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Abstract

Components of ground and flight vehicles are subfeto random vibration excitations. A common apptoto qualify such
components is to expose them to a random Gauss@tateon, defined by the power spectral density (P8Djhe vibration
under consideration.

In real life, however, it is common to experience+@@aussian acceleration inputs such as road irngtiesain the automotive
world or turbulent pressure fluctuations for theospace sector. Traditional Gaussian random tesalsigfo not accurately
represent the bursts and peaks seen in servicelbseconsequence of not using the right type df gemal during vibration
testing of the product leads to higher field fadluates and added warranty costs.

Modern controllers can generate non-Gaussian eixxeitsignals with a given PSD and kurtosis. A sirtiata with kurtosis
control makes the vibration test more realistic Hretefore closer to real-world excitations.

This paper addresses the question of linking fetidamage with the prescribed input kurtosis. Dirpplieations of these results
include improved fatigue life estimations and almeitto accelerate shaker tests by generating highdis, non-Gaussian drive
signals.

The algorithm is validated using numerical simulasi and a case study illustrates the applicatidgheomethod.
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1. Introduction

In all industrial sectors e.g. Automotive, AerospaEnergy, etc. components are designed to wittdtzen real
operational conditions to which they will be sultgetduring their service life. A fatigue resistdesign may reduce
warranty costs and unnecessary maintenance, imcreafety and reliability and will yield a betterrporate
reputation.

1.1.Typical qualification tests on shakers: random PSD

Shaker tests are performed to qualify the enduraheeproduct. In order to replicate the same failmechanism
as in real conditions, the test specification nmsstrepresentative of the service loads. When rgnaimandom
vibration tests, the input excitation is typicatlgfined as a Power Spectrum Density (PSD). Examfie’s from
MIL STD 810 [3] are given in Fig. 1.
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Fig. 1: Example PSD profiles from the military sdand MIL STD 810 [3]

From the PSD profile, an excitation signal is gated by the controller to drive the shaker. Theaodpced
signal is meant to be random stationary and Gaussia

1.2.Virtual vibration endurance tests

Durability simulations based on Finite Element Aisid (FEA) can help optimizing the design of a comgnt. It
allows hypothetical scenarios to be consideredrdento select the optimum material, to choose rtfieimum
thickness, etc. required to fulfill a target innter of service life.

Durability simulations can limit drastically the mber of prototypes in the Design phase. At the ifjcafion
stage, if the test article fails during the quakfion test, FEA-based durability simulations calphlunderstand why.
Also, it can assist in assessing what the marge# ghe qualification test is successful.

When a linear system is excited by a random statioand Gaussian signal, the spectral and statistic
characteristics of the response are known. If theal system is a mechanical device and the exuitas the
acceleration signal produced by a shaker, thesttiess response can be derived in terms of boffoiger Spectral
Density and its Probability Density Function. Sttial methods exist to derive the distributiorpefks and valleys
in the response and to approximate the distribuifche Rainflow ranges [18].

The benefits of such a statistical approach are:

» performance - since there is no need to perforrg tone domain realisations
e accuracy - since the distributions obtained areatmwith well-defined tails



Author name / Procedia Engineering 00 (2015) 00@-00 3

Fig. 2 illustrates both benefits by comparing thsutting Rainflow histogram obtained from long tich@main
simulations versus the results from a statistipgraach.
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Fig. 2: Rainflow cycle histograms for various tigh@main realizations versus the spectral approach

The current state of the art in virtual vibratiomdarance testing does not allow one to simulatéokis-control
tests. Currently, the only way of estimating thigfiae life under non-Gaussian excitations is tdgren a transient
analysis. Such analysis can be accelerated by usil superposition, but is still very demandingerms of CPU
time. It also raises the question of how long tkeitation signal should be to ensure convergenctheratigue life
estimate. The time domain approach is thereforgastal and this is the main reason why a speefaloach is
relevant and preferred.

This paper extends a previous study [6] by the sautieors. The case of non-Gaussian loading witktbuf
high amplitude excursions is further explored arfidrenulation giving the statistics of the respomsproposed
based on the theory of cyclostationary process@9[17]. This paper concentrates more on statigdis&ributions
of stress Rainflow ranges and on fatigue damagéhddielogies for deriving the statistical distrilmrts of stress
Rainflow ranges are explained for both stationany monstationary non-Gaussian excitations. Finallyexample
illustrates the approach and compares the fatigngade due to both types of leptokurtic excitatistationary and
nonstationary.

2. Leptokurtic excitations

The various standards for environmental tests aglauge that most measured random vibrations dasaally
conform to a Gaussian distribution of amplitude8J4]. They also warn that the measured data reptesgreater
damage potential than Gaussian data because ohtgker probability of high amplitudes.

Kurtosis is one of the principal metrics describman-Gaussian features of a unimodal probabilisgridtiution.

It is often described as a measure of the "pealestireé a process. The kurtosis is calculated frioenfourth central
moment (ry) of a random variable, normalized by the square of the varianog) (i.e,

=% m, :%é[x_y]" (1)

Kurtosis of a Gaussian distribution is 3.0. A prexés said to be leptokurtic if its kurtosis isteg than 3.0, and
platykurtic if smaller than 3.0.

Modern shaker controllers can generate signals figh kurtosis, making the test more representativéhe
expected vibration environment that the test artiglll experience during its service life. The gerted signal has
the same PSD, but the signal obtained is more isnmicompared to a stationary Gaussian signal.sigral with
high kurtosis exhibits higher levels than the Gams®ne. In terms of fatigue damage, it is exped¢ted more
impulses means higher expected damage for the elevider test so that the test duration can be eedudile
reproducing the same overall damage.

This section of the paper is concerned with thetation signals, generally measured in acceleratidnis is
typically the input to the test article. There amveral ways to generate random signals from a &8Dwith a
prescribed kurtosis value [15,16]. They can be disoaivided into two families: stationary non-Gaiass and
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nonstationary non-Gaussian. Examples of statioma nonstationary leptokurtic processes are destiib the
next two sections.

2.1.Stationary leptokurtic excitations

A process is said to be stationary if its statistice not affected by a shift in the time origire.(the statistics of a
time historyx(t) are the same as a time histafy + 7) for all values ofr) [8]. A previous paper on the subject of
non-Gaussian loads [6] explains how to generateormGaussian stationary signal, showing a steady ot
instantaneous peaks. It uses a zero-memory nonlineaotonic functiory = g(x) to convert a zero mean Gaussian
signalx(t) with a specified PSD into a non-Gaussian wavefg(th[14,15,16]. This approach is also referred to as
the PDF transform technique [6,7].

2.2.Nonstationary leptokurtic excitations

Another class of high kurtosis random signals isdenaf non-stationary processes. Although vibraii®n
generally of random form, it is often nonstationarin the automotive world, this arises from change road
surface quality or for example in the aerospaceosegusts from atmospheric turbulence. A nonistairy process
can be represented as a signal with time-varyimgnee, typically obtained through a modulationqerss.

The process for generating a non-Gaussian sigrblbwirsts starts with the generation of a statipi@aussian
signalx(t) with zero mean and varianeé. This signal is then amplitude modulated by a feegquency waveform
a(t), independent of the Gaussian signal. The non-Sanisignal/(t) can therefore be writtegy{t) = a(t).x(t).

For the sake of simplicity, the modulating sigeé) is considered periodic. The amplitude modulafiamction
can be made of any wave form (the “burst”), folld®y a flat line such that there is a smooth camtirs junction
between the burst and the flat portion. If the getris T seconds and the length of the bursf§sseconds, the
proportion of burst in a period, noteg is calculated ag, = T, /T, with T, < T. Examples of stationary Gaussian
signalx(t), modulation functiora(t) and obtained signa(t) are illustrated in Fig. 3. Note that in this exde) the
burst in the modulation function is a sine wavawiplitudeA and an offseB.
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Fig. 3: Example amplitude modulation signal

Note that in real life, the bursts are not iderlyjceepeated at a constant rate. Some simplifyisguanptions can
be made:

* The length of the bursts pulse will be consideraakstant, but the bursts may appear at random itsshaual, as
long as they don’t overlap, the overall statisti€the nonstationary process remain the same.

e The amplitudes of the bursts will remain constarthis paper. Note that the pure random naturbef t
underlying stationary signal tends to mask therdatestic aspects of the amplitude modulation fiomt

Considering a given waveform for the burst in thedating functiora(t), its mean value and amplitude can be
calculated from the target kurtosis. The rate aftar, is a user input. The value foyis chosen based on the type
of phenomenon — more or less impulsive —to be sitedl

Note that the autocorrelation function of the atuolé modulated signg(t) is periodic [5], with period T.

A procesg/(t) is said to be cyclostationary in the wide seh#s autocorrelation is periodic [13].
The so-called cyclic spectrum gt) can be written (see equ. 150 in [1]):

T £) = ; _k, P
S (f)—Zklék@_pS(( f T+2Tj @)

wherea, are the Fourier coefficients of the periodic madioin functiona(t), S, is the PSD of(t) and the cyclic
frequencya = p/T.

Based on the cyclic spectrLﬁch)/T ( f) , one can extract the statistics of the progé3417]. The full
demonstration of this is beyond the scope of thisep.
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In the case of simple modulation functions likeimeswvave, this expression simplifies greatly andegithe
kurtosis value in a closed-form formulation.
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3. From excitation to stressresponse

In this section, the test article is considerea $isear time-invariant (LTI) system, excited by thon-Gaussian
signal and producing a stress response. The resganstion of the LTI system is denotétff) and its impulse
response function (IRF. Fig. 4 illustrates an example system with itsuingnd output.

Excitation Linear System Response

iz = lPaTHz

Response PSD in

Input PSD in b s
g¥/Hz MPa?/Hz

FRF

(Mag&Phase)

+ input kurtosis + output kurtosis

Fig. 4: Example linear system with broadband infi&ar transfer function and response

The characteristics of the response of a lineatesyssubjected to stationary random Gaussian eiwitatis
known and largely covered in the literature [5,8,There is less in the published literature orpoeses of linear
systems to non-Gaussian random excitations.

In a previous work by Rizzi et al. [9], it was falithat a leptokurtic loading having a steady rédte o
instantaneous, high-excursion peaks produced éskgthe same response as if the load was Gaus$mln
contrast, the response to a non-Gaussian loadiigdhthe same kurtosis, but with bursts of highueal was found
to be non-Gaussian and leptokurtic too. Over atjma range of damping, it was found that thedineesponse to a
non-Gaussian loading was Gaussian when the pefithe aystem impulse response is much greatertttearate of
the peaks in the loading. A lower damping woulpidglly reduce the excess kurtosis in the response.

The following sections examine the statistics @f tbsponse of a LTI system excited by firstly dictery
leptokurtic signal and then alternatively a nonstatry random leptokurtic excitation.

3.1.Stress responses due to stationary leptokurtictatian

The stationary excitation signal is considered heftge the input to an LTI system, which basicaltys as a
linear convolution filter. In the case of statiop@rocesses, the statistics of the response caalbelated from the

statistics of the excitation. The formulation lingithe output kurtosi®’, with the input kurtosiy(y and the
characteristics of the input signal and the fij&ris given in Equation (4):
4 2\2
K, S 2 2_(29 4) («,-3.0)+ 3.0 4)
() 2
wherec; are the values of the autocorrelation functiothefinput noise anfi are the values of the convolution of
the autocorrelation function of the input noisehtite IRF of the linear system.

Now consider how the behaviour of the output kust@schanged as a function of the characteristithe
impulse response function (IRF). The IRF corresimyto systems with very low damping will osciédbnger
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than the IRF corresponding to a highly damped systi relation to equation (5), an IRF with longcdying
oscillations will minimize the temzf‘4 / (Zf‘z)z. This will lead to a lower output kurtosis forightly damped

system than for a more heavily damped one. THis\der is consistent with the observation thatahgput kurtosis
tends to Gaussian as the bandwidth of the filtey the amount of damping, decreases [9,12].

3.2.Stress responses due to nonstationary leptokuxtitaion
Gardner [1] gave the input-output cyclic spectiatienship for LTI systems:
PT(f) = H f+-2 0T oH| -2 5
()= H 12 Jog(9om -2 ®)
whereH(f) is the frequency response function of the lirgatem an(SZp/T ( f) and S;’T ( f) the cyclic spectra

for z(t) andy(t) respectively. = p/ T is the cyclic frequency, ranging over all integaultiples of the

fundamental frequencyf =1/T of the modulation function.
Inserting equations (2) and (5) into equation @) obtains the expression for the output kurtosis:

(v 2z s 2o (-2)o
jH(f)E{;aka;s( f—'T‘j}DH( f) d(

Note that for a narrowband system whose bandwglgmialler than the frequency of the modulator, m{m +

K,=3 (6)

2%) H* (f + 2%) tends to zero and the output kurtosis tends tasvai@ The proportion of burstsand the

waveform of the burst also plays an important mlthe propagation of the nonstationary naturéhefexcitation in
output of the linear system since they act on terier coefficientsy, of the periodic modulation function.

4, Statistical rainflow counting and fatigue damage
The formulation for the distribution of peaks otationary Gaussian process of various bandwidtssinitially

found and published by S.O. Rice [11] and thendlrgelayed in the literature [5, 10]. The disttilon of the peaks
of a stationary Gaussian process is written:

1|41-y° T s 5 ¥
fo(s)=— N- 2 @) > @\ 1+ e ————— 7
8 o \/ZT 20 02(1_y2) 0

where O is the root mean square (RMS) apfds the irregularity factor as proposed by Rice [1i]s defined as
the ratio of the number of zero up-crossings ime tsignal to the number of peaks. The irregutdattor tends to
1.0 for narrow-band signals and to 0.0 in a widebease.

The peak distribution knowledge developed herenigxension of this theory for two classes of n@ussian
processes: stationary and nonstationary leptokpricesses.

4.1.Peak distribution in the case of a stationary léqitic process

The probability density function (PDF) of the rand@ariablez can be obtained from the Gaussian PDF of the
random variable using the PDF transform [7,8]:
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Winterstein [15] proposed a monotonic functgacting as a zero-memory nonlinear system to miegébkurtic
responses. It is based on Hermite polynomialpfwa@ach a non-Gaussian distribution and is wellesiuior mild
deviations from a normal law. In the case of az®eean, symmetric, standardized procegbe transformatiogy
that allows one to obtai(t) is:

2= g(9=0,K =+ (l] -3 (©)
o, o, o

X X

(8)

with:

ke L ; J1+15k-3-1

T ) ,
\1+6h,? 18
Where K is the output kurtosis calculated in equation (4).
The inverse transform is [15]:

Coaa (12 Yo (=) 1z Y (=3
e im0 e (5 @

And the derivative of the transformatigns:

E:g-(x): K(1—3FL+3LEX2) (11)
dx Ux

The formulation can be successfully applied with distribution of peak£'D (s) . The distribution of peaks for the
response is hence obtained as:

_ fe(g(9)
f = 12
()= [ 7(9) 42

where fp is the distribution of peaks for the respomsand fG is the distribution of peaks for a Gaussian preces
having the RMS of the output signal, as defineddnation (7).

4.2.Peak distribution in the case of a nonstationaptdéurtic process

The output kurtosis for a cyclostationary excitatie given in Equation (6). The output signal istased to be of
the same nature as the input signal i.e. amplitaddulated. The output signal is therefore made efationary
Gaussian signal multiplied by a periodic, low freqay modulating signal. The output modulating fiort is
assumed to have bursts made of the same wavefommtlas input modulating function, occurring at teme rate
but having a different amplitude due to the filbgriprocess. Although, it is expected that the matihug function be
distorted by the convolution, this assumption iacgical and leads to good results compared to tiomain
simulations. The first objective is therefore todfithe characteristics of the amplitude modulasignal i.e. the
amplitude of the burst which is used to producectileulated output kurtosis.

The peaks of the output signal are obtained byipiyitg the peaks of the underlying stationary Gaass signal
by the modulating window. The distribution of thegiis of the output signal can therefore be caledlasing the

rule to find the PDF of the product of 2 indepertdamdom variableX andA [12] with distributions fG and fA
respectively, given by Equation (13):
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fA@:TﬁJ@éN{E}m (13)

with fG the distribution of the peaks of the underlyingist@ary Gaussian signal (see equation (6)) éfr,ldthe

PDF of the modulating signal.This indeed requiregxpression for the PDF of the modulating sigodie
determined. This task is though straightforwardsionple burst waveforms such as a sine wave, famgke.

4.3. Distribution of rainflow ranges

The assumption is made that each peak is assodiatiech valley of similar magnitude and the cycleége
distribution can be determined from the peak distion. Therefore, the cycle’s range distributiocomparable to
the rainflow cycle distribution - is deduced frohetpeak distribution, as per Equation (14).

()= fp@ﬂj (14)

The use of equation (14) to calculate the rangeiligion is equivalent to considering that peakd galleys are
paired in the most severe way i.e. the highest geals with the lowest valley, the second higheakmgmes with
the second lowest valley, etc. This approach isetbee expected to be conservative in the case lmbadband
response.

The distribution of stress ranges, comparable tairflow cycle histogram, can be calculated usingation

(15):

N(S)= R(S)- N, T (15)
where T is the exposure duration amdp the total number of expected peaks (or ranges)updrtime. Np is
calculated by using the second and fourth spectomhents of the response PSD [11].

The damage at a given stress raBgis obtained as the ratio of the cycles countatiiatstress range level to the
number of cycles required to fail the componerthat stress range level, which is given by the ni@teurve like
the one illustrated in Fig. 5. The total damagehtined by summing the damage from each individieaxs! of
stress range using Miner’s rule [19].

The SN curve may be made of several segments. degrhent is represented as a straight line in lthgait space
as described by the Basquin power-law relationghipn in Equation (16).

C=N,.S (16)

whereSy is the stress range in MP¥; is the number of rainflow cycles to failu@,is the Basquin coefficient and
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b is the Basquin exponent. Fatigue damage is detedry Equation (17).

_ 1 1% b
D—N—f—ElN(%).g.d§ (17)

D is the fatigue damage ratio.Df>1 then the component is likely to fail within trest duratiorT. If D<1 then the
fatigue life can be determined as T/D in seconds.

5. Application
5.1.The excitation signals

Table 1 shows an example PSD from the internatistasidard MIL STD 810-G [3] corresponding to theeral
exposure to vibrations of to a jet aircraft cargbe overall RMS vibration level is 4.02 g.

Table 1. PSD profile from MIL STD 810G [3]

Frequency (Hz) Acceleration Spectral
Density (g2/Hz)
15 0.01
106 0.01
150 0.02
500 0.02
2000 0.0013

Global RMS = 4.0

Fig. 6 shows example leptokurtic excitation signaith kurtosis = 10.0. Those signals were generagidg the
techniques introduced in this paper to producéostaty and nonstationary leptokurtic signals. Ttasg 300
seconds and are sampled at 4096 points / sec.leheya frequency content corresponding to the R&Ehgn
Table 1. they therefore share the same RMS valueir PSDs are compared in Fig. 7.

3B

Gaussian

Stationary
leptokurtic

Nonstationary
leptokurtic

1o 1os m 1.5 12 1125 "3 135 14 145
Time (s)

Fig. 6: Different excitation signals with similaSP, but either Gaussian or leptokurtic using the é@scribed generation methods

Note the instantaneous peaks in the stationarpheptic case. In the nonstationary signal, the tsumse made of
0.03 seconds sinusoidal windows and there are gtdper seconds; so the proportion of burstg is 0.12.
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Fig. 7: PSD of Gaussian (red), stationary lepta&ytiue) and nonstationary (green) signals
Note the harmonic distortion and the loss of dyrarange clearly seen in the high frequency regichePSD

of the stationary leptokurtic excitation. This i&k@own behavior of signals generated using zero-omgm
polynomial transformation [14].

5.2.The Linear Time-Invariant system

The LTI system chosen for this application is bimlpavith equal damping coefficients of 5%. The miodwf
the frequency response function (FRF) is illusttateFig. 8.

20
10

T

Gain (MPa/g)
)

0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.002

Frequency (Hz)

Fig. 8: Gain of the LTI's frequency response fuoti

The obtained response PSDs computing from the waitypes of excitations are extremely similar aadeithe
same RMS of ~13 MPa and irregularity coefficien0&8.
When the leptokurtic signals are used as excitatidhe system, the output kurtosis is quite défer as
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illustrated in Table 2:

Table 2. Comparison of the output statistirsvarious excitation signals.

RMS Kurtosis
Input RMS Output RMS Input Kurtosis QOutput Kurtosis
@ (MPa)
Case of a Gaussian 4.02 13 3.0 3.0
Excitation

Case of a stationary 4.02 13 10.0 3.38
leptokurtic excitation

Case of a nonstationary 4.02 13 10.0 7.43
leptokurtic excitation

The predicted output kurtosis — calculated usingaéigns (4) and (6) - are 3.33 and 7.48 for théostary and
nonstationary case respectively, which is a vexgdgmatch with the time domain simulations.

Clearly, the nonstationary case seems to allow rkortsis to be propagated through the LTI systathseen
in the output response signals. This result issngprising: it is indeed expected that the instagdas peaks in the
stationary leptokurtic case be averaged out byiltieeing process leading to a smaller kurtosigafiltering. In the
nonstationary case, the well-separated burstsgbiehienergy are still present after filtering alnel kurtosis remains
at a similar level.

5.3.Peak distribution in the case of stationary lepticuexcitations

Fig. 9 shows the peak distributions for the nomstatry signal (in blue). The distribution compufeam the 300
seconds time domain realisation is in solid lime theoretical distribution of peaks using equafi®) is in dotted
line. For comparison purposes, the peak distrinufon the equivalent Gaussian signal (of the saSRis shown

in black dashed lines.

Number of Peaks

P Y AN NPT o | I S S A |
a 20 40 60 80 100 120 140

Peak Value (MPa)
Fig. 9: Peak distributions for leptokurtic steaiyngls: theory (dotted blue) versus
simulations (solid blue) and for the equivalent &aan signal
The theoretical peak distribution of the non-Gaassiesponse fits very well the distribution frome ttime
domain realisation.
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The peak distribution from the time domain simuas is quite close to the peak distribution of auss#&n
process, as expected from the low kurtosis valu38. For instance, out of the 90 000 peaks colmg0 have a
value exceeding 3*RMS = 39 MPa in the Gaussian,oakereas 1000 peaks exceed 3*RMS in the caseeof th
stationary leptokurtic response with kurtosis 3.38.

5.4.Peak distribution in the case of nonstationary ddgoirtic excitations

Fig. 10 shows the peak distributions for the ndiwtary signal (in red). The distribution compufeaim the
300 seconds time domain realisation is in solid,lthe theoretical distribution of peaks using ¢igua(13) is in
dotted line. For comparison purposes, the peakilaigion for the equivalent Gaussian signal (of shene RMS) is
shown in black dashed lines.

5000

1000

T TS

100

Number of Peaks
T T \HIHl

PP I IR BT B S A RS

0 20 40 60 80 100 120 140
Peak Value (MPa)

o

Fig. 10: Peak distributions for the nonstationagponse signals: theory (dotted red)
versus simulations (solid red) and for the equiva@aussian signal

The theoretical distribution of peaks fits very Inle distribution from the time domain realisatidrhe peak
distribution for the nonstationary signal showscker tail, leading to a much higher probability eficountering
high peaks than with the equivalent Gaussian si¢pfakame RMS). For instance, in the present ocasepf the
90 000 peaks counted, almost 3000 have a valuedxge3*RMS.

5.5.Comparison of the fatigue damage due to the varieptokurtic excitations

Fatigue damage is typically directly computed frigva rainflow cycle histogram, which can be obtaifredn
the time domain simulations or evaluated theorkyi@s per equation (15). Fig. 11 shows the rainfiycle
distributions for the Gaussian and the non-Gaussti@iionary and nonstationary signals (in blackeldnd red
respectively). The distributions computed from 308 seconds time domain realisations are in swiat) the
theoretical distributions of stress ranges areotted lines.
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Fig. 11 rainflow cycle distributions for the Gawssiand the non-Gaussian
stationary and nonstationary signals (in blackelznd red respectively)

The fatigue curve used (see Fig. 5 and Equatio}) {46or a typical value of the Basquin exponehbs8 and
stress range intercet= 2000MPa. Table 3 shows the fatigue damage valalesilated from the stress responses
obtained when the system is exposed to the vaercitations.

Table 3. Compare damage .

Gaussian case Case of a stationary Case of a nonstationary
leptokurtic excitation leptokurtic excitation
Damage Damage Damage
From time domain 2.2x10-8 1.1 x 10-7 2.4 x10-6
simulations
From theoretical Rainflow 2.7x10-8 1.6 x 10-7 2.6 x10-6

distributions

The predicted damage values — calculated basedukedhéoretical rainflow cycle distributions - argte
comparable to the time domain simulations. The dgmalues from theoretical rainflow cycle distriloas are
slightly more conservative because of the perfefindion of the tail of the distribution, compareathe sparse
content of the tails for the time domain data. Tduaservatism typically decreases with increasedttn of the
simulated time domain data.

Clearly, in the case of a nonstationary excitattbe,resulting damage is dramatically higher thratihe cases of
a stationary Gaussian or even leptokurtic excitetio

6. Conclusions

Vibration endurance tests are used to qualify devignd validate that they can withstand the expgextevice
loads. In many practical situations non-Gaussiatstare more realistic than Gaussian ones. Withh#ip of
modern controllers, the test engineer can set tb&igrvalue to create excitation signals that aoeenimpulsive in
their nature and content.
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There are several ways of generating a leptoksitioal and two generic approaches were presentekisn
paper. The first produces a steady non-Gaussidataggn signal via the use of a zero-memory polyrarfunction.
The latter generates a nonstationary excitatiomasiga amplitude modulation.

The paper shows that the kurtosis of the stregsorse obtained is very different depending on e tof
leptokurtic excitation and the dynamics of the tagicle. Similarly, the stress peak distributioill wlso be quite
different. Equations are obtained that give thditgltio calculate reliably and accurately the rasg® kurtosis and
the stress peak distributions analytically, rathen needing long time domain response simulations.

It was shown that a nonstationary excitation getesrhigher stress level in the response comparadstationary
leptokurtic excitation of the same RMS and kurtosidue. As a consequence, nonstationary excitatwoduce
more fatigue damage. The paper explains how toulzte the level of fatigue damage based on thesstpeak
distribution and the material fatigue curve.

An application case illustrates this by examplee Talculated theoretical statistics and distrimgiare very
comparable to the statistics and distributions iakethfrom time domain simulations.

The approach presented in this paper can be userious applications. First, it allows a more aatel FEA-
based fatigue simulation in the case where theatitiimr environment is known to be non-Gaussian. Téasls to a
more reliable design. Another interesting applmatis the reduction of the duration of enduranststencreasing
the value of the kurtosis can be seen as an aliezr@pproach to increasing the overall amplituitesaccelerated
testing where an objective is to produce a redodtidhe test duration.
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