
Noname manuscript No.
(will be inserted by the editor)

Resilient Routing Implementation in 2D Mesh NoC

Rimpy Bishnoi · Vijay Laxmi · Manoj Singh Gaur ·
Mark Zwolinski

Received: date / Accepted: date

Abstract With the rapid shrinking of technology and growing integration capacity, the probability of
failures in Networks-on-Chip (NoCs) increases and thus, fault tolerance is essential. Moreover, the unpre-
dictable locations of these failures may influence the regularity of the underlying topology, and a regular
2D mesh is likely to become irregular. Thus, for these failure-prone networks, a viable routing framework
should comprise a topology-agnostic routing algorithm along with a cost-effective, scalable routing mech-
anism able to handle failures, irrespective of any particular failure patterns. Existing routing techniques
designed to route irregular topologies efficiently lack flexibility (logic-based), scalability (table-based) or
relaxed switch design (uLBDR-based). Designing an efficient routing implementation technique to ad-
dress irregular topologies remains a pressing research problem. To address this, we present a fault resilient
routing mechanism for irregular 2D meshes resulting from failures. To handle irregularities, it avoids us-
ing routing tables and employs a few fixed configuration bits per switch resulting in a scalable approach.
Experiments demonstrate that the proposed approach is guaranteed to tolerate all locations of single and
double-link failures and most multiple failures. Also, unlike uLBDR it is not restricted to any particular
switching technique and does not replicate any extra messages. Along with fault tolerance, the proposed
mechanism can achieve better network performance in fault-free cases. The proposed technique achieves
graceful performance degradation during failure. Compared to uLBDR, our method has 14% less area
requirements and 16% less overall power consumption.

Keywords NoC · Routing implementation · Fault tolerance · Segment routing

R. Bishnoi
Department of Computer Science and Engineering
MNIT Jaipur, India
E-mail: rimpybishnoi@gmail.com

V. Laxmi
Department of Computer Science and Engineering
MNIT Jaipur, India
E-mail: vlgaur@gmail.com

M. S. Gaur
Department of Computer Science and Engineering
MNIT Jaipur, India
E-mail: gaurms@gmail.com

Mark Zwolinski
University of Southampton, Southampton, United Kingdom
E-mail: mz@ecs.soton.ac.uk

2 Rimpy Bishnoi et al.

1 Introduction

Network-on-Chip (NoC) is a scalable and modular communication paradigm proposed to overcome the
limitations of traditional bus-based interconnects [1]. Regular network structures like 2D meshes are usu-
ally preferred by NoC designers owing to their simplicity and perfect physical layout on a 2D surface. As
scaling of CMOS technology approaches nanometre scales, the reliability of on-chip interconnects be-
comes a design concern, as any failure may cause the entire system to fail in non-fault tolerant designs [2,
3].

In traditional network literature, the most popular fault classes are transient faults and permanent
faults [3]. Transient faults include temporary failures (bits-errors in a physical channel) that often occur
at random and unpredictable times. Faults occurring due to neutrons and alpha particles are classed as
transient faults. Other faults are permanent, including failures that are not temporary and that result in
irreversible physical changes. These are caused by poor design, including incorrect specifications, manu-
facturing defects, component wear-outs, random device effects, broken wires, time-dependent dielectric
breakdowns, electromagnetic interference (EMI), etc. [4].

Although, permanent faults are not as common and frequent as transient faults, our focus in this paper
is restricted only to permanent failures. The reason is that transient faults can be detected and corrected
locally by methods such as cyclic redundancy checking or forward error correction [4]. Moreover, if
it occurs frequently, a transient fault can be modelled as a time-limited permanent fault and preventive
measures taken for permanent faults are also applicable to this fault class. On the other hand, the effects
of permanent faults are irreversible, and it is not always possible to repair or replace the components on a
chip [3].

Furthermore, due to decrease of inter-wire spacing in modern on-chip interconnects, short switch-
to-switch links in regular structures are more prone to noise sources such as crosstalk, EMI, radiation,
process variations and so on. This fact makes links more susceptible to failures [4]. More specifically,
our interest is restricted only to the permanent failures of underlying physical links and switches of a
2D mesh NoC. Failures may also be present in other components of a system, however, such as in com-
putational components (core), storage components (cache slice), power supplies, clocks, etc. The failure
of computational/storage components may result only in degraded system performance. A failure in any
of the NoC components (link or switch) will be more harmful as the NoC provides the communication
backbone to connect multiple components on the chip. Indeed, such a failure may become a single point
of failure, potentially causing the entire system to fail.

The unpredictable locations of these failures may also harm the regularity of the underlying topology.
More specifically, a regular 2D mesh is more likely to become irregular due to these failures. Thus, a NoC
must continue its operation even if the network becomes irregular.

In the event of failure, it is possible that the current routing function is unable to offer a path between
each pair of nodes. Hence, it needs to be replaced with one offering full connectivity. To ensure this
requirement, it is necessary that the underlying routing implementation framework should provide the
flexibility to reconfigure the old routing function with a new routing function. This expectation demands
a flexible routing framework for NoCs, which can efficiently support any irregularity generated in the
initial regular structures.

A finite-state machine (FSM) based implementation [5], is very efficient in terms of both area and
latency but is topology- and routing-dependent. Such methods may not work in the event of any failure-
induced irregularity. Implementations based on forwarding tables (source, distributed) [6–8] can be used
to support any irregular topology. Though tables provide the flexibility to work with any irregular topol-
ogy, they do not scale well in terms of area, power, and performance.

Recently, uLBDR (Universal Logic Based Distributed Routing) [9] has been proposed as a scalable
and efficient routing implementation method to support irregular 2D mesh topologies. It combines the
scalability of traditional FSM based implementations and the flexibility of table-based implementations.

Resilient Routing Implementation in 2D Mesh NoC 3

Despite its scalability and flexibility, uLBDR adds some limitations to the switch design that restrict its
applicability to VCT (Virtual Cut-Through) switching only and it requires a particular arbiter. In addition
to this, uLBDR also increases the network traffic by replicating messages [9].

1.1 Motivation and Objectives

Most routing implementation techniques that have been proposed to efficiently capture the routing func-
tion for irregular topologies are either table based [6–8] or require a complex constrained switch de-
sign [9]. This fact motivates us to design an efficient routing implementation technique to address irregu-
lar topologies.

The main objective of this paper is to propose a fault-tolerant routing implementation that can handle
the irregularities resulting from failures in regular 2D meshes. The aim is to provide the routing framework
with the flexibility to reconfigure the routing function when the topology becomes irregular. In addition to
this, the proposed implementation should achieve high performance (low latency, high throughput) while
keeping the cost and complexity low.

1.2 Contributions

To achieve the aforementioned objective, we propose a routing implementation technique. Our proposal
is capable of handling any irregularity induced in a 2D mesh because of any number of 1-link and 2-link
and most multiple link failures. The novelty of our proposal lies in the fact that it neither utilizes any
routing tables nor imposes any restrictions on switch design. Additionally, it is deadlock and livelock
free. Having these properties, the proposed method does not require any additional hardware (virtual
channels). While developing an efficient routing implementation, the proposed mechanism is designed to
achieve the following:

1. Improved fault coverage: This is a measure of the reliability of the proposed approach. It is defined
as the percentage of irregular topologies (generated due to link failures) supported by a particular rout-
ing implementation. The proposed implementation guarantees full coverage in the case of any number
of 1-link and 2-link failures provided there exists a deadlock-free path from source to destination. We
have also extended the scope of the proposed mechanism to handle multiple failures.

2. Performance: In the case of a regular 2D mesh structure (without any failures), this approach main-
tains low latency and achieves high throughput similar to the baseline technique. In the cases of irreg-
ular structures being generated due to failures in an initial 2D mesh, the proposed approach gracefully
degrades the network’s performance.

3. Minimized area and power overhead: For applicability in the NoC domain, a low value for both
area and power is necessary while keeping the design scalable. The proposed method requires respec-
tively 14% and 16% less area and power than other state-of-the-art logic-based solutions proposed for
irregular topologies and it keeps the design scalable.

The rest of the paper is organized as follows: In Section 2 we discuss the related work. In Section 3,
we describe our proposed mechanism. We present experimental results analysis in Section 4. Finally,
concluding remarks are presented in Section 5.

2 Related Work

Considerable research has been carried out on resilient NoCs. In this section, we discuss previous work
targeting permanent failures (either links or switches). We classify solutions based on their routing im-
plementation mechanism, indicating whether they support fault tolerance or not.

4 Rimpy Bishnoi et al.

1. FSM based implementations: An FSM based implementation [5] of a routing algorithm is very
efficient in terms of both performance and area but is topology sensitive. Any failure in the network
might convert a regular topology into an irregular one. There is a large body of work on fault tolerance
based on FSM implementations providing only partial support for irregular topologies. They are not
able to handle all possible sets of irregular topologies derived from a specific set of failures. Some of
them utilize virtual channels to implement fault-tolerant routing algorithms.
The adaptive routing algorithm proposed by Linder and Harden [10] supports single node failure by
doubling the number of virtual channels along one dimension, resulting in underutilized resources.
The reliable router [11], proposed by Dally et al for 2D meshes, can support irregular topologies
derived from a single link or node failure. To achieve this, it also utilizes a large number (five for each
physical link) of virtual channels.
Similarly, several other prior works [12,13] utilize additional virtual channels to provide fault tol-
erance and result in improved coverage support. In [14], Glass and Ni showed how to modify turn
model-based routing algorithms to provide (n− 1) fault tolerance for n-dimensional meshes without
using any virtual channels.

2. Table based implementations: Implementations based on forwarding tables (either at source or dis-
tributed) are not sensitive to topology change and offer the flexibility to support any irregular topol-
ogy derived from any set of link failures. Schonwald et al[15] proposed a table-based Force-Directed
Wormhole Routing (FDWR) which is based on hop distance to the destination from the current switch.
Though it supports all irregular topologies as tables are deployed, it results in a large packet processing
time at routers. Large table size is also an issue with FDWR.
Feng et al [8] proposed a Fault Tolerant Deflection Router (FTDR) able to handle permanent and
transient faults. They also proposed an improvement over the basic FTDR algorithm, named FTDR-
H, which tries to reduce the table size by dividing the network into regions. However, the problem
of increasing the number of tables with network size remains the same. A few other works on fault
tolerance [6,7] also employ tables either at the source or a router. A number of resilient routing algo-
rithms based on network reconfiguration have also been proposed such as Immunet [16], Vicis [17]
and ARIADNE [18].
Immunet [16] routes packets towards their destination using a fully adaptive routing algorithm. A new
ring is used for network reconfiguration and deadlock freedom that deterministically routes packets to
their destinations. A major issue with this approach is that it requires three routing tables per router,
which drastically increases the area overhead. Based on the odd-even turn model, Fick et al [17]
proposed a low overhead routing algorithm called Vicis to handle unlimited failures. However, it is
not clear that the algorithm remains deadlock-free in the face of many failures because reconfiguration
re-enables turns prohibited by the routing algorithm.
ARIADNE [18] is a similar approach based on the reconfiguration of routing tables. It utilizes the
up*/down* routing algorithm and reconfigures it when faults occur. Though ARIADNE provides
an area improvement over Immunet, its underlying routing algorithm is not optimized for regular
networks. Thus, solutions based on forwarding tables are flexible for irregular topologies but suffer
from the scalability and high cost associated with tables [9].

3. LBDR based implementation: To keep the implementation flexible, as forwarding tables, while
offering scalability as in FSM based implementations, Rodrigo et al [19] proposed Logic Based Dis-
tributed Routing (LBDR). It is a cost effective routing implementation mechanism that is based on a
few configuration bits (routing and connectivity) and fixed logic per switch. LBDR offers fault toler-
ance by allowing these bits to be configured according to the current routing function and topology
in the event of any topology change. It offers full support for all irregular topologies derived from
2D mesh as long as there exists a minimal path between each source and destination pair. In the case
where no minimal path exists between a pair of nodes, LBDR fails to handle that particular irregular
topology.

Resilient Routing Implementation in 2D Mesh NoC 5

To support this, Rodrigo et al [9] presented Universal Logic Based Distributed Routing (uLBDR).
uLBDR ensures complete reachability by packet replication at two output ports which leads to a few
design constraints on the network switch. The first is that packet replication increases the chance
of having deadlock when used with wormhole switching. Thus, the Virtual-Cut-Through (VCT) ap-
proach is used. Second, a traditional arbiter needs to be modified to allow a single message to complete
at more than one output port simultaneously. In addition to this, packet replication potentially leads
to an increase in network traffic.

In this work, we propose a routing implementation that does not use any routing tables to capture the
routing function and is thus scalable. Like LBDR, it captures the routing function using few configuration
bits. Unlike uLBDR, it does not impose any additional switch design constraints. Also, its implementation
requires smaller area than uLBDR while maintaining the same performance and coverage.

3 Proposed Work

In this section, we first define the terminologies associated with 2D mesh NoCs. Then the proposed
approach is explained in detail through illustrative examples. Finally, we present the deadlock freedom
and connectivity proof mandatory for any efficient implementation.

3.1 Definitions and Concepts

Definition 1: An interconnection network, say an NoC, is a strongly connected graph, G (N,L), where
N represents the set of processing nodes, and L represents the set of bidirectional communication links
through which processing nodes communicate.
Definition 2: A regular 2-dimensional (2D) mesh NoC is formally defined as an interconnection network
that has m × n processing nodes (m is no. of rows and n is no. of columns). Any node in the mesh is
identified by coordinates (r, c); 0 ≤ r ≤ m − 1 , 0 ≤ c ≤ n − 1, r and c are called the X coordinate
and Y coordinate, respectively.
Definition 3: An irregular 2D mesh NoC G′ (N ′, L′) derived after fault induction in a regular 2D mesh
NoC G (N,L), is a subgraph G′ of G, where N ′ ⊆ N and L′ ⊆ L.
Definition 4: Topology Coverage is defined as the percentage of irregular 2D mesh topologies supported
out of the overall number of irregular 2D mesh topologies that can be generated from a regular 2D mesh
because of failures. A topology is said to be supported if there exists at least a path between each pair of
end-nodes.
Definition 5: Fault tolerance is the ability of an interconnection network to continue operations (network
service) even in the presence of one or more component failures.

Fig. 1 (a) Port directions in 2D Mesh (b-e) Examples of regular (b) and irregular (c, d, e) 2D mesh topologies

For on-chip interconnects, a 2D mesh is considered over other topology choices due to its simplified
design and perfect physical layout on a 2D surface. In a regular 2D mesh, each switch is connected to its

6 Rimpy Bishnoi et al.

neighbouring switches by four bidirectional ports/channels labelled as N (North), E (East), S (South),
and W (West), as shown in Figure 1(a). Any failure (either switch or link) in the initial regular 2D mesh
makes the topology irregular.

Figure 1 shows examples of irregular topologies generated from a regular 2D mesh (the three right-
most figures). Solutions proposed for regular 2D meshes may not work once the topology becomes irreg-
ular. To handle this, we propose a fault-resilient routing implementation technique that can handle regular
as well as all irregular topologies generated due to single, double and most of the multiple link failures in
a 2D mesh. We consider irregular topologies derived from permanent failures in regular 2D meshes.

We assume the fault detection, notification and updating of corresponding configuration bits at
switches occur prior to the start of a normal operation. The centralized infrastructure proposed in [20]
can be used for fault detection, notification, and updating of bits. Basically, it employs a global controller
with full visibility of the network. In the event of any changes in the network (either topology or routing),
the global controller is in charge of computing a new set of configuration bits. To carry the vital informa-
tion from NoC switches to the controller (testing, diagnosis data) and vice versa (updated configuration
bits), a cost-effective dual network is employed [20].

3.2 Methodology

The routing function of any algorithm determines a set of effective paths that a message needs to follow
from its source to destination. More specifically, the choice of routing algorithm greatly affects the net-
work performance. For regular topologies like 2D meshes, topology-dependent routing algorithms, like
dimension order routing algorithms, result in reduced latency, power, and area requirements. But as these
algorithms are sensitive to topology changes, they may not work if the topology becomes irregular due to
a failure. Hence, topology-agnostic routing algorithms, which are not sensitive to any topology changes
are used for fault-prone networks [21,22].

In this work, we have used segment-based routing (SR), a topology-agnostic routing algorithm. Unlike
other topology-agnostic routing algorithms such as up*/down* [23], SR routing exploits the regularity of
2D meshes and also performs well under regular as well as irregular topology scenarios [21,22]. However,
deadlock-freedom is an essential characteristic of any routing algorithm and to ensure this property each
routing algorithm restricts certain turns. These restricted turns, also called routing restrictions, indicate
the pair of adjacent channels that cannot be taken by a message, one after the other. Figure 2 shows
routing restrictions defined by XY and SR routing algorithms on a 3× 3 mesh. Each arrow represents a
routing restriction in a particular direction. As can be seen in Figure 2(b), SR routing applies bidirectional
routing restrictions that restrict the pairs of channels that cannot be used in both directions.

As mentioned earlier in section 1, our proposed implementation does not require any routing tables
to implement the routing algorithm. Similar to LBDR [19], it uses a few fixed configuration bits per
switch for this purpose. Unlike tables, the number of bits per switch does not increase with network
size; hence the approach is scalable. To capture these routing restrictions defined by SR routing and the
connection pattern of a topology, the proposed approach requires three categories of configuration bits
for its functioning, as shown in Figure 3. These sets are discussed below

1. Routing bits (RsId
pq): Routing bits are used to capture the routing restrictions of a routing algorithm

located at a switch sId. As in distributed routing, to advance a particular packet towards some output,
every switch needs to know whether the packet can be allowed to take the required turn at the next
switch or not. This information is needed to select the correct port direction as the turn might be
restricted for deadlock-freedom purpose. For example, to forward a packet in the North direction, the
current switch needs to know whether the packet can turn towards East at the next switch or not. More
specifically, bit RsId

pq at any switch sId, indicates if a packet outbound in direction p can be routed
to a direction q at the next switch or not. Three bits per switch output port are used. The routing bits

Resilient Routing Implementation in 2D Mesh NoC 7

Fig. 2 Routing Restrictions of (a) XY (b) and SR routing
Fig. 3 Configuration bits of a switch (Routing, Connectiv-
ity, and Faulty)

for a North Port are labelled as Rne, Rnw, and Rnn. A value of 1 means that routing is permitted.
Permitted routing implies that a packet routed in the N direction can continue N or turn to E or W
at the next switch. Similarly, routing bits for the East port are labelled as Ren, Res, Ree, for South
as Rse, Rsw, Rss and for West as Rwn, Rws, Rww. To capture the available routing permissions at a
switch, a total of twelve Rpq bits (3 bits per output port) are needed. For any node η, we can define

ηp = Neighbour of η in direction p,
ηq = Neighbour of ηp in direction q
ρ = path η → ηp → ηq

Rpq =

{
1 ⇒ ρ permitted
0 ⇒ ρ not permitted

Fig. 4 Routing bits: Illustrative example

Figure 4 shows the snapshot of routing bits at each switch, where each sub-figure demonstrates rout-
ing bits of only one port. It can be observed from the figure that the routing bit corresponding to a
restricted turn is set to 0; otherwise it is set to 1.

2. Connectivity bits (CsId
p): As described above, the rules of the routing algorithm are captured using the

routing bits. Similarly, to capture the connection pattern of a particular instance of a topology (either
a regular or an irregular 2D mesh), connectivity bits are used. As there are at most four directions

8 Rimpy Bishnoi et al.

through which a switch, sId can be connected to its neighbours, we need 4 bits CN , CE , CW , CS ,
with a single bit per output port. These bits indicate the connectivity of a particular switch to its
neighbours in North, East, West, and South respectively. A value of 1 indicates that the switch is
connected to its neighbouring switch in that particular direction. A value of 0 means that connectivity
in that particular direction is not present for any reason. For any node η, we can define

Cp =

{
1 if η → ηp exits
0 otherwise

3. Faulty bits (F sId
pq): Similar to the routing bits, faulty bits indicate the status of the links at a neigh-

bouring switch. In a 2D mesh, at any switch, for all destinations present in any of its quadrant (NE,
NW, SE, SW), at most two port directions lead to minimal paths. If any one of the minimal path
becomes faulty due to the fault present at neighbouring switch, another can be taken to avoid unnec-
essary non-minimal paths. This allows a switch to decide which neighbour to select to avoid faults at
neighbouring switches. To capture faulty turns, a switch needs two bits per switch output port, a total
of eight bits per switch. Faulty bits for a North port are labelled as Fne, Fnw. A value of 1 represents
that turn at the next switch is allowed whereas a value of 0 represents a turn that is faulty and, hence
not allowed. For example, Fne = 0 means the turn from the North of the current switch to the East of
the next switch is faulty. Similarly, faulty bits for the East port are labelled as Fen, Fes, for the South
as Fse, Fsw and for the West as Fwn, Fws. We have not used faulty bits for the cases where the desti-
nation is present in same row or column of the source switch (Fnn, Fee, Fss, Fww). This is because,
when both source and destination switches are present in same row or column, a single minimal path
exists. Any fault in this path will certainly lead to a non-minimal path.
For any node η we can define

Fpq =

{
0 if ηp 9 ηq

1 if ηp → ηq

Fig. 5 Faulty bits: Illustrative example

Figure 5 shows a snapshot of faulty bits at each switch, where each sub-figure demonstrates faulty bits
of one port only. We can observe from the figure that the faulty bit corresponding to a faulty turn at the
next switch is set to zero. In the case of a healthy turn, the bit is set to one. For example, in Figure 5 (a),
F 7
ne is set to zero because C4

e is zero. On the other hand, F 7
nw is set to one as C4

w is also one. Figure 5 (d)
shows the purpose of faulty bits.

Resilient Routing Implementation in 2D Mesh NoC 9

As shown in Figure 5 (d), both R5
wn and F 5

wn are set to one due to the absence of any restriction or
fault at the North port of the next switch, 4, i.e C4

n is equal to one. However, R5
ws is set to one, but F 5

ws is
set to zero because C4

s is faulty. Hence, the turn W ↔ S at switch 5 can be made unavailable for switch
7, whereas it can be made available for distant switches, such as 6 in this example. Hence, faulty bits
are used to distinguish between a turn that might be available for some distant switches but might not be
available for a nearby switch due to a fault at the neighbouring switch.

Table 1 shows all the configuration bits of the proposed method calculated for the SR routing algo-
rithm applied to the 3× 3 irregular mesh of Figure 6. As can be seen, the Cn bits of switches 0, 1, and 2
are all set to zero as no connectivity exists in the North direction of these switches. Bidirectional arrows
in Figure 6 represent restricted routing turns of SR to prevent cycles. As explained above, these routing
rules are encoded in routing bits Rpq by setting them to zero or one for prohibited and allowed turns
respectively.

For example, R4
sw and R6

en are set to zero. This ensures that the packets Southbound from 4 cannot
turn West at 7. Similarly, packets Eastbound from 6 cannot turn North at 7. Further, to indicate faults
present at 1-hop neighbors, the faulty bits are reset. At switch 0, faulty bit Fse is set to zero to indicate
that link 3→ 4 is broken. Though F 0

se is reset to zero, R0
se is still set to 1 to allow paths to switches 7, 8

through switch 3 in the presence of the 3 → 4 broken link. In this way a faulty bit is used to distinguish
between a turn that might be available for some distant switches (switch 7, 8) but might not be available
for a nearby switch (4) due to the presence of a fault at a neighbouring switch (3).

Fig. 6 3 × 3 Irreg-
ular mesh

s
I
d

C
n

C
e

C
w

C
s

R
n
n

R
n
e

R
n
w

R
e
e

R
e
n

R
e
s

R
w
w

R
w
n

R
w
s

R
s
s

R
s
e

R
s
w

F
n
e

F
n
w

F
e
n

F
e
s

F
w
n

F
w
s

F
s
e

F
s
w

0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0
2 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0
3 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
4 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0
5 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
6 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
8 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0

Table 1 Configuration bits for SR algorithm for a 3× 3 mesh topology

Furthermore, this distinguishes our approach from the uLBDR approach [9]. For example, on the
failure of the East port of a switch 3, uLBDR sets R0

se to zero. This results in path 0 → 3 → 6 → 7 · · ·
being excluded from future considerations. As stated above, handling faults at nearby nodes may render
routes to distant nodes unavailable in uLBDR. We incorporate faulty bits F sId

pq for each switch (sId) to
avoid this. These bits indicate faults at 1-hop neighbours and restrict only routes to such neighbours. For
others, the route can be used as long as there are no routing restrictions.

Furthermore, it is important to note that if a turn towards some output direction is not allowed at any
of its neighbouring switches present in the same row or column, both routing and faulty bits are reset.
For example, unlike R0

se, R2
sw is set zero because similar turns are also prohibited at the next switches

present in the same column. In this case both R2
sw and F 2

sw are set to zero.

3.3 Proposed Routing Logic

The routing algorithm defines the rules of routing a packet, and the routing implementation mechanism
applies these rules to generate a valid output port direction for an incoming packet. Our proposed imple-

10 Rimpy Bishnoi et al.

(a) (b)

Fig. 7 Routing Logic (a) First level: Comparator (b) Second level: Routing computation for North output port

mentation uses the SR routing algorithm. It captures the routing algorithm and connection pattern of a
topology as a set of configuration bits per switch as described in the previous section.

Figure 7 shows the proposed two-level routing logic. Algorithm 1 shows the corresponding algorithm
for generating possible output port directions for an incoming packet at current switch c. The first level
is a comparator, as shown in Figure 7 (a) that outputs the direction (directions) of a destination switch
relative to the position of the current switch. As shown in Algorithm 1, first coordinates of the current and
destination switch are compared. Depending on the location of the destination switch, one or at most two
signals from {N ′, E′,W ′, S′} will be set for any packet. For example, if the current switch of a packet is
in the same row as the destination switch, {E′,W ′} will be activated. Similarly, if the destination switch
is inNE quadrant of the current switch, {N ′, E′}will be activated. In addition, the respective signal from
{N1, E1,W1, S1} is also set if the destination is 1-hop in the given direction. For example, a destination
in the NE quadrant is indicated by N ′ = E′ = 1,W ′ = S′ = 0. If this destination is 1-hop away in the
NE quadrant, then signals N1 = E1 = 1,W1 = S1 = 0 will be set.

After knowing the destination’s quadrant direction, the second level of the logic performs routing and
generates output port directions that can be used by a packet for traversing to the next switch. This logic
makes use of configuration bits {Rc

pq, C
c
p, F

c
pq} of the current switch c. Due to the similarity in the logic

of all port directions, we will discuss in detail the routing logic of the North port as shown in Figure 7 (b)
and lines 1→ 5 of Algorithm 1. At current switch c, the North port is selected for routing if its Cc

n is one
and any one of the following conditions 1 is true:

1. The destination switch is in the same column and only 1-hop away in the North direction from the
current switch (N ′ ∧ E′ ∧W ′ ∧N1).

2. The destination switch is in the same column but more than 1-hop away in the North direction from
the current switch and routing North is allowed at the next switch, i.e. Rnn of the current switch is set
to one (N ′ ∧ E′ ∧W ′ ∧Rnn).

3. The destination is in the NE quadrant from the current switch and 1-hop away in the North and East
directions, and Fne = 1, i.e. there is no Eastward fault at the next switch (N1 ∧ E1 ∧ Fne).

4. The destination is in the NE quadrant from the current switch but more than 1-hop away in the North
and East directions, and Rne = 1 at the current switch, i.e from the North of the current switch, going
East is allowed at the next switch (N ′ ∧ E′ ∧ (N1 ∧ E1) ∧Rne).

1 Each condition corresponds to one AND gate of Figure 7 (b)

Resilient Routing Implementation in 2D Mesh NoC 11

Algorithm 1 Algorithm for generating port directions
Require: Xc, Yc: X and Y coordinates of current switch c

Xd, Yd: X and Y coordinates of destination switch d
Rc

pq , C
c
p, F

c
pq : Routing, connectivity, and faulty bits of current switch c

Ensure: N ′, E′, S′,W ′: Direction of destination switch
N1, E1, S1,W1: One hop away information of destination switch
Portc→d [4]: Port directions (N,E, S,W, orL) at c for destination d

Procedure
L = (Xd == Xc) AND (Yd == Yc)
N ′ = (Yd < Yc), E′ = (Xd > Xc), S′ = (Yd > Yc), W ′ = (Xd < Xc)
N1 = (Yd == Yc − 1), S1 = (Yd == Yc + 1)
E1 = (Xd == Xc + 1), W1 = (Xd == Xc − 1)

1: if Cc
n then

2: if
(
N ′ ∧ E′ ∧W ′ ∧N1

)
OR

(
N ′ ∧ E′ ∧W ′ ∧Rc

nn

)
OR

(
N ′ ∧ E′ ∧

(
N1 ∧ E1

)
∧Rc

ne

)
OR (N1 ∧ E1 ∧ F c

ne) OR (N1 ∧W1 ∧ F c
nw)

(
N ′ ∧W ′ ∧

(
N1 ∧W1

)
∧Rc

nw

)
then

3: Portc→d [N] = 1 {Generate North direction}
4: end if
5: end if
6: if Cc

e then
7: if

(
E′ ∧N ′ ∧ S′ ∧ E1

)
OR

(
E′ ∧N ′ ∧ S′ ∧Rc

ee

)
OR

(
E′ ∧N ′ ∧

(
E1 ∧N1

)
∧Rc

en

)
OR (E1 ∧N1 ∧ F c

en) OR (E1 ∧ S1 ∧ F c
es) OR

(
E′ ∧ S′ ∧

(
E1 ∧ S1

)
∧Rc

es

)
then

8: Portc→d [E] = 1 {Generate East direction}
9: end if

10: end if
11: if Cc

s then
12: if

(
S′ ∧ E′ ∧W ′ ∧ S1

)
OR

(
S′ ∧ E′ ∧W ′ ∧Rc

ss

)
OR

(
S′ ∧ E′ ∧

(
S1 ∧ E1

)
∧Rc

se

)
OR (S1 ∧ E1 ∧ F c

se) OR (S1 ∧W1 ∧ F c
sw)

(
S′ ∧W ′ ∧

(
S1 ∧W1

)
∧Rc

sw

)
then

13: Portc→d [S] = 1 {Generate South direction}
14: end if
15: end if
16: if Cc

w then
17: if

(
W ′ ∧N ′ ∧ S′ ∧W1

)
OR

(
W ′ ∧N ′ ∧ S′ ∧Rc

ww

)
OR

(
W ′ ∧N ′ ∧

(
W1 ∧N1

)
∧Rc

wn

)
OR (W1 ∧N1 ∧ F c

wn) OR (W1 ∧ S1 ∧ F c
ws) OR

(
W ′ ∧ S′ ∧

(
W1 ∧ S1

)
∧Rc

ws

)
then

18: Portc→d [W] = 1 {Generate West direction}
19: end if
20: end if

5. The destination is in theNW quadrant from the current switch and 1-hop away in the North and West
directions, and Fnw = 1, i.e. there is no Westward fault at the next switch (N1 ∧W1 ∧ Fnw).

6. The destination is in the NW quadrant from the current switch but more than 1-hop away in the
North and West directions, and Rnw = 1 at the current switch, i.e from the North of the current
switch, going West is allowed at the next switch (N ′ ∧W ′ ∧ (N1 ∧W1) ∧Rnw).

Similarly, as shown in Algorithm 1 (lines 6 → 20), the logic conditions for other directions (East,
South, and West) can also be determined.

3.4 Selection Function

Along with the routing logic, the proposed mechanism also uses a selection function that tries to reduce
the probability of selecting a faulty path. When the routing logic described in Algorithm 1 generates
more than one routing options, the selection function selects one out of all available options. As the port

12 Rimpy Bishnoi et al.

directions generated by the routing logic might lead to some faulty paths, the selection function needs to
select the one least likely to encounter a fault along the way from the source to the destination switch.

The selection function of the proposed mechanism is based on the principle that when more than one
routing option is available, it selects the direction that does not reduce the distance to the destination in
that particular direction to zero. For example, routing logic may generate both North and East as routing
options to the destination switch present inNE. If the destination is at the same distance in the North and
East directions from the source, any of the port directions (either N or E) can be selected. On the other
hand, if taking the N port reduces the distance to the destination in the North direction to zero whereas
E does not, E will be preferred to N . This is because after reducing the distance to zero in one direction,
any failure present in that direction would lead to unnecessary non-minimal paths. In some cases, even a
non-minimal path may also not be available in that direction.

Algorithm 2 Algorithm for selecting final port direction for routing a packet
Require: Xc, Yc: X and Y coordinates of current switch c

Xd, Yd: X and Y coordinates of destination switch d
Portc→d [4]: Port directions (N,E, S,W, orL) at c for destination d

Ensure: Portc→d: Final port direction (N,E, S,W, orL) at c for destination d
Procedure
1: if (Xd > Xc) then
2: ∆x = (Xd −Xc)
3: else
4: ∆x = (Xc −Xd)
5: end if
6: if (Yd > Yc) then
7: ∆y = (Yd − Yc)
8: else
9: ∆y = (Yc − Yd)

10: end if
11: if (Portc→d [N] = 1) AND (Portc→d [E] = 1) then
12: if (∆x == 1) AND (∆y > 1) then
13: Portc→d = N {Return North direction}
14: else if (∆y == 1) AND (∆x > 1) then
15: Portc→d = E {Return East direction}
16: else
17: Portc→d = ANY (N ORE) {Return either North or East direction}
18: end if
19: end if
20: if (Portc→d [S] = 1) AND (Portc→d [W] = 1) then
21: if (∆x == 1) AND (∆y > 1) then
22: Portc→d = S {Return South direction}
23: else if (∆y == 1) AND (∆x > 1) then
24: Portc→d =W {Return West direction}
25: else
26: Portc→d = ANY (S ORW) {Return either South or West direction}
27: end if
28: end if

Algorithm 2 shows the steps for selecting the final port direction for routing a packet at switch c,
when the Algorithm 1 generates more than one routing option. Algorithm 2 first computes the difference
in the X (∆x) and Y (∆y) dimensions of the current and destination switches. After difference compu-
tation, the algorithm checks both quadrant directions generated by Algorithm 1. Algorithm 2 compares

Resilient Routing Implementation in 2D Mesh NoC 13

the difference in each of the directions from the destination. If the difference in one direction is one and
in another direction is more than one, the direction having the greater distance will be chosen. In the case
where the difference in both directions is more than one, or equal to one, any of the directions can be
chosen randomly. We will explain Algorithm 2 for one quadrant as follows:

– Line 11: Algorithm 2 generates both N and E candidate directions for any destination in NE.
– Lines 12-13: If the difference is one to the East and more than one in the North direction, North will

be preferred over East.
– Lines 14-15: If the difference is one to the North and more than one in the East direction, East will

be preferred over North.
– Lines 16-18 However, if the difference is one in both North and East directions, either East or North

can be selected randomly.

3.5 Fault Tolerance

As described in Section 3.1, fault tolerance is the capability of an interconnection network to continue
routing operations even in the presence of one or more component failures. The proposed implementation
incorporates fault tolerance by providing the flexibility to reconfigure the configuration bits according to
the underlying routing algorithm and topology in the event of some topology changes.2 Also, using the
routing logic (Algorithm 1) and selection function (Algorithm 2), our approach successfully handles all
the topologies generated by single and double-link failures. We then adapted the mechanism to handle
multiple link failures.

3.5.1 Single Link Failure

In this section, we will discuss how our proposed implementation handles irregular 2D mesh topologies
derived from a single link failure in a regular 2D mesh topology. Assuming different locations for each
failure, a number of irregular topologies can be derived. For example, from a 4× 4 mesh having 24 links,
a total of 24 irregular topologies with a single link failure can be generated. Similarly, from a 3× 3 mesh
having 12 links, a total of 12 irregular topologies with a single link failure can be generated. As shown in
Figure 8, a single link failure in a 2D mesh topology of any size (in this example a 3 × 3 mesh) can be
present either at the boundary (upper, lower, left, and right side) or at the interior of the mesh.

Figure 8 (a) shows the example of a single link present at the upper side boundary of the 3× 3 mesh.
This link failure is located East of switch 0 and West of switch 1. To capture the current topology, the
connectivity bits of particular switch output ports connecting the link are set to zero (C0

e , C
1
w). To avoid

the failure, switch 3 resets F 3
ne to zero as the turn from the North port of switch 3 to the East port of switch

0 is a faulty turn. The routing bit R3
ne is also set to zero in this case because the failed link is present at

the boundary of the mesh, and the routing turn coded in R3
ne does not lead to any other path.

Like switch 3, switch 4 updates its faulty and routing bits (F 4
nw, R

4
nw equal to zero) accordingly.

Setting the routing and faulty bits corresponding to a failure to zero will allow the routing logic to discard
the particular port direction (because of the AND operation with the bit value). Further, to allow non-
minimal paths, the deroute ports3 at switches 0 and 1 that are connected to the faulty link are also set
towards the South direction (DR(0,1) = S). The rest of the failure cases present at the boundary of the
3× 3 mesh are shown in Figures 8 (b), (c), and (d). The following changes are made:

2 We have assumed that generation of a new set of bits is made offline. Our aim is to offer a routing framework that can be
adapted to the changes.

3 Deroute (DR) at any switch define the deadlock-free port direction. This port direction should be used for non-minimal paths.

14 Rimpy Bishnoi et al.

Fig. 8 Single link failures present at the boundary and interior links of the mesh

– To handle a failure at the lower boundary of a mesh, switch 5 resets its F 5
sw and R5

sw bits to zero. F 5
sw

and R5
sw bits capture the fault information present at the West port of the southern neighbour (switch

8) of 5 as shown in Figure 8 (b).
– Figure 8 (c) shows a failure at the left boundary of the mesh. Switch 1 avoids the failure by resetting

its F 1
ws and R1

ws bits to zero.
– To capture a failure at the right boundary of a mesh, as shown in Figure 8 (d), switch 7 resets it F 7

en

and R7
en bits to zero.

Figures 8 (e) and (f) show a single link failure at the interior link of a switch. As shown in Figure 8 (e),
to capture the failure at the South port of a Western neighbour, switch 5 resets F 5

ws to zero. However, in
this case, 5 does not reset R5

ws to zero. This is because the routing turn coded in routing bit R5
ws allows

a path for distant switches (from 5 → 6). A similar observation can be found for the single link failure
shown in Figure 8 (f).

3.5.2 Double Link Failure

In this section, we will discuss irregular topologies derived from two link failures in a regular 2D mesh.
Different failure locations in the mesh will generate a large number of irregular topologies. For example,
from a 4× 4 (3× 3) mesh having 24 (12) links, a total of 276 (66) irregular topologies can be generated.
Figure 9 shows few cases of 3 × 3 irregular mesh topologies generated due to two link failures in the
regular 3 × 3 mesh. As with the single link failures discussed in the previous section, the proposed
approach handles the topologies derived from double-link failures.

Figure 9 (a) shows a 3×3 irregular mesh topology with two link failures. The link failure at the upper
side boundary of the mesh is located between East of switch 0 and West of switch 1. The other failure
is located between East of switch 4 and West of switch 5. The connectivity bits of the switch output
ports connecting to the broken links are set to zero (C0

e , C
1
w, C

4
e , C

5
w). To avoid the failure at the mesh

boundary, switch 3 resets F 3
ne and R3

ne to zero. This reset prevents switch 3 considering the North port

Resilient Routing Implementation in 2D Mesh NoC 15

Fig. 9 Illustrative examples of irregular topologies having double-link failures

for any destinations in the NE quadrant, such as switches 1 and 2. Similarly, switch 4 also resets F 4
nw

and R4
nw to avoid the North port for the destination switch 1.

However, as shown in Figure 9 (a), the other link failure between switches 4 and 5 is interior to the
mesh. Thus, switches 1, 2, 7, 8 reset their faulty bits (F 2

sw, F
1
se, F

7
ne, F

8
nw) to zero, which in turn discards

the path to neighbouring switches and allows paths to distant switches. For example, having F 2
sw = 0 and

R2
sw = 1 allows switch 2 to discard its South port for destination switch 4, and to use for switch 7. Further,

to allow non-minimal paths, the deroute port at each switch with a faulty link is also set (DR(0,1) =
S,DR(4,5) = N).

Figures 9 (b), (c) and (d) show the cases in which both failures are present in the same switch. As
explained above, each switch updates its configuration bits (routing, connectivity and faulty) to capture
the failure and current topology. In the case where more than one routing option is available at any
switch, Algorithm 2 is used to select the one that is most likely to be fault-free. For example, as shown
in Figure 9 (b), at switch 5 routing logic (Algorithm 1) generates both N and W port directions for
destination switch 0 because bothR5

nw andR5
wn are equal to one. However, the distance of the destination

switch in the W direction is larger than in the N direction and N may lead to a faulty path. As a result,
W is preferred over N and the fault is avoided.

3.5.3 Multiple Link Failure

To adapt the proposed mechanism for multiple failures, we have classified multiple failures into two types.
First, there are failures that are located at individual switches situated either far from each other or inside
a mesh. Second, there are failures that are present at boundary switches and are located very close to each
other. Multiple failures of the first category are easily handled by the proposed mechanism in a similar
way to single and double failures, as discussed in Sections 3.5.1, 3.5.2. For example, Figure 10 (a) shows
an irregular topology having a total of four failures. These failures are located at different switches of the
mesh and are not concentrated at neighbouring switches. This allows faults to be considered as single link
failures and can be handled in a similar way.

If the failures are very close to each other or located at boundary switches, our method disables com-
munication between the source-destination pairs with faulty links, creating partially functioning switches.
For example in Figure 10, because of the three link failures present at the boundary switches, from switch
7 to switch 1, all the possible paths in the West direction become faulty. Although, from switch 7 a single
path in the North direction is available for switch 1, it is discarded by the selection logic because going
North reduces the distance in a particular direction to zero. Hence, to avoid this, communication between
switches 7 and 1 is disabled by the proposed mechanism.

16 Rimpy Bishnoi et al.

Fig. 10 Multiple link failure present at boundary switches

3.6 Deadlock and Livelock Freedom

The proposed approach is a routing mechanism that provides a framework to implement the rules of a
routing algorithm to generate valid output ports for a packet. The underlying routing algorithm forbids
some turns in order to prevent cycles and to make the CDG (Channel Dependency Graph) acyclic. We
have considered the SR routing algorithm, a topology-agnostic routing algorithm. SR defines various
rules for placing bidirectional routing restrictions in order to prevent cycles.

As the deadlock-freedom of SR is already proved [24], it is now the responsibility of the proposed
mechanism to maintain this deadlock freedom. This means it should not generate any invalid output port
that results in a violation of a routing turn prohibited by the underlying routing algorithm. As described
in Section 3.2, the proposed method encodes the allowed and restricted routing options into a set of
routing bits. In order to make sure that no packet will violate any forbidden turn, it sets the routing for
the prohibited directions to zero and the routing bits corresponding to allowed routing options are set to
one. This fact ensures that the ports corresponding to restricted turns will be discarded by the underlying
routing logic (due to the AND operation with the routing bit).

Ensuring that no packet will ever cross the restricted routing option of the routing algorithm, CDG
remains acyclic, making the proposed mechanism deadlock-free. Livelock is prevented by allowing only
the minimal paths in the fault-free case. Non-minimal paths are allowed only when a fault is present. In
this case, the particular output port (deroute port) leading to a non-minimal path towards the destination
is encoded only by prior searching of the deadlock-free non-minimal path.

4 Experimental Evaluation and Results Analysis

We first start with an area and power analysis of a suitable router required for the proposed implemen-
tation. After that, we provide coverage analysis for various irregular topologies generated due to link
failures. We also evaluate the performance with uniform, bit-reversal and bit-complement traffic profiles.

4.1 Area and Power Analysis

To evaluate the area overhead and power consumption of our proposed implementation compared to other
logic based implementations, we have synthesized a 5-port router model for LBDR, LBDRdr, uLBDR
using the Synopsys Design Compiler. For synthesis, we have used a UMC 65nm technology with a
supply voltage of 1V. We have considered LBDR, LBDRdr, uLBDR for comparison with the proposed
implementation because all these approaches are logic based and do not require any routing tables.

Resilient Routing Implementation in 2D Mesh NoC 17

Table 2 Area/Power Analysis

ROUTER Area(µm2) Power (mW)
Dynamic & static

LBDR 25895 .0165
LBDRdr 37335 .0225
Proposed 40975 .0237
uLBDR 47319 .0281

In terms of fault tolerance, uLBDR is the most effective variant of the LBDR family of implemen-
tations. It can be observed from Table 2 that the proposed mechanism requires less area and power than
the uLBDR mechanism. In order to provide 100% coverage, uLBDR imposes various major design con-
straints on a switch such as customized arbiter and use of VCT switching. These constraints contribute to
an increase in uLBDR’s overall area and power. The proposed mechanism does away with the needs of a
particular switching technique and any specialized arbiter. Area and power overheads are slightly larger
than for the other LBDR methods (LBDR and LBDRdr) [9]. The extra overhead of our method is coupled
with improved fault coverage in comparison to other methods.

4.2 Coverage Analysis

In this section, we evaluate the coverage offered by different implementations (LBDR, LBDRdr, uLBDR,
and proposed). Coverage in any routing implementation is measured as the percentage of supported irreg-
ular 2D mesh topologies out of all irregular topologies that can be generated from a regular 2D mesh due
to link failures. To offer resilience, 100% coverage is preferred because a single irregular topology that
is not supported may ruin the entire network service [9]. A topology is considered supported if the im-
plementation can offer connectivity between all pairs of switches while maintaining deadlock-freedom.
To estimate coverage, we generated a set of irregular topologies from a regular topology by considering
either 1-link or 2-link failures. For a n× n topology we can define the following:

– The total number of links L = 2n (n− 1)
– The total number of irregular topologies generated from 1-link failures = LC1

– The total number of irregular topologies generated from 2-link failures = LC2

For example, from an initial 8×8 regular topology with 112 links, we can generate a set of 112 and 6216
irregular topologies having one and two failed links. To test the coverage, we have used a checker tool
to check the connectivity and deadlock freedom of each implementation. The checker tool takes as input
one irregular topology at a time and then performs routing using each of the methods (LBDR, LBDRdr,
uLBDR, and proposed). Along with the connectivity, it also checks each method for deadlock-freedom.

For any size of the mesh, all of the mechanisms except LBDR can handle all irregular topologies
generated as a result of a single link failure. A single link failure in the topology may disable the available
minimal paths between a few switches, especially those situated in the same row or column of failed
link. LBDR has no support for non-minimal paths, hence has zero coverage. In contrast, all three mech-
anisms LBDRdr, uLBDR and the proposed have support for non-minimal paths and use reconfiguration
to achieve complete coverage.

Table 3 shows the coverage of different mechanisms for irregular topologies generated as a result of
two link failures. We can observe that LBDR is not able to achieve complete coverage for all sizes of
mesh, except for the 2× 2 mesh. It only achieves complete coverage for the 2× 2 mesh because the mesh
size is too small: failures of any two links at the same time either divide the topology into two halves or
convert the topology into a smaller topology having only minimal paths.

The other variant of LBDR, LBDRdr, manages to achieve good coverage, but not 100%. As mentioned
above, a single unsupported irregular topology may ruin the entire network service. As an example, for an

18 Rimpy Bishnoi et al.

Table 3 Coverage for topologies having 2-link faults (LBDRdr shows the no. of topologies not supported along with percentage)

Topology Irregular LBDR LBDRdr uLBDR Proposed
size topologies
2x2 6 100% 0 (100%) 100% 100%
4x4 276 0% 16 (94%) 100% 100%
5x5 780 0% 24 (96%) 100% 100%
6x6 1770 0% 32 (98%) 100% 100%
7x7 3486 0% 40 (98%) 100% 100%
8x8 6216 0% 48 (99%) 100% 100%

8× 8 mesh there are 48 irregular topologies that are not supported by LBDRdr. In contrast, the proposed
method and uLBDR provide 100% coverage. However, to achieve 100% coverage uLBDR poses several
restrictions on the switch design (a specialized arbiter for message replication and VCT switching for
deadlock-freedom) and also loads the communication traffic by replicating messages.

On the other hand, our proposed mechanism does not pose any restrictions on switch design and
provides the flexibility to work with any switching technique (wormhole or VCT). There is no need to
replicate extra messages. Similarly, irregular topologies having multiple link failures are also handled. As
explained in Section 3.5.3, if multiple link failures are present inside the boundary of the mesh and are
located far apart, the proposed mechanism handles them successfully. However, if failures are present at
the boundary switches and are very close to each other, it handles them by creating partial switches. So
the coverage slightly reduces for topologies having more than two failures at nearby switches.

4.3 Performance Analysis

To evaluate the performance of the proposed mechanism, we have used gMemNoCsim, a cycle-accurate
NoC and cache hierarchy simulator developed by the Parallel Architecture Group at the Universitat
Politècnica de València [25]. Average latency and throughput are used as performance metrics.

We have used a synthetic workload with the following traffic patterns: uniform, bit-reversal and bit-
complement and performance values are taken at various simulation points, each with a different traffic
injection rate. Stop & go flow control is used along with wormhole switching. Also to analyse the mutual
effects of messages with different lengths, we have considered a weighted mix of short and long messages.
Both short and long messages are of fixed sizes. To compare and analyse the performance of our proposed
implementation with other similar implementation approaches, we have conducted the following two
experiments.

Experiment-1 : In the first set of experiments, we have compared our proposed work with other
non-fault tolerant and fault tolerant routing implementations. For this, we have considered the finite state
machine based implementation ofXY routing algorithm as a non-fault tolerant implementation. For fault-
tolerant implementations, we have considered Routing Tables (RT), LBDR and our proposed method
along with the segment-based routing algorithm. For this experiment, 40K permanent and 20K transient
messages are generated during a single simulation point. The message size is set to 3 and 10 flits, and the
buffer size is set to 8 flits.

Figures 11 (a) and (b) show the average network latency and throughput under the uniform distribution
of messages. We can observe that under the uniform traffic profile XY routing algorithm outperforms all
other mechanisms by achieving lower latency and higher throughput because the network is uniformly
loaded. XY routing is not fault-tolerant and will not work for many source-destination pairs even in the
case of a single link failure. The routing table (RT) based implementation, although flexible in handling
each type of failure, is more expensive than all other mechanisms in terms of both space and time. RT
results in higher latency and lower throughput than the other mechanisms, mainly due to its additional
table access latency. We can also observe that LBDR exhibits an improvement in performance over the

Resilient Routing Implementation in 2D Mesh NoC 19

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

A
v
er

ag
e

N
et

w
o
rk

 f
li

t
la

te
n
cy

 c
y
cl

e

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
h
ro

u
g
h
p
u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(b)

Fig. 11 Comparison of different routing implementations with uniform traffic pattern

RT-based implementation due to its simplified routing logic design. With low injection rates, LBDR and
the proposed work exhibit similar performance but our proposal scores over LBDR at high injection rates
because of its selection strategy that intelligently distributes the traffic over other available links.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

A
v
er

ag
e

N
et

w
o
rk

 f
li

t
la

te
n

cy
 c

y
cl

e

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
h
ro

u
g
h
p
u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(b)

Fig. 12 Comparison of different routing implementations with bit-reversal traffic pattern

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

A
v
er

ag
e

N
et

w
o
rk

 f
li

t
la

te
n
cy

 c
y
cl

e

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T
h
ro

u
g
h
p
u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

XY
RT

LBDR
Proposed

(b)

Fig. 13 Comparison of different routing implementations with bit-complement traffic pattern

Figures 12 (a) and (b) show the average network latency and throughput with the bit-reversal pattern.
In terms of latency and throughput, LBDR and our proposed method exhibit similar performance to
XY at low injection rates. At high injection rates, our proposed mechanism outperforms the others. RT
results in higher latency and lower throughput under the bit-reversal traffic pattern also. The observed
performance degradation of RT may be attributed to delays because of table access.

20 Rimpy Bishnoi et al.

Figures 13 (a) and (b) show the average network latency and throughput according to the bit-
complement pattern. The trends observed here are quite similar those for uniform traffic distribution,
the differences being that their performance degradation onsets are at lower injection rates. The latency
of RT starts saturating at an injection rate of 0.3, whereas the proposed method, LBDR and XY saturate
at higher injection rates near to 0.4, as shown in Figure 13 (a). For throughput, all mechanisms start sat-
urating at around 0.45 injection rate as shown in Figure 13 (b). The saturation is due to back pressure as
an NoC cannot handle this or higher injection rates.

Experiment-2: In Experiment-1, the performance of our proposed work was evaluated by consider-
ing a regular 2D mesh topology during each simulation. However, the performance of any fault tolerant
routing framework is also important when the topology becomes irregular due to the presence of failures.
In this set of experiments, we have compared the performance of the proposed mechanism with other
fault tolerant implementations (RT, uLBDR) under failure conditions. Unlike Experiment-1, XY is not
considered in this case as it does not support failures. For comparison, we have considered irregular 2D
mesh topologies generated due to failures in a regular 2D mesh. The purpose is to demonstrate that under
the irregular topological scenario, the proposed implementation does not suffer degraded performance
instantly.

Each simulation is run with a different set of irregular 2D mesh topologies derived from a regular 2D
mesh by injecting link faults with incidences of 5, 10, and 15 percent of the total links. More specifically,
for a varying set of fault rates we have observed the latency and throughput parameters of the proposed
approach. For this experiment, instead of a wormhole, virtual-cut-through (VCT) switching is used. As
explained in the introduction section, uLBDR is constrained to work with only VCT switching [9]. During
each simulation point, 20K permanent and 10K transient messages are generated. As in VCT switching,
message size should be equal to the buffer size, both are set to 8 flits.

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
er

ag
e

n
/w

 f
li

t
la

te
n
cy

 c
y
cl

e

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR(5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

T
h
ro

u
g
h
p
u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR((5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

Fig. 14 Performance comparison of different mechanisms during failures under uniform traffic profile

Figures 14 (a) and (b) show the average network latency and throughput of different mechanisms as
a function of the injection rate on a 2D mesh when using uniform traffic distribution. We can observe
that for each mechanism, in the case of failures, the latency is slightly higher than the case with no fail-
ures (Experiment-1). However, as in Experiment-1, for each fault rate, the proposed approach maintains
lower latency as compared to other approaches. The reason is that, in the event of a failure, it first tries
to find an alternative fault-free minimal path; otherwise it opts for a non-minimal path in some cases. In
cases where the minimal path is not available, a non-minimal path needs to be taken. This fact slightly
lowers the throughput for all approaches.

A similar observation can be seen in the latency and throughput graphs of bit-reversal (Figure 15) and
bit-complement (Figure 16) traffic patterns. In the case of failures, as compared to other approaches, the
proposed approach gracefully degrades its performance while preserving the connectivity between each

Resilient Routing Implementation in 2D Mesh NoC 21

 10

 20

 30

 40

 50

 60

 70

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
er

ag
e

n
/w

 f
li

t
la

te
n
cy

 c
y
cl

e

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR(5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

T
h
ro

u
g
h
p
u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR(5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

Fig. 15 Performance comparison of different mechanisms during failures under bit-reversal traffic profile

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.03 0.06 0.09 0.12 0.15 0.18

A
v
er

ag
e

n
/w

 f
li

t
la

te
n
cy

 c
y
cl

e

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR(5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

T
h
ro

u
g
h
p

u
t

fl
it

/c
y
cl

e/
n
ic

Generated traffic flit/cycle/nic

Proposed(5%)
RT(5%)

uLBDR(5%)
Proposed(10%)

RT(10%)
uLBDR(10%)

Proposed(15%)
RT(15%)

uLBDR(15%)

Fig. 16 Performance comparison of different mechanisms during failures under bit-complement traffic profile

source-destination pair. It is important to notice that this degradation in performance is mainly due to the
presence of failures affecting the total available paths between source-destination nodes. As the topology
changes from regular to irregular, a few links become unavailable due to the faults. This forces some
packets to take alternative minimal paths or non-minimal paths if available. In the failure case, any of the
resultant paths add some performance overhead due to congestion or the length of the path.

5 Conclusions

To deal with the challenges of on-chip routing, we have proposed a novel, fault-resilient routing method.
The proposed work handles failure-induced irregular topologies derived from regular 2D meshes. It in-
corporates segment-based routing, a topology-agnostic routing algorithm as the underlying routing algo-
rithm. The proposed mechanism is based on a few configuration bits per switch and captures the routing
algorithm and topology. The number of configuration bits does not increase with network size, hence
leads to a scalable design, unlike routing table based implementations. We demonstrate that our proposed
method is guaranteed to tolerate all locations of single and double-link failures and most multiple failures.
Unlike uLBDR, the proposed mechanism can be configured under both wormhole and virtual-cut-through
switching and does not replicate any extra messages. Along with fault tolerance, our proposed mechanism
also gives priority to performance. The proposed method can achieve improved network performance for
fault-free cases while achieving graceful performance degradation during failure. The proposed mech-
anism handles irregularities with a 14% reduction in area requirements and a 16% reduction in overall

22 Rimpy Bishnoi et al.

power consumption when compared with other published work, and thus, provides a promising solution
for future many-core architectures.

Acknowledgements We would like to acknowledge support received from Indo-Spain DST project vide contract number
DST/INT/Spain/P35/11/1 and UK India Education and Research Initiative (UKIERI - II) funded project ”HiPER NIRGAM” vide
contract number IND/Cont/E/11-12/78.

References

1. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

2. S. Borkar. Microarchitecture and design challenges for gigascale integration. In 37th International Symposium on Microarchi-
tecture, 2004. MICRO-37 2004., pages 3–3, Dec 2004.

3. C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE, Micro, 23(4):14–19, July 2003.
4. G. De Micheli and L. Benini. Networks on chips: technology and tools. Academic Press, 2006.
5. T. Skeie, F.O. Sem-Jacobsen, S. Rodrigo, J. Flich, D. Bertozzi, and S. Medardoni. Flexible DOR routing for virtualization of

multicore chips. In Proc SOC’09, pages 073–076, Oct 2009.
6. Y. B. Kim and Y.-B. Kim. Fault tolerant source routing for network-on-chip. In Proc. DFT ’07, pages 12–20, 2007.
7. D. Fick, A. DeOrio, G. Chen, V. Bertacco, D Sylvester, and D. Blaauw. A highly resilient routing algorithm for fault-tolerant

nocs. In Proc. DATE ’09., pages 21–26, April 2009.
8. C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing. Addressing transient and permanent faults in NoC with efficient fault-

tolerant deflection router. IEEE Transactions on VLSI Systems, 21(6):1053–1066, June 2013.
9. S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J. Camacho, F. Silla, and J. Duato. Cost-efficient on-chip routing

implementations for CMP and MPSoC systems. IEEE Trans.Comput.-Aided Design Integr. Circuits Syst., 30(4):534–547, April
2011.

10. D.H. Linder and J.C. Harden. An adaptive and fault tolerant wormhole routing strategy for k -ary n-cubes. IEEE Transactions
on Computers., 40(1):2–12, Jan 1991.

11. W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xanthopoulos. The reliable router: A reliable and high-performance
communication substrate for parallel computers. In Proceedings of the First International Workshop on Parallel Computer
Routing and Communication, PCRCW ’94, pages 241–255, London, UK, 1994. Springer-Verlag.

12. M.E. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N.A. Nordbotten, O. Lysne, and T. Skeie. An efficient fault-tolerant
routing methodology for meshes and tori. Computer Architecture Letters, 3(1):3–3, January 2004.

13. C.-T. Ho and L. Stockmeyer. A new approach to fault-tolerant wormhole routing for mesh-connected parallel computers. IEEE
Transactions on Computers., 53(4):427–438, April 2004.

14. C.J. Glass and L.M. Ni. Fault-tolerant wormhole routing in meshes. In Proc FTCS-23’93, pages 240–249, June 1993.
15. T. Schonwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel. Fully adaptive fault-tolerant routing algorithm for network-

on-chip architectures. In 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, 2007(DSD
2007)., pages 527–534, Aug 2007.

16. V. Puente, J.A. Gregorio, F. Vallejo, and R. Beivide. Immunet: a cheap and robust fault-tolerant packet routing mechanism. In
Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on, pages 198–209, June 2004.

17. D. Fick, A. DeOrio, Jin Hu, V. Bertacco, D. Blaauw, and D. Sylvester. Vicis: A reliable network for unreliable silicon. In 46th
ACM/IEEE Design Automation Conference, 2009(DAC ’09), pages 812–817, July 2009.

18. K. Aisopos, A. DeOrio, Li-Shiuan Peh, and V. Bertacco. Ariadne: Agnostic reconfiguration in a disconnected network envi-
ronment. In International Conference on Parallel Architectures and Compilation Techniques(PACT), 2011, pages 298–309,
Oct 2011.

19. S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato. Efficient implementation of distributed routing algorithms for
NoCs. Computers Digital Techniques, IET, 3(5):460–475, 2009.

20. A. Ghiribaldi, D. Ludovici, F. Triviño, A. Strano, J. Flich, J. L. Sánchez, F. Alfaro, M. Favalli, and D. Bertozzi. A complete
self-testing and self-configuring noc infrastructure for cost-effective mpsocs. ACM TECS, 12(4):106:1–106:29, 2013.

21. A. Mejia. Design and Implementation of Efficient Topology Agnostic Routing Algorithms for Interconnection Networks. PhD
thesis, University of Valencia, 2008.

22. J. Flich, T. Skeie, A. Mejia, O. Lysne, P. Lopez, A. Robles, J. Duato, M. Koibuchi, T. Rokicki, and J.C. Sancho. A survey
and evaluation of topology-agnostic deterministic routing algorithms. IEEE Transactions on Parallel and Distributed Systems,
23(3):405–425, March 2012.

23. M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham, T.L. Rodeheffer, E.H. Satterthwaite, and C.P. Thacker.
Autonet: a high-speed, self-configuring local area network using point-to-point links. IEEE Journal on Selected Areas in
Communications., 9(8):1318–1335, Oct 1991.

24. A. Mejia, J. Flich, and J. Duato. On the potentials of segment-based routing for NoCs. In Proc. ICPP’08, pages 594–603,
2008.

25. gmemnocsim. Available at. http://www.gap.upv.es, 2010.

