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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Sasan Maleki

We consider the computational issues that arise in using the Shapley value in practical

applications. Calculating the Shapley value involves computing the value of an expo-

nential number of coalitions, which poses a significant computational challenge in two

cases: (i) when the number of agents (players) is large (e.g., more than 20), and (ii) when

the time complexity of the characteristic function is high. However, to date, researchers

have aimed to address only the first case, although with limited success.

To address the first issue, we focus on approximating the Shapley value. In more de-

tail, building upon the existing sampling-based approaches, we propose an improved

error bound for approximating the Shapley value using simple random sampling (SRS),

which can be used in any superadditive game. Moreover, we put forward the use of

stratified sampling, which can lead to smaller standard errors. We propose two methods

for minimising the standard error in supermodular games and a class of games that

have a property that we call order-reflecting. We show that among others, newsvendor

games, which have applications in the smart grid, exhibit this property. Furthermore,

to evaluate our approach, we apply our stratified sampling methods to an instance of

newsvendor games consisting of 100 agents using real data. We find that the standard

error of stratified sampling in our experiments is on average 48% lower than that of SRS.

To address the second issue, we propose the characteristic function of the game be ap-

proximated. This way, calculating the Shapley value becomes straightforward. However,

in order to maintain fairness, we argue that, in distributing the value of the grand coali-

tion, agents’ contribution to the complexity of the characteristic function must be taken

into account. As such, we propose the bounded rational Shapley value, which, using

the additivity axiom of the Shapley value, ensures that the share of each agent reflects

its contribution to the difficulty of computing the coalition values. We demonstrate the

usefulness of this approach in a demand response scenario where a number of apartments

want to fairly divide the discount they receive for coordinating their cooling loads.
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Chapter 1

Introduction

Von Neumann and Morgenstern (1944), in their seminal book Theory of Games and

Economic Behaviour, sought to find a way for studying complex decisions that have

uncertain outcomes in strategic environments. They referred to such an environment as

a game, and suggested that the choices that a “player” (decision maker) is faced with

be represented by a single number. They called this number the expected utility, which

would be determined by a real-valued function called the utility function. This way, the

behaviour of a rational player that seeks to make the best decision could be formulated

as a problem of selecting the choice that maximises the expected utility, reducing the

complexity of decision making to a numerical problem.

This foundational model, initially described for two-person games, was also considered

by Von Neumann and Morgenstern in a class of n-person games, called characteristic

function form, in which players could form coalitions by enforcing agreements among

them. This game was defined by a set of players, A, and a characteristic function, v,

assigning any coalition (a subset of A) a real number, called its worth or value. The

characteristic function can be thought of as a utility function that expresses how much

utility would be available to a coalition as a whole. This model was founded upon three

basic assumptions, on account of which, the games in characteristic function form are

now also called transferable utility (TU) games. These assumptions are as follows:

1. Utilities are exchangeable and fully trasnferable among the players.

2. The worth of a coalition is independent of the rest of the players in A.

3. A coalition can, without a loss, divide its worth among its members in a way that

is agreed to by all of them.

Von Neumann and Morgenstern argued that for a TU game to be economical, the worths

should be superadditive. That is, for any two disjoint coalitions, the worth of their

1



2 Chapter 1 Introduction

union must be at least equal to the sum of the worth of the individual coalitions. The

implication of superadditivity is that the grand coalition A would be the only coalition

that forms. However, while in two-person games making a simple evaluation of the

game using utilities would be easy for each player, in n-person games, players could

not evaluate the game unless they knew how much utility would be allocated to them.

Von Neumann and Morgenstern proposed a solution for this problem, now known as the

stable set, which is a set of allocations with certain properties that ensure players would

not have an incentive to leave the coalition. However, the stable set is difficult to find,

may not exist (Lucas, 1969), and furthermore, if it does exist, it is usually not unique

(Lucas, 1992). Despite Von Neumann and Morgenstern’s effort to reduce the complexity

of decision making, the complexity and multiplicity of the solutions proved difficult for

players to evaluate a game.

Lloyd Shapley, a co-winner of the Nobel Memorial Prize in Economic Sciences in 2012,

proposed a way to enable individual players in an n-person game to evaluate “the

prospect of having to play a game” (Shapley, 1953). Building on the success of Von Neu-

mann and Morgenstern in simplifying the complexity of decision making by representing

choices as a single number, he defined a function, which later became known as the Shap-

ley value, that assigns a single number to each player of a game in characteristic function

form. Shapley considered three axioms for this function. The first axiom, symmetry,

states that if two players in the game have identical effects on the worths of coalitions,

then their values are equal. The second axiom, efficiency, states that the full yield of

the game, i.e., v(A), is distributed among the players. Recognising the importance of

evaluating games that might be interdependent, Shapley defined the third axiom, the

law of aggregation (additivity), to be a requirement that when two independent games

are combined, their values must be added player by player. Remarkably, these three

axioms characterise a unique value for each player, simplifying the evaluation of a game.

Shapley showed that the only function that satisfies the axioms is one that allocates to

a player, a, an average of terms of the form v(C ∪ {a}) − v(C) over all coalitions that

could possibly form without that player, i.e., C ⊆ A\{a}. The aforementioned term is

the marginal contribution that the player a makes to the worth of the coalition C ∪{a}.
Consequently, the value of each player would depend on how much it contributes to

other players. An alternative interpretation of an n-person game is that a coalition of n

players can form in n! possible ways, considering the different orders in which players can

join the coalition. In each joining order, a given player makes a marginal contribution

to the players joined before him, which can be seen as n! possible events that occur

with equal probabilities. The Shapley value of a player would be the expected value

of a uniformly distributed random variable whose values are the marginal contributions

of the player, each with 1/n! probability. As such, the Shapley value has also been

interpreted as the expected marginal contribution of players (Young, 1988). Moreover,

Shapley noted that the average marginal contribution function ensures that if a player, a,
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does not contribute to the worth of any coalition, it will be allocated only v({a}). These

properties along with Shapley’s main axioms have been widely regarded as capturing the

notion of fairness in distributing the worth of a grand coalition (Young, 1988; Moulin,

1992).

To date, a large literature has grown out of Shapley’s original paper. The Shapley value

has been applied to many interesting problems. Some of these applications include cost

sharing problems such as airport runways (Littlechild and Owen, 1973) and railways

infrastructure (Fragnelli et al., 2000), factorizing the risk of diseases (Land and Gefeller,

2000), multicast transmission (Feigenbaum et al., 2001), analysing customer satisfaction

(Conklin et al., 2004), resolving political conflicts (Engelbrecht and Vos, 2011), and also

identifying key members in terrorists networks (Lindelauf et al., 2013; Michalak et al.,

2013). Undoubtedly, such a wide range of applications points to the importance of the

Shapley value. However, the computational cost resulting from its combinatorial nature

hinders its applications in practice.

Generally, the computational issues of the Shapley value is either or both of the following:

1. The average marginal contribution function requires calculation of marginal contri-

butions of a player to an exponential number of coalitions– exactly, 2n−1 coalitions

per player.

2. Computing the worth of coalitions using the characteristic function, v, requires a

great computational effort.

In terms of the first issue, with a typical personal computer, calculating the Shapley

value in a typical game with a few dozens of players could take several days. Since

the time complexity is exponential in the number of players, for each additional player

it takes twice as long. By contrast, in the second issue, the number of players is not

problematic, but computing the worth of a coalition is computationally intensive (e.g.,

it involves a hard optimisation problem). Therefore, even when the number of players is

relatively small, calculating the average of marginal contributions of a player can take

very long.

Currently, three lines of research exist on addressing the computational issues of the

Shapley value. Nevertheless, they all deal only with the first issue. A line of research has

focused on computing the Shapley value using alternative representation formalisms (for

example Ieong and Shoham (2006); Aadithya et al. (2011)), as opposed to the standard

representation where the marginal contribution of a player a to a coalition C is simply

obtained by calculating v(C∪{a})−v(C). Moreover, another line has focused on certain,

restricted classes of games for which some efficient exact algorithms have been developed

(for example Ando (2012); Deng and Papadimitriou (1994a)). Other researchers have

focused on some restricted classes of games, for which they have proposed bounded
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approximate solutions (for example, Owen (1972); Bachrach et al. (2008); Fatima et al.

(2008)).

These approaches, however, suffer from major limitations (see Section 2.2.1 for more

details). While alternative representation formalisms can, in certain circumstances, re-

sult in computational savings, using them in practice may require an effort that could

well outweigh the potential benefits (see Section 2.2.1 in Chapter 2 for more details).

Furthermore, the exact methods that are specific to restricted class of games are either

impossible or difficult to be used in other classes. Among the existing approximate so-

lutions there are three works, due to Castro et al. (2009), Bachrach et al. (2008) and

Liben-Nowell et al. (2012), that directly, or with some extensions, can be applied to all

superadditive games. These approximations exploit the fact that the Shapley value of

a player is the expected value of the population of the player’s marginal contributions,

and use simple random sampling, a somewhat inefficient sampling technique, to approx-

imate the Shapley value of players. However, they use different methods to bound the

approximation error. Castro et al. (2009) use the Central Limit Theorem (CLT), which

is an asymptotic bound. That is, the bound holds only when the sample size increases

to infinity. Bachrach et al. (2008) use a powerful inequality from probability theory,

known as Hoeffding’s inequality, to bound the error in simple games, where the worth

of a coalition is either zero or one. As Chapter 4 will show, this inequality can also be

used to bound the error in other superadditive games. Liben-Nowell et al. (2012) use a

similar inequality, known as Chebyshev’s inequality, for bounding the error in an impor-

tant and large subclass of superadditive games, called supermodular games. However, as

Chapter 2 highlights, this bound is mathematically erroneous, and its time complexity

is polynomial in the number of players in the game, which is not desirable.

Given the importance of the Shapley value, the shortcomings of the existing works in

addressing the first computational issue, and lack of research on the second one, this

thesis aims to fill the need for addressing these issues, with the objectives that are stated

in the next section.

1.1 Research Objectives

It is important to note that, unless some assumption is made about the characteristic

function of a given game, an exponential time complexity in calculating the exact Shapley

value cannot be avoided. Therefore, any solution that would alleviate this problem has to

approximate the Shapley value in some way. With this point in mind, our first objective

is to develop a method for approximating the Shapley value. Where possible, this method

should exploit the structure of the games, so as to improve upon the inefficiency of the

existing approximation methods. Crucially, this method must also establish a worst-case

bound on the potential error. That is, it should provide some form of guarantee that, in



Chapter 1 Introduction 5

the worst case, the difference between the exact and the approximate Shapley value is

not greater than a certain amount. Moreover, the approximation method should allow

for aribitrarily small error bounds. Lastly, since in calculating the Shapley value the

amount of computation grows with the number of players, the approximation method

and the quality of the bound should have the least dependency on the number of players

in a game.

The second objective is to investigate how the Shapley value, as a fair allocation, can

be used in games whose characteristic function has a high computational complexity.

Clearly, such a characteristic function would add an additional layer of complexity to

the already difficult problem of calculating the Shapley value. Therefore, in order to

address the issue that is due to the characteristic function, one should isolate the main

complexity of calculating the Shapley value. This can be done by assuming that the

number of players is such that calculating the Shapley value using a simpler characteristic

function would be tractable.

Furthermore, without making assumptions about the structure of the characteristic func-

tion, in order to overcome the computational challenge, one can only approximate the

worth of coalitions. By doing so, calculating the Shapley value would become straight-

forward. However, since the players would be deprived of their exact Shapley value

as a consequence of the complexity of the characteristic function, to maintain fairness,

one should also examine whether players could be responsible for this complexity. The

following cases can be imagined regarding the players in any given coalition:

1. The complexity of the characteristic function is independent of the players.

2. All players in the coalition equally contribute to the complexity of the characteristic

function.

3. Each player in the coalition contributes differently to the complexity of the char-

acteristic function.

Fairness commands that if a player contributes to the complexity, his allocation should

reflect this. However, the Shapley value is not directly concerned with this issue. There-

fore, our objective is to find a way to incorporate the players’ contribution to the com-

plexity of the characteristic function in their Shapley values without violating Shapley’s

axioms. Note that, of the three cases mentioned above, the most challenging is when

players do contribute to the complexity, but not equally. In fact, it can be argued that

this is a general case of the other two, and thus, we aim to address this case which is

sufficient to cover all possibilities.

Our third objective is to evaluate the results achieved from the first two objectives using

games that model real world problems. As mentioned earlier, the Shapley value has

many interesting applications. However, to demonstrate the usefulness of our results,
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we need settings where there is a large number of players, or the complexity of the

characteristic function is high. For this purpose, the smart grid is a perfect domain,

in which both of the aforementioned problems are frequently seen. The next section

explains this in more detail.

1.2 The Smart Grid Application

According to Boyle (2004), over the course of the 20th century, the world’s total con-

sumption of all forms of primary energy (natural energy resources such as oil) has risen

more than tenfold. Most of the burden of meeting this growing demand is on the power

production industry, which is lagging behind other industries in terms of benefiting from

computer technologies. For instance, utility companies still rely on sending workers out

to read meters and collect data. Such inefficiencies that exist in many parts of the cur-

rent grids, drive the need for a “smart grid”, which is referred to a highly automated

grid that takes great advantage of sensors, modern computers and communication tech-

nologies. The United States Department of Energy (2003) has outlined the purpose of

the smart grid to be using information and communications technology to improve the

efficiency, reliability, economics, and sustainability of producing power.

In parallel, there has been a global concern about the sustainability of relying on fossil

fuels which constitute the main source of power production in most countries. In 2003,

it was estimated that the world’s oil reserves would last for approximately 40 years,

natural gas for 60 years, and coal for around 200 years (Boyle, 2004). These resources

will likely become increasingly expensive and more difficult to extract. Alarmed by the

dwindling fossil fuel resources, and the environmental concerns associated with them,

many governments have set targets to multiply their support for generating power using

renewable resources such as wind. Therefore, renewable resources will have a large role

in the smart grid. With the improved communication between various components of the

grid, the smart grid will also pave the way for integration of distributed energy resources

(DERs), which are small to medium capacity renewable power sources that are scattered

across a region. However, the power generated from renewable sources, and particularly

DERs, is inherently variable, intermittent, and difficult to predict.

The two major proposals for addressing the issues with integration of DERs are the

formation of virtual power plants (VPPs), and demand response (DR), which are con-

cerned with managing supply and demand, respectively. VPPs aggregate the output of

DERs to lower the overall uncertainty of generation, and improve reliability. Demand

response allows utility companies to incentives consumers to shift their loads to match

demand to the available supply, and also flatten peaks. An effective demand response

minimises the need for fossil fuel power plants to meet spikes in demand.
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A natural model for analysing the economics of DERs selling their aggregated power is

an n-person game called the newsvendor game (Muller et al., 2002). This game models

a number of retailers that want to stock a perishable commodity whose sale faces a

random demand. If the demand is underestimated, the profit will not be maximised,

and if it is overestimated, there will be a loss since the commodity perishes. By forming

a coalition and aggregating their demand the retailers can reduce the uncertainty of their

demand and increase their expected profit. The DERs in a VPP face a similar problem.

Since electricity is perishable, and due to the special structure of electricity markets

that require selling power ahead of generation, DERs can make binding agreements to

aggregate their loads to reduce their overall uncertainty, and consequently increase their

expected profit. Individual DERs can evaluate the prospects of playing this game by

calculating their Shapley value, which would also reveal their fair share of the total

profit. Nevertheless, the potentially large number of DERs in such a game is a major

obstacle to applying the Shapley value. This issue can be mitigated by approximating

the Shapley value as described in the first objective.

Similarly, demand response scenarios can be modelled by appropriate n-person games.

While demand response typically involves interaction between utility companies and end

users, some demand response programs can particularly depend on interaction among

consumers, for instance, to coordinate their individual loads so as to flatten their total

load. An optimal coordination among n consumers can be highly complex, and due

to strict preferences, lack of flexibility, etc. some consumers can have a larger role

in the complexity. Thus, the characteristic function needed to represent the worth of

coordinations can require intensive computation. Again, applying the Shapley value

to find the consumers’ individual contributions can be considerably challenging. The

second objective of this thesis is to address such problems.

1.3 Research Contributions

This thesis advances the state of the art of the research on the Shapley value and

cooperative games in the following ways:

1. We put forward a method for determining the minimum sample size required

to approximate the Shapley value using sampling with an arbitrary confidence

and error. The resulting bound, which is based on Hoeffding’s and Chebyshev’s

inequalities, is superior to the existing ones in several respects.

(a) Unlike the CLT-based bound provided by Castro et al. (2009) which is asymp-

totic, our bound holds with a finite sample size, and thus, truely bounds the

error.
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(b) It is a generalisation of the bound suggested by Bachrach et al. (2008) to

superadditive games, and improves upon it by requiring smaller sample sizes

for a certain range of confidence values.

(c) It corrects the erroneous bound put forward by Liben-Nowell et al. (2012),

and unlike this bound which has a polynomial time complexity in the number

of players, it does not depend on the number of players at all.

2. Instead of simple random sampling, we propose the use of a more efficient sampling

technique, called stratified sampling, that stratifies the population of a player’s

marginal contributions into smaller populations (strata) so as to sample each stra-

tum proportional to its impact on the overall average. Doing so can potentially

result in a significantly improved accuracy as compared to simple random sampling

which samples the population blindly.

3. We show that the standard error of approximating the Shapley value using strat-

ified sampling is always lower than or equal to that of simple random sampling.

Here, the standard error is the standard deviation of the approximated Shapley

value which could vary with each new sample. This variation shows how accurate

the approximation is.

4. We propose two stratification methods, namely branching stratification and size-

based stratification.

(a) Branching stratification divides the population using a given set of players

B ⊆ A. For each player, b, in B, the population is divided into two sub-

populations depending on whether the corresponding coalition of a marginal

contribution includes b or exclude it. This would result in 2|B| strata.

(b) Size-based stratification divides the population such that each stratum con-

tains marginal contributions of the player to coalitions of equal size. This

always results in n strata.

5. Given the minimum sample size required to establish a desired error bound, we

find the optimal number of marginal contributions that must be evaluated from

each stratum such that the standard error is minimised. This requires that the

range (or more preferably the variance) of each stratum is given. The total sam-

ple size would then be distributed among the strata proportional to their ranges.

Therefore, a stratum whose values have higher ranges would be sampled more,

leading to a smaller standard error and a more accurate approximation. Since

finding the range of the strata requires knowledge about the population, we need

to focus on more specific classes of superadditive games to exploit their prop-

erties. To this end, we show that supermodular games have a certain property

that allows us to find the range of each stratum. Furthermore, we introduce a

class of games that have a property that we call order-reflecting, using which we
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can find the range of the strata in size-based stratification. Most importantly,

we show that some games that have real world applications exhibit this property.

These games include newsvendor games, output-sharing games (Moulin, 1992),

and airport games (Littlechild and Owen, 1973). The order-reflecting property

and its application in approximating the Shapley value of newsvendor games have

appeared in our publication (Ramchurn et al., 2013).

6. We experimentally evaluate our stratified sampling methods on instances of newsven-

dor games (using real data), output-sharing, and airport games. Each of these in-

stances consists of at least 100 agents. In these experiments, the average standard

error of approximating the Shapley value of all players using stratified sampling is

48% lower than that of SRS.

7. We present an efficient implementation of the Shapley value, which, unlike the

standard formula of the Shapley value, requires that the worth of each coalition

be computed only once. Therefore, when the time complexity of the characteristic

function of the game is high, a significant amount of redundant computation can

be avoided.

8. To address the problem of players having different contributions to the complexity

of a characteristic function, we model players as being computationally bounded

rational, which means that their ability to make the best decisions is limited by

their computational resources. The idea of bounded rationality in n-person games

was originally put forward by Sandholm and Lesser (1997), who investigated the

stability of coalitions of bounded rational players. In our model, the approximated

worth of a coalition is regarded as its bounded rational worth, while the actual

worth, the computation of which is intractable, would be the value that is given by

the characteristic function. We show that by calculating the Shapley value using

the approximated worth of coalitions, due to the additivity axiom of the Shapley

value, the allocations are fair in the following sense: all players are rewarded

for their contribution to the bounded rational worth of the grand coalition, and

simultaneously penalised for their contribution to the discrepancy between the

rational and bounded rational worth of coalitions.

9. We develop a demand response program where a block of apartments receive a

discounted price of electricity if they coordinate their cooling loads such that at

any point in time throughout the day their total load is below a certain threshold.

The problem that the apartments face is dividing the total cost in a fair way. We

model this problem as an n-person game, and use the Shapley value to obtain a fair

allocation. However, since finding an optimal coordination of the air conditioning

in all apartments would involve an intractable optimisation, we propose two al-

gorithms for finding suboptimal coordinations, using which we can calculate the

Shapley values readily. We also propose a dynamic programming algorithm that
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exploits the recursive nature of the said algorithms to further speed up calculating

the Shapley value.

1.4 Thesis Structure

In the remainder of this thesis, we give an overview of related concepts in cooperative

game theory and their applications in the smart grid, and then present our approxima-

tion methods, as well as our approach regarding the Shapley value of bounded rational

players. In more detail, the remaining chapters are structured as follows:

In Chapter 2, we begin by reviewing definitions and theorems from cooperative game

theory. We then focus on the Shapley value and state its properties. This will be followed

by an overview of the works in the literature that deal with efficient computation of

the Shapley value. Next, we examine the existing work on bounded rationality, and

in particular a model of bounded rationality that has been proposed for coalitions of

bounded rational agents.

In Chapter 3, we give an overview of the related work on applications of cooperative game

theory in the smart grid. This is followed by a description of electricity markets, and

particularly the wholesale market of the Great Britain as one of the globally predominent

market models. Inspired by this market, we present a formal model of a two settlement

market, based on which we define the problem of selling the output of a DER and derive

its expected profit. Next, we define a game where DERs form a coalition to sell their

output in the market. Lastly, we examine the recent applications of cooperative game

theory in demand response.

In Chapter 3, we propose an error bound for approximating the Shapley value using

simple random sampling. Next, we describe stratified sampling in the context of ap-

proximating the Shapley value. This is followed by the description of branching and

size-based stratification methods. Finally, we present the experimental evaluation of

our approach.

In Chapter 5, we present a bounded rationality model for coalitions, and discuss why

using the Shapley value based on this model results in a fair allocation. This discussion

is followed by presenting the efficient implementation of the Shapley value. Next, we for-

mally define the demand response program, and describe our algorithms for coordinating

the cooling loads of apartments. We then show our experimental results of applying our

bounded rationality proposition regarding the Shapley value to the demand response.

Finally, Chapter 6 concludes this thesis, summarises the contributions and limitations

of our methods, and also outlines the direction for future work.
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Background

This chapter provides the theoretical background and related work to this thesis. It

begins by reviewing definitions and theorems from cooperative game theory that will

be referred to throughout the thesis. It then moves on to the Shapley value and state

its properties in Section 2.2. This will be followed by an overview of the works in

the literature aiming to address the computational issues of the Shapley value. In

particular, Section 2.2 gives a detailed description of the methods that use random

sampling to approximate the Shapley value. The limitations of these methods provide

the basis for the approach of this thesis in approximating the Shapley value, which will be

discussed in Chapter 4. Section 2.3 examines the existing work on bounded rationality,

and in particular a model of bounded rationality that has been proposed for coalitions

of bounded rational agents. Chapter 5 builds upon this model to provide a method

for fairly dividing the value of a coalition using the Shapley value. Finally, Section 2.4

summarises the chapter.

2.1 Cooperative Game Theory Definitions

A game is specified by the set of decision makers called players or agents1, the set of

all possible actions that the agents can take, and a utility function that associates any

action to a payoff. The objective of a rational agent in a game is to take actions, or

make decisions, that would maximise its own payoff. A game is called cooperative or

coalitional when agents can coalesce (form coalitions) so as to achieve higher utilities

than what they would achieve otherwise (Neumann and Morgenstern, 1944; Kahan and

Rapoport, 1984; Osborne and Rubinstein, 1994; Peleg and Sudhölter, 2007). In what

follows, some related concepts from cooperative game theory are reviewed.

1As is the convention among artificial intelligence researchers, we henceforth use the term agent.

11



12 Chapter 2 Background

Formally, given a set, A, of n agents, a coalition, C, is defined as a subset of A. When

C consists of all agents in A, it is called the grand coalition. The worth or value of a

coalition is expressed by a characteristic function v (also known as valuation function),

which maps each subset of A to a real number, i.e., v : 2A → R. In this thesis, the

focus is on transferable utility (TU) games in which utilities can be losslessly transferred

from one agent to another (Myerson, 1991). We also refer to these games as cooperative

games, and specify them using the pair (A, v).

Definition 2.1. A coalition structure is a partition of A, in which each agent belongs

to exactly one coalition Ci, with some coalitions possibly being singletons (Larson and

Sandholm, 2000). A coalition structure, CS = {C1, . . . , Cm}, as a set, satisfies two

conditions:
⋃m
i=1Ci = A and i 6= j ⇒ Ci ∩ Cj = ∅. An optimal coalition is one that

maximises

m∑
i=1

v(Ci).

Definition 2.2. The marginal contribution of an agent a to a coalition, C ⊆ A \ a,

is the difference in C’s value that is achieved by adding a to it, i.e., v(C ∪ {a})− v(C).

The marginal contribution of a to C will be denoted as MC(a,C).

Definition 2.3. A game is additive when the value of a coalition achieved by merging

two disjoint coalitions is equal to the sum of the values of those coalitions individually,

i.e., ∀C1, C2 ⊆ A C1 ∩ C2 = ∅ v(C1 ∪ C2) = v(C1) + v(C2)

Definition 2.4. A game is superadditive when the value of a coalition achieved by

merging two separate coalitions is at least equal to the sum of the values of those

coalitions individually, i.e., ∀C1, C2 ⊆ A s.t. C1 ∩ C2 = ∅ v(C1 ∪ C2) ≥ v(C1) + v(C2).

Remark 2.5. Unlike additive games, in superadditive games, the larger a coalition is,

the higher its value is. Therefore, when a characteristic function is superadditive, the

coalition structure that contains the grand coalition is always optimal.

Definition 2.6. A characteristic function is supermodular if it meets the following

condition for any C1 ⊆ C2 ⊆ A:

∀a ∈ A, s.t. a /∈ C1, C2 : v(C1 ∪ {a})− v(C1) ≤ v(C2 ∪ {a})− v(C2).

The above supermodularity condition is equivalent to:

∀C1, C1 ⊆ A v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2).

Remark 2.7. Supermodularity is a special case of superadditivity, and means that given

a coalition, any agent that is not its member makes a greater or equal marginal contri-

bution to it than to any of its subsets.

Definition 2.8. A game with a supermodular characteristic function is called super-

modular or convex.
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Definition 2.9. A simple game is one in which the values of coalitions are either 0 or

1, i.e., ∀C ⊆ A; v(C) ∈ {0, 1}.

Definition 2.10. A map is a function χ : 2A → [0, 1] that assigns a weight to each

coalition.

Definition 2.11. A balanced map is a map such that for any a ∈ A it holds that∑
C∈A χ(C)1{a ∈ C} = 1, where 1{.} is either 0 or 1, indicating whether or not a is a

member of C.

Definition 2.12. A balanced game is one that, if for any balanced map χ the following

inequality holds:
∑

C∈A χ(C) v(C) ≤ v(A).

2.1.1 Solution Concepts

We now introduce a number of concepts that are related to how much of the value of a

coalition is allocated to each agent.

Definition 2.13. Given a coalition C of size k, a payoff distribution or a solution concept

is a vector x = [x1 . . . xk], where xi represents how much of the value of C should be

allocated to the ith member.

Definition 2.14. The excess e of a payoff distribution, x, is the remaining value of a

coalition after allocating the shares of its members, i.e. e(x,C) = v(C)−
∑k

i=1 xi.

Remark 2.15. The notion of excess can be used as a measure of dissatisfaction of a

coalition, since if there is a positive excess it shows that some of the value of the coalition

has not been allocated to the members. Based on this, the dissatisfaction about a payoff

distribution can be evaluated using a vector of excesses over all coalitions.

Definition 2.16. A payoff distribution is efficient if and only if it has a zero excess.

In other words, an efficient payoff distribution allocates the whole value of the coalition

to the agents, i.e., v(C) =
∑k

i=1 xi.

Definition 2.17. A payoff distribution is said to be individually rational whereby if

all agents in A can obtain a payoff that is at least equal to their payoff when they are

alone in a coalition, i.e., ∀a ∈ A xa ≥ v({a}).

Definition 2.18. A payoff distribution is said to be group rational if for every coalition

C ⊆ A the sum of its members’ payoffs is at least equal to the value of the coalition,

i.e., ∀C ⊆ A
∑k

i=1 xi ≥ v(C).

Definition 2.19. A payoff distribution that is both efficient and individually rational

is called an imputation.
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A key concern in game theory is to understand what outcomes playing a game would

have. To this end, different solution concepts have been proposed. Some solution con-

cepts enable agents to determine whether or not a certain payoff distribution can ensure

a stable coalition of agents. Below, a number of such concepts are reviewed.

Definition 2.20. The core is the set of imputations that are group rational. A payoff

distribution x is said to be in the core of a game (A, v), if and only if it has the said

properties. More formally,

C(A, v) = {x |
n∑
i=1

xi = v(A) ∧ ∀C ⊆ A,
k∑
i=1

xi ≥ v(C)}

Remark 2.21. A payoff distribution is in the core of a game when no set of agents,

including the singletons, can achieve more by forming a different coalition. As such, no

agent should have an interest in rejecting a payoff distribution that is in the core.

Theorem 2.22. Bondareva–Shapley theorem states that a game’s core is non-empty

if and only if the game is balanced (Bondareva, 1963; Shapley, 1967).

Note that determining the non-emptiness of the core using the original definition is in

general an NP-hard problem (Deng and Papadimitriou, 1994b). The Bondareva–Shapley

theorem offers an alternative approach to establish that by checking whether a game is

balanced.

Definition 2.23. It is said that a vector x ∈ Rm is greater or equal to y ∈ Rm in the

lexicographic ordering, denoted by x ≥lex y, if and only if x and y are equal or

∃t s.t. 1 ≤ t ≤ m s.t. ∀i s.t. 1 ≤ i < t xi = yi ∧ xt > yt

Definition 2.24. A payoff distribution is said to be in the nucleolus (Schmeidler, 1969)

if its corresponding vector of excess is minimal, meaning that this vector is preferable

over all other excess vectors, due to being the smallest in the lexicographical ordering.

Remark 2.25. In general, the nucleolus has at most one element. If the set of imputations

in a game is non-empty, then the nucleolus is also non-empty (Airiau, 2013).

Theorem 2.26. If a game has a non-empty core, the nucleolus is always in the core.

Corollary 2.27. From the above theorem it follows that the nucleolus is a special subset

of the core. This is because it minimises the vector of excesses over all coalitions, and

thus has the lowest dissatisfaction, in lexicographic order, among all payoff distributions

in the core.
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2.2 The Shapley Value

In the previous section, solution concepts that are concerned with the effect of payoff

distributions on the stability of coalitions were examined. Here, the Shapley value

(Shapley, 1953) is examined, which is a solution concept that offers a “value” for playing

a game that also has some fairness properties. The fairness is due to the following axioms:

• Symmetry: Any two agents with equal marginal contributions to all coalitions,

receive the same payoff. Formally, for any a1, a2 ∈ A, and for all C ⊆ A: v(C ∪
{a1}) = v(C ∪ {a2}), then x1 = x2, where x1 and x2 are the payoffs of a1 and a2,

respectively.

• Efficiency: The value of the grand coalition is fully divided among the agents,

i.e., v(A) =
∑n

i=1 xi.

• Additivity: For any two TU games (A, v) and (A,w) with payoff distributions x

and y, respectively given by the Shapley value; the payoff distribution of the game

(A, v + w) is x+ y.

In addition to the above axioms, the Shapley value exhibits the following property which

is commonly known as the dummy player property: if the marginal contribution of an

agent, a, to all coalitions is zero, then it only receives v({a}) as payoff. This property

along with Shapley’s axioms provide a way of dividing the value of the grand coalition

that is fair.

Theorem 2.28. The Shapley value is the only value that satisfies the symmetry, effi-

ciency and additivity axioms (Shapley, 1953).

An advantage of using the Shapley value compared to other solution concepts is its

uniquness (Theorem 2.28). For instance, the core can contain multiple payoff distribu-

tions, which raises the question of which one should be picked. By contrast, the Shapley

value offers a single payoff distribution, leaving only one option.

Theorem 2.29. The Shapley value in superadditive games is always individually ratio-

nal (Shapley, 1953).

Theorem 2.30. The Shapley value always exists, but is not necessarily in the core.

Theorem 2.31. In supermodular games, the Shapley value is the barycentre of the core

(Shapley, 1971).

In addition to the axiomatic approach, Shapley offered an alternative perspective to the

value that he proposed. He noted that a coalition of n agents can form in n! ways,

considering all orders that the agents can join the coalition. In each order, as a player
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steps in the coalition, it makes a marginal contribution to the agents joined before it.

The Shapley value of each agent is the average of all marginal contributions that it

makes to other coalitions. More formally, denote by π(A) the set of all permutations of

agents in A, each of which representing a distinct joining order. Furthermore, denote

by PreOa the set of agents that precede a in the permutation O. The Shapley value of

a, denoted as SV (a), is given by:

SV (a) =
1

n!

∑
O∈π(A)

[
v(PreOa ∪ {a})− v(PreOa )

]
(2.1)

Calculating the Shapley value using the above expression is of order O(n!) and is also

inefficient, as it leads to a significant amount of redundant computation. This occurs in

computing the marginal contributions where the coalition values are computed based on

the joining orders. Since the value of a coalition is independent of its members joining it,

any marginal contribution that corresponds to the same coalition with different orders

would have exactly the same value. To avoid calculating a marginal contribution more

than once, Shapley introduced a factor to account for the multiplicities of each unique

marginal contribution value. The improved formula is equivalent to a weighted average

of marginal contributions which is given as:

SV (a) =
∑

C⊆A\{i}

|C|! (n − |C| − 1)!

n!
(v(C ∪ {i})− v(C)) (2.2)

The next section examines the existing approaches using which the Shapley value is

computed.

2.2.1 Computation of the Shapley Value

Although equation (2.2), as compared to equation (2.1), reduces the time complexity of

computing the Shapley value from O(n!) to O(2n), it still requires intensive computation,

and is generally intractable in games with even a few dozen agents. Several authors have

put forward methods to mitigate this issue, which in general fall into the following three

categories: (i) using alternative representation formalisms to compute the exact Shapley

value efficiently, (ii) developing exact efficient methods for some specific classes of game,

(iii) bounded approximate solutions. Below, an overview of each category is given, and

approximate solutions are expaned on which are most related to this thesis.
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2.2.1.1 Using Alternative Representation Formalisms

In the characteristic function form of games, each coalition is assigned a value. Since

there are exponentially many coalitions (i.e., subsets of A), it possibly requires an ex-

ponentially large memory space to even describe the coalition values, and in turn, the

entire game. Some alternative representation formalisms have been proposed to address

this issue. Accordingly, a line of research has focused on computing the Shapley value

using these representations.

Conitzer and Sandholm (2004) developed a concise representation of characteristic func-

tions for games where the agents’ objective is to address a number of independent issues.

Here, coalitions are modeled as groups of agents that together can address a number

of distinct independent issues. Moreover, the characteristic function of the game, v, is

represented as a vector of characteristic functions (v1, v2, . . . , vT ) with each vi being a

decomposition 2A → R over T issues, such that for any C ⊆ A, v(C) =
∑T

i=1 vi(C).

Using this representation Conitzer and Sandholm show that to calculate the Shapley

value, one would need to average over the marginal contributions in permutations of

only a subset of the agents.

Ieong and Shoham (2006) extended and generalised Conitzer and Sandholm’s represen-

tation by developing marginal contribution networks (MC-nets) which are exponentially

more concise. Under this representation, the characteristic function is decomposed into

a set of rules that assign marginal contributions to groups of agents in the form of

Pattern → value (e.g., {a1 ∧ a2} → 5, {a2} → 2). If a group of agents meet the re-

quirements of the Pattern in a rule, then it is said that the rule applies to each of those

agents. The value of any given coalition is then the sum over the values of all rules that

apply to the members of the coalition. The MC-nets is a fully expressive representation,

in that it can represent an arbitrary cooperative game in characteristic function form.

Furthermore, considering each rule as a separate game, the Shapley value of an agent

is the sum over the Shapley value of the agent in each rule. The total computational

time complexity of this computation is linear in the size of the input, since the time

required to compute the Shapley value of an agent in any given rule is linear in the

pattern of the rule. A class of MC-nets, called read-once MC-nets, were identified by

Elkind et al. (2008) that are more compact than the original form of MC-nets. Under

this representation, it is possible to compute the Shapley value in polynomial time.

Aadithya et al. (2010) developed another concise and fully expressive representation,

called Algebraic Decision Diagrams, that is “highly optimised” for ordered decision trees

on boolean decision variables. The conciseness is achieved by merging identical copies

of duplicated subtrees, resulting in a potentially much smaller equivalent graph. The

authors claimed that, under this representation, the Shapley value can be computed in

polynomial in the size of the algebraic decision diagram.
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Although using these representations can be useful in some circumstances, they have

limitations of their own. For instance, the computational advantage of computing the

Shapley value using MC-nets is limited to a special case, where the patterns in all rules

are required to be conjunctions of literals (Elkind et al., 2008). More importantly, it is

not clear that, in general, how efficiently an existing game with the standard character-

istic function form can be be transformed to these representations. It is possible that, in

the worst case, the computational cost required to do so would outweigh the potential

benefit.

2.2.1.2 Exact Efficient Methods For Specific Games

A number of researchers have proposed methods for computing the Shapley value that

are specifically designed for some special classes of games. Some of these methods are

as follows. Granot et al. (2002) developed a linear time method to compute the Shapley

value in a cost allocation problem, called the extended tree game. Ando (2012) showed

that it is #P-complete to compute the Shapley value of minimum cost spanning tree

games, and identified a subset of these games in which the Shapley value can be computed

in polynomial time. Moreover, Deng and Papadimitriou (1994a) proposed a method to

compute the Shapley value in induced subgraph games with a time complexity of O(n2).

Since such methods have been developed for a restricted class of games, their applica-

bility to other classes is either not possible or requires significant extension.

2.2.1.3 Approximate Solutions

In another line of research, approximation methods have been proposed, again, for cer-

tain classes of games. In particular, voting games and their more general form, the

k-majority voting games, have been the focus of most of the research on approximating

the Shapley value. Mann and Shapley (1962) proposed a Monte Carlo method that

approximates the Shapley value in voting games in linear time. However, the prominent

approximation algorithm for voting games is the multi-linear extension method by Owen

(1972), which was also able to calculate the exact Shapley value in a more efficient way

than the direct enumeration (i.e., using brute-force). More recently, Fatima et al. (2008)

put forward a different approximation approach for k-majority games, which improves

upon the approximation error of Owen’s multi-linear method. Furthermore, Bachrach

et al. (2008) proposed a sampling-based algorithm for approximating the Shapley-Shubik

and Banzhaf power indices, which can also be extended to the Shapley value. Castro

et al. (2009) proposed a sampling-based algorithm for the case when the variance or the

range of marginal contributions of an agent is known. Moreover, Liben-Nowell et al.

(2012) proposed a sampling-based algorithm for supermodular games which establishes

an error bound in time polynomial in the number of agents.
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The vast majority of researches on approximating the Shapley value apply random sam-

pling, which is a natural choice given the fact that the Shapley value of an agent is the

mean of a special random variable, i.e., a uniformly distributed variable whose values are

the marginal contributions of the agent. More specifically, forming a coalition of n agents

in different orders can be seen as n! possible events that occur with equal probabilities.

The Shapley value of an agent would then be the expected value of a random variable

whose values are the marginal contributions of the agent, each with 1/n! probability.

This view provides the intuition for sampling-based approaches.

The next subsection examines, in detail, three sampling-based approximation methods

that are related to this thesis, namely, Castro et al. (2009), Liben-Nowell et al. (2012)

and Bachrach et al. (2008), and state their limitations.

2.2.2 Sampling-Based Approximation of the Shapley Value

In statistics, estimating the mean of a set of numbers, called a population, is a very

common task. This is typically done using a technique called random sampling, which

is randomly choosing a subset of the population as a sample. When all elements in a

population have the same probability of being chosen for a random sample, the process

is called simple random sampling (SRS). If the elements of the population are allowed

to be chosen more than once, then sampling is called with replacement, otherwise it is

without replacement. Often when the population is relatively small, sampling is done

without replacement so as to obtain a more representative sample. Conversely, in large

populations, sampling with replacement is typically used, and is approximately the same

as without replacement under SRS. This is because the probability that an element in

a large population is chosen more than once is low.

Once a sample is chosen, several parameters of the population can be estimated. In

particular, the average of the elements in the sample, which is known as the sample

mean, can be a good estimate of the population (Levy and Lemeshow, 2008). Similarly,

the sample variance, which is the variance of the elements in the sample, can be used as

an estimate of the population variance. Note that since different samples drawn from the

same population would result in different sample mean values, the sample mean itself

has a distribution, called the sampling distribution of the mean, which has its own mean

and variance. Therefore, samples can be seen as random variables, and when they are

taken with replacement, they are independent and identically distributed (i.i.d.). As will

be seen later in this section, this fact provides the basis of using some theorems from

the probability theory that are used in approximating the Shapley value. Henceforth,

unless otherwise stated, by sampling it shall be meant sampling with replacement.

Now, given that the Shapley value is the mean of marginal contributions of an agent to

all coalitions, the existing sampling-based methods approximate it using SRS. However,
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SRS is not necessarily an efficient sampling technique, since it samples the population

blindly (see Chapter 4 for more details and proof).

Of crucial importance as in any approximation is the quality of the solution, which is

measured by the approximation error (or simply error). That is, the difference between

the approximated value and the exact value. However, since the exact error cannot be

measured in practice, often a theoretical bound on the error is provided instead, which

guarantees that the error is bounded by a certain value, denoted by ε ∈ R+. In all

sampling-based approximations of the Shapley value that exist in the literature, the

bound is probabilistic, meaning that the error is guaranteed to be within the bound,

however, with a certain probability. This probability is known as the confidence, and is

typically expressed as 1 − δ, where δ ∈ [0, 1] represent the probability that the bound

fails (i.e., the actual error is greater than ε). Formally, let 1 − δ and ε be an arbitrary

confidence, and error bound, respectively, the probabilistic error bound is expressed in

either of the following equivalent forms:

Pr(|SV (a)− SV (a)| ≤ ε) ≥ 1− δ, or (2.3a)

Pr(|SV (a)− SV (a)| ≥ ε) ≤ δ (2.3b)

where SV (a) is the sample mean, i.e., the approximate Shapley value of agent a. It

is important to note that, for the above bounds to hold, the sample size needs to be

sufficiently large. To determine how large the sample size should be, three different ways

have been proposed in the literature, which are explained below.

2.2.2.1 Bounding the Error Using the Central Limit Theorem

Castro et al. (2009) used the Central Limit Theorem (CLT) (Stein, 1972) which states

that when the sample size tends to infinity, the sampling distribution of the mean will

be a normal distribution with a mean equal to the sample mean, and a variance equal

to the popoulation variance, σ2, divided by the sample size, denoted as m, i.e., SV (a) ∼
N (µ, σ2/m). To achieve a bound in the form of inequality (2.3), one can construct a

confidence interval by transforming the normal sampling distribution of the mean into

a standard normal distribution (i.e., z ∼ N (0, 1)), and using the z-score. The z-score

represents the central area under the curve of the standard normal distribution and

equals how many standard deviations the values of a population are from its mean.

Thus, the following inequality holds:

− Zδ/2 ×
σ√
m

+ SV (a) ≤ SV (a) ≤ SV (a) + Zδ/2 ×
σ√
m

(2.4)
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where Zδ/2 is the z-score such that Pr(z ≥ Zδ/2) = δ/2. Inequality (2.4) can be written

as a bound on the error in the following way:

ε = |SV (a)− SV (a)| ≤ Zδ/2 ×
σ√
m
.

Given the variance of the marginal contributions of an agent, σ2, one can determine the

minimum sample size required in order to estimate the Shapley value of the agent using

inequality (2.2.2.1). This is given as:

m ≥
Z2
δ/2 × σ

2

ε2
(2.5)

Calculating the above inequality requires a priori knowledge of the population variance.

However, since it is often not known explicitly, it can be upper-bounded using Popoviciu’s

inequality (Popoviciu, 1935). Given the range of agent a’s marginal contributions (i.e.,

the distance between the minimum and maximum marginal contributions), denoted as

r, this inequality is as follows:

σ2 ≤ r2

4
(2.6)

Although the CLT provides a simple and easy way to bound the approximation error, it

has a major drawback. This is due to the asymptotic nature of the CLT which establishes

that the sample mean is normally distributed only when the sample size tends to infinity.

Since an infinite sample size is impossible in practice, when the approximation is based

on a finite sample, there will be an additional error due to the difference between the

true distribution of the sample mean and the asymptotic normal distribution converge

(Berry, 1941; Stein, 1972). Therefore, since this has not been factored in by Castro

et al., their bound is not accurate.

2.2.2.2 Bounding the Error Using Chebyshev’s Inequality

Liben-Nowell et al. (2012) focused on approximating the Shapley value in supermodular

games using SRS. Specifically, they used Chebyshev’s inequality (Tchébychef, 1867) from

probability theory to provide an error bound that requires a sample size polynomial in

the number of agents. For any real number k > 0, Chebyshev’s inequality guarantees

that the probability that the values of a given random variable, X, are more than k

standard deviations away from the mean is at most 1/k2. More formally:

Pr(|X − E[X]| ≥ kσ) ≤ 1

k2
(2.7)

Recalling that the sample mean is a random variable, one can apply inequality (2.7)

to bound the distance between the values of the sample mean and the expected value
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of the sample mean which is the actual Shapley value. However, to do this, one would

need to know the variance of the marginal contributions of the agent. To this end,

Liben-Nowell et al. exploit the supermodularity property to provide an upper bound

on the variance. Let X be a random variable representing the marginal contributions

of agent a. They upper bound Var(X) using the variance of another random variable,

Y , that supposedly represents the most extreme case of the values of X in terms of

variance. More specifically, they assume that Y takes the maximum value of X, i.e.,

the marginal contribution to the grand coalition minus the agent (i.e., A\{a}) with

probability 1/n, and 0 otherwise. However, it can be argued that Var(Y ) is not ncessarily

an upper bound on Var(X), since the maximum possible variance of a random variable

occurs when it takes its minimum and maximum values with the same probability 1/2

(Castro et al., 2009). This is also evident in Popoviciu’s inequality (i.e., inequality (2.6)).

Furthermore, in constructing the variable Y , Liben-Nowell et al. derive the maximum

marginal contribution of agent a as a factor of its Shapley value, i.e., n×SV (a). However,

introducing n into the variance of Y , and in turn in Chebyshev’s inequality, would make

the sample size dependent on the number of agents. Consequently, with higher number

of agents the bound would require larger samples, which is undesirable. Chapter 4 will

correct the issue of maximum variance, and use Chebyshev’s inequality to provide a

bound on the error that is independent of the number of agents.

2.2.2.3 Bounding the Error Using Hoeffding’s Inequality

Bachrach et al. (2008) focused on approximating the Shapley-Shubik and Banzhaf power

indices (Shapley and Shubik, 1954; Banzhaf, 1965), which measure the powers of play-

ers in a voting game by averaging over the marginal contributions of an agent to all

coalitions. The former is the common name for the Shapley value in simple games, and

the latter differs from the Shapley value in the weight of coalitions. Bachrach et al.

also use SRS to approximate the power indices, and use Hoeffding’s inequality (Ho-

effding, 1963) to bound the error. Hoeffding’s Theorem 2 (Hoeffding, 1963), known as

Hoeffding’s inequality, states that if S is the sum of m independent random variables,

X1, . . . , Xm, each of which almost surely bounded by two values, αi and βi, then the

following inequality holds about S:

Pr(|S − E[S]| ≥ t) ≤ 2 exp

(
− 2t2∑m

i=1(βi − αi)2

)
(2.8)

This inequality provides a powerful means to bound the approximation error, since it

implies that the probability of a large deviation from the mean is exponentially small.

Although Bachrach et al. (2008) used Hoeffding’s inequality to bound power indices, it

can be readily applied to any game where the range of an agent’s marginal contributions

is available. Chapter 4 will show how this can be done.
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2.3 Coalitions of Bounded Rational Agents

As stated in the previous section, each agent in a game, by taking actions or making

decisions, receives a payoff. In most scenarios, it is assumed that agents are able to

maximise their payoff by making optimal decisions. In other words, they are assumed to

be fully rational. However, it has been suggested that this assumption may not always

be realistic, since in reality, agents do not necessarily try to find an optimal decision

(Rubinstein, 1997). For instance, Simon (1957) argues that humans beings as decision

makers are only partly rational, and as such, he proposed bounded rationality as an

alternative basis for modeling decision making. Rubinstein (1997) investigated bounded

rationality further and argued that an agent’s task often involves picking from a finite

set of decisions that satisfies all the constraints, which is typically easier than “finding

the optimal set of decisions”, especially when multiple solutions exist. He also proposed

to model bounded rationality by explicitly specifying decision making procedures.

Several other researchers have taken a computational point of view of bounded rational-

ity. Kalai and Stanford (1988) proposed a method for measuring the possible difficulty

that an agent may face in checking the rationality of a strategy combination. Neyman

(1985) argues that in finitely repeated prisoners’ dilemma problem, there are bounds to

the complexity of the strategies that the players may use. Futia (1977) put forward an

index number to measure various resource cost associated to the use of decision rules.

More recently, Tsang (2008) proposed the Computational Intelligence Determines Ef-

fective Rationality (CIDER) theory based on Rubinstein’s approach. Tsang’s theory

says that rationality involves computation, and as such, agents’ rationality is bounded

by the computational resources that are available to them. Therefore, a computation-

ally bounded rational agent would choose good readily obtainable solutions rather thans

intractable optimal solutions.

Against this background, Sandholm and Lesser (1997) extended the idea of bounded

rationality to coalitional games. In more detail, they considered a setting where the

value of a coalition is a cost that it incurs in a certain problem, which is given by a hard

optimisation problem. However, since using computational resources is costly, each agent

also has to pay for the computational resources that it uses for deliberation. As such,

the value of a coalition is defined as follows: each coalition minimises the domain-specific

cost that it incurs (which decreases as more computation is allocated) and computation

cost (which increases as more computation is allocated). Therefore, as the unit cost of

computation increases, agents need to pay more for the computation, or they have to

use less computation and obtain worse solutions.

Based on this model, Sandholm and Lesser also investigated the optimal coalition struc-

ture that would maximise the total payoff of all agents, and used the concept of core

to analyse the stability of this structure. However, they stopped short of providing a

formalism for using the Shapley value using this model. Chapter 5 aims to fill this gap
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by presenting a similar model for dividing the value of a coalition of computationally

bounded rational agents using the Shapley value.

2.4 Summary

This chapter began with an introduction to concepts in cooperative game theory. In

particular, it examined different payoff distribution solution concepts. Specifically, the

Shapley value and its special properties were stated. It was discussed that the Shapley

value has an exponential time complexity, and to overcome this issue three approaches

exist in the literature:

• Using alternative representation formalisms, which involve the difficult task of

transforming a given game to conform to these representations.

• Developing exact efficient methods for specific class of games, which are unique to

the spcial problems that they have been developed for.

• Approximate solutions, the majority of which are based on random sampling.

Furthermore, sampling-based approximation methods were examined in detail. These

methods use SRS to approximate the Shapley value as the mean of a randomly chosen

set of marginal contributions of an agent. However, since SRS samples the population

blindly, it does not yield representative samples, and as such, it is not considered an

efficient method. Furthermore, three different methods have been proposed to bound

the approximation error of the Shapley value using SRS, which are as follows:

• Central Limit Theorem, which is an asymptotic bound. That is, the error bound

holds as the sample size increases to infinity, which is impractical.

• Chebyshev’s inequality, which provides a probabilistic bound on the deviations

of the sample mean from the actual mean of a population. However, the sole

use of this inequality in the literature for approximating the Shapley value is

mathematically incorrect, and requires a sample size that depends on the number

of agents in the game.

• Hoeffding’s inequality, which also provides a probabilistic bound on the deviations

of the sample mean from the actual mean of a population.

Lastly, the idea of bounded rationality of agents was examined. Specifically, it was

discussed that agents, due to limited computational resources, may not be able to act

with full rationality, and as such, they could be computationally rational. This concept

was extended to coperative games by Sandholm and Lesser (1997), who investigated
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the concept of core to analyse the stability of coalitions of bounded rational agents.

However, they did not investigate using the Shapley value to divide the social welfare in

this setting, and this problem has remained unexplored to date.





Chapter 3

Cooperative Games In The Smart

Grid

The phenomenal growth in energy demand, one the one hand, and dwindling oil and

fossil fuel reserves on the other hand, have led governments to facilitate a greater role

for renewable energy resources in current and future electricity grids. With the advent

of a smart electricity grid (The United States Department of Energy, 2003), matching

supply and demand will emerge as a crucial challenge, considering that the smart grid

envisages large scale integration of distributed energy resources (DERs), which include,

small to medium capacity, geographically dispersed renewable power generators. Partic-

ularly, the intermittency of these resources is highly problematic, since their generation

mostly depends on weather conditions, and might not be available at all times. For ex-

ample, photovoltaics rely on solar radiation for generating electricity, and their output

has a direct relationship with how much sunlight is available. Similarly, the output of

wind turbines depends solely on how much wind blows at any given time. Therefore,

these generators are technically considered non-dispatchable, i.e. cannot be called in to

generate power on demand. This makes DERs’ power unsuitable for addressing surges

in demand.

Furthermore, the amount of electricity that can be generated from renewable resources

can be extremely difficult to predict, since they mostly depend on environmental and

weather conditions which constantly vary (e.g., wind speeds, cloud cover, etc.). Given the

current market structures that require selling power ahead of generation, the variability

of generation is highly undesirable for the profitability of renewable generators, and also

balancing supply and demand. From the generators’ point of view, since their output

cannot be accurately predicted, they will inevitably face penalties for not generating

exactly the amount they commit to in their contracts. From the grid’s point of view, it

is impossible to know, ahead of time, how much renewable generation will be available

so that supply and load can be balanced.

27
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On balance, overcoming the intermittency and variability of DERs’ outputs is key to a

successful integration of DERs in a smart grid. Currently, the fluctuations resulting from

these are offset using fossil-fueled generators (e.g., gas-fired stations), whose output can

quickly ramp up to meet an incerase in demand. However, as these generators diminish

in numbers (due to dwindling resources and phaseout-programs), addressing the issues

of intermittency and variability of DERs requires new approaches in managing both

supply and demand.

In this context, cooperative game theory can offer valuable insights, though its use has

been very limited in the literature. For instance, it can provide models for groups of

generators or consumers to mitigate the intermittency and variability issues in a way

that cannot be achieved individually. Notably, creating virtual power plants (VPPs),

through grouping DERs and aggregating their outputs, is one such model that has

high potentials for the supply side (Dimeas and Hatziargyriou, 2007; Pudjianto et al.,

2007; Kok et al., 2010). On the demand side, coalitions of consumers can be formed to

encourage more predictable demand profiles (Ramchurn et al., 2013), or to offer demand

reduction services (Kota et al., 2012). To materialise these ideas, a fair division of profits

and monetary incentives among the participants is essential. The Shapley value, due

to its unique fairness properties, can fulfill this requirement. Nevertheless, applying the

Shapley value can face a major computational challenge due to the potentially large

sizes of groups, the time complexity of the characteristic functions of the games, and

the time complexity of the Shapley value itself which is exponential in the number of

agents.

This chapter gives an overview of the related work on supply-side and demand-side

management, and provides the background for addressing the technical computational

challenges of applying the Shapley value in two scenarios:

1. Dividing the expected profit of a VPP among its DER members. Here, the large

number of DERs (e.g., hundreds) makes calculating the Shapley value difficult.

This issue will be addressed in Chapter 4 by approximating the Shapley value.

2. Dividing a group discount among the participants of a demand-side management

program that is designed to cap domestic loads from cooling (or heating) at a

certain level. Here, the computational challenge is due to the time complexity of

the characteristic function that involves an intractable optimisation of the loads.

This issue will be addressed in Chapter 5 by adopting a bounded rationality model

for coalitions.

The next section gives a description of electricity markets, and particularly the whole-

sale market of the Great Britain as one of the globally predominent market models.

Section 3.2 discusses the related works regarding VPPs. Section 3.3 presents a formal

model of a two settlement market, based on which the problem of selling the output of
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a DER and its expected profit is defined. Section 3.4 defines a cooperative game where

DERs form a coalition to sell their output in the market. Section 3.5 examines the

recent applications of cooperative game theory, and the Shapley value, in demand-side

management. Finally, Section 3.6 summarises the chapter.

3.1 Electricity Markets

The power industry has undergone fundamental changes in the past few decades. In

particular, deregulation of electricity markets has created the potential for competition

in retail and generation of electricity, marking an important milestone. In contrast to

traditional structures of electricity grids, in which one organisation owns the genera-

tion, transportation and distribution systems and operates under a monopoly, in new

structures those parts are separated and operate independently.

The properties of electricity as a commodity make an electricity market distinct from

any other market. In economic terms, electricity is a perishable commodity, meaning it

cannot be stored. As such, it has to be generated, delivered and used continuously in real-

time. Furthermore, electricity is linked with a physical system that functions faster than

any market (Kirschen and Strbac, 2004). Whereas in most markets there is some window

for matching supply and demand, in electricity systems, the balance between supply and

demand (i.e., generation and load) has to be maintained second by second. If this balance

is not maintained, the system will collapse with potentially catastrophic consequences.

Therefore, electricity markets are designed to ensure robustness of delivery. The design

of electricity markets is an active area of research (see for example Marks, 2006; Anderson

and Philpott, 2002; Stoft, 2002).

Generally, there are two types of electricity markets: retail markets and wholesale mar-

kets. The parties involved in the former are the end users of electricity (consumers), as

well as the companies that sell the electricity to them, which are commonly referred to as

suppliers. The aim of retail markets is to enable consumers to choose their suppliers from

a competitive environment. In wholesale markets, the main parties involved can be di-

vided into buyers, sellers and system operators. Sellers and buyers are mostly generators

and suppliers. Generators can also be buyers, since they would need to buy electricity

from other sellers when they cannot generate enough to meet the their contract volume.

3.1.1 The Great Britain Wholesale Electricity Market

The wholesale market under the current trading system in Great Britain, called the

British Electricity Trading Transmission Arrangements (BETTA), allows bilateral trad-

ing between generators and suppliers in the market, which was largely designed to pro-

mote efficiency and competition between predictable fossil-fuelled and nuclear generation
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(Energy and Climate Change Committee UK Parliament, 2011). The system splits the

day into half-hour intervals called settlement periods. For each settlement period, con-

tracts must be struck in a forward market, ahead of time, and deals must be finalised

before the gate closure, which is one hour ahead of the settlement period. This requires

the generators and suppliers to forecast their generation and demand accurately and

strike deals accordingly.

Both generators and suppliers must fulfill their contracts for each settlement period by

generating and consuming their agreed amounts. This is judged by the actual generation

and consumption volumes that are metered over the course of each settlement period.

At the end of the settlement period, a generator may have generated more or less than

their contract volume. Similarly, a supplier may have consumed more or less than they

contracted for. The difference between the contract volume and the actual volume

is called imbalance, and is settled through a mechanism called balancing mechanism,

which is as follows. Where a generator has generated less than they have committed to

provide, they must purchase additional electricity in a spot market. The price at which

this transaction is cleared is called the system sell price. Moreover, where a generator

has generated more than their contract volume, they can sell the surplus in the spot

market at a price called the system buy price. The suppliers must settle their imbalance

in a similar fashion.

In order to minimise the overall imbalance of the system, generators and suppliers have

incentive to strike contracts based on most accurate estimates of their generation and

consumption. This is because the system sell price is always higher, and the system buy

price is always lower than the forward market price. From a generator’s point of view,

this price difference means less profit in case of underestimating the generation, and an

extra cost in case of overestimating it. As such, these prices can be seen as penalties for

deviations from contracts, and thus, will be referred to as balancing penalties herein.

3.2 Virtual Power Plants

A VPP can be seen as a coalition of DERs, modeled as profit-maximising (i.e., rational)

agents, that pool their generation so that they can be viewed as one large generator

in the grid. Not only would this idea improve the reliability of individual generators,

but also they would potentially benefit from cost-effective integration into the market

(North American Electric Reliability Corporation, 2009; US National Renewable Energy

Laboratory, 2010), and avoiding low-profit deals with third-party market participants

(Pudjianto et al., 2007). Kok et al. (2005) proposed a novel agent-based system, called

PowerMatcher, for automatic balancing of demand and supply in VPPs. Based on this

system, a VPP would be able to optimally coordinate its DER members such that it

can deliver almost real-time balancing services. Kok et al. (2010) suggested a structure
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for a PowerMatcher so that the VPP’s actions can be guided by organising agents as a

tree and assigning them roles. For instance, DERs would be represented as “local device

agents”, a specific agent type would concentrate the pricing bids of other agents into

one single bid, and another agent would have the role of guiding the VPP’s actions by

implementing a business model.

Kok et al. (2010) envisaged that adopting a business model that can ensure the economi-

cal viability of VPPs is crucial. In particular, the problem of dividing the profit that the

DERs would jointly make is the primary question that needs to be addressed, so that

forming a VPP is justifiable to the DERs as well. This problem has remained somewhat

underexplored thus far and the few solutions that have been proposed in the literature

have some limitations. In what follows, some of these solutions will be examined.

Chalkiadakis et al. (2011) proposed formation of cooperatives of virtual power plants

(CVPPs). A CVPP is essentially a coalition of DER agents that sell their electricity

to the grid, ahead of time, based on a special pricing scheme agreed by the grid and

the CVPP. This scheme consists of a Grid-to-CVPP and a CVPP-to-DER payment.

The former determines the total profit that the coalition receives from the grid with

respect to the volume of production as well as the accuracy of the production estimate.

The latter determines the share of each agent from the total profit. The Grid-to-CVPP

payments encourage accurate estimates as well as formation of larger VPPs by promising

more profit, leading to a superadditive game. Moreover, the CVPP-to-DER payments

are such that individual members would have the incentive to report their estimate of

future generation to the highest possible degree of precision, improving the reliability of

the CVPP as a whole. Assuming that all DERs in the VPP are able to estimate their

generation equally well, the payoff distribution given by the CVPP-to-DER payments

would lie in the core of the game. However, this scheme may only be useful in some

circumstances where the grid operators would be willing to introduce a new trading

model for DERs, and it is not clear that, under this scheme, how the DERs would be

able to enjoy the kind of competition that wholesale market participants do.

Bitar et al. (2012) aimed to address the wholesale market participation of DERs by

investigating how a wind power generator could optimally sell its variable power in

a competitive electricity market. More specifically, they proposed a stochastic model

for wind power generation, and a model for a two-settlement market consisting of a

forward market, and a spot market. In the former, electricity is sold in advance of

generation (e.g., one day ahead) based on generation estimates, while in the latter any

difference between the actual and estimated generation is settled. Given this market

model, they analysed optimal contract volumes and the corresponding optimal expected

profit. Note that while Bitar et al. focused on wind power production, their model could

also be applid to any DER with a power output that can be modeled as a stochastic

variable. Based on the same model of power generation and market, Baeyens et al. (2011)

investigated the merits of forming coalitions of independent wind power producers. To
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this end, they defined a cooperative game, where a number of wind power producers

form coalitions, whose values are the maximum expected profit achievable through joint

bidding of the aggregate wind power in a two-settlement market. This game is known as

the newsvendor game (Muller et al., 2002), which is a cooperative form of the newsvendor

problem (see Section 3.4 for more detail). Since the newsvendor game is superadditive,

Baeyens et al. argued that a grand coalition of wind power producers would be an

optimal coalition structure. Moreover, they showed that the game is balanced, and

thus, according to Bondareva–Shapley theorem (Theorem 2.22) it has a non-empty core.

The authors focused on the nucleolus as a payoff distribution, arguing that it provides

fairness since it minimises the dissatisfaction of the coalition (Remark 2.15). However,

calculating the nucleolus is computationally intensive, and the authors did not provide

a method for addressing this issue, considering that coalitions are potentially large.

3.3 Selling Power In A Two-settlement Wholesale Market

Suppose that selling power takes place through a two-settlement market system, which

consists of a forward market, and a spot market that deals with the balancing mech-

anism (as described in Subsection 3.1.1). These markets are assumed to be perfectly

competitive, which means that no generator has a market power to influence the prices,

and thus, they are all “price takers”. Furthermore, to simplify the analysis, the costs of

generating power is disregarded here, and thus, all revenue of a generator is assumed to

be profit. Contracts are offered by the generators in the forward market at a unit price of

p ∈ R+, which is known to all participants. The system sell and buy prices, however, are

not known at the time of striking the contract, and thus their expected values are used

instead. The difference between the actual generation, w, and the contracted volume of

a generator, ν, is referred to as the imbalance of the generator. For negative and positive

imbalances, the expected system prices are denoted by α ∈ R+ and β ∈ R+ respectively.

Furthermore, due to the nature of the balancing penalties (as explained above), it is

assumed that β < p < α. Note that, in reality, p is closer to β than α, since generating

power at short notice is more expensive (and more carbon-intensive), and also negative

imbalance is undesirable for the grid. Therefore, it is assumed that α − p > p − β.

Furthermore, note that although a positive imbalance would result in a generator to

receive a payment for their surplus, this would be less than the profit they could make,

had they sold the surplus in the forward market. Therefore, any imbalance could be

seen as a cost to generators, and must be minimised. Herein, this cost is referred to as

the balancing cost, and is formally defined as:

ζ(w, ν) , (w − ν)×


α w > ν

0 w = ν

β w < ν

(3.1)
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Note that ζ is a convex function centred on zero, meaning that if there is no imbalance

the balancing cost will be zero. The sign of the cost shows whether the generator has

to pay or be paid. Moreover, due to asymmetric balancing penalties, the function is not

symmetric.

3.3.1 Expected Cost and Profit of A DER

Like conventional generators, a DER must minimise its balancing cost in order to max-

imise its profit. However, unlike conventional generators, DERs cannot know their future

generation in advance, and thus, instead of minimising the exact balancing cost defined

above, they have to minimise their expected balancing cost. This cost would have a

direct relationship with the uncertainty in their power generation. Therefore, in order

to capture this uncertainty, the output of a DER are represented as a random variable,

W , and the probability density function (PDF) of W , and its cumulative distribution

function (CDF) are represented by fW and FW (w) =
∫ w

0 fW (x) dx, respectively.

Given a power output, W , and a contract volume ν, the corresponding expected bal-

ancing cost is the cost of a generator’s expected negative imbalance, minus the profit it

would make for its expected positive imbalance. More formally:

ζ(ν,W ) , αE[ν −W ]− β E[W − ν]

= α

∫ ν

0
fW (x)(ν − x) dx− β

∫ M

ν
fW (x)(x− ν) dx

(3.2)

where M is the maximum generation capacity of the generator.

The expected profit of a generator is the amount of profit that it expects to make by

selling ν units in the forward market, minus its expected balancing costs. However,

note that it is theoretically possible that the expected balancing cost is so high that the

expected profit becomes negative, in which case, obviously, the DER will not participate

in the market. More formally, let P (ν, ζ) denote a function representing the profit given

a contract volume of ν, and a balancing cost of ζ. The expected profit of a generator is

defined as:

P (ν,W ) ,

0 ζ(ν,W ) ≥ p ν

p ν − ζ(ν,W ) ζ(ν,W ) < pν
(3.3)

Using equation (3.3), in the next subsection, the contract volume that maximises the

expected profit is found.

3.3.2 Optimal Contract Volume: A Newsvendor Problem

As is clear from equation (3.3), the maximum expected profit occurs when ζ(ν,W ) is

smallest. Therefore, to find the optimal contract volume ν∗ the following optimisation
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must be performed:

ν∗ = arg min
ν

ζ(ν,W ) (3.4)

Note that due to the asymmetry in the balancing penalties (i.e., p− β 6= α− p), simply

contracting for the expected generation volume (i.e., E[W ]) would not result in the

minimum expected balancing cost. Intuitively, a generator needs to contract for an

amount less than its expected output so as to avoid the higher penalty of negative

imbalance.

In operational research, this optimisation is known as the newsvendor problem (Whitin,

1955). In this problem, a person selling newspapers needs to decide how many news-

papers he needs to stock, given that the sale of newspapers is subject to a stochastic

demand. This decision is complicated by the fact that, on the one hand, an unsold

newspaper will lose its original value, and on the other hand, stocking less than the

necessary quantity results in losing sale opportunities. Thus, the newsvendor needs to

optimise its stock quantity so as to minimise all these costs. Selling a DER’s power

in a two-settlement market is similar to the problem that the newsvendor faces, and

thus, can be formulated as a newsvendor problem. The rest of this section is devoted to

explaining how the optimal contract volume can be found.

If the expected profit function, P (ν,W ), has a maximum value, a maximiser ν∗ can

be found by solving the derivative of the expected profit for ν. The first derivative of

equation (3.3) is as follows:

dP (ν,W )

dν
= p− α

∫ ν

0
fW (x) dx− β

∫ M

ν
fW (x) dx = 0 (3.5)

The second derivative reveals that the expected profit is a concave function, and thus,

must have a maximum. This is because:

d2 P (ν,W )

dν2
= −αfW (ν) + βfW (ν)

= − (α− β)︸ ︷︷ ︸
> 0

fW (ν)︸ ︷︷ ︸
≥ 0

≤ 0

(3.6)

Considering the first derivative (equation (3.5)) again, the first integral is by definition

equal to FX(ν). Moreover, since by definition FX(M) = 1, and the probability of

negative generation is zero, the second integral simplifies to 1− FX(ν). Consequently:

p− αFW (ν)− β (1− FW (ν)) = 0 ⇒ FX(ν) =
p− β
α− β

(3.7)
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Therefore, the best volume to contract for in the forward market is given by the quantile,

F−1
W , of (p− β)/(α− β), which is the inverse of FW . This is given by:

FW (ν) =
p− β
α− β

∣∣∣∣
ν=ν∗

⇒ ν∗ = F−1
W

(
p− β
α− β

)
(3.8)

As an example, suppose that W follows a Gaussian distribution N (µ, σ2), where µ =

E[W ] and σ2 = Var(W ). The optimal contract volume in this case would be:

ν∗ = E[W ]−
√

2 Var(W ) erfc−1

[
2(p− β)

α− β

]
,

where erfc−1 is the inverse complementary error function. Plugging ν∗ into equa-

tion (3.3) yields the maximum expected profit when W follows a Gaussian distribution,

as follows:

P (ν∗,W ) = pE[W ]− e
−erfc−1

[
2(p−β)
α−β

]2
(α− β)√

2π

√
Var(W ) (3.9)

In the second term of the above equation, the coefficient of Var(W ) is a constant that,

based on the balancing penalties, translates the uncertainty of generation, Var(W ), into

a cost. Montrucchio and Scarsini (2007) have shown that for an arbitrary distribution

of W , the maximum expected profit can be concisely expressed as a function of E[W ]

and Var(W ), similar to equation (3.9). More specifically, given the unit price p, and

the balancing penalties α and β, there exists a 0 < K ≤ max{α, p + β} such that the

maximum expected profit can be written as:

P (ν∗,W ) = pE[W ]−K
√

Var(W ) (3.10)

This profit function will be the basis of forming coalitions of DERs, which is described

in the next section.

3.4 Coalitions of DERs: A Cooperative Newsvendor Game

A VPP is modeled as a coalition, A = {a1, a2, . . . , an}, consisting of n DER agents, that

sell their aggregate power in the market formalised in Section 3.3. Let WC denote a

random variable representing the aggregate power of a coalition C ⊆ A, which is given

by the sum of power output of individual members Wa1,Wa2, . . .. More formally, the

aggregate power of a coalition can be described using its expected generation volume
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and the corresponding variance as follows:

E[WC ] =
∑
a∈C

E[Wa] (3.11)

Var(WC) =
∑
a∈C

Var(Wa) +
∑

ai,aj∈C, ai 6=aj

Cov(Wai ,Waj ) (3.12)

In this thesis, it is assumed that the geographical distances between the DERs of a

VPP are so large that there is no correlation between their power outputs. As such, the

covariance between the outputs of any pair of DERs in a coalition is zero. The case of

correlated power outputs will be left for future work.

The value of a coalition is defined as its maximum expected profit, which can be deter-

mined using equations (3.11), (3.12) and (3.10). Given a coalition C, this value is given

by the following characteristic function:

v(C) ,

0 C = ∅

P (ν∗,WC) = pE[WC ]−K
√

Var(WC) C 6= ∅
(3.13)

The cooperative game (A, v) is called a newsvendor game (Muller et al., 2002). Mon-

trucchio and Scarsini (2007) showed that this game is balanced (Definition 2.12), and

for newsvendors with uncorrelated demand, it is supermodular. Here, two additional

proofs of supermodularity for the game defined above are provided. First, observe the

following lemmas.

Lemma 3.1. For any variable u > 0 and constant a > 0, the function
√
u−
√
u+ a is

monotonically increasing.

Proof.
d(
√
u−
√
u+ a)

du
=

1

2
√
u
− 1

2
√
u+ a

> 0

Corollary 3.2. For an arbitrary agent ai ∈ A, and any pair of coalitions C1, C2 ⊆
A\{ai}, with corresponding power outputs WC1 and WC2, since Var(WC1) ≤ Var(WC2),

from Lemma 3.1 it follows that:√
Var(WC1)−

√
Var(WC1) + Var(Wai) ≤

√
Var(WC2)−

√
Var(WC2) + Var(Wai),

which is equivalent to:√
Var(WC1)−

√
Var(WC1∪{ai}) ≤

√
Var(WC2)−

√
Var(WC2∪{ai})
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Lemma 3.3. Given a newsvendor game (A, v), as defined above, for any two coalitions

C1, C2 ⊆ A, it holds that v(C1 ∩ C2) ≥ 0.

Proof. If C1 ∩C2 = ∅, by equation (3.13), v(C1 ∩C2) is zero. Moreover, if C1 ∩C2 6= ∅,
by equation (3.3), v(C1 ∩ C2) is greater than or equal to zero.

Theorem 3.4. Given a set, A, of DERs with uncorrelated power outputs, and the

characteristic function (3.13), the game (A, v) is supermodular.

Proof 1. Suppose that C1 and C2 are two coalitions such that C1 ⊆ C2 ⊆ A\{ai}. From

Corollary 3.2, it follows that:

−K
√

Var(WC1∪{ai}) +K
√

Var(WC1) ≤ −K
√

Var(WC2∪{ai}) +K
√

Var(WC2)

⇔ pE[WC1 ]−K
√

Var(WC1∪{ai})− pE[WC1 ] +K
√

Var(WC1)

≤ pE[WC2 ]−K
√

Var(WC2∪{ai})− pE[WC2 ] +K
√

Var(WC2)

⇔ pE[WC1 ] + pE[Wai ]−K
√

Var(WC1∪{ai})︸ ︷︷ ︸
v(C1∪{ai})

−pE[WC1 ] +K
√

Var(WC1)︸ ︷︷ ︸
−v(C1)

≤ pE[WC2 ] + pE[Wai ]−K
√

Var(WC2∪{ai})︸ ︷︷ ︸
v(C2∪{ai})

−pE[WC2 ] +K
√

Var(WC2)︸ ︷︷ ︸
−v(C2)

⇔ v(C1 ∪ {ai})− v(C1) ≤ v(C2 ∪ {ai})− v(C2)

Proof 2. Suppose C1 and C2 are two coalitions such that C1, C2 ⊆ A.

Since
√

Var(WC1) +
√

Var(WC2) ≥
√

Var(WC1) + Var(WC2), the following holds:

−K
√

Var(WC1) +
√

Var(WC2) ≤ −K
√

Var(WC1) + Var(WC2)

⇔ pE[WC1 ]−K
√

Var(WC1)︸ ︷︷ ︸
v(C1)

+ pE[WC2 ]−K
√

Var(WC2)︸ ︷︷ ︸
v(C2)

≤ pE[WC1 ] + pE[WC2 ]−K
√

Var(WC1) + Var(WC2)︸ ︷︷ ︸
v(C1∪C2)

Therefore, v(C1) + v(C2) ≤ v(C1 ∪ C2), which shows that the game is superadditive.

Adding this inequality to 0 ≤ v(C1 ∩ C2) (Lemma 3.3), proves the supermodularity

property:

v(C1) + v(C2) ≤ v(C1 ∪ C2) + v(C1 ∩ C2)
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Since the game is superadditive, the DERs overall, in expectation, make more profit by

forming a grand coalition, as compared to selling their power in the market indepen-

dently. Therefore, the DERs have the incentive to form a VPP and participate in the

market as a single generator.

3.4.1 The Shapley Value For Dividing The Total Expected Profit

Once a coalition of DERs is formed, an important question will be what share of the total

expected profit can each DER expect to receive. In this problem, the Shapley value gives

a particularly useful payoff distribution, since the game is supermodular. Recall that

in supermodular games, the Shapley value is in the core of the game (Theorem 2.31).

That is, not only can the DERs expect to receive a fair share of the profit, but also

this division guarantees a stable VPP, since no DER or groups of DERs would have an

incentive to break away from the VPP. Therefore, the Shapley value is the only solution

to this problem that can ensure fairness and stability simultaneously. However, given

the potentially high numbers of DERs in a VPP, and the time complexity of computing

the Shapley value (as discussed in Chapter 2), applying the Shapley value presents a

significant computational challenge. Chapter 4 investigates algorithms that can address

this issue.

3.5 Cooperative Demand-side Management

Demand-side management is a way of influencing demand to follow supply through vari-

ous means, most commonly through demand response (DR). DR is defined by of Energy

(2006); FERC (2009) as “changes in electric usage by end-use customers from their nor-

mal consumption patterns in response to changes in the price of electricity over time, or

to incentive payments designed to induce lower electricity use at times of high wholesale

market prices or when system reliability is jeopardized”. It has been suggested that in

the smart grid, DR can play an important role in improving the balance of supply and

demand (Strbac, 2008; Su and Kirschen, 2009). For instance, it can help to reduce peak

demand by disributing consumers’ demand to off-peak times of the day. This lowers the

capacity needed to deal with peak demand. It can also provide the flexibility needed to

match demand to the available supply when unpredictable fluctuations occur. Further-

more, DR can keep the demand within the limitations of local network constraints. It is

important that DR programs are designed in a way that are capable of managing large

groups of consumers, since unless the consumptions are coordinated appropriately, peaks

may occur at different times (Ramchurn et al., 2011). This need for coordination among

consumers creates an opportunity for forming coalitions among them, and making use

of the tools from cooperative game theory to study these coalitions.
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Rose et al. (2012) designed a scheme for an aggregator (intermediaries between suppliers

and end-users of electricity) to encourage accurate prediction of its customers’ future

demand. The aggregator is responsible for purchasing electricity for a set of homes in a

two-settlement market similar to the model in Section 3.3. Due to the balancing penal-

ties, the aggregator has to pay a cost for any difference between the amount it purchases

in the market and the actual amount that its customers consume. The aggregator has

an estimate of each house’s consumption based on historical data, but also each house

possibly has some information that can be used to make more precise estimates. The

houses transmit this information to the aggregator in the form of a probability distri-

bution over the their consumptions for a future period of time. In doing so, the houses

ignore their own cost and minimise the sum of all houses’ costs, effectively working as

a coalition. By exploiting the information received from the houses, the aggregator’s

expected costs will be lower, and thus in expectation, it makes some savings. The ag-

gregator then distributes these savings to the houses as a reward for their information.

The rewards are such that, the more accurate each house’s information is, the greater

its share of the total reward, incentivising them to report truthfully and accurately.

In Ramchurn et al. (2013), we proposed a newsvendor game for collective purchasing

of electricity for users of an agent-based system, called AgentSwitch, that receive a dis-

counted price for having more predictable demand profiles. AgentSwitch predicts the

annual power consumption of its users using a Bayesian quadrature (a numerical integra-

tion technique) that estimates the power consumption and gives a Gaussian probability

distribution for any given period of time. These distributions are aggregated using equa-

tions (3.11) and (3.12), yielding an overall lower variance, which results in an improved

predictability of the demand. In return for this, the supplier offers a discounted price,

which is distributed among the users using the Shapley value. Due to the large number of

users, the Shapley values are then approximated using a special property of newsvendor

games. This property is explained in detail in Chapter 4.

Kota et al. (2012) designed a cooperative scheme for groups of consumers that can

reduce their energy consumption when requested. The aim of this scheme is to aid par-

ticipation of consumers in the market, and flattening their load profiles through shifting

their consumption. The members of the coalition report their estimated baseline con-

sumption to the operator of the scheme, and if a shift in their consumption is required,

they will be notified one day ahead. Kota et al. proposed a mechanism for distribut-

ing the revenue that the coalition would generate as a result of reducing its demand.

This mechanism is such that the members would have an incentive to participate in

the scheme, and is incentive compatible, meaning the members would not be able to

exaggerate their baseline consumption so as to show an artificial demand reduction and

get rewarded consequently. However, the authors stopped short of providing a model

for shifting consumption and implementing the demand reduction in practice. Akasiadis

and Chalkiadakis (2013) aimed to fill this gap by proposing a method for shifting loads
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of residential, and industrial consumers. The consumers form a coalition to report their

shiftable capacities so that their peak time consumptions can be shifted to to off-peak

intervals where the price of electricity is lower. However, the authors were merely inter-

ested in mechanisms that would ensure the truthfulness of the reports, and like other

works did not consider fairness and the Shapley value.

One of the areas where there is a high potential for managing demand is thermostatically

controlled loads (TCLs), such as space and water heaters, which account for a signifi-

cant percentage of domestic energy consumption (Administration, 2013; Department of

Energy & Climate Change, 2014). Such appliances can act act as a buffer for increase in

demand, in that the load from them can be shifted to off-peak times. Vasirani and Os-

sowski (2012) proposed a collaborative load management model where consumers with

different types of shiftable loads (including TCLs) form coalitions and agree on a joint

demand profile to be contracted with a supplier, and in return receive a discount. The

authors propose a payment mechanism based on the core, and do not focus on fairness.

The rest of the existing research on DR programs for TCLs mostly focuses on collective

behaviour of users in a DR scenario (Zhang et al., 2012; Ihara and Schweppe, 1981),

finding complementary load profiles among groups of consumers with TCL (Koch et al.,

2011), and other technical requirements such as physical models for controlling TCLs

(Kalsi et al., 2011).

In summary, most of the existing work that deal with payoff distribution in cooperative

models for demand side management are concerned with efficiency, individual rationality,

group rationality, and incentive compatibility. While the choice of solution concepts

would depend on the scenarios, the Shapley value, which also has properties such as

efficiency and individual rationality, has been widely neglected. Chapter 5 aims to bridge

this gap by applying the Shapley value to a DR scenario where a group of apartments

are offered a discount if they manage to reduce their load from air conditioning under a

certain limit.

3.6 Summary

This chapter considered the applications of cooperative game theory in the smart grid

which is an important research area in computer science and artificial intelligence. The

idea of creating a smart grid faces the challenge of largely relying on distributed renew-

able energy resources, whose generation is intermittent and unpredictable. Overcoming

this challenge requires a better management of both generators and consumers. An

effective approach regarding the former is formation of VPPs, which can be viewed as

coalitions of DERs. This chapter analysed the expected profit of a VPP that sells its

aggregated output in a two settlement market consisting of a forward market and a spot

market (for settling imbalances). It was shown that, in this market, the DER members
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can expect to make more profit compared to when they are not part of the VPP. Using

the Shapley value to divide the expected profits is particularly advantageous, since it lies

in the core of the game. That is, each member receives a fair share of the expected profit,

and at the same time, no group of agents would have an incentive to leave the grand

coalition and form a smaller VPP. However, given the exponential time complexity of

the Shapley value, and the potentially large number of DERs in a VPP, computing the

Shapley value poses a significant computational challenge.

Furthermore, applications of cooperative games in demand-side management were ex-

amined. Demand-side management is mostly conducted through demand response pro-

grams that incentivise consumers to alter their load profile so as to reduce peaks or

match demand to the available supply. Running these programs requires coordinating

groups of consumers to avoid generating further peaks at different times. This coordi-

nation among consumers can be modelled as cooperative games, in which the value of

a coalition would be the reward it receives for altering its load. Various mechanisms

proposed for dividing the rewards were examined in this chapter. These mechanisms are

mostly concerned with efficiency, individual rationality, and group rationality. However,

the Shapley value, which in addition to fairness boasts the efficiency and individual

rationality properties, has not received much attention.





Chapter 4

Approximating the Shapley Value

In Chapter 2 the existing works regarding approximating the Shapley value were de-

scribed. It was discussed that these works suffer from two important limitations. First,

the bound proposed by Castro et al. (2009) is asymptotic (i.e., it holds only when the

sample size increases to infinity), and Liben-Nowell et al. (2012)’s bound is mathemat-

ically incorrect, and also requires a sample size polynomial in the number of agents.

Second, the existing approximation algorithms are all based on SRS which means that

they are indifferent in picking between marginal contributions, and sample the popu-

lation blindly. While SRS has the advantage of being easy to implement, it does not

necessarily yield representative samples.

To address the shortcomings of the existing works regarding the estimation error of the

Shapley value, this chapter proposes a bound based on Hoeffding’s and Chebyshev’s

inequalities. Next, to overcome the computational challenge of applying the Shapley

value in a newsvendor game (as discussed in Subsection 3.4.1), a sampling technique,

called stratified sampling, is proposed which yields potentially more efficient samples as

compared to SRS. Using this technique, the population of marginal contributions of an

agent is stratified into smaller homogeneous sub-populations (called strata), and each

stratum is sampled independently. This ensures that the samples would be spread over

the entire population, yielding estimates with higher precisions.

The rest of this chapter is organised as follows. Section 4.1 discusses bounding the esti-

mation error of SRS. Section 4.2 describes stratified sampling in the context of estimating

the Shapley value, and presents two methods for stratifying populations. Section 4.3 is

concerned with the experimental evaluation of our approach. Section 4.4 summarises

the chapter.

43
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4.1 Bounding the Estimation Error of SRS

Consider a random variable, Φ, taking the n! marginal contribution values of agent a

with a probability of 1/n!. The Shapley value of a, i.e., SV (a), can be estimated using

the sample mean, denoted as Φ̄. Under SRS, the sample mean, Φ̄SRS , is obtained by

calculating the average of m values of Φ that are randomly chosen with replacement,

with all values having the same probability of being chosen. More formally, Φ̄SRS =

1/m
∑m

i=1 φi, where φi is the i-th element independently drawn from Φ. The estimation

error, i.e., |Φ̄SRS − SV (a)| (or |Φ̄SRS − E[Φ]|), can be bounded using Chebyshev’s or

Hoeffding’s inequalities. Given inequalities (2.7) and (2.8), one can find the smallest

sample size required such that Pr(|Φ̄SRS − E[Φ]| ≥ ε) ≤ δ, where Φ̄SRS denotes the

sample mean, ε ∈ R+ is an arbitrary error bound, and 1−δ is the confidence of the bound

(i.e., the probability that the estimation error, |Φ̄SRS − E[Φ]|, is actually less than ε).

Here, two lemmas are provided, based on Chebyshev’s and Hoeffding’s inequalities, that

will help with bounding the estimation error of SRS, which is formalised in Theorem 4.3.

Lemma 4.1. Given the variance of an agent’s marginal contributions, σ2, a bound, ε,

and a confidence 1− δ, the sample size required such that Pr(|Φ̄SRS −E[Φ]| ≥ ε) ≤ δ is:

m ≥ σ2

δ ε2
(4.1)

Proof. Let S =
m∑
i=1

φi. Since Φ̄SRS = 1/mS, applying inequality (2.7) to S yields:

Pr
(
|S − E[S]| ≥ k

√
Var(S)

)
= Pr

(
| 1
m
S − E[Φ]| ≥

k
√

Var(S)

m

)

Let ε be (k/m)
√

Var(S). Since each sample is actually a random variable, and also the

variance of the sum of independent random variables is equal to the sum of variances of

individual variables, we have:

Pr(|Φ̄SRS − E[Φ]| ≥ ε) ≤ Var(S)

(mε)2
=
mVar(Φ)

m2 ε2
(4.2)

Since the right hand side of the above inequality has to be at most δ, it follows that:

m ≥ σ2

δ ε2

Lemma 4.2. Given the range of an agent’s marginal contributions, r, an error bound,

ε, and a confidence 1− δ, the sample size required such that Pr(|Φ̄SRS − E[Φ]| ≥ ε) ≤ δ
is:

m ≥ ln(2/δ) r2

2 ε2
(4.3)
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Proof. Since in any game with finite number of agents, the population of marginal

contributions of an agent is finite, there always exists a minimum marginal contribution,

φmin, and a maximum marginal contribution, φmax. Therefore, Φ takes values in the

range r = φmax − φmin. Now, let S =
∑m

i=1 φi. From inequality (2.8), we have:

Pr(|S −mE[Φ]| ≥ t) = Pr(|Φ̄SRS − Φ| ≥ t

m
)

⇒Pr(|Φ̄SRS − E[Φ]| ≥ ε) ≤ 2 exp

(
−2m2 ε2

mr2

)
Since we want the right hand side to be at most δ, we have:

2 exp

(
−2mε2

r2

)
≤ δ ⇒ m ≥ ln(2/δ) r2

2 ε2

Theorem 4.3. Given a superadditive game, an estimation error bound, ε, and a confi-

dence 1− δ, the minimum sample size required to estimate the Shapley value of agent a

using SRS, such that Pr(|Φ̄SRS − SV (a)| ≥ ε) ≤ δ, is:

m ≥


ln(2/δ) r2

2 ε2
δ < 0.23

r2

4 δ ε2
δ ≥ 0.23

(4.4)

where r = MC(a, N\{a})−MC(a, ∅).

Proof. The first part of inequality (4.4) was proved in Lemma 4.2. Here, the range of Φ

is initially found. Then, the second part is derived using Lemma (4.1), and it is proved

that for δ > 0.23, Chebyshev’s inequality requires a smaller sample size than Hoeffding’s

to achieve the same bound on the error. Figure 4.1 depicts the sample size required by

each of these inequalities to establish the same error bound.

From superadditivity, it follows that Φ takes its maximum value when a is the last agent

in the permutation, which occurs in at least (n − 1)!/n! of permutations, and takes its

minimum value when a is the first agent in the permutation, which also occurs in at

least (n− 1)!/n! of permutations. Therefore, the range of Φ (i.e., r) is MC(a, N\{a})−
MC(a, ∅). Moreover, Φ takes its extreme values with the same probability 1/n. Given

this, the maximum possible variance of Φ occurs when half of the rest of the values take

the value of the maximum, φmax, and the other half take the value of the minimum, φmin.

In other words, the maximum variance of Φ is when half of the marginal contributions

are φmin, and half of them are φmax. Let Y be a random variable that represents

this extreme case. Therefore, Y takes φmin and φmax, each with probability 1/2. By

definition, the variance of Y is greater than or equal to the variance of Φ. Therefore, we
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Figure 4.1: Comparison of sample sizes required by different methods for the same
error bound and confidence.

have the following relation regarding σ2:

σ2 ≤ Var(Y ) = E[Y 2]− E[Y ]2 =
(φmax − φmin)2

4

Combining the above with inequality (4.2) yields the second part of inequality (4.4):

σ2

mε2
≤ r2

4mε2
≤ δ ⇒ m ≥ r2

4 δ ε2
. (4.5)

Now, we would like to find δ such that r2/(4 δ ε2) ≤ ln(2/δ) r2/(2 ε2). Simplifying and

then multiplying both sides by δ/2 yields δ/2 × ln(δ/2) ≤ −1/4. With respect to the

definition of the Lambert W function, since eW (z) .W (z) = z, we have:

eln δ
2 . ln(

δ

2
) ≤ −1/4 ⇒ ln

δ

2
≥W (

−1

4
) or W−1(

−1

4
)

Since δ ≤ 1 only the lower branch, i.e., W−1(−1/4) is valid, and thus:

δ ≥ 2 eW−1(−1/4) ≈ 0.232

4.2 Stratified Sampling

As was metioned eariler, SRS does not always yield representative samples, since it dis-

misses any useful information about the population (e.g., how spread the values are),

which could lead to highly different sample mean values with every new sample. The de-

gree to which the sample mean varies with different samples is measured by the standard

error of the mean (SR), which is the standard deviation of the sampling distribution of
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the mean. Given the variability of the sample mean, under SRS, the standard error of

the Shapley value is:

SE(Φ̄SRS) =

√
Var(Φ)

m
=

σ√
m

(4.6)

In contrast to SRS, stratified random sampling potentially results in samples with an

improved standard error over SRS. In this method, the population is stratified into S

mutually exclusive sub-populations (strata), each of which containing Ns elements with

values close to one another. Then, each stratum is sampled independently using SRS.

This way, if the number of elements drawn from each stratum is proportionate to its

size and variance, the sample mean would have a lower variability as compared to SRS.

It has been shown that, given a total sample size, m, the optimal number of elements

that should be drawn from each stratum, m∗s, is given by:

m∗s = m

Ns σ
2
s√

cs
S∑
i=1

Ni σ
2
i√
ci

, (4.7)

where σ2
s is the variance of stratum s, and cs is the computational cost of evaluating an

element in stratum s (Levy and Lemeshow, 2008). This allocation is particularly useful

in some games where the characteristic function has different computational costs for

different coalitions (see Aziz et al. (2014) and Alam et al. (2013) for example). For the

purpose of this thesis, it is assumed that the costs are all equal. This special case is

called Neyman allocation and is given as:

m∗s = m
Ns σ

2
s

S∑
i=1

Ni σ
2
i

(4.8)

Under stratified sampling, the estimated Shapley value, and its standard error are re-

spectively:

Φ̄STR =
S∑
s=1

(
Ns

N

) ms∑
i=1

φi,s , (4.9)

SE(Φ̄STR) =
√

Var(Φ̄STR) =

√√√√ S∑
s=1

(
Ns

N

)2 σ2
s

ms
, (4.10)

where φi,s is the i-th element in stratum s, and ms is the number of elements drawn

from stratum s. Note that ms must be at least 1 for equation (4.10) to hold.

Theorem 4.4. Given the same sample size, the estimated Shapley value under stratified

sampling with Neyman allocation has at most the same standard error as under SRS,
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i.e., SE(Φ̄STR) ≤ SE(Φ̄SRS).

Proof. Intuitively, this theorem holds because the total variance of the sample mean

under stratified sampling is the variance within the strata, plus the variance between

the strata. Unlike SRS, the variance between the strata under stratified sampling could

be zero. Thus, when the strata are heterogeneous between, a higher precision than SRS

is gained. We now provide a formal proof.

First, observe that when the number of strata is exactly one (i.e., S = 1), SE(Φ̄STR)

(equation 4.10) becomes equal to SE(Φ̄SRS) (equation 4.6). For S > 1, the most extreme

case occurs when the variance of all strata are equal to the variance of the population

(they cannot be higher). Therefore, we assume that for any given s, σ2
s = σ2. In what

follows, we show that in that case, the inequality SE(Φ̄STR) ≤ SE(Φ̄SRS) would still

hold. We begin by observing the fact that
∑S

s=1Ns ≤ N , from which it follows:

S∑
s=1

Nsσ
2
s

N
≤ σ2 ⇔

S∑
s=1

Nsσ
2
s

S∑
i=1

Ni

N2
≤ σ2 ⇔

S∑
s=1

Ns

S∑
i=1

Ni σ
2
s

N2m
≤ σ2

m

⇔
S∑
s=1

Ns

N2m

Nsσ
2
s

Nsσ
2
s∑S

i=1Ni σ2
i

≤ σ2

m
⇔

S∑
s=1

Ns

N2

Nsσ
2
s

m
Nsσ

2
s∑S

i=1Ni σ2
i

≤ σ2

m

⇔
S∑
s=1

N2
s σ

2
s

N2m∗s
≤ σ2

m
⇔

√√√√ S∑
s=1

(
Ns

N

)2 σ2
s

m∗s
≤ σ√

m
⇔ SE(Φ̄STR) ≤ SE(Φ̄SRS)

Note that equation (4.8) relies on the variance of each stratum. However, rarely would we

have enough information from a game to determine the variance of the population, not to

mention the variance of each stratum. Fortunately, the range of marginal contributions

can typically be found more readily. Using the range of a random variable, one can find

its maximum variance, since the variance is at most equal to the range squared divided

by 4, i.e., σ2 ≤ r2/4. This is known as Popoviciu’s inequality (Popoviciu, 1935). As

such, one can replace the variance of a stratum in equation (4.8) with r2
s/4, where rs is

the range of stratum s. This way, the sample size of the strata will still be proportional

to their variance, as in the optimal allocation. Therefore, when only the range of the

strata can be identified, the sample sizes can be calculated as:

ms = m
Ns r

2
s∑S

i=1Ni r2
i

(4.11)

Likewise, in equations (4.6) and (4.10), one can replace σ2
s with r2

s/4 to obtain the

maximum possible standard errors.
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It should be noted that while the variance is typically estimated using the sample vari-

ance, doing so requires further sampling of the population, the cost of which would

outweigh the gain. Furthermore, the role of variance in the above allocation is simply to

divide the sample size proportionally. Therefore, the range can serve the purpose well

(Tippett, 1925; Noether, 1955).

Having described stratified sampling for estimating the Shapley value, we now explain

how the population of marginal contributions of an agent can be stratified. It can be

shown that, finding an optimal stratification is at least O (N). However, with that much

computation, one could compute the exact Shapley value. Therefore, an optimal stratifi-

cation is not possible, and instead, heuristics must be used to achieve a computationally

efficient solution. The objective is to divide the population of agent a’s marginal con-

tribution values into a number of mutually exclusive strata, such that the range of each

stratum can be found with little computation. Next, we propose two methods for achiev-

ing this, namely branching stratification, and size-based stratification. Specifically, we

explain these methods in the context of supermodular games and a new class of games

which we define in Subsection 4.2.2.

4.2.1 Branching Stratification

Branching stratification works similarly to a branch and bound algorithm. Consider a

set of agents B = {b1, . . . , bk}, where B ⊆ A\{a}. By iterating through the members

of B (which we refer to as a branching agent), the population can be divided into two

groups in each iteration: those marginal contributions whose corresponding coalition

includes bi, and those whose corresponding coalition excludes bi. Based on this, we

would achieve 2k mutually exclusive strata, each of which corresponding to one subset of

B which is denoted as Bs. For instance, if B = {b1, b2, b3}, the stratum that corresponds

to B6 = {b2, b3} contains those marginal contributions whose corresponding coalitions

contain b2 and b3 but not b1. Now, we need to find the range of each stratum. Let us

observe the following lemma, which exposes a property of supermodular games that can

be exploited to find the ranges.

Lemma 4.5. In a supermodular game, given an arbitrary permutation, O, the marginal

contribution of agent a in O is a lower bound on the marginal contribution of a to any

coalition containing PreOa , and an upper bound on the marginal contribution of a to any

subset of PreOa .

Proof. Let C1 and C2 be two coalitions such that C ⊆ PreOa ⊆ D ⊆ A. By supermodu-

larity, we have: MC(a,C1) ≤MC(a, PreOa ) ≤MC(a,C2)

From Lemma 4.5 it follows that, of all the values in stratum s, the minimum marginal

contribution (i.e., φmins ) is to the coalition that only includes all members ofBs. Likewise,
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the maximum marginal contribution in stratum s (i.e., φmaxs ) is to the largest subset of

A\{a} that includes all agents in Bs, but excludes any branching agent that is not in

Bs. Given these values, we obtain the range of stratum s as rs = φmaxs − φmins .

Note that depending on the information available from the game, it might be possible

to find an optimal set of branching agents such that it results in the most efficient

stratification. Alternatively, one can choose the agents experimentally or randomly.

4.2.2 Size-based Stratification

Size-based stratification divides the population of the marginal contributions based on

the size of their corresponding coalitions, and will always result in n strata. We now

explain how the range of each stratum can be found. In particular, we do so by focusing

on a class of games that have a certain property: all subsets of A can be ordered such

that, if a coalition, C1, is before another coalition of the same size, C2, then the marginal

contribution of any given agent a ∈ A to C1 is greater than, or equal to, its marginal

contribution to C2. Formally, we define a function, F : 2A → R, that assigns to each

coalition a value reflecting its position among other coalitions of the same size according

to the aforementioned ordering. We call this function order-reflecting, and say a game

for which an order-reflecting function exists has the order-reflecting property. Formally,

we define it as:

F(C1) ≥ F(C2)⇔MC(a,C1) ≥MC(a,C2) (4.12)

Now, of all the coalitions in a given stratum, the coalition to which an agent has the

greatest marginal contribution would be the one that maximises F . Similarly, the min-

imal marginal contribution would be given by the coalition that minimises F . More

formally, for a given stratum, s, these coalitions can be found by solving the following

equations:

Cmins = arg min
C:|C|=s−1

F(C), Cmaxs = arg max
C:|C|=s−1

F(C) (4.13)

Then, rs = MC(a,Cmaxs ) − MC(a,Cmins ). Note that Property (4.12) is particularly

useful when equations (4.13) can be solved efficiently (e.g, in linear or constant time).

For instance, if they can be solved in constant time, we can find the ranges of the strata

in linear time. Now, let us examine a few games, for which an order-reflecting function

exists, and equations (4.13) can be solved in constant time for each stratum.

4.2.3 Games with the order-reflecting property

We now examine some supermodular games, for which an order-reflecting function exists,

and equations (4.13) can be solved in constant time for each stratum. Figuers 4.2, 4.3
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and 4.4 depict the outcome of applying size-based stratification to an instance of each

of these game (details of the experiments are provided in Section 4.3).

4.2.3.1 Newsvendor games

Newsvendor games were introduced in Section 3.4, and it was shown that when the

outputs of the DERs were uncorrelated, the game was supermodular. We now show that

under the same assumption, newsvendor games exhibit the order-reflecting property.

Theorem 4.6. In newsvendor games with uncorrelated outputs, an order-reflecting func-

tion is
∑

a∈C Var(Wa).

Proof. Consider two coalitions C1, C2 ⊆ A\{a}, such that |C1| = |C2|.

MC(a,C1) = p

∑
a′∈C1

E[Wa′ ] + E[Wa]

−K√∑
a′∈C1

Var(W ′a) + Var(Wa)

− p
∑
a′∈C1

E[Wa′ ] +K
√∑
a′∈C1

Var(Wa′)

= pE[Wa]−K
(√

Var(WC1) + Var(Wa)−
√

Var(WC1)
)

Similarly, it is trivial to show that:

MC(a,C2) = pE[Wa]−K
(√

Var(WC2) + Var(Wa)−
√

Var(WC2)
)

Now, in order to show that MC(a,C1) ≥MC(a,C2), it is sufficient to prove that:√
Var(WC1)−

√
Var(WC1) + Var(Wa) ≥

√
Var(WC2)−

√
Var(WC2) + Var(Wa)

The only condition under which the inequality above would hold is when
√

Var(WC)−√
Var(WC) + Var(Wa) is monotonic with respect to Var(WC) =

∑
a′∈C Var(Wa′). In-

deed, this was proved in Lemma 3.1. Therefore, in newsvendor games, the function∑
a′∈C Var(Wa′) is oreder-reflecing, i.e.:∑

a′∈C
Var(Wa′) ≥

∑
a′′∈C2

Var(WC′′)⇔MC(a,C1) ≥MC(a,C2)

Theorem 4.7. Assuming that the agents in A are sorted in the ascending order of

the variance of their outputs, the range of the strata in the newsvendor game (A, v)

with uncorrelated outputs can be found in linear time using the order-reflecting function∑
a∈C Var(Wa).
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Proof. Let us assume that the agents in A are sorted such that agent a1 becomes the one

with the smallest variance, agent a2 with the second smallest variance, and so on, i.e.,

Var(Wa1) ≤ Var(Wa2) ≤ · · · ≤ Var(Wn). Equation (4.13) can be solved in constant time

for each stratum. This is because, out of all the coalitions of size 1, the two coalitions

that minimise and maximise F are {a1} and {an}, respectively. Similarly, out of all

the coalitions of size 2, the coalitions that minimise and maximise F are {a1, a2} and

{an−1, an}, respectively, and so on. Thus, given Cmins and Cmaxs , in order to find the

minimum and maximum values of stratum s + 1, we would only need to add one new

agent to each of those two coalitions, yielding a time complexity of O(2) per stratum.

Since under size-based stratification there are exactly n strata, the overall complexity

of finding the ranges will be O(2n).

4.2.3.2 Output sharing games

Consider a group of companies who collectively own a technology that is used to produce

a good, and each company, a, contributes an input, `a ∈ R+, to the production which

is modeled as a function, g, of the inputs. This is known as an output sharing game

(Moulin, 1995; Corchon and Puy, 2000). Given a coalition of companies, C, when g

is a non-decreasing superadditive function of
∑

a∈C `a, the output sharing game (A, g)

exhibits the order-reflecting property. This is because since g is non-decreasing, given any

two coalitions C1 and C2, such that |C1| = |C2|, the inequality MC(a,C1) ≥MC(a,C2)

holds by assumption. Therefore, the function F(C) =
∑

a∈C `a satisfies property (4.12).

Again, to achieve a constant time complexity per stratum, the set of agents, A, must

be sorted in the ascending order of the agents’ inputs. Then, the minimum marginal

contribution in stratum s corresponds to the coalition that consists of the first s agents in

A\{a}. Likewise, the maximum marginal contribution in s corresponds to the coalition

that consists of the last s agents in A\{a}.

4.2.3.3 Airport games

An airport game is concerned with dividing the cost of an airport runway among several

aircraft types, each of which requiring different lengths of the runway (Littlechild and

Owen, 1973). Each aircraft type has a cost, qa ∈ R+, and the value of a coalition is

given as v(C) = maxa∈C qa. It can be easily shown that an order-reflecting function

in airport games is v(C). Furthermore, if the agents in A are sorted in the descending

order of the costs, the range of the strata can be found in constant time, in the same

way as newsvendor and output sharing games.
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Figure 4.2: The range of the strata given by size-based stratification for agent 50 in
the newsvendor game
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Figure 4.3: The range of the strata given by size-based stratification for agent 50 in
the output sharing game
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Figure 4.4: The range of the strata given by size-based stratification for agent 50 in
the airport game
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4.3 Experimental Results

We now evaluate stratified sampling our approach by applying it to instances of newsven-

dor games, output sharing games, and airport games.

First, we consider a newsvendor game consisting of 100 wind power producing DERs

spread across the United States of America, that as a coalition, sell their next day’s worth

of generation ahead of time. We use the Shapley value to fairly divide the total expected

profit of the coalition. To find coalition values, we calculate representative values for

the amount of electricity each producer expects to generate in a day, by using real local

wind speed forecasts at the location of each wind farm, and calculating the mean and

variance of power generation over a day. Based on average spot prices provided by

www.ferc.gov, we assume that the electricity unit price is $42 per MWh, and surplus

electricity is bought from the generators at $21/MWh, and shortfall is penalized at

$84/MWh, which result in a K value of 14.6357.

Second, we consider an output sharing game consisting of 150 agents, with the charac-

teristic function v(C) = (
∑

a∈C `a)
2, where the agent inputs are randomly drawn from

a uniform distribution on [1, 10].

Finally, we consider an airport game with 100 aircraft types, identical to the one used

by Castro et al. (2009) in evaluating their approximation algorithm that uses the CLT

to bound the approximation error. In this game, the costs associated with the aircraft

types are defined as follows:

q = {qa1, qa2, . . . , qa100} ={1, . . . , 1︸ ︷︷ ︸
8 times

, 2, . . . , 2︸ ︷︷ ︸
12 times

, 3, . . . , 3︸ ︷︷ ︸
6 times

, 4, . . . , 4︸ ︷︷ ︸
14 times

, 5, . . . , 5︸ ︷︷ ︸
8 times

, 6, . . . , 6︸ ︷︷ ︸
9 times

, 7, . . . , 7︸ ︷︷ ︸
13 times

,

8, . . . , 8︸ ︷︷ ︸
10 times

, 9, . . . , 9︸ ︷︷ ︸
10 times

, 10, . . . , 10︸ ︷︷ ︸
10 times

}

For each game, we estimate the Shapley value of all agents with a 99% confidence, and

an ε value equal to 1% of the range of each agent’s population range. With these param-

eters, the sample size given by Theorem 4.3 is always 26492. Using this sample size, we

compare the average of maximum standard errors (as discussed in Section 4.2) across

all agents. Specifically, we evaluate three methods: (i) SRS, (ii) branching stratified

sampling with three different sets of branching agents, consisting of 5 consecutive agents

from the beginning, middle, and end of A\{a}, respectively, and (iii) size-based strati-

fied sampling. Furthermore, in each stratified sampling, of the 26492 observations, we

dedicate 2 to each stratum to account for the marginal contributions required to find

the ranges, and then distribute the rest according to equality (4.11).

In Figures 4.5, 4.6 and 4.7 we show the average standard error with sample sizes ranging

from 2 per stratum to 26492. As expected from Theorem 4.4, SRS consistently has a

www.ferc.gov
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Figure 4.5: Comparison of average standard error across all agents in the newsvendor
game
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Figure 4.6: Comparison of average standard error across all agents in the output
sharing game
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Method Newsvendor Output Sharing Airport

Branching 1 9% 1% 16%
Branching 2 53% 3% 97%
Branching 3 77% 6% 97%
Size-based 68% 71% 74%

Table 4.1: Improvement of stratified sampling upon SRS

higher standard error in all games. Also, as can be seen, even with smaller sample sizes

one could obtain a significantly lower standard error using stratified sampling.

To further evaluate our approach, for each stratification method, we calculate the im-

provement percentage as (SE(ΦSRS) − SE(ΦSTR))/SE(ΦSRS), and report the results

in Table 4.1. Each number represents how much lower the standard error of its corre-

sponding method is as compared to SRS. On average, the stratified sampling methods

have a standard error 48% lower than that of SRS.

4.4 Summary

In this chapter, we considered sampling-based approximation of the Shapley value.

Specifically, we addressed the issues with the existing works in the that were high-

lighted in Section 2.2.2, namely erroneous and asymptotic error bounds, as well as

the inefficiency of SRS. To address the former, we proposed an error bound based on

Chebyshev’s and Hoeffding’s inequalities. To address the latter we proposed the use of

stratified sampling, and theoretically proved that it can result in approximations with

potentially smaller standard error due to more efficiently chosen samples. Furthermore,

we proposed two stratification methods, namely branching stratification and size-based

stratification. The former can be readily applied in supermodular games, a large an

important class of games, while the latter can be applied to a class of games that have

the order-reflecting property. We showed that some interesting class of games including

newsvendor games, whose application was extensively discussed in Chapter 3, exhibit

this property. Finally, we experimentally evaluated our stratified sampling approach

and benchmark it against the existing methods in 12 instances of newsvendor, output

sharing, and airport games. The results showed that, on average, the stratified sampling

approaches have a standard error 48% lower than that of SRS.



Chapter 5

The Shapley Value In Games

With Bounded Rational Agents

The idea of bounded rationality in cooperative games was put forward by Sandholm

and Lesser (1997). They investigated a case where agents with finite computational

resources form coalitions whose values are determined by a hard optimisation problem.

Specifically, Sandholm and Lesser showed how the value of a grand coalition of agents

can be distributed among its members such that the coalition remains stable. However,

they did not consider the issue of dividing the this value in a fair way, and this problem

has remained uninvestigated to date.

In order to investigate this issue, this chapter builds upon the bounded rationality model

proposed by Sandholm and Lesser (1997), and extends it to the Shapley value in order to

divide the value of a game with a characteristic function that has a high computational

cost. Recall that the Shapley value is calculated using a formula, the input of which is

the value of all possible coalitions. Here, the focus is on settings where the computa-

tional challenge arises from the hardness of computing the coalition values themselves;

calculating the formula itself is relatively easy in comparison. This is quite the opposite

of the typical computational issues considered in the literature, where the underlying

assumption is that a coalition’s value can be obtained in constant time, and the main

challenge is in calculating Shapley’s formula. In the setting considered here, even a

single coalition value can be hard to compute. As such, approximation methods such as

those in Chapter 4 cannot overcome the computational challenge, and a fundamentally

different approach is needed. Furthermore, approximating the Shapley value would not

necessarily result in a fair division, simply because the approximation would not be equal

to the Shapley value—the unique value satisfying Shapley’s axioms (Theorem 2.28).

The rest of this chapter is organised as follows. Section 5.1 presents the bounded ra-

tionality model and how the Shapley value based on this model can be calculated. In

Section 5.2 an efficient implementation of the Shapley value is presented, where the

57
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value of each coalition is computed only once. Section 5.3 describes a demand response

program as a platform for studying the Shapley value of bounded rational agents in a

real world problem. Section 5.4 summarises the chapter.

5.1 The Shapley Value of Bounded Rational Agents

A common assumption in the literature is that the characteristic function has a negligible

computational cost, e.g., it can be done in constant time. However, in many real world

problems, such as the one considered in Section 5.3, and those considered by Alam et al.

(2013); Aziz et al. (2014), computing the value of a coalition C involves solving a hard

optimisation problem. Henceforth, this will be referred to as the optimisation problem

of coalition C. Since v(C) is hard to compute, it will be referred to v(C) as the rational

value (rather than simply the value) of C. The corresponding bounded rational game

of (A, v) is a new game, denoted by (A, vBR), where vBR(C) is the best solution to the

optimisation problem of C that is obtained given the available computational resources.

Moreover, vBR(C) will be referred to as the bounded rational value of coalition C.

Under the full rationality assumption, the rational value of every coalition is known,

and thus, the value of the game can be fairly divided using the Shapley value. However,

with bounded rational agents, the rational values of the coalitions are unknown, and it

is not immediately clear how a fair division of the value of the game can be obtained.

One way to deal with this issue is proposed next.

Let us assume that it is possible to find a suboptimal solution to the optimisation

problem of every coalition in reasonable time (i.e., the bounded rational value), and

that the value of the coalitions are computed using the same hardware. Furthermore,

in order to treat all agents indiscriminately, assume that the algorithm whereby the

coalition values are found is the same for all coalitions.

Proposition 5.1. Given a game, (A, v), by allocating to each agent its Shapley value of

the corresponding bounded rational game, (A, vBR), one would obtain a payoff division

that is fair in the following sense: (i) it fairly rewards each agent for its contribution to

v(A), and (ii) fairly penalises each agent for its contribution to reducing v(A) to vBR(A).

To better understand the intuition behind Proposition 5.1, some additional notation

are needed. Denote by SV (a, v), the Shapley value of agent a that is calculated using

a characteristic function v. Furthermore, for every C ⊆ A, let vRD(C) denote the

rationality discrepancy of coalition C, defined as the difference between the rational and

bounded rational values of C. More formally,

vRD(C) = v(C)− vBR(C). (5.1)
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The rationality discrepancy of C can be viewed as the payoff that C loses due to its

members’ lack of full rationality. Clearly, the more rational a coalition’s members are

(i.e., more computational resources are used to compute its value), the smaller its ratio-

nality discrepancy is. As such, if the members of C were fully rational, they would be

able to diminish their loses completely, i.e., we would have: vRD(C) = 0.

Observe that the game (A, v) is the sum of the games (A, vBR) and (A, vRD) (see equa-

tion (5.1)). Therefore, based on the additivity axiom of the Shapley value (defined in

Section 2.2), the following holds:

SV (a, vBR) = SV (a, v)− SV (a, vRD). (5.2)

Note that, by assumption, neither SV (a, v) nor SV (a, vRD) can be computed. However,

SV (a, vBR), which indeed can be computed, is agent a’s fair share of the value of the

game (i.e, v(A)) combined with its fair share of the loss in value due to the agents’

bounded rationality (i.e., vRD(A)).

5.2 An Efficient Implementation of the Shapley Value

Calculating the Shapley value of all agents using the standard formula, i.e., equa-

tion (2.2), requires computing the value of each coalition multiple times. This is be-

cause for each C ⊆ A, the value of C, i.e., v(C), is used in calculating the marginal

contribution of all agents that are not members of C. This is not an issue in games

where the characteristic function does not have considerable computational complexity.

However, given the bounded rationality assumption, computing v(C) more than once is

highly costly. One trivial way to overcome this issue is to store all coalition values in

memory. Clearly, however, doing so requires exponential memory space. Alternatively,

one can compute the values of all coalitions one at a time and, for each value, update all

marginal contributions of all agents that require that value. This ensures that the value

of any given coalition is computed exactly once. What follows explains this process in

more detail.

First, observe that calculating the marginal contribution of agent a to a coalition, D,

requires the following two terms: v(D∪{a}) and v(D), which represent the value of the

coalition with and without the agent, respectively. More formally:

MC(a,D) = v(D ∪ {a})− v(D). (5.3)

Now, for each C ⊆ A, one can use v(C) to calculate the marginal contributions of two

groups of agents:
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• For all a ∈ C, v(C) can be taken as the value of a coalition with the agent, i.e.,

the v(D ∪ {a}) in equation (5.3);

• For all a ∈ A\C, v(C) can be taken as the value of a coalition without the agent,

i.e., the v(D) term in equation (5.3).

Furthermore, recall that the Shapley value in equation (2.2) is a weighted sum of

marginal contribution. Let the weight of the marginal contribution of an agent to a

coalition D be denoted by ω(|D|). Formally, this weight is given as:

ω(|D|) =
|D|! (n− |D| − 1)!

n!

Multiplying each term of the marginal contribution terms by its corresponding weight

yields ω(|D|) v(D ∪ {a}) and −ω(|D|) v(D). Therefore, to calculate the Shapley value,

we can sum all coalition values multiplied by their corresponding weight just as in

equation (2.2):

• For every non-empty coalition C ⊂ A, v(C) is multiplied by ω(|C| − 1) for every

a ∈ A\C, and multiplied by −ω(|C|) for every a ∈ C, v(C).

• For C = ∅, v(C), which only represents the value of a coalition without the agent,

is multiplied by −ω(0).

• For C = A, v(C), which only represents the value of a coalition with the agent, is

multiplied by ω(n− 1).

The pseudocode of this process is presented in Algorithm 1.

Algorithm 1 Implementation of the Shapley Value which computes every coalition
value exactly once

function ShapleyValue(A, v)
SV ← [ ];
∀a ∈ C, SV (a)← 0;
for all C ⊆ A do
coefficientWhenAgentIsIn← ω(max(|C| − 1, 0));
coefficientWhenAgentIsOut← −ω(min(|C|, |A| − 1));
for all a ∈ A do

if a ∈ C then
SV (a)← SV (a) + (coefficientWhenAgentIsIn× v(C));

else
SV (a)← SV (a) + (coefficientWhenAgentIsOut× v(C));

end if
end for

end for
return SV
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5.3 Cooling Load Demand Response Program

Having described the bounded rational Shapley value proposition, this section illustrates

how this can be applied in a real world problem. The context that is chosen for this

purpose is the problem of dividing a discount that a group of apartments in a block

obtain by ensuring that their aggregate load from cooling always remains below a certain

threshold. In more detail, the apartments coordinate the periods during which their

air conditioners (AC) are tuned on. The goal of this coordination is to satisfy the

temperature preferences of each apartment, while ensuring that the aggregate load does

not exceed a certain predetermined limit. Using a thermal model of an apartment to

model the evolution of internal temperature over time, this problem is formulated as a

binary integer program. Due to the substantial time required to compute the optimal

load of even a single coalition, it is not possible to use the Shapley value to fairly divide

the total discounted cost that the group is charged. Instead, one should use the bounded

rational Shapley value as a fair division of the cost.

The rest of this section formalises the problem, describes the thermal model of an apart-

ment, and presents the algorithms required to compute the bounded rational values of

coalitions. Finally, the experimental results show how the bounded rational Shapley

value can divide the discounted costs.

5.3.1 The Discount Scheme

Consider a set of n apartments in a block, A. Denote by lta the cooling load of apartment

a at time t (measured in kW), and denote by p the price at which every kWh is charged.

In order to encourage consumers to use less energy for air conditioning, which consti-

tutes a significant amount of the domestic load in warm-climate countries (McNeil and

Letschert, 2008; Hsu and Su, 1991), the electricity supplier offers a discount to the block.

Specifically, each apartment is offered a binary option of signing up to the scheme or

not. Let K = {1, . . . , k} represent an entire day divided into k equal-length time slots,

and la = [l1al
2
a . . . l

k
a] represent the vector of cooling loads of apartment a in all time slots

in K. If at any point in time throughout the day, the cooling load of the block is not

more than ψ kW, i.e., ∀t ∈ K;
∑

a∈A l
t
a ≤ ψ, then those apartments that have signed up

are charged at d < p per kWh of usage, and the rest are charged at p per kWh. The

cooling load of apartment a at time t is:

lta = Pa × ηta, (5.4)

where Pa is the electric power of the AC (in kW), and ηta ∈ {0, 1} represents a cooling

action, which is a binary variable that indicates whether or not air conditioning has

been used at time t.
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Since the discount is offered only when the whole block’s load is below ψ, the price at

which a coalition C ⊆ A is charged is influenced by the behaviour of the apartments

that are not members of the coalition, i.e., A\C. In other words, the value of a coalition

is influenced by the load of other apartments outside that coalition. If these apartments

could form other coalitions, then it would be a game with externalities (also known as a

partition function game), which is a game where the value of a coalition depends on how

other agents are structured (Thrall and Lucas, 1963). However, since in the discount

scheme, the agents that do not sign up cannot form any other coalitions, this is a special

case of externalities where the agents outside the coalition can only be structured as

singletons, and thus, the game is reduced to a characteristic function game.

Naturally, each apartment, whether signed up to the scheme or not, would want to

optimise its use of the AC such that its internal temperature preferences are satisfied

with minimal electricity consumption. In order to secure the discount, those apartments

that sign up need to coordinate their loads so that the aggregate load of the block will

be kept below the threshold and their internal temperatures remain as they individually

deem comfortable. Clearly, if an apartment decides not to sign up to the scheme, and

desires to optimise its load, it can only do so independently, without any coordination

with other apartments.

Assuming that some of the n apartments form a coalition, C, and sign up to the scheme,

the aggregate cooling load of all n apartments (in kW) at time t is given by:

ltA = l∗tC +
∑

a∈A\C

l∗ta ,

where l∗tC represents the aggregate optimal cooling load at time t of the apartments that

have signed up, and l∗ta represents the optimal cooling of apartment a at time t which

has not signed up to the scheme.

Note that a coalition can meet the threshold only by running its members’ ACs for

longer periods (mostly during the off-peak times). This is because when an apartment

has to avoid running its AC during its comfort period, it has to run the AC earlier to

cool down the apartment enough so that at the start of the comfort period (when the

AC is off) the internal temperature equilibrates the set-point. Therefore, meeting the

threshold requires extra consumption of electricity, which increases the cost. As such,

an outcome of collective optimisation of loads is desirable unless the extra consumption

is so high that the discounted cost becomes higher than the normal cost. Consequently,

if the discounted cost turns out to be higher, or if a feasible solution to the collective

optimisation cannot be found, then the apartments optimise their loads independently.

Based on this, the optimal consumption of a coalition (measured in kWh) can be written
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as:

c(C) =



∑
t∈K

l∗tC ×∆t
∑
t∈K

l∗tC ∆t f ≤
∑
a∈C

∑
t∈K

l∗ta p

∑
a∈C

∑
t∈K

l∗ta ×∆t
∑
t∈K

l∗tC ∆t f >
∑
a∈C

∑
t∈K

l∗ta p

, (5.5)

where ∆t is the duration of a time slot (in seconds). Based on the above consumption

function, we now define the characteristic function, v, of the cooperative game (A, v)

that represents the above discount scheme. In more detail, v(C) is equal to the total

cost of consumption of its members. More formally, v(c) is given by:

v(C) = c(C)×

d ∀t ∈ K ; ltA ≤ ψ

p ∀t ∈ K ; ltA > ψ
(5.6)

With respect to the above characteristic function and the binary choice that the apart-

ments are offered in the scheme, it is clear that it would be in the interest of each

apartment to sign up and benefit from the potential discount, because each apartment

will not be worse off by joining the grand coalition.

The next subsection explains how the cooling load of each apartment can be optimised

such that the temperature preferences of the apartments are satisfied while minimising

consumption. First, a formal model of thermal dynamics of an apartment is presented,

which governs the evolution of the apartments’ internal temperature.

5.3.2 Thermal Dynamics of An Apartment

We use a standard thermal model in which heat is assumed to enter an apartment (by

thermal conduction and ventilation) at a rate that is proportional to the temperature

difference between the cold air inside and the hot air outside (Y. Guo and Zeman, 2008;

Rogers et al., 2011; Andersen et al., 2000). This model also incorporates the thermal

capacity of the building structure, since through experimentation on real data collected

from apartments in Jeddah, Saudi Arabia it was found that this model best explains

the observed data. This thermal model is represented as a set of coupled difference

equations as per:

T t+1
int = T tint − rηt∆t+ τ∆t

(
T tenv − T tint

)
(5.7)

T t+1
env = T tenv + ρ∆t

(
T tint − T tenv

)
+ γ∆t

(
T text − T tenv

)
,

where T tint ∈ R+ denotes the internal temperature (measured in ◦C) of apartment a

at time t, T tenv ∈ R+ denotes the temperature of the building structure, or envelope,

(measured in ◦C), and T text ∈ R+ denotes external temperature (measured in ◦C). As-

sume that T text is the same for all apartments in A. Moreover, r (measured in ◦C/hr)
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represents the rate at which the AC reduces the internal temperature, and τ, ρ and γ

(measured in 1/hr) are the rates of leakage from the envelope to the inside, from the

inside to the envelope, and from the outside to the envelope, respectively. Henceforth,

notations are indexed by the name of the agents.

Equation (5.7) is the discrete equivalent to a set of coupled differential equations which

has been used previously to model data collected from real buildings (Bacher and Mad-

sen, 2011). In this model, an envelope is introduced to act as an additional thermal mass

to minimise temperature deviations inside the apartment due to extremes of temperature

outside. Given historical observations of internal, T tint, and external, T text, temperatures

and the times during which the AC was on (which were collected from a number of

apartments in Jeddah, Saudi Arabia) the evolution of the internal temperature, T
t
int,

was predicted. The error in this prediction is given by
∑

t∈K

(
T
t
int − T tint

)2
. Conse-

quently, the best estimates of the parameters are those that minimise this error and can

subsequently be learned through recursive least squares (LSQ) (Simon, 2006).

5.3.3 Comfort Model

What follows outlines a few assumptions that underpin the operation of the cooling

system in an apartment. Each apartment is assumed to have a central air conditioning

driven by a heat pump that transfers heat from a lower temperature heat source (the

apartment) into a higher temperature heat sink (external ambient air). This system

is connected to a thermostat within the apartment, where a user can set a desired

temperature to be maintained, i.e., the set-point temperature, which is denoted as Tset

(◦C).

The user in each apartment can specify the time interval during which he or she desires

“comfort”. That is, the time slots when the user wants the internal temperature to be

maintained at, or close to, Tset. This interval is referred to as the comfort period, and

define it as: H = {t ∈ K| CST ≤ t ≤ CET}, where CST ∈ K and CET ∈ K are the

comfort start time and comfort end time, respectively. A tolerance level is specified by

the user to limit deviations of the internal temperature from the set-point temperature,

during the comfort period. Let this tolerance be denoted by θ ∈ R+ (◦C). Furthermore,

the AC in each apartment ensures that the average internal temperature during the

comfort period is at most Ω ∈ R+ (◦C) different from the set-point temperature. This

will ensure that the internal temperature during the comfort period is on average close

to Tset. Note that Ω is a parameter of the model, which is equal for all apartments,

and is not set by users. However, Tset and θ are determined individually by each user.

Lower values of Tset suggest that a user feels more comfortable at lower temperatures.

Similarly, smaller values of θ indicate that a user is sensitive to large deviations in the

internal temperature from the set-point.
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Figure 5.1: Understanding the impact of Tset=21◦C.

Intrinsically, the above preferences have an impact on the cooling load (equation (5.4)).

As Tset is gradually lowered, the amount of cooling required increases proportionately to

achieve lower temperatures. Figures 5.1 and 5.2 show the internal temperature profile

in an apartment when Tset equals 21◦C and 23◦C, respectively. The bottom sub-plots

in these figures show the cooling actions over the course of a day. It is clear that more

cooling is required in Figure 5.1 compared to Figure 5.2. The total time when the AC

is on is 52% less when Tset equals 23◦C, as opposed to when Tset equals 21◦C.

Similarly, when θ is small, a user is more sensitive to deviations of the internal tem-

perature from Tset. Consequently, the AC is turned on for longer to ensure that the

deviation of the internal temperature from Tset lies within the tolerance level, resulting

in higher energy consumption. This is clearly shown in Figures 5.1 and 5.2, where the

θ is set to 0.5◦C and 1◦C, respectively. The bottom sub-plots in these figures show the

cooling actions over the course of a day. As can be seen in Figures 5.3 and 5.4, more

cooling is required for a larger θ. The total time when the AC is on is 12% less when θ

is set to 1.5◦C compared to when θ is set to 0.6◦C.

As per equation (5.7), an apartment that is well-insulated will have a small value of γ.

In contrast, a leaky apartment will have a high value of γ. This is of interest as more

cooling is required to maintain a leaky apartment at a certain temperature. The effect

of varying values of γ are shown in Figures 5.5 and 5.6. The value of γ used to generate

Figures 5.5 and 5.6 are 0.36 1/hr and 0.48 1/hr, respectively. Consequently, the total
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Figure 5.2: Understanding the impact of Tset=23◦C.
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Figure 5.3: Plotting the effect of θ=0.6◦C, represented as a band around the set-point
temperature in the top sub-plot, on the thermal dynamics.
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Figure 5.4: Plotting the effect of θ=1.5◦C, represented as a band around the set-point
temperature in the top sub-plot, on the thermal dynamics.

amount of time when the AC is on, as shown in the bottom sub-plots, is 24% more in

Figure 5.6, when compared with Figure 5.5.

5.3.4 Independent Optimisation of Loads

Having introduced the model for thermal dynamics of an apartment, this subsection

describes how an apartment optimises its use of the AC so as to satisfy only its own

comfort preferences. In summary, as described in Subsection 5.3.3, the preferences of an

apartment are: (i) the desired set-point temperature, denoted by Tset, (ii) a tolerance

level on the deviation of the internal temperature from the set-point, denoted by θ ∈ R+,

and (iii) the comfort start time (CST ) and comfort end time (CET ) which determine

H—the set of time slots representing the comfort period. Based on these, an optimal

cooling plan for apartment a is defined to be a vector of cooling actions [η1η2 . . . ηk],

that result in meeting the above preferences as well as the following requirements: (i)

the overall energy consumption is minimised, i.e., all constraints are satisfied with the

AC running in as few time slots as possible, (ii) the deviation of the average internal

temperature from the set-point temperature during the comfort period is limited by

Ω ∈ R+, to ensure that the internal temperature in this period stays close to the set-point

temperature, not the highest acceptable temperature, (iii) the internal and envelope

temperatures at the start and end of the day converge. Note that the last requirement

is to ensure that the cooling plan is optimised over an infinite horizon, which prevents
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Figure 5.5: Plotting the effect of γ = 0.36 1/hr on the thermal dynamics.
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Figure 5.6: Plotting the effect of γ=0.48 1/hr on the thermal dynamics.
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erroneous solutions that minimise AC use in the short term, but require additional

cooling later, as would be the case if a finite planning horizon were used. Given the above

preferences and requirements, the optimal cooling load of an apartment throughout the

day can be computed as per equation (5.4) using η1, η2, . . . , ηk found by solving the

following optimisation problem:

minimise
∑
t∈K

ηt

subject to

∣∣∣∣∣
∑

h∈H T
h
int

|H|
− Tset

∣∣∣∣∣ ≤ Ω,

∀h ∈ H, |T hint − Tset| ≤ θ,

T 1
int = T kint,

T 1
env = T kenv.

(5.8)

Observe that the above formulation avoids the explicit trade-off between consumption

and comfort within a single objective function, which is dependent on specifying appro-

priate weights for both objectives. This is because, in practice, there is no principled

way to specify such weights (Aswani et al., 2012).

5.3.5 Collective Optimisation of Loads

This subsection describes how a coalition of apartments, C, collectively optimise their

cooling loads. Similar to the single apartment case, the user in each apartment in

C specifies their individual cooling preferences. These include their desired set-point

temperature, Tset[a], their tolerance on the deviation of the internal temperature during

the comfort period, θa, and their comfort start and end times which determine Ha.

Again, we ensure that in finding the optimal cooling plan of the coalition the following

requirements are also met: (i) the overall energy consumption of each apartment should

be minimised, (ii) the deviation of the average internal temperature of each apartment

from its set-point temperature during the comfort period is not more than Ω◦C, (iii) the

internal and envelope temperatures at the start and end of the day in each apartment

converge. Additionally, we introduce a key constraint, which ensures that at all times,

the total load of all apartments in the coalition, plus the total load of the apartments

who optimise their loads independently, is less than or equal to ψ. More formally, the

vector of optimal cooling actions, [η1
aη

2
a . . . η

k
a ], for every apartment a ∈ C is given by
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the following optimisation problem:

∀a ∈ C minimise
∑
t∈K

ηta subject to:∣∣∣∣∣
∑

h∈Ha T
h
int(k)

|Ha|
− Tset[a]

∣∣∣∣∣ ≤ Ω,

T 1
int[a] = T kint[a],

T 1
env[a] = T kenv[a],

∀h ∈ H |T hint[a]− Tset[a]| ≤ θa,

∀t ∈ K ltA =
∑
a∈C

Pa η
t
a +

∑
a′∈A\C

l∗ta′ ≤ ψ.

(5.9)

Note that if a feasible solution to the above optimisation does not exist, then the apart-

ments optimise their loads individually as per equation (5.8). Furthermore, note that it

is possible for an individual apartment within C to have a significant impact on the fea-

sibility of C satisfying the constraint on the aggregate load. For instance, if Tset[a] is set

to a particularly low temperature, or θa is particularly small, the corresponding energy

consumption in that apartment will be greater, which in turn increases the likelihood of

the aggregate load exceeding the threshold. As the individual apartments become more

flexible and less stringent with their preferences, the aggregate cooling load, ltA, is more

likely to satisfy the constraint on the threshold.

5.3.6 Example

Having established the theoretical underpinnings of how cooling loads are independently

and collectively optimised, this subsection illustrates how they work in practice through a

simple example. Consider a 3-agent game (A = {1, 2, 3}), where apartments are located

in the same block, and all three agree to participate in the discount scheme. Apartment 1

desires that the temperature be maintained at 21◦C (Tset[1] = 21◦C) for 6 hours from

CST = 10 : 00 to CET = 16 : 00, and is satisfied with wide swings of temperature

(θ1 = 1.5◦C). Apartment 2 desires the temperature to be at 22◦C (Tset[1] = 22◦C) for

8 hours from CST = 09 : 00 to CET = 17 : 00, and has very strict preferences over

temperature (θ2 = 0.5◦C). Apartmentlat 3 too desires the temperature to be at 21◦C

(Tset[3] = 21◦C) for 6 hours from CST = 10 : 00 to CET = 16 : 00, and is satisfied with

wide swings of temperature (θ1 = 1.5◦C).

The AC in each apartment operates on a 10-minute cycle, i.e., a cooling decision is

made for each 10-minute interval in a day (∆t = 600s). As a result, K = [1, . . . , 144]

and the decision variable is ηta,∀t ∈ K. The ACs in all apartments are similar and

consume at a rate of 3 kW when on, i.e. Pa = 3 kW. Consequently, when the AC is

on for a an hour the energy consumed is 3 kWh. Hence, the total possible energy load
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Figure 5.7: The temperature profiles (in the left column) and the cooling profiles
(right column) for each apartment when they optimise their cooling loads individually.

of all three apartments if they optimise their apartments independently is 9 kW. Now,

when the apartments participate in the scheme, a threshold at 3 kW (representing a 2/3

reduction), is set on their total load.

Let us first consider the case where all 3 apartments optimise their cooling loads inde-

pendently. The plots in the second column of Figure 5.7 show the individual cooling

profiles within each apartment for a single day. Each profile is obtained by solving the

optimisation problem in equation (5.8) using CPLEX, to yield ηta (∀t ∈ K). Also shown

in the first column of Figure 5.8 are the corresponding internal temperature profiles,

which are estimated by iterating equation (5.7) for each apartment, using the cooling

actions, ηta as inputs. It is evident from the plot that the internal temperature is, on

average, maintained close to the desired set-point temperatures at times when a user

desires cooling in each apartment. Also, the deviation from the set-point temperature

is greater in in Apartment 1 and Apartment 2, as they are less sensitive to large swings

in temperature. Finally, the optimisation ensures that the temperature at the start and

end of each day is the same, as required.

Now consider the case where all 3 apartments form a coalition and collectively optimise

their loads to ensure that their aggregate load does not exceed the threshold during

the course of a day. The plots in the second column of Figure 5.8 show the cooling
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Figure 5.8: The temperature profiles (in the left column) and the cooling profiles
(right column) for each apartment, when they optimise their cooling loads collectively.

profiles within each apartment for a single day. Each profile is obtained by solving the

optimisation problem in equation (5.9) using CPLEX, to yield ηta (∀t ∈ K), which in

turn generate a temperature profile based on the thermal model as per equation (5.7).

More importantly, as shown in Figure 5.9, collective optimisation of the loads results

in the aggregate load never exceeding the threshold. In contrast, when the apartments

independently optimise their cooling loads, as shown in Figure 5.9, the aggregate load

does exceed the threshold. Thus, the apartments can receive the discount.

Since optimising the loads of the three apartments is tractable (optimising the grand

coalition takes approximately 4 minutes), the total cost of the apartments can be divided

based on the true Shapley value (as opposed to the bounded rational value). Assume

that the electricity cost is £0.15 per kWh in the case when agents optimise their cooling

loads independently. Now, as per the discount scheme, if they ensure that their aggregate

load does not exceed 3 kW, then the electricity cost will be reduced to £0.06 per kWh.

The payment of the apartments in this example, according to the Shapley value, is
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Figure 5.9: Total load when apartments optimise their cooling loads individually and
collectively.

calculated as follows:

φ[1, v] =
1× 5.85

3
− 1× 1.17

6
− 1× 1.35

6
+

1× 2.34

3
= £2.31

φ[2, v] =
1× 5.85

3
− 1× 1.17

6
− 1× 1.17

6
+

1× 2.52

3
= £2.40

φ[1, v] =
1× 5.85

3
− 1× 1.17

6
− 1× 1.35

6
+

1× 2.34

3
= £2.31

Coalition (C) Threshold Cost Independent Apartments (A\C) Cost

{} Not Satisfied £0 {1},{2},{3} £17.55
{1} Not Satisfied £5.85 {2}, {3} £11.70
{2} Not Satisfied £5.85 {1}, {3} £11.70
{3} Not Satisfied £5.85 {1}, {2} £11.70
{1, 2} Satisfied £4.68 {3} £5.85
{1, 3} Satisfied £4.50 {2} £5.85
{2, 3} Satisfied £4.68 {1} £5.85
{1,2,3} Satisfied £7.02 {} £0

Table 5.1: Example showing the cost of coalitions when members optimise their loads
collectively and independently.

Apartment 1 is charged £2.31, Apartment 2 is charged £2.40, and Apartment 3 is

charged £2.31. When optimised collectively to keep the aggregate load below the thresh-

old, Apartment 2’s preferences are so strict that a somewhat small change is only pos-

sible. However, Apartment 1 and Apartment 3 are able to shift their cooling loads to

satisfy their preferences as well as the threshold constraint, but to do so, they have to

run their AC earlier and longer. Interestingly, as can be seen in Table 5.2, although all
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Apartment Payment in the Scheme Payment Outside the Scheme

1 £2.31 £5.85
2 £2.40 £5.85
3 £2.31 £5.85

Total £7.02 £17.55

Table 5.2: The comparison of the amount that the apartments would pay if they
participated in the scheme or not.

apartments would incur the same cost if they did not participate in the scheme, Apart-

ment 2’s share of the discount is slightly less than that of the other two apartments. This

is due to its stricter preferences that are harder to satisfy in the collective optimisation.

Also note that the optimal loads of Apartment 1 and Apartment 3, who have identical

preferences, are the same, hence their Shapley values are equal.

5.3.7 Computationally Efficient Optimisation of Apartments

In the previous subsection, optimising the apartments in the simple case of 3 agents

did not require a considerable amount of computation, and calculating the Shapley

value was easy. However, as more apartments are added to the game, satisfying the

constraints takes more and more time. Considering the fact that, in calculating the

Shapley value, an exponential number of coalitions need to be optimised, even using

the efficient implementation of Algorithm 1, the time it takes to calculate the share of

only a few agents can be very long. For instance, using IBM ILOG CPLEX, computing

the value of even a single coalition of size 5, i.e., computing the optimal load of a

coalition of 5 apartments as per equation (5.9), takes approximately 5 minutes on a

typical desktop computer. In order to overcome this issue, this subsection presents

two greedy algorithms, namely, iOPT and cOPT, for optimising the cooling load of the

apartments independently and collectively. Due to the difficulty of finding the optimal

solutions in reasonable time, these algorithms trade off optimality for computation speed.

Thus, a feasible cooling plan given by these algorithms are considered to be the best

solution that can be found given the limited computational resources, and as such, such

a solution will be called best-found. Clearly, these solutions may or may not coincide

with the actual optimal solution.

First, the workings of iOPT will be explained, the pseudocode of which is presented is

in Algorithm 2.

Using a heuristic, iOPT searches for a set of cooling actions that satisfy the constraints of

an individual apartment as per equation (5.8). This heuristic, called the discomfort of an

apartment, represents the discrepancy between an apartment’s preferences (as outlined

in Subsection 5.3.3) and the temperature profile resulting from a cooling plan found by
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Algorithm 2 Greedy Algorithm For Optimising Apartments Independently

function iOPT(Tset, θ, Ω, Text, Λ, maxIterations)

η ← [ ]
for iteration = 1 to maxIterations do
bestT ime← −1
minDiscomfort←∞
avgTemp← 0
maxDeviation← 0
for t = 0 to k do

if t ∈ Λ then
continue

end if
ηtest ← η
ηttest ← 1
∀t ∈ K update Tint[test] and Tenv[test] as per equation (5.7) based on ηtest
Calculate ∆Dtest

if ∆Dtest < minDiscomfort then
bestT imeToSwitchOn← t
minDiscomfort← ∆Dtest

end if
end for
if bestT ime > −1 then
ηbestT ime ← 1
update Tenv
update Tint

end if
end for

return (avgTemp− Tset) ≤ Ω ∧ (maxDeviation ≤ θ)

the algorithm. More formally, the discomfort of apartment a, denoted by ∆Da, is the

largest deviation of the internal temperature from the set-point temperature during the

comfort period, plus the deviation of the average internal temperature from the set-point

during the comfort period. This is given as:

∆Da =

(∑
h∈H T

h
int[a]

|Ha|
− Tset[a]

)
+ max

h∈H
(T hint[a]− Tset[a]) (5.10)

The algorithm incrementally finds the time slots where switching the AC on results in the

largest discomfort reduction. Initially, the AC is off in all time slots (i.e., ∀t ∈ K, ηta =

0), and is then switched on only if it results in a reduction of the discomfort. This

way, in addition to searching for a feasible solution, the consumption is also minimised

(as required in the optimisation problem in equation (5.8)). However, as soon as the

constraints of the apartment are satisfied, the algorithm will not seek to minimise the

consumption further. Furthermore, recall that one of the constraints in equation (5.8)

is that the internal and envelope temperatures at the start and end of the day should
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Algorithm 3 Algorithm For Optimising Apartments Collectively

function cOPT(C, A, ψ, Tset, θ, Ω, Text, maxIterations)
for all a ∈ A do

iOPT(Tset[a], θa, Ω, Text, ∅, maxIterations)
end for
if ∀t ∈ K ltA ≤ ψ then

return true
end if
Sort C based on θa/|Ha|
for all a ∈ C do

Λ← FindCongestedT imeSlots()
successfullyOptimised← iOPT(Tset[a], θa, Ω, Text, Λ, maxIterations)
if successfullyOptimised then

if ∀t ∈ K ltA ≤ ψ then
return true

end if
else

iOPT(Tset[a], θa, Ω, Text, ∅, maxIterations)
end if

end for
return false

converge (i.e., T 1
int = T kint and T 1

env = T kenv). In order to ensure this, one can run

Algorithm 2 repeatedly, and in each iteration calculate T 1
int based on T kint from the

previous iteration. It was found through experiments that, this way, no more than 4

iterations are typically needed for the internal and envelope temperatures at the end

of the day to be within 0.1◦C of the start of the day. Moreover, since iOPT may not

always find a feasible solution, the algorithm terminates after maxIterations iterations.

Lastly, iOPT takes a set Λ as input, which, as we explain later, is used in the collective

optimisation to indicate the time slots in which a member of the coalition should avoid

running its AC. However, when an apartment is optimised independently, this set is

empty.

If iOPT finds a feasible solution for apartment a, it gives a vector of ηta values, based

on which we calculate the best-found cooling load of the apartment as an independent

apartment. This load is then used to calculate the consumption of apartment a as per

equation (5.5), based on which we obtain the bounded rational value of the singleton

{a}, i.e., vBR({a}). Next, we describe the workings of cOPT, which optimises the

cooling load of the members of a coalition. The pseudocode for this algorithm is given

in Algorithm 3.

Given a coalition, all members are first independently optimised using iOPT. If by doing

so the constraints of all apartments, as well as the threshold constraint are already

satisfied, then the best-found cooling plan of the members of the coalition, in this case,

is the same as when the apartments optimise their loads independently. However, if the

threshold is not satisfied, it means that at least in one time slots there is congestion, i.e.,

the aggregate load is higher than the threshold. Denote the set of congested time slots

by Λ, which is formally defined as: {t ∈ K|ltA ≥ ψ}. The objective of the algorithm is
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to decongest these time slots by re-optimising1 the apartments such that they do not

run their ACs in these time slots. Obviously, those members of the coalition that are

stringent with their temperature preferences may not be able to avoid the congested

time slots. As such, the algorithm performs decongestion with respect to the flexibility

of the load of the apartments. The idea is that the more flexible an apartment is, the

more likely it can satisfy its constraints without having to run its AC in the congested

time slots. Observe that the longer the comfort period is, the more cooling an apartment

needs. Furthermore, as was seen in Figures 5.3 and 5.4, the higher the tolerance on the

set-point temperature of an apartment is, the less cooling it requires, and thus, it can be

considered more flexible than an apartment that has a lower tolerance. Based on these

observations, cOPT uses the following ratio as a heuristic to determine the severity of

the preferences of the apartments relative to one another:

θa
Pa × |Ha|

(5.11)

Using the above heuristic, the algorithm sorts the apartments in the coalition in as-

cending order, so that the least flexible apartment is dealt with first. Next, given a

set of congested time slots, the apartments are iteratively re-optimised using iOPT. In

each iteration, the set of congested time slots, Λ, is computed anew. If Λ is not empty

(i.e, the threshold constraint has not been satisfied yet), iOPT will be called again to

optimise the apartment in the current iteration such that it does not run its AC in the

congested time slots. If the constraints of the apartment are successfully satisfied this

way, the algorithm moves on to the next apartment, and repeats this procedure until

the threshold is satisfied or all apartments have been re-optimised. In any iteration,

if the constraints of the apartment is not successfully satisfied, its best-found cooling

plan (as a member of the coalition) will be the same as its independently optimised

one. Similarly, if the threshold constraint is not satisfied at the end of the process, the

best-found cooling plan of each apartment will be its independently optimised plan.

The above process can potentially result in an incremental reduction of the congestions,

until the threshold is eventually satisfied. The effect of this collective optimisation on

the individual apartments is that those apartments that are more flexible turn out to

lower their internal temperature far ahead of their comfort period, so that they will not

have to run their AC in the congested time slots. Note that if the algorithm fails to find a

feasible solution, joining the grand coalition will not make the apartments worse off, since

their best-found cooling plan will be the same as when they are independent. Therefore,

although a solution given by cOPT algorithm may not be optimal, all apartments can

still sign up to the discount scheme. The best-found cooling plan given by cOPT can

then be used to compute the bounded rational value of a coalition C, i.e., vBR(C).

1By re-optimising an apartment given a set of congested time slots it shall be meant that after all
apartments are initially independently optimised, the apartment is again optimised using iOPT, such
that its AC is not turned on in any of the congested time slots.
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5.3.8 Efficient Calculation of the Shapley Value Using DP

Recall from Subsection 5.3.1 that the value of a coalition is given by the sum of the

consumption of its members. Therefore, once the best-found cooling plan of a coalition

is obtained, the bounded rational value of the coalition can be calculated using equa-

tion (5.6). Now observe that in calculating the Shapley value, when cOPT is sequentially

applied to the subsets of the grand coalition, some steps of optimising one coalition are

repeated in optimising subsequent coalitions. By taking advantage of this recurrence,

the Shapley value can be calculated using a dynamic programming (DP) algorithm more

efficiently.

In order to calculate the Shapley value using Algorithm 1, the cooling plans of all

subsets of the grand coalition need to be optimised one by one. Based on the flexibility

heuristic in equation (5.11), cOPT arranges all apartments in A such that apartment 1

and apartment n are the least and most flexible apartments, respectively. Then, all

apartments are independently optimised using iOPT. Here, if the result of the individual

optimisations were stored in the memory, one could avoid re-computing them 2n times.

Furthermore, note that for optimising any coalition, the congested time slots are always

initially the same. This is because the congested time slots are always identified after

all apartments are independently optimised, which always results in the same aggregate

load profile. Moreover, when cOPT optimises any coalition that contains apartment 1,

it always performs decongestion starting from apartment 1, since it is always the least

flexible apartment in any coalition. Therefore, if apartment 1 were present in a coalition,

it would always be the first apartment to be re-optimised. Likewise, since apartment 2

is the next least flexible apartment, it is always the next candidate to be re-optimised,

and so on. More importantly, each re-optimisation results in a Λ that will be repeated in

optimising subsequent coalitions. The following example will illustrate this recurrence

relation.

Suppose that in a game with 5 apartments, we would like to optimise {1}. Optimising all

apartments independently yields the set of congested time slots Λ∅. If apartment 1 can

be re-optimised such that its temperature preferences are satisfied, a new set of congested

time slots, Λ{1}, will be yielded. Let us assume that re-optimising apartment 1 indeed

results in satisfying its preferences, but Λ{1} is not empty (i.e., there are some congested

time slots). Here, although the best-found cooling plan of apartment 1 will be reverted

to its independently optimised cooling plan (since the threshold is not satisfied), we can

re-use the result of re-optimising apartment 1 as well as Λ{1} in optimising any other

coalition that contains apartment 1. This is because re-optimising apartment 1 given the

initial congested time slots always yields the same cooling plan and the same Λ{1}. Now,

suppose that we would like to optimise {1, 2}. After re-optimising apartment 1, since

Λ{1} is not empty, we need to re-optimise apartment 2 which will yield Λ{1,2}. Regardless

of whether Λ{1,2} is empty or not, every time a coalition that contains apartment 1 and
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apartment 2 (e.g., {1, 2, 4, 5}) is optimised, re-optimising apartment 1 and apartment 2

will result in the same cooling plans for these two apartments, and the same Λ{1} and

Λ{1,2}. Therefore, if after each re-optimisation the cooling plans along with the resulting

set of congested time slots were stored, it would not be necessary to compute them again

in optimising the subsequent coalitions. This way, for each coalition we would need to

re-optimise only one apartment, which is essentially the most flexible member. Note

that when calculating the Shapley values using Algorithm 1, to compute the coalition

values efficiently, it is important to visit the subsets of the grand coalition such that

optimising one coalition would depend only on the previously optimised ones. To this

end, one can use the natural order of coalitions in the binary representation of coalitions.

In this representation, a non-empty coalition C = {c1, c2, . . . , cm} is represented by the

binary equivalent of 2c1−1 + 2c2−1 + . . . + 2cm−1, where each bit indicates whether or

not the corresponding agent is a member of the coalition. For instance, {2, 3} comes

immediately before {1, 2, 3} as their corresponding binary numbers are 110 and 111,

respectively. Table 5.3 shows the recurrence relation of the collective optimisation using

this representation. For example, for optimising {1, 2, 4}, the right column shows that

one can re-use the result of optimising {1, 2}, which is in turn optimised using the result

of optimising {1}.

Coalition
Apt.

5
Apt.

4
Apt.

3
Apt.

2
Apt.

1
Retrieved from

memory

{} 0 0 0 0 0
{1} 0 0 0 0 1
{2} 0 0 0 1 0
{1, 2} 0 0 0 1 1 {1}
{3} 0 0 1 0 0
{1, 3} 0 0 1 0 1 {1}
{2, 3} 0 0 1 1 0 {2}
{1, 2, 3} 0 0 1 1 1 {1, 2} → {1}
{4} 0 1 0 0 0
{1, 4} 0 1 0 0 1 {1}
{2, 4} 0 1 0 1 0 {2}
{1, 2, 4} 0 1 0 1 1 {1, 2} → {1}
{3, 4} 0 1 1 0 0 {3}
{1, 3, 4} 0 1 1 0 1 {1, 3} → {1}

. . . . . . . . . . . . . . . . . . . . .
{1, 2, 3, 4, 5} 1 1 1 1 1 {1, 2, 3, 4} → {1, 2, 3} → {1, 2} → {1}

Table 5.3: Binary representation of coalitions in a game consisting of 5 apartments.
For each coalition, 1 indicates the only apartment that may be required to be re-
optimised. The best-found cooling plans of all other apartments in the coalition are

retrieved from memory.

Based on the recurrence relation described above, we can construct a DP algorithm

to calculate the Shapley value of the apartments in a more efficient manner. This will

enable us to (re-)optimise only one apartment per coalition—the most flexible apartment
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according to equation (5.11)—since the cooling plan of the rest of the members can be

used from the previously optimised coalitions. This recurrence relation is formalised

next.

Let a coalition of apartments sorted in the ascending order of flexibility (according to

equation (5.11)) be C = {1, 2, . . . ,m}, such that apartments 1 and m are the least and

most flexible apartments, respectively. Furthermore, let ΛC denote the set of congested

time slots obtained by re-optimising apartment m, given the set of congested time slots,

ΛC\{m}, obtained by re-optimising the most flexible apartment in C\{m} (i.e., m−1). As

such, Λ∅ is the set of congested time slots after optimising all apartments independently,

and ΛA is the set of congested time slots obtained by re-optimising apartment n given

ΛA\{n}. Moreover, let a vector of re-optimised cooling actions of the most flexible

apartment in coalition C over an entire day be denoted by η
ΛC\{m}
m , which is obtained by

re-optimising m given ΛC\{m}. Note that if m cannot be re-optimised based on ΛC\{m}

such that its temperature preferences can be satisfied, then η
ΛC\{m}
m will simply be the

independently optimised plan that is found by iOPT . Denote by l
ΛC\{m}
m the vector of

best-found cooling load of apartment m that is given by equation (5.4) using η
ΛC\{m}
m .

We can now compute the vector of best-found aggregate cooling load, l′C = [l
′1
C l
′2
C . . . l

′k
C ],

of a non-empty coalition, C, using the following recursive formula:

l′C =


∑
a∈C

l′′a if |C| = 1 or ΛC 6= ∅

l′C\{m} + l
ΛC\{m}
m if ΛC = ∅

, (5.12)

where l′′a is the vector of best-found cooling actions of apartment a when it optimises its

load independently. Using equations (5.12) and (5.5) the bounded rational values of C,

i.e., vBR(C) can be found.

5.3.9 Evaluation of the Coalitional Cooling Discount Scheme

This subsection undertakes an evaluation of applying the bounded rational Shapley

value to the discount scheme. For this purpose, a block of 15 apartments is considered.

Similar to the example case with 3 agents discussed previously, the AC system in every

apartment operates on a 10-minute cycle, i.e., a cooling decision is made for each 10-

minute interval in a day (∆t = 1/6hr), and thus, K = [1, . . . , 144]. The AC systems in

all apartments are similar and consume at a rate of 3.0 kW when fully on (i.e., Pa = 3.0

kW). That is, when the AC system is on for an hour, the total energy consumed is

3.0 kWh. Consequently, the maximum possible load of all apartments if they do not

optimise their apartments collectively is 45 kW. Now when the apartments participate

in the scheme, a threshold (ψ) at 18 kW (representing a 60% reduction), is set on their

total load. If the aggregate load of the block is always 18 kW, the price per kWh of

energy consumed over the entire day is £0.05, otherwise it is £0.16.
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Apartment a CSTa CETa Tset[a](◦C) θa(
◦C)

1 11:40 20:00 22.0 1.5
2 13:20 20:00 22.0 1.2
3 14:00 19:40 22.0 1.1
4 10:10 18:30 22.0 1.1
5 13:00 19:00 22.0 1.1
6 11:40 22:30 22.0 1.1
7 12:00 21:40 22.0 1.2
8 10:20 18:20 22.0 1.1
9 12:00 21:40 22.0 1.1
10 12:00 21:20 22.0 1.
11 12:00 21:40 22.0 1.2
12 12:00 22:20 22.0 1.2
13 13:00 19:00 22.0 1.1
14 13:00 19:00 22.0 1.1
15 12:00 18:40 22.0 1.1

Table 5.4: The cooling preferences and leakage rates of each apartment.

The cooling preferences of the individual apartments, which include CSTa, CETa, Tset[a]

and θa, are shown in Table 5.4. The leak rates τ , ρ, and γ for all apartments are 0.36

(1/hr), 0.024 (1/hr), and 0.024 (1/hr), respectively. An Ω value of 0.8◦C is considered to

limit the deviation of the average internal temperature during the comfort period from

the set-point.

The aggregate cooling load when the 15 apartments, with the above settings and pa-

rameters, optimise their load independently and collectively are shown in Figure 5.10

and 5.11, respectively. The total energy consumption in the latter case is 2% more than

the former, which represents the extra energy that is consumed by the apartments in

off-peak times so as to keep the aggregate load below the threshold. As will be seen in

the following experiments, this extra cost is offset by the discount that the apartments

would receive under the scheme.

The experiments presented here show how the payments incurred by an apartment vary,

as its cooling preferences are changed, on a single day. The payments that an apartment

can be charged for its consumption are compared in four different cases: (i) when the

apartment does not sign up to the discount scheme and optimises its load independently,

(ii) when the apartment optimises its load as a mapartmentr of the coalition, but the

discount is not taken into account (obtained from the consumption of the apartment

in the grand coalition at the normal price), (iii) when the apartment optimises its load

as a member of the coalition and each apartment receives an equal share of the total

saving from the discount (calculated in the same way as the previous case, but the

difference between the payment of the grand coalition at the discounted and normal

prices is equally divided and deducted from the payment of each apartment), and (iv)

when the apartment optimises its load as a member of the coalition and receives its
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Figure 5.10: The aggregate cooling load when 15 apartments in a block optimise their
loads independently using Algorithm 2.
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Figure 5.11: The aggregate cooling load when 15 apartments in a block optimise their
loads collectively using Algorithm 3.

bounded rational Shapley value. In this experiment, the total amount that a coalition

is charged is calculated as per equation (5.6), which represents its bounded rationality

value, and the optimal loads of the apartments are given by Algorithms 2 and 3. Due

to the intractability of calculating the true Shapley values of the 15 apartments, the

actual amount that each apartment is charged is its bounded rational Shapley value (i.e.,

equation (5.2)), which is calculated using the DP method described in Subsection 5.3.8.

Figure 5.12 shows a comparison of the time it takes to calculate the Shapley value of

8 through 15 apartments using the DP method for computing the coalition values, and

without it. In both cases, the Shapley value is calculated using Algorithm 1, which is a

more efficient implementation of equation (2.2). It is evident that a significant gain in

computation time is achieved when Algorithm 1 is used with the DP method.
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Figure 5.12: Comparison of computation times of calculating the Shapley value of
different number of apartments.

The comparisons show that for any preference, the payment that is incurred by an

apartment is more favourable when it signs up to the scheme than when it does not.

They also demonstrate how sensitive the bounded rational Shapley value and the other

naive payment mechanisms are to the variations in the set-point, Tset (Subsection 5.3.10),

the tolerance level, θ (Subsection 5.3.11), and the leakage rate, γ (Subsection 5.3.12).

5.3.10 Set-point Temperature vs Payments

To explore the relationship between the set-point temperature settings and payments,

Tset[6] is varied from 19◦C to 24◦C, while leaving the other preferences unchanged. Then,

the four payment cases described above are calculated for each set-point temperature

setting, and the corresponding payment that apartment 6 incurs for a single day of

cooling is depicted in Figure 5.13.

As can be seen the relationship between the set-point temperature and payments is

almost linear. Intuitively, this is because when the set-point temperature is increased,

less cooling is required, and thus, the payment reduces. It is also evident that an

apartment stands to benefit from its participation in the scheme by receiving its bounded

rational Shapley value, since the payment it incurs for a set-point setting is consistently

lower than what it would incur if it chose to optimise its cooling load independently.

Moreover, the fact that the collectively optimised payment for the set-point of 21◦C is

higher than that of the independently optimised, shows that apartment 6 has to use more

energy in the coalition to help satisfy the threshold. However, since the bounded rational

Shapley value for this set-point is lower, the cost of the extra consumption is offset by

the discount. When the collectively and independently optimised curves match, it means

that the energy consumption in and out of the coalition are equal. Furthermore, the
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Figure 5.13: Relationship between set-point temperature (Tset[6]) settings and the
payments for a block of 15 apartments

fact that the independently optimised payment for the set-point of 23◦C is higher than

that of the collectively optimised shows that the solution that is found for Apartment 6

when it optimises its load collectively is closer to the optimal than the solution found

by the greedy algorithm (Algorithm 2) when it optimises its load independently. This is

because, from the payment it is obvious that the consumption of the apartment in the

coalition is lower, which is contrary to expectation.

5.3.11 Set-point Deviation Tolerance vs Payments

Figure 5.14 shows how the payment of Apartment 6 in each of the four cases changes as

θ6 is varied from 0.5◦C to 2.3◦C.

As is evident, as θ6 is increased, the payments initially decrease but remain almost

constant from 1.1◦C onwards, which shows that the amount of energy required to satisfy

the set-point constraint does not increase after this point. Since the internal temperature

is also restricted by the average internal temperature constraint (i.e., Ω), the relationship

between the set-point deviation tolerance and the energy consumption may not be linear.

This observation is true both when the apartment participates in the discount scheme

and when it does not, as the bounded rational Shapley value and the independently

optimised curves follow a similar trend.

5.3.12 Leakage Rate vs Payments

Previously, it was established how the leakage rate, γ is related to the level of insulation

of an apartment. It was also mentioned how an apartment with a high γ value will
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Figure 5.14: Relationship between the tolerance on the deviation of the internal
temperature from the set-point (θ6) and the payments of Apartment 6 in a block of 15

apartments.

typically incur higher energy consumption. Following this trend, now the relationship

between γ and the payment an apartment incurs for a single day of cooling is explored.

To do so, γ6 is varied from 0.24◦C/hr, representing a relatively high level of insulation

to to 0.78◦C/hr, representing a poorly insulated apartment, in apartment 6. The real

γ6 value is shown in Table 5.4. For each γ6 value, the payment that apartment 6 incurs

for a single day of cooling is then calculated based on the four different cases.

Leakage Rate γ (1/hr)
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Figure 5.15: Relationship between the thermal leakage rate (γ6) and the payments
of Apartment 6 in a block of 15 apartments.

Figure 5.15 shows that the relationship between the leakage rates and the payments

is almost linear when the apartment optimises its load independently. However, the

bounded rational Shapley value curve exhibits less linearity, since after the leakage rate

of 0.36 the gap between these two curves rapidly shrinks. This indicates the higher
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sensitivity of the payments to the thermal leakage when the apartment is in the coalition

than when it is not. This reduction in the gap is significant compared to the set-point

and set-point deviation tolerance plots (i.e., Figures 5.13 and 5.14). On balance, it can

be concluded that a well-insulated apartment with a low leakage rate incurs a very low

payment, and the payment grows as the apartment becomes leakier.

5.4 Summary

This chapter investigated the problem of fairly dividing the value of a coalition in set-

tings where computing the value involves solving a hard optimisation problem. In such

settings, calculating the Shapley value entails an extra computational challenge, namely

solving an exponential number of hard optimisation problems. Since solving the optimi-

sation problem of each coalition can take a considerable amount of time, and that the

agents do not have infinite computational resources to find an optimal solution, they

are considered to be computationally bounded rational. For these reasons, using the

Shapley value as a fair division of the value of the grand coalition may not be possible

in practice. Based on the additivity axiom of the Shapley value, it was proposed that

it is still possible to obtain a fair division, without solving the optimisation problems

optimally. If the optimisation problems can be solved using a faster but not necessarily

optimal algorithm (e.g., greedy), the coalition values can be computed at a higher speed.

The Shapley value given the suboptimal coalition values (called the bounded rational

Shapley value), is not only easier to calculate, but also provides a division of the grand

coalition that is fair in the following sense: all agents are rewarded for their contribution

to the value of the grand coalition, and simultaneously penalised for their contribution

to the discrepancy between the suboptimal and optimal solutions.

This approach was applied to a real world problem where a number of apartments in

a block participate in a demand response program to receive a discount for coordinat-

ing their cooling loads so that the aggregate load does not exceed a certain threshold.

In this problem, a coalition of apartments needs to optimise its members’ use of air

conditioning subject to the individual temperature preferences of each apartment and

the given threshold. Due to the magnitude of the constraints involved, computing the

optimal load of a coalition is computationally intensive. Instead of solving this problem

optimally, a greedy algorithm was proposed which produced suboptimal solutions at a

higher speed. Consequently, a suboptimal value for each coalition could be found, al-

lowing for computation of the Shapley value in a reasonable time. It was demonstrated

how, using the bounded rational Shapley value approach, the apartments could obtain

a division of the discount, which is fair from the perspective described above.
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Conclusions and Future Work

The Shapley value is a widely used solution concept in cooperative game theory, which

determines a fair allocation for agents in a game. Unlike other solution concepts such as

the core and the stable set, the Shapley value is unique and always exists, which make it

usable in any cooperative game. However, the use of Shapley value in games with more

than a few dozens of agents faces a significant computational challenge, and thus, its use

in practice is limited. In this thesis, we reviewed the existing proposals for mitigating

this issue, which all have some merits but suffer from major drawbacks.

Building upon the existing approximation methods, we proposed an improved error

bound for approximating the Shapley value using SRS. Furthermore, we proposed the

use of stratified sampling, which unlike SRS that samples the population blindly, it

exploits the structure of the population and results in a potentially more efficient and

more accurate approximation. We showed how this method can be applied in some

important class of games, including supermodular games, and some other games which

have interesting real world applications such as newsvendor and output-sharing games.

We also experimentally evaluated our method on instances of the the aforementioned

games, each with at least 100 agents, using real and randomly generated data. Our

experiments showed that the average standard error across all agents in all these games

were %48 lower than that of SRS.

The limitation of our stratified sampling is in the way the minimum sample size is found.

While our stratified sampling methods can be used to approximate the Shapley value in

any game, our method of finding an optimal allocation of samples assumes that the game

is supermodular or exhibits the order-reflecting property. Moreover, since sampling-

based approximations are inherently randomised, the corresponding error bounds are in

most cases probabilistic. This means that with a certain probability, the bound may

not hold. Nevertheless, since the confidence can be arbitrarily large, one can set it very

close to %100.

87
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In addition to addressing the exponential time complexity of the Shapley value, we

investigated how the Shapley value can be used when the complexity of the characteristic

function is high, in which case calculating the Shapley value becomes even more difficult.

We proposed to approximate the value of coalitions, and calculate the Shapley value

using the approximated coalition values. Remarkably, due to the additivity axiom of the

Shapley value, doing so not only would result in a fair division of the value of the grand

coalition, but also each agent would be penalised for its contribution to the complexity

of the characteristic function. We applied this approach to a demand response program

where a number of apartments in a block coordinate their cooling loads to receive a

discounted price. Since an optimal coordination of loads is computationally intensive,

we used greedy algorithms to approximate the value of coalitions, and consequently

calculate the Shapley value in a reasonable time. We also demonstrated the intuitive

relationship between the bounded rational Shapley value and different sets of thermal

model parameters.

In investigating the bounded rational Shapley value, we assumed that the number of

agents in the game is relatively small. This was to separate the complexity of the

Shapley value from the complexity of the characteristic function. In games with large

number of agents, we can obviously approximate the bounded rational Shapley value

in the same fashion as the standard Shapley value. However, an approximate Shapley

value may not satisfy all of Shapley’s axioms, because it may not be equal to the exact

Shapley value that is unique. Consequently, it can be argued that approximating the

bounded rational Shapley value may not result in a fair allocation. One way to alleviate

this problem could be to relax the efficiency axiom, which is perhaps not a prerequisite

for fairness. This would generalise the Shapley value to a set of all “values” that satisfy

the symmetry and additivity axioms. Note that the symmetry axiom is fundamental for

fairness, and the additivity axiom is the cornerstone of the bounded rational Shapley

value, and thus, they cannot be dropped. However, by relaxing efficiency, we can still

scale the allocations (e.g., through normalisation) such that they add up to the bounded

rational value of the grand coalition. The more important task, however, would be to

ensure that the approximated Shapley value satisfies symmetry and additivity, which is

an interesting research problem in its own right.

In future work we will aim to address the limitations of our approach. In addition, we

will concentrate on the following:

1. Recall that under CLT, the sampling distrubution of mean is assumed to be nor-

mal, which may be different than the actual distribution. Stein (1972) proposed

a method for bounding the distance between two probability distributions with

respect to a probability metric. We would like to investigate whether and how

Stein’s method can be used to incorporate the distance between the actual and

the asymptotic sampling distribution in the CLT-based error bound proposed by

Castro et al. (2009), so as to achieve an accurate bound.
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2. Given that the stratified sampling can be more efficient than SRS, we would like

investigate how the same error bound can be established with smaller sample sizes.

3. We would like to extend the order-reflecting property to newsvendor games with

correlated output.
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