
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


University of Southampton

Faculty of Business & Law

Southampton Business School

Dynamic modelling of optimal pricing

and trading policies under uncertainty

by

Shahin Abbaszadeh

Thesis for the degree of Doctor of Philosophy

March 2015





Abstract

The objective of this thesis is to present a set of useful tools for problems

of sequential decision making under uncertainty. Specifically, we study three

applications of dynamic planning: dynamic pricing of non-durable products

in the context of Markov processes, dynamic pricing of high end fashionable

products with autoregressive demand, and the dynamic trading of financial

securities with added sign constraints.

Market volatility, incomplete or delayed information, and unpredictability

of underlying systems are integral to real-world problems. It is important to

establish methods to integrate these factors into the modelling framework of

choice. In this research we study stochastic dynamic programs and their use in

finding optimal or near-optimal strategies for the above problems.

In the first of three papers comprising this thesis, we examine the dynamic

pricing problem in the context of Markov decision processes, and explore the

structural characteristics of the model. Our results support the use of exact

methods when assuming the state of the system (demand) is unobservable.

The second paper is concerned with a dynamic pricing problem that assumes

an autoregressive evolution model for the demand. We provide a simple but ef-

fective approximate dynamic programming method that outperforms the classic

methods of solving dynamic programming problems. Finally, in the third paper,

we examine the dynamic trading of large blocks of securities by extending the

dynamic programming framework to include constraints and additional infor-

mation. We explore the characteristics of the model to improve on the closed

form solutions available in the literature, but we also utilise a heuristic approx-

imate dynamic programming method to provide near-optimal results when the

problem is augmented with necessary constraints to handle practical settings.





List of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

List of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 An Introduction to Dynamic Programming . . . . . . . . . . 1

1.2 Background of the Problems Under Study . . . . . . . . . . 4

1.2.1 Dynamic Pricing Using POMDP . . . . . . . . . . . . . 5

1.2.2 Dynamic Pricing with Autoregressive Demand . . . . . . 7

1.2.3 Dynamic Trading . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . 10

2 Dynamic Pricing using POMDP . . . . . . . . . . . . . . . 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Background and Literature Review . . . . . . . . . . . . 12

2.1.2 Contributions and Paper Structure . . . . . . . . . . . . 15

2.2 Dynamic Pricing Problem . . . . . . . . . . . . . . . . . . . 17

2.2.1 Dynamic pricing model with POMDP . . . . . . . . . . . 17

2.2.2 Properties of the Model . . . . . . . . . . . . . . . . . . 19

2.3 POMDP Exact Algorithms . . . . . . . . . . . . . . . . . . . 23

2.3.1 Enumeration Algorithm . . . . . . . . . . . . . . . . . . 23

2.3.2 Two Pass Algorithm . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Incremental Pruning Algorithm . . . . . . . . . . . . . . 26

iii



iv LIST OF CONTENTS

2.4 Performance Assessment . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Computation Time . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Size growth . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Dynamic Pricing with Autoregressive Demand . . . . . . . 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Demand Models . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Contributions and Paper Structure . . . . . . . . . . . . 44

3.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 The Basic Model . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Extensions to the Basic Model . . . . . . . . . . . . . . . . . 50

3.3.1 The Capacitated Model . . . . . . . . . . . . . . . . . . 50

3.3.2 Non-negativity Constraint . . . . . . . . . . . . . . . . . 52

3.3.3 Approximate Dynamic Programming . . . . . . . . . . . 53

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Dynamic Pricing Using the Basic Model . . . . . . . . . 58

3.4.2 Effects of Incorporating Sign Constraints . . . . . . . . . 59

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Dynamic Trading . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Background and Literature Review . . . . . . . . . . . . 68

4.1.2 Contributions and Paper Structure . . . . . . . . . . . . 70

4.2 Models for Optimal Trade Execution . . . . . . . . . . . . . 72

4.2.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Limitations of the Basic Model . . . . . . . . . . . . . . 73

4.2.3 Extended Model . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Including Non-negativity Constraints . . . . . . . . . . . 77

4.3 Approximate Dynamic Programming . . . . . . . . . . . . . 78

4.3.1 An Approximated Value Function . . . . . . . . . . . . . 78



LIST OF CONTENTS v

4.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 A Simulated Example . . . . . . . . . . . . . . . . . . . 86

4.4.2 An Empirical Example . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Dynamic Pricing with POMDP . . . . . . . . . . . . . . . . 95

5.2 Dynamic Pricing with Autoregressive Demand . . . . . . . . 97

5.3 Dynamic Trading . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Proof of Lemma ?? . . . . . . . . . . . . . . . . . . . . . . . 101

B Proof of Lemma ?? . . . . . . . . . . . . . . . . . . . . . . . 102

C Additional Performance Indicators . . . . . . . . . . . . . . . 104

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



List of Figures

2.1 Belief vector transformation T (π|p, d) for |S|=3 . . . . . . . . . 22

2.2 Sample value function for |S|=3 . . . . . . . . . . . . . . . . . . 23

2.3 Average time taken by number of price changes . . . . . . . . . 30

2.4 Average time taken by size of the price set . . . . . . . . . . . . 31

2.5 Average time taken by size of the state space . . . . . . . . . . . 31

2.6 Average time taken by number of observations . . . . . . . . . . 32

2.7 Average time taken by observations and price set . . . . . . . . 32

2.8 Average time taken by price changes and price set . . . . . . . . 33

2.9 Average maximum vectors processed by stage and state . . . . . 34

2.10 Average maximum vectors processed by price set . . . . . . . . 34

3.1 Actual sales revenue for all methods, variable σ2
ǫ . . . . . . . . . 62

3.2 Actual sales revenue for all methods, variable number of periods 63

3.3 Actual sales revenue for naive method, variable θ and ψ . . . . . 63

3.4 Actual sales revenue for ADP method, variable θ and ψ . . . . . 64

4.1 Approximation of optimal value functions in each region . . . . 81

4.2 Actual execution cost for all methods, variable σ2
η . . . . . . . . 88

4.3 Expected execution cost for Lloyds share prices, variable σ2
η . . . 90

4.4 Actual execution cost for Lloyds share prices . . . . . . . . . . . 92

C.1 Actual execution cost for Rolls-Royce share prices . . . . . . . . 106

C.2 Actual execution cost for Next plc share prices . . . . . . . . . . 106

vi



List of Tables

2.1 Solution time for the three methods and dynamic programming 29

3.1 Optimal price, observed demand and revenue for various σ2
ǫ . . . 59

3.2 Optimal price, observed demand and revenue for σ2
ǫ = 1000 . . . 60

4.1 Solution time for various T and σ2
ǫ . . . . . . . . . . . . . . . . 86

4.2 Expected execution cost in execution of 100000 shares . . . . . . 87

4.3 Regression analysis on the three chosen stocks . . . . . . . . . . 90

4.4 Actual execution cost realisation from each algorithm . . . . . . 91

C.1 Actual execution cost realisations on Rolls-Royce shares . . . . . 105

C.2 Actual execution cost realisations on Next plc. shares . . . . . . 105

vii





Declaration Of Authorship

I, Shahin Abbaszadeh, declare that the thesis entitled ‘Dynamic modelling of

optimal pricing and trading policies under uncertainty’ and the work presented

in the thesis are both my own, and have been generated by me as the result of

my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research

degree at this University;

• where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated;

• where I have consulted the published work of others, this is always clearly

attributed;

• where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed: Shahin Abbaszadeh

Date: March 2015

ix





Acknowledgements

The research period leading up to this thesis, has been a truly immense learning

experience; well beyond the mastery of the research topics within this thesis.

My supervisors – Dr Yue Wu and Dr Tri-Dung Nguyen – have helped me

in thinking like a researcher and steering numerous and sometimes daunting

obstacles. Their support and patience has made this work possible. Also,

the fourth chapter of this thesis is based on previous work by Tri-Dung. Our

collaboration has been a great vehicle for learning and understanding.

I would like to thank Professor Tolga Bektas, Dr Gunes Erdogan, Dr Maxwell

Chipulu and Dr Honora Smith for their valuable insights at different stages

of my study. Also thanks to my friends and colleagues Dr Yousef Ghiami,

Dr Stefanos Marangos and Dr Arash Gourtani for their support and many

interesting conversations.

I would also like to thank many individuals in the Southampton Business

School (formerly School of Management) who have facilitated this research in

different ways, especially Ms Debbie Evans who single handedly brings order to

the inevitably chaotic life of PhD students.

Finally, thanks to my family for their inspiration and encouragement.

Despite the help of many, I alone take full responsibility for any shortcomings

of this work.

xi





Helenile...

xiii





List of Symbols

Chapter 1

I Number of items to be executed

T Duration of the season

N Number of periods in the season

t Period number

at Action (decision variable) at period t

A Set of available actions (action space)

st State of the system at period t

M(.) State evolution function

C(.) Cost or reward function

Vt(.) Value function at time t

S Set of possible states (state space)

P (st+1|st, at) Probability of moving to state st+1 given action at and state st

ct Number of remaining items at period t

dt Observed sales at period t

D Set of possible sales observations

Q(dt|st, at) Probability of observing sales d given action at and state st

pt Price during period t

xv



xvi LIST OF SYMBOLS

ωt Random fluctuation during period t

zt Number of available stock

πt Elasticity of price based on volume during period t

Chapter 2

N Number of stages

n Index indicating the current stage

τn Length of nth stage

κi Rate of customer arrival process (Poisson) when in state i

γi Rate of reservation price (exponential distribution) when in state i

λi Rate of the purchasing process (Poisson) when in state i

pn Price during stage n

S Set of possible states (state space)

P ij(pn) Probability of moving from state i to j with price pn

Qid(pn) Probability of observing sales d while in state i with price pn

πn,i The belief of decision maker about (probability of) being in state i

Π The set of belief vector during stage n

W (pn) The reward function for price pn

cn Number of items in stock at stage n

α A single linear element of the piecewise value function

An Set of linear hyperplanes defining the value function at stage n

T (π) Transformation of belief vector

l(.) An index function assigning the optimal α from the value function

V Minimum-sized vector set representing the value function



LIST OF SYMBOLS xvii

⊕ An operator for element-wise summation of two vectors

PR An operator to reduce a set to its minimum based on certain criteria

Chapter 3

T Number of periods during a season

t Index of a period

S̄ Initial stock of the product

pt Price set during period t

dt Demand during period t

ψ Impact of demand in the previous period on the current period

θ Impact of price on demand

ǫt The random volatility in the environment

{pt} Set of all available prices during period t

zt Number of unsold items at the end of period t

yt State variable comprised of dt−1 and zt−1

At Quadratic coefficient of the approximate value function

Bt Linear coefficient of the approximate value function

Ct Constant value of the approximate value function

Ω Linear coefficient of the augmented state variable

Θ Impact of price on augmented state variable

∆t The random volatility affecting the state variable

Chapter 4

S Total number of shares to be executed

T Total number of periods in the execution period



xviii LIST OF SYMBOLS

t Index of the current period

pt Price of each security during period t

xt External or expert information about the securities during period t

st Total number of stocks yet to be executed at start of period t

ut The volume of the trade at period t (decision variable)

a Impact of trade volume on the price

β Impact of Information on the price

ρ Linear coefficient of the information evolution model

ǫt Uncertainty in the price, a white noise process of N(0, σ2
ǫ )

ηt Uncertainty in information variable, a white noise process of N(0, σ2
η)

θj Impact factor from the price of equity in period t− j

A Linear coefficient of the augmented state evolution model

b The impact of trade size on the augmented state variable

ω Vector containing the uncertainty information

em mth column of the identity matrix

Uj State space area under case j

Qt Quadratic coefficient of the approximate value function

Bt Linear coefficient of the approximate value function

Ct Constant value of the approximate value function

Φt,j Quadratic coefficient of the partial value function optimal in area Uj

Πt,j Linear coefficient of the partial value function optimal in area Uj

Ωt,j Constant value of the partial value function optimal in area Uj



Chapter 1

Introduction

The premise of this thesis is the applications of stochastic dynamic programming

in real-world situations. In this chapter we discuss the dynamic programming as

a tool and its strengths and limitations. We provide a brief introduction to the

problems we will be addressing in the following chapters and how we overcome

the inherent limitations of the classic dynamic programming techniques.

1.1 An Introduction to Dynamic Programming

The dynamic programming approach can be expressed as decision making through-

out stages. The system under study evolves through time from one state to

another based on the decisions taken by the decision maker. It can be applied

to many problems, from the control of a domestic boiler to strategic decision

making undertaken by governments. Any activity in between these extremes

that happens over time can represent a dynamic programming problem: man-

aging assets, scheduling operation rooms in hospitals, planning vehicle routes,

investing money or playing a simple game of backgammon. The decision mak-

ing process in these problems includes observing available information, making

a decision, observing the new state of the system as a result of the decision and

making another decision again, and so on. Generally this sequential decision

making problem is easy to formulate, but challenging to solve.

Dynamic programming has its roots in several academic fields. In the field of

Economics and control theory, the problems include continuous states and deci-

1



2 CHAPTER 1. INTRODUCTION

sions. In the operational research and artificial intelligence literature, however,

the elements are mainly of discrete nature. Continuous problems with con-

tinuous states and decision variables and continuous time are generally known

as “control theory” problems. Problems with discrete state and decision vari-

ables are studied under the generic term “Markov decision processes”. However,

both modelling approaches rely on recursive equations, using state variable to

represent the historical information. Dynamic programming problems can be

roughly classified into three categories: (1) deterministic problems, where the

rules governing the transition from one state to next are known to the decision

maker; (2) stochastic problems, where the evolution of the state space or the

effect of the decision on the state of the system contains uncertainty but the

underlying probability distribution is known; and (3) information acquisition

problems, where the uncertainty extends to the distribution of system param-

eters and the focus is on collecting information so that we can better estimate

the distribution (Powell, 2011). By far the largest section of dynamic program-

ming literature focuses on deterministic problems. However, many problems

have unknown elements that pose significant difficulties on finding a solution.

Stochastic dynamic programming deals with the uncertainty present in the sys-

tem and the overall objective of the decision making process is to minimise

expected cost or maximise expected profit.

Dynamic programming is based on a simple idea. It is based on the recursive

process that describes the relationship between the value of being in a state at

one point in time and the value of being in the states that we will visit next,

following our decision.

Let’s consider an illustrative example following the convention set in Powell

(2011): assume there are I items of identical properties and we want to execute

them in time T . The term “execution” might constitute sale or purchase of

physical or financial commodities or manufacturing a product or maintenance

of a machine. Time T is divided intoN stages. At each stage t we can choose the

decision variable at from a certain set A in order to control the execution of the

items. Given the decision at the new state of the system st will be determined

by the general function M(st, at). We want to maximise or minimise C(st, at)

over the whole period T , depending on if it is a reward or cost function.



1.1. AN INTRODUCTION TO DYNAMIC PROGRAMMING 3

In deterministic cases the value function can be written as:

Vt(st) = max
at∈A

{Ct(st, at) + Vt+1(st+1)}, (1.1)

where st+1 =M(st, at) is the state we visit if we are in state st and take action

at. Equation (1.1) is the so-called Bellman’s equation.

But the problems we will address in this work involve uncertainty (in terms of

price, demand or market forces). In such problems the value function becomes:

Vt(st) = max
at∈A

{Ct(st, at) + E[Vt+1(st+1)|st]}. (1.2)

As can be seen, the underlying structure of the dynamic programming is

rather straightforward. However, a great number of dynamic programming

problems are challenging to model and standard solution approaches to solve

them are computationally intractable. This is because of the so-called three

curses of dimensionality (Gosavi, 2009).

We defer a thorough study of the dynamic programming model to the fol-

lowing chapters. However it is useful to take a closer look at its structure and

examine the curses of dimensionality in more detail.

Every stochastic dynamic program consist of the following elements at the

minimum (Bertsekas, 1995):

State variable This represents all the information we need to make a decision.

Decision variable Actions that represent control of the process.

Exogenous information This data becomes known at the beginning of each

period, e.g. the demand for the product, or the price at which it can be

purchased or sold. In addition, the initial state of the system should be

known to the decision maker.

Transition function This function captures the system evolution from state

st to state st+1 given our decision at time t and the new information that

became known between t and t+ 1.

Objective function This function describes the costs to be minimised, or the

rewards to be maximised over the designated period.



4 CHAPTER 1. INTRODUCTION

The model defined at (1.2) has a simple solution. If we know the value of

Vt+1(st+1) for each state st+1 we would just compute (1.2) for each st, giving

us the value of Vt(st). We can then step backwards in periods to compute

all the value functions. However, this is where the exponential increase in the

dimensions makes finding a solution through the classical dynamic programming

approach impractical. Each dynamic programming model has at least three

dimensions, and these can become very large depending on the specifics of

the problem. The state variable s can be a vector, each element of which

may represent many possible values. The decision variable at also can have

a vector form with each instance having many potential outcomes. Finally

random fluctuations represent the third dimension that can vary from period

to period and extend the space of the problem. These three dimensions represent

the three curses of dimensionality.

In this research, we are looking for different methods that overcome this

explosion of possible outcomes and harness the randomness of the underlying

system and possibly exploit the structure of the value function, in order to solve

practical and real-world applications.

1.2 Background of the Problems Under Study

Dynamic programming is essentially about the control of one or more resources.

It is either direct manipulation of the resource (purchase or sale of goods, con-

trolling the output of a Hydro power plant), or controlling a specific attribute

of the resource (setting the price of an asset, deciding when to upgrade the

generator of a Hydro power plant).

If enough assumptions are made, we will be left with a value function (1.2)

and a model defining the evolution of the state, which is not particularly difficult

to solve. But in real-world applications, many issues exist that make seemingly

simple problems intractable. For example, when we are faced with evolving

information processes, the decision is made before the information is known.

Alternatively in many situations we cannot precisely determine the current state

of our system. According to Powell (2011) this is mainly because information

arrives with delay (stock prices, demand data), or because it is misrepresented



1.2. BACKGROUND OF THE PROBLEMS UNDER STUDY 5

at some stage (wrong reports, missing data) or the underlying system is simply

unobservable (the exact location of a space probe). Another important factor

is the lack of clarity with the dynamics of the system (for example the state

evolution model) where we are not certain of the effects of various parameters

in the direction of the system dynamics. If we cannot predict the effects of our

decisions (even with uncertainty) any result will be accompanied with significant

biases.

Now we briefly look at the contents of the three main chapters of this thesis.

We are going to examine three real-world applications of dynamic programs

discussed above in the coming chapters.

1.2.1 Dynamic Pricing Using POMDP

In general terms revenue management and in particular dynamic pricing which is

a subset of it, deal with the problem faced by a decision maker who needs to ex-

ecute a set of fixed resources opposite a price sensitive population of customers.

In this framework the main objective is to find a strategy that maximises the

revenue throughout the selling horizon. Bitran and Candentey (2003) argue

that the price is not just a financial concept, but it is among the most effective

parameters that managers can use to encourage or discourage the demand, mak-

ing it an operational asset that can regulate inventory and production as well

as the service level. Dynamic pricing provides the ability to match supply with

demand and thus increase the revenue in industries that are facing ever increas-

ing revenue margins. These are the industries that have high start-up costs, the

capacity is perishable, the sale horizon is reasonably short and demand is both

stochastic and sensitive to price (Chen and Chen, 2015)

Markov decision processes (MDP) is an elegant method for solving stochastic

dynamic programs, but it is practical only in the presence of strong assumptions.

If our state space is small and there is a relatively small set of decisions or

actions, the MDP method not only can solve these problems, it can provide

strong insights into the underlying structure of the problem.

In chapter 2 we consider a dynamic pricing problem where I is the number of

items at the disposal of the seller. It is a finite stage Markov decision process and



6 CHAPTER 1. INTRODUCTION

the goal is to maximise the profit by deciding on the price during each period

t. Our decision variable at denotes the choice of price from a predefined set of

prices A. If price at is chosen, the probability that we move from state st to state

st+1 is Pt(st+1|st, at) where st (the underlying state of the system) belongs to

the set S = {1, 2, ..., |S|}. Pt(st+1|st, at) is the so-called state transition matrix

and replaces the function M(s, a) illustrated in section 1.1. The presence of a

transition matrix transforms this problem to an MDP.

The Bellman equation is:

Vt(st, ct) = max
at∈A

{Ct(st, at) + E[
∑

i∈S

Pt(st+1 = i|st, at) Vt+1(st+1, ct+1)]} (1.3)

where state st is assumed to be the actual demand during period t and ct is the

number of items during that period.

However, if we assume that in a particular problem the actual state of the

demand is unknown and the sale figures are the main decisive factor for the

retailer, and furthermore we assume that the probabilistic relationship between

sales and actual demand is known based on previous historical data, we can

understand the evolution of the state by observing the sales parameter. These

classes of problems, where the state of the system is unobservable but are re-

lated to an observable parameter is called partially observable Markov decision

processes (POMDP). Thus we record the sale figures as observations at the end

of each period, where Qt(dt|st, at) is the probability that we observe d as the

sales amount while we are at state s and price for period t has been a. d belongs

to a set D, the elements of which are finite and countable.

The revised value function, although substantially more general and difficult

to solve, is at the same time very elegant in providing insights into the evolution

of the problem based on our decisions.

Vt(st) = max
at∈A

{Ct(st, at)+E[
∑

i∈S

Pt(st+1 = i|st, at)
∑

j∈D

Qt(dt = j|st, at)Vt+1(st+1, ct−dt)].}

(1.4)

Although the above dynamic programming model becomes prohibitively

large but for the smallest problems, we solve the POMDP model in chapter 2

by exploring the structure of the value function. We consider that the value

function is piecewise linear and convex and on that basis study the exact algo-



1.2. BACKGROUND OF THE PROBLEMS UNDER STUDY 7

rithms devised for general POMDP problems as a viable option for solving the

dynamic pricing problem. However, the next chapter provides a solution to a

similar problem that is capable of handling much larger input parameters.

1.2.2 Dynamic Pricing with Autoregressive Demand

The pricing problem discussed in chapter 3 is an extension to the problem we

consider in chapter 2.

The retailer has an initial stock of I items and must within the finite time

T sell them. Time T is divided into N stages. pt denotes the decision variable

(price during period t) which can be chosen from the set A. The corresponding

Bellman equation for this problem can be represented as:

Vt(dt−1, zt−1) = max
{pt}

E[ptdt + Vt+1(dt, zt)].

in which dt represents state of the system (demand), zt−1 denotes the number of

items remaining at the beginning of period t and {pt} is the set of all available

prices during period t which is a finite set.

The main difference to the MDP modelling is that we define the state evo-

lution model as a linear representation that depends on our action (price) in

addition to the previous state of the system. Thus we say that the demand

is autoregressive and the state of the system evolves based on the following

evolution model:

dt = min (ψdt−1 − θpt + ǫt, zt−1)

where ǫt denotes the volatility in the underlying system and ψ and θ are coef-

ficients to state and action variables.

The above evolution model comprise the main novelty of our approach.

Very rarely in literature the demand evolution is considered of autoregressive

(AR) nature, although there is enough evidence for its benefits in certain en-

vironments. The incorporation of AR to the value function, however, poses

considerable difficulty in solving this problem under the classic dynamic pro-

gramming approach. This dynamic program is intractable because in addition

to the curses of dimensionality, the state space will grow in each backward stage

of the classic dynamic programming approach, as we would have to introduce



8 CHAPTER 1. INTRODUCTION

inequalities to the model in order to handle the inclusion of capacity and price

considerations. Thus in chapter 3 we propose an approximate dynamic pro-

gramming method that in addition to its ability in handling large state and

action sets, is capable of handling constraints, which is necessary to provide a

solution that is applicable in real-world scenarios. The proposed approximate

dynamic programming algorithm captures the simplicity of the value function

model and provides an exploratory element through Monte Carlo simulation to

converge to near optimal solutions in a fast time-frame.

1.2.3 Dynamic Trading

The growth in equity trading in recent decades, especially algorithmic trading,

has triggered an interest in the more effective management of trading costs.

These costs are often called execution costs and include commissions, bid/ask

spreads, opportunity costs of waiting, and price impact from trading. Accord-

ing to Chan and Lakonishok (1993) trading in equity markets is increasingly

dominated by institutional investors, and due to the costliness of executing in-

dividual trade transactions, the overall execution of the order becomes more

costly. This overall transaction cost prompts the traders to break their order

down into smaller transaction units which is then executed over a certain time

period. A trading strategy that minimises the expected execution cost of the

trade is defined as best execution strategy. This problem, henceforth referred

to as dynamic trading have been analysed extensively in the finance literature,

a classic example of which is to be found in Bertsimas and Lo (1998). They

propose an effective dynamic programming method to this real-world problem,

but the model is not very practical as they ignore the constraints that are part

of the actual business environment. There are considerable similarities between

the dynamic pricing problem and that of dynamic trading. We will expand

on the concepts we employ in dealing with dynamic pricing, to provide an ef-

fective and practical solution to the dynamic trading problem when there are

constraints in the actual trade setting.

The dynamic trading problem which we will cover in chapter 4 is briefly as

follows:



1.2. BACKGROUND OF THE PROBLEMS UNDER STUDY 9

We have a number I of shares to execute (sell) in N consecutive periods of

equal length amounting to time T in total. We are also given the price dynamics,

which is dependent on the size of trade and other related information. Based on

these information the decision maker wants to optimise the number of shares

traded in each period in order to minimise the overall cost of execution of I

within time T . The bellman equation for this problem in its simplest form is as

follows:

Vt(pt−1) = max
{at}

E[ptat + Vt+1(pt)],

where {at} is the set of available actions at period t.

The price (our state variable) evolves based on

pt+1 = pt + πtat + ωt,

where ωt is an independent white noise process with mean 0 and variance σ2
ω

and πt is the elasticity of price based on volume known to the decision maker

from historical data.

As can be seen, the structure of the model and the state evolution process is

very similar to the dynamic pricing problem of chapter 3, but there are certain

limitations to this problem because of its specific business setting. We have

provided the basic definition of the problem here, which we will expand further

in the corresponding chapter. We will explore the characteristics of the value

function to provide a near optimal solution to the problem where we have added

sign constraints to this basic problem. Furthermore, many price processes in

financial domain exhibit autoregressive attributes of higher order. We propose

a framework that is capable of handling lags of more than one in the price

evolution process. Our main extension to this problem, however, is the addition

of a non-negativity constraint. Based on the variance of the information variable

and also price, the optimal solution might suggest a negative trade (i.e. sell

in a buy operation or vice versa). In a real situation where the short-selling

option is not available, a crude constraint might be introduced to change the

negative trades to zero. We propose an approximate dynamic programming

approach that incorporates the non-negativity constraint as well as higher order

autoregressive elements into the problem and provides near-optimal solutions.



10 CHAPTER 1. INTRODUCTION

1.3 Structure of the Thesis

This thesis follows a three-paper structure. As such I have included the three re-

search papers comprising this research with minimal alteration to their original

structure. They have retained their independent format, while I have changed

minor elements to achieve an overarching structure for the whole thesis.

Chapter 2, titled “Dynamic Pricing and the use of exact algorithms for par-

tially observable Markov decision processes” reviews the exact methods for a

special application of MDP on the dynamic pricing problem and provides nu-

merical experiments showing their capabilities. Chapter 3, titled “Dynamic

pricing of products with autoregressive demand” deals with a dynamic pricing

problem with autoregressive demand. We introduce an approximate dynamic

programming method that handles the possibility of optimal policies that are

negative or otherwise outside the acceptable range. Chapter 4 titled “Optimal

trading under non-negativity constraints using approximate dynamic program-

ming” discusses the dynamic programming method for achieving optimal exe-

cution policies and offers an approximate dynamic programming method that

accounts for the addition of sign constraints. Finally, chapter 5 provides a sum-

mary of our contributions and a look at the limitation of this study and possible

directions for future research.



Chapter 2

Dynamic Pricing and the Use of

Exact Algorithms for Partially

Observable Markov Decision

Processes

Abstract

This paper examines dynamic pricing problem in a retail setting

where short-life-cycle goods are sold through a single store with no

replenishment during the season. We model the problem of find-

ing the optimal dynamic pricing policy by utilizing partially ob-

servable Markov decision processes (POMDP). The objective of the

model is to maximise expected profit using multiple predefined price

changes throughout the season. We employ three exact algorithms

for POMDP that make use of the convexity and piecewise linearity

of the value function to solve this dynamic pricing problem. We as-

sess the performance of these algorithms with simulation runs and

provide insight to the benefits we can gain from them. We demon-

strate that these exact algorithms are efficient in solving problems of

considerable size and complexity in the context of retail discounting.

11



12 CHAPTER 2. DYNAMIC PRICING USING POMDP

2.1 Introduction

2.1.1 Background and Literature Review

This paper studies the dynamic pricing problem for retail products with short

life cycle and with no replenishment possibility. Dynamic pricing has its roots

in the more general literature of revenue management, also called yield manage-

ment or perishable asset revenue management, which deals with the balancing

of demand and supply. Revenue management research started in airline indus-

try, on segmentation of the market into different classes (e.g. business versus

leisure customers) and allocation of the limited capacity to these classes. Its

success in the airline industry has led to its application in other transportation

services and service industry (McGill and Van Ryzin, 1999). These days revenue

management is applied in many industries where supply capacity is inflexible

and short term, such as cruise ships, hotels, electric utilities, sporting events,

health care and a significant section of retail industry.

In most applications of revenue management, prices can be changed with

little or no cost at all, but in retail industry, especially the brick and mortar

sector, the associated costs are more substantial; although technological ad-

vances continue to reduce these costs across many industries (Netessine, 2006).

In this paper following the recent literature, we ignore the costs of price changes.

The big advances in information technology (IT) and e-commerce have played

a substantial role, not only in reducing the cost of price change but improving

inventory management practices. Despite these big strides in inventory man-

agement, lost sales and excess inventory still impose considerable amounts of

expense on retailers. For this reason retailers increasingly explore the demand

side of the supply-demand equation in order to drive up the profits. Dynamic

pricing explores the possibility of controlling demand through price changes and

is one of the tools the retail manager may employ to alter demand behaviour

(Elmaghraby and Keskinocak, 2003). Factors that drive this increased adoption

among the practitioners include the availability of more demand data, techno-

logical advances that make changing the prices easier and the overall increased

efficiency of the decision-support tools.



2.1. INTRODUCTION 13

An important early contribution to the dynamic pricing literature is Gallego

and Van Ryzin (1994). They investigate the dynamic pricing problem for per-

ishable products with stochastic demand that is price sensitive. They find the

optimal pricing policy in closed form for a range of demand functions while for

general demand functions they find an upper bound on the expected revenue.

Bitran et al. (1998) formulate a stochastic dynamic programming problem to

coordinate prices for a retailer. They consider a retail chain that changes prices

periodically and maximise the total discounted expected revenue over the plan-

ning horizon. They also develop heuristics to achieve near-optimal solutions.

Chatwin (2000) studies the case of dynamic pricing of a fixed number of per-

ishable items in finite horizon. He obtains structural characteristics for the

problem and derive that the optimal price is non-increasing in the number of

remaining unsold items.

Adida and Perakis (2007) present a continuous time optimal control model

for a dynamic pricing and inventory control problem in a make-to-stock man-

ufacturing system. The demand is a linear function of the price, the inventory

cost is linear and all the coefficients are time-dependent. Feng and Gallego

(1995), in the same manner as Gallego and Van Ryzin (1994) model the de-

mand as a homogenous (time-invariant) Poisson process with an intensity that

is non-increasing in price. By charging a specific price at each time period the

firm controls the intensity of the demand. In these papers, the reservation price

(i.e. the price threshold under which the customer is willing to buy) or its dis-

tribution remains constant over time. In contrast, Bitran et al. (1998), Bitran

and Mondschein (1997), and Zhao and Zheng (2000) generalise these models

by modelling the demand as a non-homogeneous Poisson process and allowing

the probability distribution of the reservation price to change over time. Smith

and Achabal (1998) incorporate the impact of the inventory level on demand

in contrast to its dependency on price or time. Particularly, in the retail and

fashion goods industry, a product’s demand is usually influenced by the shelf

space it occupies. The relationship between “display” area and sales is typically

one sided: lower inventory levels may slow the sales rate while inventory levels

above the critical “minimum” does nothing to promote further sales.

Today’s technologies allow retailers to collect large amounts of data, from



14 CHAPTER 2. DYNAMIC PRICING USING POMDP

sales to demographic data and customer preferences. There are, however, many

uncertainties which make the interpretation of this data difficult for the retailer.

The seasonality of demand or special occasions for particular products add to

the complexity of forecasting process. Unpredictable behaviour of the customers

which is inherently difficult to observe or formulate are obstacles in retailers’

ability to form an opinion about the demand. And arguably, the most important

aspect of uncertainty for a market with above-mentioned characteristics (e.g.

retail market of short-life-cycle products) is the underlying economic situation,

which according to Song and Zipkin (1993) may stem from either the state of

the industry or a reflection of the economy as a whole. Sethi and Cheng (1997)

suggest that the uncertainties can be collectively described by what they label as

“states of the world”, and argue that the demand process of such an environment

can be described by a Markov chain i.e. the future “state of the world” is

determined only by the current state of the world. As a result each core state

of the system includes all the past information about the market and demand,

and the transition from each state to another follows the rules of a Markov

process. In reality, however, a complete and thorough knowledge of the demand,

even after one has all the information pertaining to the previous seasons, is

unattainable. In this paper, it is assumed that the manager can acquire partial

information about the state of the demand for the product through sales and

its correlation to real demand. Instead of a Markov process representing the

evolution of the demand through time periods, a partially observable Markov

decision process (POMDP) is assumed that determines the unobservable state

of the system (demand) through its relation to the sales, which is an observable

parameter in the system. POMDP is a generalised form of MDP that assumes

the state of the system is unknown to the decision maker, but he/she can

observe a parameter of the system which is probabilistically correlated to the

core process.

For a presentation of POMDP and review of various prior algorithms refer

to Monahan (1982). Lovejoy (1991a) , White and Scherer (1989) and White

(1991) offer literature reviews as well as important updates on previous exact

algorithms. Smallwood and Sondik (1973) were the first to prove the piecewise

linearity of the recursive dynamic value function and thus provide the ground-



2.1. INTRODUCTION 15

work for the methods developed later. They offer a step by step solution using

this characteristic of the formulation which although practically infeasible, pro-

vided the required insight for the later more advanced algorithms. Monahan in

his review paper offers a revised edition of Smallwood and Sondik’s algorithm,

which although he introduces as Sondik’s, is subtly different and more intuitive.

We will study both of these methods later in the paper as an insight into the

foundations of the POMDP exact algorithms.

Lovejoy (1991a) develops a heuristic approach based on the above methods

to utilise the overlooked aspects of these solutions more efficiently. Eagle (1984)

formulates a problem of partially observable Markov decision processes and

presents a finite time horizon POMDP solution technique simpler than the

standard linear programming methods of the time. The context is of a search

problem where a target is moving in discrete time among a finite number of

cells. The problem is to find a searcher path, i.e. a sequence of search cells,

that maximises the probability of detecting the target in a fixed number of

time periods. This work improves the algorithm introduced by Smallwood and

Sondik (1973).

Kaelbling et al. (1998) survey the exact methods developed in AI community

that aim to solve problems defined in partially observable stochastic domains.

They discuss different approaches taken to exactly solve the POMDP problem

in a control theory setting. Of these approaches they focus on witness and

incremental pruning algorithms, their complexity and different approximations

one can derive from these. Hauskrecht (2000) surveys various approximation

(heuristic) methods for POMDP and presents a number of new approximation

methods and refinements of existing techniques. Lin et al. (2004) develop an

exact algorithm based on incremental pruning and use the genetic algorithm

to solve the problem by constructing the minimal set of affine functions that

describe the value function. Our work follows the developed algorithms by

Cassandra et al. (1997), Kaelbling et al. (1998) and Zhang and Liu (1997).

According to Lovejoy (1991b), one of the main reasons behind the restricted

popularity and application of the POMDP models is their intractable nature

which is a result of uncountable states. In this study we argue that the exact

methods that make use of convexity and piecewise linearity of the value function



16 CHAPTER 2. DYNAMIC PRICING USING POMDP

reduce the intractability, and thus are capable of handling bigger and more

complex problems that were not practical before. As such we utilise POMDP

to model the dynamic pricing problem and apply three exact methods to solve

the problem.

2.1.2 Contributions and Paper Structure

Despite the extensive presence of POMDP in operational research literature, the

exact methods devised for it have not been applied to any revenue management

problem to the best of our knowledge. Aviv and Pazgal (2005) is the only paper

in the literature that has utilized the POMDP for the dynamic pricing prob-

lem. They simplify the POMDP into a regular MDP problem through belief

transformation and offer an upper bound method named Information-Structure

Modification which augments the state to include additional external informa-

tion. They solve the model in relation to specific probability distributions and

transition matrices that results in a reduced state space. They provide upper

and lower bounds for the value function and a heuristic algorithm for policy

generation. However, the authors do not include any reference to the exact

methods in the POMDP literature. If we assume that this oversight has been

justified with the intractable nature of the model, there is new motivation in

application of exact methods to POMDP with the emergence of more robust

variants of exact methods to POMDP models. These algorithms take advantage

of convexity and piecewise linearity of the value function and reduce the state

space considerably. This, along with the advent of more powerful computers

and parallel computing, place exact methods in a very strong position to be

utilised in today’s industrial applications.

We formulate the model following the structure set by Aviv and Pazgal

(2005), but the notation is driven from Monahan (1982) as it is the notation

the majority of POMDP literature has adopted. The structure of the dynamic

pricing model in section 2.2 which utilises the POMDP approach is slightly dif-

ferent from that of classical POMDP models. Although the proof exists in the

POMDP literature (Sondik (1971) and Smallwood and Sondik (1973)) to the

convexity and piecewise linearity of the value function, it involves models in the



2.2. DYNAMIC PRICING PROBLEM 17

context of optimal control theory. For the purposes of consistency, we provide

proof that the objective function of the model in dynamic pricing context is

also convex and piecewise linear. We adopt a selection of exact methods from

the literature to the dynamic pricing problem modelled in POMDP. We demon-

strate the ability of these exact methods in handling of dynamic pricing problem

through simulation runs and provide insight into their structural properties.

The remainder of this paper is structured as follows: In section 2.2 we

present the dynamic pricing problem and the corresponding POMDP model

and ascertain the convexity and piecewise linearity characteristics of the value

function in a dynamic pricing setting. Section 2.3 contains the discussion of the

selected exact methods and their structure. Finally, we present the results of

our numerical studies and conclude with our observations.

2.2 Dynamic Pricing Problem

2.2.1 Dynamic pricing model with POMDP

We consider a retail store selling a fixed amount of short life cycle products. We

assume that replenishment is not possible once the season gets under way. This

is a common assumption because of the increasingly long supply processes today

(Chen and Chen, 2015). For example, the design and planning stage in the case

of fashionable clothing and accessories is a lengthy process. Furthermore, since

the majority of the products are manufactured in far off countries with cheaper

labour, the lead times are too long for reordering during the season. Although

for the purposes of consistency we assume the product in this paper to be

fashionable clothing, the underlying problem we are attempting to address is

applicable to a large number of products that share the same characteristics.

Another example of products to which this problem definition is relevant are

the technologically advanced products that lose their values significantly once

their season comes to an end and are replaced by new products.

The retailer sets a price at the start of the season and during the season

can choose to implement a new price from a predefined finite set of prices at

the start of each stage to a maximum of N stages. We assume that demand is



18 CHAPTER 2. DYNAMIC PRICING USING POMDP

independent over time as a sustained and informed purchase among customers

is unlikely due to the short sale period. We also assume that the arrival rate of

customers follows a Poisson distribution with rates κi where i refers to the state

of the demand. Reservation price (the price below which the customer commits

to a purchase) follows an exponential distribution with factor γi representing

the average reservation price for the state of the demand i. This is integrated

into the arrival rate and is a given at the start of the season. The resulting

distribution for the overall purchasing process is also Poisson with rate λi =

κie
−p/γiτn where τn is the length of nth stage (Aviv and Pazgal, 2005).

We assume that the actual state of the demand is unknown, and the sale

is the main factor driving the decision of the retailer. The probabilistic rela-

tionship between sales and actual demand is known to the retailer based on

previous historical data. Thus if we consider the process to be a Markov de-

cision process, we assume the demand to be the state of the process which is

described as a Poisson arrival process with rate λi. This is a finite stage Markov

decision process and there are n remaining stages out of the total of N stages

of the planning horizon. The goal is to maximise the profit by deciding on

the price during each period n. Price during period n (pn) is selected from a

predefined set of prices. The state belongs to a discrete space S = (1, 2, ..., |S|)

where S is small enough to enumerate. If price pn is chosen, the probability

that we move from state i in period n to state j in period n − 1 (demand is a

Poisson process with rate λi and it transforms to a Poisson process with rate

λj) is P ij(pn). However as mentioned before, we cannot observe the current

state of the demand and thus we record the sale figures as observation at the

end of each stage, where Qid(pn) is the probability that we observe d as the

sales figure while we are at state i and the price during the period has been

pn. The observed value dn which denotes the number of sales during stage n

is bound by the number of remaining items cn. Both P ij(pn) and Q
id(pn) are

known to the retailer at the start of the season, based on historical data and

expert opinion.

P ij(pn) = Pr {sn−1 = j|sn = i, pn} ,

Qid(pn) = Pr{dn = d|sn = i, pn}.



2.2. DYNAMIC PRICING PROBLEM 19

We define the belief vector (belief of the seller about the state of the demand

formed at the start of the stage) for stage n ∈ N as πn, which is a discrete

probability distribution over the set of core states S:

πn = (πn,1, πn,2, ..., πn,k) ∈ Π,

where Π = {π ∈ R
k :

∑

k∈S πk = 1, π ≥ 0}

W (pn) is defined as the revenue structure during stage n when price p is

chosen. The expected revenue for period n is:

W (pn) = pn
∑

i∈S

πn,i
∑

d<cn

Qid(pn) d.

Vn(πn, cn) represents the total expected profit over n remaining stages where

cn is the number of items in the stock at the start of stage n. It is the sum of

W (pn) plus the expected profit over the remaining n− 1 stages maximised over

price:

Vn(πn, cn) = max
p

{

W (pn) +
∑

i∈S

πn,i
∑

d<cn

Qid(pn)Vn−1(πn−1, cn − d)

}

, (2.1)

V0(π0, c0) = 0.

πn−1 is the belief vector for the stage n−1 where we had price p during stage

n and observed d amount of sales at the end of stage n. The seller updates his

belief at the end of stage n based on d. The Bayesian transformation to achieve

this update based on information at hand is:

πn−1k =

∑

i πn,iQ
id(pn)P

ik(pn)
∑

i πn,iQ
id(pn)

. (2.2)

This transforms the POMDP problem, which is a process defined over un-

countable state space, into an equivalent observable regular MDP process over

continuous belief space. As Smallwood and Sondik (1973) and consequently

Monahan (1982) prove, the belief vector is a “sufficient statistic” from all the

past information and is stored in the current belief vector.

2.2.2 Properties of the Model

Although dynamic programming model (2.1) is in theory solvable through dy-

namic updates, it becomes prohibitively large for even the smallest problems,



20 CHAPTER 2. DYNAMIC PRICING USING POMDP

as the state space is uncountable despite the finite number of states, actions

and observations. Smallwood and Sondik (1973) in their landmark work prove

that the value function for the dynamic program of POMDP is piecewise linear

and convex. This forms the basis of exact algorithms devised for the POMDP

model. The value function can be represented as follows:

Vn(πn, cn) = max
α∈An

{π α} , (2.3)

where α is a function over state space and represents a single linear piece of the

value function (i.e. each α is a hyper-plane dividing the state space into two

half spaces).

An is the set of α vectors defining the value function at the end of stage n.

The objective function in (2.1) can be decomposed through following steps:

V ∗
n (πn, cn) = max

p
V ∗p
n (πn, cn),

V ∗p
n (πn, cn) =

∑

d<cn

V ∗p,d
n (πn, cn),

V ∗p,d
n (πn, cn) = pn

∑

i∈S

πn,iQ
id(pn)d+

∑

i∈S

πn,iQ
id(pn)V

∗
n−1(πn−1, cn − d) ∀d < cn.

(2.4)

The expected profit is represented by V ∗p,d
n (πn, cn), when the observed sale

is d for a period n of price p and optimal prices are chosen for all the remaining

stages. Sondik (1971) shows that piecewise linearity and convexity is preserved

through the decomposition from V ∗
n (πn, cn) to V

∗p,d
n (πn, cn). It means, if one can

show that V ∗p,d
n (πn, cn) is piecewise linear and convex, then V ∗

n (πn, cn) is also

piecewise linear and convex (It is easy to show that summation and maximisa-

tion functions over a set of piecewise linear and convex functions are themselves

piecewise linear and convex; for a demonstration refer to Sondik (1971)). Al-

though the proof exists in the literature, we formally provide the proof that

V ∗p,d
n (πn, cn) is piecewise linear and convex in theorem 2.1 for the purposes of

consistency and to confirm that the subtle differences between the formulation

of the dynamic pricing model above and the classic formulations of POMDP in

the literature does not affect this fundamental result.

Theorem 2.1.

V ∗p,d
n (πn, cn) = pn

∑

i∈S

πn,iQ
id(pn)d+

∑

i∈S

πn,iQ
id(pn)V

∗
n−1(πn−1, cn − d) ∀d < cn,



2.2. DYNAMIC PRICING PROBLEM 21

is piecewise linear and convex.

Proof. We know V0(π0, c0) = 0, as we assume there are no salvage values for

any remaining items.

Thus we have

V ∗p,d
1 (π1, c1) = p1d

∑

i∈S

π1,iQ
id ∀d < c1,

which indicates all of V ∗p,d
1 (·) functions are linear and as sum of linear functions

result in a linear function V ∗
1 (·).

Next we assume V ∗
n−1(πn−1) is piecewise linear and convex. Equivalent of

equation (2.3) for V ∗
n−1 is:

V ∗
n−1(πn−1) = max

α∈An−1

πn−1 α.

If we assume

α
l(π,p,d)
n−1 = argmax

α∈An−1

π α,

where l(π, p, d) is a convenience index function (Smallwood and Sondik, 1973)

in order to establish which segment of state space the vector belongs in the

following period (previous dynamic programming step), then we have

V ∗
n−1(πn−1) = πn−1 α

l(πn−1,p,d)
n−1 .

By putting this into (2.4) we get

V ∗p,d
n (πn, cn) = pnd

∑

i∈S

πn,iQ
id +

∑

i∈S

πn,iQ
id
∑

k∈S

πn−1,kα
l(πn−1,p,d)
n−1 ∀d < cn.

By substituting the value πn−1 from (2.2) into this equation we will have:

V ∗p,d
n (πn, cn) = pnd

∑

i∈S

πn,iQ
id +

∑

i∈S

πn,i Q
id
∑

k∈S

P ik α
l(πn−1,p,d)
n−1

=
∑

i∈S

πn,iQ
id(pnd+

∑

k∈S

P ik α
l(πn−1,p,d)
n−1 ) ∀d < cn. (2.5)

If we put

αp,dn,i = Qid(pnd+
∑

k∈S

P ikα
l(πn−1,p,d)
n−1 ),

into (2.5), we get:

V ∗p,d
n (πn, cn) = παp,dn ∀d < cn,



22 CHAPTER 2. DYNAMIC PRICING USING POMDP

which is clearly of the same property as V ∗
n−1(πn−1) being piecewise linear and

convex over π. As discussed in the text, a piecewise linear and convex function

V ∗p,d
n (πn, cn), results in a convex and piecewise linear function V ∗

n (πn, cn).

Piecewise linearity and convexity of the value function is the foundation

for all the exact algorithms in the literature as it allows for a global optimal

point to exist and provides a framework that minimises the search route to the

optimum. Albeit many heuristic methods are developed to exploit the same

attribute (Cassandra, 1998). However many researchers have refined the exact

methods over the years to find more efficient and fast solutions. In the next

section we will study a selection of these exact methods in order to determine

the most suitable procedure for the dynamic pricing problem.

In order to visualise the piecewise linearity and convexity of the value func-

tion, assume that a value function defined as in (2.3) has a dimension of 3. Since

the belief space is probabilistic, we can reduce one dimension, thus the three

dimensional value function is easily depicted on two dimensions as in Figure 2.1.

π

Stage n Stage n-1

d = 2

d = 1
T (π|p, 2)

T (π|p, 1)

α2
n−1 α3

n−1

α4
n−1

α1
n−1

Figure 2.1: Belief vector transformation T (π|p, d) for |S|=3

Smallwood and Sondik (1973) show the transformation of a belief vector

through various observations from stage n to stage n − 1. Figure 2.1 is a

reproduction of their description of this transformation where T (π|p, d) stands

for transformation of π if p is chosen and d is observed. Figure 2.2 represents a

3 dimensional representation of value function if those four hyper-planes were

to define it.



2.3. POMDP EXACT ALGORITHMS 23

α2
n−1

α3
n−1

α4
n−1

α1
n−1

Figure 2.2: Sample value function for |S|=3

Sondik (1971) after proving the value function to be piecewise linear and

convex, offers an algorithm to find the exact policy to maximise the profit. He

shows that since there is a finite number of hyper-planes (regions dividing the

belief simplex), all the exact algorithms are bound to finish and find the exact

solution. The practical problem arises from the fact that the number of belief

states increase exponentially after the transformation of each stage. In the next

section we provide a brief description of these exact algorithms.

2.3 POMDP Exact Algorithms

A large part of POMDP research community have dedicated their efforts to

heuristic approaches and use of approximations to overcome the complexity of

the problems to be solved, but for two reasons we focus on exact methods for

dynamic pricing problem. First, in recent years there have been big advances

in exact methods that have increased the efficiency considerably such as incre-

mental pruning method. Second, we believe an exact algorithm would offer a

very useful benchmark in gauging the ability of proposed heuristic and approx-

imation methods especially in the case of dynamic pricing problem where there

have been no attempt to validate the results of the exact algorithms and their

suitability. Our choice of the exact algorithms aims to reflect the evolution of



24 CHAPTER 2. DYNAMIC PRICING USING POMDP

these algorithms over time as well as the underlying concepts that they as well

as many heuristic and approximation methods in literature are based on.

2.3.1 Enumeration Algorithm

This algorithm first appears in Monahan (1982) in which Monahan provides a

method to generate the whole spectrum of vectors that could define the value

function for stage n (since there is a finite number of α ∈ An−1 and prices

and observations, there can only be finite number of vectors). Then one by

one the vectors that are dominated by better vectors for the whole segment

are removed. This exhaustive method is rather efficient in solving small prob-

lems, and useful as a benchmark to other more efficient exact algorithms or

approximate solutions.

According to Monahan (1982), we can find a vector from a belief state for a

specific action by the formula derived for α:

αp,dn,i = Qid(pnd+
∑

k∈S

P ikαn−1,k) αn−1 ∈ An−1.

A simple component-wise summation over observation d will yield

αpn,i = pn
∑

d<cn

Qidd+
∑

k∈S

∑

d<cn

QidP ikα
l(πn−1,p,d)
n−1,k , (2.6)

where l(π, p, d) is defined as

l(π, p, d) = argmax
m

[
∑

k∈S

∑

d<cn

QidP ikαmn−1,k

]

,

and m is an index over all possible α vectors developed through (2.6).

It is noted that although the belief space is uncountable, the α vectors are

finite and thus each belief state can lead to only a finite number of vectors from

previous stage which in turn will lead to finite number of new vectors.

And thus we can readily calculate α from information at hand for every

period followed by the value function:

V ∗
n (π, c) = max

p

{
∑

i∈S

πn,iα
p
n,i

}

. (2.7)



2.3. POMDP EXACT ALGORITHMS 25

2.3.2 Two Pass Algorithm

Although Smallwood and Sondik (1973) are the first to exploit the value func-

tion shape in the POMDP problem and have set the ground for all the later

research in the area, their “two pass” algorithm is far from efficient for a few

simple factors extensively discussed in Lovejoy (1991a), Mukherjee and Seth

(1991) and Cassandra (1998).

Instead of generating all the possible vectors as in enumeration algorithm, in

two pass algorithm it is suggested to start with finding the optimal value of the

value function for an initial belief point and then through a set of constraints

and a consequent application of a linear program, find the boundaries of a region

which gives the value function its optimal value for all the belief points on that

region. The points in the extremes, can then be added to the list of unexplored

regions. When all the points have been checked and their corresponding regions

have been studied, the vectors that are left are the optimal vectors.

Assuming we have calculated αkn−1, the algorithm seeks to find the new set

of vectors αkn. For this, an initial belief vector (π0
n; for example the corner of

the simplex) is chosen and using equation (2.7) the optimum price and α vector

is calculated. These are denoted by p∗ and α∗
n. The next step is to identify the

region on the belief space over which α∗
n is the optimal and dominant vector. The

idea behind this is to move the π away from initial π0
n and calculate Vn(πn, cn)

and the corresponding α vector for each of these π values until we reach a point

where α 6= α∗
n.

For any observation d, the following inequality describes the outer boundary

for α∗
n:

∑

i∈S

∑

j∈S

πn,iQ
id P ij[αkj,n−1 − αlj,n−1] ≥ 0 ∀j, (2.8)

where l is short for l(πn,0, p, d).

Also the price for the region must be optimal:

∑

i∈S

πn,i[α
∗
i,n − αpi,n] ≥ 0 ∀p. (2.9)

And finally the general conditions for the belief vector:

πn,i ≥ 0 for 1 ≤ i ≤ N and
N∑

i=1

πn,i = 1. (2.10)



26 CHAPTER 2. DYNAMIC PRICING USING POMDP

But Sondik (1971) observes that only some of these inequalities define the

region. He thus introduces a linear programming algorithm to further refine

the set of constraints above. If we represent the set of inequalities in (2.8) and

(2.9) as πn · b
m ≥ 0, then the answer to

min
π

πn · b
k

s.t. πn · b
m ≥ 0 m = 1, 2, ...,

πn,i ≥ 0,

N∑

i=1

πn,i = 1,

will be zero if the inequality k forms the boundary. The rest of α vectors can

be discarded.

2.3.3 Incremental Pruning Algorithm

This algorithm was first suggested by Zhang and Liu (1997) as an alternative ex-

act approach to solve the POMDP model and has been developed and analysed

further by Cassandra et al. (1997), Kaelbling et al. (1998), Feng and Zilberstein

(2004) and Spaan and Vlassis (2005) among others.

Incremental pruning is a method similar to the above algorithms in that it

explores the convexity and piecewise linearity of the value function. Recall the

decomposed value functions as in (2.4):

V (πn, cn) = max
p

V p(πn, cn).

V p(πn, cn) =
∑

d<cn

V p,d(πn, cn).

V p,d(πn, cn) =
∑

i∈S

πn,iQ
id(pnd+

∑

k∈S

P ikα
l(πn−1,p,d)
n−1 ).

As discussed earlier, each of these value functions are piecewise linear and

convex and can be represented by a set of vectors. For each value function there

exists a unique minimum-sized vector set. We will use the symbols V , Vp, and

Vp,d to refer to these minimum-sized sets.

If we assume U and W denote two sets of vectors, U ⊕W is called the cross

sum of the two sets and is simply a point-wise summation of the two:

U ⊕W = {u+ w|u ∈ U , w ∈ W}.



2.3. POMDP EXACT ALGORITHMS 27

PR(U) is an operator that takes the set of vectors U and reduces it to its

minimum set. Thus u ∈ PR(U) if and only if u ∈ U , and for any π ∈ Π and

u′ 6= u ∈ U the following condition holds: u · π > u′ · π.

These two operators enable us to compute the minimum set of vectors:

V ′ = PR(∪pV
p) (2.11)

Vp = PR(⊕dV
p,d) (2.12)

Vp,d = PR({αp,di |αi ∈ An−1}) (2.13)

where αp,di is computed by:

αp,di = Qid(pnd+
∑

k∈S

P ikαn−1,k)

The pruning step is the combination of a simple domination check where

every vector is checked for point-wise domination over others, and solving the

following linear program:

max b

π · (w − u) ≥ b, ∀u ∈ U ,
∑

i∈S

πi = 1.

Given a vector w and a set of vectors U that does not include w, the lin-

ear program determines whether adding w to U improves the value function

represented by U for any belief state π. If it does, the variable b optimised

by the linear program is the maximum amount by which the value function is

improved, and π is the belief state that optimises b. If it does not, that is, if

b = 0, then w is dominated by U .

The main focus in incremental pruning algorithm and its predecessors is the

set of vectors and their transformation through stages. At each value iteration

step, we are faced with a set of vectors that define our value function. But of

the three steps to generate these new vector sets, the most complex is (2.12)

as the size of cross sum grows exponentially by size of d. Incremental pruning

algorithm overcomes this complexity by realising that operators PR and ⊕ can

be interleaved:

PR(U ⊕ V ⊕W) = PR(U ⊕ PR(V ⊕W))



28 CHAPTER 2. DYNAMIC PRICING USING POMDP

Applying this on (2.12) we have:

Vp = PR(Vp,d1 ⊕ PR(Vp,d2 ⊕ ...PR(Vp,dk−1 ⊕ Vp,dk)...)),

which reduces the number of linear programs to be solved considerably.

For a detailed account of incremental pruning methods and different varia-

tions refer to Feng and Zilberstein (2004), Cassandra et al. (1997) and Cassandra

(1998). We have used the generalised incremental pruning variation developed

and implemented by Kaelbling et al. (1998).

2.4 Performance Assessment

We program all three algorithms in C++ and run using Microsoft Visual Stu-

dio, with the academic version of the IBM ILOG CPLEX 12.2 for the linear

programming sections. We design a set of sample problems in order to test the

efficiency of the methods according to the following combination of parameters:

N ∈ {3, 6, 9, 12} number of stages (decision periods)

|S| ∈ {2, 4, 8, 16} number of demand states

|d| ∈ {2, 5, 10, 20} number of possible observations

|p| ∈ {2, 5, 10} number of possible price changes (actions)

The combination above amounts to 192 sample problems. These ranges

were designed with dynamic pricing of fashionable products in mind, where the

number of stages (price changes) and the size of the price set can be limited to

single digits. Especially as we are dealing with short life cycle goods which need

to be sold in less than six months, the combination of problems above provide a

reasonable assessment platform for our problem. A similar concept is applicable

to the number of demand states considered in the model. Interested readers are

invited to refer to Feng and Gallego (2000) for a detailed discussion. Please note

that the number of demand states and the number of possible observations are

parameters of the sensitivity set for the model. It is possible to consider integers

representing the demand at each stage to map to the demand state of the model,

but we can, in order to simplify the model, consider bands of numbers as the



2.4. PERFORMANCE ASSESSMENT 29

demand state or observation sensitivity levels. Thus when demand state is 2,

we essentially have as a parameter of the model, high or low demand. The same

concept applies to observation sensitivity levels.

We test the robustness of the algorithms for handling uncertainty by per-

forming simulation runs. For each of the sample problems generated from the

above combinations, we generate random demand function sets (sets of transi-

tion and observation matrices) that represent uniform demand transition proba-

bilities. The uniformity of probabilities is an appropriate way to test the ability

of these exact algorithms, as it renders the learning aspect of any procedure

redundant.

As a simple comparison and to establish the scale of the efficiency of these

methods, we also wrote an algorithm based on the classic dynamic programming

approach. Table 2.1 depicts the solution times of all three methods and the

dynamic programming approach for a subset of the above defined sample sets

(all the samples with three stages and eight states). This example illustrates the

efficiency of the algorithms we are employing, as they avoid the explosion of the

computational time as can be seen in the case of classic dynamic programming

method.

observation price enum. two pass inc. prun. dyn. prog.

2 16 16 0 16

2 5 0 93 109 63

10 15 577 312 359

2 32 0 0 62

5 5 0 0 16 483

10 78 62 78 2932

2 25 6 9 289

10 5 20 8 9 2870

10 37 13 14 19778

2 15 7 11 903

20 5 38 13 12 7856

10 72 52 31 145723

Table 2.1: Solution times for problems with three time periods and eight possible

states and varying number of possible observation and price sets



30 CHAPTER 2. DYNAMIC PRICING USING POMDP

As the demand functions are random, the evolution of value function (set

of α vectors) expand faster for some samples than to others, leading to longer

solution times. For the following analyses, we calculate the mean processing

time for each problem instance with regard to thirty different random demand

functions. We also run each sample of the combination above ten times sepa-

rately to acquire a reliable average CPU time for the solution. Our numerical

studies were run on a PC running windows 7, with an Intel Core2 Duo CPU

with 3GHz speed for each core. The internal memory (RAM) for the machine

was 4GB. We report a summary of main points for each algorithm with regard

to the computation time and the number of vectors they have to process at each

stage.

2.4.1 Computation Time

For the enumeration algorithm, as the vectors are not pruned efficiently, the size

of the problems grow exponentially, especially for problems where we consider

higher number of observations, and this leads to very long calculation times. In

Figure 2.3, for example, which shows the time taken by each algorithm based on

the number of stages, many problems in 9 and 12 stage problems were aborted

because they were not solved within the time limit (a one hour limit for all the

execution times) which registers as an upper limit of 3600000 milliseconds.

The interesting points about enumeration algorithm is that the high times

are for higher stage and observation numbers, but the performance is poor for

low price numbers compared to higher numbers (2 against 10). This can be

justified by the fact that the larger number of the price set offers flexibility in

maximising the profit based on the evolution of the demand while a low number

of prices to be set limits the ability of the manager to make use of the various

opportunities risen by the demand spikes. However, a very large price set would

add too much complexity that would offset the benefits of the flexibility offered.

The two pass algorithm performs significantly better than enumeration as it

manages to filter more of vector projections at each step. However, although the

algorithm manages to solve the most complex of our sample problems eventually

(in the most extreme case, in about 50 hours) it uses significant amounts of



2.4. PERFORMANCE ASSESSMENT 31

Figure 2.3: Average time taken by each algorithm with regard to the number of

stages (price changes)

memory to achieve this. We introduced a memory limit (2 GB) as well as the

one hour time limit in order to be able to finish our runs in reasonable times.

Thus we have time results for all the samples by this algorithm, but as can be

seen in Figure 2.6, for high observation counts the solution times are reported

as the upper bound.

The two pass algorithm relies heavily on the LP solver and does not perform

well for problems with high number of observations and high number of prices,

as can be seen in Figure 2.7. Incremental pruning algorithm outperforms the

other algorithms in all instances of the problems. The results are encouraging as

the time spent on the most complex problems does not exceed mere seconds. We

believe that the upper bound of the parameters in our sample problems represent

what would be encountered in real life situations. As such, incremental pruning

algorithm exhibits the fundamental ability to tackle most real-world problems.

2.4.2 Size growth

Figure 2.9 shows the growth in size (average maximum number of vectors) for

each problem instance reached by each algorithm by the number of states and

stages. It gives an indication of how each algorithm compares to others in terms



32 CHAPTER 2. DYNAMIC PRICING USING POMDP

Figure 2.4: Average time taken by each algorithm with regard to size of the price

set

Figure 2.5: Average time taken by each algorithm with regard to size of the state

space

of the efficiency of filtering non-dominant vectors from stage to stage. Evidently,

the size of the vector sets to be processed increases exponentially by the size of

the price set as can be seen in Figure 2.10.

The growth of the problem size as we discuss in this section, at the first

glance corresponds to number of possible observations and number of stages in



2.4. PERFORMANCE ASSESSMENT 33

Figure 2.6: Average time taken by each algorithm with regard to number of obser-

vations

Figure 2.7: Average time taken by each algorithm with regard to number of obser-

vations and the size of the price set

the problem. It has negative relation to the number of possible prices, though

this is more apparent in the enumeration and two pass algorithms. The number

of states does not have much effect on the increase of vector numbers that

define the value function. More interestingly, there are indications that for

more complex problems, as in the biggest in our sample problems, the number

of vectors does not follow the trend of smaller problems. This may be the result

of the fact that a bigger problem yields bigger decision flexibility unlike the



34 CHAPTER 2. DYNAMIC PRICING USING POMDP

Figure 2.8: Average time taken by each algorithm with regard to number of price

change stages and the size of the price set

Figure 2.9: Average maximum number of vectors processed by each algorithm with

regard to the number of stages and number of states

smaller problems.

As regards the optimal pricing policy, which is the main outcome of the

algorithms, for the majority of the problems it generates a constantly declining

price over time, although the exceptions vary substantially. This is also in

accordance with prior knowledge, as the optimal policy for the deterministic



2.4. PERFORMANCE ASSESSMENT 35

Figure 2.10: Average maximum number of vectors processed by each algorithm

with regard to the size of the price set

instances of the problem has been shown to follow this pattern (Gallego and

Van Ryzin, 1994). The most important trade-off in the pricing process is the

level of starting inventory. Our results are consistent with the notion that

pricing the goods at the highest is a good strategy when the time left to the

end of season is long enough. Alternately it is profitable in general to set high

prices initially, if the number of remaining items is high with respect to the

average possible observation in the environment. We tested a number of simple

policies (such as a greedy policy and constant price drop policy) against the

policy drawn from the POMDP algorithms and found that the exact policy is

surprisingly close to the myopic policies when the number of decision stages is

few or the number of possible observations are low. However the behaviour of

the optimal policy is less predictable when the number of planning stages are

high. This is justified by the added uncertainty in demand evolution as number

of decision periods increases.

The major results of this paper can be described in two directions. We

show that the exact algorithms devised for the solution of POMDP models are

effective in solving problems in accordance with retail dynamic pricing problem.

In particular incremental pruning algorithm has excellent performance across

the board. This performance increases the feasibility of its implementation on



36 CHAPTER 2. DYNAMIC PRICING USING POMDP

more complex pricing problems or its integration with on-line decision making

tools. On the other hand we gain insight into the various complexities that are

added to the problem by various parameters of the problem. The vector size at

each stage is highly volatile when we change the price set combination while it

is rather straightforward in response to stage numbers or number of the demand

states.

2.5 Conclusion

This paper implements exact algorithms for POMDP model applied to a dy-

namic pricing problem of short-life-cycle products. We consider the pricing

of perishable goods in a retail environment characterised by a high degree of

demand uncertainty and rapidly changing demand parameters. With the ob-

jective of maximising expected revenues, the seller needs to post prices in a

way that achieves an optimal balance between current and future gains. To our

knowledge this is the first attempt at implementing exact POMDP algorithms

on the dynamic pricing problem. We show that not only the exact methods of-

fer optimal results in reasonable time, they are capable of solving a large range

of problems that can be readily utilised in the industry. Especially incremental

pruning algorithm exhibits satisfactory performance.

A theoretical characterisation of the effectiveness of the exact methods would

be a valuable step in providing a better understanding of the recently evolved

exact methods in POMDP applications. We believe that further research in

this direction would be a valuable input for the research in dynamic pricing

field and would provide a suitable framework for industrial decision-support

tools, in particular in the retail sector. Another future research direction is to

consider the case of dynamic pricing of a family of products where the price of

each product has cross effects on the demand of other products.



Chapter 3

Dynamic Pricing of Products

with Autoregressive Demand

Abstract

Dynamic pricing is an increasingly useful tool in control and ma-

nipulation of demand. In this paper, we use a stochastic dynamic

programming model for dynamic pricing of products that show au-

toregressive behaviour. We propose a linear representation of de-

mand evolution, in which demand evolves based on the chosen price

by the seller, the demand in the previous period and the dynam-

ics of the market. We discuss the various demand models present

in the literature and examine the suitability of an autoregressive

demand model for high end fashionable products. These products

are characterised by strong following among consumers and critics,

and a considerable word-of-mouth potential. For the basic model

without any constraints, we develop a simple solution in order to

understand the structure of the value function. For the extended

model with constraints on price and capacity we develop an approx-

imate dynamic programming method that provides near optimal

solutions and substantial advantages over non-constrained or naive

implementations of the pricing problem.

37



38 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

3.1 Introduction

3.1.1 Background

Revenue management is the study of demand and inventory dynamics in order

to maximise revenue. It offers various tools to the decision maker, the most

important of which are pricing, inventory control and marketing practices. Dy-

namic pricing has emerged in recent years as a more standalone research stream,

although combined study of pricing with either inventory policies or marketing

strategies is also significant in revenue management literature. Products such

as fashionable clothing with short selling seasons and long lead times present

a specific range of problems that differ from classic inventory or revenue man-

agement models because of infeasibility of replenishment during season and the

behaviour of the customers involved. The demand for high end fashionable

products present more complex dynamics, because they are closely followed by

media and fashion critics. They also involve more dedicated customers which

react to the new products and price changes in more complex ways. Further-

more, the demand model and its relation to the price in the majority of revenue

management literature is assumed to be deterministic. The number of academic

papers that address the underlying uncertainty and provide stochastic demand

models are relatively limited.

In this paper, we provide a demand model that takes into account elements

such as word-of-mouth potential and customer response to advertisements of a

specific product or brand in its evolution over time. We consider high end fash-

ionable products which represent the range of products that are non-durable

(substantially decline in value at the end of the season) and are usually ac-

companied by advertisement campaigns. We assume an autoregressive demand

process for this product range and develop a representative model. Finally we

provide solutions that take into account these characteristics and analyse the

implications of our assumptions.



3.1. INTRODUCTION 39

3.1.2 Literature Review

Dynamic pricing literature can be found in a number of different research fields.

The main field of development has been the literature on revenue management

and yield optimisation which have their roots in the management science and

operational research fields. McGill and Van Ryzin (1999) provide a review

of revenue management and various issues in that general field. Bitran and

Candentey (2003) present a summary of the pricing models in revenue man-

agement where the products are perishable and replenishment is not possible.

Another main research stream derives from inventory management literature,

which is concerned with joint pricing and inventory decisions. Elmaghraby and

Keskinocak (2003) review the literature for dynamic pricing of perishable prod-

ucts with fixed inventory. Chan et al. (2004) provide a comprehensive review

of the pricing literature in a supply chain context. Another stream strongly

related to dynamic pricing is in the marketing literature where the attention of

the research is on how the markets behave and the effects of brand loyalty. Rao

(1984) and Rao (2009) provide a synthesis of research on pricing from marketing

science point of view. Newsvendor problem is another field that is frequently

generalised into pricing by extending single decision period to multiple periods.

Petruzzi and Dada (1999) offer a review of newsvendor problem in the context

of dynamic and periodic pricing. Finally, Stole (2007) provides a survey of the

pricing problems studied from the view point of price discriminations.

Among the literature dealing with dynamic pricing under uncertainty, the

seminal work by Gallego and Van Ryzin (1994) investigate the dynamic pricing

problem for perishable products with stochastic demand that is price sensitive.

They obtain structural monotonicity results for the optimal demand intensity

as a function of the stock level and the length of the horizon. The authors

find the optimal pricing policy in closed form for a range of demand functions.

For general demand functions, an upper bound on the expected revenue is pro-

posed, which is based on the deterministic version of the problem. This bound

is used to prove that simple, fixed price policies are asymptotically optimal as

the volume of expected sales tends to infinity. Besbes and Zeevi (2009) consider

the same problem but with an unknown demand function that is observed as



40 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

the season progresses. They consider a single-product dynamic pricing prob-

lem over a finite sales horizon with demand functions of unknown class. The

objective of the model is to minimise the revenue loss relative to the maximal

revenues that can be extracted when the demand function is known prior to the

start of the selling season. According to Besbes and Zeevi (2009), the Bayesian

approach despite its stylised analysis of the joint learning and pricing problem,

suffers from significant shortcomings, most notably the observation that prior

distribution of demand has unknown parameters. Bertsimas and Perakis (2006)

address this aspect of the uncertainty and offer an alternative to the Bayesian

formulation using a least squares approach in the context of a linear demand

model. Chatwin (2000) studies the case of dynamic pricing of a fixed number

of perishable items and finite horizon. The demand follows a Poisson distribu-

tion with an inverse intensity in relation to the price. They obtain structural

characteristics for the problem e.g. the optimal price declines with time as the

end of product life approaches; and at any given time the optimal price is non-

increasing in the number of unsold items.

Soon (2011) provides a general review of literature concerning treatment of

multiple products in a dynamic pricing context. Chen and Chen (2015) survey

the literature on three classes of dynamic pricing problems: problems with mul-

tiple products, problems with competition, and problems with limited demand

information. Zhu and Thoneman (2009) consider a monopolistic retailer that

stocks and sells two products under stochastic demand. The demand of each

product depends on the price of both products. They show that the retailer

can significantly increase profit by managing the products together rather than

solving the pricing problem for each product individually. Similarly, Broder

and Rusmevichientong (2012) discuss a dynamic pricing model over finite hori-

zon in a monopolistic setting. Under unknown model parameters, the seller

determines a pricing policy that minimises the revenue loss based on maximum

likelihood estimation of the model parameters. In contrast, Perakis and Sood

(2006) study dynamic pricing of a perishable product in an oligopolistic mar-

ket. They obtain the non-cooperative Nash equilibrium policies for competing

sellers. Levin et al. (2009) present a dynamic pricing model for oligopolistic

firms facing strategic consumers. The objective of the competing firms is to



3.1. INTRODUCTION 41

maximise total expected revenues. They provide equilibrium optimality condi-

tions, and prove monotonicity results for special cases. Liu and Zhang (2013)

extend the game theoretic approach by considering competition between two

firms offering vertically differentiated products to strategic customers. They

discuss the effects of strategic behaviour of customers and the unilateral and

bilateral commitments of either of the two competing firms.

The above selection of literature provides an overview of dynamic pricing

problems where demand evolution follows a Bayesian updating in which some

level of knowledge on the distribution of the unknown parameter is assumed.

We now provide a closer focus on different demand evolution models in the

literature in the context of dynamic pricing.

3.1.3 Demand Models

The majority of dynamic pricing literature treats demand models as indepen-

dent over time and dependent only on price. We argue that in many cases the

demand of a product is dependent not only on price, but also on time and is

furthermore influenced by other exogenous factors such as market conditions.

In this section, we provide an assessment of literature on demand models and

provide reasoning for the suitability of an autoregressive representation of the

demand process.

The majority of demand models are deterministic models where the sell-

ers have perfect knowledge of the demand process i.e. customer behaviour is

known throughout the time horizon considered. In this research, we assume a

linear demand model with stochastic elements. Stochastic demand models are

mainly formulated based on a specific probability distribution and the assump-

tion that the mean of demand is a linear function of price either additively or

in a multiplicative fashion.

Aviv and Pazgal (2005) provide a Markov decision process (MDP) approach

to solve a dynamic pricing problem using a heuristic method called Information-

Structure Modification which takes into consideration the different shapes of

demand function and transition matrix. Farias and Van Roy (2010) study a

problem of dynamic pricing with limited inventory with the objective of max-



42 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

imising expected discounted revenue over an infinite time horizon. The authors

study an uncertain demand function and develop a heuristic approach. A key

result is that uncertainty in the customer arrival rate impacts the price posi-

tively. Fan et al. (2005) consider the dynamic pricing problem in an optimal

control setting and obtain optimal prices for a demand function that depends

on the price, cumulative sales up to the current period and market potential.

They find structural properties for the optimal solution i.e. the unit revenue

is linearly related to the demand elasticity of price and is constant over time

when the demand elasticity is constant. Araman and Caldentey (2009) offer a

dynamic pricing model for the non-perishable product where demand is driven

by a price-sensitive Poisson process that depends on an unknown parameter as

a proxy for the market. The demand is updated as time and available informa-

tion (prices and sales) evolve. They derive structural properties of the optimal

solution, and provide a simple and efficient approximate solution.

In general, customers are less informed about a product at the start of its life

cycle. Future demand can be affected via different advertisement campaigns and

various word-of-mouth potentialities of the product. According to Elmaghraby

and Keskinocak (2003), for most non-durable goods, demand is independent

over time, i.e. current sales do not have an impact on future sales. This is cer-

tainly true for most necessity items, such as milk and bread, where consumers

make frequent repeat purchases. Also for most seasonal goods, the selling hori-

zon is usually too short to allow for any significant knowledge acquisition by

customers to have an impact on the demand. However this behaviour is reversed

for high value products or products that possess habit building traits or have

a knowledgeable customer base. An example pertaining to this situation is the

high end fashionable items that have a dedicated following and strong media

presence that act as a word-of-mouth mechanism towards the loyal and fashion

aware customers. They are also accompanied by focused ad campaigns that

target the new and changing customers and there is uncertainty surrounding

new products in the marketplace. Another example of this kind of product is

the high end technological products such as smartphones and tablets which are

constantly observed by the media and experts and tend to form loyalties among

customers.



3.1. INTRODUCTION 43

According to Perakis and Sood (2006) a key assumption in the demand

representation is that the demand functions and associated uncertainties are

separable over time-periods. That is, “the buyers are influenced primarily by the

current period prices they see...” They suggest as a next step in their research

an enhanced model that considers how the history of demand will affect the

present demand function (buyer behaviour and their reaction to price changes).

A number of recent models have been developed which allow for dependent

demand between periods. The models of Anderson and Wilson (2003), Su

(2007) and Wilson et al. (2006) consider markets with strategic consumers who

may wait for firms to offer lower prices. Another form of dependency between

periods is caused by reference effects. Popescu and Wu (2007) examine how

reference effects impact the choices made by consumers. The authors argue

that customers respond to a price by comparing it to past prices they were

exposed to, the so-called “reference prices”. They find that if reference prices

are not taken into account, firms will be faced with lost revenues because of

setting the prices too low.

According to Xu and Hopp (2006) the majority of the dynamic pricing

literature assumes customer arrivals to follow a Poisson distribution, implying

independent demands across intervals. They argue that because in reality there

is a correlation in the demand structure, the historical demand information

can be very valuable in dynamic pricing. They offer a geometric Brownian

motion to represent the demand evolution, which is Markovian and partially

captures demand correlation. Its use in place of a Poisson process would cause

pricing policies to depend on current demand information and would permit

integration of demand forecasting with pricing. Startz (1989) provides empirical

evidence that purchases of non-durable goods and services approximately follow

an autoregressive process of level one (AR(1)). He concludes that the forecast

contribution of available information for non-durable products is statistically

significant. In the sphere of non-durable products, Duffy (2003) tests for the

influence of advertising on the inter-product distribution of consumer demand.

The long-run demand for seven categories of non-durable products is modelled.

The author observes that lagged effects are important in influencing the demand

of products with habit formation characteristics such as alcohol and tobacco.



44 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

This effect is often modelled by inclusion of a first-order lagged value of the

consumption variable.

In this paper we consider a non-durable product that has a strong word-of-

mouth potential and is accompanied by an advertisement campaign. For the

purposes of clarity, in the remainder of this paper we assume the product under

consideration to be a high end fashion product. We assume an autoregressive

demand process for this product, in which demand is not only price elastic,

but also corresponds to demand value in the previous period. As mentioned

above, the demand models considered in literature do not accommodate such

assumptions. We address this gap, by arguing that such assumption is justified

through various real-world observations, e.g. some products may experience a

lag in the intended boost in demand via advertisement or the time it takes for the

word-of-mouth to spread around. We develop a demand model that represents

these characteristics and discuss the framework resulting from incorporating

such model with dynamic programming method. We then provide solutions to

the model and analyse the implications of our assumptions through numerical

analyses.

3.1.4 Contributions and Paper Structure

This research paper aims to contribute to the dynamic pricing literature in

the following ways. We introduce a dynamic programming framework for the

dynamic pricing problem with an autoregressive demand evolution model and

provide a simple solution for the unconstrained model. The structural prop-

erties of the optimal pricing policy is explored through a range of numerical

analyses. We discuss the relevance and application of autoregressive model in

describing the demand evolution. We then expand the framework by incor-

porating product stock capacity and price constraints that exist in real-world

applications into the dynamic programming model and study the structure of

the resultant model. Finally, we provide an approximate dynamic programming

solution to the extended model that utilises the structure of the problem and

the uncertainty in state evolution to provide near optimal results.

The rest of this paper is organised as follows. In section 3.2 we first describe



3.2. PROBLEM DESCRIPTION 45

the parameters of the dynamic pricing problem followed by description of the

basic model. We then propose extensions to the model in section 3.3 and provide

near optimal solutions using approximate dynamic programming. Section 3.4

provides the numerical experiments and assessment of the structural behaviour

of the models discussed in sections 3.2 and 3.3. Finally in section 3.5 we conclude

our discussion and propose potential research directions.

3.2 Problem Description

We assume the market to be a monopolistic (non-competitive) environment in

which the decision maker can set prices independently for each period. We

also assume a discrete time (multi-period) model in which the product is priced

in each period. The season is defined as finite horizon which corresponds to

non-durable products. Additionally, the salvage value is zero and any unsold

item at the end of the horizon will be discarded. This assumption is widely

adopted in the literature based on the observation that any problem with a

fixed salvage value can be reduced to a problem with zero salvage value without

loss of generality. The demand is stochastic with a white noise element that

represents uncertainty. Finally, the demand is portrayed as an autoregressive

behaviour pertaining to the advertisement and word-of-mouth and the delay

inherent in the awareness of the customers about the product’s existence and

price information.

This problem definition is applicable to a wide variety of products with

above characteristics; namely non-durable products with a strong base of loyal

customers, but also a critical assessment in the market for their manufacturing

and design quality and other merits. The high end fashionable products are

usually accompanied by an ad campaign and a strong word of mouth among

the loyal followers of the brand and the fashion industry in general through

media and critical reviews. However, the same is true for high end technological

products and modern gadgets that garner huge followings among consumers and

critics. Sporting equipment that utilise the latest technologies such as bicycles

also have strong following and similar demand evolution pattern to the model

we are considering and all these products lose their value significantly at the



46 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

end of season and are usually cleared to discount stores.

We consider two variations of the problem. In the basic variation, a non-

capacitated version of the problem is solved. In a later section we provide the

framework to solve the capacitated problem to near optimal results. In the basic

form of the problem, we assume unlimited supply of the product and thus at the

last period there are no specific limitations on the amount of products. In the

capacitated problem however, we assume the firm has a fixed stock (S̄) of the

product. It intends to sell this stock in a predefined time horizon, after which a

new incarnation of the product will be introduced and the present product will

be assumed decrepit. The demand in both cases is a linear function of price and

previous demand, with random fluctuations representing the uncertainty in the

underlying system.

The objective of the model is to maximise the sales revenue over a finite

set of pricing periods. The price set at each period affects the demand for that

period. However, the demand also evolves through time by an AR(1) process.

Thus, the selection of the most profitable price requires an understanding of the

demand model, which is acquired by observing demand at different prices and

in different periods.

In addition to the above, the problem has some underlying assumptions that

require special attention. The main underlying assumption is that all the ran-

dom variables have a normal distribution. This will result in negative optimal

prices, if the volatility of the demand is too large. In section 3.3.2 we provide an

extended model that takes into account this probability. Closely related to this

assumption is the consideration that the demand becomes negative following

too large prices; an infinitely large price might be optimal as it would lead to a

large profit, but in the following periods it will lead to very small and possibly

negative demands if the demand model contains reverse relation between de-

mand and price. The inclusion of price constraint in section 3.3.2 will curb the

probability of negative demand, but we illicitly assume that the parameters are

of reasonable value and demand cannot be negative. Finally, we assume a valid

and accurate knowledge of the prior values of the demand model parameters.

Especially if we are dealing with multi-product models with cross elasticities be-

tween product prices and their demand, the accuracy of the process of acquiring



3.2. PROBLEM DESCRIPTION 47

the initial parameter values should be given a higher priority.

3.2.1 The Basic Model

The seller aims to maximise its revenue through maximising its sale of the

product during T periods. We assume the period length to reflect the common

notion of season in retail of fashion products. For instance, a six month season

is relatively long in this context and the assumption of period t to have one

week length would result in 24 decision periods. Denoted by dt is the demand

in period t at price pt, where t = 1, 2, ..., T .

The objective of maximising the revenue may be expressed as:

max E [
T∑

t=1

ptdt].

We will deal with the constraints in a later section and build the underlying

model that takes into account price and capacity constraints. At this stage, we

provide the dynamic programming solution for the non-constrained and non-

capacitated case as it provides the basis for these extended models. Furthermore

the basic model without constraints would be suitable for certain situations

where continuous production is part of the supply chain and the dynamics of

the market is moderate with fairly stable price and demand. An example of this

would be a seasonal product that will not depreciate and apart from the storage

cost during off season will be of the same value. The demand for these range

of products is also stable which limits the level of demand response the retailer

can exercise with customers. Although this would result in limited benefit from

the dynamic pricing, it would provide a basis for controlling the stock levels in

a larger scale.

The demand evolution model has two distinct components: the dynamics of

dt in the absence of our pricing (the fluctuations in demand caused by market

dynamics and the delayed effects of the ad campaign and the word-of-mouth),

and the impact that price pt has on the demand for this period. The former

component is given by an AR(1) process, and the latter is simply a linear

function of price. Thus the demand is linearly related to the demand in the

previous period as well as the price. The law of motion for demand may be



48 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

expressed as:

dt = ψdt−1 − θpt + ǫt,

where ψ is the autoregressive parameter, θ is the linear coefficient for the pricing

impact on the demand (assumed throughout this paper to be positive) and ǫt

is an independent, identically distributed variable with normal distribution and

mean zero.

The basic ingredients for any dynamic programming problem are the state

of the environment at time t, the control variable, the randomness, the value

function, and the law of motion (Powell, 2011). In the context of the non-

capacitated problem, the state at time t consists of the demand realised at the

previous period (dt−1). The state variable summarises all the information the

retailer requires in each period t to make a decision. The decision variable at

time t is the price pt. The market dynamics are characterised by the random

variable ǫt.

The compact model is:

max E [
T∑

t=1

ptdt] (3.1)

s.t. dt = ψdt−1 − θpt + ǫt. (3.2)

The dynamic programming algorithm is based on the observation that a

solution p∗1, p
∗
2, ..., p

∗
T must also be optimal for the remaining program at every

intermediate period t. The Bellman equation which relates the optimal value

of the objective function in period t to its optimal value in period t + 1 is as

follows:

Vt(dt−1) = max
{pt}

E[ptdt + Vt+1(dt)],

where {pt} is the set of all available prices during period t.

By starting at the end (period T ) and applying the above Bellman equa-

tion and the demand evolution model recursively, the optimal price and value

function for each period can be derived as a function of the state variable that

characterises the information the retailer possesses in each period. In particular



3.2. PROBLEM DESCRIPTION 49

the value function VT (.) as a function of the state variable dT−1 is given by:

VT (dT−1) =max
{pT }

E[pTdT ]

=max
{pT }

[ψpTdT−1 − θp2T ],

resulting in the optimal pricing for the last period:

p∗T = ψdT−1

2θ
,

and optimal value function:

V ∗
T (dT−1) =

ψ2d2
T−1

4θ
.

For the period before last we are faced with a less trivial Bellman equation:

VT−1(dT−2) = max
{pT−1}

E[pT−1dT−1 + VT (dT−1)]

= max
{pT−1}

[pT−1(ψdT−2 − θpT−1) +
ψ2(ψdT−2 − θpT−1)

2

4θ
],

yielding the optimal price and value function:

p∗T−1 =
ψ(ψ2−2)dT−2

θ(ψ2−4)
,

V ∗
T−1(dT−2) = −

ψ2d2
T−2

θ(ψ2−4)
.

By continuing in this fashion, although the formulation expands, we are able

to recognise a pattern in the underlying structure of the optimal value for value

function and optimal price. With the help of Mathematica software package we

were able to confirm the following formulation to hold up until t = 5. Thus the

optimal value for the value function during period t is:

V ∗
t (dt−1) ∼= (−1)t

ψ2(ψ2 − 4)m

4jθ(ψ2 − 4)l
d2t−1, (3.3)

and optimal price as:

p∗t
∼=

ψ

(t+ 2)θ
(
(ψ2 − 4)l

3(ψ2 − 2)l
)(−1)tdt−1,

where l =
⌈
t
2

⌉
, m =

⌈
t−1
2

⌉
and j =

⌊
m+1
l+1

⌋
.

Although, as mentioned before, the applicability of the basic model on our

problem is limited because we have ignored the capacity and sign constraints (for



50 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

price and demand), it would be useful to look at its potential implementation

in a real-world situation. The retailer can maximise the revenue over a fixed

period based on the demand during the previous period and the values for

ψ, θ and ǫt from historical data. Thus in a situation where the notion of

stock and capacity can be ignored (such as a continuous production where

the holding costs are negligible), the model above can be used to provide an

upper bound on the expected revenue under the market volatility deduced by

ǫt. The basic model also provides an easy to compute solution that could be

the basis for developing efficient numerical methods where the computational

speed can help explore the structure of the value function and how it responds to

different parameters of the model. Furthermore, we can use the basic model as a

yardstick to benchmark the computational performance and ability in handling

the addition of constraints of the more complicated methods. In this paper,

we use the basic model and above results for evaluation of our results from the

approximate dynamic programming method (section 3.3.3) and to develop the

naive method (see section 3.4) that is a heuristic application of constraints on

the basic model. However, for the problem at hand, it is essential to include

capacity and price constraints in the model in order for it to be applicable to

real-world situations we intend.

3.3 Extensions to the Basic Model

In this section we present the necessary extensions to the model in section 3.2.1

and provide an approximate dynamic programming solution to the resultant

model. We look at the case of predefined capacity that has to be sold by the

end of the season. This is a more general problem to which a closed form

solution does not exist.

Another important extension to the basic model is the inclusion of price

constraints in the model described in section 3.2.1. Because of the assumptions

made in the non-capacitated model, there is a positive probability that the

optimal pricing policy contains prices outside the practical range. To avoid

such results, a constraint on the price must be included.



3.3. EXTENSIONS TO THE BASIC MODEL 51

3.3.1 The Capacitated Model

Suppose that at the start of period 1 the seller begins the season to sell S̄

products, and this program must be completed by the end of period T as a new

product will be launching in period T + 1. We call this situation capacitated

because the capacity assigned to the product is a hard constraint and will affect

the state of the system. At any period, if the demand is bigger than the number

of products left, we will have to choose the number of products left as the actual

sales. We introduce a revised version of the demand evolution to account for

this constraint where dt is the actual sales at period t. The state of the system

at time t consists of the sales at the previous period (dt−1) and the number of

products that are yet to be sold at the start of period t (zt−1). The decision

variable at time t is the price pt.

The state variable z evolves based on the following equation:

z0 = S̄,

zt = zt−1 − dt.

To put these considerations into a compact model we have:

max E [
T∑

t=1

ptdt] (3.4)

s.t. dt = min(ψdt−1 − θpt + ǫt, zt−1), (3.5)

z0 = S̄,

zt = zt−1 − dt. (3.6)

The Bellman optimality equation is as follows:

Vt(dt−1, zt−1) = max
{pt}

E[ptdt + Vt+1(dt, zt)].

By starting at the end (period T ) and applying the Bellman equation above

and the demand evolution model recursively, the optimal price and value func-

tion for each period can be derived as functions of the state variables that

characterise the information the retailer possesses in each period.

For the particular case of period T we define the value function VT (.) as a



52 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

function of two state variables dT−1 and zT−1 which can be obtained by:

VT (dT−1, zT−1) = max
{pT }

E[pTdT ]

= max
{pT }

[pT min(ψdT−1 − θpT , zT−1)].

The existence of the min expression in the value function indicates that

there is no closed form solution to this specific dynamic programming model.

If we were to follow the classic dynamic programming method, in addition to

the loop over the state and decision variables, the number of value functions to

be calculated would double at each period and by the time the backward stage

is completed we would be faced with 2T value functions. However, this is not

all the difficulty we must overcome.

3.3.2 Non-negativity Constraint

So far we have overlooked the possibility of negative prices. However, since the

probability of a negative price with this formulation is positive, i.e. in a volatile

market situation it is likely to be part of an optimal pricing policy, the decision

maker in reality will replace such prices (negative or too small or large) with

a price that falls into the acceptable range. Thus, if we incorporate the price

constraints to the problem, we will be able to balance the revenue lost in periods

with very low demand (without resorting to very small or negative prices) with

higher prices in the periods with higher demand. There is strong justification

for the substantial added complexity by considering the price constraints in the

dynamic programming model. As such an approximation is usually necessary

to arrive at near optimal results.

In order to incorporate the price constraints, we only need to add the ex-

pression pmin ≤ pt ≤ pmax to the list of constraints in the model. Both pmin

and pmax are strictly positive values. The sign constraint, although simple in

appearance, would expand the state space at every stage of the dynamic pro-

gramming algorithm threefold, which would be computationally intractable for



3.3. EXTENSIONS TO THE BASIC MODEL 53

problems of considerable size.

max E [
T∑

t=1

ptdt]

s.t. dt = min(ψdt−1 − θpt + ǫt, zt−1),

z0 = S̄,

zt = zt−1 − dt,

pmin ≤ pt ≤ pmax.

Since if we augment the state in any form (as in multi-product case or with

demand models in the higher order of autoregressive behaviour), the computa-

tional burden of such problem will grow exponentially (even for medium number

of periods), we propose here an approximate method that will yield near optimal

solutions with little computational effort.

3.3.3 Approximate Dynamic Programming

Approximate dynamic programming is a collection of approximation methods

that are devised to address the inherent problems of dynamic programming

framework in dealing with constraints and the curses of dimensionality. Classic

approaches to dynamic programming are unable to deal with exponential growth

of the computational requirements as the state and action spaces expand. Unless

the problems are defined to very restrictive assumptions, a simulation of the

system is more easily constructed than a representative model.

In this paper we employ an approximate dynamic programming method

which uses an approximation of the value function in the forward stage instead

of calculating exact value functions in the backward stage as is the case in the

classic dynamic programming. In order to recreate the process forward in time,

we solve two interconnected problems: The choice of system state most likely

to happen; which we solve through Monte Carlo simulation. And to determine

what is the best choice of action once we are in the next state; which we answer

through the approximated value function.

Denote V̂t(yt) as the approximate value function instead of the exact value

Vt(yt), where yt = [dt−1 zt−1]
⊺ represents the state variable at period t. It should



54 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

be noted that although V̂t(yt) is considered to be a function on the full state

space, it need not be, since it is an approximation. In the problem at hand,

the state consists of demand at the previous period and the number of items

left at the start of period. However, an approximate value function that is

only dependent on the number of items left is equally valid for the purposes of

approximate dynamic programming in this paper. However, since we augment

the state variable to include the number of items left as well as the demand

variable and since the presence of a price constraint will lead to a piecewise

value function, we choose one of these value functions as our approximations

after we ascertain that it is quadratic in state variable.

If we assume V̂t(yt) to be quadratic in yt, we can approximate the parameters

of the value function at each period through the set [At, Bt, Ct] if we assume

the value function has the form: Vt(yt) = y⊺tAtyt +B⊺

t yt + Ct.

The augmented state space yt in the extended model evolves based on the

following:



dt

zt





︸ ︷︷ ︸

yt+1

=




ψ 0

−1 1





︸ ︷︷ ︸

Ω




dt−1

zt−1





︸ ︷︷ ︸

yt

−




θ

0





︸ ︷︷ ︸

Θ

pt +




ǫt

0





︸ ︷︷ ︸

∆t

.

Based on above state variable, the value function at period t will be:

Vt(yt) = max
{pt}

E[pty
⊺

t e1 + Vt+1(yt+1)],

where e1 is the first column of identity matrix with dimensions corresponding

to the dimension of state variable.

If we plug in the state evolution equation yt+1 = Ωyt−Θpt+∆t into VT (yT )

in the last period (T ) we have:

VT (yT ) =max
{pT }

E[y⊺T+1e1pT ]

=max
{pT }

E[(ΩyT +ΘpT +∆T )
⊺e1pT ]

=(ΩyT )
⊺e1pT +Θ⊺e1p

2
T .

Now if we consider the value function at period t + 1 to be in the form of

Vt+1(yt+1) = y⊺t+1At+1yt+1 + B⊺

t+1yt+1 + Ct+1, following the Bellman procedure



3.3. EXTENSIONS TO THE BASIC MODEL 55

we will have:

Vt(yt) =max
{pT }

E[y⊺t+1e1pt + y⊺t+1At+1yt+1 + B⊺

t+1yt+1 + Ct+1]

=max
{pT }

E[y⊺t+1e1pt + (Ωyt +Θpt +∆t)
⊺At+1(Ωyt +Θpt +∆t)

+B⊺

t+1(Ωyt +Θpt +∆t) + Ct+1],

resulting in the equation:

Vt(yt) =(Θ⊺At+1Θ+Θ⊺e1)p
2
t

+((Ωyt)
⊺e1 + (Ωyt)

⊺At+1Θ+Θ⊺At+1Ωyt +B⊺

t+1Θ)pt

+[(Ωyt)
⊺At+1Ωyt +∆⊺

tAt+1∆t + B⊺

t+1Ωyt + Ct+1].

Since we have ignored the constraints on price, we would have the following

optimal price if we solve above Vt(yt) for pt:

p∗t = −
y⊺t φt + βt

2γt
,

where

φt = (Ω⊺e1 + Ω⊺At+1Θ+ (Θ⊺At+1Ω)
⊺),

βt = B⊺

t+1Θ,

γt = Θ⊺At+1Θ+Θ⊺e1.

But as we are implementing the constraint pmin ≤ pt ≤ pmax, at each period

the optimal price is decided based on the three possible outcomes of where p∗t

is situated and consequently where yt falls in the state space:

pt =







pmin if −
y⊺t φt+βt

2γt
< pmin,

pmax if −
y⊺t φt+βt

2γt
> pmax,

−
y⊺t φt+βt

2γt
if pmin ≤ −

y⊺t φt+βt
2γt

≤ pmax

We will have three ranges for the state variable, each of which will yield

different value functions. We define U1 = {y| −
y⊺t φt+βt

2γt
< pmin}, U2 = {y| −

y⊺t φt+βt
2γt

> pmax}, and U3 = {y|pmin ≤ −
y⊺t φt+βt

2γt
≤ pmax} to be mutually exclusive

domains for y. If we replace the pt,j (j = 1, 2, 3) in Vt(yt) with above results, we



56 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

will have the following optimal value function for the specific region j at each

period t (t = 1, 2, ..., T ):

Case j=1 : y ∈ U1

Vt(yt) = y⊺t (Ω
⊺At+1Ω)yt+(B⊺

t+1Ω+φtpmin)yt+γtp
2
min+βtpmin+∆⊺

tAt+1∆t+Ct+1.

Case j=2 : y ∈ U2

Vt(yt) = y⊺t (Ω
⊺At+1Ω)yt+(B⊺

t+1Ω+φtpmax)yt+γtp
2
max+βtpmax+∆⊺

tAt+1∆t+Ct+1.

Case j=3 : y ∈ U3

Vt(yt) = y⊺t (Ω
⊺At+1Ω)yt + (B⊺

t+1Ω)yt +∆⊺

tAt+1∆t + Ct+1.

In all three cases, this results in a quadratic equation.

We will use the value function calculated above in case j = 3 as an approx-

imation to the value function in our full (capacitated and constrained) model.

V̂t(yt) = y⊺tAtyt + Btyt + Ct. (3.7)

Please note the relationship between the parameters of the quadratic equa-

tion in periods t and t + 1 defined through: At = Ω⊺At+1Ω, Bt = B⊺

t+1Ω and

Ct = ∆⊺

tAt+1∆t + Ct+1. We use this relationship in initialising the parameters

of the value function for the first iteration V̂ 0
t (yt) in algorithm 1.

The chosen approximate value function represents the areas of the state

space that are inside the constraint boundaries. This means that we approx-

imate the value of being in any state (including states that are outside the

constraint bounds) with the value function that maximises the revenue when

the state is inside the bounds.

We further explore the state space by following randomly selected state

paths and thus avoid calculating the exponentially growing number of value

functions in advance. Once we find the approximate value function (3.7) we

move through periods by selecting a sample path that represents the evolution

of the system. We denote by ω the sample path and the evolution of the state

following this sample path by yt+1 = F (yt, pt,Wt+1(ω)) in which Wt(ω) is the

random value pertaining to period t by the sample path ω.



3.3. EXTENSIONS TO THE BASIC MODEL 57

Finally we can define:

F (yt, pt,Wt+1(ω)) = Ωyt +Θpt +Wt+1(ωt).

The proposed approximate dynamic programming algorithm aims to capture

the simplicity of the value function in a non-constrained model and provides an

exploratory element through the sample path ω to converge to near optimal

solutions in a fast time-frame. This is presented in algorithm 1.

Algorithm 1: Approximate Dynamic Programming

Initialise V̂ 0
t (yt) for all states yt

Establish the initial state y10

Set n = 1

for n = 1 → N do

for t = 1 → T do

Choose a random sample of outcomes Ω̂n ⊂ Ω

representing possible realisations of the random

fluctuation between periods t and t+1.

Solve the following maximisation problem

υ̂nt = max[
∑

ω̂∈Ω̂

pn(ω̂)(ptdt + V̂ n−1
t+1 (F (ynt , pt,Wt+1(ω))))]

Set pt that maximises above expression to be pnt

Update V̂t using

V̂ n
t (yt) =







αn−1υnt + (1− αn−1)V̂ n−1
t (ynt ) if yt = ynt

V̂ n−1
t (yt) otherwise

Compute yt+1 using

ynt+1 = Ωynt +Θpnt +Wt+1(ωt)

Choose pNt as the pricing policy.

Algorithm 1 provides a platform by which we explore the potential gains of

including the price and capacity constraints. By foregoing the backward stage

of the dynamic programming we gain computational advantage while we are



58 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

well placed to take advantage of the structure of the value function. Instead of

calculating the value function for each period, we assume an approximation for

the value function at each period that captures the specific characteristics of

the real value function according to the problem at hand. We provide numerical

experiments in the next section as an overview of the results.

3.4 Numerical Experiments

In this section we provide numerical experiments to better understand the be-

haviour of each model. We show through an example that the negative prices

are probable in the basic model solution, and through extending the same ex-

ample provide a view of how each method behaves under volatile conditions.

We then provide graphs and discussions about how each method performs based

on variations in different parameters.

We programmed the models through MATLAB software package (v2014b)

and execute all the experiments on a 64-bit Windows 7 workstation with 4GB

of memory and quad-core Intel CPU at 2.6GHz. As the computation time of all

the following experiments were very fast (any execution for any problem config-

uration was less than ten milliseconds) we do not include a detailed examination

of the computational performance.

3.4.1 Dynamic Pricing Using the Basic Model

We examine the behaviour of the basic model with a numerical example of the

best-pricing strategy for four simulated realisations of the demand throughout

the season. Table 3.1 outlines the results of a single random run of the basic

model through the season and the optimal price and realised demand at each

period. The goal in this simulated example is to maximise the expected revenue

over 10 periods. The decision maker chooses a price at each period to receive

the best revenue over the whole season. If the prices are too high, the demand

will decline, and if the price is too low, the revenue will be too little for the

immediate periods. Thus the goal is to strike a balance between current prices

and future demand. Recall that since the length of a period between price



3.4. NUMERICAL EXPERIMENTS 59

changes is arbitrary, we can set the period length to reflect the smallest time that

is relevant in practical terms. We believe it to be rare for a retailer of fashion

products to change the prices more than once every week, prompting us to put

the finest definition of period to be one week. A six month season (relatively

long in this context), would comprise of maximum 24 decision periods. Thus the

choice of T = 10 is a reasonable choice for purposes of illustration. We assume

the parameters of the demand evolution model to be ψt = 2, and θ = 0.1. ψ

is the coefficient explaining the relationship between current demand and the

demand in the previous period. A value of ψt = 2 means that demand would

double each period if other factors are ignored. The demand in real situations

would follow subtler relation to its historical values. However, since it is affected

by the price and market volatility as well as the previous demand, the actual

demand evolution can be even more volatile than in this example. θ is the

coefficient that represent the price elasticity of demand in (3.5). As an intuition

for these parameters, the value of θ is designed to produce an optimal price of

$500 given ψ and an initial demand value of 50 items. If we assume the demand

to be constant over the ten periods (which would result in the optimal pricing

strategy of $500 over the whole season), the total sales revenue would amount

to $250000.

In practice, however, the optimal price will also be affected by the dynamics

of the product stock. We simulate the above example for various realisations of

σ2
ǫ in the basic model corresponding to a variety of market volatility situations.

As can be seen in Table 3.1, the occurrence of negative prices is more likely

when the demand process is more volatile.

The above numerical example clearly demonstrates the necessity of the ap-

plication of the sign and capacity constraints in the basic model if we are to be

certain of the pricing policy under uncertain market conditions.

3.4.2 Effects of Incorporating Sign Constraints

We extend the above example to determine the behaviour of the approximate

method that introduces constraints to the model and solves the dynamic pro-

gramming model to near optimality following the procedure set out in algo-



60 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

σ2
ǫ=1 σ2

ǫ=10 σ2
ǫ=100 σ2

ǫ=1000

Period p d p d p d p d

1 500 49 500 49 500 47 500 41

2 497 48 491 46 473 37 414 10

3 487 49 460 48 374 44 101 31

4 494 48 481 47 440 39 310 15

5 489 49 465 48 390 45 154 35

6 495 47 484 43 450 28 345 -20

7 477 47 430 42 279 23 -198 -34

8 473 47 415 43 233 28 -344 -18

9 478 47 431 43 282 28 -188 -16

10 478 47 433 42 288 24 -168 -31

Total revenue 236083 207708 133441 53197

Table 3.1: Optimal pricing strategy (p), observed demand (d) and the total amount

of sales revenue for various volatility rates (σ2ǫ values) obtained by the Basic method

rithm 1 in section 3.3.3. As a benchmark, we also introduce a naive implemen-

tation of the constraints after we have solved the problem through the basic

model.

Table 3.2 contains the pricing policy and demand evolution in a sample run

with all three methods for the case of σ2
ǫ = 1000. The basic method is the

method discussed in section 3.2.1 dealing with the non-capacitated case. Naive

method is the basic method with a naive implementation of price and capacity

constraints (i.e. the number of items left in stock). And ADP refers to ap-

proximate dynamic programming method which we explain in section 3.3.3 and

incorporates the price and capacity constraints into the dynamic programming

framework.

Analysing the result of Table 3.2 is straightforward. The Basic method

does not provide any constraints, and thus have negative demand and price in

later periods. The Naive method curtails the negativity to predefined values

based on the solution of the basic model. Therefore the early pricing strategy

is the same as the basic method. However, the addition of constraints in this

case reduces the eventual actual revenue because the basic model produces

both negative prices and negative demands resulting in positive revenue, which



3.4. NUMERICAL EXPERIMENTS 61

Basic Naive ADP

Period p d p d p d

1 500 41 500 41 283 56

2 414 10 414 10 419 48

3 101 31 101 31 446 52

4 310 15 310 15 327 44

5 154 34 154 34 289 66

6 345 -19 345 0 288 46

7 -198 -34 50 0 313 56

8 -344 -18 50 10 442 52

9 -188 -16 105 12 326 64

10 -168 -31 125 0 407 56

Total 53197 40115 190030

Table 3.2: Optimal pricing strategy (p), observed demand (d) and the total amount

of sales revenue for σ2ǫ = 1000 for the three methods

clearly is not logical. The ADP method, however, has overcome the addition of

constraints and furthermore yields a better revenue than both basic and naive

models. Please note that we include these results to provide a snapshot of the

solutions in real-world execution. Since the choice of example is random, the

better performance of ADP method is incidental. The ADP algorithm simply

provides a higher probability of better performances. In later examples we will

explore the performance of the methods over many simulation runs and provide

better insight on the overall performance of each method. ADP will provide a

larger number of better solutions in the long run compared to the naive method

because we are maximising expected revenue. Important to note at this stage is

the ability of the ADP to provide prices within the defined bounds and providing

a mechanism to control the sways of demand.

Knowing that the ADP method provides reasonable pricing strategies, we

examine the overall revenue generated through each of ADP and Naive methods

to get a better picture of how these methods behave over many executions and

in relation to expected revenue. The results shown in figure 3.1 are drawn

from running the model with the same parameters as the example above with

demand model parameters set as ψt = 1.7, and θ = 0.085. The choice of



62 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

parameter values provides an optimal price of $500 given an initial demand of

50 units as in the example above, but the demand evolution is less sensitive to

price and previous demand. We run each method with the same parameters

for 30 simulation runs, to negate the effect of volatility and provide an insight

into the real efficiency of each method. We apply the value $300 as lower price

limit and the value $500 as higher price limit. Although this might be rather

restrictive, in this instance it is only to gauge the efficiency of the methods in

handling the constraints.

Figure 3.1 offers a clear view of the methods and their efficiency. The approx-

σ
ǫ

2
10-2 10-1 100 101 102 103

A
ct

u
a
l r

e
ve

n
u
e

×105

0.5

1

1.5

2

2.5

3

NAIVE

ADP

Figure 3.1: Actual sales revenue for the two methods with variable σ2ǫ rates

imate model (ADP) clearly outperforms the Naive method on all the volatility

levels. In the naive method, where we have applied a rudimentary handling

of the price range as explained above, the results are generally lower but with

more consistency. We can see a marginal improvement by the Naive method as

the volatility becomes very high, because the optimal prices will be closer to the

defined price bounds with higher probability. Another point to consider is when

σ2
ǫ becomes very high, the naive method improves much faster; about the same



3.4. NUMERICAL EXPERIMENTS 63

pace as the ADP method. This is because when the volatility is very high, the

approximate method will still try to find an approximate value function that

would be near optimal for many scenarios, while the optimal solution is limited

to a single point in the state space. The naive method in these cases will more

frequently provide the near optimal prices (price bounds). Also note that when

σ2
ǫ is near 1000, the demand will change more than 30 units from period to pe-

riod which is a significant number in any business where the historical demand

is in the region of 50 units.

Number of decision periods (T)
5 10 15 20 25

A
ct

ua
l r

ev
en

ue

×105

0

1

2

3

4

5

6

7

NAIVE

ADP

Figure 3.2: Actual sales revenue for the two methods for a sample of decision periods

Figure 3.2 depicts the actual revenue in relation to the variations in the num-

ber of periods in which we change prices. The parameters of the model are the

same as the previous figure, with the variation in demand defined by σ2
ǫ = 100.

The basic model with naive implementation of the constraints outperforms the

ADP for very small period numbers only. Its performance is then almost con-

stant followed by slight improvement as the number of decision periods increase

beyond twenty periods. Since the volatility is fixed for both methods, the only

change in the results is because of the ability of the methods to optimise the



64 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

prices in relation to the demand evolution. The ADP method offers continuous

improvement in period numbers that signifies its superior ability to utilise the

increased possibility of swings in the demand.

0.050.060.070.080.090.100.11
θ

0.120.130.140.151
1.2

1.4
1.6
ψ

1.8
2

2.2
2.4

106

105

A
c
tu

a
l 
re

v
e
n
u
e

Figure 3.3: Actual sales revenue for the naive method with variable θ and ψ

0.050.060.070.080.090.100.11
θ

0.120.130.140.151
1.2

1.4
1.6
ψ

1.8
2

2.2
2.4

105

106

A
c
tu

a
l 
re

v
e
n
u
e

Figure 3.4: Actual sales revenue for the ADP method with variable θ and ψ

In order to gain an understanding of the parameters ψ and θ and how they

affect the revenue if we applied either of the methods, we provide figures 3.3

and 3.4 in which we see the average actual revenue realisations for the Naive

and ADP methods respectively.

What is evident from figure 3.3 is the constant increase in revenue figures

from the naive method as the rate of ψ increases and the rate of θ decreases

simultaneously. It results in marginally higher actual revenue when the levels

of ψ are high and θ is relatively low compared to ADP method. In other words

the Naive method is capable of offering reasonable solutions when the demand



3.5. CONCLUSION 65

is highly autoregressive with low price sensitivity. In those instances the use

of a naive implementation of the constraints might be justified, especially in

problems dealing with moderate volatility levels. In all the other instances it is

under-performing compared to the ADP method.

However, the ADP method, as is evident from Figure 3.4, performs similarly

in the areas where the Naive method has good performance, while it is definitely

superior in all the other instances. It generally improves as the autoregressive

element ψ increases and also as the price elasticity decreases, similar to Naive

method, but with a higher rate.

We observe a plateau in actual revenue for both methods in the area where

ψ is at its biggest and θ at its lowest value. This area is marked by the line

ψ = 1.1 + 10θ (the white line in figure 3.4). This is because of the limitation

in the maximum price we have defined which leads to both methods yielding

the maximum possible revenue. Thus the benefits of the ADP should be sought

in the areas in which a Naive implementation is not as effective. Those areas,

before the plateau occurs, can be said to define product characteristics that

have large numbers of price aware customers. Products with such character-

istics include high end fashion or technological products with a dedicated and

knowledgeable following.

3.5 Conclusion

We study a dynamic pricing problem where sales revenue is maximised over a

fixed season through price decisions. We have defined a linear demand model

that is dependent on the price in the present period and demand during the

previous periods. We provide a dynamic programming framework that pro-

vides near-optimal pricing strategy based on the discussed demand model. We

have shown that under volatile market conditions there is a probability that

the optimal price under dynamic programming setting would fall outside the

reasonable price range. We address this issue with an approximate dynamic

programming method. The results of our simulation runs are encouraging in

the use of approximate method when the dynamic programming method must

include constraints. The use of approximate dynamic programming also enables



66 CHAPTER 3. DYNAMIC PRICING WITH AR DEMAND

us to extend the model even further to accommodate more complex situation

that are relevant to the specific business problem. The case of multiple product

pricing is a valuable addition to the pricing toolbox of the retailer of the product

groups with inter-product elasticities.

This research paper signifies the importance of deriving model elements from

specific product characteristics. Thus, depending on the application and the

products, other models might be more appropriate for explaining the demand

behaviour. Notable models worthy of attention are multiplicative or non-linear

demand models as well as dynamic autoregressive models where the rate of

dependence on previous demand values vary over the season. Furthermore,

the inclusion of an external information variable that would represent general

market condition or expert opinions in the demand model, might add to the

accuracy of the demand evolution reflected in the dynamic programming model.

Although any such variable, if accurately modelled, would augment the problem

state and help the decision maker, the added complexity to the problem should

be assessed against the benefits. As a further step it would be useful to evaluate

certain complimentary information in the specific settings of the product under

study. The managerial insight of such extensions would be substantial.



Chapter 4

Optimal Trading Under

Non-negativity Constraints

Using Approximate Dynamic

Programming

Abstract

In this paper we develop an extended dynamic programming (DP)

approach to solve the problem of minimising execution cost in block

trading of securities. To make the problem more practical, we add

non-negativity constraints to the model and propose a novel ap-

proach to solve the resulting DP problem to near optimal results.

We also include time lags in the problem state to account for the

autoregressive behaviour of most financial securities as a way of in-

creasing problem sensitivity to variability of prices and information.

The computation times achieved for the proposed algorithm are fast

and provide the possibility of live implementation. We demonstrate

the benefits offered by the new approach through numerical analysis

and simulation runs in comparison to the classic model without the

non-negativity constraints.

67



68 CHAPTER 4. DYNAMIC TRADING

4.1 Introduction

4.1.1 Background and Literature Review

The growth in equity trading in recent decades which have been largely due to

the ever increasing amounts of funds available to institutional investors such as

pension and mutual funds, has triggered an interest in more effective manage-

ment of trading costs. These costs are often called transaction costs or execution

costs, which include commissions, bid/ask spreads, opportunity costs of waiting

and price impact from trading. Loeb (1983) was among the first to recognise

the importance of execution costs and discusses different aspects of trading cost

with relation to capitalisation and spread of the stock and the funds available to

the trader. Perold (1988), among others, documents that hypothetical portfo-

lios or passive benchmarks constantly outperform the market and the portfolio

manager by almost 20% per year. Chan and Lakonishok (1993) argue that since

trading in equity markets is increasingly dominated by institutional investors,

the ‘implementation shortfall’ that Loeb (1983) and Perold (1988) discuss, may

be due to the costliness of executing individual trade transactions that result

in a more costly overall execution of the order. This overall transaction cost

prompts the traders to break their order down into smaller transaction units

which is then executed over a certain time period. A trading strategy that

minimises the expected execution cost of the trade is defined as best execution

strategy.

Chan and Lakonishok (1993) study the institutional effects of trade on eq-

uity prices. They argue that since trading in equity markets is increasingly

dominated by institutional investors, the importance of transaction costs are

increasing. They offer three explanations for price changes triggered by large

trade volumes: (i) short-run liquidity costs that arise when there is not an im-

mediate buyer or seller, and the attempt to attract the buyer or seller translate

to a price concession, (ii) imperfect substitution where there is no particular

stock as a substitute and buyer offers a premium for a large transaction, and

(iii) information effects where the amount of trade reveal information about

the trade that is incorporated into the subsequent prices. This and many other



4.1. INTRODUCTION 69

studies document portfolio managers’ inability to outperform various passive

benchmarks, despite considerable effort to analyse and select stocks.

Bertsimas and Lo (1998) were the first to consider the use of dynamic pro-

gramming in acquiring best execution strategy. They argue that the act of

trading affects price dynamics that will result in changes to the future trading

costs (since the demand for financial securities is not perfectly elastic, the price

impact of current trades, however small, can affect the course of future prices).

Also they observe that trading takes time as large trades need to be executed

over numerous periods. They propose and solve the dynamic trading problem

with the use of dynamic programming framework. Bertsimas and Lo (1998)

offer an analytic solution to the transaction cost problem in the case of a single

stock. They solve the problem using dynamic programming methods and offer

numerical analysis based on simulation runs on a scenario representing a real

problem. Bertsimas et al. (1999) provide a similar method to the single stock

model presented by Bertsimas and Lo (1998) to address the portfolio case. They

also develop a new price impact model and an approximate model to solve the

problem with non-negativity constraints for a specific case.

Chakravarty (2001) suggests that the medium sized trading done by institu-

tions (which he argues is the optimal way if the trader intends to sell big block

of shares and prevent big shocks to the market i.e. adverse price impact) has

a disproportionate effect on the cumulative price change compared to trading

in big chunks. Alexander and Peterson (2007) study the effects of trade clus-

tering on various parts of the market. They argue that the size of the clusters

tend toward 100, 500 and 5000 clusters which is mostly used by stealth and

highly informed traders. They study the effects of clustering and block trading

on the price of the underlying stock and conclude that the price impact from

medium sized clusters are much higher than the small or big sized clusters.

Domowitz and Yegerman (2005) review some of the early algorithmic trading

services and give a brief result as to their efficiency compared to manual and

other types of trading considering parameters such as trade size, type of secu-

rity, etc. Butenko et al. (2005) provide models and algorithms for the problem

of liquidating a certain amount of securities with or without the consideration

of risk as a factor in decision making. Engle and Ferstenberg (2006) propose an



70 CHAPTER 4. DYNAMIC TRADING

extension to execution cost problem by incorporating the “risk return” trade-off

into the problem. They achieve this through combination of transaction cost

model with the portfolio planning problem.

Almgren and Chriss (2001) examine the relation between the risk (different

levels of liquidity and the traders’ idea of this) and optimal execution strategy.

They obtain closed form solutions for optimal trading strategy for any level of

risk aversion from the trader. Almgren (2003) offers an update on the Almgren

and Chriss (2001) modelling of the portfolio/stock trading costs by introducing

a more robust price impact model. He incorporates trading-enhanced risk, an

additional volatility measure that corresponds to the change in price following

the demand in a more rapid execution of large blocks (liquidity premium de-

manded by the market is not deterministic). Kissell et al. (2004) build on the

work of Bertsimas and Lo (1998) and Almgren and Chriss (2001) and give a

more detailed breakdown of price change sources and analyse the causal rela-

tionship between these. They offer best execution strategy for three different

scenarios: cost minimisation; balancing the risk vs cost; and price improvement.

Subramanian and Sherali (2010) quantify the liquidity risk which corresponds

to the difference between market price and realisation price from a traders po-

sition. They find an optimality condition for block trading.

He and Mamaysky (2005) offer an optimal execution strategy which is similar

to that of Bertsimas and Lo (1998), but present a different price impact model

based on Merton (1971). Huberman and Stanzl (2005) consider a linear price

impact and argue that in a market without arbitrage opportunity, their pro-

posed linear price impact model is optimal. They extend the work of Bertsimas

and Lo (1998) by considering a risk averse trader. Hasbrouck and Seppi (2001)

study various price dynamics along with other liquidity related issues such as

focusing on the market as a whole and the effect of inter-company trades on the

liquidity of a security. Kissell and Malamut (2006) introduce a framework that

can accommodate different aspects of trading behaviour. A system that can act

aggressively/patiently at times of favourable/unfavourable price changes would

benefit investors greatly. The criteria also include the change in the dynamics

of price changes as well as the different initial prices the algorithms can take.



4.1. INTRODUCTION 71

4.1.2 Contributions and Paper Structure

Although Bertsimas and Lo (1998) acquire the closed form solution and the

resulting trade strategy is the optimal execution strategy, it does not take into

account the non-negativity constraints which would lead to a short-selling sit-

uation when in practice it is not possible to do so. If the price change is severe

in an otherwise normal trade scenario, during a buy operation it might be op-

timal to sell and vice versa, while in practice the trader will not be allowed

to operate based on that insight. This shortcoming might not affect a large

portion of daily trades, but since it is a significant probability when trading

large volumes of securities in a volatile market, the expected cost of ignoring

the non-negativity constraints is still considerable. We develop an approximate

dynamic programming approach to circumvent this costly possible scenario.

Our first contribution to the literature is the inclusion of non-negativity

constraints in the formulation. To the best of our knowledge, the inclusion of

non-negativity constraints has not been treated in the relevant literature. This

constraint, however, increases the complexity of this problem substantially, as

dynamic programming does not lend itself readily to constraints. We present

here an approximate dynamic programming approach that enables us to solve

a large combination of problems to near optimality through a generalised plat-

form.

Our second contribution is to expand the state space such that the price

and information dynamics can include historical data such as prices and infor-

mation in periods further in the past. The motivation behind this decision is

that on many occasions there might be a time lag between previous price and

information and their impact on the price of present period.

Finally, we contribute to the literature through development of a bespoke

Approximate Dynamic Programming method that combines both above contri-

butions into a more complex problem. Our method offers a generalised platform

through which a large combination of problems can be solved fast and near op-

timally.

The rest of this paper is structured as follows: we first present the modelling

approach and results outlined by Bertsimas and Lo followed by our proposed



72 CHAPTER 4. DYNAMIC TRADING

extensions to their model in section 4.2. We then propose an approximate

dynamic programming method in section 4.3 that handles the added sign con-

straints to the problem. We present the results and insights gained through

numerical analysis in section 4.4 followed by conclusion and a look at the future

possible directions for this research.

4.2 Models for Optimal Trade Execution

4.2.1 Basic Model

Consider a situation where a trader wants to buy a number S of shares in T

consecutive periods of equal length. It is assumed that the price dynamics are

known and the price p at period t follows an autoregressive process where it is

related to the prices in the previous periods. It is also assumed that the effect

of trade volume on the price is known to the trader. An additional information

source is assumed, reflecting any complementary data the decision maker might

use to infer the price behaviour. This additional source of information, denoted

henceforth by xt might be an index of the market where the share is traded or

expert knowledge available to the trader.

Consider st to denote the current number of stocks available at each stage

and ut to be the decision variable which is the trade volume in the current

period. Based on these information the decision maker wants to optimise the

number of shares traded in each period in order to minimise the overall cost of

execution of the S shares within the T sequential periods.

The general form of the basic problem (Bertsimas and Lo, 1998) is:

min E

[
T∑

t=1

pt+1ut

]

,

s.t.
T∑

t=1

ut = S, (4.1)

s1 = S, sT+1 = 0, (4.2)

st+1 = st − ut, t = 1, 2, ..., T − 1 (4.3)

xt+1 = ρxt + ηt, t = 1, 2, ..., T (4.4)

pt+1 = pt + βxt + aut + ǫt, t = 1, 2, ..., T (4.5)



4.2. MODELS FOR OPTIMAL TRADE EXECUTION 73

where ηt and ǫt are independent white noise processes with mean 0 and vari-

ance σ2
ǫ and σ2

η respectively. a is assumed to be positive and ρ to be bounded

between 1 and -1, and β is the effect of information on price dynamics and is a

given at the start of the optimisation period. Constraints (4.1) and (4.2) explain

the dynamics of the stock at hand and ensure that all the shares are executed

during the T periods. Constraint (4.3) is to ensure that the number of stocks

(to execute) in the coming period (st+1) is the current number of stocks avail-

able (st) minus the trade volume in the current period. And constraints (4.4)

and (4.5) express the dynamics of information and price evolution accordingly.

Finally, the objective function is the expected cost over the trading period.

Throughout this study the execution is assumed to be a buy operation.

However, the results would be applicable to a sell operation without any loss

in generality. The objective of such problem would be to maximise revenue.

Another point to be noted is that while the occurrence of negative prices in the

model is possible, we implicitly assume that the parameters of the model are

of such values as to make this unlikely. Thus we treat the model without such

limitation.

4.2.2 Limitations of the Basic Model

In the original model by Bertsimas and Lo (1998) the price is assumed to follow

an AR(1) process (i.e. it depends only on the price in the previous periods).

However, many price processes in financial domain exhibit autoregressive at-

tributes of higher order. We extend the assumption of the basic problem to

include AR(m) in price evolution. A further possible extension is the inclusion

of an autoregressive information vector (xt). The assumption that the process

is autoregressive is justified by the amount of time needed for the whole market

to note the changes in price (and information) and assess their effects.

The other limitation in the implementation of the basic model is the absence

of non-negativity constraints. Based on the variance of the information variable

and also the price, the optimal solution might suggest a negative trade (i.e. sale

in a buy operation). In a real situation where the short-selling option is not

available, a naive strategy is to change the negative trades to zero. However,



74 CHAPTER 4. DYNAMIC TRADING

such a solution would significantly reduce the intended benefits of the model

e.g. minimisation of transaction costs.

In the coming section we address these limitations by offering a flexible

framework that provides near optimal results while handling the added com-

plexity of non-negativity constraints and offer a generalised platform through

which a large combination of problems can be solved fast and near optimally.

4.2.3 Extended Model

We first extend the price dynamics to an AR(m) process and present the closed

form solution in line with the results of Bertsimas and Lo (1998). The resulting

model is:

min E

[
T∑

t=1

pt+1ut

]

,

s.t.
T∑

t=1

ut = S,

s1 = S, sT+1 = 0,

st+1 = st − ut, t = 1, 2, ..., T − 1

xt+1 = ρxt + ηt, t = 1, 2, ..., T

pt+1 =
m∑

j=1

θjpt+1−j + βxt + aut + ǫt, t = 1, 2, ..., T (4.6)

where m is the order of autoregressiveness in AR(m) and is assumed not to be

bigger than T + 1. To apply the AR(m) in the sequence of prices we augment

the state space as follows:























pt+1

pt

.

.

.

pt+1−m

st+1

xt+1























︸ ︷︷ ︸

yt+1

=























θ1 θ2 . . . θm 0 β

1 0 . . . 0 0 0

. . . . .

. . . . .

. . . . .

0 0 . . . 0 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 ρ























︸ ︷︷ ︸

A

.























pt

pt−1

.

.

.

pt−m

st

xt























︸ ︷︷ ︸

yt

+























a

0

.

.

.

0

−1

0























︸ ︷︷ ︸

b

ut +























ǫ

0

.

.

.

0

0

η























︸ ︷︷ ︸

ωt

.



4.2. MODELS FOR OPTIMAL TRADE EXECUTION 75

The above formulation can be written as:

yt+1 = Ayt + but + ωt.

The cost at period t is:

g(yt, ut, ωt) = pt+1ut

= y⊺t+1e1ut

= (Ayt + but + ωt)
⊺e1ut

= y⊺t (A
⊺e1)ut + b⊺e1u

2
t + ω⊺

t e1ut,

where e1 represents the first column of the identity matrix.

At the final stage (t = T ), the value function is equal to the expected value

of cost function with respect to ωT . We substitute the decision variable ut with

sT which is the only available decision at t = T , and obtain:

uT = sT = e⊺m+1 ∗ yT ,

where m is the autoregressive level in AR(m). Thus,

VT (yT ) = E[g(yT , uT , ωT )]

= E[y⊺T (A
⊺e1)uT + b⊺e1u

2
T + ω⊺

T e1uT ]

= y⊺T (A
⊺e1)e

⊺

m+1yT + b⊺e1y
⊺

T (em+1e
⊺

m+1)yT

= y⊺T
(
(A⊺e1)e

⊺

m+1 + b⊺e1(em+1e
⊺

m+1)
)
yT

= y⊺TKTyT ,

where KT = (A⊺e1)e
⊺

m+1 + b⊺e1(em+1e
⊺

m+1).

For the second last period, i.e. stage (T − 1), we have:

VT−1(yT−1) = min
uT−1

E[g(yT−1, uT−1, ωT−1)VT (yT )]

= min
uT−1

E[y⊺T−1(A
⊺e1)uT−1 + b⊺e1u

2
T−1 + ω⊺

T−1e1uT + y⊺TKTyT ]

= min
uT−1

E[y⊺T−1(A
⊺e1)uT−1 + b⊺e1u

2
T−1 + ω⊺

T−1e1uT

+(AyT−1 + buT−1 + ωT−1)
⊺KT (AyT−1 + buT−1 + ωT−1)]

= min
uT−1

{

(b⊺e1 + b⊺KT b)u
2
T−1 + y⊺T−1 (A

⊺e1 + A⊺(KT +K⊺

T )b) uT−1

+y⊺T−1A
⊺KTAyT−1 + E[ω⊺

T−1KTωT−1]

}

.



76 CHAPTER 4. DYNAMIC TRADING

Since VT−1(yT−1) is a quadratic equation on uT−1 and we assume a > 0, we

will have (b⊺e1 + b⊺KT b) > 0.

Lemma 4.1. αt = (b⊺e1 + b⊺Kt+1b) > 0 is true for all t = 1, ..., T − 1.

Proof. We demonstrate this result in appendix A.

We acquire the optimal decision for period (T − 1) as:

u∗T−1 = −
y⊺T−1LT−1

2αT−1

,

where LT−1 = A⊺e1 + A⊺(KT +K⊺

T )b, and αT−1 = b⊺e1 + b⊺KT b.

We can then rewrite VT−1(yT−1) as:

VT−1(yT−1) = y⊺T−1KT−1yT−1 + CT−1,

where

KT−1 =

(

A⊺KTA−
LT−1LT−1⊺

4αT−1

)

,

CT−1 = E[ω⊺

T−1KTωT−1], CT = 0.

To find the closed form solution for the case of extended state, we assume

that:

Vt+1(yt+1) = y⊺t+1Kt+1yt+1 + Ct+1.

Then, we have:

Vt(yt) = min
ut

E[g(yt, ut, ωt) + Vt+1(yt+1)]

= min
ut

E[y⊺t (A
⊺e1)ut + b⊺e1u

2
t + y⊺t+1Kt+1yt+1 + Ct+1]

= min
ut

E[y⊺t (A
⊺e1)ut + b⊺e1u

2
t + (Ayt + but + ωt)

⊺Kt+1(Ayt + but + ωt) + Ct+1]

= min
ut

{

(b⊺e1 + b⊺Kt+1b)u
2
t + y⊺t (A

⊺e1 + A⊺(KT +K⊺

T )b) ut

+y⊺tA
⊺Kt+1Ayt + E[ω⊺

tKt+1ωt] + Ct+1

}

.

The above quadratic equation holds for all t, resulting in the optimal solu-

tion:

u∗t = −
y⊺tLt
2αt

,



4.2. MODELS FOR OPTIMAL TRADE EXECUTION 77

where

Lt = A⊺e1 + A⊺(Kt+1 +K⊺

t+1)b,

αt = b⊺e1 + b⊺Kt+1b,

Kt = A⊺Kt+1A−
LtL

⊺

t

4αt
,

KT = (A⊺e1)e
⊺

m+1 + b⊺e1(em+1e
⊺

m+1),

Ct = E[ω⊺

tKt+1ωt] + Ct+1,

CT = 0.

Given the values of θ, β, a and ρ, we can calculate Kt, Lt and Ct offline for

all stages t = 1, 2, ..., T by starting backward, after which the optimal solution

is obtained in the forward stage. Algorithm 2 depicts the general steps of this

procedure.

The closed form solution arrived at here is a generalised form of the results

of Bertsimas and Lo (1998) and reduces to the basic form in case of an AR(1)

model.

Algorithm 2: Closed form solution to the extended problem

input : θ, β, a and ρ

output: u∗

KT = (A⊺e1)e
⊺

m+1 + b⊺e1(em+1e
⊺

m+1)

for t = (T − 1) → 1 do

Lt = A⊺e1 + A⊺(Kt+1 +K⊺

t+1)b

αt = b⊺e1 + b⊺Kt+1b

Kt = A⊺Kt+1A−
LtL

⊺

t

4αt

y1 = y0

for t = 1 → T do

u∗t = −y⊺tLt/2αt

4.2.4 Including Non-negativity Constraints

The basic model in Bertsimas and Lo (1998) does not include non-negativity

constraints to avoid negative trade volumes when the variations in the prices or

the market warrant negative trading. An optimal policy that contains a negative



78 CHAPTER 4. DYNAMIC TRADING

trade in a block trade buying operation would be void in real trading situations

since it is counter-intuitive and is not allowed in many systems (Bertsimas

and Lo, 1998). The inclusion of non-negativity constraints would improve the

performance of the trade regime substantially. However, adding non-negativity

constraints to a dynamic programming problem increases the complexity of the

problem considerably. Bertsimas and Lo (1998) provide a closed form solution

for the problem with non-negativity constraints when price dynamics follow a

special pattern:

pt = θpt−1 + axtut + ǫt,

logxt = logxt−1 + ηt.

However, as Huberman and Stanzl (2005) conclude, a linear price impact

model is the most representative formulation for price impact in most real-world

situations. The above special form of price evolution formula concerns only a

limited case and is not an appropriate substitute for price impact in practical

situations. In this paper we assume a linear price evolution model such as (4.6).

If we assume non-negativity must hold, the optimal trade size is decided by:

u∗t = max(0,min(st,−
y⊺tLt
2αt

))

= max(0⊺yt,min(e⊺m+1yt,−
y⊺tLt
2αt

)),

resulting in three different possible outcomes for each period. In the context

of dynamic programming, after each stage in the backward progress through

algorithm, the state space of the problem grows threefold (up to 3T in the final

stage), which results in considerably larger problems. We discuss the solution

approach for handling this in the next section.

4.3 Approximate Dynamic Programming

Approximate dynamic programming is a range of approximation tools that are

devised to address the inherent problems of dynamic programming framework

in dealing with constraints. Classic approaches to dynamic programming are

unable to deal with exponential growth of the computational requirements as



4.3. APPROXIMATE DYNAMIC PROGRAMMING 79

the number of states increase. Unless the problems are defined to very restric-

tive assumptions, a simulation of the system is more easily constructed than a

model. In this paper we employ a value function approximation method where

we replace the piecewise value function which is resulted from the addition of

non-negativity constraints with a single value function that best captures the

characteristics of the three functions.

4.3.1 An Approximated Value Function

In order to overcome the added complexity of the non-negativity constraints,

we approximate the cost to go at period (t+ 1) with a quadratic function:

Vt+1(yt+1) = y⊺t+1Qt+1yt+1 + B⊺

t+1yt+1 + Ct+1,

where Qt and Bt are quadratic and linear coefficients of the value function

during period t respectively and Ct is the constant term.

Following the Bellman procedure, we have:

Vt(yt) = min
0≤ut≤St

E [g(yt, ut) + Vt+1(yt+1)]

= min
0≤ut≤St

E[y⊺t (A
⊺e1)ut + b⊺e1u

2
t + w⊺

t e1ut

+(Ayt + but + wt)
⊺Qt+1(Ayt + but + wt) + B⊺

t+1(Ayt + but + wt) + Ct+1]

= min
0≤ut≤St

[b⊺e1 + b⊺Qt+1b]u
2
t + [y⊺t (A

⊺e1 + A⊺(Qt+1 +Q⊺

t+1)b) + B⊺

t+1b]ut

+[(Ayt)
⊺Qt+1(Ayt) + B⊺

t+1Ayt + E(ω⊺

tQt+1ωt) + Ct+1].

If there were no constraints on ut, then the optimal ut would be

u∗t = −
y⊺tLt + βt

2αt
,

where Lt = (A⊺e1) + A⊺(Qt+1 +Q⊺

t+1)b, βt = B⊺

t+1b, and αt = b⊺e1 + b⊺Qt+1b.

Considering the three possible outcomes based on where u∗t is situated in

the state space, we will have three possible optimal ut, each of which will yield

different value functions:

ut =







0 if −
y⊺t Lt+βt

2αt
< 0,

St if −
y⊺t Lt+βt

2αt
> St,

−
y⊺t Lt+βt

2αt
if 0 ≤ −

y⊺t Lt+βt
2αt

≤ St



80 CHAPTER 4. DYNAMIC TRADING

Let us define

U1 = {y| −
y⊺tLt + βt

2αt
< 0},

U2 = {y| −
y⊺tLt + βt

2αt
> st},

U3 = {y|0 ≤ −
y⊺tLt + βt

2αt
≤ st},

to be mutually exclusive domains for y. If we replace the ut,j (j = 1, 2, 3) in

Vt(yt) with above results, we will have the following optimal cost-to-go at each

stage t (t = 1, 2, ..., T ):

Case j=1 : y ∈ U1

Vt(yt) = y⊺t (A
⊺Qt+1A)yt + B⊺

t+1Ayt + E(ω⊺

tQt+1ωt) + Ct+1.

Case j=2 : y ∈ U2

Vt(yt) = y⊺t (A
⊺Qt+1A+Lte

⊺

m+1+em+1αte
⊺

m+1)yt+[B⊺

t+1A+βte
⊺

m+1]yt+E(ω⊺

tQt+1ωt)+Ct+1.

Case j=3 : y ∈ U3

Vt(yt) = y⊺t [A
⊺Qt+1A−

3LtL
⊺

t

4αt
]yt+[B⊺

t+1A−
3L⊺

tβt
2αt

]yt+[E(ω⊺

tQt+1ωt)+Ct+1−
3β2

t

4αt
].

In all three cases, this results in the quadratic form

Vt(yt) = y⊺tΦt,jyt +Πt,jyt + Ωt,j,

with Φt,j, Πt,j and Ωt,j being defined appropriately according to the three afore-

mentioned cases.

We now approximate the value function based on the three distinct functions

resulting from each possible ut by finding a quadratic function over the whole

state space where the square distance from each of the above functions to it

are minimum. For simplicity and clarity, we assume a linear price impact with

AR(1). These results can be extended to AR(m) without the loss in generality.

If we assume linear price formulation and no time lag in the price evolution, A

and b have the following formats:

A =








1 0 β

0 1 0

0 0 ρ







, b =








a

−1

0







.



4.3. APPROXIMATE DYNAMIC PROGRAMMING 81

Lemma 4.2. Φt,j and consequently Qt have the following format:

Φt,j =








0 1 0

0 d1 d2

0 d3 d4







, Qt =








0 1 0

0 x1 x2

0 x3 x4







.

Proof. see appendix B.

Under linear price impact, the approximate value function has the following

form :

V̂t(yt) = y⊺tQtyt + B⊺

t yt + Ct,

where

Qt =








0 1 0

0 qt,1 qt,2

0 qt,3 qt,4







, and Bt =








0

rt,1

rt,2







.

We need to find (Qt, Bt, Ct) that minimises the least squares equations.

(Qt, Bt, Ct) = argmin
({qt},{rt},Ct)

∫

yt

(Vt(yt)− V̂t(yt))
2dyt,

where

∫

yt

(Vt(yt)− V̂t(yt))
2dyt =

∫

U1

[y⊺t (Qt − Φt,1)yt + (B⊺

t − Πt,1)yt + Ct − Ωt,1]
2dyt

+

∫

U2

[y⊺t (Qt − Φt,2)yt + (B⊺

t − Πt,2)yt + Ct − Ωt,2]
2dyt

+

∫

U3

[y⊺t (Qt − Φt,3)yt + (B⊺

t − Πt,3)yt + Ct − Ωt,3]
2dyt.

Figure 4.1 depicts a simplified graph that shows the approximated value

function based on the three value functions that are optimal in each region.

The quadratic coefficient (Qt − Φt,j) is

Qt − Φt,j =








0 0 0

0 qt,1 − kt,j,1 qt,2 − kt,j,2

0 qt,3 − kt,j,3 qt,4 − kt,j,4







,



82 CHAPTER 4. DYNAMIC TRADING

−4 −3 −2 −1 0 1 2 3 4 5

50

100

150

200

250

300

350

400

y
t

V
t(y

t)

 

 

{Φ
t,1

,Π
t,1

,Σ
t,1

}

{Φ
t,2

,Π
t,2

,Σ
t,2

}

{Φ
t,3

,Π
t,3

,Σ
t,3

}

{Q
t
,B

t
,C

t
}

Figure 4.1: The three regions (representing U in cases j = 1, 2, 3) and approximation

of the three value functions that are optimal in each region.

and the linear coefficient is

B⊺

t − Πt,j =








0

rt,1 − ft,j,1

rt,2 − ft,j,2







,

where kt,j,i is the ith element of Φt,j corresponding to that of Q and ft,j,i is the ith

element of Πt,j corresponding to elements of Bt. The above results also render

p, the first element of state space, irrelevant for the rest of the calculations.

Finally we have Ct − nt,j as the constant term.

At each stage t, we need to solve the following minimisation problem:

({q}, {r}, C) = argminq,r,n

∫

y

(V (y)− V̂ (y))2dy



4.3. APPROXIMATE DYNAMIC PROGRAMMING 83

where

∫

y

(V (y)− V̂ (y))2dy (4.7)

=

∫

U1

([s x]




q1 − k1,1 q2 − k1,2

q3 − k1,3 q4 − k1,4








s

x



+
[

r1 − f1,1 r2 − f1,2

]




s

x





+C − n1)
2dxds

+

∫

U2

([s x]




q1 − k2,1 q2 − k2,2

q3 − k2,3 q4 − k2,4








s

x



+
[

r1 − f2,1 r2 − f2,2

]




s

x





+C − n2)
2dxds

+

∫

U3

([s x]




q1 − k3,1 q2 − k3,2

q3 − k3,3 q4 − k3,4








s

x



+
[

r1 − f3,1 r2 − f3,2

]




s

x





+C − n3)
2dxds.

The three regions are obtained as follows:

• Case j = 1 (U1):

−y⊺tLt − βt
2αt

< 0 ⇔ y⊺tLt > −βt ⇔
[

s x
]




l2

l3



 > −βt ⇔

l2s+ l3x > −βt ⇔ x >
−βt − l2s

l3

• Case j = 2 (U2):

−(
y⊺tLt + βt

2αt
) > st ⇔ y⊺tLt < −βt−2αtst ⇔

[

s x
]




l2

l3



 < −βt−2αtst ⇔

l2s+ l3x < −βt − 2αtst ⇔ x <
−βt − 2αtst − l2s

l3

• Case j = 3 (U3):

0 ≤ −(
y⊺tLt + βt

2αt
) ≤ St ⇔ −2αtSt − βt ≤ y⊺tLt ≤ −βt ⇔

−2αtSt − βt ≤
[

s x
]




l2

l3



 ≤ −βt − βt − 2αtst < l2s+ l3x < −βt ⇔

−βt − 2αtst − l2s

l3
< x <

−βt − l2s

l3



84 CHAPTER 4. DYNAMIC TRADING

where l2 and l3 are elements of Lt:
[

0 l2 l3

]
⊺

.

Considering both x and s have an additional range that they must comply

with: (x ∈ [−P0, P0] and s ∈ [0, st]), we have the following ranges to apply in

the formulation. Let elements of x and s be parameters a1, a2, b1 and b2 such

that x ∈ [a1, a2] and s ∈ [b1, b2].

U1 = {(x, s)|x ∈ [a1 =
−βt − l2s

l3
, a2 = P0], s ∈ [b1 = 0, b2 = st]},

U2 = {(x, s)|x ∈ [a1 = −P0, a2 =
−βt − 2αtst − l2s

l3
], s ∈ [b1 = 0, b2 = st]},

U3 = {(x, s)|x ∈ [a1 =
−βt − 2αtst − l2s

l3
, a2 =

−βt − l2s

l3
], s ∈ [b1 = 0, b2 = st]}

Applying these ranges on (4.7) and expanding we will have the following

which can be used to obtain the optimal values for Q, R and C.

∫

y

(V (y)− V̂ (y))2dy =

∫ st

0

∫ P0

−βt−l2s

l3

F dxds

+

∫ st

0

∫ −βt−2αtst−l2s

l3

−P0

F dxds+

∫ st

0

∫ −βt−l2s

l3

−βt−2αtst−l2s

l3

F dxds

where

F =((q1 − kj,1)s
2 + (q4 − kj,4)x

2 + ((q2 − kj,2) + (q3 − kj,3))sx

+ (r1 − fj,1)s+ (r2 − fj,2)x+ C − nj)
2

The above equations are quadratic functions on ({q}, {r}, n) and can be

rewritten as R⊺MR+O⊺R+N , where R is the vector [q1, q2, q3, q4, r1, r2, C]. M

is a symmetric matrix derived from the coefficients of the above formulation,

and O is the linear coefficient.

The resulting equation is of quadratic form and yields an optimal solution.

4.4 Numerical Analysis

Our numerical analysis consists of two studies. In section 4.4.1 we simulate

the example used in Bertsimas and Lo (1998) to illustrate the comparative ad-

vantages gained through our approximate dynamic programming method with



4.4. NUMERICAL ANALYSIS 85

Algorithm 3: Approximate Dynamic Programming

input: αt, βt, Lt, {Q
0
t , B

0
t , C

0
t } for all t

output: {Q∗
t , B

∗
t , C

∗
t }

for i = 1 →M do

for t = (T − 1) → 1 do

for j = 1 → 3 do

{Φi
t,j ,Π

i
t,j ,Ω

i
t,j} = F1(Qi−1

t+1, B
i−1
t+1, C

i−1
t+1 , j)

for t = (T − 1) → 1 do

{Qi
t, B

i
t, C

i
t} = F2( Φi

t,j,Π
i
t,j ,Ω

i
t,j)

if V F{Qi
t, B

i
t, C

i
t} < V F{Qi−1

t , Bi−1
t , C i−1

t } then

for t = 1 → T do

{Q∗
t , B

∗
t , C

∗
t } = {Qi

t, B
i
t, C

i
t}

{Φ,Π,Ω} = Function F1 (Q,B,C, j)

if j = 1 then

Φ = A⊺QA

Π = B⊺A

Ω = E(ω⊺

tQωt) + C

if j = 2 then

Φ = A⊺QA+ Lte
⊺

m+1 + em+1αte
⊺

m+1

Π = B⊺A+ βte
⊺

m+1

Ω = E(ω⊺

tQωt) + C

if j = 3 then

Φ = A⊺QA−
3LtL

⊺

t

4αt

Π = B⊺A−
3L⊺

t βt
2αt

Ω = E(ω⊺

tQωt) + C −
3β2

t

4αt

{Q,B,C} = Function F2 (Φt,Πt,Ωt)

argmin
({Q},{B},C)

∫

U1

[y⊺t (Qt − Φt,1)yt + (B⊺

t − Πt,1)yt + Ct − Ωt,1]
2dyt

+

∫

U2

[y⊺t (Qt − Φt,2)yt + (B⊺

t − Πt,2)yt + Ct − Ωt,2]
2dyt

+

∫

U3

[y⊺t (Qt − Φt,3)yt + (B⊺

t − Πt,3)yt + Ct − Ωt,3]
2dyt



86 CHAPTER 4. DYNAMIC TRADING

non-negativity constraints. We compare our method (ADP) with their closed

form solution (B&L) and a naive strategy where the trade is divided into equal

sizes to be executed over the trading horizon. In this case we test the efficiency

of each optimal strategy with regard to different realisations of information vari-

able x. Since the variable x is the main driving factor in the volatility of prices

in the scenario presented by Bertsimas and Lo (1998), we test the performance

of the algorithms against different rates of variance in x.

In section 4.4.2 we simulate trading of a security from London Stock Ex-

change on a specific date based on intra-day trade information of that day.

This is to illustrate the effectiveness of our method in a practical setting and

its advantage over the classic and naive methods that do not include the non-

negativity constraints.

We code the algorithms in MATLAB and run all the experiments on a 64-

bit Windows 7 workstation having 4GB of RAM and quad-core Intel CPU at

2.6GHz. All the experiments were very fast and as such we forego a detailed

examination of the time performance. As a brief guideline, table 4.1 shows the

time taken for a single run of each of the algorithms for various trading periods

and market volatility rates.

4.4.1 A Simulated Example

The example involves execution (buy) of 100000 shares over T = 20 periods.

The current price is $50. The parameters are set as follows: a = 5×10−5, β = 5,

ρ = 0.5 and σ2
ǫ = (0.125)2. For a full description of the values and the reasoning

behind the choice of the values, interested readers are referred to Bertsimas and

Lo (1998). In summary, a is chosen to yield a price impact of $500000 if the

trader executes the 100000 shares in one transaction. The standard deviation

of ǫt is calibrated to be one tick (12.5 cents) per period.

We assign different values to σ2
η (variance of the information evolution, a

white noise process, representing the overall market volatility) in order to test

the efficiency of the algorithms with regard to the market behaviour where it

might drive the prices significantly up or down and render the non-negativity

constraints relevant. For example if the optimal strategy where we do not ap-



4.4. NUMERICAL ANALYSIS 87

σ2
ǫ=0.01 σ2

ǫ=0.1 σ2
ǫ=1

Period B&L ADP B&L ADP B&L ADP

2 0.26 12.78 0.31 13.05 0.38 13.31

4 0.45 14.57 0.51 15.77 0.58 16.89

6 0.67 19.43 0.78 21.93 0.87 24.43

8 1.00 28.85 1.11 33.32 1.22 38.19

10 1.37 45.95 1.53 52.84 1.68 59.84

12 1.92 70.15 2.13 80.01 2.35 89.70

14 2.60 103.12 2.82 116.53 3.04 129.81

16 3.32 147.59 3.56 164.93 3.80 182.29

18 4.19 204.63 4.49 226.87 4.75 249.02

20 5.05 276.41 5.35 303.77 5.63 330.96

Table 4.1: Execution time (in milliseconds) of B&L and ADP algorithms for variable

number of periods (T) and market volatility rates (σ2ǫ values)

ply the non-negativity constraints is to sell during a buy operation, the original

method would likely offer negative trade as part of its optimal solution. How-

ever, if the assumption is that short-selling is not possible, then the original

algorithm would not be able to accommodate the above cases. Naive strategy

on the other hand is unable to utilise the swings in the price to minimise the

incurred overall cost. The approximate dynamic programming method, as ex-

pected, provides superior results compared to the original method of Bertsimas

and Lo (1998) and the naive strategy under a volatile market condition when

the assumption is that a buy operation cannot include sales.

As can be seen in Table 4.2, the expected value function values improve

substantially for the ADP method compared to B&L when the variance of the

market volatility increases. Naive strategy is equivalent in almost all instances

of σ2
η to that of B&L and hence not shown here. Table 4.2, however, depicts

the expected value function as a factor for comparison. As we are dealing with

the volatility of the market, the more important aspect of the improvement of

the ADP method over the other methods is apparent in the actual execution

cost over the whole trade period as can be seen in Figure 4.2, which depicts



88 CHAPTER 4. DYNAMIC TRADING

σ2
η ADP B&L % Diff.

0.001 5255799 5258643 0.054

0.002 5250526 5253792 0.069

0.005 5235928 5241587 0.108

0.01 5212885 5221218 0.159

0.02 5168374 5180444 0.233

0.05 5038702 5058038 0.383

0.1 4826652 4853935 0.565

Table 4.2: Expected execution cost in example execution of 100000 shares

the realized execution cost for various σ2
η rates. To achieve this, we run each

algorithm with random realisations of x and calculate the execution cost at each

stage. This graph shows the average of total execution cost for 50 simulation

runs for each method.

The performance of three methods are very similar when the σ2
η rates are

very small and the probability of negative trade being optimal is relatively

low. Since B&L method provides optimality with regard to the uncertainty in

the market and includes short-selling in its policies, when the short-selling is

prohibited, it loses that advantage. This is reflected in the average execution

cost values in σ2
η rates of 1 and above. The ADP, on the other hand, takes into

account the non-negativity constraints and provides optimal policies in which

the majority of the trade is performed when the price has swung down and little

trade when the prices are high. In other words, ADP is better equipped to take

advantage of price variations without the need for short-selling. Note the sharp

drop in ADP execution costs when the volatility increases beyond 1, where it is

able to execute with higher probability a larger amount of the security in lower

prices leading to lower overall execution cost.

4.4.2 An Empirical Example

The example shown in section 4.4.1 proves the suitability of the ADP approach

in situations where short-selling is not allowed. However to gauge the improve-



4.4. NUMERICAL ANALYSIS 89

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

1

2

3

4

5

6

7
x 10

6

σµ
2

A
ct

ua
l e

xe
cu

tio
n 

co
st

 

 

BAL
Naive
ADP

Figure 4.2: Actual execution cost for the three methods with variable σ2η rates

ment that this method will yield in a real-world situation we test the algorithm

on real securities traded in the market and compare it to that of B&L as a bench-

mark on what would be the optimal policy when we ignore the non-negativity

constraints.

We considered three securities from London Stock Exchange that represent

various levels of liquidity and recorded the tick price data for each of the selected

stock for the duration of two weeks. FTSE100 index was considered as the

information vector x during the same period. We also recorded the publicly

available trade and price information of each share for a particular day during

the two weeks. Out of the FTSE100 companies, we chose Lloyds Banking Group

shares as a high liquidity share, Rolls-Royce as a medium liquidity and Next Plc

as representative of low liquidity securities. The choice of the three securities

was not based on strict criteria but a loose interpretation of liquidity in order to

evaluate the effects when applying the methods in this paper on stocks of varying

liquidity. We also acquired intra-day price data for these securities where the

information is available for the opening and closing price and the volume of



90 CHAPTER 4. DYNAMIC TRADING

Lloyds Rolls-Royce Next Plc

Price (1 lag) 9.805e−01∗∗∗ 8.776e−01∗∗∗ 9.159e−01∗∗∗

Std. Error (1.615e− 02) (1.886e− 02) (2.370e− 02)

Trade Volume −1.322e− 10 1.227e− 06 + 6.378e− 05∗

Std. Error (2.861e− 09) (1.359e− 06) (3.140e− 05)

UK100 Index 7.790e− 05 + 2.802e−02∗∗∗ 4.523e−02∗∗∗

Std. Error (1.573e− 04) (4.223e− 03) (1.335e− 02)

Residual Std. Err. 0.227 3.735 11.06

R2 0.9474 0.9713 0.9612

Adj. R2 0.9467 0.971 0.9607

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1

Table 4.3: Regression analysis on the three chosen stocks

trade during each minute. We considered the price between the opening and

closing price to be the price of the share in that time period.

The first step is to estimate the parameters of xt+1 = ρxt + ηt in order

to be able to forecast the value of x from previous period. We performed a

linear regression fit in R statistical software based on the historical time series

data above. The parameters of information evolution (xt+1 = ρxt + ηt) which

represent FTSE100 index were calculated as follows:

xt+1 = 70.91 + 0.98xt + ηt,

where µη = 0 and ση = 14.15.

Table 4.3 details the coefficients of price evolution model pt+1 = pt + βxt +

aut + ǫt in relation to each chosen security.

Based on the parameters found in Table 4.3 pertaining to the behaviour

of price based on the independent variables, as well as the parameters of the

information evolution, we run our algorithm against that of Bertsimas and Lo

(1998) to gauge the performance of these algorithms in a real-world application.

We compare the results based on different number of trade periods as well as

different rates of market volatility.



4.4. NUMERICAL ANALYSIS 91

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.941

1.942

1.943

1.944

1.945

1.946

1.947

1.948

1.949
x 10

9

σµ
2

E
xp

ec
te

d 
ex

ec
ut

io
n 

co
st

 

 

ADP

B&L

Figure 4.3: Expected execution cost for Lloyds share price with variable rates of σ2η

Figure 4.3 depicts the expected value function for the two methods based

on 10 trade periods and varying degrees of market volatility. As can be seen,

the B&L method only outperforms our method in the case of very small market

volatility. As the volatility increases, the expected cost of trading the predefined

number of shares increases for the B&L method. The ADP method increases in

performance as the volatility increases while the performance of B&L is declin-

ing. This is indicative of the ability of the ADP method in taking advantage

of price swings when the B&L falls short because of neglecting the sign con-

straints. If short-selling is prohibited, our method adapts the policies online by

taking the non-negativity into its framework from the start.

Table 4.4 outlines the actual execution cost of the two algorithms for the

Lloyds shares. The ADP algorithm outperforms the original B&L method on

most cases. When the trading periods are relatively few, there will naturally

be less probability of favourable prices occurring and thus the ADP algorithm

is slightly under-performing.

Figure 4.4 on the other hand depicts the results of the actual execution



92 CHAPTER 4. DYNAMIC TRADING

# of periods ADP B&L % Diff.

10 8868042 8867250 -0.008

20 10595009 10586747 -0.077

30 11381698 11398890 0.151

40 11552346 11563438 0.096

50 11522654 11543933 0.184

60 11484477 11509757 0.220

70 11449253 11475887 0.232

80 11408889 11427038 0.159

90 11362621 11364245 0.014

100 11290233 11304324 0.124

Table 4.4: Actual execution cost realisation from each algorithm in execution of

100000 Lloyds shares and the percentage difference between the two algorithms based

on the number of trading periods.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.155

1.1555

1.156

1.1565

1.157

1.1575

1.158

1.1585
x 10

7

σ2
µ

A
ct

ua
l e

xe
cu

tio
n 

co
st

 

 

ADP

B&L

Figure 4.4: Actual execution cost for Lloyds share price with variable market volatil-

ity rates



4.5. CONCLUSION 93

cost for the case of Lloyds share prices with both methods over varying market

volatility. The benefits of the approximate dynamic programming method over

the B&L method is apparent from this figure when the volatility increases.

Both other stocks show similar behaviour with varying trade periods and

market volatility. Due to space limitation, the interested reader can find similar

graphs to above for the Next plc and Rolls-Royce shares in appendix C.

4.5 Conclusion

Our extensions on the work of Bertsimas and Lo (1998) is aimed at bringing

the problem closer to the real-world applications. We extend the AR(1) of the

classic model to AR(m) and include non-negativity constraints. These exten-

sions add significantly to the complexity of the problem. It is a well known

shortcoming of the dynamic programming method that it cannot accommo-

date constraints very easily. We provide an approximate dynamic programming

method that circumvents this. Our simulated and empirical results support the

inclusion of non-negativity constraints, when the volatility of the market, and

consequently of prices, are so that the probability of negative trades is signifi-

cant. It improves the expected (and actual) execution cost in real circumstances

and in comparison to the model by Bertsimas and Lo (1998). The difference

between the performance of the models is not substantial when applied to low

volatility scenarios. However, as we raise the market and price fluctuations in

the model, the significance of our method over the other two methods become

apparent. The benefits of the new method is also apparent in the empirical

study where we test the methods on a set of data that warrants large swings

in price. In both cases we observe improvement in the results which encourage

the use of the new method over the previous methods under the conditions

discussed.



94 CHAPTER 4. DYNAMIC TRADING



Chapter 5

Conclusions, Limitations and

Future Directions

In this thesis we have focused on various applications of dynamic programming

models in the presence of uncertainty. We have looked at the dynamic pricing

of non-durable goods in the context of Markov decision processes. We have

also considered the dynamic pricing problem with a linear representation of the

demand evolution formulation. Finally, we have studied the dynamic trading

of large blocks of securities where the market is sensitive to the volume of our

trade. In this final chapter we summarise the contents of each chapter and

recount the contributions of our study to the literature as well as the limitation

of this research and potential directions for future.

5.1 Dynamic Pricing with POMDP

In chapter 2 we studied the dynamic pricing of non-durable products with no

replenishment possibility. We studied the problem in the framework of par-

tially observable Markov decision processes (POMDP), because the underlying

demand model is unobservable during the season. Instead we used sales as a

replacement parameter and explored its probabilistic relation to demand. We

also provided proof that the objective function of the model in dynamic pricing

context is convex and piecewise linear and utilised a number of exact methods

from the literature that solve this problem to optimality. The ability of these

95



96 CHAPTER 5. CONCLUSION

exact methods were demonstrated and it was shown that not only they offer

optimal results in reasonable times, they are (especially incremental pruning

algorithm) capable of solving full featured problems of the kind we encounter

in retail industry pertaining to the problems under study.

Thus, our main conclusion was that the exact methods to solve POMDP

are efficient and appropriate options, especially with the advent of more pow-

erful computation capacity and the emergence of more robust variants of exact

methods to POMDP models. These algorithms take advantage of convexity and

piecewise linearity of the value function and reduce the state space considerably.

However, this research naturally contains some underlying limitations and

shortcomings. Here we address these shortcomings and discuss the potential

strategies for the interested reader. In this chapter we solely focused on the

existing exact methods in the literature. Although this limits the extent of our

contributions to the literature, we decided to limit our research to examining

these exact methods instead of developing heuristic or approximate methods.

This decision was taken under the consideration that the advent of more pow-

erful computing and more advanced applications of these methods provide a

remarkable capability in handling problems of considerable size encountered in

real-world situations. However, the inclusion of a heuristic or approximation

method would have provided some benefits which was not foreseen initially.

First, such additional method would provide a benchmark against which the

arguments regarding performance of the exact methods could be assessed. Sec-

ond, we would be better placed to extract theoretical results in the context of

the problem we want to solve. Third and finally, it would offer more robust

managerial insights for the decision making process, especially in the real-world

applications we are aiming to solve.

Another shortcoming of this chapter was that we decided to forego the use of

real data in the examination and assessment of the proposed methods and anal-

yses. On many occasions, the basic theoretical understanding gained by simple

Monte Carlo simulations, as conducted in this work, outweigh the amount of

resources spent on acquisition of real data and their eventual contribution to

the result. However, as we are dealing with practical applications, the benefits

of actual data in verification of results is undeniable.



5.2. DYNAMIC PRICING WITH AUTOREGRESSIVE DEMAND 97

The central premise of this chapter was to establish that the exact methods

for POMDP problems provide sufficient performance to be used in industrial

context. However, there are various research directions that would extend the

performance of the available methods to solve these range of problems without

compromising the quality of the solution significantly, although any of these

directions would have taken this research beyond its scope.

Approximations in the context of POMDP models are rare, especially ap-

proximations built on the premise of the exact methods discussed in this work.

Value function approximation models that use the piecewise linearity and con-

vexity of the value function to further simplify the optimisation process are

starting to emerge, and significant value can be gained by exploiting such ap-

proximations in addition to the adoption of exact methods. Approximate dy-

namic programming is another solution paradigm that can be used to solve

the POMDP problems more efficiently, although significant alterations to the

modelling approach is necessary.

Another alternative modelling paradigm is offered by multi-arm bandit prob-

lem (MAB) as formulated in Burnetas and Katehakis (1997), in which the au-

thors provide a model that handles incomplete information in an MDP frame-

work. This framework is capable of providing significant insights into the struc-

tural properties of the dynamic pricing problem. Furthermore it would lend it-

self for complimenting and extending the theoretical results we briefly explored

in this chapter.

5.2 Dynamic Pricing with Autoregressive De-

mand

Chapter 3 expanded on the dynamic pricing problem of previous chapter. We

changed the state evolution model from simple Bayesian updating to a linear

model that takes into account the previous demand values in addition to price

and volatility. We considered the dynamic pricing of high end fashion products

that possess word-of-mouth potential and customers of which behave loyally to

specific products or brands. The demand behaviour of customers was discussed



98 CHAPTER 5. CONCLUSION

and the benefits of considering an autoregressive model compared to the demand

models generally considered in literature were studied. Finally, we provided

an approximate dynamic programming solution to the model that utilised the

structure of the problem and the uncertainty in state evolution to provide near

optimal results and explored the results through a range of numerical analyses.

The results of our simulation runs indicated that the use of the approximate

method is beneficial when the inclusion of constraints such as a price limit is

necessary. Another benefit of the approximate dynamic programming method

was that it enabled us to extend the model to include further attributes inspired

by the business problem. We extended the demand evolution model to an

autoregressive linear model and offered appropriate solutions to it with the help

of approximate dynamic programming. However, demonstrating the benefits of

the autoregressive demand model that we introduced is less straightforward, as

comparison to other demand models would not provide any insight since the

underlying behaviour of the system would be altered.

The above problem is further compounded by the lack of real data from the

industry to supplement the results of the research. Most of the benefits of using

real-world data in verifying the results of the chapter is evident. However,

such data could be further utilised to assess the underlying assumptions in

formulation of the problem and inform the development of effective solution

methods, especially since we are providing approximate solutions.

Classic dynamic programming method offers an elegant and efficient frame-

work to model dynamic problems. However it is not very efficient when it

comes to solving the problems. This is the main reason behind our choice of

approximate dynamic programming method in providing a high quality solution

without loss of performance. Ability to handle constraints is another capability

of the approximate dynamic programming framework that is not easily replace-

able. However, there are certain research areas that are promising in offering

alternatives. Newsboy problem is a classic operational research problem that

has a rich and well developed literature around it. If the periods of operation

to the newsboy is extended we are faced with a multi-period dynamic model

that is capable of handling similar problems to the dynamic pricing problem we

discuss in chapter 3. It can further offer insights into the inventory management



5.3. DYNAMIC TRADING 99

side of the retail business.

Another pertinent and interesting topic regarding dynamic pricing problem

is the question of when to change the prices as opposed to the rate of price

changes. Various research streams have been developed to address this question,

the most promising of which explore the optimal stopping problems as a starting

point. A natural extension is a combined pricing problem in which the rate is

set at time periods that are decided dynamically as well.

An important feature to consider in the context of dynamic pricing problems

is the behaviour of the customers in the environment. There have been much

advance in the literature with consideration of strategic customers in deriving

the optimal strategy by the decision makers. However, it is yet another short-

coming of the dynamic programming approach that it does not lend itself readily

to game theoretic concepts. It would yield great value if inclusion of strategic

behaviour in the dynamic programming framework is studied further.

5.3 Dynamic Trading

In chapter 4 the ideas developed in the previous chapters were further extended,

in that it provided an efficient alternative to the classic dynamic programming

methods in situations where added restrictions in the model are necessary. We

extended the work of Bertsimas and Lo (1998), which is a pioneering article

that utilises dynamic programming for the first time in dynamic trading of

large blocks of financial securities. Although Bertsimas and Lo (1998) acquire

the closed form solution to the model, they do not take into account the non-

negativity constraints which would lead to a short-selling situation. We argued

that the expected cost of ignoring the non-negativity constraints is considerable

in real-world situations. Furthermore we expanded the state space such that

the price and information dynamics can include historical data such as price

and information in periods further in the past. As we deal with stock market

environment in this problem, the intuitive reason for such an inclusion is the

considerable amount of time it would take for the market to observe and register

past prices i.e. cases when the market is not fully efficient as often happens in

real life. As classic dynamic programming solutions are not capable of handling



100 CHAPTER 5. CONCLUSION

constraints, we developed an approximate dynamic programming approach to

circumvent this costly possible scenario.

The approximate dynamic programming approach enables us to solve a large

combination of problems to near optimality through a generalised platform. Our

simulated numerical analysis showed that the ADP method outperforms that

of Bertsimas and Lo (1998) when the volatility of the market and prices are

high. The approximated method with inclusion of non-negativity constraints

was also superior to the exact method without the constraints because it is

capable of providing better trading strategy in situations where short selling

is not allowed. Although we did not provide a comprehensive benchmark, we

validated the fundamental performance of the suggested method by applying

it to real data from stock market and comparing the results to that of a naive

implementation that represents common practice.

Examination of alternative price evolution models in the dynamic trading

context would offer considerable benefits, especially in particular contexts such

as special financial products and shares of specific industries. Also depending

on the specifics of the problem, we might find more appropriate models for

explaining the effects of our decisions. Although we have shown in chapter 4

that the inclusion of additional variables add substantially to the accuracy of

the models and their solutions, the modelling of the state evolution should be

related to the specific problem and its domain.

In this chapter we offered a novel approximate dynamic programming method

that takes advantage of the quadratic value function. However, the approximate

dynamic programming field is rife with innovation. Adoption of methods that

utilise the advances made in the field and use the specific nature of the problem

in formulating the heuristic method is the natural next step in extending the

performance.

Finally, the consideration of the dynamic trading problem for a portfolio of

securities would be extremely beneficial, especially when there are cross elastic-

ities between the items or strong relationship between the states of the system

across periods. The application of the models discussed in this research on a

portfolio of products, and in the case of dynamic trading, portfolio of stocks,

is trivial in the basic format of these problems. However, the inclusion of con-



5.3. DYNAMIC TRADING 101

straints in our extended models render the application on portfolios much more

taxing, but also more rewarding.



102 CHAPTER 5. CONCLUSION



Appendices

A Proof of Lemma 4.1

Lemma αt = (b⊺e1 + b⊺Kt+1b) > 0 is true for all t = 1, ..., T − 1.

Proof. Since KT = (A⊺e1)e
⊺

m+1 + b⊺e1(em+1e
⊺

m+1), we have

KT =








1

0

β








[

0 1 0
]

+ a








0

1

0








[

0 1 0
]

=








0 1 0

0 a 0

0 β 0








and

(b⊺e1 + b⊺KT b) =a+
[

a −1 0
]








0 1 0

0 a 0

0 β 0















a

−1

0








=a+
[

a −1 0
]








−1

−a

−β







= a.

Since a is assumed to be positive, (b⊺e1 + b⊺KT b) > 0 is true.

103



104 CHAPTER 5. APPENDICES

For KT−1 we have:

KT−1 =A
⊺KA−

LT−1L
⊺

T−1

4α1

=








0 1 0

0 a− a2

4α1
−β ρ a

4α1

0 β + β ρ− β ρ a
4α1

−β2 ρ2

4α1








resulting in αT−2 = (b⊺e1 + b⊺KT−1b) = a− αT−1

4
.

Continuing in this fashion we get:

αt = αt+1 −
(2αt+1

t
)2

4αt+1

.

Since αT−1 = a which is assumed to be positive and since at each backward

stage a value smaller than itself is deduced from it, it is concluded that αt is a

non-negative value for all t = 1, ..., T − 1.

B Proof of Lemma 4.2

Lemma Φt,j and consequently Qt have the following format:

Φt,j =








0 1 0

0 d1 d2

0 d3 d4







, Qt =








0 1 0

0 x1 x2

0 x3 x4







.

Proof. We prove this by way of induction:

First of all,KT has the format








0 1 0

0 a 0

0 β 0







from the formulaKT = (A⊺e1)e

⊺

m+1+

b⊺e1(em+1e
⊺

m+1) which corresponds to the general format.

We assume Kt+1 to be of the format








0 1 0

0 d1 d2

0 d3 d4







.



B. PROOF OF LEMMA 4.2 105

Since we have Kt = A⊺Kt+1A−
LtL

⊺

t

4αt
, in which Lt and αt are:

Lt =A
⊺e1 + A⊺Kt+1b+ b⊺Kt+1A

=








1 0 0

0 1 0

β 0 ρ















1

0

0







+








1 0 0

0 1 0

β 0 ρ















0 1 0

0 d1 d2

0 d3 d4















a

−1

0








+
[

a −1 0
]








0 1 0

0 d1 d2

0 d3 d4















1 0 β

0 1 0

0 0 ρ








=








1

0

β







+








1 0 0

0 1 0

β 0 ρ















−1

−d1

−d3







+
[

a −1 0
]








0 1 0

0 d1 d2ρ

0 d3 d4ρ








=








1

0

β







+








−1

−d1

−β − ρd3







+








0

a− d1

−d2ρ








=








0

a− 2d1

−ρ(d2 + d3)







,

αt =b
⊺e1 + b⊺Kt+1b

=a+
[

a −1 0
]








0 1 0

0 d1 d2

0 d3 d4















a

−1

0








=a+
[

a −1 0
]








−1

−d1

−d3







= d1.



106 CHAPTER 5. APPENDICES

Thus we have:

Kt =A
⊺Kt+1A−

LtL
⊺

t

4αt

=








1 0 0

0 1 0

β 0 ρ















0 1 0

0 d1 d2

0 d3 d4















1 0 β

0 1 0

0 0 ρ








−(








0

a− 2d1

−ρ(d2 + d3)








[

0 a− 2d1 −ρ(d2 + d3)
]

)/4d1

=








0 1 0

0 d1 ρd2

0 β + ρd3 ρ2d4







−








0 0 0

0 ̟ ϕ

0 ϕ ς








=








0 1 0

0 d1 −̟ ρd2 − ϕ

0 β + ρd3 − ϕ ρ2d4 − ς








where ̟ = (a−2d1)2

4d1
, ϕ = (a−2d1)(−ρ(d2+d3))

4d1
and ς = ρ2(d2+d3)2

4d1
.

The end result clearly has the same form as indicated.

C Additional performance indicators for sec-

tion 4.4.2

The following tables and graphs demonstrate the results shown in relation to

the ADP and B&L algorithms for Rolls-Royce and Next plc. share prices.



C. ADDITIONAL PERFORMANCE INDICATORS 107

# of periods ADP B&L % Diff.

10 113196572 113105567 -0.080

20 113150598 113072115 -0.069

30 113128975 113178923 0.044

40 113092688 113065843 -0.023

50 113045862 113028378 -0.015

60 113002658 113158182 0.137

70 112949417 113053358 0.092

80 112852015 113009933 0.139

90 112723957 113060720 0.298

100 112684469 112971536 0.254

Table C.1: Actual execution cost realisations from running each algorithm on 100000

Rolls-Royce shares

# of periods ADP B&L % Diff.

10 721966680 721800780 -0.022

20 721755698 721629741 -0.017

30 721653652 721952501 0.041

40 721365874 721687618 0.044

50 721052563 721556396 0.069

60 720865896 721908650 0.144

70 720765149 721684057 0.127

80 719697785 721385540 0.234

90 719122901 721530130 0.334

100 718250352 721282194 0.422

Table C.2: Actual execution cost realisations from running each algorithm on 100000

Next plc. shares



108 CHAPTER 5. APPENDICES

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.1323

1.1324

1.1325

1.1326

1.1327

1.1328

1.1329
x 10

8

σ2
µ

A
ct

ua
l e

xe
cu

tio
n 

co
st

 

 

ADP

B&L

Figure C.1: Actual execution cost for Rolls-Royce share price with variable market

volatility

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

7.214

7.2145

7.215

7.2155

7.216

7.2165

7.217

7.2175

7.218

7.2185
x 10

8

σ2
µ

A
ct

ua
l e

xe
cu

tio
n 

co
st

 

 

ADP

B&L

Figure C.2: Actual execution cost for Next plc share price with variable market

volatility



Bibliography

Adida, E., Perakis, G., 2007. A nonlinear continuous time optimal control model

of dynamic pricing and inventory control with no backorders. Naval Research

Logistics 54 (7), 767–795.

Alexander, G., Peterson, M., 2007. An analysis of trade-size clustering and its

relation to stealth trading. Journal of Financial Economics 84 (2), 435–471.

Almgren, R., Chriss, N., 2001. Optimal execution of portfolio transactions.

Journal of Risk 3, 5–40.

Almgren, R. F., 2003. Optimal execution with nonlinear impact functions and

trading-enhanced risk. Applied Mathematical Finance 10 (1), 1–18.

Anderson, C. K., Wilson, J. G., 2003. Wait or buy? the strategic consumer:

Pricing and profit implications. The Journal of the Operational Research

Society 54 (3), 299–306.

Araman, V. F., Caldentey, R., 2009. Dynamic pricing for nonperishable prod-

ucts with demand learning. Operations Research 57 (5), 1169–1188.

Aviv, Y., Pazgal, A., 2005. A partially observed Markov decision process for

dynamic pricing. Management Science 51 (9), 1400–1416.

Bertsekas, D. P., 1995. Dynamic Programming and Optimal Control. Vol. I.

Athena Scientific.

Bertsimas, D., Lo, A. W., 1998. Optimal control of execution costs. Journal of

Financial Markets 1 (1), 1–50.

Bertsimas, D., Lo, A. W., Hummel, P., 1999. Optimal control of execution costs

for portfolios. Computing in Science & Engineering 1 (6), 40–53.

109



110 BIBLIOGRAPHY

Bertsimas, D., Perakis, G., 2006. Dynamic Pricing: A Learning Approach. Vol.

101 of Applied Optimization. Springer US, book section 3, pp. 45–79.

Besbes, O., Zeevi, A., 2009. Dynamic pricing without knowing the demand

function: Risk bounds and near-optimal algorithms. Operations Research

57 (6), 1407–1420.

Bitran, G., Caldentey, R., Mondschein, S., 1998. Coordinating clearance mark-

down sales of seasonal products in retail chains. Operations Research 46 (5),

609–624.

Bitran, G., Candentey, R., 2003. An overview of pricing models for revenue

management. Manufacturing & Service Operations Management 5 (3), 203–

229.

Bitran, G. R., Mondschein, S. V., 1997. Periodic pricing of seasonal products

in retailing. Management Science 43 (1), 64–79.

Broder, J., Rusmevichientong, P., 2012. Dynamic pricing under a general para-

metric choice model. Operations Research 60 (4), 965–980.

Burnetas, A. N., Katehakis, M. N., 1997. Optimal adaptive policies for markov

decision processes. Mathematics of Operations Research 22 (1), 222–255.

Butenko, S., Golodnikov, A., Uryasev, S., 2005. Optimal security liquidation

algorithms. Computational Optimization and Applications 32 (1), 9–27.

Cassandra, A., Littman, M., Zhang, N., 1997. Incremental pruning: A simple,

fast, exact algorithm for partially observable Markov decision processes. In:

Thirteenth Annual Conference on Uncertainty in Artificial Intelligence. pp.

54–61.

Cassandra, A. R., 1998. Exact and approximate algorithms for partially observ-

able Markov decision problems. Thesis, Brown University.

Chakravarty, S., 2001. Stealth-trading: Which traders’ trades move stock

prices? Journal of Financial Economics 61 (2), 289–307.



BIBLIOGRAPHY 111

Chan, L. K. C., Lakonishok, J., 1993. Institutional trades and intraday stock

price behavior. Journal of Financial Economics 33 (2), 173–199.

Chan, L. M. A., Shen, Z. J. M., Simchi-Levi, D., Swann, J., 2004. Coordination

of Pricing and Inventory Decisions: A Survey and Classification. Vol. 74 of

International Series in Operations Research & Management Science. Springer

US, book section 9, pp. 335–392.

Chatwin, R. E., 2000. Optimal dynamic pricing of perishable products with

stochastic demand and a finite set of prices. European Journal of Operational

Research 125 (1), 149–174.

Chen, M., Chen, Z.-L., 2015. Recent developments in dynamic pricing research:

Multiple products, competition, and limited demand information. Production

and Operations Management 24 (5), 704–731.

Domowitz, I., Yegerman, H., 2005. The cost of algorithmic trading. Trading

2005 (1), 30–40.

Duffy, M., 2003. Advertising and food, drink and tobacco consumption in the

united kingdom: a dynamic demand system. Agricultural Economics 28 (1),

51–70.

Eagle, J. N., 1984. The optimal search for a moving target when the search path

is constrained. Operations Research 32 (5), 1107–1115.

Elmaghraby, W., Keskinocak, P., 2003. Dynamic pricing in the presence of

inventory considerations: Research overview, current practices, and future

directions. Management Science 49 (10), 1287–1309.

Engle, R., Ferstenberg, R., 2006. Execution risk. Report, National Bureau of

Economic Research.

Fan, Y. Y., Bhargava, H. K., Natsuyama, H. H., 2005. Dynamic pricing via

dynamic programming. Journal of Optimization Theory and Applications

127 (3), 565–577.

Farias, V. F., Van Roy, B., 2010. Dynamic pricing with a prior on market

response. Operations Research 58 (1), 16–29.



112 BIBLIOGRAPHY

Feng, Y. Y., Gallego, C., 2000. Perishable asset revenue management with

Markovian time dependent demand intensities. Management Science 46 (7),

941–956.

Feng, Y. Y., Gallego, G., 1995. Optimal starting times for end-of-season sales

and optimal stopping times for promotional fares. Management Science 41 (8),

1371–1391.

Feng, Z., Zilberstein, S., 2004. Region-based incremental pruning for POMDPs.

In: Proceedings of the 20th conference on Uncertainty in artificial intelligence.

pp. 146–153.

Gallego, G., Van Ryzin, G., 1994. Optimal dynamic pricing of inventories with

stochastic demand over finite horizons. Management Science 40 (8), 999–1020.

Gosavi, A., 2009. Reinforcement learning: A tutorial survey and recent ad-

vances. Informs Journal on Computing 21 (2), 178–192.

Hasbrouck, J., Seppi, D., 2001. Common factors in prices, order flows, and

liquidity. Journal of Financial Economics 59 (3), 383–411.

Hauskrecht, M., 2000. Value-function approximations for partially observable

Markov decision processes. Journal of Artificial Intelligence Research 13, 33–

94.

He, H., Mamaysky, H., 2005. Dynamic trading policies with price impact. Jour-

nal of Economic Dynamics and Control 29 (5), 891–930.

Huberman, G., Stanzl, W., 2005. Optimal liquidity trading. Review of Finance

9 (2), 165–200.

Kaelbling, L. P., Littman, M. L., Cassandra, A. R., 1998. Planning and acting

in partially observable stochastic domains. Artificial Intelligence 101 (1-2),

99–134.

Kissell, R., Glantz, M., Malamut, R., 2004. A practical framework for estimating

transaction costs and developing optimal trading strategies to achieve best

execution. Finance Research Letters 1 (1), 35–46.



BIBLIOGRAPHY 113

Kissell, R., Malamut, R., 2006. Algorithmic decision-making framework. The

Journal of Trading 1 (1), 12–21.

Levin, Y., McGill, J., Nediak, M., 2009. Dynamic pricing in the presence

of strategic consumers and oligopolistic competition. Management Science

55 (1), 32–46.

Lin, Z. Z., Bean, J. C., White, C. C., 2004. A hybrid genetic/optimization

algorithm for finite-horizon, partially observed Markov decision processes.

Informs Journal on Computing 16 (1), 27–38.

Liu, Q., Zhang, D., 2013. Dynamic pricing competition with strategic customers

under vertical product differentiation. Management Science 59 (1), 84–101.

Loeb, T. F., 1983. Trading cost: The critical link between investment informa-

tion and results. Financial Analysts Journal 39 (3), 39–44.

Lovejoy, W. S., 1991a. Computationally feasible bounds for partially observed

Markov decision processes. Operations Research 39 (1), 162–175.

Lovejoy, W. S., 1991b. A survey of algorithmic methods for partially observed

Markov decision processes. Annals of Operations Research 28 (1-4), 47–66.

McGill, J. I., Van Ryzin, G. J., 1999. Revenue management: Research overview

and prospects. Transportation Science 33 (2), 233–256.

Merton, R., 1971. Optimum consumption and portfolio rules in a continuous-

time model. Journal of Economic Theory 3 (4), 373–413.

Monahan, G. E., 1982. A survey of partially observable Markov decision pro-

cesses: Theory, models, and algorithms. Management Science 28 (1), 1–16.

Mukherjee, S., Seth, K., 1991. A corrected and improved computational scheme

for finite-horizon partially observable Markov decision-processes. INFOR

29 (3), 206–212.

Netessine, S., 2006. Dynamic pricing of inventory/capacity with infrequent price

changes. European Journal of Operational Research 174 (1), 553–580.



114 BIBLIOGRAPHY

Perakis, G., Sood, A., 2006. Competitive multi-period pricing for perish-

able products: A robust optimization approach. Mathematical Programming

107 (1-2), 295–335.

Perold, A. F., 1988. The implementation shortfall: Paper versus reality. The

Journal of Portfolio Management 14 (3), 4–9.

Petruzzi, N. C., Dada, M., 1999. Pricing and the newsvendor problem: A review

with extensions. Operations Research 47 (2), 183–194.

Popescu, I., Wu, Y. Z., 2007. Dynamic pricing strategies with reference effects.

Operations Research 55 (3), 413–429.

Powell, W., 2011. Approximate Dynamic Programming: Solving the Curses

of Dimensionality, 2nd Edition (Wiley Series in Probability and Statistics).

Wiley.

Rao, V. R., 1984. Pricing research in marketing: The state of the art. The

Journal of Business 57 (1), S39–S60.

Rao, V. R., 2009. Handbook of pricing research in marketing. Edward Elgar

Publishing.

Sethi, S. P., Cheng, F., 1997. Optimality of (s, s) policies in inventory models

with Markovian demand. Operations Research 45 (6), 931–939.

Smallwood, R., Sondik, E. J., 1973. Optimal control of partially observable

Markov processes over a finite horizon. Operations Research 21 (5), 1071–

1088.

Smith, S. A., Achabal, D. D., 1998. Clearance pricing and inventory policies for

retail chains. Management Science 44 (3), 285–300.

Sondik, E. J., 1971. The optimal control of partially observable Markov pro-

cesses. Thesis, Stanford University.

Song, J. S., Zipkin, P., 1993. Inventory control in a fluctuating demand envi-

ronment. Operations Research 41 (2), 351–370.



BIBLIOGRAPHY 115

Soon, W., 2011. A review of multi-product pricing models. Applied Mathematics

and Computation 217 (21), 8149–8165.

Spaan, M. T. J., Vlassis, N., 2005. Perseus: Randomized point-based value

iteration for POMDPs. Journal of Artificial Intelligence Research 24, 195–

220.

Startz, R., 1989. The stochastic behavior of durable and nondurable consump-

tion. The Review of Economics and Statistics 71 (2), 356–363.

Stole, L. A., 2007. Chapter 34 Price Discrimination and Competition. Vol. 3.

Elsevier, pp. 2221–2299.

Su, X. M., 2007. Intertemporal pricing with strategic customer behavior. Man-

agement Science 53 (5), 726–741.

Subramanian, S., Sherali, H. D., 2010. A fractional programming approach for

retail category price optimization. Journal of Global Optimization 48 (2),

263–277.

White, C., 1991. A survey of solution techniques for the partially observed

Markov decision process. Annals of Operations Research 32 (1), 215–230.

White, C. C., Scherer, W. T., 1989. Solution procedures for partially observed

Markov decision-processes. Operations Research 37 (5), 791–797.

Wilson, J. G., Anderson, C. K., Kim, S.-W., 2006. Optimal booking limits in

the presence of strategic consumer behavior. International Transactions in

Operational Research 13 (2), 99–110.

Xu, X., Hopp, W. J., 2006. A monopolistic and oligopolistic stochastic flow

revenue management model. Operations Research 54 (6), 1098–1109.

Zhang, N. L., Liu, W. J., 1997. A model approximation scheme for planning

in partially observable stochastic domains. Journal of Artificial Intelligence

Research 7, 199–230.

Zhao, W., Zheng, Y. S., 2000. Optimal dynamic pricing for perishable assets

with nonhomogeneous demand. Management Science 46 (3), 375–388.



116 BIBLIOGRAPHY

Zhu, K., Thoneman, U. W., 2009. Coordination of pricing and inventory control

across products. Naval Research Logistics 56 (2), 175–190.


