame management process and a 13-state 
linear Kalman filter. The Kalman filter conducts in 
the earth frame, thus, all the sensor measurement 
values have to be converted to earth frame in the co-
ordinate frame management process.  

The conventional Kalman Filter (KF) framework 
consists of a prediction step, which performs the 
state vector time update in constant time interval; 
and a measurement update step, which performs the 
correction of the state vector based on the new sen-
sor measurement. Here in order to encounter the 
asynchronies measurements from both accelerome-
ter and mSLAM algorithm, two different measure-
ment update models are constructed, and will be ex-
ecuted depending on which sensor measurement is 
available.  

The state of the Kalman filter is represented as a 
state vector x: 

 
         x = [pTES,v

T
ES,a

T
ES,b

T
S,λ]

T ,         (3) 
 

where position estimation pES , velocity estima-
tion vES  and acceleration estimation aES  are in 
earth frame, and accelerometer bias bTS  is in sensor 
frame, as well as the metric scale λ>0 of the 
mSLAM position estimation.  

The state vector is updated once every time inter-
val, following the rule defined by the prediction 
model, which defines the physics of the inertial sys-
tem. It is summarized as: 

 
!pES = vES ,          (4) 

 
!vES = aES,         (5) 

 
!aES = na, !bS = nb, !λ = nλ.        (6) 



 
where na , nb  and nλ  are independent zero-mean 
normal distribution Gaussian process noise. 
  The measurement model is derived in the form of: 

 
z* = H*x + e*,           (31) 

 
where z*  is the measurement from the mSLAM vi-
sion sensor or the IMU, H*  is the measurement 
model matrix, and e*  denotes the measurement er-
ror from the sensor, where ⋆ can be ‘as’ or ‘vs’ de-
pending on which sensor measurement is available 
between acceleration sensor measurement and vision 
sensor measurement. Here, e*  is also modeled as 
independent zero-mean normal distribution Gaussian 
process noise. 

Measurement update process handles different 
sampling rate between mSLAM and IMU estima-
tion, by only updating state with the corresponding 
measurement, which becomes available. Thus by as-
suming the orientation fusion reaches steady state, 
the state vector x can be effectively estimated over 
time. 

5 IMPLEMENTATION 

In this section, we will demonstrate the fusion per-
formance based on real data, on embedded platform. 
We used FreeIMU v0.4.3 hardware, which includes 
an MPU6050 gyroscope- accelerometer combo chip, 
an HMC5883 magnetometer and MS5611 high-
resolution pressure sensor. However, in this experi-
ment, only the MPU6050 is used. We performed 
orientation estimation in Teensy 3.12, which fea-
tures an ARM Cortex-M4 processor running at 96 
MHz. Besides, we run the SVO mSLAM framework 
as black box on Odroid-U3 single board embedded 
Linux computer, which features 1.7GHz Quad-Core 
processor and 2GByte RAM. In the same Odroid-U3 
computer, we conduct position fusion in parallel 
with the SVO. The video is captured by an uEye 
global shutter monocular camera. The communica-

tion between software packages is realized by Robot 
Operating System (ROS).  

The entire system is installed onto a quadrotor 
platform, as shown in Figure 2. The Autopilot board 
including the FreeIMU, Teensy processor, servo 
controller and XBee Radio are shown in left side of 
Figure 4. The uEye camera and Odroid-U3 computer 
is installed underneath the quadrotor as shown in 
right side of Figure 4.  

6 TEST RESULTS 

The Teensy processor is capable of executing the 
orientation fusion alongside with autopilot control 
algorithm at 300 Hz, while communicating with 
Odroid-U3 computer with ROS protocol, including 
publishing orientation estimation and acceleration 
measurement at 100 Hz and subscribing the pose es-
timation from SVO mSLAM framework in Odroid- 
U3. Moreover, in the Odroid-U3 computer, the SVO 
mSLAM is executed at 40 FPS with the KF position 
fusion algorithm running at 100 Hz in parallel.  

We assume the timing error is negligible in the 
system. β is left as default value, 0.5, by assuming 
ω ̃max is approximately 0.58 rad/s. 

The KF position fusion algorithm is initialized 
with the state vector x0 = [01×12,10]

T , note that we 
initialize the scale factor λ to 10 as a arbitrary posi-
tive value to show how it converges to the true val-
ue. Also, the position fusion assumes the orientation 
fusion reaches the steady state before initialization. 

Figure 2 Hardware Implementation. 

Figure 3 Fusion Results. 



The real time test result is shown in Figure 6. The 
initialization occurs at 227 second and the record 
shows a 39-second trail, indicating how the true 
scale factor is recovered, and how the output posi-
tion estimation relates to the raw input position 
measurement over the same period of time. 

It is clear that the scale factor λ is effectively dis-
covered as 1.26, despite that its initial value is set to 
10, as shown in Fig.6a. And during the converging 
period, the position estimation output from KF posi-
tion estimator is scaled accordingly with λ over time. 
Since KF position estimator fuses the acceleration 
with SVO position measurement, the output position 
estimation performs better in dynamic operation. 

7 CONCLUSION AND FUTURE WORK 

This paper has shown the design, implementation 
work of a sensor fusion framework, which is capable 
of performing the six degree of freedom sensor state 
estimation, by fusion a 3 axis gyroscope, a 3 axis ac-
celerometer and a vision based monocular simulta-
neous localization and mapping algorithm.  

The future work includes further test evaluating 
of estimation error comparing with ground truth. 
And computational performance evaluation by 
benchmarking with other existing fusion algorithms. 
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