On the notion of canonical dimension for algebraic groups (in special volume in honor of Michael Artin: part I)
On the notion of canonical dimension for algebraic groups (in special volume in honor of Michael Artin: part I)
We define and study a numerical invariant of an algebraic group action which we call the canonical dimension. We then apply the resulting theory to the problem of computing the minimal number of parameters required to define a generic hypersurface of degree d in pn-1.
algebraic group, g-variety, generic splitting field, essential dimension, canonical dimension, homogeneous forms
128-171
Berhuy, Grégory
3d8146f6-19cf-411b-92a2-cd0c2129ec73
Reichstein, Zinovy
d74abee7-a010-460e-8695-6a727b423a56
1 December 2005
Berhuy, Grégory
3d8146f6-19cf-411b-92a2-cd0c2129ec73
Reichstein, Zinovy
d74abee7-a010-460e-8695-6a727b423a56
Berhuy, Grégory and Reichstein, Zinovy
(2005)
On the notion of canonical dimension for algebraic groups (in special volume in honor of Michael Artin: part I).
Advances in Mathematics, 198 (1), .
(doi:10.1016/j.aim.2004.12.004).
Abstract
We define and study a numerical invariant of an algebraic group action which we call the canonical dimension. We then apply the resulting theory to the problem of computing the minimal number of parameters required to define a generic hypersurface of degree d in pn-1.
This record has no associated files available for download.
More information
Published date: 1 December 2005
Keywords:
algebraic group, g-variety, generic splitting field, essential dimension, canonical dimension, homogeneous forms
Identifiers
Local EPrints ID: 38409
URI: http://eprints.soton.ac.uk/id/eprint/38409
ISSN: 0001-8708
PURE UUID: 40ae26ec-05f2-407d-892d-341c1465456d
Catalogue record
Date deposited: 08 Jun 2006
Last modified: 15 Mar 2024 08:07
Export record
Altmetrics
Contributors
Author:
Grégory Berhuy
Author:
Zinovy Reichstein
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
Loading...
View more statistics