The University of Southampton
University of Southampton Institutional Repository

Development and characterisation of a lightweight alkaline aluminium-air cell

Development and characterisation of a lightweight alkaline aluminium-air cell
Development and characterisation of a lightweight alkaline aluminium-air cell
This experimental study examined the development of a lightweight aluminium-air cell. The novelty of this study was the characterisation of the behaviour of the lightweight aluminium-air cell, depending on the choice of aluminium anode and air-cathode. Development of the prototype aluminium-air cell involved three areas of study. For the first two high purity aluminium alloys, Al/0.5 Mg/0.07 Sn and Al/0.4 Mg/0.07 Sn/0.05 Ga, were evaluated as anodes in a half-cell in 4 mol dm-3 NaOH at 22 °C and 60 °C and compared against 99.999 %wt aluminium. Alloys were pre-treated by solution heat treating in a furnace at 600 °C for 8 hours followed by a water quench. Corrosion rates were quantified at open-circuit and under galvanostatic discharge via a hydrogen collection method. For the second method of study, the electrochemistry of a LaCaCo3/LaCaMnO3 air-electrode, known as KTH, supplied by a project collaborator, was compared against seven commercial gas diffusion electrodes. The catalysts on the commercial electrodes include Pt, MnOx, Ag2O and Co-based. Air-electrodes were compared structurally using scanning electron microscopy, mercury intrusion porosimetry and pycnometry. The KTH electrode outperformed the others with a limiting current density for oxygen reduction of ?463 mA cm-2 at ?0.49 V vs. Hg/HgO. In the final area of study three prototype aluminium-air cells were investigated with the third one being selected as the final design. Cell characterisation involved measurement of electrode potentials and cell temperature during variable loading and galvanostatic discharge experiments, and assessing their inter-relationship. The best performing prototype cell with a solution heat treated Al/Mg/Sn anode and KTH air-electrode had a peak power density of 174 mW cm-2 at 208 mA cm?2. Under galvanostatic discharge at 100 mA cm-2 over an hour duration, this cell had a specific power capability of 62 W kg-1 and a specific energy of 66 W h kg-1.
Egan, Derek
932c1795-04ff-4fa6-a59a-2b6240e5d9e5
Egan, Derek
932c1795-04ff-4fa6-a59a-2b6240e5d9e5
Ponce De Leon Albarran, Carlos
508a312e-75ff-4bcb-9151-dacc424d755c

Egan, Derek (2015) Development and characterisation of a lightweight alkaline aluminium-air cell. University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis, 231pp.

Record type: Thesis (Doctoral)

Abstract

This experimental study examined the development of a lightweight aluminium-air cell. The novelty of this study was the characterisation of the behaviour of the lightweight aluminium-air cell, depending on the choice of aluminium anode and air-cathode. Development of the prototype aluminium-air cell involved three areas of study. For the first two high purity aluminium alloys, Al/0.5 Mg/0.07 Sn and Al/0.4 Mg/0.07 Sn/0.05 Ga, were evaluated as anodes in a half-cell in 4 mol dm-3 NaOH at 22 °C and 60 °C and compared against 99.999 %wt aluminium. Alloys were pre-treated by solution heat treating in a furnace at 600 °C for 8 hours followed by a water quench. Corrosion rates were quantified at open-circuit and under galvanostatic discharge via a hydrogen collection method. For the second method of study, the electrochemistry of a LaCaCo3/LaCaMnO3 air-electrode, known as KTH, supplied by a project collaborator, was compared against seven commercial gas diffusion electrodes. The catalysts on the commercial electrodes include Pt, MnOx, Ag2O and Co-based. Air-electrodes were compared structurally using scanning electron microscopy, mercury intrusion porosimetry and pycnometry. The KTH electrode outperformed the others with a limiting current density for oxygen reduction of ?463 mA cm-2 at ?0.49 V vs. Hg/HgO. In the final area of study three prototype aluminium-air cells were investigated with the third one being selected as the final design. Cell characterisation involved measurement of electrode potentials and cell temperature during variable loading and galvanostatic discharge experiments, and assessing their inter-relationship. The best performing prototype cell with a solution heat treated Al/Mg/Sn anode and KTH air-electrode had a peak power density of 174 mW cm-2 at 208 mA cm?2. Under galvanostatic discharge at 100 mA cm-2 over an hour duration, this cell had a specific power capability of 62 W kg-1 and a specific energy of 66 W h kg-1.

PDF
Thesis 2015_11_4 Derek Main Exper 5_2.pdf - Other
Download (9MB)

More information

Published date: 1 November 2015
Organisations: University of Southampton, Energy Technology Group

Identifiers

Local EPrints ID: 384003
URI: http://eprints.soton.ac.uk/id/eprint/384003
PURE UUID: f6d9bb0f-fd4f-428a-b3fe-634d968d4296
ORCID for Carlos Ponce De Leon Albarran: ORCID iD orcid.org/0000-0002-1907-5913

Catalogue record

Date deposited: 08 Dec 2015 11:03
Last modified: 06 Jun 2018 12:42

Export record

Contributors

Author: Derek Egan

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×