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Separability properties of graph products of groups

by Michal Ferov

Separability properties provide an algebraic analogue to the solvability of decision
problems in groups. It is natural to ask whether a certain group property is preserved
by some specific group-theoretic constructions. In this thesis we study the stability of
certain separability properties under graph products, a natural generalisation of free and
direct products.

This thesis consists of material published in:

[15] M. Ferov: On conjugacy separability of graph products of groups;
[16] M. Ferov: Separability properties of automorphisms of graph products of groups;

[6] F. Berlai, M. Ferov: Residual properties of graph products of groups.

In [15] we study conjugacy separability in graph products of groups. In particular,
we show that the class of C-hereditarily conjugacy separable groups is closed under tak-
ing arbitrary graph products whenever the class C is an extension closed variety of finite
groups. As a consequence we show that the class of C-conjugacy separable groups is
closed under taking arbitrary graph products. In particular, we show that right angled
Coxeter groups are hereditarily conjugacy separable and 2-hereditarily conjugacy sepa-
rable, and we show that infinitely generated right angled Artin groups are hereditarily
conjugacy separable and p-hereditarily conjugacy separable for every prime number p.

In [16] we study various properties of automorphisms of graph products of groups.
In particular, we show that a graph product ΓG has non-inner pointwise inner automor-
phisms if and only if some vertex group corresponding to a central vertex has non-inner
pointwise inner automorphisms. We use this result to study the residual finiteness of
Out(ΓG). We show that if all vertex groups are finitely generated residually finite and
the if vertex groups corresponding to central vertices satisfy a certain technical (yet
natural) condition, then Out(ΓG) is residually finite. Finally, we generalise this result
to graph products of residually p-finite groups to show that if ΓG is a graph product of
finitely generated residually p-finite groups such that the vertex groups corresponding to
central vertices satisfy the p-version of the technical condition, then Out(ΓG) is virtually
residually p-finite. We use this result to prove bi-orderability of the Torelli groups of
some graph products of finitely generated residually torsion-free nilpotent groups.

In [6] we study residual properties of graph products of groups. In particular, we
prove that the class of residually-C groups is closed under taking graph products, pro-
vided that C is closed under taking subgroups and finite direct products, and that free-
by-C groups are residually-C. As a consequence, we show that local embeddability into
various classes of groups is stable under graph products. In particular, we prove that
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graph products of residually amenable groups are residually amenable, and that the class
groups locally embeddable into amenable groups is closed under taking graph products.
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CHAPTER 1

Introduction

Groups are very important in mathematics because they describe symmetries of
mathematical objects and structures. Consequently, it is natural to ask questions about
their behaviour. In the case of finite groups we can construct the Cayley table which
fully captures the structure of the given group. Sometimes we are given an explicit
description of how to work with the elements of the given group, for example we might
be given a matrix representation, as in the case of groups of automorphisms of finite
dimensional vector spaces, or we might be given a nice formula as in the case of additive
group of points on an elliptic curve. However this is not always the case. Sometimes
we are given only an abstract presentation of a group, i.e. we are given a set of gen-
erators and a description of the relations between them. More formally, we have a
presentation 〈X‖R〉 where X is the set of generators and R is the set of relations.
For example, the presentation of π1(Σ) where Σ is an orientable surface of genus 2 is
〈x1, y1, x2, y2‖[x1, y1][x2, y2] = 1〉 and the presentation of the group of symmetries of
a bi-infinite simplicial path is 〈a, b‖a2 = 1, a−1ba = b−1〉. In these cases we are just
working with words over the alphabet of the given generating symbols and we do not
primarily know which actual elements of the given group these words represent. By a
group word in an alphabet X we mean a finite string g = xε11 x

ε2
2 . . . xεnn where xi ∈ X

and εi ∈ {−1, 1}. We will often just call this a word.

1.1. Decision problems in groups

In the beginning of twentieth century Max Dehn formulated the three fundamental
decision problems for groups:

(1) Word problem - given a presentation 〈X‖R〉 of a group G and a word g in the
generating alphabet X we ask: does g represent the trivial element in G? In
other words: is g = 1 in G?

(2) Conjugacy problem - given a presentation G = 〈X‖R〉 of a group G and a pair
of words g1, g2 in the generating alphabet X we ask: do the words g1 and g2

represent conjugate elements in G? In other words: is there c ∈ G such that
g1 = c−1g2c?

(3) Isomorphism problem - given a presentation 〈X1‖R1〉 of a group G2 and a
presentation 〈X2‖R2〉 of a group G2 we ask: is G1 isomorphic to G2?

Given a presentation 〈X‖R〉 of a group G we will use the symbol ≡ to denote that

two words are identical, thus by g1 ≡ g2 with g1 = xα1
1 xα2

2 . . . xαn
n and g2 = yβ11 yβ22 . . . yβmm

where xi, yj ∈ X and αi, βj ∈ {−1, 1}, we mean if g1 = g2 then n = m, xi = yi and
αi = βi for all i = 1, 2, . . . , n. For the sake of simplicity we will always assume that
words are freely reduced. We will use the symbol =G to denote that two words represent
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2 1. INTRODUCTION

the same element in a group G. Often, if it is obvious from the context, we will omit
the subscript. Lastly, we will use the symbol ∼G to denote that two words represent
conjugate elements in G.

The word and conjugacy problems have been well studied. It is not difficult to
show that there is a recursively presented group (meaning that the generating set X is
finite and the set of relations R is recursively enumerable) in which the word problem is
unsolvable. A result of Boone and Novikov [24, Theorem 7.2, page 225] in the late fifties
showed that there is a finitely presented group with unsolvable word problem. It is easy
to see that if we could solve the conjugacy problem then we would be able to solve the
word problem, since g ∈ G is conjugate to 1 in G if and only if g is trivial. However,
the implication in the opposite direction does not hold: Miller [10] constructed a finite
presentation of a group with solvable word problem and unsolvable conjugacy problem.
By a theorem of Adian and Rabin [24, Theorem 4.1, page 192] the property of having
solvable word problem cannot be algorithmically recognised. The same holds for the
conjugacy problem.

However, there are group properties that imply the solvability of the word conjugacy
problems, which behave ‘nicely’.

1.2. Algorithms of Mal’cev-Mostowski type

We say that a group G is residually finite (RF) if for every g ∈ G \ {1} there is a
finite group H and a homomorphism π : G→ H such that π(g) 6=H 1.

Note that finite groups are recursively enumerable; for each n ∈ N we can simply
generate all the Cayley tables of size n×n and then check whether a given table represents
a group and whether the generated group is already in the list of groups that we have
already generated. Thus we can use Gi to denote the i-th finite group. Further, let us
note that if a finite group Gi is given by a Cayley table then it is very easy to solve the
word problem simply by computing the actual value of g using the table.

If we are given a presentation 〈X‖R〉 of a finitely generated group G and a finite
group Gi then the set Hom(G,Gi) is finite because every generator of G can be mapped
only to finitely many elements of Gi. However it might not be easy to check whether
a map π : X → Gi extends to a homomorphism. We need to check whether all the
relations r ∈ R are satisfied, meaning that when xε11 x

ε2
2 . . . xεnn = r ∈ R we want to

check whether π(x1)ε1π(x2)ε2 . . . π(xn)ε
n

= 1 in Gi. In case when R is infinite, the naive
method of checking for every r ∈ R would not terminate, but if R is finite then the naive
method always terminates. Therefore for a finitely presented group G and a finite group
Gi, we can always list all the elements of Hom(G,Gi) in finite amount of time.

Note that given a recursive presentation 〈X‖R〉 of a group G we can enumerate all
words in X that represent the trivial element in G. Let g be a word in X. Obviously
g =G 1 if and only if g =F (X)

∏n
i=1 u

−1
i rεii ui for some n ∈ N where ri ∈ R, εi = ±1, ui is

a word in X and F (X) is the free group over the alphabet X. Every word of this type
can be generated by a sequence of transformations (or their inverses) of the following
two types:

(1) insert a ‘trivial’subword: xx−1 where x ∈ X±,
(2) insert a relator or its inverse: rε where r ∈ R and ε = ±1.
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More formally: let g = ab be a word where a, b are words (possibly empty) in X. A
transformation of the type (1) transforms the word g = ab to the word g′ = ax−1xb,
where x ∈ X±. A transformation of the type (2) transforms the word g = ab to
g′′ = arεb where r ∈ R and ε = ±1. Obviously g =G g′ =G g′′. Since the set X is finite
and the set R is recursively enumerable, we can enumerate all the possible sequences of
transformations and thus we can enumerate all representatives of the identity element
in G.

Therefore if we were given a word g in X we could naively go through all the repre-
sentatives wi of 1 in G and check whether wi ≡ g. If g =G 1 then this process will surely
terminate, however if g 6=G 1 then this naive method will never stop.

Let Gi denote the i-th finite group and let wi denote the i-th representative of the
trivial element in G.

Algorithm 1 Mal’cev(G, g)

1: i← 0
2: answer ← ””
3: while answer = ”” do
4: i← i+ 1
5: if g ≡ wi then
6: answer = Y ES
7: end if
8: for all π ∈ Hom(G,Gi) do
9: if π(g) 6=Gi 1 then

10: answer = NO
11: end if
12: end for
13: end while

It is obvious that for finitely presented groups this algorithm halts on every word g
if and only if G is RF, hence we get equivalent definition of the property RF for finitely
presented groups in terms of algorithms and solvability: a finitely presented group G is
RF if and only if the word problem in G can be solved by the Mal’cev’s algorithm.

This algorithm can be generalised to the conjugacy problem if we pose a stronger
condition on the group G.

We say that a groupG is conjugacy separable (CS for short) if for every pair g1, g2 ∈ G
such that g1 6∼G g2 there is a finite group H and a homomorphism φ : G→ H such that
φ(g1) 6∼H φ(g2).

It is clear that CS implies RF as the identity element is conjugate only to itself,
therefore the word problem in a finitely presented CS group can be solved by the algo-
rithm 1. Hence, given three words g1, g2, c we can determine whether c−1g1c =G g2 by
asking whether c−1g1cg

−1
2 =G 1. Let us also note that solving the conjugacy problem

in a finite group given by a Cayley table is fairly easy, because we can simply try all
possible candidates for the conjugating element.

Note that we can easily enumerate all group words over finite alphabet X, thus we
can use ci to denote the i-th word in X.
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The naive method to determine whether g1 ∼G g2 would simply go through all ci ∈ G
and check whether c−1g1c =G g2. If g1 and g2 truly represent conjugate elements of G
then this method will terminate. However, if g1 6∼G g2 this algorithm will never stop.

Let Gi denote the i-th finite group and let ci denote the i-th word in X.

Algorithm 2 Mostowski(G, g1, g2)

1: i← 0
2: answer ← ””
3: while answer = ”” do
4: i← i+ 1
5: if c−1

i g1ci =G g2 then
6: answer = Y ES
7: end if
8: for all π ∈ Hom(G,Gi) do
9: if π(g1) 6∼Gi π(G2) then

10: answer = NO
11: end if
12: end for
13: end while

It is clear that for finitely presented groups this algorithm will halt on every input
pair g1, g2 ∈ G if and only if G is CS. Thus we get equivalent definition of property of CS
for finitely presented groups in terms of algorithms and solvability: a finitely presented
group G is CS if and only if the conjugacy problem in G can be solved by Mostowski’s
algorithm.

Unlike in the case of word problem, behaviour of conjugacy equivalence is much more
complicated and less predictable. If a group G has solvable word problem, then every
H ≤ G has solvable word problem. Conversely if H ≤f.i.G and H has solvable word
problem, then G has solvable word problem (see [4]). These statements are not true for
the conjugacy problem. Collins and Miller [11] have shown:

(i) there is a finitely presented group G with solvable conjugacy problem with
H ≤f.i.G such that H has unsolvable conjugacy problem,

(ii) there is a finitely presented group G with unsolvable conjugacy problem with
H ≤f.i.G such that H has solvable conjugacy problem.

Again, there is a partial analogue to this statement in terms of separability properties.
Chagas and Zalesskii [9] have showed that there is a CS group G with H ≤f.i.G such that
H is not CS. However, the group constructed by Chagas and Zalesskii was not finitely
presented. Minasyan and Martino [25] showed that for every integer n ∈ N there is a
finitely presented CS group G together with a subgroup N ≤ G such that |G : N | = n
and N is not CS.

We say that a group G is hereditarily conjugacy separable (HCS for short) if it is CS
and every H ≤f.i.G is CS.

Goryaga [18] gave a partial CS analogue to (ii), i.e. he constructed a finitely gen-
erated group G with H ≤f.i.G such that H is CS but G is not. However, there are no
known finitely presented examples.
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1.3. Separability properties

Group properties like RF and CS are called separability properties, as they are de-
scribed by whether certain subsets can be separated: we say that a subset X ⊆ G is
separable in G if for every g ∈ G \ X there is a finite group F and a homomorphism
ϕ : G→ X such that ϕ(g) 6∈ ϕ(X) in F . Clearly a group G is RF if and only if the sin-
gleton set {1} is separable in G and G is CS if and only if for every g ∈ G the conjugacy
class gG = {cgc−1 | h ∈ G} is separable in G.

We say that a group is cyclic subgroup separable (CSC, or sometimes πC) if for every
f, g ∈ G such that f 6∈ 〈g〉 in G there is a finite group F and a homomorphism ϕ : G→ F
such that ϕ(g) 6∈ 〈ϕ(g)〉 in F , i.e. as the name suggests, a group G is CSC if for every
g ∈ G the cyclic subgroup 〈g〉 ≤ G is separable in G.

Similarly, a group is locally extended residually finite (LERF) if every finitely gener-
ated subgroup K ≤ G is separable in G.

A group is double coset separable (DCS) if for every pair of finitely generated sub-
groups H,K ≤ G and an arbitrary element g ∈ G the double coset HgK = {hgk | h ∈
H, k ∈ K} is separable in G.

In a way, separability properties provide an algebraic analogue to decision problems
in groups. It is obvious that the power problem in a group G, i.e. the problem of
deciding, given elements f, g ∈ G, whether f is a power of g can be solved by an
algorithm of Mal’cev-Mostowski type if and only if G is πC . Similarly, the generalised
word problem, i.e. the problem of deciding, given elements f, g1, . . . , gn ∈ G, whether
f ∈ 〈g1, . . . , gn〉 ≤ G, can be solved in finitely presented LERF groups.

As we already mentioned, it is easy to see that every CS group is RF. Similarly, every
πC group is RF and so on. The following diagram demonstrates the known implications
between various separability properties.

CS

x�

HCSks

RF

πC

]e

LERFks DCSks

The motivation behind separability properties is that we would like to be able to
approximate groups by their finite quotients. Different separability properties tell us
how precisely this approximation can be done, i.e. how much information about a group
can be reconstructed simply by looking at its finite quotients.





CHAPTER 2

Pro-C topologies on groups

What if we were not interested in all finite groups? What if we were to consider, say,
only finite 2-groups or finite nilpotent groups? Or what if we were not interested in finite
groups at all? Let C be a class of groups. Note that we will always assume that classes
of groups are closed under isomorphisms, i.e. if C ∈ C and C ′ ∼= C then C ′ ∈ C as well.
For a group G we say that a subset X ⊂ G is C-separable in G if for every g ∈ G \X
there is a group C ∈ C and a homomorphism γ : G → C such that γ(g) 6∈ γ(X). We
then say that a group G is residually-C if the singleton set {1} is C-separable in G.
Other separability properties can be generalised to C in a similar manner: a group G
is C-conjugacy separable (C-CS) if the conjugacy class gG is C-separable in G for every
g ∈ G.

Clearly, some classes are more difficult to work with than other. For example every
RF group is fully residually finite, i.e. if G is a RF group, then for every finite subset
X ⊆ G\{1} there is a finite group C and a homomorphism γ : G→ C such that 1 6∈ γ(X)
in C and γ �X is injective. However, it is not true that every residually free group is
fully residually free. In this chapter we show that if the class C satisfies certain closure
properties, then we can actually equip every group G with a topology that captures the
notion of C-separability. Amongst other things, this will allow us to use basic methods
and terminology from point-set topology and thus significantly simplify our proofs.

Most of the statements in this chapter can be found in [23] and [33].
What closure properties do we require the class C to have? We will be considering

the following properties:

(c1) subgroups: let G ∈ C and suppose that H ≤ G; then H ∈ C,
(c2) finite direct products: let G1, G2 ∈ C; then G1 ×G2 ∈ C,
(c3) quotients: let G ∈ C and let N EG; then G/N ∈ C,
(c4) extensions: let Q,K ∈ C and let G be a group such that the following sequence

1→ K → G→ Q→ 1

is exact; then G ∈ C.
Let C be a class of groups and let G be a group. If N EG is such that G/N ∈ C then

we say that N is a co-C subgroup of G and that G/N is a C-quotient of G. We will use
NC(G) = {N EG | G/N ∈ C} to denote the set of all co-C subgroups of G. We want the
system of cosets BC(G) = {gN | g ∈ G,N ∈ NC(G)} to form a basis of open sets for a
topology on G, thus we need the set NC(G) to be closed under intersections.

Lemma 2.1. Let C be a class of groups. If C satisfies (c1) and (c2), then the set
NC(G) is closed under intersections for every group G.

7



8 2. PRO-C TOPOLOGIES ON GROUPS

Proof. Let G be a group and let N1, N2 ∈ NC(G). Clearly N1 ∩ N2 is a normal
subgroup of G. By assumption G/N1, G/N2 ∈ C and thus G/N1 × G/N2 ∈ C since the
class C is closed under direct products. By a standard result we see that G/(N1 ∩ N2)
embeds into G/N1 × G/N2. Since we assume that the class C is closed under taking
subgroups we get that G/(N1∩N2) ∈ C and we can conclude that N1∩N2 ∈ NC(G). �

Suppose that the system of cosets BC(G) forms a basis of open sets for a topology on
a group G. This topology is called the pro-C topology on G and we will use pro-C(G) to
refer to this topology. If C is the class of all finite groups this topology is the profinite
topology PT (G), and if C is the class of all finite p-groups, where p is a prime number,
this topology is referred to as pro-p topology.

We say that a subset X ⊆ G is C-separable or C-closed in G if the subset X is closed
in pro-C(G). In other words, a subset X ⊆ G is C-separable if for every g ∈ G \X there
is N ∈ NC(G) such that gN ∩XN = ∅. Similarly we say that a subset X ⊆ G is C-open
if it is open in pro-C(G).

2.1. Basic properties

Unless stated otherwise we will only assume that the class C satisfies (c1) and (c2).
If the class C satisfies (c1) and (c2) then the pro- C topology on G is well-defined for

every group G by Lemma 2.1. Note that it would be enough to assume that the class C
is closed under subdirect products: let G,N1, N2 be as in the proof of the Lemma 2.1,
then G/(N1 ∩N2) is a subdirect product of G/N1 and G/N2. Being closed under taking
direct products and subgroups is a much stronger property. However, if we assume that
the class C is also closed under taking subgroups, then we see that equipping a group
G with pro- C topology is actually a faithful functor from the category of groups to the
category of topological groups.

Lemma 2.2. Let G be a group. Then G, equipped with pro- C(G), is a topological
group. Moreover, homomorphisms between groups are continuous maps and isomor-
phisms are homeomorphisms, thus preimages of C-open/closed sets are C-open/closed
and isomorphic images of C-open/closed sets are C-open/closed.

Proof. To show that G is a topological group we need to show that maps

i : G→ G i(g) = g−1

◦ : G×G→ G ◦(g1, g2) = g1g2

are continuous. Since (gh)−1 = h−1g−1 we have i−1(gH) = Hg−1 meaning that i is
continuous because the preimage of an open set is an open set. Note that we do not
consider the pro- C topology on G×G, we consider the product topology. Thus the basic
open sets in G×G are of the form g1H1 × g2H2 where g1, g2 ∈ G and H1, H2 ∈ NC(G).
Now let H ∈ NC(G) and let g ∈ G. Then ◦−1(gH) = {g1H × g2H | g1g2 ∈ gH} which is
an union of open sets. This means that both ◦ and i are continuous and consequently
G together with pro- C(G) is a topological group.

Let A,B be groups equipped with the pro- C topology and let φ : A→ B be a group
homomorphism. Let B′ ∈ NC(B) and b ∈ B. Set A′ = φ−1(B′) and consider the map

φ̃ : A/A′ → B/B′ given by φ̃(aA′) = φ(a)B. Clearly φ̃ is an monomorphism and thus
A/A′ is isomorphic to a subgroup of B/B′. Since we assume that the class C satisfies (c1)
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we see that A′ = φ−1(B) ∈ NC(A). Also if φ(a1) = b = φ(a2) for some a1, a2 ∈ A, then
a−1

1 a2 ∈ φ−1(B′), so preimages of cosets are cosets as well. Thus a preimage of a basic
open set is a basic open set, therefore φ is a continuous map of topological spaces. �

Note that if the class C was not closed under taking subgroups, then only epimor-
phisms would be continuous.

One of the consequences of the lemma we have just proved is that the pro- C topology
on a group G is invariant under group translation: if X ⊆ G is C-closed in G then so are
the sets gX and Xg for all g ∈ G.

Lemma 2.3. Let G be a group. Then the following are equivalent

(i) {1} ∈ NC(G),
(ii) pro- C(G) is the discrete topology on G,
(iii) G ∈ C.

Proof. (i)⇔ (iii): since G/{1} ∼= G we see that G ∈ C if and only if {1} ∈ NC(G).
(i)⇒ (ii): note that a topology on a set is discrete if and only if all singleton sets are

open. If {1} ∈ NC(G) then it is C-open in G. Let g ∈ G be arbitrary. Clearly {g} = g{1}
and therefore {g} is C-open in G as it is a translate of an C-open set.

(i) ⇐ (ii): assume that pro- C(G) is discrete. Then X = G \ {1} is C-closed and
1 6∈ X, thus there is N ∈ NC(G) such that 1N ∩X = N ∩X = ∅. Clearly the only such
N is {1}. �

As we already said: a group G is residually-C if for every g ∈ G\{1} there is a group
F ∈ C and a group homomorphism π : G→ F such that π(g) 6= 1 in F . Assuming that
the class C satisfies (c1) and (c2), we equivalently can say that G is residually-C if for
every g ∈ G \ {1} there is N ∈ NC(G) such that g 6∈ N . Since NC(G) is closed under
finite intersections we see that the notion of being residually-C and fully residually-C
coincide.

Lemma 2.4. Let G be a group. Then the following are equivalent:

(i) G is residually-C,
(ii) {1} is C-closed in G,
(iii)

⋂
N∈NC(G)N = {1},

(iv) pro- C(G) is Hausdorff.

Proof. (i)⇒ (ii): let G be a residually-C group. Then for every g ∈ G \ {1} there
is N ∈ NC(G) such that g 6∈ N , thus gN ∩ {1} = ∅. This means that {1} is C-closed in
G.

(ii) ⇒ (iii): suppose that {1} is C-closed in G. Let g ∈ G \ {1} and assume that
g ∈ ⋂N∈NC(G)N . Since {1} is closed in G there is an N ′ ∈ NC(G) such that g 6∈ N ′,
which is a contradiction as we assumed that g ∈ N for all N ∈ NC(G).

(iii) ⇒ (i): let
⋂
N∈NC(G)N = {1} and let g ∈ G \ {1}. We see that {1} is an

intersection of C-closed subsets and thus it is C-closed in G. As g 6∈ {1} there is N ∈
NC(G) such that gN ∩ {1} = ∅, hence g 6∈ N and we see that G is residually-C.

(i) ⇒ (iv): let g1, g2 ∈ G be arbitrary such that g1 6= g2. Then g−1
1 g2 6= 1 and thus

there is N ∈ NC(G) such that g−1
1 g2 6∈ N . This means that g1N ∩ g2N = ∅, therefore

any two distinct elements of G can be separated in G and thus pro- C(G) is Hausdorff.
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(iv) ⇒ (i): let g ∈ G \ {1} be arbitrary. Since pro- C(G) is Hausdorff we see that
there are N,N ′ ∈ NC(G) such that 1N ∩ gN ′ = ∅. This means that g 6∈ N and thus G
is residually-C. �

Being residually-C is clearly a hereditary property.

Remark 2.5. Let G be a group and let H ≤ G. If G is residually-C then H is
residually-C.

Let G be a group and assume that H ≤ G. For an element g ∈ G we will use gH to
denote {hgh−1 | h ∈ H} ⊆ G, the set of H-conjugates of H. The symbol ∼H will denote
the relation of being H-conjugates, i.e. f ∼H g if and only if f ∈ gH . We can then
restate the definition of C-conjugacy separability in terms of pro-C topologies: group G
is C-CS if the conjugacy class gG is C-closed in G for every g ∈ G.

2.2. C-open and C-closed subgroups

Let H ≤ G be such that there is N ∈ NC(G) such that N ≤ H. Then clearly H is
a union of cosets of N and hence H is C-open in G as it is a union of C-open subsets of
G. It turns out that the opposite implication holds as well.

Lemma 2.6 (Classification of C-open subgroups). Let G be a group and let H ≤ G.
Then H is C-open in G if and only if there is N ∈ NC(G) such that N ≤ H. Moreover,
every C-open subgroup is C-closed in G and if C contains only finite groups, then H is
of finite index in G.

Proof. The sufficiency holds trivially as discussed before the statement of the
lemma.

Now let H ∈ G be C-open in G. Since 1 ∈ H then H must contain some open
neighbourhood of 1, hence there is N ∈ NC(G) such that N ≤ H. Obviously G \H is a
union of cosets of N and thus G \H is C-open subset of G. Hence H is C-closed in G.
Finally, if C is a class of finite groups then |G : N | <∞ and N ≤ H, hence we see that
|G : H| <∞. �

Lemma 2.6 implies that in the profinite topology, open subgroups of G are exactly
subgroups of finite index and in the pro-p topology, p-open subgroups of G are exactly
subnormal subgroups of finite index whose index is a power of p. This allows us to
generalise the notion of hereditary conjugacy separability.

Definition 2.7. Let C be a class of finite groups. We say that a group G is C-
hereditarily conjugacy separable (C-HCS) if G is C-CS and H ≤ G is C-CS as well
whenever H is C-open in G.

We have a classification of C-open subgroups. What can be said about C-closed
subgroups?

Lemma 2.8 (Classification of C-closed subgroups). Let G be a group and let H ≤ G.
Then H is C-closed in G if and only if it is an intersection of C-open subgroups of G.

Proof. Assume that H =
⋂
H′∈HH

′ where H = {H ′ ∈ G | H ′ is C-open in G}.
Then H is clearly C-closed in G as it is an intersection of C-closed sets.
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Now assume thatH is C-closed inG. DenoteH = {H ′ ≤ G | H ≤ H ′ and H ′ is C-open}
and let H =

⋂
H′∈HH

′. Clearly H ≤ H. Assume that H 6= H, then there is some

g ∈ H \ H. As H is C-closed in G there is N ∈ NC(G) such that gN ∩ H = ∅. This
is true if and only if g 6∈ NH. Since we assume that N ∈ NC(G), we see that NH is
a union of cosets of H and thus it is a C-open subgroup of G. Also H ≤ NH, thus
NH ∈ H. However, g 6∈ NH but g ∈ H =

⋂
H′∈HH

′, which is a contradiction. �





CHAPTER 3

Graph products of groups

When studying group properties, it is natural to ask whether given properties are
stable under various group-theoretic constructions. Our main focus is the study of
separability properties in graph products, a natural generalisation of free and direct
products.

3.1. Definition and normal form

By a graph we will always mean a simplicial graph, i.e. Γ is a tuple (V Γ, EΓ), where

V Γ is a set and EΓ ⊆
(
V Γ
2

)
. We call V Γ the set of vertices of Γ and EΓ the set of edges

of Γ.
Let Γ be a graph and suppose that G = {Gv | v ∈ V Γ} a family of groups. The

graph product ΓG of the family G with respect to the graph Γ is the quotient of the free
product ∗v∈V ΓGv modulo all the relations of the form

gugv = gvgu for all gu ∈ Gu, gv ∈ Gv whenever {u, v} ∈ V Γ.

If the underlying graph Γ is finite then we say that ΓG is a finite graph product.
We will refer to the groups Gv as vertex groups.
Obviously, if the graph Γ is totally disconnected, i.e. EΓ = ∅, then ΓG is isomorphic

to ∗v∈V ΓGv, the free product of the vertex groups, and if the graph Γ is complete, i.e.

if EΓ =
(

ΓV
2

)
, then ΓG is isomorphic to qv∈V Γ, the direct product of the vertex groups.

If Gv ∼= Z, the infinite cyclic group, for every v ∈ V Γ then we say that the cor-
responding graph product ΓG is a right angled Artin group (RAAG). Graph products
of groups were first introduced by Green in her Ph.D. thesis [21] as a generalisation of
RAAGs.

If we set Gv = C2, the cyclic group of order two, for all v ∈ V Γ we get another well
known class of groups: right angled Coxeter groups (RACGs).

Let G = ΓG be a graph product. Then every g ∈ G can be obtained as a product of
sequence of generators W ≡ (g1, g2, . . . , gn) where each gi belongs to some Gvi ∈ G. We
will say that W is a word in G and the gi are its syllables. The number of syllables is
the length of a word.

Transformations of the three following types can be defined on words in graph prod-
ucts:

(T1) remove a syllable gi if gi =G 1,
(T2) remove two consecutive syllables gi, gi+1 belonging to the same vertex group

Gv and replace them by a single syllable gigi+1 ∈ Gv,
(T3) interchange consecutive syllables gi ∈ Gu and gi+1 ∈ Gv if {u, v} ∈ EΓ.

13



14 3. GRAPH PRODUCTS OF GROUPS

The last transformation is also called syllable shuffling. Note that the transformations
(T1) and (T2) decrease the length of a word whereas (T3) preserves it. Thus by applying
these transformations to a word W we will get a word W ′ of minimal length representing
the same element in G.

For v ∈ V Γ we define linkΓ(v) to be the the set of vertices adjacent to v in Γ, more
precisely linkΓ(v) = {u ∈ V Γ | {u, v} ∈ EΓ}.

For 1 ≤ i < j ≤ n, we say that the syllables gi, gj can be joined together if they
belong to the same vertex group and ‘everything between them commutes’. More for-
mally: gi, gj ∈ Gv for some v ∈ V Γ and for all i < k < j we have gk ∈ Gvk such that vk ∈
linkΓ(v). In this case obviously the wordsW ≡ (g1, . . . , gi−1, gi, gi+1, . . . , gj−1, gj , gj+1, . . . , gn)
and W ′ ≡ (g1, . . . , gi−1, gigj , gi+1, . . . , gj−1, gj+1, . . . , gn) represent the same group ele-
ment in G, but the word W ′ is strictly shorter than W . We say that a word W ≡
(g1, g2, . . . , gn) is reduced if it is either an empty word or if gi 6= 1 for all i and no two
distinct syllables can be joined together.

As Green proved in her Ph.D. thesis, the notion of being reduced and the notion of
having minimal length coincide.

Theorem 3.1 (Normal Form Theorem for graph products of groups). Let G = ΓG be
a graph product. Every element g ∈ G can be represented by a reduced word. Moreover,
if two reduced words W,W ′ represent the same element in the group G then W can be
obtained from W ′ by a finite sequence of syllable shuffling. In particular, the length of a
reduced word is minimal among all words representing g, and a reduced word represents
the trivial element if and only if it is the empty word.

As an immediate consequence of the Normal Form Theorem we see that every vertex
group Gv embeds into G. We can actually say much more.

For any subset A ⊆ V Γ we will denote the corresponding full subgraph by ΓA:
V ΓA = A and for u, v ∈ A we have {u, v} ∈ EΓA if and only if {u, v} ∈ EΓ. Suppose
that A ⊆ V Γ and let GA denote the subgroup of G generated by all Gv, where v ∈ A.
We can construct the restricted graph product GAΓA, where GA = {Gv | v ∈ A}. Let
ι : ΓAGA → G be a homomorphism defined by ι(gv) = gv.

Suppose thatW = (g1, . . . , gn) is a reduced word in ΓAGA. Since ΓA is a full subgraph
we see that elements gu ∈ Gu and gv ∈ Gv, where u, v ∈ A, commute in ΓAGA if and
only if ι(gu), ι(gv) commute in G, therefore W is reduced in ΓAGA if and only ι(W ) is
reduced in G. By the Normal Form Theorem we get that ΓAGA embeds into G. Thus
every A ⊂ V Γ determines a subgroup GA ≤ G. We will call subgroups of this type full
subgroups of ΓG and we say that a full subgroup GA is a proper full subgroup if A is a
proper subset of V Γ. By definition G∅ = {1} is also a full subgroup corresponding to
the empty subset of V Γ. We say that GA is a maximal full subgroup if |V Γ \A| = 1.

Let G be a group and suppose that R ≤ G. We say that R is a retract of G if there
exists a surjective homomorphism ρ : G→ R such that ρ �R= idR. We say that the map
ρ is the retraction corresponding to R.

It can be easily seen that full subgroups are retracts.

Remark 3.2. Let G = ΓG be a graph product of groups and let GA ≤ G be a full
subgroup. Then GA is a retract in G with corresponding retraction map ρA : G → GA
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defined on generators of G as follows:

ρA(g) =

{
g if g ∈ Gv and v ∈ A,
1 otherwise.

Proof. Define a map π : G→ ΓAGA on generators by π(g) = g if g ∈ Gv for some
v ∈ A, and π(g) = 1 otherwise. Let g1 ∈ Gu and g2 ∈ Gv where u, v ∈ V Γ. If g1, g2

commute in G, then their images π(g1), π(g2) commute in ΓAGA. Thus all relations of
ΓG hold in ΓAGA. By von Dycks theorem [36, Theorem 2.2.1] π extends to a surjective
homomorphism. As was stated before, ΓAGA embeds in ΓG. Denote this embedding by
ι : ΓAGA → ΓG. Obviously ρA = ι ◦ π on all vertex groups, thus ρA|GA

= idGA
. �

In [15, Section 3] we study further properties of graph product of groups. In par-
ticular, we develop a theory of cyclically reduced elements, which allows us to state the
conjugacy criterion for graph products.

3.2. Special amalgams and structure of graph products

Definition 3.3. Let A,H be groups and let H ≤ A. Then we define A?H C, the
special amalgam of A and C over H, to be the following free product with amalgamation:

A ∗H (H × C).

As a very special case of free products with amalgamation, special amalgams do have
a canonical normal form (see [26, Theorem 4.4, page 201]). In fact we can say much
more about canonical normal form in the case of special amalgams.

Let G = A?H C. Obviously, every element g ∈ G can be represented as a product
x0c1x1 . . . cnxn where xi ∈ A for i = 0, 1, . . . , n and cj ∈ C for j = 1, . . . , n. We say that
g = x0c1x1 . . . cnxn is in a reduced form if xi 6∈ H for i = 1, . . . , n − 1 and cj 6= 1 for
j = 1, . . . , n. In the first presented paper [15] we prove the following, using the normal
form theorem for free products with amalgamation [26, Theorem 4.4]:

[6, Lemma 5.3]. : Let H ≤ A,C be groups and let G = A?H C. Suppose that
g = x0c1x1 . . . cnxn, where x0, x1, . . . , xn ∈ A and c1, . . . , cn ∈ C, with n ≥ 1 is in
reduced form. Then g 6= 1 in G.

Moreover, suppose that f = y0d1y1 . . . dmym, where y0, y1, . . . , ym ∈ A and d1, . . . , dm ∈
C, is in reduced form with m ≥ 1 as well and f = g. Then m = n and ci = di for all
i = 1, . . . , n.

Let G = A ∗CA=CB
B be a free product with amalgamation and let α : A → H,

β : B → H be group homomorphisms. By the universal property of free products with
amalgamation, we see that α, β extend uniquely to a homomorphism φ : G→ H if and
only if α and β coincide. In the case of special amalgams this functorial property can
be strengthened.

Remark 3.4 (Functorial property of special amalgams). Let G = A?C D be the
special amalgam of groups A and D over C and let α : A → A′ and δ : D → D′ be
homomorphisms of groups. Then α and δ extend uniquely to a homomorphism φ : G→
G′, where

G′ = A′ ?α(C)D
′,

such that φ(a) = α(a) for all a ∈ A and φ(d) = δ(d) for all d ∈ D.
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Proof. Let γ = α|C be the restriction of α to C. Then by the functorial property
of direct products there is unique homomorphism µ : C × D → α(C) × D′ such that
µ(c, d) = (γ(c), δ(d)). Since µ and α coincide on C, they can be uniquely extended
to a homomorphism φ such that φ(a) = α(a) for all a ∈ A and φ(cd) = µ(cd) for all
cd ∈ C ×D. �

In [15, Section 5] we develop the theory of special amalgams. In particular, we
give a complete description of centralisers and we state a conjugacy criterion for special
amalgams.

The main reason why we are interested in special amalgams is that they naturally
appear in graph products.

Remark 3.5. Let G = ΓG be a graph product and suppose that |V Γ| ≥ 2. Then for
every v ∈ V Γ there is a natural splitting of G as a special amalgam of full subgroups.

Proof. Let v ∈ V Γ be arbitrary. Let us denote C = linkΓ(v), B = {v} ∪ linkΓ(v)
and A = V \ {v}. Obviously GC ≤ GB, GC ≤ GA and G = 〈GA, GB〉. It is easy to see
that G = GA ∗GC

GB. Note that graph ΓB is reducible since v is connected to every
other vertex, therefore GB = Gv ×GC . Consequently G = GA ∗GC

(GC ×Gv). �



CHAPTER 4

Results and methods

We are interested in studying the behaviour of separability properties under graph
products. More formally: let P be a separability property and let G = ΓG be a graph
product where all the vertex groups have the property P . Then we ask: does G have
the property P as well?

Some separability properties are not preserved by graph products. Free groups are
LERF by result of M. Hall Jr. [22]. However, by a result of Mihailova [27] we know that
F2 × F2 contains a finitely generated subgroup with unsolvable membership problem.
Thus a direct product of LERF groups may not be LERF, as the membership problem
can be solved for any finitely generated subgroup by an algorithm of Mal’cev-Mostowski
type in finitely presented LERF groups. Since direct products are a special case of graph
products we see that property LERF is not preserved under graph products.

In her Ph.D. thesis [21] Green proved that the class of RF groups is closed under tak-
ing graph products [21, Corollary 5.4] and that the same holds for the class of residually
p-finite groups [21, Theorem 5.6].

4.1. Conjugacy separability

In the first presented paper

[15] On conjugacy separability in graph products of groups,

we study the behaviour of C-conjugacy separability and C-hereditary conjugacy separa-
bility in graph products. The aim of this section is to describe and explain the main
ideas and methods we used in [15].

One can easily check that the class of C-CS groups is closed under direct products
for any class C. Suppose that G = G1 × G2 is a product of C-CS groups and let
(f1, f2), (g1, g2) ∈ G be arbitrary such that (f1, f2) 6∼G (g1, g2). Obviously, either f1 6∼G1

g1 or f2 6∼G2 g2. Without loss of generality we may assume that f1 6∼G1 g1. As G1 is
C-CS, we see that there is L1 ∈ NC(G1) such that λ1(f1) 6∼G/L λ1(g1), where λ1 : G1 →
G1/L1 is the natural projection. Set L = L1 × G2. Clearly, L ∈ NC(G) and for the
natural projection λ : G→ G/L we have λ((f1, g1)) 6∼G/L λ((f2, g2)).

However, showing that the class of C-HCS groups is closed under direct products
needs more work. In general, showing that a group G is C-HCS directly, i.e. showing
that every C-open subgroup of G is C-CS can turn out to be quite a strenuous task. We
will often use a convenient workaround: instead of working with conjugacy in C-quotients
of G we will work with centralisers in C-quotients.

Definition 4.1. Let C be a class of groups satisfying (c1) and (c2). We say that a
group G satisfies the C-centraliser condition (C-CC) if for every g ∈ G and K ∈ NC(G)

17
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there is L ∈ NC(G) such that L ≤ K and

CG/L(λ(g)) ⊆ λ(CG(g)K),

where λ : G→ G/L is the natural projection.

Roughly speaking, if G has C-CC, then for every element g ∈ G we know that every
projection γ : G → C, where C ∈ C, factors through some group C ′ ∈ C in which we
have control over the size of the centraliser of the image of g.

Centraliser condition was introduced by Chagas and Zalesskii in [9], in the case where
C is the class of all finite groups. However, their definition of the centraliser condition
was given in terms of profinite completion. They showed that if a group G is CS and
satisfies the centraliser condition, then G is HCS. Minasyan gave the definition in terms
of subgroups of finite index and showed that for RF groups the definitions are equivalent.
Minasyan also showed that the implication in the other direction holds as well: a CS
group G is HCS if and only if it satisfies CC (see [28, Proposition 3.2]). Toinet proved
that the same statement holds when C is the class of all finite p-groups for some p ∈ P
(see [40, Proposition 3.6]). We show that the statement is true whenever the class C
satisfies (c1), (c2) and (c4).

[15, Theorem 4.2]. Suppose that C is a class of finite groups satisfying (c1), (c2) and
(c4). Let G be a group. Then the following are equivalent:

(i) G is C-HCS,
(ii) G is C-CS and satisfies C-CC.

We demonstrate the usefulness of [15, Theorem 4.2] in the proof of the following
lemma.

Lemma 4.2. Suppose that C is a class of finite groups satisfying (c1), (c2) and (c4).
Then class of C-HCS groups is closed under taking direct products.

Proof. Let G = G1 × G2 be a direct product of C-HCS groups. By the previous
discussion, we see that G is C-CS. We want to use [15, Theorem 4.2], so we need to
show that G satisfies C-CC. Let g = (g1, g2) ∈ G and K ∈ NC(G) be arbitrary. Note
that CG(g) = CG1(g1)×CG2(g2). Set K1 = G1 ∩K and K2 = K ∩G2. Both G1, G2 are
C-HCS, thus by [15, Theorem 4.2] we see that both satisfy C-CC. We see that there are
L1 ∈ NC(G1) and L2 ∈ NC(G2) such that L1 ≤ K1, L2 ≤ K2 and

CG1/L1
(λ1(g1)) ⊆ λ1(CG1(g1)K1),

CG2/L2
(λ2(g2)) ⊆ λ2(CG2(g2)K2),

where λ1 : G1 → G1/L1 and λ2 : G2 → G2/L2 are the natural projections. Since the class
C is closed under taking direct products, we see that L = L1 × L2 ∈ NC(G). Obviously
L ≤ K. Let λ : G→ G/L = G1/L1 ×G2/L2 be the natural projection. We see that

CG/L(λ(g)) = CG1/L1
(λ1(g1))× CG2×L2(λ2(g2)) ⊆ λ1(CG1(g1)K1)× λ2(CG2(g2)K2)

⊆ λ(CG(g)K)

and thus G1×G2 satisfies C-CC. By [15, Theorem 4.2] we see that G1×G2 is C-HCS. �



4.1. CONJUGACY SEPARABILITY 19

Note that in the case where C is the class of all finite groups, this was proved by
Martino and Minasyan [25, Lemma 7.3].

It was proved by Stebe [39], and independently by Remeslennikov [34], that the
class of CS groups is closed under taking free products. The main idea in Stebe’s proof
is that given two-non conjugate elements one can always construct a homomorphism to
a free product of two finite groups such that the images are still not conjugate. Then
one can use the fact that free products of finite groups are CS. In a way, we use a similar
idea: constructing homomorphisms onto amalgams of finite groups. Dyer [13] proved
that free-by-finite groups are CS and, in particular, amalgams of finite groups are CS. In
his paper on p-conjugacy separability in RAAGs, Toinet [40, Theorem 4.2] proved that
free-by-(finite p) groups are p-CS for every prime p. Recently, it was proved that these
results can be generalised for any class of finite groups with sufficiently strong closure
properties.

We say that a class C is an extension closed variety of finite groups if C is a class of
finite groups satisfying (c1), (c2), (c3) and (c4). The most obvious examples of extension
closed varieties of groups are the following classes

• the class of all finite groups,
• the class of all finite solvable groups,
• the class of all finite p-groups, where p is a prime.

Ribes and Zalesskii [35, Theorem 3.2] proved that finitely generated free-by-C groups
are C-CS whenever C is an extension closed variety of finite groups.

Using the result of Ribes and Zalesskii one can easily show that the class of C-CS
groups is closed under taking free products whenever C is an extension closed variety of
finite groups.

As the class of C-CS groups is closed under taking free and direct products, it is
natural to ask whether the class of CS groups is closed under taking graph products.
Green herself proved that the class of CS groups is closed under taking tree products, i.e.
where the underlying graph Γ is a tree. Minasyan [28, Theorem 1.1] proved that finitely
generated RAAGs are HCS. Minasyan’s method was later used by Toinet [40, Theorem
6.15] to show that finitely generated RAAGs are p-HCS. Minasyan’s proof uses the
fact that special HNN-extensions of finite groups are free-by-finite and hence by Dyer’s
result [13, Theorem 3] they are HCS. Similarly, Toinet uses the fact that special HNN-
extensions of finite p-groups are free-by-(finite p) and hence by [40, Theorem 4.2] they
are p-HCS. We use the result of Ribes and Zalesskii to prove the following generalisation
of results of Minasyan and Toinet, whose proof is the most substantial part of [15].

[15, Theorem 6.1]. Assume that C is an extension closed variety of finite groups.
Then the class of C-HCS groups is closed under taking finite graph products.

The theorem is proved using [15, Theorem 4.2], hence we show that if G is a graph
product of C-HCS groups then G is C-CS and satisfies C-CC. Both these claims are
proved by simultaneous induction on the number of vertices of the graph. We assume
that the statement has been proved for all graphs Γ′ with |V Γ| < r, then we take ΓG to
be a graph product of C-HCS groups such that |V Γ| = r. By the inductive hypothesis
we see that every proper full subgroup is C-HCS, thus by [15, Theorem 4.2] every proper
full subgroup is C-CS and satisfies C-CC.
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For conjugacy, the proof uses the ideas used by Stebe in [39]: we take f, g ∈ G to
be arbitrary such that f 6∼G g and our aim is to construct a homomorphism onto a
free-by-C (and thus C-CS) group, which separates the conjugacy classes of f and g. We
find a suitable splitting of G as an amalgam of its full subgroups G = A?H C and, using
the inductive hypothesis together with the conjugacy criterion for special amalgams, we
show that there are groups Q,S ∈ C together with homomorphisms γA : A → Q and
γC : C → S, such that for the corresponding extension γ : A?H C → P = Q?γA(H)C we
have γ(f) 6∼P γ(g). Now, P is a special amalgam of C-groups and thus it is free-by-C (see
[15, Lemma 6.6]). Consequently, it is C-HCS by the result of Ribes and Zalesskii. We
see that there is a C-group D and a homomorphism δ : P → D such that δ(f) 6∼D δ(f).
If we set φ : G → D to be given by φ = δ ◦ γ we see that φ(f) 6∼D φ(g) and thus G is
C-CS.

Similarly, for the centraliser condition, we take g ∈ G and K ∈ NC(G) to be arbitrary.
Again, we consider a suitable splitting of G of as a special amalgam of its proper full
subgroups G = A?H C. Using the inductive hypothesis together with the classification
of centralisers in special amalgams, we show that there are groups Q,S ∈ C together
with homomorphisms γA : A→ Q and γC : C → S such that for corresponding extension
γ : A?H C → P = Q?γA(H)C satisfies CP (γ(g)) ⊆ γ(CG(g)K). Note that γ(K) ∈
NC(P ). Now, P is a special amalgam of C-groups and thus it is free-by-C (see [15,
Lemma 6.6]) and, consequently, is C-HCS by the result of Ribes and Zalesskii. By [15,
Theorem 4.2] we see that P has C-CC, hence there is L′ ∈ NC(P ) such that

CP/L′(λ(γ(g))) ⊆ λ(CP (γ(g)γ(K))).

By setting L = γ−1(L′) we see that CG/L(ψ(g)) ⊆ ψ(CG(g)K), where ψ : G → G/L is
the natural projection, and therefore G has C-CC.

In order to able to this, in [15, Section 5] we develop theory of special amalgams,
most importantly the conjugacy criterion for special amalgams [15, Lemma 5.8, Lemma
5.11] and a classification of centralisers in special amalgams [15, Lemma 5.9, Lemma
5.10, Lemma 5.12]. The induction step is establised in [15, Lemma 6.12] and rest of [15,
Section 6] is a case analysis dealing with all possible situations that might occur.

Note that every C-group is trivially C-HCS, so as an immediate consequence of [15,
Theorem 6.1] we see that finite graph products of C-groups are C-HCS.

[15, Corollary 6.17]. Assume that C is an extension closed variety of finite groups.
Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family of groups such that Gv ∈ C
for all v ∈ V Γ. Then the group G = ΓG is C-HCS.

In [15, Section 3] we give a conjugacy criterion for graph products which we later
use in [15, Section 7] along with Theorem [15, Theorem 6.1] to prove the following two
theorems.

[15, Theorem 1.1]. Let C be an extension closed variety of finite groups. Then the
class of C-CS groups is closed under arbitrary graph products.

[15, Theorem 1.2]. Let C be an extension closed variety of finite groups. Then the
class of C-HCS groups is closed under arbitrary graph products.

Again, the idea behind the proof of [15, Theorem 1.1] is analogous to Stebe’s proof
for free products: finding suitable C-quotients of vertex groups. Fist of all it is important
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to note that for every pair f, g ∈ G the subset S = supp(f) ∪ supp(g) is finite, and f
and g are conjugate in GS , the full subgroup of G corresponding to S, if and only if f
is conjugate to g in G. Thus we see that that we can without loss of generality assume
that the corresponding graph Γ is actually finite. Using the conjugacy criterion for graph
products (see [15, Lemma 3.12]) we show that if G = ΓG is a graph product of C-CS
groups then for every pair of elements f, g ∈ G such that f 6∼G g we can find a family of
C-groups F = {Fv | v ∈ V Γ} together with a family of homomorphisms {φv : Gv → Fv}
such that for the canonical extension φ : G → F = ΓF we have φ(f) 6∼F φ(g). Then
by [15, Corollary 6.17] we see that F is C-HCS. From that we immediately obtain that
there is a group C ∈ C and a homomorphism γ : F → C such that γ(φ(f)) 6∼C γ(φ(g))
and we are done.

The idea behind the proof of [15, Theorem 1.2] is somewhat similar. Obviously, if
G = ΓG is a graph product of C-HCS groups then G is C-CS by [15, Theorem 1.1].
We show that for every g ∈ G and K ∈ NC(G) there is a finite graph ∆ (actually a
quotient of Γ) and a family of C-HCS groups D together with a group homomorphism
δ : G → D = ∆D such that ker(δ) ≤ K and CD(δ(g)) ⊆ δ(CG(g)K). Now, as D is
a finite graph product of C-HCS groups we see that D is C-HCS by [15, Theorem 6.1]
and D satisfies C-CC by [15, Theorem 4.2]. Note that δ(K) ∈ NC(D), thus there is
L′ ∈ NC(D) such that

CD/L(λ(δ(g))) ⊆ λ(CD(δ(g))δ(K)),

where λ : D → D/L is the natural projection. Again, by composing γ = λ ◦ δ we see
that CD/L(γ(g)) ⊆ γ(CG(g)K) and therefore G satisfies C-CC. Again, we see that G is
C-HCS by [15, Theorem 4.2].

4.2. Residual finiteness of Out

In the second presented paper,

[16] Separability properties of automorphisms of graph products of groups,

we study residual properties of the groups of outer automorphisms of graph products of
groups. By a classical result of Baumslag it is known that for finitely generated groups
the property of being RF is passed to automorphism groups.

Theorem 4.3 (Baumslag [3]). Let G be a finitely generated RF group. Then Aut(G)
is RF.

Proof. Let φ ∈ Aut(G) \ {idG} be arbitrary. As φ is not the identity there exists
g′ ∈ G such that φ(g′) 6= g′ in G. By residual finiteness there is N Ef.i.G such that
φ(g′)N ∩ g′N = ∅. Now set

K =
⋂

γ∈Aut(G)

γ−1(N).

Note that |G : γ−1(N)| = |G : N | for every γ ∈ Aut(G). Since G is finitely generated,
we see that for every n ∈ N there are only finitely many H ≤ G such that |G : N | = n.
It follows that K Ef.i.G as it is an intersection of finitely many subgroups of finite
index. Also we see that γ(K) = K for every γ ∈ Aut(G), i.e. K is characteristic in
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G. We see that the natural homomorphism κ : G → G/K induces a homomorphism
κ̃ : Aut(G)→ Aut(G/K) given by

κ̃(γ)(gK) = γ(g)K

for every γ ∈ Aut(G), g ∈ G. Note that Aut(G/K) is a finite group. As K ≤ N we
see that φ(g′)K 6= g′K and thus κ̃(φ)(g′K) 6= gK. Therefore κ̃(φ) is not the identity on
G/K, and thus Aut(G) is residually finite. �

Baumslag’s proof uses two relatively simple observations:

(1) if a group G is finitely generated then for every H ≤f.i.G there is K Ef.i.G
characteristic in G such that K ≤ H;

(2) if K EG is characteristic then the natural projection κ : G → G/K induces a
homomorphism κ̃ : Aut(G)→ Aut(G/K).

It is natural to ask whether something similar can be said about Out(G), the group
of outer automorphisms of G. In general, the answer is negative: Bumagin and Wise [7]
proved that for every finitely presented group O there is a finitely generated RF group
G such that Out(G) ∼= O. If we set O = BS(2, 3), the Baumslag-Solitar group given by
the presentation 〈a, b‖ba2b−1 = a3〉, then we see that there is a finitely generated RF
group G such that Out(G) is isomorphic to BS(2, 3), which is known not to be RF. Note
that G will not be finitely presented.

Another naturally arising question is: which properties does a finitely generated
RF group G need to satisfy to ensure that Out(G) is RF? We say that φ ∈ Aut(G) is
pointwise inner if φ(g) ∼G g for every g ∈ G. We say that a group G has Grossman’s
property (A) if it does not have nontrivial pointwise inner automorphisms, i.e. for every
φ ∈ Aut(G) if φ is pointwise inner, then φ ∈ Inn(G).

Theorem 4.4 (Grossman [19]). Let G be a finitely generated CS group and suppose
that G has Grossman’s property (A). Then Out(G) is RF.

Proof. Let φ ∈ Aut(G) \ Inn(G) be arbitrary. As G has Grossman’s property (A)
we see that φ is not pointwise inner, i.e. there is a g′ ∈ G such that φ(g′) 6∼G g′. By
conjugacy separability there is N Ef.i.G such that φ(g′)GN ∩ g′GN = ∅ in G. Again, set

K =
⋂

γ∈Aut(G)

γ−1(N).

Again, as G is finitely generated, we see that K Ef.i.G is characteristic in G and thus
the natural projection κ : G→ G/K induces a homomorphism κ̃ : Aut(G)→ Aut(G/K)
given by

κ̃(γ)(gK) = γ(g)K

for every γ ∈ Aut(G), g ∈ G. Note that κ̃(Inn(G)) ⊆ Inn(G/K). As K ≤ N we see that
φ(g′)GK ∩ g′GK = ∅, i.e. φ(g′)K 6∼G/K g′K. We see that κ̃(φ) 6∈ Inn(G/K) and thus
Inn(G) is closed in Aut(G). It follows that Out(G) = Aut(G)/ Inn(G) is RF. �

Like Baumslag’s proof, Grossman’s proof uses two simple observations:

(1) if O = A/I is a quotient of a group A by its normal subgroup I, then O is RF
if and only if I is closed in A;



4.2. RESIDUAL FINITENESS OF Out 23

(2) if for every φ ∈ Aut(G)\Inn(G) there is K Ef.i.G characteristic such that for the
induced homomorphism κ̃ : Aut(G) → Aut(G/K) we have κ̃(φ) 6∈ Inn(G/K)
then Inn(G) is closed in Aut(G).

Groups satisfying the assumptions of Grossman’s theorem will be called Grossmanian
groups. That is, a group G is Grossmanian if G is a finitely generated CS group with
Grossman’s property (A).

The hypotheses of Grossman’s theorem are sufficient but not necessary. For example,
G = Z ∗ SL3(Z) is RF but not CS and following the results of Minasyan and Osin [29],
one can show that G has Grossman’s property (A) and Out(G) is RF. Grossman’s
property (A) is not necessary either: if G is finite, then Out(G) is finite (and therefore
RF), but Burnside [8] gave examples of finite-p groups with nontrivial pointwise inner
automorphisms. Perhaps the simplest infinite examples are virtually polycyclic groups:
virtually polycyclic groups are CS by results of Formanek [17] and Remeslennikov [32]
and groups of outer automorphisms of virtually polycyclic groups are RF by result of
Wehrfritz [41], yet Segal [38] gave an example of a torsion-free polycyclic group with
nontrivial pointwise inner automorphisms.

This motivates the following definition.

Definition 4.5. Let C be a class of finite groups. We say that a group G is C-inner
automorphism separable (C-IAS) if for every φ ∈ Aut(G) \ Inn(G) there is K ∈ NC(G)
characteristic in G such that for the induced homomorphism κ̃ : Aut(G) → Aut(G/K)
given by

κ̃(γ)(gK) = γ(g)K

for every γ ∈ Aut(G), g ∈ G we have κ̃(φ) ∈ Aut(G/K) \ Inn(G/K). In other words:
G is C-IAS if every non-trivial outer automorphism of G can be realised as a non-trivial
outer automorphism of some C-quotient of G.

If C is the class of all finite groups, then we will say that a group G is IAS to mean
that G is C-IAS. Similarly, we say that G is p-IAS to mean that G is C-IAS in the case
where C is the class of all finite p-groups.

Obviously, if G is IAS then Out(G) is RF. In [16, Lemma 7.2.] we show that if G is
finitely generated p-IAS then Out(G) is virtually residually p-finite.

Another reason for introducing the C-IAS property is the study of direct products.
Residual finiteness of outer automorphisms of free products of finitely generated RF
groups is well understood by the results of Minasyan and Osin in [29]. However, very
little is known about residual finiteness of outer automorphisms of direct products of
groups. In [16, Section 2] we study basic properties of C-IAS groups and we show that
the property of being C-IAS is stable under taking direct products.

[16, Proposition 2.1]. Let C be a class of finite groups satisfying (c1) and (c2). Let
A,B be finitely generated C-IAS residually-C groups. Then the group A×B is C-IAS.

As an immediate consequence we see that if A,B are finitely generated IAS RF
groups then A × B is IAS and consequently Out(A × B) is RF. Similarly, if A,B are
finitely generated p-IAS residually p-finite groups, then A×B is p-group and Out(A×B)
is virtually residually p-finite.
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In [16, Section 3] we show that groups satisfying a generalised version of Grossman’s
criterion are C-IAS (see [16, Lemma 3.2]) and we give examples of such groups. We also
show that all virtually polycyclic groups are IAS (see [16, Lemma 3.5]).

The use of Grossman’s property (A) motivates [16, Section 5], where we study
pointwise inner endomorphisms of graph products of groups.

For a graph Γ we say that a vertex v ∈ V Γ is central if link(v) = V Γ \ {v}, i.e. v is
central in Γ if it is adjacent to all the vertices of Γ (apart from itself).

[16, Theorem 1.1]. Let Γ be a finite graph without central vertices and let G = {Gv |
v ∈ V Γ} be a family of non-trivial groups. Then the group ΓG has Grossman’s property
(A).

Note that if the underlying graph Γ is irreducible and has at least two vertices,
i.e. if the vertex set V Γ cannot be written as a disjoint union V Γ = X∪̇Y such that
{x, y} ∈ EΓ for all x ∈ X and y ∈ Y , then [16, Theorem 1.1] can be recovered from
the work of Minasyan and Osin [30] on acylindrical hyperbolicity of graph products of
groups combined with the work of Antoĺın, Minasyan and Sisto [2] on commensurating
endomorphisms of acylindricaly hyperbolic groups. However, results presented in [30]
and [2] use geometric arguments, whereas our proof uses purely combinatorial methods
based on properties of normal forms in graph products and the conjugacy criterion for
graph products (see [15, Lemma 3.12]).

It can be easily seen that a finite direct product of groups has Grossman’s property
(A) if and only if all direct factors have Grossman’s property (A). Combining this simple
fact with [16, Theorem 1.1] we show:

[16, Corollary 1.2]. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family
of non-trivial groups. The group G = ΓG has Grossman’s property (A) if and only if all
vertex groups corresponding to central vertices of Γ have Grossman’s property (A).

Note that [16, Corollary 1.2] generalises a result of Minasyan [28, Proposition 6.9],
which states that finitely generated RAAGs have Grossman’s property(A).

In [16, Section 6] we study C-conjugacy distinguishable pairs in graph products. For
f, g ∈ G such that f 6∼G we say that the pair (f, g) is C-conjugacy distinguishable (C-CD)
if there exist a group C ∈ C and a homomorphism γ : G → C such that γ(f) 6∼C γ(g).
Clearly, a group G is C-CS if for every pair f, g ∈ G we have the following dichotomy:
either f ∼G g or the pair (f, g) is C-CD in G. Note that the conjugacy classes fG and
gG do not need to be C-closed in G, we just require that fG can be separated from gG

in some C-quotient of G.
If C is an extension closed variety of finite groups, then graph products of C-groups are

C-CS by [15, Corollary 6.17]. Using this result, by constructing suitable homomorphisms
from a graph product of residually-C groups to graph products of C-groups, we show that
most pairs of elements in a graph product of a graph products of residually-C groups are
indeed C-CD (see [16, Lemma 6.7]). This allows us to prove the following:

[16, Proposition 6.2]. Let Γ be a finite simplicial graph without central vertices and
let G = {Gv | v ∈ V Γ} be a family of non-trivial finitely generated residually-C groups.
Then the group G = ΓG is C-IAS.
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The proof of [16, Proposition 6.2] is led by contradiction: let φ ∈ Aut(G) \ Inn(G)
be arbitrary and suppose that for every g ∈ G the pair (φ(g), g) is not C-CD in G. Using
the fact that almost all pairs of elements are actually C-CD (see [16, Lemma 6.7]) we
then show that φ(g) ∼G g for every g ∈ G and thus φ is pointwise inner. However,
the graph Γ does not contain central vertices and thus by [16, Theorem 1.1] G has
Grossman’s property (A). This means that φ must be inner, which is a contradiction
with our assumptions. It follows that there must be an element g ∈ G such that the pair
(φ(g), g) is C-CD. Using a generalisation of Grossman’s criterion (see [16, Lemma 3.2])
we then show that ΓG is indeed C-IAS.

Using the fact that the class of C-IAS groups is closed under taking direct products
we extend [16, Proposition 6.2] to graph products with central vertices.

[16, Corollary 6.8]. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family
of non-trivial finitely generated residually-C groups such that the group Gv is C-IAS
whenever the vertex v is central in Γ. Then the group G = ΓG is C-IAS.

Applying [16, Proposition 6.2] and [16, Corollary 6.8] to the class of all finite groups
we immediately obtain the following two results:

[16, Theorem 1.3]. Let Γ be a finite graph without central vertices and let G = {Gv |
v ∈ V Γ} be a family of non-trivial finitely generated RF groups. Then the group ΓG is
IAS and consequently Out(ΓG) is RF.

[16, Corollary 1.4]. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be family of
non-trivial finitely generated RF groups. Assume that Gv is IAS whenever v is central
in Γ. Then the group ΓG is IAS and consequently Out(ΓG) is RF.

Note that [16, Theorem 1.3] generalises result of Minasyan and Osin in [29] on
residual finiteness of outer automorphism groups of free products of finitely generated
RF groups.

Similarly, applying [16, Proposition 6.2] and [16, Corollary 6.8] together with Lemma
[16, Lemma 7.2] to the class of all finite p-groups we immediately get the following:

[16, Theorem 1.5]. Let Γ be a finite graph without central vertices and let G = {Gv |
v ∈ V Γ} be a family of non-trivial finitely generated residually p-finite groups. Then the
group ΓG is p-IAS, Outp(ΓG) is residually p-finite and Out(ΓG) is virtually residually
p-finite.

[16, Corollary 1.6]. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family
of non-trivial finitely generated residually p-finite groups. Assume that Gv is p-IAS
whenever v is central in Γ. Then the group ΓG is p-IAS and consequently Outp(ΓG) is
residually p-finite and Out(ΓG) is virtually residually p-finite.

Note that if G is a group, then Outp(G) ≤ Out(G) denotes the set of all outer
automorphisms of G that act trivially on the first mod-p homology of G.

4.3. Residual properties and local embeddability

In the third presented paper

[6] with F. Berlai, Residual properties of graph products of groups,
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we study residual properties of graph products, especially residual amenability. In the
first presented paper [15, Lemma 6.8], the second named author proved that if C is a
class of finite groups satisfying (c1), (c2) and (c4) then the class of residually-C groups
is closed under graph products. The proof of [15, Lemma 6.8] heavily relies on the fact
that if C is a class of finite groups satisfying (c1), (c2) and (c4) then free-by-C groups
are residually-C (see [15, Lemma 2.9]).

We prove the following generalisation of [15, Lemma 6.8]:

[6, Theorem A]. Let C be a class of groups satisfying (c1) and (c2). Assume that
free-by-C groups are residually-C. Then the class of residually-C groups is closed under
taking graph products.

The main idea of the proof is to use induction on the number of vertices of the
underlying graph.

First, we show that if C is a class of groups satisfying (c1) and (c2) such that free-
by-C groups are residually-C, then a special amalgam A ?B C of residually-C groups
is residually-C if and only if the amalgamated subgroup B is C-closed in A (see [6,
Proposition 4.2]).

For the induction, we assume that [6, Theorem A] has been proved for all graphs Γ′

with |V Γ′| < r. We then argue that if G = ΓG is a graph product of residually-C groups
with |V Γ| = r, then G splits as a special amalgam G = A?B C , where B ≤ A,C are
some proper full subgroups of G. By the inductive hypothesis we see that A,B,C are
residually-C. Also, B is a full subgroup (and thus a retract) of A, hence B is C-closed
in G. Theorem A then follows by [6, Proposition 4.2] as G is a special amalgam of
residually-C groups over a C-closed subgroup.

However, determining for which classes C can we say that free-by-C groups are
residually-C is quite difficult. This was studied by the first named author in [5], where he
gave some sufficient conditions which the class C needs to satisfy to ensure that free-by-C
groups are residually-C (see [5, Lemma 3.3]). In particular, he showed that free-by-C
groups are residually-C whenever C is one following classes:

(1) amenable groups,
(2) elementary amenable groups,
(3) solvable groups.

Combining [6, Theorem A] with previous results of Berlai we show the following:

[6, Corollary A]. The class of residually amenable groups is closed under taking graph
products. The same is true for residually elementary amenable groups.

In [6, Section 5] we study local embeddability of graph products. Let G1, G2 be
groups and suppose that K ⊆ G1. We say that a function ϕ : G1 → G2 is a K-almost-
homomorphism if the following hold:

(i) ϕ �K is injective,
(ii) ϕ(kk′) = ϕ(k)ϕ(k′) for all k, k′ ∈ K.

Let C be a class of groups. We say that a group G is locally embeddable into C (LE-C)
if for every subset K ⊆ G such that |K| < ∞ there is a group C ∈ C and a K-almost-
homomorphism ϕ : G→ C.
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In a way, being LE-C is similar to being residually-C but weaker, as we do not require
the approximating maps to be homomorphisms. It is obvious that every residually-C
group is LE-C but in general the reverse implication does not hold.

It can be easily seen that every finitely presented LE-C is residually-C: let G be a
LE-C group given by a finite presentation 〈X‖R〉 and let g ∈ G\{1} be arbitrary. Let lR
be the length of longest relator in R, i.e. lR = maxr∈R{|r|}, and set l = max{lR, |g|}. Let
K = Bl(1, dX) ⊆ G be the closed ball of radius l with respect to dX centred around the
identity, where dX denotes the word metric on G with respect to the generating set X.
Note that g ∈ K. By assumption, there is a C-group C and a K-almost-homomorphism
ϕ : G → C. Now consider the restriction ϕB = ϕ �K . Clearly, the map ϕB respects all
the relations in R and thus by the theorem of von Dyck (see [36, Theorem 2.2.1]) the
function ϕB extends to a homomorphism ϕ : G→ C. Obviously, ϕ(g) 6= 1 in C as g ∈ K
and therefore G is residually-C.

An obvious example of a group which is locally embeddable into finite, but not
residually finite, would be FSym, the group of finitely supported bijections on an infinite
set. However, FSym is infinitely generated. Examples of finitely generated groups that
are locally embeddable into the class of amenable groups but are not residually amenable
were given in [14, Theorem 3].

The first named author proved that if the class of residually-C groups is closed under
taking free products, then the class of LE-C groups is closed under taking free products
as well (see [5, Theorem 1.5]). We generalise this result to graph products of groups.

[6, Theorem B]. Let C be a class of groups, suppose that C is closed under tak-
ing subgroups, finite direct products and that graph products of residually-C groups are
residually-C. Then the class of LE-C groups is closed under graph products.

The main idea behind the proof of [6, Theorem B] is as follows: using properties
of the normal form for graph products together with local embeddability of the vertex
groups, we show that for every finite subset K ⊆ ΓG there is a family of C-groups
F = {Fv | v ∈ V Γ} together with a K-almost-homomorphism ϕ : ΓG → ΓF . We then
use the fact that graph products of C-groups are residually-C by assumption.

We combine the known results about residual properties of graph products of groups
presented in [21, Corollary 5.4, Theorem 5.6], [15, Lemma 6.8] and our new result [6,
Theorem B] to obtain the following:

[6, Corollary B]. Let C be one of the following classes:

(1) finite groups,
(2) finite p-groups,
(3) solvable groups,
(4) finite solvable groups,
(5) elementary amenable groups,
(6) amenable groups.

Then the class of LE-C groups is closed under graph products.
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ON CONJUGACY SEPARABILITY OF GRAPH PRODUCTS OF

GROUPS

MICHAL FEROV

Abstract. We show that the class of C-hereditarily conjugacy separable groups is
closed under taking arbitrary graph products whenever the class C is an extension
closed variety of finite groups. As a consequence we show that the class of C-conjugacy
separable groups is closed under taking arbitrary graph products. In particular, we
show that right angled Coxeter groups are hereditarily conjugacy separable and 2-
hereditarily conjugacy separable, and we show that infinitely generated right angled
Artin groups are hereditarily conjugacy separable and p-hereditarily conjugacy sepa-
rable for every prime number p.
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1. Introduction

Let G be a group. We say that G is residually finite (RF) if for every non-trivial
element g ∈ G there exists a a finite group F and a group homomorphism φ : G → F
such that φ(g) 6= 1 in F . We say that the group G is conjugacy separable (CS) if for
every pair of elements f, g ∈ G such that f is not conjugate to g in G there is a finite
group F and a homomorphism φ : G→ F such that φ(f) is not conjugate to φ(g) in F .

Group properties of this type are called separability properties. In this paper we will
be dealing with conjugacy separability and its various generalisations.

1.1. Motivation. Separability properties provide an algebraic analogue to solvability
of decision problems for finitely presented groups. Mal’cev [15] proved that finitely
presented residually finite groups have solvable word problem. Similarly, Mostowski
[20] showed that finitely presented conjugacy separable groups have solvable conjugacy
problem.

The following classes of groups are known to be conjugacy separable: virtually free
groups (Dyer [7]), virtually polycyclic groups (Formanek [8], Remeslennikov [22]), vir-
tually surface groups (Martino [16]), limit groups (Chagas and Zalesskii [6]), finitely
generated right angled Artin groups (Minasyan [18]), even Coxeter groups whose dia-
gram does not contain (4, 4, 2)-triangles (Caprace and Minasyan [4]), finitely presented
residually free groups (Chagas and Zalesskii [5]), one-relator groups with torsion (Mi-
nasyan and Zalesskii [19]) and fundamental groups of compact orientable 3-manifolds
(Hamilton, Wilton and Zalesskii [12]).

Conjugacy separability is similar to residual finiteness but is much stronger. It can
be easily seen that every CS group is RF, but the implication in the opposite direction
does not hold. Perhaps the easiest example of a RF group which is not CS was given
by Stebe [25] and independently by Remeslenikov [21] when they proved that SL3(Z) is
not CS.

It is easy to see that being residually finite is a hereditary property: if a group G is
RF then every H ≤ G is residually finite as well. Unlike residual finiteness, conjugacy
separability does not behave well with respect to subgroups, not even of finite index.
Martino and Minasyan [17] showed that for every integer m ≥ 2 there exists a finitely
presented conjugacy separable group T that contains a subgroup S ≤ T such that
|T : S| = m and S is not CS. We say that a group G is hereditarily conjugacy separable
(HCS) if G is conjugacy separable and if H ≤ G is of finite index in G then H is CS as
well.

Let C be a class of finite groups (we will always assume that classes of finite groups
are closed under isomorphisms) and let G be a group. We say that G is residually-C if
for every non-trivial g ∈ G there is a group F ∈ C and a homomorphism φ : G→ F such
that φ(g) is non-trivial in F . Similarly, we say that G is C-conjugacy separable (C-CS)
if for every tuple f, g ∈ G such that f is not conjugate to g in G there is a group F ∈ C
and a homomorphism φ : G → F such that φ(f) is not conjugate to φ(g) in F . We say
that G is C-hereditarily conjugacy separable (C-HCS) if it is C-CS and every subgroup
H ≤ G, open in pro-C topology, is C-CS (H is open in pro-C topology if and only if
there is K EG such that K ≤ H and G/K ∈ C - see Section 2). If the class C satisfies
certain closure properties we can equip the group G with the so called pro-C topology



ON CONJUGACY SEPARABILITY OF GRAPH PRODUCTS OF GROUPS 33

and use basic terminology and methods from point-set topology to significantly simplify
our proofs. Basic properties of pro-C topologies on groups, their connection to closure
properties of the class C and definitions of residually-C, C-CS and C-HCS groups in terms
of pro-C topologies are given in Section 2.

We say that a class of finite groups C is an extension closed variety of finite groups
if it is closed under taking subgroups, direct products, quotients and extensions. The
most common examples of extension closed varieties of finite groups would be the class
of all finite p-groups, where p is a prime number, the class of all finite soluble groups or
the class of all finite groups.

In this paper we study the behaviour of C-(hereditary) conjugacy separability under
group constructions, where the class C is an extension closed variety of finite groups.
It is easy to see that a direct product of C-CS groups is again a conjugacy separable
group, similarly for hereditary conjugacy separability. It was proved by Stebe [26] and
independently by Remeslennikov [21] that the class of CS groups is closed under taking
free products and using this result one can show that a free product of HCS groups is
again an HCS group. In his paper [29] Toinet proved a specialised version of Dyer’s
theorem: free-by-(finite p) groups are p-CS. This result was generalised by Ribes and
Zalesskii [28]: finitely generated free-by-C groups are C-CS whenever C is an extension
closed variety of finite groups. Using the result of Ribes and Zalesskii one could easily
generalise the result of Stebe and Remeslennikov to C-CS and C-HCS groups. Our aim
is to show that the property of being C-(H)CS is stable under graph products, group
theoretic construction naturally generalising direct and free products in the category of
groups.

1.2. Statement of the results. By a graph we will always mean a simplicial graph:
i.e. graph Γ is a tuple (V Γ, EΓ), where V Γ is a set and EΓ ⊆

(
V Γ
2

)
. We call V Γ the set

of vertices of Γ and EΓ the set of edges of Γ.
Let Γ be a graph and let G = {Gv|v ∈ V Γ} be a family of groups indexed by the

vertices of Γ. The graph product ΓG is the quotient of the free product ∗v∈V ΓGv obtained
by adding all the relations of the form

gugv = gvgu for all gu ∈ Gu, gv ∈ Gv such that {u, v} ∈ EΓ.

The groups Gv will be usually referred to as vertex groups.
Clearly if Γ is a complete graph then ΓG is equal to the direct product

∏
v∈V ΓGv

and if Γ is the totally disconnected graph, meaning that EΓ = ∅, the resulting graph
product is equal to the free product ∗v∈V ΓGv. We say that the group ΓG is a finite
graph product if the corresponding graph Γ is finite.

If Gv = Z, the additive group of integers, for all v ∈ V Γ, then we are talking about
right angled Artin groups (RAAGs), and if Gv = C2, the cyclic group of order 2, we are
talking about right angled Coxeter groups (RACGs). In a way, RAAGs sit between free
groups and free abelian groups. Since both free abelian groups and free groups are CS it
is natural to ask whether RAAGs are CS as well. The positive answer to this question
was given by Minasyan [18], when he proved that finitely generated RAAGs are HCS.
Toinet [29] modified Minasyan’s proof and showed that finitely generated RAAGs are
p-HCS for every prime number p. The main results of this paper are the following two
theorems.
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Theorem 1.1. Assume that C is an extension closed variety of finite groups. Then the
class of C-CS groups is closed under taking arbitrary graph products.

Theorem 1.2. Let C be an extension closed variety of finite groups. Then the class of
C-HCS groups is closed under taking arbitrary graph products.

Note that we do not impose any restrictions on the cardinality of the corresponding
graph, i.e. |V Γ| can be any cardinal.
Acknowledgements. The author would like to thank Ashot Minasyan for explaining
his work in [18], discussions, help and guidance.

2. Pro-C topologies on groups

In this section we will explain basic properties of pro-C topologies on groups. In the
profinite (or pro-p) case these are standard results and are part of mathematical folklore.
We include this section in order to make this paper self-contained and readers familiar
with pro-C topologies on groups can skip it.

What closure properties do we require the class C to have? We will be considering
the following ones:

(c1) subgroups: let G ∈ C and suppose that H ≤ G; then H ∈ C,
(c2) finite direct products: let G1, G2 ∈ C; then G1 ×G2 ∈ C,
(c3) quotients: let G ∈ C and let N EG; then G/N ∈ C,
(c4) extensions: let K,Q ∈ C and let G be a group such that the following sequence

1→ K → G→ Q→ 1

is exact; then G ∈ C.
Let C be a class of finite groups and let G be a group. If N EG is such that G/N ∈ C

then we say that N is a co-C subgroup of G. We will use NC(G) = {N EG | G/N ∈ C}
to denote the set of all co-C subgroups of G. We want the system of cosets BC(G) =
{gN | g ∈ G,N ∈ NC(G)} to form a basis of open sets for a topology on G, thus we need
the set NC(G) to be closed under intersections. It can be easily seen that if C satisfies
(c1) and (c2), then the set NC(G) is closed under intersections for every group G.

Suppose that the system of cosets BC(G) forms a basis of open sets for a topology on
a group G. This topology is called the pro-C topology on G and we will use pro-C(G) to
refer to this topology. If C is the class of all finite groups this topology is the profinite
topology PT (G) and if C is the class of all finite p-groups, where p is a prime number,
this topology is referred to as pro-p topology and is denoted by pro-p(G).

We say that a subset X ⊆ G is C-separable or C-closed in G if the subset X is closed
pro-C(G). In other words, a subset X ⊆ G is C-separable if for every g ∈ G \X there is
N ∈ NC(G) such that gN ∩X = gN ∩XN = ∅. Similarly we say that a subset X ⊆ G
is C-open if it is open in pro-C(G).

2.1. Basic properties. Unless stated otherwise we will only assume assume that the
class C satisfies (c1) and (c2).

If the class C satisfies (c1) and (c2) then the pro-C topology on G is well-defined for
every group G. Note that it would be enough to assume that the class C is closed under
subdirect products. However, if we assume that the class C is also closed under taking
subgroups we see that equipping a group G with pro-C topology is actually a faithfull
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functor from the category of groups to the category of topological groups: homomor-
phisms between groups are continuous maps with respect to the corresponding pro-C
topologies and isomorphisms are homeomorphisms, thus preimages of C-open/closed
sets are C-open/closed and isomorphic images of C-open/closed sets are C-open/closed.

Obviously, the pro-C topology on a group G is invariant under group translation: if
X ⊆ G is C-closed in G then so are the sets gX and Xg for all g ∈ G.

The following lemma will help us to shorten and simplify proofs.

Lemma 2.1. Let G be a group. Then X ⊆ G is C-closed in G if and only if for every
g ∈ G \X there is a group F and a homomorphism φ : G → F , such that φ(g) 6∈ φ(X)
and φ(X) is C-closed in F .

Proof. SupposeX is C-closed inG. Clearly if we take F = G and φ = idG then φ(X) = X
is C-closed in G and φ(g) = g 6∈ φ(X) = X for all g ∈ G \X.

Let X ⊆ G and suppose that for every g ∈ G \ X there is a group homomorphism
φg : G → Fg such that φg(g) 6∈ φg(X) and φg(X) is C-closed in Fg. We see that the
set φ−1

g (φg(X)) is C-closed in G as it is a preimage of a C-closed set. Clearly X =⋂
g∈G\X φ

−1
g (φg(X)) and thus X is C-closed in G as it is intersection of C-closed sets. �

As we already said: a group G is residually-C if for every g ∈ G \ {1} there is a group
F ∈ C and a group homomorphism π : G→ F such that π(g) 6= 1 in F or, equivalently,
we say that G is residually-C if for every g ∈ G \ {1} there is N ∈ NC(G) such that
g 6∈ N . Assuming that the class C satisfies (c1) and (c2) one can easily check that the
following are equivalent:

(1) G is residually-C,
(2) {1} is C-closed in G,
(3)

⋂
N∈NC(G)N = {1},

(4) pro-C(G) is Hausdorff.

Being residually-C is clearly a hereditary property.

Remark 2.2. Let G be a group and let H ≤ G. If G is residually-C then H is residually-
C.

Let G be a group and assume that H ≤ G. For an element g ∈ G we will use gH to
denote {hgh−1 | h ∈ H} ⊆ G, the set of H-conjugates of H. The symbol ∼H will denote
the relation of being H-conjugates, i.e. f ∼H g if and only if f ∈ gH . We can then
restate the definition of C-conjugacy separability in terms of pro-C topologies: group G
is C-CS if the conjugacy class gG is C-closed in G for every g ∈ G.

Note that a specialised version of Lemma 2.1 is that a group G is C-CS if and only if
for every tuple of elements f, g ∈ G such that f 6∼G g there is a C-CS group H and a
homomorphism φ : G→ H such that φ(f) 6∼H φ(g).

2.2. C-open and C-closed subgroups. Let H ≤ G and suppose that there is N ∈
NC(G) such that N ≤ H. Then clearly H is a union of cosets of N and hence H is

C-open in G as it is a union of C-open subsets of G. It was proved by Hall [11, Theorem
3.1] that the opposite implication holds as well.
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Lemma 2.3 (Classification of C-open subgroups). Let G be a group and let H ≤ G.
Then H is C-open in G if and only if there is N ∈ NC(G) such that N ≤ H. Moreover,
every C-open subgroup is C-closed in G and is of finite index in G.

Lemma 2.3 allows us to restate the definition of C-hereditary conjugacy separability
in terms of pro-C topology: a group G is C-HCS if G is C-CS and H ≤ G is C-CS as well
whenever H is C-open in G.

Obviously, an intersection of C-open subgroups is a C-closed subgroup. It was proved
by Hall [11, Theorem 3.3] that all C-closed subgroups arise in this way.

Lemma 2.4 (Classification of C-closed subgroups). Let G be a group and let H ≤ G.
Then H is C-closed in G if and only if it is an intersection of C-open subgroups of G.

2.3. Restrictions of pro-C topologies. Imagine the following situation: let G be a
group and let H be its subgroup. The pro-C topology induces a subspace topology on
H, say T . However, this topology might not necessarily be the same as pro-C topology
on H: pro-C(H) will usually be finer than T . For example, if G is F2, the free group
on 2 generators and H is [G,G], the commutator subgroup of G, then H contains only
countably many subgroups that are open in T ; however, as H is infinitely generated free
group, NC(H) is uncountable.

For H ≤ G we say that pro-C(H) is induced by pro-C(G) if pro-C(H) coincides with
the subspace topology on H induced by pro-C(G).

If H ≤ G and X ⊆ H is C-closed in G then clearly X is C-closed in H. However, the
implication in the other direction does not hold: let G be the Baumslag-Solitar group
BS(2,3) given by the presentation 〈a, b‖ba2b−1 = a3〉. It is well known that this group
is not residually finite. Take H = 〈a〉 ≤ G. Clearly H ∼= (Z,+), which is a residually
finite group. Thus the singleton set {1} is closed in the profinite topology on H but it
is not closed in the profinite topology on G as G is not residually finite.

Definition 2.5. Let G be a group and let H ≤ G be its subgroup. We say that the
pro-C(H) is a restriction of pro-C(G) if for all X ⊆ H we have that X is C-closed in H
if and only if it is C-closed in G.

One can easily check that for H ≤ G pro-C(H) is a restriction of pro-C(G) if and only
if pro-C(H) is induced by pro-C(G) and H is C-closed in G.

One type of subgroup on which the pro-C topologies behave well are retracts. Let G
be a group and let R ≤ G. We say that R is a retract of G if there is a homomorphism
ρ : G→ R such that ρ �R= idR. We will refer to ρ as to the retraction corresponding to
R. We will often abuse the notation and consider ρ as an endomorphism of G as well.
One could then equivalently say that R is a retract of G if and only if there is ρ : G→ G
such that ρ ◦ ρ = ρ and R is the image of ρ.

Note that if R ≤ G is a retract then G can be viewed as semidirect product G =
ker(ρ) o R, where ρ : G → R is the corresponding retraction. One can easily show the
following by using the proof of [27, Lemma 3.1.5].

Lemma 2.6. Let G be a residually-C group and let R ≤ G be a retract. Then R is

C-closed in G and pro-C(R) is induced by pro-C(G), hence pro-C(R) is a restriction of
pro-C(G).
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So far we have only been using assumptions that the class C satisfies (c1) and (c2).
From now on we will also require the class C to satisfy (c4). The proof the next lemma
follows from the proof of [27, Lemma 3.1.4].

Lemma 2.7. Suppose that C is a class of finite groups satisfying (c1), (c2) and (c4).
Let G be a group and let H ≤ G be C-open in G. Then pro-C(H) is a restriction of
pro-C(G).

As we mentioned earlier, the property of being residually-C is passed to subgroups.
Obviously, the implication in the opposite direction does not hold: the group BS(2,3)
contains a residually finite subgroup but BS(2,3) is not residually finite. However, the
property of being residually-C is passed upwards from C-open subgroups.

Corollary 2.8. Let C be a class of finite groups satisfying (c1), (c2) and (c4). Let G
be a group and let H ≤ G be C-open in G. If H is residually-C then G is residually-C as
well.

Proof. The singleton set {1} is C-closed in H as H is residually-C. By Lemma 2.7 we see
that the singleton set {1} is C-closed in G as the pro-C(H) is a restriction of pro-C(G).
Hence, we see that the group G is residually-C. �

The structure of classes of finite groups that satisfy (c1) and (c2) only can be quite
wild. However, what if we also require the class C to satisfy (c4)? Suppose that C is a
class of finite groups satisfying (c1), (c2) and (c4) and suppose that there is a nontrivial
group F such that F ∈ C. Let n = |F | and let p be a prime number such that p divides
n. Clearly there is g ∈ F such that ord(g) = p and thus F contains Cp, the cyclic group
of size p as a subgroup and thus Cp ∈ C as well. We see that the class C contains all finite
p-groups as every finite p-group can be constructed from Cp by a series of extensions.
It is well known fact (see [10]) that free groups are residually-p for every prime number
p and therefore free groups are residually-C whenever the class C satisfies (c1), (c2) and
(c4) and contains at least one nontrivial group.

Lemma 2.9. Let C be a class of finite groups satisfying (c1), (c2) and (c4) and assume
that C contains a nontrivial group. Then free-by-C groups are residually-C.

Proof. Let G be a free-by-C group. By assumption there is N ∈ NC(G) such that N
is free. Clearly N is C-open in G. By previous argumentation we know that N is
residually-C and hence G is residually-C by Corollary 2.8. �

3. Graph products of groups

Let Γ be a simplicial graph and let G = {Gv | v ∈ V Γ} be a family of groups indexed
by V Γ. Recal that the graph product ΓG is the quotient of the free product ∗v∈V ΓGv
obtained by adding relations of the form

gugv = gvgu for all gu ∈ Gu, gv ∈ Gv such that {u, v} ∈ EΓ.

For v ∈ V Γ we define the link(v) to be the the set of vertices adjacent to v in Γ
(excluding v itself), more precisely link(v) = {u ∈ V Γ | {u, v} ∈ EΓ}. For a subset
A ⊆ V Γ we define link(A) =

⋂
v∈A link(v).
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For v ∈ V Γ we define the star(v) to be the the set of vertices adjacent to v in Γ
including v, more precisely star(v) = {u ∈ V Γ | {u, v} ∈ EΓ} ∪ {v}. For a subset
A ⊆ V Γ we define star(A) =

⋂
v∈A star(v).

Let G = ΓG be a graph product. Then every g ∈ G can be obtained as a product of a
sequence of generators W ≡ (g1, g2, . . . , gn) where each gi belongs to some Gvi ∈ G. We
will say that W is a word in G and the gi are its syllables. The number of syllables is
the length of a word.

Transformations of the three following types can be defined on words in graph prod-
ucts:

(T1) remove a syllable gi if gi =Gv 1, where v ∈ V Γ and gi ∈ Gv,
(T2) remove two consecutive syllables gi, gi+1 belonging to the same vertex group Gv

and replace them by a single syllable gigi+1 ∈ Gv,
(T3) interchange consecutive syllables gi ∈ Gu and gi+1 ∈ Gv if {u, v} ∈ EΓ.

The last transformation is also called syllable shuffling. Note that the transformations
(T1) and (T2) decrease the length of a word whereas (T3) preserves it. Thus by applying
these transformations to a word W we will eventually get a word W ′ of minimal length
representing the same element in G.

For 1 ≤ i < j ≤ n we say that syllables gi, gj can be joined together if they belong to
the same vertex group and ‘everything in between commutes with them’. More formally:
gi, gj ∈ Gv for some v ∈ V Γ and for all i < k < j we have gk ∈ Gvk such that vk ∈ link(v).
In this case obviously the words W ≡ (g1, . . . , gi−1, gi, gi+1, . . . , gj−1, gj , gj+1, . . . , gn) and
W ′ ≡ (g1, . . . , gi−1, gigj , gi+1, . . . , gj−1, gj+1, . . . , gn) represent the same group element in
G, but the word W ′ is strictly shorter than W .

We say that a word W ≡ (g1, g2, . . . , gn) is Γ-reduced if it is either an empty word
or if gi 6= 1 for all i and no two distinct syllables can be joined together. To avoid any
confusion with the terminology of special amalgams (see Section 5) we will be using the
Greek letter Γ to emphasise that we are considering sequences and elements (cyclically)
reduced in the context of graph products and not in the context of special amalgams.

As it turns out, the notion of being Γ-reduced and the notion of having minimal length
coincide: the following theorem was proved by E. Green [9, Theorem 3.9].

Theorem 3.1 (Normal Form Theorem). Let G = ΓG be a graph product. Every element
g ∈ G can be represented by a Γ-reduced word. Moreover, if two Γ-reduced words W,W ′

represent the same element in the group G then W can be obtained from W ′ by a finite
sequence of syllable shuffling. In particular, the length of a Γ-reduced word is minimal
among all words representing g, and a Γ-reduced word represents the trivial element if
and only if it is the empty word.

Thanks to Theorem 3.1 the following definitions make sense. Let g ∈ G and let
W = (g1, . . . , gn) be a Γ-reduced word representing g. We define the length of g in G to
be |g| = n and the support of g in G to be

supp(g) = {v ∈ V Γ|∃i ∈ {1, . . . , n} such that gi ∈ Gv \ {1}}.
We define FL(g) ⊆ V Γ as the set of all v ∈ V Γ such that there is a Γ-reduced word

W that represents the element g and starts with a syllable from Gv. Similarly we define
LL(g) ⊆ V Γ as the set of all v ∈ V Γ such that there is a Γ-reduced word W that
represents the element g and ends with a syllable from Gv. Note that FL(g) = LL(g−1).
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Let x, y ∈ G and let Wx ≡ (x1, . . . , xn) be a Γ-reduced expression for x and let
Wy ≡ (y1 . . . , ym) be a Γ-reduced expression for y. We say that the product xy is
aΓ-reduced product if the word (x1, . . . , xn, y1, . . . , ym) is Γ-reduced. Obviously, xy is
a Γ-reduced product if and only if |xy| = |x| + |y|. Or equivalently we could say that
xy is Γ-reduced product if and only if LL(x) ∩ FL(y) = ∅. We can naturally extend
this definition: for g1, . . . , gn ∈ G we say that the product g1 . . . gn is Γ-reduced if
|g1 . . . gn| = |g1|+ · · ·+ |gn|.

3.1. Full and parabolic subgroups. Let Γ be a graph. For any subset A ⊆ V Γ we
will denote the corresponding full subgraph by ΓA: V ΓA = A and for u, v ∈ A we have
{u, v} ∈ EΓA if and only if {u, v} ∈ EΓ.

Let A ⊆ V Γ and let GA denote the subgroup of G generated by all Gv, where v ∈ A.
Using Theorem 3.1 one can easily check that GA is isomorphic to the graph product
ΓAGA, where GA = {Gv | v ∈ A}. We see that every A ⊂ V Γ induces a subgroup
GA ≤ G. We will call subgroups of this type full subgroups of ΓG, and we say that a
full subgroup GA is a proper full subgroup if A is a proper subset of V Γ. We say that a
full subgroup GA ≤ G is maximal if |V Γ \ A| = 1. By definition G∅ = {1} is also a full
subgroup corresponding to the empty subset of V Γ.

It can be easily seen that full subgroups are actually retracts.

Remark 3.2. Let G = ΓG be a graph product of groups and let GA ≤ G be a full
subgroup. Then GA is a retract in G with corresponding retraction map ρA : G → GA
defined on generators of G as follows:

ρA(g) =

{
g if g ∈ Gv and v ∈ A,
1 otherwise.

Let A,B ⊆ V Γ be arbitrary. Let GA, GB ≤ G be the corresponding full subgroups
and let ρA, ρB ∈ End(G) be the corresponding retractions. We see that ρA and ρB
commute: ρA ◦ ρB = ρB ◦ ρA. It follows that GA ∩ GB = GA∩B and ρA ◦ ρB = ρA∩B.
This result can be generalised and strengthened.

Let K ≤ G. We say that K is parabolic subgroup of G if K is conjugate to a full
subgroup, i.e., if there are A ⊆ V Γ and g ∈ G such that K = gGAg

−1. As it turns out,
the intersection of parabolic subgroups is again a parabolic subgroup. The following
theorem was proved in [1, Corollary 3.6].

Theorem 3.3. Let G = ΓG be a graph product and let K,L ≤ G such that K = gGAg
−1

and H = fGBf
−1, where A,B ⊆ V Γ and f, g ∈ G. Then there is h ∈ G and C ⊆ A∩B

such that K ∩ L = hGCh
−1.

As an easy consequence of Theorem 3.3 we get the following lemma.

Lemma 3.4. Let g ∈ G = ΓG and suppose that |V Γ| < ∞ and g 6= 1. Then there is a
maximal full subgroup A of G such that g 6∈ AG.

Proof. Let g ∈ G \ {1} and assume that the statement of the lemma does not hold for g,
thus for every maximal full subgroup Av, where Av = GV Γ\{v} for some v ∈ V Γ, there

is hv ∈ G such that g ∈ hvAvh−1
v . We see that g ∈ ⋂v∈V Γ hvAvh

−1
v . By Theorem 3.3

we see that there are h ∈ G and C ⊆ ⋂v∈V Γ V Γ \ {v} such that g ∈ hGCh−1. However,
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⋂
v∈V Γ V Γ \ {v} = ∅ and thus we see that g = 1, which is a contradiction because we

assumed that g 6= 1. �
The following theorem was proved in [1, Proposition 3.10].

Theorem 3.5. Let X be a subset of the graph product G = ΓG such that at least one of
the following conditions holds:

(i) the graph Γ is finite;
(ii) the subgroup 〈X〉 ≤ G is finitely generated.

Then there exists a unique minimal parabolic subgroup of G containing X.

Suppose that a subset X ⊆ G is contained in a minimal parabolic subgroup of G.
Then this subgroup will be called the parabolic closure of X and will be denoted by
PcΓ(X).

For a subset X ⊆ G and a subgroup H we will use NH(X) to denote {g ∈ G |
gX = Xg}, the H-normaliser of X in G. The following characterisation of normalisers
of parabolic subgroups was given in [1, Proposition 3.13].

Theorem 3.6. Let K be a nontrivial parabolic subgroup of the graph product G = ΓG.
Choose f ∈ G and S ∈ V Γ such that K = fGSf

−1 and Gs 6= {1} for all s ∈ S. Then
NG(K) = fGS∪link(S)f

−1; in particular the normaliser NG(K) is a parabolic subgroup
of G.

For a subsetX ⊆ G and a subgroupH we will use CH(X) to denote {g ∈ G | gx = xg},
the H-centraliser of X in G. Centralisers in graph products were fully described by
Barkauskas in [2]. We give simple a lemma describing centralisers of elements in terms
of certain special subgroups and centralisers in full subgroups.

Lemma 3.7. Let G = ΓG be a graph product of groups and let g ∈ G be arbitrary.
Suppose that there is A ⊆ G such that PcΓ(〈g〉) = GA. Then CG(g) = CGA

(g)Glink(A).

Proof. Clearly CG(g) ≤ NG(〈g〉). Since GA = PcΓ(〈g〉) we see by [1, Lemma 3.12] that
NG(〈g〉) ⊆ NG(GA). By Theorem 3.6 we see that NG(GA) = GA · Glink(A) and thus
CG(g) ⊆ GA · Glink(A). We can then write CG(g) = CG(g) ∩ GA · Glink(A). Note that
Glink(A) ≤ CG(GA) and thus Glink(A) ≤ CG(g). This means that CG(g)∩GA ·Glink(A) =
(CG(g) ∩GA)Glink(A) and we see that CG(g) = CGA

(g)Glink(A). �
3.2. Cyclically reduced elements and conjugacy in graph products. Let g ∈ G,
let W ≡ (g1, . . . , gn) be a Γ-reduced expression for g. We say that a sequence W ′ =
(gj+1, . . . , gn, g1, . . . , gj), where j ∈ {1, . . . , n− 1}, is a cyclic permutation of W . We say
that the element g′ ∈ G is a cyclic permutation of g if g′ can be expressed by a cyclic
permutation of some Γ-reduced expression for g.

Let W ≡ (g1, . . . , gn) be some reduced expression in G. We say that W is Γ-cyclically
reduced if all cyclic permutations of W are Γ-reduced. We would like to extend this
definition to elements of G. However, to achieve that we first need to show that this
property does not depend on the choice of Γ-reduced expression.

Lemma 3.8. Let g ∈ G be arbitrary and let W ≡ (g1, . . . gn) be some Γ-reduced expres-
sion for g. If W is Γ-cyclically reduced then all Γ-reduced expressions representing g are
Γ-cyclically reduced.
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Proof. Assume that W = (g1, . . . , gn) is Γ-cyclically reduced sequence and let i ∈
{1, . . . , n − 1} be arbitrary such that [gi, gi+1] = 1. Consider the expression W ′ =
(g1, . . . , gi−1, gi+1, gi, gi+2, . . . , gn). Obviously W ′ is a Γ-reduced expression for g as well.
Let W ′′ be some cyclic permutation of W ′. Then there are three cases to consider:

(i) W ′′ = (gj+1, . . . , gi−1, gi+1, gi, gi+2, . . . , gn, g1, . . . , gj) for some j < i,
(ii) W ′′ = (gi, gi+2, . . . , gn, g1, . . . , gi−1, gi+1),
(iii) W ′′ = (gj+1, . . . , gn, g1, . . . , gi−1, gi+1, gi, gi+2, . . . , gj) for some j > i.

Consider the case (i) first. The expression W ′′ can be rewritten to the expression
V = (gj+1, . . . , gn, g1, . . . , gj) by swapping the syllables gi and gi+1. We see that V is Γ-
reduced as it is a cyclic permutation of W and W is Γ-cyclically reduced by assumption.
It follows by Theorem 3.1 that W ′′ is Γ-reduced as it represents the same element as V
and both W ′′ and V are of the same length. The case (iii) can be dealt with similarly.

For case (ii) we see that the segment (gi+2, . . . , gn, g1, . . . , gi−1) is Γ-reduced as it
is a segment of a cyclic permutation of W and W is Γ-cyclically reduced. Suppose
that the sequence W ′′ is not Γ-reduced. Suppose that gi can be joined with gk, where
k ∈ {i+ 2, . . . , n}. If this was the case then the syllable gi could have been joined with
gk in W which is a contradiction with our assumption that W is Γ-reduced. Suppose
that the syllable gi can be joined with gl, where l ∈ {1, . . . , i − 1}. Since the syllables
gi and gi+1 commute we see that gi and gl could be joined in the expression P =
(gi, gi+1, . . . , gn, g1, . . . , gi−1). However, P is a cyclic permutation of W and therefore P
is Γ-reduced as W is Γ-cyclically reduced by assumption. By a similar argumentation
we can show that the syllable gi+1 cannot be joined with any of the syllables g1, . . . , gi−1

or gi+1, . . . , gn. Clearly gi cannot be joined with gi+1 as we assume that W is Γ-reduced.
Therefore we see that W ′′ is Γ-reduced.

We have shown that the property of being Γ-cyclically reduced is preserved by trans-
formation (T3). By Theorem 3.1 every Γ-reduced expression for g can be obtained from
W by a finite sequence of transformation of type (T3). Hence all Γ-reduced expressions
for g are Γ-cyclically reduced. �

As a direct consequence of this lemma we see that a Γ-reduced expression W =
(g1, . . . , gn) is Γ-cyclically reduced if and only if the following condition is satisfied: let
i, j ∈ {1 . . . , n} be such that gi can be shuffled to the beginning of W and gj can be
shuffled to the end of W and gi and gj belong to the same vertex group; then i = j.

Definition 3.9. Let g ∈ G be arbitrary. We say that g is Γ-cyclically reduced if either
g is trivial or some Γ-reduced word representing g is Γ-cyclically reduced.

Note that FL(g) ∩ LL(g) 6= ∅ does not necessarily mean that g is not Γ-cyclically
reduced. Suppose that supp(g) ∩ star(supp(g)) 6= ∅. Then there is v ∈ supp(g) such
that it is connected with all the other vertices in supp(g). This means that there is
i ∈ {1, . . . , n} such that the syllable gi commutes with all the other syllables and can be
shuffled to both ends of g, thus v ∈ FL(g) ∩ LL(g).

Definition 3.10 (P-S decomposition). Let g ∈ G. We define S(g) = supp(g) ∩
star(supp(g)). Similarly, we define P (g) = supp(g) \ S(g). Obviously g uniquely fac-
torises as a Γ-reduced product g = s(g)p(g) where supp(s(g)) = S(g) and supp(p(g)) =
P (g). We call this factorisation the P-S decomposition of g.
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Note that FL(g) = S(g)∪̇FL(p(g)), LL(g) = S(g)∪̇LL(p(g)) and S(p(g)) = ∅. An-
other simple observation is that if g′ is a cyclic permutation of g then g′ can be uniquely
factorised as s(g)p′, where p′ is a cyclic permutation of p(g).

Lemma 3.11. Let g ∈ G. Then the following are equivalent:

(i) g is Γ-cyclically reduced,
(ii) (FL(g) ∩ LL(g)) \ S(g) = ∅,
(iii) FL(p(g)) ∩ LL(p(g)) = ∅,
(iv) p(g) is Γ-cyclically reduced.

Proof. (i) ⇒ (ii): assume that g is Γ-cyclically reduced. Let (g1, . . . , gn) be some Γ-
reduced expression for g. Without loss of generality we may assume that s(g) = g1 . . . gs
and p(g) = gs+1 . . . gn, where s = |S(g)|. Suppose that v ∈ (FL(g)∩LL(g))\S(g). Then
there are 1 ≤ i < j ≤ n such that gi, gj ∈ Gv. Since v ∈ FL(g) we see that gi can be
shuffled to beginning of g. Similarly gj can be shuffled to the end of g and hence

W = (gi, g1, . . . , gi−1, gi+1, . . . , gj−1, gj+1, . . . , gn, gj)

is also a Γ-reduced expression for g. However, the expression

W ′ = (gj , gi, g1, . . . , gi−1, gi+1, . . . , gj−1, gj+1, . . . , gn)

is not reduced which is a contradiction as W ′ is a cyclic permutation of W and g is
Γ-cyclically reduced.

(ii)⇒ (iii): suppose that (FL(g) ∩ LL(g)) \ S(g) = ∅. As mentioned before, FL(g) =
FL(p(g))∪̇S(g) and LL(g) = LL(p(g))∪̇S(g) and therefore FL(p(g)) ∩ LL(p(g)) = ∅.

(iii)⇒ (iv): if FL(p(g)) ∩ LL(p(g)) = ∅ then clearly p(g) is Γ-cyclically reduced.
(iv) ⇒ (i): assume that p(g) is Γ-cyclically reduced and there is v ∈ FL(p(g)) ∩

LL(p(g)). Let (p1, . . . , pm) be a Γ-reduced expression for p(g). Suppose that there are
1 ≤ i < j ≤ m such that pi, pj ∈ Gv. This is clearly a contradiction since p(g) is Γ-
cyclically reduced by assumption. This means that there is i ∈ {1, . . . , n} such that the
expression (p1, . . . , pn) can be rewritten by shuffling to (pi, p1, . . . , pi−1, pi+1, . . . , pn) and
to (p1, . . . , pi−1, pi+1, . . . , pn, pi) as well. This means that pi commutes with all the other
syllables from p(g) and hence the vertex v is adjacent to all the vertices in P (g) \ {v}.
But since v is also connected to all the vertices in S(g) by the definition of S(g) we
see that v ∈ S(g). This is a contradiction as v ∈ supp(p(g)) ⊆ P (g), hence we may
assume that FL(p(g)) ∩ LL(p(g)) = ∅. As stated before, FL(g) = FL(p(g))∪̇S(g) and
LL(g) = LL(p(g))∪̇S(g). Since FL(p(g)) ∩ LL(p(g)) = ∅ we see that FL(g) ∩ LL(g) =
S(g). Let W = (g1, . . . , gm) be a Γ-reduced expression for g. Suppose that there are
i, j ∈ {1, . . . , n} such that gi can be shuffled to the beginning of W , gj can be shuffled to
the end of g and gi and gi belong to the same vertex group. Since FL(g)∩LL(g) = S(g)
we see that gi, gj ∈ Gs for some s ∈ S(g) as W is Γ-reduced. This means that i = j and
consequently that g is Γ-cyclically reduced. �
Lemma 3.12 (Conjugacy criterion for graph products). Let x, y be Γ-cyclically reduced
elements of G = ΓG. Then x ∼G y if and only if the all of the following are true:

(i) |x| = |y| and supp(x) = supp(y),
(ii) p(x) is a cyclic permutation of p(y),
(iii) s(y) ∈ s(x)GS(x).
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Proof. The ”if” part of the claim holds trivially.
Let x, y ∈ G be Γ-cyclically reduced such that x ∼G y. Without loss of generality

we will assume that |x| ≥ |y|. Let X ⊆ G denote the set of all cyclic permutations of
x. Clearly XGS(x) ⊆ xG. Pick x′ ∈ XGS(x) such that the corresponding g′ ∈ G, where
g′x′g′−1 = y, is of minimal length. First, we show by induction on |LL(g′) ∩ FL(x′)|
that there are elements x′′ ∈ XGS(x) and g′′ ∈ G such that |g′′| = |g′|, g′′x′′g′′−1 = y and
the product g′′x′′ is Γ-reduced. If |LL(g′) ∩ FL(x′)| = 0 then clearly the product g′x′ is
Γ-reduced and the claim holds for g′′ = g′ and x′′ = x′. Suppose that |LL(g)∩FL(x′)| =
c > 0 and that the statement holds for all c′ < c. Let (g1, . . . , gk) be a Γ-reduced
expression for g′ and let (x1, . . . , xn) be a Γ-reduced expression for x′. Without loss of
generality we may assume that gk and x1 belong to the same vertex group, say Gv. Then

y = g1 . . . gkx1 . . . xng
−1
k . . . g−1

1

= g1 . . . gk−1(gkx1)x2 . . . xnx1(gkx1)−1g−1
k−1 . . . g

−1
1 .

Obviously gk 6= x−1
1 as otherwise we could replace x′ by x2 . . . xnx1, a cyclic permutation

of x, and g′ by g1 . . . gk−1. Clearly x2 . . . xnx1 ∈ XGS(X) and

g1 . . . gk−1x2 . . . xnx1g
−1
k−1 . . . g

−1
1 = y

which is a contradiction with our choice of x′ and g′ as |g1 . . . gk−1| < |g′|. If v ∈ S(x)
then gkxg

−1
k ∈ XGS(x) and again we have a contradiction with our choice of x′ and g′.

We see that v 6∈ S(x) and thus LL(g′) = LL(g′x1) and also v 6∈ FL(x2 . . . xnx1). Note
that if gi can be shuffled to the end of g′ then [gi, gk] = 1 and necessarily {u, v} ∈ EΓ,
where gi ∈ Gu. If w ∈ FL(x2 . . . xnx1) \ FL(x′) then we see that {v, w} 6∈ EΓ hence w 6∈
LL(g′x1). From this we can conclude that v 6∈ LL(g′x1)∩FL(x2 . . . xn) ⊆ LL(g′)∩FL(x′)
hence LL(g′x1)∩ FL(x2 . . . xnx1) is a proper subset of LL(g′)∩ FL(x′). Now we can use
induction hypothesis and we are done.

We have g′′x′′ = yg′′. Since g′′x′′ is a Γ-reduced product we see that |g′′x′′| = |g′′| +
|x′′| = |g| + |x| = n + k. Also |yg′′| ≤ |y| + |g| = m + k, where m = |y|. However, we
assumed that |x| ≥ |y| and thus we see that n = m and consequently yg′′ is a Γ-reduced
product as well. Let (y1, . . . , yn) be some Γ-reduced expression for y and suppose that
(x1, . . . , xn) and (g1, . . . , gk) are Γ-reduced expressions for x′′ and g′′. We have

g1 . . . gkx1 . . . xng
−1
k . . . g−1

1 = y1 . . . yn.

The expression (g1, . . . , gk, x1, . . . , xn, g
−1
k , . . . , g−1

1 ) cannot be Γ-reduced by Theorem

3.1. Assume that the syllable g−1
k can be joined up with gj for some j ∈ {1, . . . , k}. But

then by definition [g−1
k , xi] = 1 for all i = 1, . . . , n. Clearly

g1 . . . gk−1x1 . . . xng
−1
k−1 . . . g

−1
1 = y1 . . . yn.

which is a contradiction with the minimality of |g|. Since g′′x′′ is a Γ-reduced product
we then see that the expression (x1, . . . , xn, g

−1
k , . . . g−1

1 ) is not Γ-reduced. Without loss
of generality we may assume that gk and xn belong to the same vertex group. Assume
that gk 6= xn. Then we have

g1 . . . gkx1 . . . xn−1(xng
−1
k ) = y1 . . . yng1 . . . gk−1.



44 MICHAL FEROV

From the construction of x′′ and g′′ we see that (g1, . . . , gn, x1, . . . , xn−1, xng
−1
k ) is a Γ-

reduced expression and so is (y1, . . . , yn, g1, . . . , gk−1). However, this is a contradiction
with Theorem 3.1 as both of these expressions represent the same group element, but
they are not of the same length. Hence we see that gk = xn

y1 . . . yn = g1 . . . gk−1xnx1 . . . xn−1g
−1
k−1 . . . g

−1
1

which is a contradiction as we could replace xnx1 . . . xn−1, a cyclic permutation of x′′

and thus element of XGS(x) and g′′ by g1 . . . gk−1 and get a shorter conjugator. We see
that unless g = 1 we always get a contradiction. It follows that y = x′′ ∈ XGS(x) and
consequently supp(x) = supp(y), s(y) ∈ s(x)GS(x) and p(x) is a cyclic permutation of
p(y). �

4. C-centraliser conditions and C-conjugacy separability

In this section we will assume that the class C satisfies (c1), (c2) and (c4), i.e. we will
assume that the class C is closed under taking subgroups, direct products and extensions.

Definition 4.1. We say that a group G satisfies the C-centraliser condition (C-CC) if
for every K ∈ NC(G) and every g ∈ G there is L ∈ NC(G) such that L ≤ K and

CG/L(ψ(g)) ⊆ ψ(CG(g)K) in G/L,

where ψ : G→ G/L is the natural projection.

Centraliser condition was introduced by Chagas and Zalesskii in [5] in case when C is
the class of all finite groups. However, their definition of centraliser condition was given
in terms of profinite completion. They showed that if group G is conjugacy separable
and satisfies centraliser condition then G is HCS. Minasyan gave the definition in terms
of subgroups of finite index and showed that for residually finite groups the definitions
are equivalent. Minasyan also showed that the implication in the other direction holds
as well: CS group G is HCS if and only if it satisfies CC (see [18, Proposition 3.2]).
Toinet proved that the same statement holds when C is the class of all finite p-groups
for some p ∈ P (see [29, Proposition 3.6]). We show that the statement is true whenever
the class C satisfies (c1), (c2) and (c4).

Theorem 4.2. Let G be a group. Then the following are equivalent:

(i) G is C-HCS,
(ii) G is C-CS and satisfies C-CC.

Before we proceed with the proof of Theorem 4.2 we need to define two more condi-
tions.

Definition 4.3. Let G be a group and let H ≤ G and g ∈ G. We say that the pair
(H, g) satisfies the C-centraliser condition in G (C-CCG) if for every K ∈ NC(G) there
is L ∈ NC(G) such that L ≤ K and

Cψ(H)(ψ(g)) ⊆ ψ(CH(g)K) in G/L,

where ψ : G→ G/L is the natural projection.

Note that a group G satisfies C-CC if and only if the pair (G, g) has C -CCG for every
g ∈ G.



ON CONJUGACY SEPARABILITY OF GRAPH PRODUCTS OF GROUPS 45

Definition 4.4. Let G be a group and let H ≤ G be a subgroup. We say that that H
satisfies the C-centraliser condition in G (C-CCG) if the pair (H, g) satisfies C-CC for
every g ∈ G.

Very often our proofs require case by case analysis. To keep the our proofs simple we
will use the following lemma, which is a centraliser condition analogue of Lemma 2.1.

Lemma 4.5. Let G be a group and let H ≤ G and g ∈ G. Then the pair (H, g)
satisfies C-CCG if and only if for every K ∈ NC(G) there is a group F and a surjective
homomorphism φ : G→ F , such that ker(φ) ≤ K, the pair (φ(H), φ(g)) satisfies C-CCF

and
Cφ(H)(φ(g)) ⊆ φ(CH(g)K) in F.

Proof. Assume that the pair (H, g) has C-CCG, thus for every K ∈ NC(G) there is
L ∈ NC(G) such that L ≤ K and

Cψ(H)(ψ(g)) ⊆ ψ(CH(g)K) in G/L,

where ψ : G → G/L is the natural projection. Then we can take φ = idG and the
statement clearly holds.

To prove sufficiency let K ∈ NC(G) be arbitrary. By assumption there is a group F
and a homomorphism φ : G → F such that ker(φ) ≤ K, φ(K) ∈ NC(F ) and the pair
(φ(H), φ(g)) satisfies C-CCF , thus there is L′ ∈ NC(F ) such that L′ ≤ φ(K) and

(1) Cζ(φ(H))(ζ(φ(g))) ⊆ ζ(Cφ(H)(φ(g))φ(K)) in F/L′,

where ζ : F → F/L′ is the natural projection. Define ψ : G → F/L′ to be given by
ψ = ζ◦φ. Set L = φ−1(L′). As L′ ≤ φ(K) and ker(φ) ≤ K we get that L = φ−1(L′) ≤ K.
We see that φ−1(L′) = ker(ψ) ∈ NC(G). Since Cφ(H)(φ(g)) ⊆ φ(CH(g)K) in F we see
that

ζ(Cφ(H)(φ(g))) ⊆ ζ(φ(CH(g)K)) = ψ(CH(g)K)

and thus the equation (1) can be rewritten to

Cψ(H)(ψ(g)) ⊆ ψ(CH(g)K) in G/L.

Since K was arbitrary we see that the pair (H, g) satisfies C-CCG. �
In order to be able to prove Theorem 4.2 we will need the following three statements.

All the proofs in this chapter (except for Lemma 4.5) closely follow those given in [18,
Section 3].

Lemma 4.6. Let G be a group, let H ≤ G and g ∈ G. Assume that the pair (G, g)
satisfies C-CCG and the conjugacy class gG is C-closed in G. If the double coset CG(g)H
is C-closed in G then the set gH is also C-closed in G.

Proof. Let y ∈ G \ gH be arbitrary.
If y 6∈ gG then there is L ∈ NC(G) such that φ(y) 6∈ φ(gG) in G/L, where φ : G→ G/L

is the natural projection, therefore φ(y) 6∈ φ(gH).
Assume that y ∈ gG \ gH , thus y = zgz−1 for some z ∈ G\H. Suppose CG(g)∩ z−1H

is nonempty, thus there is f ∈ CG(g) such that zf ∈ H. Then g = fgf−1 and thus
y = zgz−1 = (zf)g(zf)−1 ∈ gH which is a contradiction as we assume that y 6∈ gH , thus
CG(g) ∩ z−1H = ∅, in other words z−1 6∈ CG(g)H. Since CG(g)H is C-closed in G by
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assumption, there is K ∈ NC(G) such that {z−1}∩CG(g)HK = ∅. Since the pair (G, g)
has C-CCG by assumption, there is L ∈ NC(G) such that L ≤ K and

CG/L(φ(g)) ⊆ φ(CG(g)K),

where φ : G→ G/L is the natural projection.
Suppose that φ(y) ∈ φ(gH), thus there is some h ∈ H such that φ(y) = φ(zgz−1) =

φ(hgh−1). We see that φ(z−1h) ∈ CG/L(φ(g)), thus

φ(z−1) ∈ CG/L(φ(g))φ(H) ⊆ φ(CG(g)K)φ(H) = φ(CG(g)HK).

This means that z−1 ∈ CG(g)HKL = CG(g)HK as L ≤ K. But that is a contradiction
with the construction of K.

He have showed that for arbitrary y ∈ G \ gH there is L ∈ NC(G) such that φ(y) 6∈
φ(gH), hence the set gH is C-closed in G. �

Corollary 4.7. Let G be a C-CS group satisfying C-CC and let H ≤ G such that CG(h)H
is C-closed in G for every h ∈ H. Then H is C-CS. Moreover, for every h ∈ H the set
hH is C-closed in G.

Lemma 4.8. Let G be a group and suppose that H ≤ G, g ∈ G and K ∈ NC(G). If the
set gH∩K is C-closed in G then there is L ∈ NC(G) such that L ≤ K and

Cφ(H)(φ(g)) ⊆ φ(CH(G)K) in G/L,

where φ : G→ G/L is the natural projection.

Proof. Denote k = |H : (H ∩K)| <∞. Then H =
⊔k
i=1 zi(H ∩K) for some z1, . . . , zk ∈

H. If necessary we can renumber the elements zi so that there is l ∈ {0, 1, . . . , k−1} such
that z−1

i gzi 6∈ gH∩K if 1 ≤ i ≤ l and z−1
i gzi ∈ gH∩K if l < i ≤ k. Since gH∩K is C-closed

in G there is L ∈ NC(G) such that φ(z−1
i gzi) 6∈ φ(gH∩K) in G/L, where φ : G→ G/L is

the natural projection, for all i = 1, 2, . . . , l. Note that by replacing L with L ∩K we
may assume that L ≤ K.

Let x ∈ Cφ(H)(φ(g)) be arbitrary. Clearly x = φ(x) for some x ∈ H and thus

φ(x−1gx) = φ(g) in G/L, therefore x−1gx ∈ gL in G. As x ∈ H there is i ∈ {1, 2, . . . , k}
and y ∈ H ∩K such that x = ziy, thus x−1gx = y−1z−1

i gziy. As a consequence we see

that z−1
i gzi ∈ ygLy−1 = ygy−1L ⊆ gH∩KL. This means that φ(z−1

i gzi) ∈ φ(gH∩K) in

G/L and thus from construction of L we see that l < i ≤ k, therefore z−1
i gzi ∈ gH∩K

and there is some u ∈ H ∩K such that z−1
i xzi = ugu−1. We see that ziu ∈ CH(g) and

since x = ziy = ziuu
−1y we see that x ∈ CH(g)(H ∩K) ⊆ CH(g)K. This means that

x ∈ φ(CH(g)K) in G/L. Since x ∈ Cφ(H)(φ(g)) was arbitrary we see that

Cφ(H)(φ(g)) ⊆ φ(CH(g)K) in G/L,

which concludes the proof. �

Now we are ready to prove the main statement of this chapter.

Proof of Theorem 4.2. (i)⇐ (ii): let H ≤ G be a C-open subgroup of G. By Lemma 2.3
we see that H is of finite index in G, hence the double coset CG(h)H is a finite union of
C-closed sets and thus is C-closed in G. By Corollary 4.7 we see that H is C-CS.
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(i) ⇒ (ii): assume that G is C-HCS. Let g ∈ G and K ∈ NC(G) be arbitrary. Let
H = 〈g〉K and note that gK = gH = gH∩K . Clearly H is C-open in G by Lemma 2.3 and
thus it is C-CS. Since g ∈ H and H is C-CS we see that gH is C-closed in H. By Lemma
2.7 we see that gH = gH∩K is C-closed in G. By previous lemma there is L ∈ NC(G)
such that L ≤ K and

Cφ(H)(φ(g)) ⊆ φ(CH(G)K) in G/L,

where φ : G → G/L is the natural projection. Since g ∈ G and K ∈ NC(G) were
arbitrary we see that G has C-CC. �

Note that we used the fact the class C is closed under extensions only in the proof of
Theorem 4.2 when we used Lemma 2.7. All the other statements in this chapter require
only (c1) and (c2).

5. Special amalgams

In order to be able to understand certain properties of graph products we will turn our
attention to special amalgams. The following section is a close analogue of [18, Section
7].

Definition 5.1. Let A,C be groups and let H ≤ A. Then we define A?H C, the special
amalgam of A and C over H, to be the following free product with amalgamation:

A ∗H (H × C) given by presentation 〈A,C‖[h, c] = 1 ∀h ∈ H,∀c ∈ C〉,
where [h, c] = hch−1c−1.

The main reason why we are interested in special amalgams is that they naturally
appear in graph products.

Remark 5.2. Let G = ΓG be a graph product and suppose that |V Γ| ≥ 2. Then for
every v ∈ V Γ there is a natural splitting of G = GA ?GC

GB as a special amalgam of full
subgroups, where A = V \ {v}, B = star(v) and C = link(v).

Proof. Let v ∈ V Γ be arbitrary, set A,C ⊆ V Γ as in the statement of the remark and
let B = star(v). Obviously GC ≤ GB, GC ≤ GA and G = 〈GA, GB〉. By looking at the
presentations it is easy to see that G ∼= GA ∗GC

GB. Note that the vertex v is central
in the graph ΓB therefore GB = Gv × GC . Consequently G ∼= GA ∗GC

(GC × Gv) =
GA ?GC

Gv. �

There are two extreme cases that can occur. If v ∈ V Γ is an isolated vertex, i.e. v
is not connected to any other vertex, we see that GC = {1} and G = GA ∗Gv. On the
other side, if link(v) = V Γ\{v}, i.e. if v is central in Γ, we see that G = GB = GA×Gv.

5.1. Normal form and functorial property. Let G = A?H C. Obviously every
element g ∈ G can be represented as a product x0c1x1 . . . cnxn where xi ∈ A for i =
0, 1, . . . , n and cj ∈ C for j = 1, . . . , n. We say that g = x0c1x1 . . . cnxn is in a reduced
form if xi 6∈ H for i = 1, . . . , n − 1 and cj 6= 1 for j = 1, . . . , n. By using the normal
form theorem for free products with amalgamation [14, Theorem 4.4] we can prove the
following.
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Lemma 5.3. Let H ≤ A,C be groups and let G = A?H C. Suppose that g = x0c1x1 . . . cnxn,
where x0, x1, . . . , xn ∈ A and c1, . . . , cn ∈ C, with n ≥ 1 is in reduced form. Then g 6= 1
in G.

Moreover, suppose that f = y0d1y1 . . . dmym, where y0, y1, . . . , ym ∈ A and d1, . . . , dm ∈
C, is in reduced form with m ≥ 1 as well and f = g. Then m = n and ci = di for all
i = 1, . . . , n.

Proof. The first assertion of the lemma follows directly from normal form theorem for
free products with amalgamation. Now, assume that g = x0c1x1 . . . cnxn, where xi ∈ A
for i = 0, 1, . . . , n and ci ∈ C for i = 1, 2, . . . , n, f = y0d1y1 . . . dmym, where yi ∈ A for
i = 0, 1, . . . ,m and di ∈ C for i = 1, 2, . . . ,m, are both in reduced form and f = g. We
will proceed by induction on m+ n.

In case m + n = 2 we see that m = n = 1 and thus g = x0c1x1, f = y0d1y1. By the
assumption we have that y−1

1 d−1
1 y−1

0 x0c1x1 = 1. This product cannot be in a reduced

form and thus y−1
0 x0 ∈ H. Then we see that

y−1
1 d−1

1 y−1
0 x0c1x1 = y−1

1 (d−1
1 c1)(y−1

0 x0x1) = 1.

Again, this product is not reduced and thus d1 = c1 and we are done.
Now assume that m+ n = K > 2. Then clearly

(2) y−1
m d−1

m . . . y−1
1 d−1

1 y−1
0 x0c1x1 . . . cnxn = 1

and thus the left hand side of (2) is not reduced. Since both f, g were in reduced form
we see that y−1

0 x0 ∈ H and therefore d−1
1 y−1

0 x0c1 = d−1
1 c1y

−1
0 x0 and thus we can rewrite

(2) to

y−1
m d−1

m . . . y−1
1 d−1

1 c1y
−1
0 x0x1 . . . cnxn = 1.

Without loss of generality we may assume that n ≥ m and thus x1 6∈ H. Since x1 6∈ H
we see that y−1

0 x0x1 6∈ H and thus d−1c1 = 1 and we can rewrite (2) to

y−1
m d−1

m . . . y−1
1 y−1

0 x0x1 . . . cnxn = 1.

Since both f and g were in reduced form we see that f1 = g1, where f1 = (x0x1)c2x2 . . . cnxn
and g1 = (y0y1)d2y2 . . . ymdm are in reduced form as well. Thus by induction hypothesis
we get that m = n and di = ci for i = 2, . . . , n. �

The above lemma shows that if g = x0c1x1 . . . cnxn is reduced then c1, . . . , cn are given
uniquely. We will call them the consonants of g. Denote |g|C = n and we will call |g|C
the consonant length of g.

Special amalgams are useful because they have a functorial property.

Remark 5.4. Let H,A,C,Q, S be groups such that H ≤ A and let ψA : A → B,
ψC : C → S be group homomorphisms. Then by universal property of amalgamated free
products ψA, ψC uniquely extend to a homomorphism ψ : G → P , where G = A?H C
and P = Q?ψ(H) S, such that

ψ(g) =

{
ψA(a) if g = a for some a ∈ A,
ψC(c) if g = c for some c ∈ C.

Lemma 5.5. With notation as stated in Remark 5.4, ker(ψ) = 〈〈 ker(ψA), ker(ψC) 〉〉G.
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Proof. Let’s use N = 〈〈 ker(ψA), ker(ψC) 〉〉G. Obviously N ≤ ker(ψ), thus we need to
show the opposite inclusion.

Let φ : G→ G/N be the natural projection, thus N = ker(φ). Let θ : G/N → P be a
homomorhism such that ker(θ) = φ(ker(ψ)) and ψ = θ◦φ. Note that ker(ψA) = ker(ψ)∩
A and ker(ψ) ∩ C = ker(ψC) thus it makes sense to define ξA : ψ(A) → φ(A) be the
homomorphism given by ξA(ψ(a)) = φ(a) and ξC : ψ(C)→ φ(C) be the homomorphism
given by ξC(ψ(c)) = φ(c). Clearly ξA, ξC are isomorphisms. Let h ∈ H and c ∈ C, then
[ξA(ψ(h)), ξC(ψ(c))] = [φ(h), φ(c)] = φ([h, c]) = 1. Therefore by von Dyck’s theorem
the homomorphisms ξA, ξC extend to a homomorphism ξ : P → G/L defined on the
generators of P by

ξ(p) =

{
φ(a) if p = ψA(a) for some a ∈ A,
φ(c) if p = ψC(c) for some c ∈ C.

Then clearly ξ ◦ θ : G/L → G/L is the identity as it is defined on the generators of
G/L by following:

ξ ◦ θ(q) =

{
ξ(θ(φ(a))) = ξ(ψ(a)) = φ(a) if q = φ(a) for some a ∈ A,
ξ(θ(φ(c))) = ξ(ψ(c)) = φ(c) if q = φ(c) for some c ∈ C.

It follows that ξ is injective and thus ker(θ) = {1} = φ(ker(ψ)). Therefore ker(ψ) ≤
ker(φ). Altogether we see that ker(ψ) = 〈〈 ker(ψA), ker(ψC) 〉〉G. �

5.2. Cyclically reduced elements and conjugacy. From now on let H ≤ A,C be
groups and let G denote A?H C, the special amalgam of A and C along H.

Definition 5.6. Let g = c1x1 . . . cnxn, where xi ∈ A and ci ∈ C for i = 1, . . . , n. We
say that g is cyclically reduced if c1x1 . . . cnxn is a reduced expression and if n ≥ 2 then
xn 6∈ H. We will say that an element p ∈ G is a prefix of g if p = c1x1 . . . clxl for
some 0 ≤ l ≤ n and that s ∈ G is a suffix of g if s = cn−mxn−m . . . cnxn for some
−1 ≤ m ≤ n− 1.

Note that we define prefix and suffix only for cyclically reduced elements.

Lemma 5.7. Let g = c1x1 . . . cnxn and f = d1y1 . . . dnyn, where xi, yi ∈ A and ci, di ∈ C
for i = 1, 2, . . . , n, be cyclically reduced elements of G such that n ≥ 1 and xn 6∈ H.
Assume that ugu−1 = f for some u ∈ G. Let u = z0e1z1 . . . emzm, where zi ∈ A and
ej ∈ C for i = 0, 1, . . . ,m and j = 1, . . . ,m, be a reduced expression. Then exactly one
of the following is true

a) m = 0 and u ∈ H,
b) m ≥ 1, zm ∈ H and there is a prefix p of g such that u = hp−1g−l for some

h ∈ H and l ∈ N0,
c) m ≥ 1, xnz

−1
m ∈ H and there is a suffix s of g such that u = hsgl for some h ∈ H

and l ∈ N0.

Proof. If m = 0, then u = z0 and thus

y−1
n d−1

n . . . y−1
1 d−1

1 z0c1x1 . . . cnxnz
−1
0 = 1.

This product clearly cannot be reduced and therefore z0 must belong to H.



50 MICHAL FEROV

Now suppose m ≥ 1. Then since f = ugu−1 we get

z0e1z1 . . . emzmc1x1 . . . cnxnz
−1
m e−1

m . . . z−1
1 e−1

1 z−1
0 = d1y1 . . . dnyn.

Right hand side of this equation is shorter than left hand side and right hand side is
reduced by assumption, therefore left hand side cannot be reduced and thus we see that
either zm ∈ H or xnz

−1
m ∈ H. Since xn 6∈ H we see that exactly one of these two

possibilities may happen.
First suppose that zm ∈ H. Then emzm = zmem and thus we have

(3) z0e1z1 . . . em−1(zm−1zm)(emc1)x1 . . . cnxnz
−1
m e−1

m . . . z−1
1 e−1

1 z−1
0 = d1y1 . . . dnyn.

Again, left hand side cannot be reduced. Since zm ∈ H we cannot have zm−1zm ∈ H as
that would make zm−1 ∈ H which would contradict our assumption that u is reduced.
Thus we must have that em = c−1

1 . Denote h1 := zm−1zmx1 ∈ A. Then

z−1
m e−1

m z−1
m−1 = e−1

m z−1
m z−1

m−1 = c1z
−1
m z−1

m−1 = c1x1x
−1
1 z−1

m z−1
m−1 = c1x1h

−1
1

Since zm−1zm = h1x
−1
1 we get

(z0e1z1 . . . em−1h1)(c2x2 . . . cnxnc1x1)(z0e1z1 . . . em−1h1)−1 = d1y1 . . . dnyn.

Set u′ = z0e1z1 . . . em−1h1 and g′ = c2x2 . . . cnxnc1x1. On the left hand side of the
equation (3) we have

z0e1z1 . . . em−1h1c2x2 . . . cnxnc1x1h
−1
1 e−1

m−1 . . . z
−1
1 e−1

1 z−1
0

and since this expression has longer consonant length than the right hand side of the
equation we see that it cannot be reduced and therefore h1 = zm−1zmx1 ∈ H. If m = 1
we get that u = h1(c1x1)−1 and the lemma is proved.

Now suppose that m = M > 1 and that the statement has been already proved for
all u ∈ G such that |u|C < M , thus we can use the induction hypothesis for f, g′ and u′

as |u′|C = |u|C − 1.

We have u′g′u′−1 = f ,

(4) z0e1z1 . . . em−1h1c2x2 . . . cnxnc1x1h
−1
1 e−1

m−1 . . . z
−1
1 e−1

1 z−1
0 = d1y1 . . . dnyn

Since we have already shown that h1 ∈ H we can use induction hypothesis and by b) we

see that there is a prefix p′ of g′ such that z0e1z1 . . . zm−2em−1h1 = hp′−1g′−l for some
h ∈ H and l ∈ N. As a result of this we have

u = z0e1z1 . . . em−1zm−1emzm

= z0e1z1 . . . em−1zm−1zmc
−1
1

= z0e1z1 . . . em−1h1x
−1
1 c−1

1

= hp′−lg′−lx−1
1 c−1

1 = hp′−1
x−1

1 c−1
1 g−l = h(c1x1p

′)−1g−l.

Now two possibilities can occur. As p′ is a prefix of g′ we see that p′ = c2x2 . . . ckxk
where 2 ≤ k 6= n. Then either c1x1p

′ is a prefix of g or c1x1p
′ = g. Either way we are

done.
In case xnz

−1
m ∈ H we can proceed analogously. �
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Let g = c1x1 . . . cnxn, where x1, . . . , xn ∈ A and c1, . . . , cn ∈ C with h, be a cycli-
cally reduced element of G. Then we say that g′ ∈ G is a cyclic permutation of g if
g′ = cmxm . . . cnxnc1x1 . . . cm−1xm−1 for some 1 ≤ m ≤ n. Equivalently, g′ is a cyclic
permutation of g if there is f , a prefix (or a suffix) of g , such that g = x−1gx (or
g′ = xgx−1).

5.3. Centralisers and a conjugacy criterion. Recall that G = A?H C. The follow-
ing lemma is a special version of [13, Chapter IV, Theorem 2.8].

Lemma 5.8 (Conjugacy criterion for special amalgams). Let g = c1x1 . . . cnxn and
f = d1y1 . . . dmym, where x1, . . . , xn, y1, . . . ym ∈ A, and c1, . . . , cn, d1, . . . , dm ∈ C, be
cyclically reduced elements of G with n ≥ 1. Then g 6∈ AG. If f ∼G g then m = n and
there is g′ ∈ G, a cyclic permutation of g, such that f ∼H g′.

Clearly every cyclically reduced element has only finitely many cyclic permutations.
Lemma 5.8 motivates us to give a sufficient and necessary condition for whether two
cyclically reduced elements of G are conjugate by some element of H.

Lemma 5.9. Suppose g = cx ∈ G such that c ∈ C \ {1} and x ∈ H. Then

CG(g) = CC(c)CH(x) ∼= CC(c)× CH(x).

Proof. Obviously f ∈ CG(g) if and only if fgf−1 = g. Let f ∈ CG(g) and let f =
z0e1z1 . . . emzm, where z0, z1, . . . , zm ∈ A and e1, . . . , em ∈ C, be the reduced expression
for f . Then

(5) z0e1z1 . . . emzmcxz
−1
m e−1

m . . . z−1
1 e−1

1 z−1
0 = cx.

If m = 0 we get that z0cxz
−1
0 x−1c−1 = 1 thus xz−1

0 x−1 ∈ H, therefore z0 ∈ H and

z0c = cz0. Consequently we get z0xz
−1
0 x−1 = 1 and thus z0 ∈ CH(x).

Assume m ≥ 1. Then either xz−1
m ∈ H or zm ∈ H. Since x ∈ H we see that both

must be true, thus zmc = czm and emzmcxz
−1
m e−1

m = (emce
−1
m )(zmxz

−1
m ) and thus (5)

rewrites to

z0e1z1 . . . em−1zm−1(emce
−1
m )(zmxz

−1
m )z−1

m−1e
−1
m−1 . . . z

−1
1 e−1

1 z−1
0 = cx.

Since c 6= 1 we see that emce
−1
m 6= 1. Left hand side cannot be reduced and therefore

either zm−1 ∈ H or (zmxz
−1
m )z−1

m−1 ∈ H. Since zmxz
−1
m ∈ H we see that both must be

true. If m ≥ 2 this contradicts zm−1 6∈ H.
Thus we may assume that m = 1 and consequently f = z0ez1 with z0, z1 ∈ H.

Therefore

g−1fgf−1 = x−1c−1z0ez1cxz
−1
1 e−1z−1

0

= x−1(c−1ec)(z0z1xz
−1
1 )e−1z−1

0 = 1.

Since m ≥ 1 we see that e 6= 1 and consequently c−1ec 6= 1. This leaves us with
z0z1xz

−1
1 ∈ H. As z1xz

−1
1 ∈ H and z0 ∈ H we see that

1 = g−1fgf−1 = (c−1ece−1) · (x−1(z0z1)x(z0z1)−1) ∈ CH.
This gives us that e ∈ CC(c) and z0z1 ∈ CH(x). Altogether we see that f = ez0z1 ∈
CC(c)× CH(x). �
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Lemma 5.10. Let H ≤ A,C be groups and let G = A?H C. Suppose that g =
c1x1 . . . cnxn, ci ∈ C, xi ∈ A for i = 1, . . . , n, is cyclically reduced in G and n ≥ 1.

If xn ∈ H then n = 1 and CG(g) = CC(c1)× CH(x1) ≤ G.
If xn 6∈ H, let {p1, . . . , pk}, where 1 ≤ k ≤ n+1, be the set of all prefixes of g satisfying

p−1
i gpi ∈ gH . For each i = 1, . . . , k choose hi ∈ H such that hip

−1
i gpih

−1
i = g and define

finite subset Ω ⊆ G by Ω = {hip−1
i |i = 1, . . . , k}.

Then CG(g) = CH(g)〈g〉Ω.

Proof. If xn ∈ H then g is cyclically reduced in G if and only if n = 1. Then the claim
follows from the previous lemma. Suppose xn ∈ A \H. Let u ∈ CG(g) thus g = ugu−1.
Then by Lemma 5.7 we know that there are h ∈ H and l ∈ N such that either there is a
prefix p of g such that u = hp−1g−l or there is a suffix s of g such that u = hsgl. In the
second case there is a prefix p of g such that s = p−1g and thus u = hsgl = hp−1gl+1.
Thus without loss of generality we may assume that u = hp−1gl for some prefix p of g,
h ∈ H and l ∈ Z.

We see that g = hp−1glgg−lph−1 = hp−1gph−1, therefore p ∈ {p1, . . . , pk} and thus
there is hi ∈ H such that hip

−1gph−1
i = g = hp−1gph−1. This yields hh−1

i ∈ CH(g),
thus

u = hp−1
i gl ∈ CH(g)hip

−1
i gl ⊆ CH(g)Ω〈g〉.

Since Ω ⊆ CG(g) we see that CH(g)Ω〈g〉 = CH(g)〈g〉Ω.
So it has been proven that CG(g) ⊆ CH(g)〈g〉Ω. Inclusion in the opposite direction is

obvious. �
Lemma 5.11. Let H ≤ A,C be groups and let G = A?H C. Suppose B ≤ A f, g ∈ G are
arbitrary. Let g = x0c1x1 . . . cnxn, f = y0d1y1 . . . ymdm, where x0, . . . , xn, y0, . . . , ym ∈ A
and c1, . . . , cn, d1, . . . , dm ∈ C, be reduced expressions for g and f respectively and assume
that n ≥ 1. Then f ∈ gB if and only if all of the following conditions are met

(i) m = n and ci = di for i = 1, . . . , n,
(ii) y0y1 . . . yn ∈ (x0x1 . . . xn)B in A,
(iii) for every b0 ∈ B such that y0y1 . . . yn = b0(x0x1 . . . xn)b−1

0 we have I 6= ∅ where

I = b0CB(x0x1 . . . xn)∩y0Hx
−1
0 ∩(y0y1)H(x0x1)−1∩· · ·∩(y0y1 . . . yn−1)H(x0x1 . . . xn−1)−1.

Proof. Suppose (i) - (iii) hold. Let b0 ∈ B be such that y0y1 . . . yn = b0(x0x1 . . . xn)b−1
0

and let b ∈ I. Clearly y0y1 . . . yn = b(x0x1 . . . xn)b−1 as b ∈ b0CB(x0x1 . . . xn). We want
to show that f−1bgb−1 = 1. Since (i) holds we can write

(6) f−1bgb−1 = y−1
n c−1

n . . . y−1
1 c−1

1 y−1
0 bx0c1x1 . . . cnxnb

−1.

Since b ∈ y0Hx
−1
0 we see that y−1

0 bx0 ∈ H and thus

y−1
1 c−1

1 y−1
0 bx0c1x1 = y−1

1 y−1
0 bx0x1,

therefore we can rewrite (6) to

f−1bgb−1 = y−1
n c−1

n . . . y−1
2 c2(y0y1)−1b(x0x1)c2x2 . . . cnxnb

−1.

Again, since b ∈ (y0y1)H(x0x1)−1 we see that (y0y1)−1b(x0x1) ∈ H and thus (6) rewrites
to

f−1bgb−1 = y−1
n c−1

n . . . y−1
3 c3(y0y1y2)−1b(x0x1x2)c3x3 . . . cnxnb

−1.
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By repeating this argument n-times we rewrite (6) to

f−1bgb−1 = (y0y1 . . . yn)−1b(x0x1 . . . xn)b−1.

Which is equal to 1 by assumption, thus f ∈ gB.
Now assume f ∈ gB, so there is b ∈ B such that

y0d1y1 . . . dmym = b(x0c1x1 . . . cnxn)b−1.

By Lemma 5.3 we see that m = n and ci = di for i = 1, . . . , n, thus we’ve established (i).
There is a natural retraction ρ : G→ A defined by ρ(a) = a for all a ∈ A and ρ(c) = 1 for
all c ∈ C. By applying this retraction we establish (ii). Let b0 be an arbitrary element
of B such that y0y1 . . . yn = b0(x0x1 . . . xn)b−1

0 . Obviously b ∈ b0CB(x0x1 . . . xn). From
assumptions we have that

(7) y−1
n c−1

n . . . y−1
1 c−1

1 (y−1
0 bx0)c1x1 . . . cnxnb

−1 = 1

By Lemma 5.3 this expression cannot be reduced thus y−1
0 bx0 ∈ H, therefore b ∈

y0Hx
−1
0 . This means that we can rewrite (7) as

y−1
n c−1

n . . . y−1
2 c−1

2 (y−1
1 y−1

0 bx0x1)c2x2 . . . cnxnb
−1 = 1.

Again, by Lemma 5.3 we see that (y0y1)−1b(x0x1) ∈ H or equivalently b ∈ (y0y1)H(x0x1)−1.
By applying this step n-times we establish (iii), thus I 6= ∅. �

Lemma 5.12. Let H ≤ A,C be groups and let G = A?H C, suppose B ≤ A. Let
g ∈ G and g = x0c1x1 . . . cnxn, where x0, . . . , xn ∈ A and c1, . . . , cn ∈ C, be a reduced
expression of g with n ≥ 1. Then CB(g) = I, where

I = CB(x0x1 . . . xn)∩x0Hx
−1
0 ∩(x0x1)H(x0x1)−1∩· · ·∩(x0x1 . . . xn−1)H(x0x1 . . . xn−1)−1.

Proof. Clearly g ∼G g and thus by previous lemma for any b0 ∈ B such that b0(x0x1 . . . xn)b−1
0 =

x0x1 . . . xn we have I 6= ∅, where

I = b0CB(x0x1 . . . xn) ∩ x0Hx
−1
0 ∩ (x0x1)H(x0x1)−1 ∩ · · · ∩ (x0x1 . . . xn−1).

We can set b0 = 1. Now take b ∈ I by argumentation analogous to the proof of the
previous lemma we see that bgb−1 = g and thus I ⊆ CB(g).

Let b ∈ CB(g). Then bgb−1 = g. By the previous lemma we see that b ∈ I. Therefore
I = CG(g). �

6. Finite graph products of C-HCS groups

From now on we will assume that the class C is an extension closed variety of finite
groups, i.e. C satisfies (c1), (c2), (c3) and (c4). The main result of this section is the
following generalisation of [18, Theorem 1.1] and [29, Theorem 6.15].

Theorem 6.1. Assume that C is an extension closed variety of finite groups. Then the
class of C-HCS groups is closed under taking finite graph products.
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6.1. Some auxiliary statements. The following two statements were proved first by
Minasyan in [18, Lemma 5.6 and 5.7] in case when C is the class of all finite groups. Later
in his paper [29] Toinet proved them in case when C is the class of all finite p-groups for
some prime number p. The proofs can easily be generalised for the case when the class

C is an extension closed variety of finite groups and we leave them to the reader.

Lemma 6.2. Let G be a group and let A,B ≤ G be retracts of G with corresponding
retractions ρA, ρB ∈ End(G) such that ρA ◦ ρB = ρB ◦ ρA. Let x be an element of G and
let α = ρA(ρB(x)x−1)xρB(x−1) ∈ G. Suppose that the pair (A ∩B,α) satisfies C-CC in
G. Then for any K ∈ NC(G) there exists M ∈ NC(G) such that M ≤ K, ρA(M) ⊆ M ,
ρB(M) ⊆M and φ(A)∩φ(xBx−1) ⊆ φ(A∩xBx−1)φ(K) in G/M , where φ : G→ G/M
is the natural epimorphism.

Lemma 6.3. Let G be a group and let A,B ≤ G be retracts of G with corresponding
retractions ρA, ρB ∈ End(G) such that ρA ◦ ρB = ρB ◦ ρA. Consider arbitrary elements
x, g ∈ G. Denote D = xBx−1 ≤ G and α = ρA(ρB(x)x−1)xρB(x−1) ∈ G. Suppose that
the conjugacy classes αA∩B and gA∩D are C-closed in G, and the pair (A∩B,α) satisfies
C-CCG. Then the double coset CA(g)D is C-closed in G.

Dyer [7, Theorem 3] proved that free-by-finite groups are CS. In [29, Theorem 4.2]
Toinet proved that free-by-(finite-p) groups are p-CS. Ribes and Zalesskii generalised
these results (see [28, Section 3, Theorem 3.2]) to the following.

Theorem 6.4. Let C be an extension closed variety of finite groups and let G be finitely
generated free-by-C group. Then G is C-CS.

Clearly, every C-open subgroup of a finitely generated free-by-C group is finitely gen-
erated free-by-C group as well. We can state the following corollary as an immediate
consequence of Theorem 6.4.

Corollary 6.5. Let G be finitely generated free-by-C group. Then G is C-HCS.

The following simple lemma will be crucial for our proofs.

Lemma 6.6. Suppose that C is a class of groups satisfying (c2). Let Q,S ∈ C and
suppose that R ≤ Q. Then G = Q?R S is free-by-C.

Proof. Let σ : G→ Q×S be the epimorphism defined on the generators of G as follows:

σ(q) = q for all q ∈ Q,
σ(s) = s for all s ∈ S.

Clearly ker(σ) ∈ NC(G) as C is closed under taking direct products. We want to show
that ker(σ) is a free group. From the definition of σ we see that ker(σ) ∩ R × S = {1}.
Let T be the Bass-Serre tree for Q?R S = Q ∗R (R×S) and consider the induced action
of ker(σ) on T . By a standard result of Bass-Serre theory (see [3, Theorem 12.1]) we
know that the stabiliser of a vertex v has to be conjugate either into Q or R × S, but
since ker(σ) is normal and does not intersect any of the factors we see that ker(σ) acts
freely on T and thus it is free. As a consequence we see that G is free-by-C. �

Combining corollary 6.5 together with Lemma 6.6 we immediately get the following.

Corollary 6.7. Suppose that C is an extension closed variety of finite groups. Let
Q,S ∈ C and assume that R ≤ Q. Then G = Q?R S is C-HCS.
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6.2. Proof of Theorem 6.1. Before we proceed to the proof we first prove a weaker
statement. This was first proved by Green in [9] both for the case when C is the class of
all finite groups and for the case when C is the class of all finite p-groups for some prime
number p.

Lemma 6.8. Let C be a class of finite groups satisfying (c1), (c2) and (c4). Then the
class of residually-C groups is closed under taking graph products.

Proof. First, we show the statement holds for all finite graph products. The proof will
by done by induction on |V Γ|. If |V Γ| = 1 we see that ΓG = Gv and Gv is residually-C
by assumption.

Now assume that the statement has been proved for all graph products ΓG such that
|V Γ| ≤ r. Let G = ΓG be such that |V Γ| = r + 1 and let g ∈ G \ {1} be arbitrary.
Pick v ∈ V Γ and denote C = Gv, H = GlinkΓ(v) and A = GV Γ\{v}. Then clearly
G = A?H C by Remark 5.2. By the induction hypothesis we get that A,C,H are
residually-C. Let g = x0c1x1 . . . cnxn, where x0, x1, . . . , xn ∈ A and c1, . . . , cn ∈ C, be a
reduced expression for g in G. There are two cases to consider: either n = 0 or n ≥ 1. If
n = 0 then g = x0 ∈ A\{1} and we can use the fact that A is a retract in G, thus we can
consider the canonical retraction ρA : G → A. Then ρA(x0) = x0 and A is residually-C
by induction hypothesis.

Suppose that n ≥ 1. Clearly, H is a retract of A and therefore by Lemma 2.6 we see
that H is C-closed in A. This means that there is a group Q ∈ C and an epimorphism
α : A→ Q such that α(xi) 6∈ α(H) for whenever xi 6∈ H. Similarly since C is residually-
C by assumption as it is a vertex group we see that there is a group S ∈ C and an
epimorphism γ : C → S such that γ(ci) 6= 1 in S for all i = 1, . . . , n. Let φ : G → P ,
where P = Q?α(H) S, be the canonical extension of α and γ (see Remark 5.4). We see
that

φ(g) = α(x0)γ(c1)α(x1) . . . γ(cn)α(xn),

is a reduced expression and thus φ(g) nontrivial in P is by Lemma 5.3. By Lemma 6.6
we see that P is free-by-C and thus P is residually-C by Lemma 2.9.

We have showed that both in case if n = 0 and if n ≥ 1 we can separate g from {1}.
Using Lemma 2.1 we see that {1} is C-closed in G and thus G is residually-C.

Now, assume that the graph Γ is infinite and let g ∈ G \ {1} be arbitrary. Obviously,
S = supp(g) is finite. Let GS be the full subgroup corresponding to S and let ρS : G→
GS be the canonical retraction. Clearly, ρS(g) = g 6= 1 and GS is residually-C as it is a
finite graph product of residually-C groups. Using Lemma 2.1 we se that {1} is C-closed
in G and thus G is residually-C. �

The main idea of the proof of Theorem 6.1 is somewhat similar to the proof of Lemma
6.8. However, significantly more work needs to be done. To be able to prove Theorem
6.1 we will need the following two lemmas.

Lemma 6.9. Let Γ be a finite graph and let G = ΓG be a graph product where Gv is
C-HCS for all v ∈ V Γ. Then all full subgroups of G satisfy C-CCG.

Lemma 6.10. Let Γ be a finite graph and let G = ΓG be a graph product where Gv is
C-HCS for all v ∈ V Γ. Then for all g ∈ G and all full subgroups B ≤ G the set gB is
C-separable in G.
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Lemmas 6.9 and 6.10 will be proved simultaneously by induction on |V Γ|. If |V Γ| = 1
we see that both lemmas hold trivially as G = Gv which is C-HCS by assumption. Now
assume that the two lemmas are true for all ΓG where |V Γ| ≤ r.

To be able to control conjugacy classes and centralisers in special amalgam A?H C we
need to be able to control intersections of conjugates of the amalgamated group H inside
A as stated in Lemmas 5.10 and 5.11. In terms of our setting with graph products this
means that we need to be able to control intersections of conjugates of full subgroups.
This is established in Lemma 6.12. The rest of Section 6 is a case analysis dealing
with all possible situations that might occur and shows that in all of the cases we can
construct a suitable homomorphism from our graph product onto a special amalgam
groups belonging to the class C which is a free-by-C group and thus by Corollary 6.7 is

C-CS group.

Remark 6.11. Let G be a group and let H,F ≤ G, b, x, y ∈ G be arbitrary. If bH ∩
xFy 6= ∅ then for any a ∈ bH ∩ xFy we have bH ∩ xFy = a(H ∩ y−1Fy).

Proof. Let a ∈ bH ∩ xFy. Since a ∈ bH we see that aH = bH. Since a ∈ xFy we have
a = xfy for some f ∈ F . Thus we can write

bH ∩ xFy = aH ∩ aa−1xFy = aH ∩ ay−1f−1x−1xFy = aH ∩ ay−1Fy = a(H ∩ y−1Fy).

�

The following statements and their proofs very closely follow the contents of [18,
Section 8].

Lemma 6.12. Let G be a graph product and assume that every full subgroup B ≤ G
satisfies C-CCG and for each g ∈ G the conjugacy class gB is C-closed in G.

Let A1, . . . , An ≤ G be full subgroups of G, let A0 be a conjugate of a full subgroup of
G and let b, x0, xi, yi ∈ G for i = 1, . . . , n. Then for any K ∈ NC(G) there is L ∈ NC(G)
such that L ≤ K and

bCA0
(x0) ∩

n⋂

i=1

xiAiyi ⊆ ψ
((

bCA0(x0) ∩
n⋂

i=1

xiAiyi

)
K

)
in G/L,

where ψ : G → G/L is the natural projection and b = ψ(b), Ai = ψ(Ai) xi = ψ(xi),
i = 0, . . . , n and yj = ψ(yj), j = 1, . . . , n.

Proof. We will proceed by induction on n. If n = 0 then we just want bCA0
(x0) ⊆

ψ (bCA0(x0)K). By assumption A0 = hAh−1 for some h ∈ G and A ≤ G and thus
the pair (A, h−1gh) has C-CCG. We can consider φh−1 , the inner automorphism of G
given by h−1. Obviously Cφh−1 (H)(φ(g)) = φh−1(CH(g)) ⊆ φh−1(CH(g)K) in G for

any K ∈ NC(G) since φh−1 ∈ Aut(G). Since ker(φh−1) = {1} we can use Lemma 4.5
to see that the pair (A0, g) has C-CCG as well, thus there is L ∈ NC(G) such that
CA0

(x0) ⊆ ψ (CA0(x0)K) in G/L. This is equivalent to bCA0
(x0) ⊆ ψ (bCA0(x0)K).

Base of the induction: let n = 1. First suppose that bCA0(x0) ∩ x1A1y1 = ∅. This is
equivalent to x1 6∈ bCA0(x0)y−1

1 A1. Since A0 = hAh−1 then CA0(x0) = hCA(g)h−1 where

g = h−1x0h. Thus x1 6∈ bhCA(g)h−1y−1
1 A1(y1h)(y1h)−1. Set D = (y1h)−1A1(y1h). Thus

we have x1 6∈ bhCA(g)Dh−1y−1
1 .
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By theorem 3.3 we see that A ∩ A1 and A ∩ D are conjugates of full subgroups.
Thus for arbitrary f ∈ G we have that fA∩D (or fA1∩A) and the pair (A ∩ D, f)
(or (A1 ∩ A, f)) has C-CCG for all f ∈ G, thus by Lemma 6.3 we see that the dou-
ble coset CA(g)D is C-separable in G. Then bhCA(g)Dh−1y−1 is C-separable as well.
Equivalently bCA0(x0)y−1

1 A1 is C-closed in G and thus there is N ∈ NC(G) such that

x1 6∈ (bCA0(x0)y−1
1 A1)N . By replacing K ∩ N we can assume N ≤ K. Since the pair

(A0, x0) has C-CCG there is L ∈ NC(G) such that L ≤ N and CA0
(x0) ⊆ ψ (CA0(x0)N) ⊆

ψ (CA0(x0)K) in G/L where ψ : G → G/L is the natural projection and A0 = ψ(A0),
x0 = ψ(x0).

This means that ψ−1(b)CA0
(x0)y−1

1 A1) ⊆ bCA0(x0)y−1
1 A1N , where b = ψ(b), and

thus from construction of N we see that x1 6∈ ψ−1(bCA0
(x0)y−1

1 A1) which concludes

that x1 6∈ bCA0
(x0)y−1

1 A1, thus bCA0
(x0) ∩ x1A1y1 = ∅ and therefore

∅ = bCA0
(x0) ∩ x1A1y1 ⊆ ψ ((bCA0(x0) ∩ x1A1y1)K) .

Now suppose bCA0(x0)x1A1y1 6= ∅. By Remark 6.11 we see that bCA0(x0)x1A1y1 =
a(CA0(x0) ∩ y−1

1 A1y1), where a ∈ bCA0(x0) ∩ x1A1y1. Clearly CA0(x0) ∩ y−1
1 A1y1 =

CE(x0), where E = A0 ∩ y−1A1y. By Theorem 3.3 we see that E is a conjugate of
some full subgroup of G and thus the pair (E, x0) has C-CCG and therefore there is
M ∈ NC(G) such that M ≤ K and

(8) Cϕ(E)(ϕ(x0)) ⊆ ϕ(CE(x0)K) = ϕ
(
(CA0(x0) ∩ y−1

1 A1y1)K
)

in G/M,

where ϕ : G → G/M is the natural projection. However, we need to have control
over a(CA0

(x0) ∩ y−1
1 A1y1). The full subgroups A,A1 are retract whose corresponding

retractions commute and their intersection, A ∩ A1, has C-CCG because it is a full
subgroup. Set x = y1h. By Lemma 6.2 there is L ∈ NC(G) such that L ≤M and

ψ(A) ∩ ψ(xA1x
−1) ⊆ ψ(A ∩ xA1x

−1)ψ(M) in G/L

where ψ : G→ G/L is the natural projection. It can be easily checked that

A0 ∩ y−1
1 A1y1 = hAh

−1 ∩ h
(
y1h
)−1

A1

(
y1h
)
h
−1

= h(A ∩
(
y1h)−1A1

(
y1h
))
h
−1
,

where h = ψ(h). Thus

A0 ∩ y1−1A1y1 ⊆ ψ(h)
[
ψ
(
A ∩ (y1h)−1A1(y1h)

)
ψ(M)

]
ψ(h)−1

= ψ(hAh−1 ∩ y−1
1 Ay1)ψ(M)

= ψ(E)ψ(M) = ψ(EM).

(9)

Since ψ(a) = a ∈ bCA0
(x0) ∩ x1A1y1 we can use Remark 6.11 and write

bCA0
(x0) ∩ x1A1y1 = a(CA0

(x0) ∩ y−1
1 A1y1).

Again, CA0
(x0) ∩ y−1

1 A1y1 = CA0∩y−1
1 A1y1

(x0). Since A0 ∩ y−1
1 A1y1 ⊆ ψ(EM) we get

that

(10) bCA0
(x0) ∩ x1A1y1 ⊆ aCψ(EM)(x0).

Let ϕ : G → G/M be the natural projection. Since L ≤ M there is unique homo-
morphism ξ : G/L → G/M such that ϕ = ξ ◦ ψ. Clearly ψ(M) = ker(ξ) and thus
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ξ(ψ(EM)) = ξ(ψ(E)ψ(M)) = ξ(ψ(E)) = ϕ(E), also ξ(x0) = ϕ(x0). Therefore for
arbitrary z ∈ Cψ(EM)(x0) in G/L we have

ξ(z) ∈ Cϕ(E)(ϕ(x0)) ⊆ ϕ(CE(x0)K) = ξ(ψ(CE(x0)K)).

Altogether this means that z ∈ ψ(CE(x0)K) ker(ξ) = ψ(CE(x0)K)ψ(M) = ψ(CE(x0)K).
Thus we get Cψ(EM)(x0) ⊆ ψ(CE(x0)K). Combined with (10) we get

bCA0
(x0) ∩ x1A1y1 ⊆ aψ(CE(x0)K) = ψ(aCE(x0)K) = ψ((bCA0(x0) ∩ x1A1y1)K).

Now suppose n > 1 and that the result has been proved for all m ≤ n− 1.
If bCA0(x0)∩⋂n−1

i=1 xiAiyi = ∅ then by induction there is L ∈ NC(G) such that L ≤ K
and

bCA0
(x0) ∩

n−1⋂

i=1

xiAiyi ⊆ ψ
((

bCA0(x0) ∩
n−1⋂

i=1

xiAiyi

)
K

)
= ∅ in G/L.

Clearly bCA0
(x0) ∩⋂n

i=1 xiAiyi ⊆ bCA0
(x0) ∩⋂n−1

i=1 xiAiyi = ∅ and thus we are done.

Now suppose that bCA0(x0) ∩ ⋂n−1
i=1 xiAiyi 6= ∅ in G. Then for any a ∈ bCA0(x0) ∩⋂n−1

i=1 xiAiyi we can use Remark 6.11 to see that bCA0(x0) ∩ ⋂n−1
i=1 xiAiyi = aCE(x0)

where E = A0 ∩
⋂n−1
i=1 y

−1
i Aiyi.

Then bCA0(x0)∩⋂n
i=1 xiAiyi = aCE(x0)∩ xnAnyn thus by using the base case of the

induction we can get that there is M ∈ NC such that M ≤ K and

(11) φ(a)Cφ(E)(φ(x0)) ∩ φ(xnAnyn) ⊆ φ((aCE(x0) ∩ xnAnyn)K) in G/M

where φ : G → G/M is the natural projection. Also by induction hypothesis there is
L ∈ NC(G) such that L ≤M ≤ K ≤ G and

bCA0
(x0) ∩

n−1⋂

i=1

xiAiyi ⊆ ψ
((

bCA0(x0) ∩
n−1⋂

i=1

xiAiyi

)
M

)
in G/L.

Note that ker(ψ) = L ≤M = ker(φ). Therefore

ψ−1

(
bCA0

(x0) ∩
n⋂

i=1

xiAiyi

)
= ψ−1

(
bCA0

(x0) ∩
n−1⋂

i=1

xiAiyi

)
∩ ψ−1

(
xnAnyn

)

⊆
(
bCA0(x0) ∩

n−1⋂

i=1

xiAiyi

)
M ∩ (xnAnyn)L

⊆ aCE(x0)M ∩ xnAnynM
⊆ φ−1

[
φ(a)Cφ(E)(φ(x0))

]
∩ φ−1 [φ(xnAnyn)]

= φ−1
[
φ(a)Cφ(E)(φ(x0)) ∩ φ(xnAnxn)

]

Using (11) we get

φ−1
[
φ(a)Cφ(E)(φ(x0)) ∩ φ(xnAnxn)

]
⊆ (aCE(x0) ∩ xnAnyn)K.

Finally, this leads us to

ψ−1

(
bCA0

(x0) ∩
n⋂

i=1

xiAiyi

)
⊆
(
bCA0(x0) ∩

n⋂

i=1

xiAiyi

)
K.
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Which concludes the proof of the lemma. �

From now on we assume that Lemmas 6.9 and 6.10 are hold for all graph products
ΓG such that |V Γ| ≤ r. Let G = ΓG be a graph product such that |V Γ| = r + 1. Let
v ∈ V Γ be arbitrary and set A = GV Γ\{v}, H = Glink(v) and C = Gv. Then by Remark
5.2 we see that G = A?H C. Also, suppose that B ≤ A is a full subgroup of A.

Lemma 6.13. Let g ∈ G\A and f ∈ G\gB. Then there are homomorphisms ψA : A→ Q
and ψC : C → S where Q,S ∈ C such that for the corresponding extension ψ : G → P ,
where P = Q?ψA(H) S, we have ψ(f) 6∈ ψ(g)ψ(B).

Proof. Let g = x0c1x1 . . . cnxn, where x0, x1, . . . , xn ∈ A and c1, . . . , cn ∈ C, and f =
y0d1y1 . . . ymdm, where y0, y1, . . . , ym ∈ A and d1, . . . , dm ∈ C, be the reduced expressions
for g and f respectively. Since g 6∈ A we see that n ≥ 1. We have to consider four separate
cases.

Case 1: suppose n 6= m. Since G is residually-C by Lemma 6.8 (and A as well) and H
is a full subgroup of A, H is a retract in A and thus is C-closed in A by Lemma 2.6. Thus
there is L ∈ NC(A) such that ψA(xi) 6∈ ψA(H) whenever xi 6∈ H and ψA(yj) 6∈ ψA(H)
whenever yj 6∈ H, where ψA : A → A/L is the natural projection. Since C is a vertex
group we have that C is residually-C by assumption and thus there is M ∈ NC(C) such
that ψC(ci) 6= 1 and ψC(dj) 6= 1 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m where ψC : C →
C/M is the natural projection. Then for the corresponding extension ψ : A?H C →
A/L?ψA(H)C/M we have

ψ(g) = ψA(x0)ψC(c1)ψA(x1) . . . ψC(cn)ψA(xn),

ψ(f) = ψA(y0)ψC(d1)ψA(y1) . . . ψC(dm)ψA(ym).

These are again reduced expressions and n 6= m. Then by Lemma 5.11 we see that
ψ(g) 6∈ ψ(f)ψ(B).

Case 2: n = m and cj 6= dj for some j. Again by argumentation analogous to previous
case we see that there are L ∈ NC(A) and M ∈ NC(C) such that ψA(xi) 6∈ ψA(H)
whenever xi 6∈ H, ψA(yi) 6∈ ψA(H) whenever yi 6∈ H and ψC(cj) 6= ψC(dj) where
ψA : A → A/L ψC : C → C/M are the corresponding natural projections. Then for the
corresponding extension ψ : A?H C → A/L?ψA(H)C/M we have

ψ(g) = ψA(x0)ψC(c1)ψA(x1) . . . ψC(cn)ψA(xn),

ψ(f) = ψA(y0)ψC(d1)ψA(y1) . . . ψC(dn)ψA(yn).

These are again reduced expressions and ψ(cj) 6= ψ(dj). Then again by Lemma 5.11 we

see that ψ(g) 6∈ ψ(f)ψ(B).
Case 3: n = m, ci = di for i = 1, 2, . . . , n and x0x1 . . . xn 6∈ (y0y1 . . . yn)B. Since

x = x0x1 . . . xn ∈ A and B is a full subgroup of A we see that xB is C-closed in G by
Lemma 6.10 and therefore there is L ∈ NC(A) such that ψA(x) 6∈ ψA(g)ψA(B), where
ψA : A/L is the natural projection. Since C is a vertex group we know by assumption
that it is residually-C and thus there is M ∈ NC(C) such that ψC(ci) 6= 1 6= ψC(di)
for i = 1, 2, . . . , n, where ψC : C → C/M is the natural projection. By extending
ψA : A → Q = A/L and ψC : C → S = C/M to ψ : A?H C → Q?ψA(H) S we get

that ψ(f) 6∈ ψ(g)ψ(B) by Lemma 5.11.
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Case 4: Now we assume that condition (i) and (ii) from conjugacy criterion for special
amalgams are satisfied and (iii) is not. Namely: let b0 ∈ B be such that bxb−1 = y and
I = ∅ where

I = b0CB(x) ∩ x0Hx
−1
0 ∩ (y0y1)H(x0x1)−1 ∩ · · · ∩ (y0y1 . . . yn−1)H(x0x1 . . . xn−1)−1,

where x = x0x1 . . . xn. By assumption H is a full subgroup of A and thus it is C-closed
in A by Lemma 2.6, hence there is K ∈ NC(A) such that xiK ∩ H = ∅ = yiK ∩ H
for all i = 0, 1, . . . , n. We assume that Lemmas 6.9 and 6.10 are true for A and thus
assumptions of Lemma 6.12 are true for A. Therefore we can use Lemma 6.12 to see
that there is L ∈ NC(A) such that L ≤ K and

b0CB(x)∩y0Hx
−1
0 ∩(x0x1)H(y0y1)−1∩· · ·∩(x0x1 . . . xn−1)H(y0y1 . . . yn−1)−1 ⊆ ψA(IK),

where ψA : A→ A/L is the natural projection and x = ψA(x), xi = ψA(xi), yi = ψA(yi)
for i = 0, 1, . . . n − 1, H = ψA(H) and B = ψA(B). Note that since I = ∅ we have
ψA(IK) = ∅. Also since C is a vertex group we know it is C-HCS and thus residually-C,
hence there is M ≤ NC(C) such that ψC(xi) 6= 1 6= ψC(yi) 6= 1 for i = 1, 2, . . . , n, where
ψC : C → C/M is the natural projection. Therefore if we extend ψA : A → Q = A/L

and ψC : C → S = C/M to ψ : A?H C → Q?ψA(H) S we see that ψ(f) 6∈ ψ(g)ψ(B) by
Lemma 5.11 as the condition (iii) is not true for ψ(f) and ψ(g). �
Lemma 6.14. Suppose that g0, f0, f1, . . . , fn ∈ G are arbitrary and that the products
g0 = c1x1 . . . cmxm, where c1, . . . , cm ∈ C and x1, . . . , xm ∈ A, and f0 = d1y1 . . . dkyk,
where d1, . . . , dk ∈ C and y1, . . . , yk ∈ A, are cyclically reduced in G. If fj 6∈ gH for
all j = 1, 2, . . . ,m then there are groups Q,S ∈ C and a epimorphisms ψA : A→ Q and
ψC : C → S such that for the extension ψ : A?H C → P , where P = Q?ψA(H) S, all of
the following are true:

(i) ψ(fi) 6∈ ψ(g0)ψ(H) in P for all i = 1, 2, . . . , n,
(ii) the products

ψ(g0) = ψC(c1)ψA(x1) . . . ψC(cm)ψA(xm),

ψ(f0) = ψC(d1)ψA(y1) . . . ψC(dk)ψA(yk)

are cyclically reduced in P .

Proof. We set B := H which is a full subgroup of A thus we can apply Lemma 6.13
to pairs (g0, f1), . . . , (g0, fn) to obtain L1, . . . , Ln ∈ NC(A) and M1, . . .Mn ∈ NC(C)
with corresponding natural projections αi : A → A/Li and γ : C → C/Mi, such that

ψi(fi) 6∈ ψi(g0)ψi(H) in Pi, where ψi : A?H C → A/Li ?αi(H)C/Mi, for i = 1, 2, . . . , n.
Note that since H is a retract of A and A is residually-C we get that H is C-closed in A
by Lemma 2.6. Thus there is K ∈ NC(A) such that xiK ∩H = ∅ whenever xi 6∈ H and
yjK ∩H = ∅ whenever yj 6∈ H. Also by the same argumentation there is M ′ ∈ NC(C)
such that ci 6∈M ′ and dj 6∈M ′ for all i = 1, 2, . . . ,m and j = 1, 2, . . . , k.

Set L = K ∩⋂n
i=1 Li and M = M ′ ∩ni=1 Mi. Let ψA : A → A/L and ψC : C → C/M

be the natural projections and let ψ : A?H C → A/L?ψA(H)C/M . Clearly, this is the
map we are looking for. �
Lemma 6.15. Let K ∈ NC(G), B ≤ A be a full subgroup of A (and thus of G). Let
g ∈ G \A be an element with reduced form g = x0c1x1 . . . cnxn, where x0, x1, . . . , xn ∈ A
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and c1, . . . , cn ∈ C, such that n ≥ 1. Then there are groups Q,S ∈ C and epimorphisms
ψA : A → Q, ψC : C → S with the corresponding extension ψ : A?H C → P , where
P = Q?ψA(H) S, such that the following are true:

(i) Cψ(B)(ψ(g)) ⊆ ψ(CB(g)K),
(ii) ker(ψA) ≤ A ∩K, ker(ψC) ≤ C ∩K and ker(ψ) ≤ K.

Proof. Since A is residually-C and H is a retract in A we see that H is C-closed in A by
Lemma 2.6. Thus there is M1 ∈ NC(A) such that xiM1∩H = ∅ for all i = 1, 2, . . . , n−1.
We may replace M1 by M1 ∩ (A ∩K) to ensure that M1 ≤ A ∩K. By Lemma 5.12 we
have CB(g) = I where

I = CB(x) ∩ x0Hx
−1
0 ∩ (x0x1)H(x0x1)−1 ∩ · · · ∩ (x0 . . . xn−1)H(x0 . . . xn−1)−1

and x = x0x1 . . . xn. Since A is a graph product with less than n vertices we may assume
that both Lemmas 6.9 and 6.10 hold for A. Thus we can use Lemma 6.12 to show the
there is L1 ∈ NC(A) such that L1 ≤M1 ≤ K ∩A and

J = CB(x) ∩ x0Hx
−1
0 ∩ · · · ∩ (x0 . . . xn−1)H(x0 . . . xn−1)−1 ⊆ ψA(IM1) in A/L1,

where ψA : A → Q = A/L1 is the natural projection and x = ψA(x), xi = ψA(xi), for
i = 0, 1, . . . n− 1, H = ψA(H) and B = ψH(B).

Since C is C-HCS it is also residually-C and thus there is Z ∈ NC(C) such that
Z ≤ C ∩K and ψC(ci) 6= 1 in C/Z for i = 1, 2, . . . , n, where ψC : C → S = C/Z is the
natural projection.

Let P = Q?ψA(H) S and let ψ : A?H C → P be the canonical extension of ψA and ψC
to G. Now

ψ(g) = ψA(x0)ψC(c1)ψA(x1) . . . ψC(cn)ψ(xn),

thus CB(g) = J in P by Lemma 5.12. This means that

Cψ(B)(ψ(g)) ⊆ ψ(IM1) = ψ(CB(g)M1),

therefore the first assertion of the lemma holds. Note that ker(ψA) = L1 ≤M1 ≤ K ∩A
and ker(ψC) ≤ K ∩C. Since ker(ψ) = 〈〈 ker(ψA) ker(ψC) 〉〉G by Lemma 5.5 we see that
ker(ψ) ≤ K and thus the second assertion holds as well. �
Lemma 6.16. Let K ∈ NC(G) and let g = c1x1 . . . cnxn, where c1, . . . cn ∈ C and
x1, . . . , xn ∈ A, be a cyclically reduced element of G with n ≥ 1. Then there are homo-
morphisms ψA : A→ Q and ψC : C → S, where Q,S ∈ C, with a corresponding extension
ψ : G→ P , where P = Q?ψA(H) S, such that the following is true

(i) ker(ψA) ≤ A ∩K, ker(ψC) ≤ C ∩K and ker(ψ) ≤ K,
(ii) CP (ψ(g)) ⊆ ψ(CG(g)K) in P .

Proof. We need to consider two separate cases: xn ∈ H or xn 6∈ H.
Suppose xn ∈ H. Then by Lemma 5.10 we see that n = 1 and CG(c1x1) = CC(c1)×

CH(x1). Since A is a graph product with less than n vertices we can use the induction
hypothesis of Lemma 6.10 to find L ∈ NC(A) such that L ≤ K ∩A and Cα(H)(α(x1)) ⊆
α(CH(x1)(K∩A)), where α : A→ Q = A/L is the natural projection. Since C is a vertex
group we assume that it is C-HCS and therefore it satisfies C-CC by Theorem 4.2. This
means that there isM ∈ NC(C) such thatM ≤ K∩C and CS(γ(c1)) ⊆ γ(CC(c1)(K∩C)),
where S = C/M and γ : C → S is the canonical projection. Note that since A is
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residually-C by Lemma 6.8 and C is residually-C by assumption these maps can be
chosen so that α(x1) 6= 1 in Q and γ(c1) 6= 1 in S.

Let ψ : A?H C → P , where P = Q?α(H) S, be the canonical extension of α and γ
to G. Since ψ(g) = γ(c1)α(x1) is again reduced by Lemma 5.10 we see that CP (g) =
CS(γ(c1))×CP (α). From the construction of the maps α and γ we see that CP (ψ(g)) ⊆
ψ(CG(g)K).

Suppose xn 6∈ H. Let {p1, p2, . . . pn+1} be the set of prefixes of g and assume there is
1 ≤ m < n such that p−1

i gpi 6∈ gH if i ≤ m and p−1
i gpi ∈ gH if i > m. For every i > m

there is hi ∈ H such that hip
−1
i gpih

−1 = g and thus hip
−1
i ∈ CG(g). Set

(12) Ω = {hip−1
i | i > m}.

Let fi = p−1
i gpi for i = 1, 2, . . . ,m. Clearly f1, f2, . . . , fm 6∈ gH . Let f0 = g. Using

Lemma 6.14 we see that there are C-groups Q1 and S1 and epimorphism α1 : A →
Q1 and γ1 : C → S1 such that if we take the corresponding extension ψ1 : A?H C →
Q1 ?α1(H) S1 the element ψ1(f0) = γ(c1)α(x1) . . . γ(cn)α(xn) is cyclically reduced and

ψi(fi) 6∈ ψ(g)ψ(H) for i = 1, 2, . . . ,m. Let L1 = ker(α1) and M1 = ker(γ1). Note that
L1 ∈ NC(A) and M1 ∈ NC(C).

By Lemma 6.15 there are C-groups Q2, S2 and an epimorphism α2 : A→ Q2, γ2 : C →
S2 such that if we take the corresponding extension ψ2 : A?H C → Q2 ?α2(H) S2 we have
ker(α2) ≤ K ∩A, ker(γ2) ≤ K ∩ C, ker(ψ2) ≤ K and

Cψ2(H)(ψ2(g)) ⊆ ψ2(CH(g)K) in Q2 ?α2(H) S2.

Take L = ker(α1) ∩ ker(α2)EA and let M = ker(γ1) ∩ ker(γ2)EC. Let α : A→ Q =
A/L and γ : C → S = C/M be the natural projections. Note that L ∈ NC(A) and
M ∈ NC(C). Let ψ : G→ P be the corresponding extension, where P = Q?α(H) S. We
immediately get

(1) ker(α) ≤ K ∩A and ker(ψ) ≤ K,
(2) Cψ(H)(ψ(g)) ⊆ ψ(CH(g)K) in P ,

(3) ψ(f1), . . . , ψ(fm) 6∈ ψ(g)ψ(H),
(4) the element ψ(g) = γ(c1)α(x1) . . . γ(cn)α(xn) is cyclically reduced in P .

Since we assume that xn 6∈ H we get by Lemma 5.10 that

CG(g) = CH(g)〈g〉Ω,
where Ω is given by (12). Also by Lemma 5.10 we see that in P we have

CP (ψ(g)) = Cψ(H(ψ(g))〈ψ(g)〉Ω̃

where Ω̃ = {hipi−1 | i > m} such that pi is a prefix of ψ(g) such that p−1
i ψ(g)pi ∈

ψ(g)ψ(H) and hi ∈ ψ(H) such that hipiψ(g)pih
−1
i = ψ(H). Since ψ(fi) = ψ(pi)

−1ψ(g)ψ(pi) 6∈
ψ(g)ψ(H) when i ≤ m, therefore we can conclude that ψ(pi)

−1ψ(g)ψ(pi) ∈ ψ(g)ψ(H) if

and only if p−1
i gpi ∈ gH . Altogether we see that Ω̃ = ψ(Ω).

Finally, 〈ψ(g)〉 = ψ(〈g〉). From this we see that

CP (ψ(g)) ⊆ ψ̃(CG(g)K)

and thus the lemma holds. �
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Proof of Lemma 6.9. We will proceed by induction on |V Γ|. If |V Γ| = 0 then G = {1}
and the statement holds trivially. Now suppose that the statement holds for all graph
products ΓG with |V Γ| ≤ r− 1. Let G = ΓG where |V Γ| = r. There are two cases to be
distinguished: B 6= G and B = G.

Suppose B is a proper full subgroup of G. Then we can pick a maximal proper full
subgroup A ≤ G such that B ≤ A. If g ∈ A then gB is C-closed in A by induction
hypothesis and thus it is C-closed in G by Lemma 2.6 as A is a retract in G and G is
residually-C by Lemma 6.8. Suppose that g ∈ G \ A and let f ∈ G \ gB be arbitrary.
By Lemma 6.13 there are C-groups Q, S and epimorphism α : A → Q, γ : C → S with
the corresponding extension ψ : G → Q?α(H) S such that ψ(f) 6∈ ψ(g)ψ(B) in P . Since
P is a special amalgam of (finite) C-groups we see that it is residually-C by Lemma 6.7.

Since |Q| < ∞ we see that ψ(B) is a finite subset of Q and therefore ψ(g)ψ(B) is finite
and thus is C-closed in P . By Lemma 2.1 we see that gB is C-closed in G.

Now suppose B = G. If g = 1 then 1G = {1} is C-separable in G since it is finite
subset of G and G is residually-C. Let’s assume g 6= 1. Then by Lemma 3.4 there is a
maximal full subgroup A ≤ G such that g 6∈ AG. Then G naturally splits as G = A?H C
where H is a full subgroup of A and C is a vertex group. Then g is a conjugate to some
cyclically reduced element of G, say g0. Suppose g0 = c1x1 . . . cnxn, where x1, . . . , xn ∈ A
and c1, . . . , cn ∈ C, is the cyclically reduced expression for g0 Note that gG = gG0 . Let
f ∈ G \ gG. There are two sub-cases to consider: f 6∈ AG and f ∈ AG.

Suppose f 6∈ AG. Let f0 be a cyclically reduced element of G conjugate to f , thus
fG = fG0 . Let f0 = d1y1 . . . dmym, where y1, . . . , ym ∈ A and d1, . . . , dm ∈ C, be
the reduced expression for f0 and let f1, f2, . . . fm denote the set of all of its cyclic
permutations. Clearly fi 6∈ gH for all i since f 6∈ gG. Then by Lemma 6.14 there are
groups Q,S ∈ C and epimorphisms α : A→ Q, γ : C → S with corresponding extension
ψ : G → P , where P = Q?α(H) S, such that ψ(f1), ψ(f2), . . . ψ(fm) 6∈ ψ(g)ψ(H) and
ψ(f0) = γ(d1)α(x1) . . . γ(dm)α(xm) is cyclically reduced in P . Since ψ(f1), . . . , ψ(fm)
are all the cyclic permutations of ψ(f0) we can conclude that ψ(f) 6∈ ψ(g)P by Lemma
5.8.

Assume that f ∈ AG. By Lemma 6.14 there are groups Q,S ∈ C and projections
α : A → Q, γ : C → S with extension ψ : G → P , where P = Q?α(H) S, such that
ψ(g0) = γ(c1)α(x1) . . . γ(cn)α(xn) is cyclically reduced in P . Since n ≥ 1 by Lemma 5.8
we see that ψ(g0) 6∈ QP = ψ(AG). As we assume that f ∈ AG we see that ψ(fG) =
ψ(f)P ⊆ ψ(AG). We see that ψ(g0) 6∈ ψ(f)P and hence ψ(f) 6∼P ψ(g).

Either way, in both cases when f 6∈ AG and f ∈ AG we have found a homomorphism
ψ that separates f from gG in an amalgam of C-groups which is C-HSC by Lemma 6.7.
Thus by Lemma 2.1 we see that gG is C-closed in G. �

Proof of Lemma 6.10. Again, we proceed by induction on |V Γ|. If |V Γ| = 0 then G =
{1} and the statement holds trivially. Now suppose that the statement holds for all Γ
with |V Γ| ≤ r − 1. Let G = ΓG where |V Γ| = r. Let K ∈ NC(G) be arbitrary. There
are two cases to be distinguished: B 6= G and B = G.

Suppose B is a proper full subgroup of G. Then there is a maximal full subgroup
A ≤ G such that B ≤ A. Clearly A is a graph product with r− 1 vertices and therefore
the statement holds for A. Let KA = K ∩ A and let KC = K ∩ C. Obviously G splits
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as G = A?H C, where H is a full subgroup of A and C is a vertex group. We consider
two separate sub-cases: g ∈ A and g ∈ G \A.

Assume that g ∈ A. By induction we see that the pair (B, g) has C-CCA in A. Thus
there is a C-group Q such that L1 = ker(α) ≤ KA, and

Cα(B) ⊆ α(CB(g)KA) in Q,

where α : A → Q is the natural projection. Let ρA : G → A be the canonical retraction
of G onto A and set L = ρ−1

A (L1) ∩K. Clearly L ∈ NC(G) and ρA(L) = L1 ≤ KA. Let
φ : G → R = G/L be the natural projection. Note that ker(α) = ker(φ) ∩ A in G, thus
we may assume that Q ≤ R and φ � A = α. Then α(KA) = φ(KA) ⊆ φ(K) in R. Since
g ∈ A, B is a full subgroup of A and Cα(B) ⊆ α(CB(g)K1) in Q, we get that

Cφ(B)(φ(g)) = Cα(B)(α(g)) ⊆ α(CB(g)KA) ⊆ φ(CB(g)K) in R.

Thus we see that if g ∈ A then the pair (B, g) has C-CCG.
Now suppose that g ∈ G \ A. Let g = x0c1x1 . . . cnxn, where x0, . . . , xn ∈ A and

c1, . . . , cn ∈ C, be a reduced expression for g. By Lemma 6.15 we can find C-groups Q,
S and epimorphisms α : A → Q, γ : C ∩ S with corresponding extension ψ : G → P =
Q?α(H) S such that ker(α) ≤ KA, ker(γ) ≤ KC , ker(ψ) ≤ K and

Cψ(B)(ψ(g)) ⊆ ψ(CB(g)K).

P is a special amalgam of C-groups and thus is residually-C by Corollary 6.7. Since Q is
finite we see that ψ(K) ∩ ψ(B) ≤ ψ(B) ≤ Q is finite, thus ψ(g)ψ(B)∩ψ(K) is C-closed in
P . By Lemma 4.8 one obtains ξ : P → R, where R ∈ C such that ker(ξ) ≤ ψ(K) and

Cξ(ψ(B))(ξ(ψ(B))) ⊆ ξ(Cψ(B)(ψ(g))ψ(K)) in R.

Take φ : G→ R to be defined as φ = ξ ◦ ψ. Obviously, φ is the map we are looking for.
We are left with the last remaining case, when B = G. We may assume g ∈ G \ {1}

as the pair (G, 1) has C-CCG trivially. By Lemma 3.4 there is a maximal full subgroup
A ≤ G such that g 6∈ AG. Then G naturally splits as G = A?H C, where H ≤ A is a
full subgroup of A and C is a vertex group in G. There is z ∈ G such that g0 = zgz−1 is
cyclically reduced in G. Let g0 = c1x1 . . . cnxn, where xi ∈ A and ci ∈ C for i = 1, . . . , n,
be a reduced expression for g0. Since g 6∈ AG we see that n ≥ 1. By Lemma 6.16
there are C-groups Q, S and epimorphisms α : A→ Q, γ : C → S with a corresponding
extension ψ : G→ P , where P = Q?α(H) S, such that ker(α) ≤ K ∩ A, ker(γ) ≤ K ∩ C
and

CP (ψ(g)) ⊆ ψ(CG(g)K) in P.

Since P is special amalgam of C groups we see that it is C-HCS by Corollary 6.7 and thus
the pair (ψ(G), ψ(g)) satisfies C-CCP in P . Note that in every case the homomoprhism
ψ was constructed so that ker(ψ) ≤ K thus by Lemma 4.5 we see get that the pair (g,G)
has C-CCG in G. �

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let G = ΓG be a graph product such that |V Γ| < ∞ and Gv is
C-HCS for all v ∈ V Γ. Note that G is a full subgroup of itself and thus by Lemma 6.9
we see that the pair (G, g) has C-CCG for every g ∈ G and thus G satisfies C-CC. By
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Lemma 6.10 we see that the set gG is C-closed in G for every g ∈ G, hence G is C-CS.
Finally using Theorem 4.2 we get that G is C-HCS. �

Note that every group from the class C is C-HCS. Then as an immediate consequence
of the Theorem 6.1 we get that graph products of groups belonging to an extension
closed variety of finite groups C are C -HCS.

Corollary 6.17. Assume that C is an extension closed variety of finite groups. Let Γ
be a finite graph and let G = {Gv | v ∈ V Γ} be a family of groups such that Gv ∈ C for
all v ∈ V Γ. Then the group G = ΓG is C-HCS.

7. Infinite graphs and C-CS groups

Again, we will assume that the class C is an extension closed variety of finite groups.

7.1. Graph products of C-CS groups. Before we proceed we mention one important
property of graph products: they are functorial.

Remark 7.1. Let Γ be a graph and let G = {Gv|v ∈ V Γ} and F = {Fv|v ∈ V Γ} be two
families of groups indexed by vertices of V Γ. Assume that for every v ∈ V Γ there is a
homomorphism φv : Gv → Fv. Then there is a unique homomorphism φ : G→ F , where
G = ΓG and F = ΓF such that φ �Gv= φv for all v ∈ V Γ

We will use Corollary 6.17 to show that the class of C-CS groups is closed under graph
products. The main idea is to construct a suitable map onto a finite graph product of
groups belonging to the class C. First we need to show that we can always find such a
homomorphism that preserves length and support of a given element.

Lemma 7.2. Let G = ΓG be a graph product such that Gv is residually-C for every
v ∈ V Γ and let g ∈ G. Then there is F = {Fv|v ∈ V Γ}, a family of C-groups indexed by
V Γ, and a homomorphism φv : Gv → Fv for every v ∈ V Γ such that for the corresponding
extension φ : G→ F (given by Remark 7.1), where F = ΓF , all of the following are true:

(i) |g| = |φ(g)|,
(ii) supp(g) = supp(φ(g)),

(iii) If g is Γ-cyclically reduced in G then φ(g) is Γ-cyclically reduced in F .

Proof. Let (g1, . . . , gn) be a Γ-reduced expression for g in G. For every v ∈ V Γ let
Iv = {i | gi ∈ Gv} ⊆ supp(g) be the set of indices such that the corresponding syllables
belong to Gv. Since Iv is finite and Gv is residually-C for every v by assumption there
is Fv ∈ C and a homomorphism φv : Gv → Fv such that φv(gi) 6= 1 in Fv for all i ∈ Iv.
By Remark 7.1 we have the corresponding unique extension φ : G→ F , where F = ΓF .
Clearly, (φv1(g), . . . , φvn(gn)) is a Γ-reduced expression for φ(g) therefore |g| = |φ(g)|
and supp(g) = supp(φ(g)).

Suppose that g is Γ-cyclically reduced in G. Obviously FL(g) = FL(φ(g)), LL(g) =
LL(φ(g)) and S(g) = S(φ(g)) and thus (FL(φ(g)) ∩ LL(φ(g))) \ S(φ(g)) = (FL(g) ∩
LL(g)) \ S(g) = ∅ by Lemma 3.11 because g is Γ-cyclically reduced and therefore φ(g)
is Γ-cyclically reduced in F again by Lemma 3.11. �

In fact we are can generalise the previous lemma to any finite number of given ele-
ments.
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Corollary 7.3. Let f, g ∈ G be Γ-cyclically reduced in G and assume that f 6= g. Then
there is F = {Fv|v ∈ V Γ}, a family of C-groups indexed by V Γ, and a homomorphism
φv : Gv → Fv for every v ∈ V Γ such that for the corresponding extension φ : G → F ,
where F = ΓF , all of the following are true:

(i) |g| = |φ(g)| and supp(g) = supp(φ(g)),
(ii) |f | = |φ(f)| and supp(f) = supp(φ(f)),
(iii) φ(f), φ(g) are Γ-cyclically reduced in F ,
(iv) φ(f) 6= φ(g) in F .

Proof. We use Lemma 7.2 on g,f and gf−1 to obtain three corresponding families Ff ,

Fg and Ffg−1
. For every v ∈ V Γ we set Kv = ker(φfv )∩ ker(φgv)∩ ker(φfg

−1

v ) and define
φv : Gv → Fv, where Fv = Gv/Kv. Clearly the family of C-groups F = {Fv|v ∈ V Γ}
together with homomorphisms φv : Gv → Fv and the extension φ : G → ΓF has all the
claimed properties. �

The proof of the following remark is left as a simple exercise for the reader.

Remark 7.4. Suppose that C is a class of finite groups satisfying (c1) and (c2). Then
the class of C-CS groups is closed under taking direct products.

Proof of Theorem 1.1. Let g ∈ G be arbitrary and let f ∈ G such that f 6∼G g. Note that
the set of vertices X = supp(g)∪ supp(f) ⊆ V Γ is finite and ρX(f) = f 6∼GX

ρX(g) = g,
where ρX : G → GX is the canonical retraction corresponding to the full subgroup
GX ≤ G given by the set X ⊆ V Γ. Hence without loss of generality we may assume
that |V Γ| <∞. Let f0, g0 ∈ G be Γ-cyclically reduced elements of G such that f0 ∼G f
and g0 ∼G g. Clearly f0 6∼G g0.

By Lemma 3.12 we have three possibilities to consider:

(i) supp(g0) 6= supp(f0) or |g0| 6= |f0|,
(ii) p(f0) is not a cyclic permutation of p(g0),

(iii) s(f0) 6∈ s(g0)GS(g0) .

Assume that either supp(g0) 6= supp(f0) or |f0| 6= |g0|. Then we can use Corollary 7.3
to obtain a family of C-groups F = {Fv|v ∈ V Γ} and a homomorphism φv : Gv → Fv
for every v ∈ V Γ such that for the corresponding extension φ : G → ΓF we have either
supp(φ(f0)) 6= supp(φ(g0)) or |φ(f0)| 6= |φ(g0)| respectively. By Lemma 3.12 we see that
φ(f0) 6∼ΓF φ(g0) and hence φ(f) 6∼ΓF φ(g). Note that ΓF is a finite graph product of
groups belonging to the class C and thus by Corollary 6.17 we see that the group ΓF is
C-HCS.

Assume that supp(g0) = supp(f0) and |g0| = |f0|. Suppose that p(f0) is not a cyclic
permutation of p(g0). Let {p1, . . . , pm} ⊂ G be the set of all cyclic permutations of p(g0)
including p(g0). Then pi 6= p(f0) for i = 1, . . . ,m and we can use Corollary 7.3 for each
pair p(f0), pi, where 1 ≤ i ≤ m, to obtain a family of C-groups Fi = {F iv|v ∈ V Γ} with
homomorphisms φiv : Gv → F iv for all v ∈ V Γ. For every v ∈ V Γ set Kv =

⋂m
i=1 ker(φiv)

and denote Fv = Gv/Kv. Set F = {Fv|v ∈ V Γ} and let φv : Gv → Fv be the natural
projection corresponding to v. Let φ : G → ΓF be the natural extension. Note that
p(φ(f0)) = φ(p(f0)) and p(φ(g0)) = φ(p(g0)). Clearly the set C = {φ(p1), . . . , φ(pm)}
is the set of all cyclic permutations of p(φ(g0)) and we see that p(φ(f0)) 6∈ C and
thus p(φ(f0)) is not a cyclic permutation of p(φ(g0)). By Lemma 3.12 we see that



ON CONJUGACY SEPARABILITY OF GRAPH PRODUCTS OF GROUPS 67

φ(f0) 6∼ΓF φ(g0) and thus φ(f) 6∼ΓF φ(g). Again, by Corollary 6.17 we see that the
group ΓF is C-HCS.

Now assume that supp(g0) = supp(f0), |g0| = |f0|, p(f0) is a cyclic permutation of
p(g0). Since supp(f0) = supp(g0) we see that S(g0) = S(f0). Denote S = S(g0) and
assume that s(f0) 6∈ s(g0)GS . Note that

GS =
∏

v∈S
Gv

is a direct product of C-CS groups and thus it is a C-CS group by Remark 7.4. Consider
the retraction ρS : G → GS . Clearly ρS(f0) = s(f0) and ρS(g0) = s(g0). Therefore
ρS(g0) 6∈ ρS(g0)GS by assumption and consequently ρS(f) 6∈ ρS(g)GS .

In each of the cases we have constructed a homomorphism onto a C-CS group, such
that the images of f and g were not conjugate. Then by Lemma 2.1 we see that the
conjugacy class gG is C-closed in G. As g was arbitrary we see that G is C-CS. �

7.2. Infinite graph products of C-HCS groups. The idea of the proof of Theorem
1.2 somewhat similar to the proof of Theorem 1.1. In the proof of Theorem 1.1 we started
with a possibly infinite graph Γ and showed that we can always retract to a full subgroup
GA given by a finite set of vertices A ⊆ V Γ and thus we were able to use Corollary 6.17.
In the proof of Theorem 1.2 we start with a graph product ΓG, where Γ is an infinite
graph, we show that for every g ∈ G we can construct a finite graph product ∆D of
C-HCS groups and a homomorphism δ : ΓG → ∆D such that C∆D(δ(g)) = δ(CG(g)).

Proof of Theorem 1.2. Let Γ be a graph and let G = {Gv | v ∈ V Γ} be a family of
groups such that the group Gv is C-HCS for every v ∈ V Γ. Let G = ΓG. By Theorem
1.1 we see that the group G is C-CS so we need to show that G satisfies C-CC. Clearly,
G satisfies C-CC if and only if for every g ∈ G the pair (G, g) satisfies C -CCG. Let
g ∈ G and K ∈ NC(G) be arbitrary. Pick g′ ∈ G such that g ∼G g′ and g′ is Γ-cyclically
reduced. By Lemma 4.5 we see that the pair (G, g) has C -CCG if and only if the pair
(G, g′) has C -CCG. Denote A = supp(g′).

Let ϕ : G → G/K be the natural projection. Define a family of groups F = {Fv |
v ∈ V Γ}, where Fv = Gv if v ∈ A and Fv = ϕ(Gv) otherwise. For every v ∈ V Γ we
have a group homomorphism φv : Gv → Fv where φv = idGv if v ∈ A and φv = ϕ �Gv

otherwise. By Remark 7.1 there is a unique group homomorphism φ : ΓG → ΓF such
that φ �Gv= φv for every v ∈ V Γ. Denote F = ΓF . Note that kerφ = 〈〈 ker(φv) 〉〉Gv∈V Γ.
Clearly if v ∈ A then ker(φv) = {1} and if v ∈ V Γ \A then ker(φv) = K ∩Gv. It follows
that ker(φ) ≤ K and hence there is a unique homomorphism φ : F → G/K such that
ϕ = φ ◦ φ.

Set A′ = V Γ \ A. Define equivalence ≈1 on A′ as follows: u ≈1 v if link(u) ∩ A =
link(v) ∩ A. Define equivalence ≈2 on A′ as follows: u ≈K v if φ(Fu) = φ(Fv) in G/K.
Now let ≈ be the equivalence relation on A′ obtained as intersection of ≈1 and ≈2, i.e.
u ≈ v if link(u)∩A = link(v)∩A and φ(Fu) = φ(Fv) in G/K. Note that |A′/ ≈2 | ≤ 2|A|

and |A′/ ≈2 | ≤ 2|G/K|, therefore we see that |A′/ ≈ | <∞.
Define a graph ∆ with vertex set V∆ = A ∪ (A′/ ≈). Note that V∆ is finite. For

u, v ∈ A we set {u, v} ∈ E∆ if and only if {u, v} ∈ EΓ, for u ∈ A and [x]≈ ∈ A′/ ≈ we
set {u, [x]≈} ∈ E∆ if and only if there is x0 ∈ [x]≈ such that {u, x} ∈ EΓ. Similarly
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for [x]≈, [y]≈ ∈ A′/ ≈ we set {[x]≈, [y]≈} ∈ E∆ if and only if there are x0 ∈ [x]≈ and
y0 ∈ [y]≈ such that {x0, y0} ∈ EΓ. Note that the natural map from V Γ to V∆ actually
extends to a graph morphism from Γ to ∆.

To every vertex in v ∈ V∆ we assign a vertex group Dv in the following way: if
v ∈ A then Dv = Gv; if v = [v0]≈ for some v0 ∈ A′ then Dv = ϕ(Gv0) = φ(Fv). This
leads to a family of groups D = {Dv | v ∈ V∆}. For every v ∈ V Γ we define a group
homomorphism ϕv : Fv → Dxv , where xv = v if v ∈ A and xv = [v]≈ otherwise. If v ∈ A
then ϕv = idGv and if v ∈ V Γ \A then ϕv = φ �Fv . By a theorem of von Dyck (see [24,
footnote 2, page 346]) the family of group homomorphisms {ϕv | v ∈ V Γ} extends to a
homomorphism ϕ : F → D, where D = ∆D is the corresponding graph product.

Let x, y ∈ F be arbitrary. It is obvious that if ϕ(x) = ϕ(y) then φ(x) = φ(y) and
thus ker(ϕ) ≤ ker(φ) = φ(K). We see that there is unique homomorphism δ : D → G/K
such that φ = δ ◦ ϕ. Denote δ = δ ◦ φ. The following commutative diagram illustrates
the situation.

G = ΓG
φ

&&

ϕ

""

δ

((
F = ΓF ϕ //

φ
��

D = ∆D

δxx
G/K

Clearly ker(δ) = φ−1(ker(ϕ)) ≤ K.
Now we need to show that Cδ(G)(δ(g)) ⊆ δ(CG(g)K). One can easily check that

PcΓ(〈g′〉) = GA and therefore by Lemma 3.7 we have CG(g′) = CGA
(g′)Glink(A). Denote

δA = δ �GA
. From the construction of δ it is easy to see that δA : GA → DA is an

isomorphism. Let P = Pc∆(δ(〈g′〉)). As DA is a full (and hence parabolic) subgroup of
D and δ(g′) ∈ P we see that P ≤ DA due to minimality of P . By [1, Lemma 3.7] we see
that P is actually parabolic in ∆ADA = DA. Let P ′ = δA(P )−1 ≤ GA ≤ G. From the
construction of the map δ we see that P ′ is parabolic in GA (and thus in G) and that
g′ ∈ P ′. Since PcΓ(〈g′〉) = GA and g′ ∈ P ′ we see that GA ≤ P ′ and therefore P ′ = GA.
This means that P = DA. We see that Pc∆(〈δ(g′)〉) = Pc∆(δ(〈g′〉)) = DA and hence by
Lemma 3.7 we get that CD(δ(g′)) = CDA

(δ(g′))Dlink(A).
Again, since δ �GA

is an isomorphism we see that δ(CGA
(g′)) = CDA

(δ(g′)) = Cδ(GA)(δ(g
′)).

From the construction of the equivalence ≈ we see that for every v ∈ V Γ we have
[v]≈ ∈ link(A) in ∆ if and only if v ∈ link(A) in Γ and hence δ(Glink(A)) = Dlink(A). We
see that

CD(δ(g′)) = CDA
(δ(g′))Dlink(A) = δ(CGA

(g′)Glink(A)) = δ(CG(g′)) ⊆ δ(CG(g′)K).

For every v ∈ V∆ the group Dv is either an infinite C-HCS group or belongs to the
class C. By Theorem 6.1 we see that the group D is C-HCS and hence D satisfies C-CC
by Theorem 4.2. Consequently, the pair (D, δ(g′)) satisfies C-CC in D. By Lemma 4.5
we see that the pair (G, g) satisfies C -CCG for any g ∈ G and therefore G satisfies C-CC.
We have proved that G is C-CS and satisfies C-CC, hence by Theorem 4.2 we see that
G is C-HCS. �
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7.3. Some corollaries. Applying Theorem 1.2 to the most obvious types of extension
closed varieties of finitely presented groups we immediately get that the class of HCS
groups is closed under taking finite graph products, similarly for p-HCS and (finite
solvable)-HCS.

We can also extend the results of Minasyan (see [18]) and Toinet (see [29]) to infinitely
generated right angled Artin groups.

Corollary 7.5. Infinitely generated RAAGS are HCS and p-HCS for every prime num-
ber p.

In [4, Theorem 1.2] Caprace and Minasyan proved that finitely generated RACGs are
CS. By applying Theorem 1.2 to RACGs once in the context of the class of all finite
groups and once in the context of all finite 2-groups we get following strengthening of
the mentioned result.

Corollary 7.6. Arbitrary (possibly infinitely generated) right angled Coxeter groups are
HCS and 2-HCS.

The statement of Corollary 7.6 can be compared with the following example: the group
G = FSym(X) of finitary permutations of an infinite set X is an infinitely generated
Coxeter group, but it is not even residually finite. Clearly being right angled is a strong
requirement.

As we mentioned in the introductory section virtually polycyclic groups are HCS, thus
we can state the following corollary.

Corollary 7.7. Let Γ be any graph and let G = {Gv | v ∈ V Γ} be a family of groups
such that the group Gv is virtually polycyclic for every v ∈ V Γ. Then the group G = ΓG
is HCS.
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SEPARABILITY PROPERTIES OF AUTOMORPHISMS OF GRAPH

PRODUCTS OF GROUPS

MICHAL FEROV

Abstract. We study properties of automorphisms of graph products of groups. We
show that graph product ΓG has non-trivial pointwise inner automorphisms if and only
if some vertex group corresponding to a central vertex has non-trivial pointwise inner
automorphisms. We use this result to study residual finiteness of Out(ΓG). We show
that if all vertex groups are finitely generated residually finite and the vertex groups
corresponding to central vertices satisfy certain technical (yet natural) condition, then
Out(ΓG) is residually finite. Finally, we generalise this result to graph products of
residually p-finite groups to show that if ΓG is a graph product of finitely generated
residually p-finite groups such that the vertex groups corresponding to central vertices
satisfy the p-version of the technical condition then Out(ΓG) is virtually residually
p-finite. We use this result to prove bi-orderability of Torelli groups of some graph
products of finitely generated residually torsion-free nilpotent groups.
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1. Introduction and motivation

1.1. Motivation. Recall that a group G is residually finite (RF) if for every g ∈ G\{1}
there is a finite group F and a homomorphism ϕ : G → F such that ϕ(g) 6= 1 in F .
The main motivation to study residually finite groups is that they can be approximated
by their finite quotients. In case of finitely presented groups this approximation can be
used to solve the word problem: Mal’cev [11] constructed an algorithm that uniformly
solves the word problem in the class of finitely presented RF groups.
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morphisms, outer automorphisms.
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Baumslag [2] proved that if G is a finitely generated RF group then Aut(G), the
group of automorphisms of G, is RF as well. One could ask whether this result can be
generalised to Out(G) ∼= Aut(G)/ Inn(G), the group of outer automorphisms? Negative
answer to this question was provided by Bumagin and Wise in [3] when they proved that
for every finitely presented group O there is a finitely generated residually finite group
G such that Out(G) ∼= O. The question that naturally arises is: what properties does a
finitely generated RF group G need to satisfy to ensure that Out(G) is RF as well?

1.2. Grossman’s criterion. An automorphism φ ∈ Aut(G) is pointwise inner if φ(g)
is conjugate to g for every g ∈ G. Let AutPI(G) denote the set of all pointwise inner
automorphisms of G. We say that a group G has Grossman’s property (A) if every
pointwise inner automorphism of G is inner, i.e. if AutPI(G) = Inn(G). We say that G
is conjugacy separable (CS) if for every tuple f, g ∈ G such that f is not conjugate to
g there exists a finite group F and a homomorphism ϕ : G → F such that ϕ(f) is not
conjugate to ϕ(g). Grossman [8, Theorem 1] proved that if G is a finitely generated CS
group with Grossman’s property (A) then Out(G) is residually finite. We call groups
that satisfy this criterion Grossmanian groups, i.e. a group G is Grossmanian if G is
a finitely generated CS group with Grossman’s property (A). However, these are not
necessary conditions; see Section 2 for a discussion.

1.3. Statement of results. Another natural question to ask is how does the property
of having a residually finite group of outer automorphisms behave under group theoretic
constructions? In this paper we study the case of graph products of groups, which
naturally generalise the notion of free products and direct products in the category of
groups.

Let Γ be a simplicial graph, i.e. V Γ is a set and EΓ ⊆
(
V Γ
2

)
, and let G = {Gv | v ∈ V Γ}

be a family of non-trivial groups. The group ΓG, the graph product of the family G with
respect to Γ, is the quotient of the free product ∗v∈V ΓGv modulo relations of the form

gugv = gvgu ∀gu ∈ Gu, ∀gv ∈ Gv whenever {u, v} ∈ EΓ.

The groups Gv are called vertex groups. In this study we will be considering only finite
graph products, i.e. |V Γ| < ∞. Clearly, if Γ is totally disconnected then the graph
product ΓG is equal to ∗v∈V ΓGv, the free product of the vertex groups, and similarly,
if Γ is complete then ΓG is equal to ×v∈V ΓGv, the direct product of the vertex groups.
Note that we will always assume that the vertex groups are non-trivial, i.e. Gv 6= {1}
for all v ∈ V Γ.

In the case when all vertex groups are infinite cyclic we are talking about right angled
Artin groups (RAAGs). If all vertex groups are cyclic of order two then we are talking
about right angled Coxeter groups (RACGs). We quickly list some partial results on
residual finiteness of outer automorphisms of graph products of residually finite groups.
In [13] Minasyan showed that if G is a finitely generated RAAG then G is CS and has
Grossman’s property (A), hence Out(G) is RF by Grossmans criterion. Independently
of Minasyan, Charney and Vogtmann [5] proved that outer automorphism groups of
finitely generated RAAGs are RF. In [4] Carette proved that if G is a finitely generated
RACG then Out(G) is RF.
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Following the results presented in [14] residual finiteness of outer automorphism groups
of free products of finitely generated RF groups is well understood. However, it is
not known whether the class of finitely generated RF groups with RF group of outer
automorphisms is closed under direct products (see Question 8.1). To overcome this
obstacle we introduce the following class of groups.

We will say that a group G is inner automorphism separable (IAS) if every non-
trivial outer automorphism of G can be realised as a non-trivial outer automorphism of
some finite quotient of G (see Section 2 for formal definition). Obviously, if G is IAS
then Out(G) is RF. In Section 2 we show that the class of IAS groups is closed under
taking direct products (see Corollary 2.5). In Section 3 we give examples of IAS groups.
In particular, we show that Grossmanian groups are IAS (see Corollary 3.3) and that
virtually polycyclic groups are IAS (see Lemma 3.5).

Let Γ be a graph. We say that a vertex v ∈ V Γ is central in Γ if {u, v} ∈ EΓ for all
u ∈ V Γ \ {v}, i.e. v is central if it is adjacent to all the vertices of Γ (apart from itself).

In Section 5 we study pointwise inner automorphisms of graph products and we prove
the following theorem.

Theorem 1.1. Let Γ be a finite graph without central vertices and let G = {Gv | v ∈ V Γ}
be a family of non-trivial groups. Then the group ΓG has Grossman’s property (A).

As a consequence, we give the following characterisation of graph products with Gross-
man’s property (A).

Corollary 1.2. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family of non-
trivial groups. The group G = ΓG has Grossman’s property (A) if and only if all vertex
groups corresponding to central vertices of Γ have Grossman’s property (A).

In Section 6 we study separability of conjugacy classes in graph products of residually
finite groups and using Theorem 1.1 we prove the following.

Theorem 1.3. Let Γ be a finite graph without central vertices and let G = {Gv | v ∈ V Γ}
be a family of non-trivial finitely generated RF groups. Then the group ΓG is IAS and,
consequently, Out(ΓG) is RF.

Note that this theorem generalises the result of Minasyan and Osin in [14] on residual
finiteness of outer automorphism groups of free products of finitely generated RF groups.

Combining Theorem 1.3 with Corolary 2.5 we obtain the following.

Corollary 1.4. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be family of non-
trivial finitely generated RF groups. Assume that Gv is IAS whenever v is central in Γ.
Then the group ΓG is IAS and, consequently, Out(ΓG) is RF.

Next, combining Corollary 1.4 with Lemma 3.5 (virtually polycyclic groups are IAS)
we get the following.

Corollary 1.5. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family of virtually
polycyclic groups. Then the group ΓG is IAS and Out(ΓG) is RF.

Suppose that p ∈ N is a prime number. In Section 7 we prove a p-analogue to Theorem
1.3:
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Theorem 1.6. Let Γ be a finite graph without central vertices and let G = {Gv | v ∈ V Γ}
be a family of non-trivial finitely generated residually p-finite groups. Then the group
ΓG is p-IAS, Outp(ΓG) is residually p-finite and Out(ΓG) is virtually residually p-finite.

See Section 7 for definitions of residually p-finite groups, p-IAS groups and Outp.
As a matter of fact, we show that the class of finitely generated residually p-finite p-
IAS groups is closed under direct products (See Lemma 7.3) and using that we prove a
p-analogue to Corollary 1.4:

Corollary 1.7. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family of non-
trivial finitely generated residually p-finite groups. Assume that Gv is p-IAS whenever v
is central in Γ. Then the group ΓG is p-IAS and, consequently, Outp(ΓG) is residually
p-finite and Out(ΓG) is virtually residually p-finite.

Let G be a group. The Torelli group of G, Tor(G) ≤ Out(G), consists of all outer
automorphisms of G that act trivially on the abelianisation of G; see Section 7 for the
formal definition of Tor(G). Finally, we use Theorem 1.6 to establish bi-orderability for
Torelli groups of certain graph products of residually torsion-free nilpotent groups.

Theorem 1.8. Let Γ be a finite graph without central vertices Γ and let G = {Gv | v ∈
V Γ} be a family of non-trivial residually torsion-free nilpotent groups. Then Tor(G) is
residually p-finite for every prime number p and is bi-orderable.

2. Direct products of C-IAS groups and Baumslag’s method

Let G be a group and suppose that H ≤ G; we will use H ≤f.i.G to denote that
|G : H| <∞. Similarly, we will use N Ef.i.G to denote that N EG and |G : N | <∞.

2.1. Pro-C topologies on groups. Let G be a group and let C be a class of finite
groups. If F ∈ C then we say that F is a C-group. We say that N EG is a co-C
subgroup of G if G/N ∈ C and we say that G/N is a C-quotient of G. We will use
NC(G) = {N EG | G/N ∈ C} to denote the set of co-C subgroups of G. In this paper
we will always assume that the class C satisfies the following closure properties:

(c1) subgroups: let G ∈ C and H ≤ G; then H ∈ C,
(c2) finite direct products: let G1, G2 ∈ C; then G1 ×G2 ∈ C.

In this case one can easily check that for every group G the system of subsets BC =
{gN | g ∈ G,N ∈ NC(G)} ⊆ P(G) forms a basis of open sets for a topology on G. This
topology is called the pro-C topology on G and we will use pro-C(G) when referring to
it. If C is the class of all finite groups then the corresponding group topology is called
the profinite topology on G and is denoted PT (G). If C is the class of all finite p-groups,
where p is a prime number, then the corresponding group topology is referred to as pro-p
topology on G and is denoted as pro-p(G).

We say that a subset X ⊆ G is C-closed or C-separable in G if it is closed in pro-
C(G); C-open subsets of G are defined analogically. One can show that if the class C
satisfies (c1) and (c2) then, equipping a group with its pro-C topology, is actually a
faithful functor from the category of groups to the category of topological groups, i.e.
group homomorphisms are continuous with respect to corresponding pro-C topologies
and group isomorphisms are homeomorphisms.
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We say that a group G is residually-C if for every g ∈ G \ {1} there is N ∈ NC(G)
such that g 6∈ N . One can easily check that for a group G the following are equivalent:

• G is residually-C,
• {1} is C-closed in G,
• ⋂N∈NC(G)N = {1},
• pro-C(G) is Hausdorff.

2.2. C-IAS groups. We say that a group G is C-inner automorphism separable (C-IAS)
if for every φ ∈ Aut(G) \ Inn(G) there is K ∈ NC(G) characteristic in G such that for
the homomorphism κ̃ : Aut(G)→ Aut(G/K) given by

κ̃(ψ)(gK) = ψ(g)K

for every ψ ∈ Aut(G) and g ∈ G we have κ̃(φ) 6∈ Inn(G/K). In other words, group G is C-
IAS if every outer automorphism of G can be realised as non-trivial outer automorphism
of some C-quotient of G.

The main idea of Baumslag’s elegant proof presented in [2], which was later used by
Grossman in [8], was to use the fact that if G is a finitely generated group then for every
K ≤f.i.G there is L≤f.i.G such that L ≤ K and L is characteristic in G. The main goal
of this section is to adapt Baumslag’s method to prove the following.

Proposition 2.1. Let C be a class of finite groups satisfying (c1) and (c2). Let A,B be
finitely generated C-IAS residually-C groups. Then the group A×B is C-IAS.

For a group G we will use End(G) to denote the set of all endomorphisms of G.
Similarly, for groups A,B we will use Hom(A,B) denote the set of all homomorphisms
from A to B. Note that Hom(A,A) = End(A) for every group A.

Now let A,B be groups and let φ ∈ End(A×B) be arbitrary. Set φA = φ �A×{1} and
φB = φ �{1}×B. Obviously, for a ∈ A, b ∈ B we have φ((a, b)) = φA((a, 1))φB((1, b)).
It is easy to see that there are uniquely given α ∈ End(A) and γ ∈ Hom(A,B) such
that φA((a, 1)) = (α(a), γ(a)). Similarly, there are uniquely given δ ∈ Hom(B,A) and
β ∈ End((1, B)) such that φB((1, b)) = (δ(b), β(b)). We sum up this simple observation
in the following simple remark, which will be crucial for proving Proposition 2.1.

Remark 2.2. Let A,B be groups. For every φ ∈ End(A× B) there are uniquely given
α ∈ End(A), γ ∈ Hom(A,B) and β ∈ End(B), δ ∈ Hom(B,A) such that φ((a, b)) =
(α(a)δ(b), γ(a)β(b)) for all a ∈ A and b ∈ B.

Let A,B be groups, suppose that KAEA, KB EB and let ψA : A→ A/KA, ψB : B →
B/KB be the corresponding natural projections. Clearly, the map

ψ̃A,B : Hom(A,B)→ Hom(A/KA, B/KB)

given by

ψ̃A,B(φ)(aKA) = φ(a)KB,

for all a ∈ A and φ ∈ Hom(A,B) is well defined if and only if φ(KA) ⊆ KB for every
φ ∈ Hom(A,B), or equivalently, if KA ⊆ φ−1(KB) for every φ ∈ Hom(A,B). We use this
observation together with Remark 2.2 to adapt Baumslag’s method to direct products.
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Lemma 2.3. Let A,B be finitely generated groups and let KA ∈ NC(A), KB ∈ NC(B)
be arbitrary. Then there are LA ∈ NC(A), LB ∈ NC(B) such that all of the following
hold:

(1) LA ≤ KA and LB ≤ KB,
(2) LA is fully characteristic in A,
(3) LB is fully characteristic in B,
(4) LA ⊆ γ−1(LB) for all γ ∈ Hom(A,B),
(5) LB ⊆ δ−1(LA) for every δ ∈ Hom(B,A)
(6) LA × LB is fully characteristic in A×B.

Proof. Set k = max{|A : KA|, |B : KB|} and denote

LA = {M ∈ NC(A) | |A : M | ≤ k},
LB = {N ∈ NC(B) | |B : N | ≤ k}.

As A is finitely generated, we see that for every n ∈ N there are only finitely many
HA ≤ A such that |A : HA| = n, hence we see that LA is a finite subset of NC(A). By a
similar argument we see that LB is a finite subset of NC(B). Now set LA =

⋂
M∈LA M

and LB =
⋂
N∈LB N . As LA is a finite subset of NC(A) we see that LA ∈ NC(A) and by

an analogous argument we see that LB ∈ NC(B).
Let α0 ∈ Hom(A,A) be arbitrary. Note that α−1

0 (M) ∈ NC(A) and |A : α−1
0 (M)| ≤

|A : M | for every M ∈ NC(A). Thus if M ∈ LA then α−1
0 (M) ∈ LA. We see that

α−1
0 (LA) = α−1

0


 ⋂

M∈LA
M


 =

⋂

M∈LA
α−1

0 (M) ⊇
⋂

M∈LA
M = LA.

and thus LA ⊆ α−1
0 (LA) for every α0 ∈ Hom(A,A), i.e. LA is fully characteristic in A.

Similarly, for γ0 ∈ Hom(A,B) we have γ−1
0 (N) ∈ NC(A) and |A : γ−1

0 (N)| ≤ |B : N |
for every N ∈ NC(B) and thus if N ∈ LB then γ−1

0 (N) ∈ LA. We see that

γ−1
0 (LB) = γ−1

0


 ⋂

N∈LB
N


 =

⋂

N∈LB
γ−1

0 (N) ⊇
⋂

M∈LA
M = LA

and thus LA ⊆ γ−1
0 (LB) for every γ0 ∈ Hom(A,B).

Using analogous arguments one can easily check that LB ⊆ β−1
0 (LB) ∈ Hom(B,B),

i.e. LB is fully characteristic in B, and LB ⊆ δ−1
0 (LA) for every δ0 ∈ Hom(B,A).

Now, let φ ∈ End(A × B) be arbitrary. Following Remark 2.2 we see that there are
uniquely given α ∈ Hom(A,A), β ∈ Hom(B,B), γ ∈ Hom(A,B) and δ ∈ Hom(A,B)
such that φ((a, b)) = (α(a)δ(b), β(b)γ(a)) for all a ∈ A, b ∈ B. Note that α(LA) ≤ LA,
β(LB) ≤ LB, γ(LA) ≤ LB and δ(LB) ≤ LA. We see that

φ(LA × LB) ⊆ α(LA)δ(LB)× β(LB)γ(LA) ⊆ LA × LB
and hence LA × LB is fully characteristic in A×B. �

We say that a homomorphism α : A→ B, where A,B are groups, is trivial if α(a) = 1
for all a ∈ A. Before we proceed to the proof of Proposition 2.1 we state one simple
observation.
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Remark 2.4. Let A,B be groups and let φ ∈ Aut(A × B). If φ ∈ Inn(A × B) then
φ(A) ⊆ A and φ(B) ⊆ B.

Now we are ready to prove Proposition 2.1

Proof. Let φ ∈ Aut(A × B) be arbitrary such that φ 6∈ Inn(A × B). Following Remark
2.4 we see that there are two disjoint cases:

(i) either φ(A) 6⊆ A or φ(B) 6⊆ B,
(ii) φ(A) ⊆ A and φ(B) ⊆ B.

Following Remark 2.2 we see that there are α ∈ End(A), δ ∈ Hom(B,A), γ ∈ Hom(A,B)
and β ∈ End(B) such that φ(a, b) = (α(a)δ(b), γ(a)β(b)) for all a ∈ A, b ∈ B.

Suppose that (i) is the case. This means that either γ is non-trivial or δ is non-trivial.
Without loss of generality we may assume that δ is non-trivial, i.e. there is b0 ∈ B \ {1}
such that δ(b0) ∈ A \ {1}. As both A,B are residually-C there are KA ∈ NC(A) and
KB ∈ NC(B) such that δ(b0) 6∈ KA and b0 6∈ KB. By Lemma 2.3 we see that there are
LA ∈ NC(A) and LB ∈ NC(B) such that LA ≤ KA, LB ≤ KB, LA is fully characteristic
in A, LB is fully characteristic in B, LA ⊆ γ−1(LB) for all γ ∈ Hom(A,B), LB ∈ δ−1(LA)
for every δ ∈ Hom(B,A) and LA × LB is fully characteristic in A×B. We see that the
natural projections ψA : A→ A/LA, ψB : B → B/LB induce maps

ψ̃A : Hom(A,A)→ Hom(A/LA, A/LA),

ψ̃B : Hom(B,B)→ Hom(B/LB, B/LB),

ψ̃A,B : Hom(A,B)→ Hom(A/LA, B/LB),

ψ̃B,A : Hom(B,A)→ Hom(B/LB, A/LA).

Let ψ : A×B → (A×B)/(LA×LB) = A/LA×B/BL be the natural projection. Clearly,

for the induced homomorphism ψ̃ : Aut(A×B)→ Aut(A/LA ×B/LB) we have

ψ̃(φ)(aLA, bLB) =
(
ψ̃A(α)(aLA)ψ̃B,A(δ)(bLB), ψ̃A,B(γ)(aLA)ψ̃B(β)(bLB)

)

= (α(a)δ(b)LA, γ(a)β(b)LB)

for all a ∈ A, b ∈ B. Note that b0 6∈ LB and δ(b0) 6∈ LA, thus b0LB is not the identity

in B/LB and δ(b0)LA is not the identity in A/LA. As ψ̃B,A(δ)(b0LB) = δ(b0)LA we see

that ψ̃B,A(δ) is not trivial and consequently ψ̃(φ)(B/LB) 6⊆ B/LB. This means that

ψ̃(φ) 6∈ Inn(A/LA ×B/LB).
Suppose that (ii) is the case. This means that δ, γ are trivial and either α ∈ Aut(A)\

Inn(A) or β ∈ Aut(B) \ Inn(B). Without loss of generality we may assume that α 6∈
Inn(A). Since A is C-IAS by assumption we see that there is KA ∈ NC(A) characteristic
in A such that for the induced homomorphism κ̃ : Aut(A)→ Aut(A/LA) we have κ̃(α) 6∈
Inn(A/KA). Note that B ∈ NC(B), thus we can set KB = B and use Lemma 2.3 to
obtain LA ∈ NC(A) and LB ∈ NC(B) with the desired properties. We see that for

the homomorphism ψ̃ : Aut(A × B) → Aut(A/LA × B/LB) induced by the natural

projection ψ : A × B → A/LA × B/LB we have ψ̃(φ)(aLA, bLB) = (α(a)LA, β(b)LB)

for all a ∈ A, b ∈ B. Since LA ≤ KA we see that ψ̃A(α) 6∈ Inn(A/LA) and thus

ψ̃(φ) 6∈ Inn(A/LA ×B/LB).
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In each case we were able to realise the automorphism φ ∈ Aut(A×B) \ Inn(A×B)
as non-inner automorphism of a C-quotient of A × B and hence we see that the group
A×B is C-IAS. �

Applying Proposition 2.1 to the class of all finite groups we get the following corollary.

Corollary 2.5. Let A,B be finitely generated groups RF groups and suppose that both
A and B are IAS. Then A×B is IAS and, consequently, Out(A×B) is RF.

3. Examples of C-IAS groups and Grossmans method

Let G be a group and suppose that H ≤ G. For g ∈ G we will use gH to denote
{hgh−1 | h ∈ H}, the H-conjugacy class of g. For f, g ∈ G we will use f ∼H g to
denote that f ∈ gH . Suppose that f 6∼G g. We say that the pair (f, g) is C-conjugacy
distinguishable (C-CD) in G if there is a group F ∈ C and a homomorphism φ : G → F
such that φ(f) 6∼F φ(g). Equivalently, the pair (f, g) is C-CD in G if there is N ∈ NC(G)
such that fGN ∩ gN = ∅ in G. Clearly, the group G is C-CS if for all f, g ∈ G the
pair (f, g) is C-CD whenever f 6∼G g. It is easy to see that the conjugacy class gG is
C-separable in G if the pair (f, g) is C-CD for every f ∈ G \ gG.

To simplify our proofs we will often use the following remark.

Remark 3.1. Let G be a group and let f, g ∈ G such that f 6∼G g. The pair (f, g)
is C-CD if and only if there is a group F and a homomorphism φ : G → F such that
φ(f) 6∼F φ(g) and the pair (φ(f), φ(g)) is C-CD in F .

The following lemma uses an adaptation of the method that Grossman used to prove
[8, Theorem 1].

Lemma 3.2. Let G be a finitely generated group and assume that for every φ ∈ Aut(G)\
Inn(G) there is an element g ∈ G such that φ(g) 6∼G g and the pair (φ(g), g) is C-CD in
G. Then the group G is C-IAS.

Proof. Take any φ ∈ Aut(G)\Inn(G). By assumption, there is g ∈ G such that φ(g) 6∼G g
and the pair (φ(g), g) is C-CD. There is N ∈ NC(G) such that φ(g)N ∩ gGN = ∅. Set

K =
⋂

ϕ∈Aut(G)

ϕ−1(N).

Obviously, K is characteristic in G. Also, |G : ϕ−1(N)| ≤ |G : N | for every ϕ ∈ Aut(G).
As G is finitely generated we see that K is actually an intersection of finitely many
co-C subgroups of G and thus K ∈ NC(G). Let κ : G→ G/K be the natural projection
and let κ̃ : Aut(G) → Aut(G/K) be the induced homomorphism. As K ≤ N we see
that φ(g)K ∩ gGK = ∅. This means that κ̃(φ)(gK) = φ(g)K 6∼G/K gK and thus
κ̃(φ) 6∈ Inn(G/K). We see that G is C-IAS. �

We say that a group G is C-Grossmanian if G is finitely generated, C-CS group with
Grossman’s property (A).

Corollary 3.3. If G is a C-Grossmanian group then G is C-IAS.
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Proof. Let φ ∈ Aut(G) \ Inn(G) be arbitrary. As G has Grossman’s property (A) we see
that there is g ∈ G such that φ(g) 6∼G g. As G is C-CS we see that the pair (φ(g), g) is
C-CD in G. The group G is C-IAS by Lemma 3.2. �

As mentioned in the introduction, applying Corollary 3.3 to the class of all finite
groups we see that Grossmanian groups are IAS.

We say that a group G satisfies the centraliser condition (CC) if for every g ∈ G and
K Ef.i.G there is LEf.i.G such that L ≤ K and

CG/L(ψ(g)) ≤ ψ (CG(g)K) in G/L

where ψ : G→ G/L is the natural projection.
We say that a group G is hereditarily conjugacy separable (HCS) if G is CS and for

every H ≤f.i.G we have that H is CS as well. The following theorem was proved by
Minasyan in [13, Proposition 3.2].

Theorem 3.4. Let G be a group. Then the following are equivalent:

(a) G is HCS;
(b) G is CS and satisfies CC.

Recall that a group is IAS if it is C-IAS in the case when C is the class of all finite
groups. Before we proceed to utilise Minasyan’s theorem to show that virtually polycyclic
groups are IAS we will need one more definition: we say that a group G is double coset
separable if for every pair of finitely generated subgroups H,K ≤ G and an arbitrary
element g ∈ G the subset HgK = {hgk | h ∈ H, k ∈ K} is separable in PT (G). Virtually
polycyclic groups are double coset separable by [15] and conjugacy separable by [6, 16].
As every subgroup of a virtually polycyclic group is a virtually polycyclic group we see
that virtually polycyclic groups are actually HCS.

Lemma 3.5. Virtually polycyclic groups are IAS.

Proof. Let G be a virtually polycyclic group and let φ ∈ Aut(G) \ Inn(G) be arbitrary.
If φ is not pointwise inner then there is g ∈ G such that φ(g) 6∼ g. As stated before,

virtually polycyclic groups are CS, thus there is N Ef.i.G such that φ(g)N ∩ gGN = ∅.
As G is finitely generated we might without loss of generality assume that N is actually
characteristic in G. Let ν : G → G/N be the natural projection. Using the same
argument as in the proof of Lemma 3.2 we see that for the induced homomorphism
ν̃ : Aut(G)→ Aut(G/N) we have ν̃(φ) ∈ Aut(G/N) \ Inn(G/N).

So, we can further suppose that φ is pointwise inner. Let {g1, . . . , gn} ⊆ G be some
generating set for G. By assumption for every i ∈ {1, . . . , n} there is ci ∈ G such that
φ(gi) = cigic

−1
i . Clearly there is no c ∈ G such that cgic

−1 = cigic
−1
i for all i = 1, . . . , n

because otherwise the automorphism φ would be inner. Equivalently, φ is not inner if
and only if

(1) c1CG(g1) ∩ · · · ∩ cnCG(gn) = ∅ in G.

Set G = Gn, where Gn is the n-fold direct product of G, and let D = {(g, . . . , g) | g ∈
G} ≤ G be the diagonal subgroup of G. Clearly, the condition (1) holds if and only if
c 6∈ CG(g)D in G, where g = (g1, . . . , gn) ∈ G and c = (c1, . . . , cn) ∈ G. Note that G
is a virtually polycyclic group and thus it is double coset separable. Every subgroup
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of a virtually polycyclic subgroup is virtually polycyclic and thus it finitely generated.
Hence CG(g) ≤ G is finitely generated. By double coset separability of G we see that

there is N EG such that |G : N | < ∞ and cN ∩ CG(g)D = ∅. Let ιj : G → G be the

injection of G onto the j-th coordinate group of G for j = 1, . . . , n and set

K = ι−1
1 (ι1(G) ∩N) ∩ · · · ∩ ι−1

n (ιn(G) ∩N) ≤ G.
Let K = Kn ≤ G be the n-fold direct product of K. Note that K Ef.i.G, K Ef.i.G and
K ≤ N thus cK ∩ CG(g)D = ∅. This is equivalent to

c1CG(g1)K ∩ · · · ∩ cnCG(gn)K = ∅ in G.

Virtually polycyclic groups are hereditarily conjugacy separable and thus, by Theorem
3.4, they satisfy CC. We see that for every i ∈ {1, . . . , n} there is LiEf.i.G such that
Li ≤ K and

CG/Li
(ψi(gi)) ⊆ ψi(CG(gi)K) in G/Li,

where ψi : G→ G/Li is the natural projection. AsG is finitely generated we may without
loss of generality assume that Li is actually characteristic in G. Set L = L1 ∩ · · · ∩ Ln.
Clearly, L is characteristic in G, L ≤ K and for every i ∈ {1, . . . , n} we have

CG/L(ψ(gi)) ⊆ ψ(CG(gi)K) in G/L,

where ψ : G→ G/L is the natural projection. We see that

ψ(c1)CG/L(ψ(g1))∩· · ·∩ψ(cn)CG/L(ψ(gn)) ⊆ ψ(c1CG(g1)K)∩· · ·∩ψ(cnCG(gn)K) in G/L.

Suppose that there is some c ∈ G such that

cL ∈ ψ(c1CG(g1)K) ∩ · · · ∩ ψ(cnCG(gn)K) in G/L.

This means that

c ∈ψ−1 (ψ(c1CG(g1)K) ∩ · · · ∩ ψ(cnCG(gn)K)) =

ψ−1 (ψ(c1CG(g1)K)) ∩ · · · ∩ ψ−1 (ψ(cnCG(gn)K)) =

(c1CG(g1)K)L ∩ · · · ∩ (cnCG(gn)K)L =

c1CG(g1)K ∩ · · · ∩ cnCG(gn)K = ∅
which is a contradiction. Therefore

(2) ψ(c1)CG/L(ψ(g1)) ∩ · · · ∩ ψ(cn)CG/L(ψ(gn)) = ∅ in G/L.

It follows that for the induced homomorphism ψ̃ : Aut(G)→ Aut(G/L) we have ψ̃(φ) 6∈
Inn(G/L). We see that G is IAS. �

4. Properties of graph products of groups

In this section we will recall some basic theory of graph products that was introduced
in [7] by Green and theory of cyclically reduced elements leading to conjugacy criterion
for graph products of groups introduced in [10].

Let G = ΓG be a graph product. Every g ∈ G can be obtained as a product g =
g1 . . . gn, where gi ∈ Gvi for some vi ∈ V Γ. However, this is not given uniquely. We say
that a finite sequence W ≡ (g1, . . . , gn) is a word in ΓG if gi ∈ Gvi for some vi ∈ V Γ for
i = 1, . . . , n. We say that gi is a syllable of W and that the number n is the length of W .
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We say that the word W represents g ∈ G if g = g1 . . . gn. We can define the following
three types of transformations on the word W :

(T1) remove a syllable gi if gi = 1,
(T2) remove two consecutive syllables gi, gi+1 belonging to the same vertex group and

replace them by a single syllable gigi+1,
(T3) interchange consecutive syllables gi ∈ Gu and gi+1 ∈ Gv if {u, v} ∈ EΓ.

Transformations of type (T3) are called syllable shuffling. Note that the transformations
of types (T1) and (T2) reduce the length of W by 1, whereas (T3) preserves it. We say
that word W is reduced if it is of minimal length, i.e. no sequence of transformations
(T1) - (T3) will produce a word of shorter length. Obviously, if we start with a word W
representing an element g ∈ G then by applying finitely many of the above transforma-
tions we will rewrite W to a reduced word W ′ that represents the same element g. The
following theorem was proved by Green [7, Theorem 3.9] in her Ph.D. thesis.

Theorem 4.1 (The normal form theorem). Every element g ∈ ΓG can be represented by
a reduced word. Moreover, if two reduced words represent the same element of the group,
then one can be obtained from the other by applying a finite sequence of syllable shuffling.
In particular, the length of a reduced word is minimal among all words representing g,
and a reduced word represents the identity if and only if it is the empty word.

Thanks to Theorem 4.1 the following definitions make sense. Let g be an arbitrary
element of G and let W ≡ (g1, . . . , gn) be a reduced word representing g in G. We use
|g| = n to denote the length of g and we define the support of g to be

supp(g) = {v ∈ V Γ | ∃i ∈ {1, . . . , n} such that gi ∈ Gv}.
We define FL(g) ⊆ V Γ as the set of all v ∈ V Γ such that there is a reduced word W
that represents the element g and starts with a syllable from Gv. Similarly we define
LL(g) ⊆ V Γ as the set of all v ∈ V Γ such that there is a reduced word W that represents
the element g and ends with a syllable from Gv. Note that FL(g) = LL(g−1).

Every subset of vertices X ⊆ V Γ induces a full subgraph ΓX of the graph Γ. Let
GX be the subgroup of G generated by the vertex groups corresponding to the vertices
contained inX. Subgroups ofG that can be obtained in such way are called full subgroups
of G; according to standard convention, G∅ = {1}. Using the normal form theorem one
can easily show that GX is naturally isomorphic to the graph product of the family
GX = {Gv | v ∈ X} with respect to the full subgraph ΓX . It is also easy to see that
there is a canonical retraction ρX : G→ GX defined on the standard generators of G as
follows:

ρX(g) =

{
g if g ∈ Gv for some v ∈ X,
1 otherwise.

We will often abuse the notation and sometimes consider the retraction ρX as a surjective
homomorphism ρX : G→ GX and sometimes as an endomorphism ρX : G→ G. In that
case writing ρX ◦ ρY , where Y ⊆ V Γ, makes sense.

Let A,B ⊆ V Γ be arbitrary. Let GA, GB ≤ G be the corresponding full subgroups of
G and let ρA, ρB be the corresponding retractions. One can easily check that ρA and ρB
commute: ρA ◦ ρB = ρB ◦ ρA. It follows that GA ∩GB = GA∩B and ρA ◦ ρB = ρA∩B.



82 MICHAL FEROV

For a vertex v ∈ V Γ we will use link(v) to denote {u ∈ V Γ | {u, v} ∈ EΓ}, the set of
vertices adjacent to v, and we will use star(v) to denote link(v) ∪ {v}. If S ⊆ V Γ then
link(S) = ∩v∈S link(v) and star(S) = ∩v∈S star(v).

We will use NG(H) to denote the normaliser of a subgroup H in a group G. The
following remark is a special case of [1, Proposition 3.13].

Remark 4.2. Let v ∈ V Γ. Then NG(Gv) = Gstar(v) = GvGlink(v) ' Gv ×Glink(v).

For g ∈ G and H ≤ G we will use CH(g) to denote {c ∈ H | cg = gc}, the H-centraliser
of g in G. The following remark is a special case of [10, Lemma 3.7].

Remark 4.3. Let v ∈ V Γ and let a ∈ Gv\{1} be arbitrary. Then CG(a) = CGv(a)Glink(A) '
CGv(a)×Glink(A).

Let G = ΓG be a graph product and let g1, . . . , gn ∈ G be arbitrary. We say that the
element g = g1 . . . gn is a reduced product of g1, . . . , gn if |g| = |g1|+ · · ·+ |gn|.

Let g ∈ G. We define S(g) = supp(g) ∩ star(supp(g)). We also define P(g) =
supp(g) \ S(g). Obviously g uniquely factorises as a reduced product g = s(g) p(g)
where supp(s(g)) = S(g) and supp(p(g)) = P(g). We call this factorisation the P-S
decomposition of g.

Let g ∈ G, let W ≡ (g1, . . . , gn) be a reduced expression for g. We say that a sequence
W ′ = (gj+1, . . . , gn, g1, . . . , gj), where j ∈ {1, . . . , n − 1}, is a cyclic permutation of W .
We say that the element g′ ∈ G is a cyclic permutation of g if g′ can be expressed by a
cyclic permutation of some reduced expression for g.

Let W ≡ (g1, . . . , gn) be some reduced expression in G. We say that W is cyclically
reduced if all cyclic permutations of W are reduced. The following lemma was proved in
[10, Lemma 3.8].

Lemma 4.4. Let g ∈ G be arbitrary and let W ≡ (g1, . . . gn) be some reduced expression
for g. If W is cyclically reduced then all reduced expressions representing g are cyclically
reduced.

Let g ∈ G be arbitrary. We say that g is cyclically reduced if either g is trivial or
some reduced word representing g is cyclically reduced. The following characterisation
of cyclically reduced elements was given in [10, Lemma 3.11]

Lemma 4.5. Let g ∈ G. Then the following are equivalent:

(i) g is cyclically reduced,
(ii) (FL(g) ∩ LL(g)) \ S(g) = ∅,

(iii) FL(p(g)) ∩ LL(p(g)) = ∅,
(iv) p(g) is cyclically reduced.

One of the consequences of Lemma 4.5 is the fact that for every g ∈ G there is g0 ∈ G
such that g ∼G g0 and g0 is cyclically reduced. We will use this fact often without
mentioning.

Conjugacy criterion for graph products of groups was proved in [10, Lemma 3.12].

Lemma 4.6 (Conjugacy criterion for graph products). Let x, y be cyclically reduced
elements of G = ΓG. Then x ∼G y if and only if the all of the following are true:

(i) |x| = |y| and supp(x) = supp(y),
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(ii) p(x) is a cyclic permutation of p(y),
(iii) s(y) ∈ s(x)GS(x).

5. Poitwise inner automorphisms of graph products

The aim of this section is to prove Theorem 1.1 and Corollary 1.2.
We will need the following technical lemma about conjugators of minimal length.

Lemma 5.1. Let u ∈ V Γ, a ∈ Gu\{1} and let φ ∈ End(G). Let v ∈ V Γ and b ∈ Gv\{1}.
Suppose that φ(a) ∈ Gu \{1}, φ(b) ∈ GGv \{1} and φ(ab) ∼G ab. Pick b′ ∈ Gv and w ∈ G
such that φ(b) = wb′w−1 and |w| is minimal. Then w ∈ NG(Gu) = Gstar(u) = Glink(u)Gu.

Proof. By assumption φ(a) = a′, for some a′ ∈ Gu \ {1}. Clearly w can be factorised
as reduced product w = xyz, where x ∈ NG(Gu), z ∈ NG(Gv) and LL(y) ∩ star(v) =
∅ = FL(y) ∩ star(u). First we show that z = 1. Assume z ∈ NG(Gv) \ {1}. Then we
can set b′′ = zb′z−1 and w′ = xy. Clearly, φ(b) = w′b′′w′−1 and |w′| < |w| which is a
contradiction with our choice of b′ and w. We see that z = 1.

Now we show that y = 1. Obviously

ab ∼G φ(ab) = a′xyb′y−1x−1 ∼G (x−1a′x)yb′y−1.

Denote s = (x−1a′x)yb′y−1.
It follows that x−1a′x ∈ Gu \ {1} and b′ ∈ Gv \ {1}. Suppose that y 6= 1. Since

LL(y) ∩ star(v) = ∅ = FL(y) ∩ star(u), we see that s is a reduced product of four
non-trivial elements of G and thus |s| ≥ 4.

Note that FL(s) = {u} and LL(s) = LL(y−1) = FL(y) and thus s is cyclically reduced
by Lemma 4.5 as FL(s) ∩ LL(s) = ∅. Clearly |s| > 2, but also s ∼G ab and |ab| ≤ 2
which is a contradiction with Lemma 4.6, thus y = 1 and consequently w ∈ NG(Gu).
By Remark 4.2 we see that NG(Gu) = Gstar(u) = GuGlink(u). �

Corollary 5.2. Let φ ∈ End(G) be such that φ(g) ∼G g for every g ∈ G with |g| = 1.
Suppose that there is v ∈ V Γ and a ∈ Gv \ {1} such that φ(a) ∈ Gv. Then φ(Gv) ⊆ Gv.

Proof. Take arbitrary b ∈ Gv \ {1}. We see that φ(b) ∼G b by assumption and thus
φ(b) 6= 1. Clearly |ab| ≤ 1 and thus φ(ab) ∼G ab as well. Pick b′ ∈ Gv \ {1} and
w ∈ G such that φ(b) = wb′w−1 and |w| is minimal. By Lemma 5.1 we see that
w ∈ GvGlink(v) = NG(Gv) and thus φ(b) ∈ Gv. We see that φ(Gv) ⊆ Gv. �

Corollary 5.2 tells us that for v ∈ V Γ and φ ∈ End(G), such that φ(g) ∼ g for every
g ∈ G with |g| = 1, we have either Gv ∩ φ(Gv) = {1} or φ(Gv) ⊆ Gv. Therefore it
makes sense to give the following definition. Let G = ΓG be a graph product and let
φ ∈ End(G), such that φ(g) ∼ g for every g ∈ G with |g| = 1. We say that a vertex
v ∈ V Γ is stabilised by φ if φ(Gv) ⊆ Gv. We say that a subset S ⊆ V Γ is stabilised by
φ if every vertex v ∈ S is stabilised by φ.

Lemma 5.1 together with Corollary 5.2 allows us to formulate the following corollary
as an immediate consequence. Recall that for A,B ⊆ V Γ we have GA ∩GB = GA∩B.

Corollary 5.3. Let φ ∈ End(G) such that φ(g) ∼G g for every g ∈ G with |g| ≤ 2.
Let V0 ⊆ V Γ be stabilised by φ and assume that V0 6= ∅. Let b ∈ Gv \ {1} be arbitrary,
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for some v ∈ V Γ. Pick b′ ∈ Gv \ {1} and w ∈ G such that φ(b) = wb′w−1 and |w| is
minimal. Then

w ∈
⋂

u∈V0
NG(Gu) =

⋂

u∈V0
Gstar(u) = GS ,

where S = ∩v ∈V0 star(v).

Recall that a vertex v ∈ V Γ is called central if link(v) = V Γ \ {v}. Clearly if v ∈ V Γ
is a central vertex then G = Gv × GV Γ\{v}. Note that if V Γ = {v} then v is central,
hence if the graph Γ does not contain a central vertex then necessarily |V Γ| ≥ 2.

Lemma 5.4. Let Γ be a finite graph without central vertices, let G = {Gv | v ∈ V Γ} be
a family of non-trivial groups and let G = ΓG be the graph product of G with respect to
Γ. Let φ0 ∈ Aut(G) and assume that φ0(g) ∼G g for all g ∈ G such that |g| ≤ 2. Then
φ0 ∈ Inn(G).

Proof. Pick φ ∈ Inn(G)φ0 such that the subset of vertices V0 ⊆ V Γ stabilised by φ is
maximal. Evidently V0 6= ∅. Denote

N =
⋂

u∈V0
NG(Gu) =

⋂

u∈V0
Gstar(u) = GS ,

where S =
⋂
u∈V0 star(u). First we show that all vertices of Γ are stabilised by φ. Suppose

that V0 6= V Γ. Take v ∈ V \ V0 and let b ∈ Gv \ {1} be arbitrary. Pick b′ ∈ Gv \ {1}
and w ∈ G such that φ(b) = wb′w−1 and w ∈ G and |w| is minimal. Note that b ∼G b′.
By Corollary 5.3 we see that w ∈ N . Let φw be the inner automorphism corresponding
to w. Note that φ−1

w ◦ φ ∈ Inn(G)φ = Inn(G)φ0. Clearly φw(Gu) = Gu for all u ∈ V0

and thus
(
φ−1
w ◦ φ

)
(Gu) ⊆ Gu. Also we see that

(
φ−1
w ◦ φ

)
(b) = b′ ∈ Gv and thus by

Corollary 5.2 we see that
(
φ−1
w ◦ φ

)
(Gv) ⊆ Gv which is a contradiction as φ was chosen

so that the set of stabilised vertices is maximal. Hence we see that V0 = V Γ.
Note that since Γ does not contain central vertices we have that for every v ∈ V Γ

there is u ∈ V Γ \ {v} such that {u, v} 6∈ EΓ. Let v ∈ V Γ be arbitrary, take u ∈ V \ {v},
such that {u, v} 6∈ EΓ and let a ∈ Gu\{1}, b ∈ Gv \{1} be arbitrary. Clearly 〈Gu, Gv〉 =
G{u,v} ∼= Gu ∗Gv. Since G{u,v} is a retract and φ(a)φ(b) ∈ GuGv ⊆ G{u,v}, we see that
ab ∼G{u,v} φ(a)φ(b). By the conjugacy criterion for free products [12, Theorem 4.2] we

get that φ(a) = a and φ(b) = b thus φ �Gv= idGv .
We see that φ �Gv= idGv for every v ∈ V Γ and thus φ = idG. Consequently, φ0 ∈

Inn(G). �

Note that Lemma 5.4 immediately implies Theorem 1.1.

Proof of Theorem 1.1. Let φ ∈ AutPI(G) be arbitrary. Obviously, φ(g) ∼ g for all g ∈ G
and hence φ ∈ Inn(G) by Lemma 5.4. We see that AutPI(G) ⊆ Inn(G) and thus G has
Grossman’s property (A). �

We leave the proof of the following lemma as a simple exercise for the reader.

Lemma 5.5. Let G1, . . . , Gn be groups. The group G = Πn
i=1Gi has Grossman’s property

(A) if and only if the group Gi has Grossman’s property (A) for each i = 1, . . . , n.

Now we are ready to prove Corollary 1.2
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Proof of Corollary 1.2. Let C ⊆ V Γ denote the set of central vertices of the graph Γ.
Note that the induced full subgraph ΓV Γ\C does not contain central vertices, hence the
group GV Γ\C has Grossman’s property (A) by Theorem 1.1. The group G splits as
G = GΓV \C ×

∏
v∈C Gv, a direct product of finitely many groups. By Lemma 5.5 we

see that the group G has Grossman’s property (A) if and only if Gv has Grossman’s
property (A) for every v ∈ C. �

Note that Corollary 1.2 does not hold for infinite graphs. Let Γ be a complete graph
on countably infinitely many vertices and let {Gv | v ∈ V Γ} be a family of groups such
that Gv ∼= F2, where F2 is the free group on two generators, for every v ∈ V Γ. We see
that G = ΓG is isomorphic to

∏
n∈N F2. Let w ∈ F2 \ {1} be arbitrary and consider the

automorphism φw ∈ Aut(G) defined on the coordinates as follows:

φw(f1, f2, f3, . . . ) = (wf1w
−1, w2f2w

−2, w3f3w
−3, . . . ).

It is obvious that φw ∈ AutPI(G) \ Inn(G), hence G does not have Grossman’s property
(A), but F2 has Grossman’s property (A) by [8, Lemma 1]. Note that the group G
can be actually obtained as a RAAG corresponding to an infinite graph without central
vertices.

In the rest of the section we prove three technical results about conjugacy in graph
products of groups that will be useful in Section 6

Lemma 5.6. Let u, v ∈ V Γ be such that {u, v} ∈ EΓ and let a ∈ Gu \ {1}, b ∈ Gv \ {1}
be arbitrary. Let φ0 ∈ End(G) and assume that φ0(a) ∼G a and φ0(b) ∼G b. Then
φ0(ab) ∼G ab.

Proof. Pick φ ∈ Inn(G)φ0 such that φ(a) = a. Then φ(b) = cbc−1 for some c ∈ G.
We see that φ(a)φ(b) = φ(b)φ(a) and thus cbc−1 ∈ CG(a). By Lemma 4.3 we see that
CG(a) = CGu(a)Glink(u) ≤ GuGlink(u). Note that GuGlink(u) = G{u}∪link(u) is a retract
of G, let ρ : G → GuGlink(u) be the corresponding retraction. Since v ∈ link(u) we see

that ρ(b) = b. We see that cbc−1 = ρ(cbc−1) = ρ(c)bρ(c)−1. Set c1 = ρ(c). We see that
c−1

1 φ(ab)c1 = c−1
1 ac1b. Since c1 ∈ GuGlink(u) there is c2 ∈ Gu such that c−1

1 ac1 = c−1
2 ac2.

As c2 ∈ Gu and {u, v} ∈ EΓ we see that

c−1
1 φ(ab)c1 = c−1

1 ac1b = c−1
2 ac2b = c−1

2 abc2.

It follows that φ0(ab) ∼G ab. �

Corollary 5.7. Let φ ∈ End(G). Assume that φ(g) ∼G g for every g ∈ G such that g
is cyclically reduced and S(g) = ∅. Furthermore, suppose that φ(g) ∼G g for all g ∈ G
such that |g| = 1 as well. Then φ(g) ∼G g for all g ∈ G such that |g| ≤ 2.

Proof. Let g ∈ G be arbitrary such that |g| = 2. Clearly, supp(g) = {u, v} for some
u, v ∈ V Γ such that u 6= v. One can easily check that g is cyclically reduced using
Lemma 4.5. Suppose that {u, v} 6∈ EΓ. Then S(g) = ∅ and φ(g) ∼G g by assumption.

Now suppose that {u, v} ∈ EΓ. Then g = ab for some a ∈ Gu \ {1}, b ∈ Gv \ {1}.
By assumption, φ(a) ∼G a and φ(b) ∼G b as |a| = |b| = 1. Then φ(ab) ∼G ab by the
previous lemma and we are done. �
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Lemma 5.8. Let φ0 ∈ End(G) and let u, v ∈ V Γ be such that {u, v} 6∈ EΓ and u 6= v.
Let a ∈ Gu \ {1} and b ∈ Gv \ {1} be arbitrary and assume that φ0(ab) ∼G ab, φ0(a) ∈
GGu \ {1} and φ0(b) ∈ GGv \ {1}. Then φ0(a) ∼G a and φ0(b) ∼G b.
Proof. By assumption φ0(a) = waa

′w−1
a for some a′ ∈ Gu \ {1}. Set φ = φ−1

wa
◦φ0, where

φwa ∈ Inn(G) is the inner automorphism of G corresponding to wa. Clearly φ(ab) ∼G ab,
φ(a) = a′ ∈ Gu \ {1} and φ(b) ∈ GGv \ {1}. Pick b′ ∈ Gv \ {1} and w ∈ G such that
φ(b) = wb′w−1 and |w| is minimal. By Lemma 5.1 we see that w ∈ Glink(u)Gu =

NG(Gu). We have ab ∼G φ(ab) = a′wb′w−1 and consequently ab ∼G w−1a′wb′. Note
that w−1a′w ∈ Gu since w ∈ NG(Gu). Denote a′′ = w−1a′w. Let ρ : G → G{u,v} be
the canonical retraction corresponding to the set of vertices {u, v}. Clearly ρ(ab) = ab
and ρ(a′′b′) = a′′b′ and ab ∼G{u,v} a

′′b′. Note that G{u,v} ∼= Gu ∗ Gv and thus by the

conjugacy criterion for free products of groups (see [12, Theorem 4.2]) we see that a′′ = a
and b′ = b. It follows that φ0(a) ∼G a and φ0(b) ∼ b. �

6. Conjugacy distinguishable pairs in graph products

We say that a class C is an extension closed variety of finite groups if the class C of finite
groups is closed under taking subgroups, finite direct products, quotients and extensions.
Obvious examples of extension closed varieties of finite groups are the following:

• the class of all finite groups;
• the class of all finite p-groups, where p is a prime number;
• the class of all finite solvable groups.

Unless stated otherwise (see Lemma 6.5 and Lemma 6.6), in this section we will assume
that the class C is an extension closed variety of finite groups. This will allow us to use
the following lemma which is a direct consequence of [10, Theorem 1.2]

Lemma 6.1. Let C be an extension closed variety of finite groups and let G = ΓG be a
graph product of C-groups. Then the group G is C-CS.

The main result of this section is the following proposition.

Proposition 6.2. Let Γ be a finite simplicial graph without central vertices and let
G = {Gv | v ∈ V Γ} be a family of non-trivial finitely generated residually-C groups.
Then the group ΓG is C-IAS.

To prove Proposition 6.2 we will give sufficient conditions for the pair (f, g) to be
C-CD in the graph product (see Lemma 6.7) and then use this description to show that
if we have and automorphism φ such that (g, φ(g)) is not C-CD for all g ∈ G then
necessarily φ must be inner.

We will use the fact that graph products have functorial property.

Remark 6.3. Let Γ be a simplicial graph and let G = {Gv | v ∈ V Γ}, F = {Fv | v ∈ V Γ}
be two families of groups such that for every v ∈ V Γ there is a homomorphism φv : Gv →
Fv. Then there is unique group homomorphism φ : ΓG → ΓF such that φ �Gv= φv for
every v ∈ V Γ.

The following lemma is an easy consequence of [10, Lemma 7.2].
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Lemma 6.4. Let ΓG be a graph product of residually-C groups. Let f, g ∈ G be cyclically
reduced in G and assume that f 6= g. Then there is F = {Fv|v ∈ V Γ}, a family of C-
groups indexed by V Γ, and a homomorphism φv : Gv → Fv, for every v ∈ V Γ, such that
for the corresponding extension φ : G→ F , where F = ΓF , all of the following are true:

(i) |g| = |φ(g)| and supp(g) = supp(φ(g)),
(ii) |f | = |φ(f)| and supp(f) = supp(φ(f)),
(iii) φ(f), φ(g) are cyclically reduced in F ,
(iv) φ(f) 6= φ(g) in F .

We utilise Lemma 6.4 to show that conjugacy classes of certain pairs of elements of
graph products of residually-C groups can be separated in a graph product of C-groups.

Lemma 6.5. Suppose that C is a class of finite groups closed under taking direct products
and subgroups. Let Γ be a graph and let G = {Gv | v ∈ V Γ} be a family of residually-C
groups. Let G = ΓG and suppose that f, g ∈ G are cyclically reduced elements of G
such that f 6∼G g and either supp(f) 6= supp(g) or |f | 6= |g|. Then there is a family of
C-groups F = {Fv | v ∈ V Γ} and a homomorphism φ : G → F , where F = ΓF , such
that φ(f) 6∼F φ(g).

Proof. By Lemma 6.4 there is a family C-groups F = {Fv | v ∈ V Γ} such that for
every v ∈ V Γ there is a homomorphism φv : Gv → Fv, such that for the corresponding
extension φ : G → F = ΓF we have |g| = |φ(g)|, supp(g) = supp(φ(f)), |f | = |φ(f)|,
supp(f) = supp(φ(f)) and both φ(f), φ(g) are cyclically reduced. By Lemma 4.6 we see
that φ(f) 6∼F φ(g). �

As it turns out, conjugacy classes of cyclically reduced elements with specific P-S
decomposition can be always separated.

Lemma 6.6. Suppose that C is a class of finite groups closed under taking direct products
and subgroups. Let Γ be a graph and let G = {Gv | v ∈ V Γ} be a family of residually-C
groups. Let G = ΓG be a graph product of G with respect to Γ. Let f ∈ G be cyclically
reduced element of G such that S(f) = ∅. Then for every g ∈ G \ fG there is a family
of C-groups F = {Fv | v ∈ V Γ} and a homomorphism φ : G → F , where F = ΓF , such
that φ(f) 6∼F φ(g).

Proof. Let g ∈ G \ fG be arbitrary. Pick g0 ∈ G such that g0 ∼G g and g0 is cyclically
reduced. Since S(f) = ∅ we see that p(f) = f . Combining Lemma 4.6 with the fact that
S(f) = ∅ we see that there are two possibilities to consider:

(i) supp(f) 6= supp(g0) or |f | 6= |g0|,
(ii) p(g0) is not a cyclic permutation of f .

We can use Lemma 6.5 do deal with case (i).
Assume that supp(f) = supp(g0), |f | = |g0| and that p(g0) is not a cyclic permutation

of f . Let {f1, . . . , fm} ⊂ G be the set of all cyclic permutations of f (including f). We
use Lemma 6.4 for each pair fi, g0, where 1 ≤ i ≤ m, to obtain a family C-groups
Fi = {F iv|v ∈ V Γ} with homomorphisms φiv : Gv → F iv for all v ∈ V Γ. For every v ∈ V Γ
set Kv =

⋂m
i=1 ker(φiv) and denote Fv = Gv/Kv. Note that as the class C is closed

under taking subgroups and direct products the set NC(Gv) is closed under intersection
for every v ∈ V Γ (see [10, Lemma 2.1]) and thus Fv ∈ C for every v ∈ V Γ. Set
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F = {Fv|v ∈ V Γ} and let φv : Gv → Fv be the natural projection corresponding to v. Let
φ : G→ ΓF be the natural extension. Note that p(φ(g0)) = φ(p(g0)), p(φ(f)) = φ(p(f))
and φ(f), φ(g0) are cyclically reduced in ΓF . Clearly the set C = {φ(f1), . . . , φ(fm)}
is the set of all cyclic permutations of p(φ(f)) and we see that p(φ(g0)) 6∈ C, hence
p(φ(g0)) is not a cyclic permutation of φ(f). By Lemma 4.6 we see that φ(g0) 6∼ΓF φ(f)
and thus φ(g) 6∼ΓF φ(f). �

Combining Lemma 6.5 and Lemma 6.6 together with Lemma 6.1 we get the following
description of C-CD pairs in graph products.

Lemma 6.7. Let Γ be a graph and let G = {Gv | v ∈ V Γ} be a family of residually-C
groups. Let G = ΓG be a graph product of G with respect to Γ. Let g1, g2 ∈ G be cyclically
reduced elements of G such that g1 6∼G g2 and either supp(g1) 6= supp(g2) or |g1| 6= |g2|.
Then the pair (g1, g2) is C-CD in G. Furthermore, if f ∈ G is cyclically reduced with
S(f) = ∅ then the pair (f, g) is C-CD for every g ∈ G \ fG.

Proof. If g1, g2 ∈ G are cyclically reduced and either supp(g1) 6= supp(g2) or |g1| 6= |g2|
then by Lemma 6.5 we see that there is a family of C-groups F = {Fv | v ∈ V Γ} and a
homomorphism γ : G→ F = ΓF such that γ(g1) 6∼F γ(g2). By Lemma 6.1 we see that
the group F is C-CS and thus the pair (γ(g1), γ(g2))is C-CD in F . Using Remark 3.1 we
see that the pair (g1, g2) is C-CD in G.

Similarly, if f ∈ G is cyclically reduced with S(f) = ∅ then by Lemma 6.6 there
is a family F = {Fv | v ∈ V Γ} and a homomorphism γ : G → F = ΓF such that
γ(f) 6∼F γ(g). Again, by Lemma 6.1 we see that the group F is C-CS and thus the
pair (γ(f), γ(g)) is C-CD in F . Using Remark 3.1 we see that the pair (f, g) is C-CD in
G. �

Now we are ready to prove Proposition 6.2

Proof of proposition 6.2. Our aim is to use Lemma 3.2, hence we want to show that for
every φ ∈ Aut(G) \ Inn(g) there is an element g ∈ G such that φ(g) 6∼G g and the pair
(φ(g), g) is C-CD.

Let φ ∈ Aut(G) \ Inn(G) be arbitrary and assume that for every g ∈ G the pair
(φ(g), g) is not C-CD in G.

If g ∈ G is cyclically reduced with S(g) = ∅ then the pair (f, g) is C-CD for every
f ∈ G \ gG by Lemma 6.7. We see that we may assume that φ(g) ∼G g for every
cyclically reduced element g ∈ G such that S(g) = ∅. In particular φ(ab) ∼G ab,
whenever a ∈ Gu \ {1} and b ∈ Gv \ {1} for some u, v ∈ V Γ such that {u, v} 6∈ EΓ.

Let us analyse what happens to g ∈ G with |g| = 1. Let u ∈ V Γ and a ∈ Gu \ {1} be
arbitrary. Pick h ∈ G such that h ∼G φ(a) and h is cyclically reduced. There are three
cases to consider:

(i) 1 < |h|,
(ii) |h| = 1 and supp(h) 6= {u} = supp(a),

(iii) |h| = 1 and supp(h) = {u}.
Using Lemma 6.7 we see that if (i) or (ii) is the case then the pair (a, h) is C-CD.
This means that there is a group C ∈ C and a homomorphism γ : G → C such that
γ(a) 6∼C γ(h). Consequently γ(φ(a)) 6∼C γ(a) and the pair (φ(a), a) is C-CD in G. We
see that without loss of generality we may assume that φ(g) ∈ GGv , whenever g ∈ Gv\{1}
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for some v ∈ V Γ, because otherwise the pair (φ(g), g) would be conjugacy distinguishable
as we just demonstrated.

As Γ does not contain central vertices we know that for every u ∈ V Γ there is v ∈
V Γ\{u} such that {u, v} 6∈ EΓ. Let b ∈ Gv\{1} be arbitrary. We see that φ(a) ∈ GGu and
φ(b) ∈ GGv . Clearly the element ab is cyclically reduced and S(ab) = ∅, hence φ(ab) ∼G ab
by assumption. Then by Lemma 5.8 we see that φ(a) ∼G a and φ(b) ∼G b. This means
that we may assume that φ(g) ∼ g for all g ∈ G such that |g| = 1. Consequently, by
Corollary 5.7 we see that φ(g) ∼G g for all g ∈ G such that |g| ≤ 2. However, using
Lemma 5.4 we see that φ ∈ Inn(G), which is a contradiction with our original assumption
that φ ∈ Aut(G) \ Inn(G).

We see that our original assumption cannot be true, i.e. there must be an element
g ∈ G such that φ(g) 6∼G g and the pair (φ(g), g) is C-CD in G. As G is a finite graph
product of finitely generated groups it is finitely generated and thus by Lemma 3.2 we
see that the group G is C-IAS. �
Corollary 6.8. Let Γ be a finite graph and let G = {Gv | v ∈ V Γ} be a family of non-
trivial finitely generated residually-C groups such that the group Gv is C-IAS whenever
the vertex v is central in Γ. Then the group G = ΓG is C-IAS.

Proof. Let C ⊆ V Γ denote the set of central vertices of graph Γ. Note that the induced
full subgraph ΓV Γ\C does not contain central vertices, hence the group GV Γ\C is C-IAS
by Lemma 6.2. The group GV Γ\C is residually-C by [10, Lemma 6.6]. The group G splits
as G = GΓV \C ×

∏
v∈C Gv, a direct product of finitely many finitely generated C-IAS

residually-C groups, and thus G is C-IAS by Proposition 2.1. �
Applying Proposition 6.2 and Corollary 6.8 to the class of all finite groups we imme-

diately obtain Theorem 1.3 and Corollary 1.4.

7. Graph products of residually-p groups

Let G be a group and let p be a prime number. Set Kp = [G,G]Gp ≤ G, where
Gp is the subgroup of G generated by all elements of the form gp for g ∈ G. Note
that Kp is characteristic in G and thus the natural projection π : G → G/Kp induces
a homomorphism π̃ : Aut(G) → Aut(G/Kp) given by π̃(φ)(gKp) = φ(g)Kp for every
φ ∈ Aut(G). We will use Autp(G) to denote ker(π̃), i.e. the automorphisms that act
trivially on the first mod-p homology of G. Note that if G is finitely generated then
G/Kp is actually the direct product of copies of Cp, the cyclic group of order p, and we
see that G/Kp is a finite p-group and thus Kp is of finite index in G. Consequently, if
G is finitely generated then Autp(G) is of finite index in Aut(G). Also since G/Kp is
abelian we see that Inn(G) ≤ Autp(G) and thus Outp(G) = Autp(G)/ Inn(G) ≤ Out(G).
Again, if G is finitely generated then Outp(G) is actually of finite index in Out(G).

The following is a classical result of P. Hall (see [17, 5.3.2, 5.3.3]).

Lemma 7.1. If G is a finite p-group, then Autp(G) is also a finite p-group.

Recall that if C is the class of all finite p-groups, then the corresponding pro-C topology
on a group G is referred to as the pro-p topology on G. We say that a subset X ⊆ G
is p-closed in G if it is closed in pro-p(G). If group G is C-IAS then we say that G is
p-IAS, similarly for p-CS and p-Grossmanian groups.
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Lemma 7.2. Let G be a finitely generated p-IAS group. Then the group Outp(G) is
residually p-finite and, consequently, the group Out(G) is virtually residually p-finite.

Proof. Let φ ∈ Autp(G) \ Inn(G) be arbitrary. By definition there is N ∈ Np(G) char-
acteristic in G such that the natural projection π : G → G/N induces a homomor-
phism π̃ : Aut(G) → Aut(G/N) such that π̃(φ) 6∈ Inn(G/N). By Lemma 7.1 we see
that Autp(G/N) is a finite p-group. Note that π̃(Autp(G)) ≤ Autp(G/N) and thus
π̃(φ) ∈ Autp(G/N) \ Inn(G/N), therefore Inn(G) is p-closed in Autp(G) and conse-
quently Outp(G) is residually p-finite. As G is finitely generated, Outp(G) is of finite
index in Out(G) and we see that Out(G) is virtually residually p-finite. �

This gives us everything we need to prove Theorem 1.6.

Proof of Theorem 1.6. Using Theorem 6.8 in the context of the class of all p-finite groups
we see that the group ΓG is p-IAS. The rest follows by Lemma 7.2. �

Applying Proposition 2.1 to the class of all p-finite groups we get the following p-
analogue of Corollary 2.5.

Lemma 7.3. Let A,B be finitely generated residually p-finite p-IAS groups. Then A×
B is p-IAS and, consequently, Outp(G) is residually p-finite and Out(G) is virtually
residually p-finite.

Proof. Applying Proposition 2.1 to the case when C is the class of all finite p-groups we
see that A×B is p-IAS. The rest follows by Lemma 7.2. �
Proof of Corollary 1.7. Denote G = ΓG. Let C ⊆ V Γ be set of central vertices of Γ.
Note that the induced subgraph ΓV Γ\C does not contain central vertices and thus by
Theorem 1.6 we see that the full subgroup GV Γ\C is p-IAS. We see that G splits as
G = GV \C ×

∏
v∈C GV , a direct product of p-IAS groups. The rest follows by Lemma

7.3 �
Let G be a group. Consider the natural homomorphism π : G → G/[G,G]. Clearly

[G,G] is a characteristic subgroup of G and thus π induces a homomorphism

π̃ : Aut(G)→ Aut(G/[G,G]).

Note that Inn(G) ≤ ker(π̃), hence π̃ induces a homomorphism

π∗ : Out(G)→ Out(G/[G,G]).

The kernel of this homomorphism is the Torelli group of G (Tor(G)), i.e. φ ∈ Out(G)
belongs to Tor(G) if and only if φ acts trivially on the abelianisation of G. Note that
Tor(G) ⊆ Outp(G) for every prime number p.

We say that a group G is bi-orderable if there exist a total ordering � of G such that
if f � g then cf � cg and fc � gc for all c, f, g ∈ G.

Proof of Theorem 1.8. Every residually torsion free nilpotent group is residually p-finite
for every prime p by [9, Theorem 2.1] and thus we see that Outp(G) is residually p-finite
by Theorem 1.6. As discussed earlier, Tor(G) ≤ ∩p∈P Outp(G), where P denotes the set
of all prime numbers. Being residually p-finite is a hereditary property and thus Tor(G)
is residually p-finite for every prime number p. Consequently, by [18] we see that Tor(G)
is bi-orderable. �
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8. Open question

Let A,B be finitely generated RF groups such that Out(A) and Out(B) are RF as well.
As follows from Corollary 2.5, if we assume that groups A,B are IAS then Out(A×B)
is RF as well. However, what if we drop this assumption? What can be said about
residual finiteness of Out(A×B)?

Question 8.1. Let A,B be finitely generated RF groups such that Out(A),Out(B) are
RF. Is Out(A×B) RF?

Clearly, if every finitely generated RF group with Out(G) RF was IAS then the class
of finitely generated groups with RF outer automorphism would be closed under taking
direct products by Proposition 2.1. This naturally leads to another question.

Question 8.2. Is there a finitely generated RF group G such that Out(G) is an infinite
RF group but G is not IAS?
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RESIDUAL PROPERTIES OF GRAPH PRODUCTS OF GROUPS

FEDERICO BERLAI AND MICHAL FEROV

Abstract. We prove that the class of residually C groups is closed under taking graph
products, provided that C is closed under taking subgroups, finite direct products and
that free-by-C groups are residually C. As a consequence, we show that local embed-
dability into various classes of groups is stable under graph products. In particular, we
prove that graph products of residually amenable groups are residually amenable, and
that locally embeddable into amenable groups are closed under taking graph products.

1. Introduction and motivation

Graph products were introduced by Green [8], and are a common generalisation of
direct and free products. When all the groups involved are infinite cyclic, the graph
products are known as right-angled Artin groups (RAAGs). In this sense, graph products
generalise direct and free products in the same way as RAAGs generalise free abelian
and free groups.

Let Γ = (V,E) be a simplicial graph, i.e. V a set and E ⊆
(
V
2

)
a graph with no loops

and no multiple edges, and let G = {Gv | v ∈ V } be a family of groups indexed by the
vertex set V . Note that the set V can be of arbitrary cardinality. The graph product ΓG
of the groups G with respect to the graph Γ is defined as the quotient of the free product
∗v∈VGv obtained by adding all the relations of the form

gugv = gvgu ∀gu ∈ Gu, gv ∈ Gv, {u, v} ∈ E.
The groups Gv ∈ G are called the vertex groups of ΓG.

Properties that are stable under direct and free products are often inherited by graph
products too. Green originally proved that a graph product of residually finite (resp.:
p-finite) groups is again residually finite (resp.: p-finite) [8]. More recently, the second
named author proved that graph products of residually finite solvable groups are again
residually finite solvable [7, Lemma 6.8]. Other examples are soficity [5], (hereditary)
conjugacy separability [7], Tits alternatives [2], the Haagerup property or finiteness of
asymptotic dimension [1].

In this work we study residual properties of graph products. We adopt an approach
that unifies and recovers the known facts concerning residual properties. Moreover, it
allows us to prove new results in this direction.

If C is a class of groups, then we say that a group G is residually C if for every non-
trivial element g ∈ G there is a group C ∈ C and a surjective homomorphism ϕ : G� C
such that ϕ(g) is non-trivial in C.

2010 Mathematics Subject Classification. 20F65, 20E26, 20E06.
Key words and phrases. graph products, residual properties, pro-C topologies, local embeddability,

residually amenable groups.
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Theorem A. Let C be a class of groups closed under taking subgroups and finite direct
products. Assume that free-by-C groups are residually C, then the class of residually C
groups is closed under taking graph products.

In [3] the first named author considered the class of residually amenable groups.
Among other things, it is proved there that such class is closed under taking free prod-
ucts [3, Corollary 1.2]. As a consequence of Theorem A, we deduce that the class of
residually amenable groups is also closed under graph products.

Corollary A. The class of residually amenable groups is closed under taking graph
products. The same is true for residually elementary amenable groups.

Moreover, a result in the same spirit is true for a weaker form of approximation, the
one of local embeddability into a class C (LE-C for short). See the beginning of Section 5
for the precise definitions.

The class of LEA (locally embeddable into amenable) groups is of great interest be-
cause of its relation with sofic groups [10]. While every LEA group is sofic, Gromov’s
question whether the other implication holds as well turned out to have a negative an-
swer. The first example of a sofic non-LEA group is due to de Cornulier [6], and recently
others were presented [12].

Even though sofic groups are quite obscure (it is not known whether there exists
a non-sofic group), LEA groups are easier to understand. Moreover, since evey LEA
group is sofic, they satisfy deep conjectures that are known to hold for sofic groups, such
as Gottschalk’s surjunctivity conjecture, Connes’ embedding conjecture or Kaplansky’s
direct and stable finiteness conjectures.

Theorem B. Let C be a class of groups, suppose that C is closed under taking subgroups,
finite direct products and that graph products of residually C groups are residually C.
Then the class of LE-C groups is closed under graph products.

This general result allows us to establish that the property of being LE-C is stable
under graph products for certain classes of groups.

Corollary B. Let C be one of the following classes:

(1) finite groups,
(2) finite p-groups,
(3) solvable groups,
(4) finite solvable groups,
(5) elementary amenable groups,
(6) amenable groups.

Then the class of LE-C groups is closed under graph products.

2. Preliminaries

2.1. Notations. Throughout this work, all graphs considered are simplicial graphs, even
if not explicitly stated.

The identity element of a group G is denoted by eG, or simply by e if the group G
is clear from the context. Given two elements h, k ∈ G, the commutator hkh−1k−1 is
denoted by [h, k]. If H,K ≤ G are two subgroups, [H,K] denotes the subgroup of G
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generated by the elements [h, k], where h ∈ H and k ∈ K. A surjective homomorphism
is usually indicated by G� H.

We use the standard notation of an A-by-B group to denote a group G with a normal
subgroup N E G such that N ∈ A and G/N ∈ B, where A and B are given classes of
groups (e.g. A being the free groups and B being the amenable groups, in the case of a
free-by-amenable group).

For a residually finite solvable group we mean a residually (finite solvable) group, not
a group which is solvable and, at the same time, residually finite.

2.2. Graph products. We recall here some terminology and facts about graph products
that will be used in this paper. Let G = ΓG be a graph product. Every element g ∈ G
can be obtained as a product of a sequence W ≡ (g1, g2, . . . , gn), where each gi belongs
to some Gvi ∈ G. We say that W is a word in G and that the elements gi are its syllables.
The length of a word is the number of its syllables, and it is denoted by |W |.

Transformations of the three following types can be defined on words in graph prod-
ucts:

(T1) remove the syllable gi if gi = eGv , where v ∈ V and gi ∈ Gv,
(T2) remove two consecutive syllables gi, gi+1 belonging to the same vertex group Gv

and replace them by the single syllable gigi+1 ∈ Gv,
(T3) interchange two consecutive syllables gi ∈ Gu and gi+1 ∈ Gv if {u, v} ∈ E.

The last transformation is also called syllable shuffling. Note that transformations (T1)
and (T2) decrease the length of a word, whereas transformations (T3) preserve it. Thus,
applying finitely many of these transformations to a word W , we obtain a word W ′

which is of minimal length and that represents the same element in G.
For 1 ≤ i < j ≤ n, we say that syllables gi, gj can be joined together if they belong

to the same vertex group and ‘everything in between commutes with them’. More
formally: gi, gj ∈ Gv for some v ∈ V and for all i < k < j we have that gk ∈ Gvk for
some vk ∈ link(v) := {u ∈ V | {u, v} ∈ E}. In this case the words

W ≡ (g1, . . . , gi−1, gi, gi+1, . . . , gj−1, gj , gj+1, . . . , gn)

and

W ′ ≡ (g1, . . . , gi−1, gigj , gi+1, . . . , gj−1, gj+1, . . . , gn)

represent the same group element in G, and the length of the word W ′ is strictly shorter
than W .

We say that a word W ≡ (g1, g2, . . . , gn) is reduced if it is either the empty word, or if
gi 6= e for all i and no two distinct syllables can be joined together. As it turns out, the
notion of being reduced and the notion of being of minimal length coincide, as it was
proved by Green [8, Theorem 3.9]:

Theorem 2.1 (Normal Form Theorem). Every element g of a graph product G can
be represented by a reduced word. Moreover, if two reduced words W,W ′ represent the
same element in the group G, then W can be obtained from W ′ by a finite sequence
of syllable shufflings. In particular, the length of a reduced word is minimal among all
words representing g, and a reduced word represents the trivial element if and only if it
is the empty word.
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Thanks to Theorem 2.1 the following are well defined. Let g ∈ G and let W ≡
(g1, . . . , gn) be a reduced word representing g. We define the length of g in G to be
|g| = n and the support of g in G to be

supp(g) = {v ∈ V | ∃i ∈ {1, . . . , n} such that gi ∈ Gv \ {e}}.
Let x, y ∈ G and let Wx ≡ (x1, . . . , xn),Wy ≡ (y1 . . . , ym) be reduced expressions for
x and y, respectively. We say that the product xy is a reduced product if the word
(x1, . . . , xn, y1, . . . , ym) is reduced. Obviously, xy is a reduced product if and only if
|xy| = |x|+ |y|. We can naturally extend this definition: for g1, . . . , gn ∈ G we say that
the product g1 . . . gn is reduced if |g1 . . . gn| = |g1|+ · · ·+ |gn|.

A subset X ⊆ V induces the full subgraph ΓX of Γ. Let GX be the subgroup of
G = ΓG generated by the vertex groups corresponding to X and, by convention, let G∅
be the trivial subgroup. It follows from Theorem 2.1 that GX is isomorphic to the graph
product of the family GX = {Gv ∈ G | v ∈ X} with respect to the full subgraph ΓX .
Subgroups of G that can be obtained in this way are called full subgroups. For such
subgroups, there is a canonical retraction ρX : G� GX defined on the vertex groups as

ρX(g) =

{
g if g ∈ Gv and v ∈ X,
e otherwise.

Thus, G splits as the semidirect product G ∼= ker(ρX) o GX , and full subgroups are
retracts of G.

2.3. Special amalgams. Let B ≤ A and C be groups, we define A ?B C, the special
amalgam of A and C over B, to be the free product with amalgamation

A ?B C := A ∗B (B × C) = 〈A,C ‖ [b, c] = e ∀b ∈ B, ∀c ∈ C〉.
Special amalgams generalise the notion of special HNN extensions: every special HNN
extension

A∗idB = 〈A, t ‖ tbt−1 = b ∀b ∈ B〉
is isomorphic to A ?B 〈t〉 = A ∗B (B × Z).

Graph products can be seen in a natural way as special amalgams of their full sub-
groups:

Fact 2.2. Let G = ΓG be a graph product. Then, for every v ∈ V , we have that
G ∼= GA ?GB

GC , where A = V \ {v}, B = link(v) and C = {v}.
Consider G = A ?B C, then every element g ∈ G can be represented as a product

a0c1a1 . . . cnan, where ai ∈ A for i = 0, 1, . . . , n and cj ∈ C for j = 1, . . . , n. We say
that g = a0c1a1 . . . cnan is in a reduced form if ai /∈ B for i = 1, . . . , n− 1 and cj 6= e for
j = 1, . . . , n. The following lemma was proved in [7, Lemma 5.3].

Lemma 2.3. Let B ≤ A and C be groups, and consider G = A ?B C. Suppose that
g = a0c1a1 . . . cnan is in reduced form, where ai ∈ A, cj ∈ C and n ≥ 1. Then g is not
the trivial element of G.

Moreover, suppose that f = x0y1x1 . . . ymxm is in reduced form, where xi ∈ A, yj ∈ C.
If f = g then m = n and ci = yi for all i = 1, . . . , n.

Special amalgams satisfy a functorial property.
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Fact 2.4. Let B ≤ A,C, P,Q be groups and let ψA : A→ P , ψC : C → Q be homomor-
phisms. By the universal property of amalgamated free products the homomorphisms ψA
and ψC uniquely extend to the homomorphism ψ : G→ H, defined on the generators by

ψ(g) =

{
ψA(a) if g = a for some a ∈ A,
ψC(c) if g = c for some c ∈ C,

where G := A ?B C and H := P ?ψA(B) Q.

3. Pro-C topologies on groups

Let C be a class of groups and let G be a group. We say that a normal subgroup
N E G is a co-C subgroup of G if G/N ∈ C, and we denote by NC(G) the set of co-C
subgroups of G.

Consider the following closure properties for a class of groups C:
(c0) C is closed under taking finite subdirect1 products,
(c1) C is closed under taking subgroups,
(c2) C is closed under taking finite direct products.

Note that

(c0)⇒ (c2) and (c1) + (c2)⇒ (c0).

If the class C satisfies (c0) then, for every group G, the set NC(G) is closed under
intersections, that is to say, if N1, N2 ∈ NC(G) then also N1 ∩N2 ∈ NC(G). This implies
that NC(G) is a base at eG for a topology on G.

Hence the group G can be equipped with a group topology, where the base of open
sets is given by

{gN | g ∈ G,N ∈ NC(G)}.
This topology, denoted by pro-C(G), is called the pro-C topology on G.

If the class C satisfies (c1) and (c2), or equivalently, (c0) and (c1), then one can easily
see that equipping a group G with its pro-C topology is a faithful functor from the
category of groups to the category of topological groups. That is to say, for groups G,H
every homomorphism ϕ : G→ H is a continuous map with respect to the corresponding
pro-C topologies.

A set X ⊆ G is C-closed in G if X is closed in pro-C(G): for every g /∈ X there exists
N ∈ NC(G) such that the open set gN does not intersect X, that is, gN ∩X = ∅. This
is equivalent to gN ∩XN = ∅, and hence ϕ(g) /∈ ϕ(X) in G/N , where ϕ : G� G/N is
the canonical projection onto the quotient G/N . Accordingly, a set is C-open in G if it
is open in pro-C(G).

The following lemma was proved by Hall [11, Theorem 3.1].

Lemma 3.1. Let C be a class of groups closed under subgroups and finite direct products,
and let G be a group. A subgroup H ≤ G is C-open in G if and only if there is N ∈ NC(G)
such that N ≤ H. Moreover, every C-open subgroup of G is C-closed in G.

The following lemma is crucial for the proofs of the next section.

1A subdirect product of the family {Gi}i∈I is a subgroup H ≤ ∏
i∈I Gi such that the projections

H → Gi are surjective for all i ∈ I.
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Lemma 3.2. Let C be a class of groups closed under subgroups and finite direct products,
and let G be a residually C group. Then a retract R of G is C-closed in G.

Proof. Let ρ : G� R be the retraction corresponding to R and let g ∈ G\R be arbitrary.
Note that ρ(g) 6= g as g 6∈ R. By assumption, there is C ∈ C and a homomorphism
ϕ : G� C such that ϕ(ρ(g)) 6= ϕ(g) in C.

Let ψ : G → C × C be the homomorphism defined by ψ(f) = (ϕ(f), ϕ(ρ(f))) for all
f ∈ G. Let D = {(c, c) ∈ C × C | c ∈ C} ≤ C × C be the diagonal subgroup of C × C.
Clearly ψ(R) ≤ D and ψ(g) 6∈ D, thus ψ(g) 6∈ ψ(R). As the class C is closed under
taking subgroups and direct products we see that ψ(G) ∈ C and so ker(ψ) ∈ NC(G) and
g ker(ψ) ∩R = ∅. Hence R is C-closed in G. �

When the class C contains only finite groups this statement has been proved in [13,
Lemma 3.1.5].

4. Graph products of residually C groups

The following was proved in [7, Lemma 6.6].

Lemma 4.1. Let C be a class of groups closed under finite direct products, let A,C ∈ C
and suppose that B ≤ A. Then the special amalgam G = A ?B C is free-by-C.

In the following proposition we characterise precisely which special amalgams are
residually C. This should be compared with [3, Theorem 1.9], where a similar statement
can be found.

Proposition 4.2. Let B ≤ A,C be groups and suppose that C is a class of groups closed
under taking subgroups, finite direct products and that free-by-C groups are residually C.

The group G = A ?B C is residually C if and only if A,C are residually C and B is
C-closed in A.

Proof. Suppose that A,B are residually C and that the subgroup B is C-closed in A. We
need to prove that the group G is residually C.

Let g ∈ G\{e} be arbitrary and let g = a0c1a1 . . . cnan, where ai ∈ A for i = 0, . . . , n,
cj ∈ C for j = 1, . . . , n, be a reduced expression.

There are two cases to consider. If n = 0, then g = a0 ∈ A \ {e}. Note that A is a
retract of G and thus for the canonical retraction ρA : G� A we have ρA(a0) = a0 6= e in
A. The group A is residually C, so there is a group H ∈ C and a surjective homomorphism
ϕ : A� H such that ϕ(a0) 6= eH . We see that (ϕ ◦ ρA)(g) 6= eH .

Suppose now that n ≥ 1. As B is C-closed in A, there is a group Q ∈ C and a surjective
homomorphism α : A� Q such that α(ai) /∈ α(B) for all i = 1, . . . , n− 1. Moreover, C
is residually C, so there exists a group S ∈ C and a surjective homomorphism γ : C � S
such that γ(ci) 6= eS for all i = 1, . . . , n. Let ψ : G → P , where P = Q ?α(B) S, be the
canonical extension of α and γ given by Fact 2.4. It follows that

ψ(g) = α(a0)γ(c1)α(a1) . . . γ(cn)α(an)

is a reduced expression for ψ(g) in P . Hence ψ(g) 6= eP by Lemma 2.3.
The group P is free-by-C by Lemma 4.1, and thus residually C by assumption. Hence,

G is residually C.
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It remains to prove the other implication. So, suppose that G is residually C. As
A,C ≤ G and C is closed under subgroups, it follows that the groups A and C are
residually C.

Looking for a contradiction, suppose that B is not C-closed in A. Then there exists an
element a ∈ A \B such that ϕ(a) ∈ ϕ(B) for all surjective homomorphisms ϕ : A� Q,
with Q ∈ C.

Let c ∈ C be a non-trivial element, then the element g := [a, c] ∈ G is not trivial, as
a /∈ B and C only commutes with B.

The group G is residually C, hence there exist a group Q ∈ C and a surjective homo-
morphism ϕ : G� Q such that ϕ(g) 6= eQ.

By the choice of the element a, it follows that ϕ(a) ∈ ϕ(B). Moreover, B and C
commute elementwise in G, so ϕ(B) and ϕ(C) commute elementwise in Q. This implies
that

ϕ(g) = [ϕ(a), ϕ(c)] ∈ [ϕ(B), ϕ(C)] = {eQ},
contradicting the assumption ϕ(g) 6= eQ. Hence, B is C-closed in A. �
Theorem A. Let C be a class of groups closed under taking subgroups and finite direct
products. Assume that free-by-C groups are residually C, then the class of residually C
groups is closed under taking graph products.

Proof. Let Γ be a graph and let G = {Gv | v ∈ V } be a family of residually C groups.
We want to prove that the graph product G := ΓG is residually C.

Let g ∈ G be a non-trivial element and set S = supp(g). Consider the canonical
projection ρS : G � GS onto the graph product associated to the finite graph ΓS . As
ρS(g) = g 6= e, without loss of generality we can assume that the graph Γ is itself finite.

We proceed by induction on |V |. If |V | = 1 then G = Gv is residually C by assumption.
Suppose now that |V | = r > 1 and that the statement holds for all graph products on

graphs with at most r − 1 vertices.
Fix a vertex v ∈ V and let

A := V \ {v}, B := link(v), C := {v}.
From Fact 2.2 it follows that G = GA ?GB

GC . Moreover, GA is a graph product of
residually C groups with respect to a graph with r− 1 vertices, hence GA is residually C
by the induction hypothesis. Note that GC is a vertex group, thus it is residually C by
assumption. Finally, GB is a retract of GA and thus GB is C-closed in GA by Lemma 3.2.

Hence, applying Proposition 4.2, we see that G is residually C. �
To give some examples of classes satisfying these properties, we recall here the notion

of a root class. We say that a class C is non-trivial if there is G ∈ C such that G 6= {e}. A
non-trivial class of groups is called a root class if it is closed under taking subgroups, and
for every group G and every subnormal series K E H E G such that G/H,H/K ∈ R,
there exists L E G such that L ⊆ K and G/L ∈ R. In particular, for the choice K = {e}
one sees that R is closed under taking extensions.

Finite groups, finite p-groups, and (finite) solvable groups are examples of root classes [9].
This notion was introduced by Gruenberg [9] who proved that, when R is a root class,
a free product of residually R groups is residually R. In [3, Theorem 1.1, Lemma 3.3],
with the aim to generalise this result, the first named author proved the following.
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Lemma 4.3. Let C be a non-trivial class of groups containing a root class R, and such
that

(1) C is closed under taking finite direct products,
(2) every R-by-C group sits in C,
(3) for every group in C there exists a group in R of the same cardinality.

Then a free-by-C group is residually C and a free product of residually C groups is again
residually C.

Root classes satisfy the assumptions of this lemma. Using Theorem A we extend these
results to graph products.

Corollary 4.4. Let R be a root class. Then the class of residually R groups is closed
under taking graph products.

Proof. Root classes are closed under taking subgroups, finite direct products and free-
by-R groups are residually R. Hence we can apply Theorem A. �

Using this, we recover Green’s result that residually finite and residually p-finite groups
are closed under taking graph products [8, Corollary 5.4, Theorem 5.6]. Corollary 4.4
also covers [7, Lemma 6.8] for the class of residually finite solvable groups. Moreover, it
yields the same statement for residually solvable groups:

Corollary 4.5. Graph products of residually finite groups are residually finite. The
same holds for the classes of residually p-finite groups, residually finite solvable groups
and residually solvable groups.

On the other hand, the class of amenable groups and the class of elementary amenable
groups are not root classes, yet they satisfy the assumptions of Lemma 4.3. Hence, [3,
Corollary 3.4] reads as follows.

Fact 4.6. If G is free-by-amenable, then it is residually amenable. Moreover, if G is
free-by-(elementary amenable), then it is residually elementary amenable.

As a consequence, these classes are closed under taking free products [3, Corollary
1.2].

The class of amenable groups is closed under taking subgroups and finite direct prod-
ucts. Moreover, free-by-amenable groups are residually amenable by Fact 4.6. Thus we
can apply Theorem A to show that the class of residually amenable groups is closed
under taking graph products. In the elementary amenable case we can use the same
argument. Hence Corollary A.

5. Graph products of LE-C groups

We recall here the definition of local embeddability. Let G, C be two groups and
K ⊆ G be a finite subset. A map ϕ : G→ C is called a K-almost-homomorphism if

(1) ϕ(k1k2) = ϕ(k1)ϕ(k2) for all k1, k2 ∈ K,
(2) ϕ �K is injective.

A group G is locally embeddable into C (LE-C for short) if for all finite K ⊆ G there exist
a group C ∈ C and a K-almost-homomorphism ϕ : G→ C.
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For classes C closed under finite direct products this definition yields a generalisation
of being residually C [4, Corollary 7.1.14]. To give an example of finitely generated,
non residually finite, LEF group [4, Proposition 7.3.9], consider the subgroup of Sym(Z)
generated by the transposition (0 1) and the translation n→ n+ 1. This group cannot
be finitely presented.

Theorem A has an analogue for graph products of LE-C groups.

Theorem B. Let C be a class of groups, suppose that C is closed under taking subgroups,
finite direct products and that graph products of residually C groups are residually C.
Then the class of LE-C groups is closed under graph products.

Proof. Let Γ = (V,E) be a graph, G = {Gv | v ∈ V } be a family of LE-C groups and let
G := ΓG be the graph product of G with respect to Γ. Let K ⊆ G be a finite subset of
G. The set ∪k∈Ksupp(k) is a finite subset of V , thus without loss of generality we can
suppose that V itself is finite. Set

K ′ = K−1K = {k−1k′ | k, k′ ∈ K ∪ {eG}}
and suppose that K ′ = {g1, . . . , gr}. Let W1, . . . ,Wr be reduced words in G representing
the elements g1, . . . , gr.

For every v ∈ V consider the finite subset

Kv := {eGv} ∪ {g ∈ Gv | g is a syllable of some Wi} ⊆ Gv.
By assumption, the vertex group Gv is LE-C for every v ∈ V . Hence, there exist a
family of groups F = {Fv ∈ C | v ∈ V } and a family of Kv-almost-homomorphisms
{ϕv : Gv → Fv | v ∈ V }.

As eGv ∈ Kv it follows ϕv(eGv) = eFv . This implies that

ϕv(g) 6= eFv ∀g ∈ Kv \ {eGv}.
Let F := ΓF be the graph product of F with respect to Γ.

LetWG andWF denote the set of all the words in G and F respectively. We define the
function ϕ̃ : WG → WF in the following manner: for W ≡ (g1, . . . , gn), where gi ∈ Gvi
for some vi ∈ V for i = 1, . . . , n, we set

ϕ̃(W ) ≡ (ϕv1(gi), . . . , ϕvn(gn)).

By definition, if W is the empty word in G then ϕ̃(W ) is the empty word in F . Let
us note that the map ϕ̃ is compatible with concatenation: for all U, V ∈ WG we have
ϕ̃(UV ) = ϕ̃(U)ϕ̃(V ).

Let g ∈ G be an arbitrary element and let W ≡ (g1, . . . gn), W ′ ≡ (g′1, . . . , g
′
m) be two

reduced words representing g in G. By Theorem 2.1 we see that m = n and that the
word W can be transformed to W ′ by finite sequence of syllable shufflings. Since the
groups G,F are graph products with respect to the same graph, it can be easily seen
that the word ϕ̃(W ) can be transformed to ϕ̃(W ′) (using the same sequence of syllable
shufflings). Hence the words ϕ̃(W ) and ϕ̃(W ′) represent the same element in F .

We see that the map ϕ̃ induces a well defined map ϕ : G→ F given by

ϕ(g) = ϕv1(g1) . . . ϕvn(gn).
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Clearly, ϕ �Gv= ϕv for every v ∈ V and thus it makes sense to omit the subscripts and
write

ϕ(g) = ϕ(g1) . . . ϕ(gn).

We claim that ϕ is a K-almost-homomorphism, that is, ϕ �K is an injective map and
ϕ(kk′) = ϕ(k)ϕ(k′) for all k, k′ ∈ K.

First of all, let us show that if the reduced word Wk ≡ (f1, . . . , fn) represents k ∈ K ′
in the group G, then the word ϕ̃(Wk) ≡ (ϕ(f1), . . . , ϕ(fn)), which represents ϕ(k) in F ,
is a reduced word in F .

As the maps ϕv are Kv-almost-homomorphisms for every v ∈ V , it follows that
ϕ(fi) 6= e in F for i = 1, . . . , n, so no syllable of ϕ̃(Wk) is trivial. Suppose that ϕ̃(Wk) is
not reduced in F . This means that there exist i < j ∈ {1, . . . , n} such that the syllables
ϕ(fi) and ϕ(fj) can be joined together. However, this implies that the syllables fi and
fj can be joined in the word Wk, which contradicts the fact that Wk is reduced. Hence
ϕ̃(Wk) is reduced.

Now, let us prove that ϕ(kk′) = ϕ(k)ϕ(k′) for all k, k′ ∈ K ′. Let k, k′ ∈ K be arbitrary
and let W,W ′ be reduced words representing k and k′ respectively. We want to show
that the word ϕ̃(WW ′) ≡ ϕ̃(W )ϕ̃(W ′) represents the element ϕ(kk′).

Suppose that the product kk′ is reduced, i.e. the concatenation WW ′, which is a word
representing kk′ in G, is reduced. Using a similar argument as above we see that the
word ϕ̃(WW ′) ≡ ϕ̃(W )ϕ̃(W ′) is reduced. The word ϕ̃(W )ϕ̃(W ) represents ϕ(k)ϕ(k′) in
F by definition, but at the same time we see that the word ϕ̃(WW ′) represents ϕ(kk′)
in F , and thus ϕ(kk′) = ϕ(k)ϕ(k′).

Now, suppose that the product kk′ is not reduced. Let c, f, g ∈ G be such that k
factorises as a reduced product k = fc, k′ factorises as a reduced product k′ = c−1g
and |c| is maximal. Clearly, kk′ = fg. Without loss of generality we may assume
that W ≡ (f1, . . . , fn, c1, . . . cl) and W ′ ≡ (c−1l , . . . , c−11 , g1, . . . , gm), where c = c1 . . . cl,
f = f1 . . . fn and g = g1 . . . gm.

Consider the word X ∈ WF , where X is

(ϕ(f1), . . . , ϕ(fn), ϕ(c1), . . . , ϕ(cl), ϕ(c−1l ), . . . , ϕ(c−11 ), ϕ(g1), . . . , ϕ(gm)).

Note that X = ϕ̃(WW ′) = ϕ̃(W )ϕ̃(W ′). The syllable ϕ(cl) can be joined with syllable
ϕ(c−1l ). Obviously, cl ∈ Gu for some u ∈ V . As ϕ �Gu is a Ku-almost-homomorphism

and cl, c
−1
l ∈ Ku we see that ϕ(cl)ϕ(c−1l ) = ϕ(clc

−1
l ) = ϕ(eGu). As stated before,

ϕ(eGv) = eFv for every v ∈ V and thus we can remove the trivial syllable. Note that
this transformation is compatible with the function ϕ̃:

ϕ(k)ϕ(k′) = ϕ(f1 . . . fnc1 . . . cl−1)ϕ(c−1l−1 . . . c
−1
1 g1 . . . gm).

Repeating these two steps l − 1 more times, the word X can be rewritten to

X ′ ≡ (ϕ(f1), . . . , ϕ(fn), ϕ(g1), . . . , ϕ(gm))

and thus we see that ϕ(k)ϕ(k′) = ϕ(f)ϕ(g).
Note that the word X ′ is reduced in F if and only if the word

(f1, . . . , fn, g1, . . . , gm)

is reduced in G. Suppose that the word X ′ is reduced. Then clearly

ϕ(k)ϕ(k′) = ϕ(f)ϕ(g) = ϕ(fg) = ϕ(kk′)
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and we are done.
Suppose that the word X ′ is not reduced. As all the syllables of X ′ are nontrivial we

see that two syllables of the word X ′ can be joined together. The word (ϕ(f1), . . . , ϕ(fn))
is a subword of ϕ̃(W ), which is a reduced word, and thus it is reduced, hence no two
syllables of (ϕ(f1), . . . , ϕ(fn)) can be joined together. The same argument applies to
(ϕ(g1), . . . , ϕ(gm)). Hence, we see that there exist 1 ≤ i ≤ n and 1 ≤ j ≤ m such
that the syllables ϕ(fi) and ϕ(gj) can be joined together in X ′. Again, fi, gj ∈ Gu for
some u ∈ V and thus ϕ(fi)ϕ(gj) = ϕ(figj) as fi, gj ∈ Ku. By the assumptions (as

ϕ �Ku is injective), ϕ(figj) = eFu if and only if figj = eGu . However, fi = g−1j would

be a contradiction with the maximality of |c|, hence ϕ(fi)ϕ(gj) 6= eFu . As ϕ �Gu is a
Ku-almost-homomorphism we see that joining the syllable ϕ(fi) with the syllable ϕ(gj)
is compatible with the map ϕ̃.

Suppose that the syllable ϕ(figj) can be joined with some ϕ(fk). By definition, this
means that ϕ(fk) and ϕ(fi) could have been joined in ϕ̃(W ). This contradicts the fact
that ϕ̃(W ) is reduced. By an analogous argument, the syllable ϕ(figj) cannot be joined
with any syllable ϕ(gp).

By iterating the previous step at most min{n,m} times, we obtain a sequence of
transformations compatible with the map ϕ̃. All together, we have shown that the
word ϕ̃(W )ϕ̃(W ′) can be rewritten to a reduced word X ′′, that represents the element
ϕ(k)ϕ(k′) in F , and each rewriting step is compatible with the map ϕ̃: if we applied
the analogous transformations to the word WW ′ we would obtain a reduced word U ,
that represents the element kk′ in G, such that ϕ̃(U) ≡ X ′′. It follows that ϕ(kk′) =
ϕ(k)ϕ(k′).

To finish, we need to prove that ϕ �K is an injective map. Let k, k′ ∈ K ⊆ K ′

be arbitrary such that k 6= k′, or equivalently k′k−1 6= eG. We have already shown
that ϕ(k′k−1) = ϕ(k′)ϕ(k−1). Consider a reduced word Wk′k−1 representing the element
k′k−1 ∈ K ′. Note that by the construction of the function ϕ it follows that ϕ(k) = ϕ(k)−1

for all k ∈ K. By the previous argumentation, the word ϕ̃(Wk′k−1) is reduced in F
and thus by Theorem 2.1 we see that ϕ(k′k−1) = ϕ(k′)ϕ(k)−1 6= eF . It follows that
ϕ(k) 6= ϕ(k′).

Thus, we proved that ϕ is a K-almost-homomorphism.
The graph product F = ΓF is residually C by assumption. Hence, there exists a

surjective homomorphism ψ : F � D ∈ C which is injective on the finite subset ϕ(K) ⊆
F . Thus, the composition ψ ◦ ϕ : G → D is a K-almost-homomorphism, and G is
LE-C. �

As an immediate corollary we get the following.

Corollary 5.1. Let R be a root class. Then the class of LE-R groups is closed under
graph products.

Note that the first four cases of Corollary B follow from Corollary 5.1. In the remaining
cases the assumptions of Theorem B are met by Corollary A, hence Corollary B.
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