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On the phase-field modelling of a miscible liquid/liquid boundary

Ruilin Xie, Anatoliy Vorobev∗

aEnergy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton,
Southampton SO17 1BJ, UK

Abstract

Mixing of miscible liquids is essential for numerous processes in industry and nature. Mixing, i.e.

interpenetration of molecules through the liquid/liquid boundary, occurs via interfacial diffusion.

Mixing can also involve externally or internally driven hydrodynamic flows, and can lead to de-

formation or disintegration of the liquid/liquid boundary. At the moment, the mixing dynamics

remains poorly understood. The classical Fick’s law, generally accepted for description of the diffu-

sion process, does not explain the experimental observations, in particular, the recent experiments

with dissolution of a liquid solute by a liquid solvent within a horizontal capillary [1]. We present

the results of the numerical study aimed at development of an advanced model for the dissolution

dynamics of liquid/liquid binary mixtures. The model is based on the phase-field (Cahn-Hilliard)

approach that is used as a physics-based model for the thermo- and hydrodynamic evolution of bi-

nary mixtures. Within this approach, the diffusion flux is defined through the gradient of chemical

potential, and, in particular, includes the effect of barodiffisuon. The dynamic interfacial stresses at

the miscible interface are also taken into account. The simulations showed that such an approach

can accurately reproduce the shape of the solute/solvent boundary, and some aspects of the dif-

fusion dynamics. Nevertheless, all experimentally-observed features of the diffusion motion of the

solute/solvent boundary, were not reproduced.
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1. Introduction

It is known that the rate of diffusion of weak impurities in liquids is well defined by the classical

Fick’s law, i.e. with the gradient flux linearly proportion to the gradient of concentration. It is

also known that this simple approach is not valid for the case of large concentration gradients,

in particular, for the description of diffusion at a liquid/liquid (solute/solvent) boundary. This, in5

particular, was illustrated by the recent experiments, where mixing of liquid solute and liquid solvent

was investigated [1]. The settings of the experiments were rather simple: a long capillary, initially

saturated with one liquid (solute), was immersed horizontally into a solvent-filled thermostatic

bath. The tube’s diameters varied from 0.2mm to 1.6mm. Both ends of the tube were open, and

no pressure gradients between the tube ends were applied. The experiments were conducted with10

different liquids, in particular, with the glycerol/water and soybean oil/hexane binary mixtures

which are miscible in any proportions. Following the common expectations one would assume

that the solute/solvent boundaries should remain stationary (if there are no mechanisms for the

hydrodynamic flows) and would just slowly smear in time. Contrary to this, two solute/solvent

boundaries were seen at the sides of the capillary for very long time periods. The interfaces were15

moving towards the middle of the tube with the speed that was considerably higher than the rate

of interface smearing. The speed of the interface movement depended on time as t−1/3 in the

beginning and t−2/3 in the later moments. In addition, it was observed that the interface should

be endowed with the surface tension, since its inclined shape should be described by the balance

of the capillary and gravity forces. The rate of interface propagation was found to depend on the20

tube’s diameter, so the dissolution occurred slower in the tubes of smaller diameters. The speed of

the interface movement did not depend on the shape of the tube’s cross section and on the tube’s

length. The convective flows were found negligible, and thus the evolution of the interfaces was

suggested to be primarily diffusion-driven.

In the current work, we aim to develop a theoretical model capable of reproducing this behaviour.25

We start with the use of the classical Fick’s law with however the diffusion coefficient that strongly

depends on concentration. Strictly speaking, this approach does not distinguish the phases, but the

concentration dependence of the diffusion coefficient permits modelling of sharper diffusion fronts.

After that, we introduce the concept of interface by adopting the phase-field approach.

Currently, the phase-field approach is mostly used as a numerical tool for tracing immiscible30

interfaces [2, 3, 4, 5]. In the current work, however, this approach is used as a comprehensive physical
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model capable of describing the thermo- and hydrodynamic evolution of multiphase binary mixtures

with undergoing phase transformations. Within the phase-field model, the diffusion process is

defined through the gradient of the chemical potential, taking into account the effect of barodiffusion

[6, 7]. This model also captures the surface tension effects existent at miscible boundaries, thus35

permitting us to model the inclined shape of the solute/solvent boundary. Finally, we also add the

hydrodynamics to investigate its possible role in the mixing of two liquids confined into a capillary.

The importance of the surface tension effects for miscible interfaces was first emphasized by

Korteweg and van der Walls, who suggested that these effects can be mimicked by gradients of

concentration [8]. Cahn and Hilliard [9, 10] proposed to define the free energy as a function of not40

only concentration but also of the concentration gradient, adding a term that takes into account

the surface tension effects. They used this approach primarily to model the dynamics of phase

transitions in solids [11, 4]. Later, the same idea was used to define the phase transitions in

liquids, and the full equations for the thermo- and hydrodynamic evolution of liquid/liquid binary

mixtures were derived by Lowengrub and Truskinovsky [12]. The resultant Cahn-Hilliard-Navier-45

Stokes equations were hardly feasible for the numerical treatment mostly due to the necessity to use

the full continuity equation because the mixture density is in general a function of concentration.

Later, on the basis of the multiple-scale method, the quasi-acoustic effects were filtered out, so the

Boussinesq approximation of the full equations was obtained [6].

Some features of the Cahn-Hilliard-Navier-Stokes equations were earlier used in different nu-50

merical studies. For instance, a model that takes into account the Korteweg force but assumes that

diffusion is still driven by the simple Fick’s law was used to simulate the miscible displacement of

one liquid by another from a capillary [13, 14, 15]. The consideration was however limited for a

rather fast process at very high Peclet numbers, when the effect of diffusion was negligible. The

similar approach was used to study the spreading of the interface boundary and generation of the55

convective motion near the boundary by the action of the Korteweg force [16, 17].

The evolution of a miscible droplet immersed into a another liquid that is enclosed into capillary

and subjected to axial rotation (the configuration of the spinning droplet tensiometry) was exper-

imentally studied in Ref. [18], where the existence of the dynamic surface tension at a miscible

interface was confirmed. The spreading of a miscible interface in a vertical cuvette was experi-60

mentally studied in Ref. [19], where it was noted that the rate of interface spreading does not

obey the Fick’s law. For the mixture of 1-butanol/water, the spreading rate was proportional to
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t0.09, and the spreading occurred into the component not saturated with other component. For

the isobutyric acid/water mixture in the conditions above the critical point (when both liquids are

miscible in all proportions), the spreading occurred with the rate t0.06 into the direction of the65

isobutric-acid-rich phase. In another work by the same group [20], it was found that the spreading

of the monomer/polymer boundary obeys the Fick’s law but only after some transitionary period

that lasted for upto 30-60 minutes. The latter experiments were fulfilled with the low molecular

weight polymers.

The theoretical modelling of the diffusive dissolution of a small droplet enclosed in a capillary70

was conducted by Ugrozov et al. [21]. In their work, the process of dissolution was split into two

separate steps. During the first step, that was assumed to be infinitely short, the concentration

within the droplet adjusted the saturation level. The concentration tails were formed in the medium

surrounding the droplet. It was assumed that the dissolution of the droplet (i.e. its shrinkage)

occurred due to Fickian diffusion happening at the concentration tails. This Fickian diffusion was75

the long second step of the dissolution process. No experimental verification of this theory was

reported.

To conclude this introductory section, we wish to mention that a proper understanding of how

the diffusion at the solute/solvent boundary occurs is of great practical importance. This is needed

for accurate modelling of the mixing of chemicals in various chemical engineering processes, where80

such a mixing is required prior to chemical reactions occur. The dynamics of the solute/solvent

mixtures enclosed into capillaries is important for modelling of such processes as vegetable solvent

extraction (when the solvent is used to wash out the solute from the vegetable-based porous media),

aquifer remediation (e.g. pumping of solute through contaminated soils), and enhanced oil recovery

based on the miscible displacement and CO2 sequestration [22, 23, 24, 25].85

2. Fick’s law results

We aim to reproduce the evolution of a binary mixture that saturates a horizontal capillary with

open ends. The idea to investigate the diffusion within the capillary was discussed in [8], where

such a configuration was suggested with a hope to obtain a simple-to-model 1D diffusion process.

The experimental results of e.g. Ref. [1] clearly point out that the evolution of the solute/solvent90

mixture in the tube is much more complex, and could not be reduced to the 1D process.
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Let us first prove that the Fick’s law is not capable of describing the experimental observations

of Ref. [1]. The Fick’s equation reads

∂C

∂t
= ∇ · (D(C)∇C) . (1)

This equation is written here in the non-dimensional form. Here, C is the concentration that is

defined as the mass fraction of solute in a mixture, t is time, and D(C) is the diffusion coefficient.95

We will model the evolution of the mixture in a plane layer defined by two coordinates x (along

the layer) and y (across the layer). To non-dimensionlise eq. (1), the length of the layer was chosen

as the length scale, L∗. The non-dimensional layer’s height is denoted by Ly. Time in eq. (1) is

non-dimensionalised with τ = L2/D0, where D0 is the typical value of the diffusion coefficient, e.g.

the diffusion coefficient in pure solvent.100

The coefficient of mutual diffusion D(C) is in general a function that depends on concentration.

For instance, for the glycerol/water mixture, the measurements of the mutual diffusion coefficient

at 200C are reported in Ref. [26]. The formula that fits the measurements is

D(C) = 1.6 · 10−10(1 − 0.895C) [m2 · s−1]. (2)

Thus, the rate of diffusion in pure glycerol is much lower, with the diffusion coefficient one order

less than the diffusion coefficient for the pure water phase.105

Figure 1a shows the 2D concentration fields in a single capillary for the concentration-dependent

diffusion coefficient (2). We assume that the capillary is initially saturated with the solute and then

the solvent penetrates from the open ends. Thus, initially C = 1 in the tube, and at the left and

right boundaries we assume that C = 0. At the lower and upper plate, the boundary conditions

impose no diffusion through the wall (zero normal derivative of concentration at the wall).110

From the obtained results one sees that the solute/solvent boundaries are very diffusive, so it is

rather difficult to position the interface. The penetration of the solvent can be characterised with

the total mass of the solvent in the tube, that we define as

m =
1
Ly

∫ 1

0

(1 − C)dV . (3)

The resultant lines are shown in figures 1d,e (dash-dot-dot lines). The rate of diffusion (or the rate

of solvent penetration) is time dependent, and it follows the classical t1/2 dependence. The 1D and115

2D results would obviously coincide, since there is no dependence on the vertical coordinate (and

on the height of the plain layer).

5



  

x

y

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1(b)

x

y

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0.3

0.4

0.5

0.6

0.7(c)

x

y

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

t

m

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

(d)

d=0.2

d=0.1

d=0.02

d=0.05

t

m

10-2 10-1

0.2

0.4

0.6

0.8

(e)

t0.5

t0.6

Figure 1: The Fickian evolution of the solute/solvent mixture. (a-c) The snapshots of the concentration and velocity

fields at t = 0.06, (a) the results are obtained for the single capillary tube; (b) for the block geometry without

hydrodynamic effects (Gr = 0); and (c) for the block geometry with account of the solutal convection (Re = 10−4,

Gr = 109). (d) The mass of the solvent that penetrates into the tube as a function of time. The dash-dot-dot

line depicts the results for the single tube, the dashed lines show the data obtained for the block geometry without

convection, and the solid lines with convection. The data for the block geometry is obtained for different tube

diameters as depicted in the figure. (e) The data shown in (d) is replotted in the logarithmic coordinates. For clarity,

only the curves obtained for the pure diffusive calculations are shown. The thick lines show the referral dependences.

6



  

Next, these simulations were repeated for the more sophisticated geometry, that included two

big blocks, initially filled with the solvent, connected by the solute-filled tube. Such a geometry

should be a closer reproduction of the experiment [1], and, in addition, such a geometry would120

allow us to introduce the flows (as otherwise the velocity boundary conditions at the capillary ends

are difficult to define). The solutal convection is driven by gravity and by the dependence of the

mixture density on concentration. For most of the liquids the density contrast between two liquids,

ϕ, is small, so the density of the mixture can be approximately defined by the following linear

formula125

ρ = ρ1(1 + ϕC), ϕ ≡ ρ2 − ρ1

ρ1
. (4)

Here ρ1 and ρ2 are the densities of the pure mixture components.

The governing equations of the solutal convection are then defined by the equations that reflect

the conservations of mass, momentum and species,

∇ · v⃗ = 0, (5)
∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = −∇p +

1
Re

∇2v⃗ − GrCγ⃗, (6)

∂C

∂t
+ (v⃗ · ∇)C = ∇ · (D(C)∇C) . (7)

These equations are written in standard notations, in non-dimensional form. Namely, v⃗ is the

vector of velocity, p is the pressure, and γ⃗ = −g⃗/g is the unit vector directed upwards, where130

g⃗ is the gravitational acceleration. For the non-dimensionalisation, the diffusive time scale was

used, τ = L2/D0, as well as the following scales for velocity and pressure, L/τ and ρ1(L/τ)2. The

non-dimensional parameters entering the above equations are the Reynolds number1

Re =
ρ1L

2

ητ
=

ρ1D0

η
, (8)

and the Grashoff number,

Gr = ϕ
gτ2

L
= ϕ

gL3

D2
0

. (9)

1The definitions for these non-dimensional parameters are different from the standard ones, and the Reynolds

number can be also interpreted as the inverse Schmidt number. The standard names are used as these two parameters

appear in fronts of the corresponding terms of the governing equations, and continue to characterise the roles of the

viscous and buoyancy forces.

7



  

The estimations of these parameters for the glycerol/water mixture give very small Reynolds num-135

bers, ∼ 10−4, and very large Grashoff numbers, ∼ 1017. In our simulations, we were able to obtain

the results for the Grashoff numbers up to ∼ 1010. At higher numbers, the induced hydrodynamic

flows become so strong that the concentration field becomes non-physical with the values below 0

(which corresponds to a pure solvent) and above 1 (a pure solute).

For the calculations, we assume that the block geometry is enclosed by rigid walls. At all walls,140

we impose the no-slip boundary conditions for the velocity, and the no-penetration conditions for

the diffusive flux (i.e. zero normal derivative of concentration).

The equations were solved numerically in the vorticity-streamfunction notations with the use of

the finite-difference approach.

The snapshots of the concentration and velocity fields are depicted in figure 1b,c. The profiles145

look similar to what was obtained for the single tube. We found however that the dissolution occurs

slower and with the different time dependence, which is closer to t0.6 (see figures 1d,e). The slower

dissolution is obviously explained by accumulation of the solute near the tube ends, which blocks

the access of the fresh solvent. In the results obtained for the block geometry, we also observed some

dependence on the tube’s diameter: stronger solute levels are found near the ends of the tubes with150

larger diameters, which results in stronger reduction of the solvent penetration rates into the tube.

This can be seen in figures 1d,e, where the dissolution from smaller tubes happen faster. Such a

dependence contradicts to the experimental observations [1], where the dissolution in smaller tubes

occurred slower.

In addition, we considered the effect of convection on the speed of the solvent penetration155

into the tube. Clearly, the convective flow should partially remove the solute from the tube ends

transporting it either to the top or bottom of the containers (depending on which liquid is heavier).

This in particular can be seen for the curve obtained for the tube with d = 0.2. For the smaller

tubes the effect of convection was negligible, so the obtained curves were indistinguishable from the

results for the pure diffusion calculations with Gr = 0.160

Thus, modelling of the solvent penetration in the capillary on the basis of the simple Fick’s

law produces too diffusive solute/solvent boundary, and its experimentally-observed curved shape

cannot be reproduced. An assumption that the dissolution is a purely diffusion process seems

reasonable (however, it was impossible to consider the effect of hydrodynamics at its full scale due

to limitations of the model). In the case of the single tube calculations the time dependence is t0.5.165
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In the case of the block simulations all curves are characterised by the time dependence t0.6. This

change is explained by the different levels of concentration near the tube’s ends due to accumulation

of the solute near the ends outside the tube. In terms of the speed of solute penetration into the

tube, the dependence would be dm/dt ∼ t−0.4 which differs from the experimental observations.

The revealed dependence of the dissolution rate on the tube’s diameter was also incorrect.170

3. Phase-field theory

In the following part, we adopt the phase-field approach to describe the evolution of the so-

lute/solvent mixture. The idea of the approach is to smear the interface, and to use one set of

equations for the entire multiphase system, for both phases and the phase boundary. The position

of the interface is traced through the gradients of concentration.175

The specific free energy function of the binary mixture is defined as follows,

f = f0 +
ϵ

2
(∇C)2. (10)

Here, the second term accounts for the surface tension effects. The capillary coefficient ϵ is assumed

to be so small that the surface tension term can be neglected everywhere except the places of larger

concentration gradients, i.e. except the interfaces. The first term, f0, is the classical part of the

free energy, that defines the possible states of the mixture. We are interested in multiphase systems180

that undergo phase transformations. A convenient description for such a system is given by the

function first proposed by Landau for the near-critical states [27],

f0 = a (C − Ccr)
2 + b (C − Ccr)

4
. (11)

Here, Ccr is the concentration at the critical point, and a and b are two phenomenological param-

eters. In the near critical region, parameter a is proportional to the temperature difference from

the critical point, (T → Tcr), and thus can be negative or positive. The second parameter b is185

always positive. If a is positive then the equilibrium state of the mixture is homogeneous, and if a

is negative then the equilibrium state can be either homogeneous or heterogeneous dependent on

the average concentration (the amounts of solvent and solute added to a closed system).

The dissolution process can be viewed as a transformation of a heterogeneous state of a binary

mixture to a homogeneous state. In the simplest case, in the absence of hydrodynamic flows, the190
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time changes of the concentration is defined by the diffusive flux, j⃗,

∂C

∂t
= −∇ · j⃗. (12)

For the Fick’s diffusion the diffusive flux is taken to be proportional to the gradient of concentration,

j⃗ = −D∇C. Such an approach however becomes invalid for the phase boundaries, when the

concentration gradients are large [27]. Moreover, for some binary mixtures the equilibrium state

may be heterogeneous, i.e. in such a state there is no mass transfer across the boundary despite195

a strong concentration difference. In equilibrium the chemical potentials of the adjoining phases

are equal. Thus, the non-homogeneities in the chemical potential can be used to define the rate of

transformation of a system to its thermodynamic equilibrium.

There are two basic models to define the kinetics of the phase transition [28, 29, 30]. In the

Landau-Ginzburg model, the rate of the concentration changes is assumed to be proportional to200

the chemical potential. In the Cahn-Hilliard model, the diffusive flux is taken to be proportional

to the gradient of the chemical potential. Both models can be used to define the kinetics of phase

transitions of different nature. The Landau-Ginzburg model is however generally applied to the

diffusion-less phase transitions (such as the phase transformations in magnetic materials or in

liquid crystals [30]). The Cahn-Hilliard model assumes that the order parameter obeys the local205

conservation law, which is the case for the diffusion process in a binary mixture, when concentration

(used as a order parameter) obeys the law of conservation of the species mass [29].

In this work, following the experimental work [1], we restrict our analysis to isothermal sys-

tems. It should be mentioned though that phase transformations may frequently involve release or

absorption of some latent heats. We are unaware of any experimental measurements of the latent210

heats for dissolution processes. For the processes of melting and solidification though, the thermal

diffusion of the latent heat can define the motion of a liquid/solid boundary [31, 11].

The evolution of the multiphase liquid/liquid binary mixture is defined by the Boussinesq ap-

proximation of the the Cahn-Hilliard-Navier-Stokes equations [6],

∇ · v⃗ = 0,

1
Pe

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = −∇Π +

1
Re

∇2v⃗ − C∇µ + 2GrCγ⃗,

1
Pe

∂C

∂t
+ (v⃗ · ∇)C =

1
Pe

∇2µ. (13)

Here, pressure Π is to be obtained from the compressibility constraint. The equations are written215
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in non-dimensional form. The scales used for the non-dimensionalisation were, the typical length

L∗, the time scale τ∗ = ρ∗L
2
∗/αµ∗, the velocity scale v∗ = µ

1/2
∗ , the typical density ρ∗ (e.g. ρ1), the

typical pressure Π∗ = ρ∗µ∗, and the typical value of the chemical potential µ∗ = b.

The equations include the following non-dimensional parameters. The Reynolds and Peclet

numbers,220

Re =
ρ∗µ

1
2
∗ L∗

η∗
, P e =

ρ∗L∗

αµ
1
2
∗

, (14)

where η∗ is the typical value of the viscosity coefficient (e.g. η1
2), and α is the coefficient of mobility.

The Grashof number,

Gr = ϕ
gL∗

µ∗
, ϕ =

ρ2 − ρ1

ρ1
, (15)

with ϕ being the density contrast of two liquids. The capillary number3,

Ca =
ϵ

µ∗L2
∗
. (16)

Finally, one parameter defines the thermodynamic model for the mixture,

A =
a

b
. (17)

The above non-dimensional parameters (14)-(15) are written in terms of the phenomenolog-225

ical parameters introduced within the phase-field approach, such as the capillary and mobility

coefficients. The classical names, Peclet, Reynolds, and Grashof numbers, are used to call these pa-

rameters, since these numbers appear in front of the corresponding terms of the governing equations

(13), and have similar meanings for the analysis of the results. For instance, the Peclet number

defines the ratio between the convective and diffusive mass transport. The Grashof number defines230

the intensity of the convective motion. The Reynolds number defines the viscous force.

2Equations (13) assume that the viscosity coefficient may depend on concentration but this dependence is weak,

and so may be disregarded if the flows and the non-homogeneities of the velocity field are also small.[6]
3This parameter should not be mixed with another classical parameter, also called as the capillary number, and

defined as ηV/σ, with η, V , and σ being the typical values of viscosity, velocity, and surface tension. The classical

capillary number is used in the sharp-interface model to define the ratio between the viscous and capillary forces. The

introduced parameter is called the capillary parameter to underline that is proportional to the capillary constant,

and hence defines the strengths of the capillary effect. In some papers, e.g. [12], an alternative name, the Cahn

number, is also used to call the same parameter.
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The expression for the chemical potential µ includes the classical and non-classical parts,

µ = µ0 + Gry − Ca∇2C, µ0 =
df0

dC
. (18)

The classical part of the chemical potential, µ0, is defined from the classical part of the free energy

function. The term with Grashof number stands for the effect of barodiffusion (y is the vertical

coordinate). The last term in (18) means that the surface energy effects define not only the interface235

morphology but also the diffusion through the interfacial boundary.

Further, for convenience, the reference point for the field of concentration is shifted, (C−Ccr) →

C.

In non-dimensional form the Landau expression (11) reads

f0 = AC2 + C4, (19)

where the scale of the specific free energy is was taken to be f∗ = µ∗ = b. Expression (19) works well240

for the near-critical system, though it tends to produce non-physical values of concentration (i.e.

outside the range of concentrations for the pure liquids) for the systems far from the critical point.

To get rid of these non-physical values in concentration, the free energy function was modified as

follows,

f0 =
3
4

[(
1
2

+ C

)
ln

(
1
2

+ C

)
+

(
1
2
− C

)
ln

(
1
2
− C

)]
−

(
3
2
− A

)
C2. (20)

The latter function coincides with the Landau expression near the critical point (i.e. when C → 0)245

if Ccr = 1/2. Function (20) also looks similar to the regular-solution expression [9, 10], that is

frequently used for the description of the polymerization/de-polymerization processes [32]. For the

new function (20), the classical part of the chemical potential reads

µ0 =
3
4

ln
( 1

2 + C
1
2 − C

)
− (3 − 2A)C. (21)

The governing equations (13) are supplemented with the following boundary conditions. The

standard no-slip boundary conditions are imposed for the velocity field. Zero normal derivatives of250

the chemical potential at the walls reflect the absence of the diffusive flux through the walls. Since

the governing equations (13) are of the fourth order in terms of the concentration field, additional

conditions are required at the walls. These additional conditions define the wetting properties of

the walls. In the current work our analysis is restricted to consideration of two simplified wetting

conditions. First, we assume that the solid walls are neutral to the components of the mixture (the255
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molecules of the solid have the same attraction or repulsion forces with the molecules of the solute

and solvent). In that case the contact line is orthogonal to the wall, that is defined by imposing

zero normal derivatives of concentration at the walls. Second, we assume that the molecules of the

solute, that initially occupies the tube, remain attached to the wall during the whole process of

dissolution (that is the molecules of the solid attract the solute molecules much stronger than the260

molecules of the solvent). The latter boundary condition is mathematically defined by imposing

the concentration level at the wall equal to the concentration of the pure solute.

The formulated mathematical model is solved numerically for the 2D plane layer and for the

2D block geometry. For the numerical solution the equations (13) are rewritten in the vorticity-

streamfunction formulation and are solved by using the finite-difference approach.265

4. Phase-field results

The concentration fields obtained within the phase-field approach are depicted in figure 2. The

dissolution occurs through the propagation of the solute/solvent interfaces into the capillary, as

observed in the experiment. The interface can be clearly seen, and the interface has the same

thickness during the entire duration of the numerical experiments. In figure 2e the flow vortices270

attached to the solute/solvent boundaries can be also seen. The vortices are well localised in

contrast to the Fickian-based results (figure 1c). The flow amplitude is however much reduced for

the case of the solute-philic walls (figure 2f).

The propagation of the interface can still be characterised with the mass of the solvent that

enters the tube. In addition, since the interface can now be more accurately positioned, the size275

of the capillary that is occupied by the solvent phase, L, can be used as another characteristics of

the dissolution rate. The latter characteristics was used for the presentation of the experimental

results in Ref. [1]. The time evolution of the solvent mass enclosed in the tube and the portion of

the tube occupied by the solvent-rich phase are depicted in figure 3. In the case of the single tube

calculations the penetration of the solvent into the tube happens with the t0.5 time dependence.280

In the case of the block geometry, the solvent penetration occurs slower, with the different time

dependences at the initial and later stages. At the later (longer) state, the time dependence is close

to t0.4, or in terms of the rate of solute penetration into the tube, dm/dt t−0.6, which looks closer

to the experimental dependence (t−2/3). In terms of the size of the solute phase, L, the later time

dependence is still however close to t0.5.285
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Figure 2: The evolution of the solute/solvent mixture modelled within the phase-field approach. The results are

obtained for the neutral (a,c,e) and solute-philic (b,d,f) tube’s walls. The snapshots of the concentration and velocity

fields at t = 0.03 are shown for the single tube (a,b); for the block geometry without hydrodynamics (c,d); and for the

block geometry taking into account the hydrodynamic flows (e,f). The results are obtained for A = −0.5, Ca = 10−4,

Gr = 1, Pe = 104, and Re = 100 (for (e,f)).
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Figure 3: (a) The mass of the solvent penetrating into the tube as a function of time. (b) The portion of the capillary

occupied by the solvent phase vs. time. The results are plotted for d = 0.1, A = −0.5, Ca = 10−4, Gr = 1, Pe = 104,

and Re = 100 (the curves obtained for the cases with the included effects of hydrodynamics). The dash-dot-dot lines

depict the results for the single tubes; the dashed lines for the block geometry without hydrodynamics; and the solid

lines for the block geometry with hydrodynamics. The lines marked by ‘1’ correspond to the results obtained for the

neutral walls, and the lines with ‘2’ correspond to the results with the solute-philic walls. (c,d) The results shown in

(a) and (b) but in logarithmic coordinates. The thick lines show the reference dependences.
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The results of the phase-field simulations could be correlated with the Fick’s model, if the

dimensional diffusion coefficient is defined as

Dpf =
αµ∗

ρ∗

dµ0

dC
=

αµ∗

ρ∗

(
3/4

1/4 − C2
− (3 − 2A)

)
. (22)

The so-defined diffusion coefficient does not take into account the Cahn-Hilliard addition to the

chemical potential, and thus it is negative at C ∼ 0 (i.e. within the interface zones) if A < 0.

The Cahn-Hilliard addition makes the overall diffusion coefficient positive within the interface290

zones, and this is why this addition was introduced. Far from interfaces, Dpf can be used as the

diffusion coefficient in either solute or solvent phases. The coefficient is concentration-dependent,

with growing values when |C| → 1/2. In general, expression (22) produces greater values for the

diffusion coefficients in the solvent and solute phases (in comparison with the ones obtained from

for the formula (2)). This explains that the dissolution seems to occur faster in the case of the295

phase-field simulations.
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Figure 4: The average concentrations within the solute (< C1 >) and solvent (< C2 >) phases vs. time. The data

is obtained from the block geometry calculations for Gr = 1, Ca = 10−4, Pe = 104 and (a) A = −0.5 and three

different diameters of the tube (0.1, 0.15, and 0.2); (b) d = 0.1 and three different A (−0.5, −0.1, and 0.5). The

dashed lines correspond to the results without the effect of hydrodynamics and the solid lines with the hydrodynamic

flows.

Figure 4 depicts the average concentrations within the solute-rich and solvent-rich phases. At

initial point, two pure liquids, with the concentrations C = ±1/2, are brought into contact, which

initiates the process of mixing. During the mixing, the concentration levels change so to approach
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the equilibrium levels, which are ≈ ±0.388 for the chemical potential defined by equation (21) at300

A = −0.5. One sees that, if A is negative, there is a short initial period (t ≤ 0.01) when the value

of the average concentration in the solute phase quickly adjusts its equilibrium level. The average

concentration within the solute domain remains almost constant after that. Such a behaviour agrees

with the scenario used for modelling of the dissolution process by Ugrozov et al. [21]. This rapid

initial quench also makes the diffusion within the solute phase slower over the main duration of the305

process (which is similar to the assumption made for the Fickian calculations).
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Figure 5: The snapshots of the concentration fields for d = 0.1, Ca = 10−4, Gr = 1, and for (a,c) A = −0.1 and

(b,d) A = 0.5. The time moment is 0.024 in all pictures. In (a,b) the results are shown for the single tube, and in

(c,d) for the block geometry.

The shape and the speed of propagation of the solute/solvent boundaries in general depend on

all non-dimensional parameters of the phase-field theory. Thus, the thickness of the interface is a

strong function of the capillary number and parameter A (figure 5). For the negative values of A,

the interface thickness is well defined by the formula for a flat interfacial boundary, δ =
√
−Ca/A.310

For the positive values of A the interface becomes even more diffusive, generally resembling the

images obtained for the Fickian results. The dissolution occurs much faster for higher values of A

that can be seen in figure 7.

The value of the capillary number defines the surface tension associated with the interface (for

a flat interface, the coefficient of the surface tension is proportional to
√

Ca). The balance of the315

capillary and gravity forces are to define the shape of the solute/solvent boundary. We however
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Figure 6: The snapshots of the concentration fields for d = 0.1, and three different capillary numbers, Ca = 4 · 10−4

(a,b), Ca = 10−4 (c,d), and Ca = 2.5 · 10−5 (e,f), and two different Grashof numbers, Gr = 2 (a,c,e) and Gr = 10

(b,d,f). The time moment is 0.02 in all pictures.
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Figure 7: The mass of the solvent within the tube vs. time. The results are obtained for the single tube, (a) for

Ca = 10−4 and three different A, A = −0.5 (solid line), A = −0.1 (dashed line), and A = 0.5 (dash-dot line); and (b)

for A = −0.5, and three different Ca, Ca = 4 · 10−4 (dash-dot line), Ca = 10−4 (dashed line), and Ca = 2.5 · 10−5

(solid line).

found that a four-fold reduction in Ca from e.g. figure 6d to figure 6f does not change the interface

inclination. The rate of interface propagation is also just slightly affected with the change of the

capillary number (see figure 7b). Moreover, the curves obtained for the gradually reducing capillary

numbers converge, so revealing the behaviour of an interface of zero thickness.320

We also studied how gravity (the density contrast) affects the shape of the interface and the

rate of dissolution. In figures 6 and 8a,c the results are shown for the positive values of the Grashof

number, but, obviously, the results are symmetrical in respect to the sign of the Grashof number.

The interface is getting stronger inclined at larger Grashof numbers. The definition of the Grashof

number in the classical (9) and phase-field (15) theories are different, and thus the values used for325

the calculations are very different. In the case of the Fickian-based calculations the value of the

Grashof number was estimated based on the data for the phenomenological parameters. In the

case of the phase-field simulations, the values of the introduced phenomenological parameters are

not known, and such values could be understood through the comparison of the theoretical and

experimental data. Thus, the value of the Grashof number can be derived from the analysis of the330

interface shape, since only for the Grashof numbers of the order of 1, the obtained interface shapes

are similar to the ones observed in the experiments [1]. For the rate of dissolution, one sees that
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Figure 8: (a) The mass of the solvent penetrating into the capillary as a function of time. The dash-dot-dot lines

depict the data obtained for the single tube; the dashed lines show the data for the block geometry with no flows;

and the solid lines for the block geometry with flows. (a) The shown curves are obtained for Gr = 0, Gr = 1, Gr = 2,

and Gr = 4, as indicated in the picture. The lines for the single tube almost coincide. (b) The curves are shown for

the different tube diameters, d = 0.1, d = 0.015, and d = 0.2, as shown in the picture. The lines for the single tube

coincide. (c,d) The same data as in (a) and (b) are shown in the logarithmic coordinates. Although in (c) only the

results for the pure diffusion calculations are shown for clarity.
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stronger gravity means faster dissolution (see figure 8a). Since, the contribution of hydrodynamic

flows in the dissolution is minimal, an increase in gravity results in the stronger barodiffusion

effect, that leads to faster interchange of molecules across the solute/solvent boundary. The time335

dependences of the dissolution curves slightly depend on the Grashof number as shown in figure 8c.

We also found that the change in the results is minimal if the value of the Reynolds number is

changed (the range of considered Reynolds numbers was very large, 10−9..109), which only under-

lines that the dissolution is purely defined by diffusion at the parameters used for the simulations.

Finally, we investigated how the dissolution rates are affected by the change of the tube’s340

diameter (figure 8b). We found that the results are rather similar to the observations produced for

the Fick’s case. For the case of diffusion in a single capillary, the dependence on the tube’s diameter

is negligible. In the blocks, the dissolution in smaller tubes occurs faster, which contradicts to the

experimental observations. The results for the block geometry would approach the data obtained

for the single tubes if the tubes are thinner. One can also see that for thinner tubes the two stages345

with different dependences could be identified, with the latter dependence still close to t0.4.

5. Conclusions

‘Mixing’ is frequently used to refer to the development of various hydrodynamic instabilities,

when there is only one fluid (as in the majority of the studies on the shear flow instability), or there

are two immiscible liquids (as frequently assumed in the works on the Rayleigh-Taylor instability).350

There are some exceptions though, for instance, the linear stability of slowly miscible interfaces was

studied in Refs. [33, 34].

The current work is focused on the diffusion dynamics of the boundary separating two miscible

liquids. The evolution of such systems is frequently modelled on the basis of the Fick’s law, which

however does not agree with numerous experimental observations (see review [7] for references).355

In particular, the optical observations of the diffusive evolution of two different liquids enclosed

in a capillary are reported in Ref. [1]. In the current study, these experimental results are used

to verify the existent theoretical models. Two models were considered, the first model is based

on the classical Fick’s law, and another advanced model is based on the generalised Fick’s law

with the account of the capillary effects (the phase-field model). Our comparisons were primarily360

focused on the shape of the solute/solvent boundary (an inclined boundaries were experimentally

observed confirming that a miscible interface should be endowed with some surface tension, and
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also suggesting that gravity effects are important even within the capillary) and on the interface

dynamics (in the experiments, the interfaces were moving with the speeds significantly exceeding

the rate of diffusive smearing).365

We found that the Fickian model is not capable of reproducing the experimentally observed

shapes of the interfaces, and, moreover, the interfaces are too diffusive, even when the diffusion

coefficients of the mixture components are very different. The phase-field simulations reproduce

the sharp solute/solvent boundary clearly identifiable during the entire process of dissolution. The

boundary thickness however remains constant, while in the experiment the interface was slowly370

smearing. The boundary is endowed with some surface tension, and its shape could be made

very similar to the experimental images. We found that the shape (inclination) of the boundary

is predominately defined by the Grashof number. The values of the non-dimensional parameters

used in the phase-field approach are generally difficult to define, since their definitions involve the

new phenomenological parameters. The comparison of the simulated and experimentally-observed375

interfaces can be used to say that for the considered system the Grashof number is of order of 1.

The major difficulty of the Fickian and phase-field theories is the prediction of the diffusion rate

through the solute/solvent boundary. In the experiment the t−2/3-dependence was persistently

observed for the speed of the interface propagation into the tube. In the numerical simulations

fulfilled for the single tubes we observed the t−1/2 time dependence. For the block geometry, the380

time dependence was different, with the powers close to −0.4 in the Fickian simulations and even

close −0.6 for the phase-field simulations. In the case of the phase-field simulations two stages of the

dissolution could be also identified, which is also similar to the experiment. Neither approach though

reproduces the experimentally-observed dependence of the speed of the solute/solvent boundary on

the tube’s diameter. In the experiment the dissolution occurred slower in smaller tubes, with the385

speed proportional to d2 (d is the tube’s diameter). This was never observed in the numerical

simulations, where the rate of dissolution is either is independent of the tube’s diameter, or even

increases in the tubes of smaller diameters.

In this sense, the work remains incomplete. We showed that Fick’s theory could not reproduce

the dissolution behaviour of a miscible interface between two liquids. This result was expected. The390

phase-field theory, despite of being capable of accurate modelling of the interface shape, remains

incapable of reproducing all features of the interfacial diffusion. Further improvement of the theory

is still required to understand the dissolution process in liquid/liquid binary mixtures. In conclusion,
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we would like to discuss two possible directions of this work.

One is to investigate whether non-isothermal effects, that might appear from the latent heat of395

dissolution, could affect the propagation of the solute/solvent boundary. As noted in the introduc-

tion, such effects frequently define the motion of the solidification and melting fronts, which have

many features similar to the observations for the solute/solvent interfaces.

Another direction is to extend the phenomenological relations accepted here for the diffusion

flux and the viscous stress tensor. These two quantities are defined by the gradient of the chem-400

ical potential, and by the gradients of the velocity components. Both expressions are written in

assumption that the medium is isotropic. In the phase-field theory, an interface (strong gradients

in concentration field) introduces anisotropy, so the classical relations between the thermodynamic

fluxes and forces should in general be reconsidered. This makes possible to assume that the diffusion

flux is driven by both gradients of the chemical potential and velocity, and the viscous stress tensor405

in turn is defined by the non-homogeneities in velocity field and by the gradient of the chemical po-

tential [35]. A theory with similar ideas was constructed for the polymerisation/de-polymerisation

process [36], that is also mainly described by diffusion through the monomer/polymer boundary,

and where non-Fickian dependences are regularly observed. The non-Fickian diffusion of the poly-

merization front was reproduced on the basis of the extended phenomenological relations between410

the thermodynamic fluxes and forces.
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