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Abstract

In this work we propose a novel approach to model order reduction for incompressible
fluid flows that focuses on the spatio-temporal description of the stresses on the surface of
a body, i.e. of the wall shear stress and of the wall pressure. The spatial representation of
these two variables is given by a compact set of “wall basis functions”, i.e. elementary basis
functions defined on the wall. In this paper, these are derived using the well-known Proper
Orthogonal Decomposition, to represent optimally the fluctuation energy of the pressure and
shear stress. On the other hand, the functional structure of the dynamic model is derived
from first principles using the vorticity form of the Navier-Stokes equations, yielding a set of
nonlinear ordinary differential equations for the time-varying amplitudes of the wall shear stress
basis functions. Coefficients of this model are then identified from simulation data. To complete
the system, we show that the surface pressure distribution, i.e. the time-varying amplitudes of
the wall pressure basis functions, can be derived from a quadratic model of the wall shear stress
temporal coefficients, stemming from the Poisson equation for the pressure. This further step
is crucial for the correct representation of the aerodynamic forces. As a paradigmatic example,
we present our approach for the modelling of the free dynamics of the separated flow around
a circular cylinder in the laminar regime, at Re = 200. Further implications and potentialities
of the proposed approach are discussed.

1 Introduction

It is generally accepted that relying on heuristic or trial-and-error approaches to design flow control
strategies for fluid systems often results in poor performances (1). Hence, attempts to apply rigorous
approaches rooted into control theory have been proposed in the last few decades to design more
effective and more efficient controllers, see for example the review of Kim & Bewley (2). However,
it is widely acknowledged (3), that the wide range of temporal and spatial scales that distinguishes
the motion of turbulent flows leads to systems of extremely high dimensionality, such that their
treatment is feasible only at Reynolds numbers orders of magnitude lower those commonly found
in engineering and industrial applications.

Nevertheless, a new trend in research in fluid mechanics in the last few decades has been mo-
tivated by the observation that large-scale, energy-dominant dynamics are pervasive in turbulent
flows and that targeting their control is often sufficient to obtain adequate performances (4). As
a result, model order reduction techniques, whereby the large scales dynamics are first identified
and isolated, have been developed considerably. A widely known approach is based on the Galerkin
projection method. In this method, a set of ad-hoc global basis functions, that represent elementary
flow fields describing the large scale dynamics, is first derived. The governing partial differential
equations are then reduced, by projection, to a system of ordinary differential equations for the



time-varying amplitudes of these basis functions. Compression of the dimensionality of the dynam-
ics by several orders of magnitude, without sacrificing the accuracy of the representation is usually
possible, opening the road to effective design of reduced order controllers.

However, there are still a number of outstanding issues inherent in this methodology that hin-
der its application to flows of engineering interest (5), while laboratory investigations using these
methods are also rare (6). One fundamental issue is that the dominant coherent structures have
to be first identified. For data based methods, that provide empirical basis functions, e.g for the
well-known Proper Orthogonal Decomposition (POD) (7), this preliminary step usually requires
costly and time-consuming direct numerical simulations or highly-resolved experimental measure-
ments. For complex, three-dimensional flows at high Reynolds number, or for applications where
limited or no access to the region of interest is available, this first step is often prohibitive. This is
aggravated in the case where the POD basis functions needs to be iteratively updated as a result
of application of flow control, (8; 9; 10), because the flow dynamics might be so severely perturbed
that the basis functions derived in no-control conditions might have a reduced ability to describe
the forced dynamics (11; 12).

A second fundamental issue is that related to the system state reconstruction from limited and
noisy wall information, that is the observer design problem. This problem is still reckoned as an
outstanding issue (3), and progress in this direction is still required. Examples of works investigating
this aspect are those of Podvin & Lumley (13), Hoepffner et al. (14) and Jones et al. (15) for wall
bounded flows; the works of Lehmann et al. (12) and Buffoni et al. (16) for bluff body flows, and
the studies of Rowley & Juttijudata (17) and Nagarajan et al. (18) for cavity flows.

In this paper we present a novel approach that helps to alleviate some of these drawbacks. The
fundamental idea is to obtain a predictive model that does not target directly the dynamics of
the large scale structures in the flow but which achieves the same result by describing only their
effects on the surface of the body. The complete signature, or the footprint, of these coherent
structure is given by the spatio-temporal surface distributions of the stresses at the wall, which is,
incidentally, what is needed to accurately describe the unsteady forces acting on the body, a matter
of fundamental interest in engineering applications.

The derivation of the proposed methodology is based on two observations. The first observation
relates to the basic fact that the wall shear stress is proportional to the value of the vorticity at the
wall, indicating that the large scale vortex dynamics in more or less close proximity of the body
can be readily identified by the effects they induce on the wall shear stress distribution. Hence,
based on the vorticity form of the governing Navier-Stokes equations, we will derive the functional
structure of a reduced order model (ROM) that describes the spatio-temporal evolution of the
surface distribution of the wall shear stress. Unlike methods based on input-output modelling,
(19; 20; 21), or based on black-box structures, (22), this functional structure is based on a first-
principles derivation. The second observation relates to the fact that pressure commonly represents
the dominant contribution to the aerodynamic forces and, thus, needs to be integrated in the model.
Bergmann and Cordier, (8), included the pressure contribution, hence obtaining accurate low-order
force estimation, by employing an extended velocity-pressure POD basis to derive the low-order
models. In the present work, we adopt a different method, building on the ideas of Galletti et al.
(23) and Noack et al. (24), which showed how the projection of the velocity basis functions on the
pressure gradient term in the Galerkin projection of the Navier-Stokes can be modelled using linear
of quadratic functionals of the velocity modes amplitudes. However, as opposed to these works, we
do not use these models to correct the dynamics of the low order systems, because they originate
from the vorticity equation, where pressure does not appear. Instead, we use the same structure to



estimate the surface pressure distribution around the body, from the wall shear stress distribution,
which in turn is used to compute the contribution to the forces due to the wall pressure.

The stringent requirement of possessing the detailed time-dependent picture of the entire flow
field is significantly relaxed by adopting this perspective. The only requirement to obtain an
accurate model is the availability of measurements on the surface of the body resolved in space and
time to a point which is sufficient to uniquely identify the large scale dynamics. Crucially, obtaining
these data in experiments is significantly easier than performing field measurements. This is one of
the main motivation for investigating wall-based models.

In this paper, to demonstrate the validity of this methodology, we apply it to the paradigmatic
example of modelling the aerodynamic forces acting on a circular cylinder in the two-dimensional
laminar regime, at a Reynolds number equal to 200. This oscillatory flow, dominated by an absolute
instability and globally synchronised dynamics, has been the subject of extensive studies concerning
model order reduction, (25; 26; 23; 27), and control design using reduced order models, (28; 29; 30).
Hence, this flow represents a rich benchmark problem to assess the advantages and the disadvantages
of the proposed technique. We do not consider the case of the flow with surface actuation as it is
beyond the scope of this paper and would depend on the form of the actuation employed.

The paper is structured as follows. In section 2 a description of the setup used to solve the
numerical problem is presented, together with a brief validation analysis. Subsequently, the steps
required to arrive at a working model of the surface distributions of the wall shear stress and the
wall pressure around the cylinder are outlined in section 3, using first-principle arguments. Each
step is illustrated by numerical results, presented to demonstrate the approach. A separate section,
section 4, presents an analysis that focuses on showing the relation between the surface distribution
of the shear stress and the spatial structure of vorticity basis functions obtained from application
of POD on the full flow field. Finally, the potentialities, issues and perspectives of the proposed
method are summarised in the concluding section.

2 Numerical setup

2.1 Definitions and numerical model

The formulation used in the present analysis to solve the flow problem is based on the Navier-Stokes
momentum equation for a two-dimensional incompressible viscous fluid, which reads as

ou 1 o
E——u-Vu—Vp—i—EV u, (1)

complemented by the continuity constraint
V-ou=0, (2)

where u = ut + vj is the velocity vector defined on a two-dimensional Cartesian space * = xt + y7J,
and p is the pressure differential with respect to the far field pressure. Normalisation of the governing
equations, resulting in (1, 2), is done using the cylinder diameter and the free stream velocity. This
yields a definition of the Reynolds number as Re = uo, D /v, where D is the cylinder diameters, 1o,
is the free stream velocity and v is the kinematic viscosity of the fluid.

As sketched in the cartoon of figure 1 the Cartesian reference frame is centred on the centre
of the cylinder, located at @ = (0,0), and oriented such that the = axis is aligned with the free
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Figure 1: Schematic of the problem configuration for the circular cylinder flow. Boundary conditions
on the outer domain boundaries are also indicated.

stream. Unless stated otherwise in the text, the angle 6, used in the following to denote the angular
coordinate over the surface of the cylinder, originates from the unit vector ¢ and is positive when
taken counter-clockwise.

The Navier-Stokes problem (1, 2) is solved on a triangular unstructured mesh with a finite
volume formulation provided by the open source code OpenFOAM (31). A mesh of intermediate
fineness, mesh M2 in table 1 with e = 0.01, (the size of the elements adjacent to the cylinder),
is shown in the left-most panel of figure 2. The application icofoam, implementing the well-known
PISO algorithm has been used to solve the velocity-pressure coupling (32).

The computational domain is rectangular and extends for 10 and 20 diameters upstream and
downstream of the cylinder, respectively, and spans a total vertical size of 20 diameters. The domain
has the same size as the one used by Bergmann et al (30) for the same flow problem. The boundary
conditions associated with the problem are also sketched in figure 1. At the inflow, the Dirichlet
condition © = (ux,0) is used for the velocity, while the Neumann condition dp/dz = 0 is used for
the pressure. On the upper and bottom boundaries a free-slip condition is used for the velocity,
such that du/dy = 0 and v = 0. A zero gradient condition is used for the pressure on these two
boundaries. On the cylinder surface the no-slip condition u = (0, 0) is enforced, while the standard
zero normal pressure gradient condition is used for the pressure. At the outflow boundary, good
numerical results, without spurious reflections from the boundary, were obtained by using a zero
normal gradient condition for the velocity, i.e. du/0x = (0,0), while the Dirichlet condition p =0
was set to fix uniquely the pressure field.

The time step was set constant and equal to At = 0.0025 for a fine mesh used to obtain all the
results reported in the rest of the paper, (mesh M2 in table 1). This choice was adopted to achieve
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Figure 2: Computational domain and complete grid for a typical mesh with h.,q; = 0.01, left;
near-cylinder close-up, centre; near-wall close-up, right.

satisfactory temporal resolution and a maximum Courant number in the flow field of the order
of 0.7. We observed that the flow reached the stationary periodic conditions after a short-lived
transient of about 80 time units. Snapshots were then collected from ¢ > 100 to t = 300, i.e. over
about 40 shedding cycles, at time intervals of 0.1, to resolve accurately all important frequencies.

The wall distributions of the pressure and shear stress variables are denoted p(t,6) and 7(t,0),
respectively. The wall shear stress is assumed positive when the viscous force would induce a
counter-clockwise rotation of the cylinder, and negative otherwise. Furthermore, in what follows,
we will use the non-dimensional pressure p directly, instead of introducing a pressure coeflicient,
and similarly for the wall shear stress.

The aerodynamic forces, obtained by summing the pressure and viscous contributions, are nor-

malised by 1/2pu? D, where p is the fluid density. This yields definitions of drag and lift force
coeflicients as

2 2m
Cp(t) = —/ p(t,8) cos0dl — / 7(t,0) sin 6do (3)
0 0
and

2m 2m
Cr(t) = _/0 p(t,8)sin 6d6 —|—/0 7(t,0) cos 6d6, (4)

respectively, obtained by integration with the trapezoidal rule from wall distributions sampled from
simulation.

Preliminary validation and grid convergence studies have been conducted to asses the reliability
of the solver. Mesh independence is assessed by evaluating the effect of the mesh density on the
time averaged drag coefficient C'p, on the Strouhal number S; = f,, D/uo, with fs, the shedding
frequency, and on half the peak to peak amplitude of the lift coefficient fluctuations C7', which are
quantities commonly reported in the literature for this problem. The computational parameters and
the simulation results obtained with three different meshes, with different h,,q;;, are listed in table
1. It can be seen that all the integral quantities show a satisfactory level of convergence at least
since the intermediate mesh M2. In addition, the integral quantities are in close agreement with
results obtained by several other authors, using different numerical setups. Hence, data from the

simulation with mesh M2 has been used for further post-processing and for all the results presented
in this paper.



Authors hwall Ncells Nnodes 6D St Cf

Present - Mesh M1 0.02 29658 14968 1.37 0.198 0.69
Present - Mesh M2 0.01 62098 31269 1.39 0.199 0.70
Present - Mesh M3 0.005 130252 65506 1.39 0.199 0.70

Franke et al. - (33) 1.31 0.194 0.65
He et al. - (34) 1.36  0.198 0.69
Bergmann et al - (30) 25000 12686 1.39 0.200

Wang et al. - (35) 1.36  0.195 0.71
Lu et al. - (36) 134 0196  0.69

Table 1: Grid parameters and numerical results for the grid convergence studies. Comparison with
other published results is also shown when available.

3 Wall-based modelling

We begin with a preliminary discussion related to the temporal and spatial structure of the surface
distributions of the two quantities of interest. The core ideas and the steps of the wall-based
modelling approach are then reported.

3.1 Mean and space-time surface distributions

Time-averaged, (solid line), and root-mean-square, (dash-dotted line), distributions of the wall
shear stress and of the wall pressure are reported in the panels (a) and (b) of figure 3, respectively.
For the sake of clarity, the absolute value of the mean wall shear stress has been reported, with a
dashed line indicating negative values, while the root-mean-square distribution has been scaled by
a factor of five for both pressure and shear stress, for readability.

The mean flow separation angle is located at 6., = 66, in relatively good agreement with other
numerical results at the same Reynolds number (see e.g. (33; 37)). The shear stress distribution
indicates that the larger mean values occur somewhere halfway between the stagnation and the
separation points, with relatively low mean values after separation, in the region of reverse flow.
However, the largest fluctuations are observed in the rear part of the cylinder. Observation of
animated flow sequences indicate that these large fluctuations are due to the intense vorticity
structures periodically generated in the near-wake region by the vortex shedding, in close vicinity
to the cylinder. Relatively intense wall shear stress fluctuations are also observed around 6 = +7/2,
slightly before the separation point.

For pressure, the mean distribution agrees relatively well with results published in the literature,
for the same Reynolds number (38), even though our value of the mean stagnation pressure is around
5% larger than that obtained in the cited reference. The distribution of the root-mean-square value
of the wall pressure fluctuations indicates that the most intense fluctuations occur at = +m/2.
This result agrees with the observation that the fluctuations of the lift are, in general, much larger
than those of the drag force (39).

The time-averaged statistics reported in figure 3 fail to convey the required insight into the
dynamics of the spatio-temporal fluctuations on the whole surface of the cylinder. For this reason,
we report in panels (a) and (b) of figure 4 time-space diagrams of the fluctuations of the wall
shear stress and of the wall pressure, respectively. The time scale spans about four shedding
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Figure 3: (a): absolute value of mean, (solid line), and root-mean-square value, (dashed-dot) line,
distributions of the wall shear stress. Negative values for the mean distribution are indicated by a
dashed line. (b): same quantities for the wall pressure. The distributions are reported as a function
of the angle 0, whose origin is set at the rear point of the cylinder.

cycles, starting from ¢y = 100. The diagram clearly highlights that a very coherent spatio-temporal
structure exists on the surface of the cylinder, with a strong coupling and synchronisation between
the wall pressure and the wall shear stress. We also observe that the spatial structure is dominated
by large spatial scale features, and repeats periodically in time. Crucially, the availability of a
model that predicts the large scale features of this spatio-temporal structure would enable in a
straightforward manner the prediction of the unsteady forces on the cylinder.

3.2 Reduced order modelling by wall-based POD

We assume that the spatio-temporal distributions of both the wall pressure p(t,0) and the wall
shear stress 7(t,0) are available in the form of M flow snapshots containing readings from Nj
sensors located on the cylinder surface. Very well spatially resolved distributions of these quantities
are readily available from full-order numerical simulations, while in a laboratory experiment, these
distributions could be obtained relatively easily by wall-mounted sensors. The number of sensors
must be sufficiently large to provide an adequate spatial resolution of the signature of the relevant
flow structures on the wall, and to provide a relatively accurate estimate of the force coefficients upon
spatial integration. Furthermore, although not discussed in this paper, the position of the sensors
could be chosen with an optimisation process to provide a more accurate or robust representation
of the spatial structure of the fluctuations at the wall, following ideas similar to those reported by
Cohen et al. (40) or by Willcox (41).

Model order reduction comes into play within the current formulation in two different ways.
The first order reduction is inherent in the fact that consideration of the evolution of the flow is
restricted to its footprint at the wall exclusively, whereas the dynamics in the rest of the domain
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Figure 4: Time-space diagrams of the wall shear stress, (a), and wall pressure, (b), fluctuations,
over a time span of about four shedding cycles.



and far away from the wall are not taken into account directly. As a result, a first strong reduction
of dimensionality results by the implicit truncation of those flow structures which do not influence
the surface distribution and that do not impact directly the forces.

It may be argued that some of the fundamental flow physics may be neglected using the wall-
based approach described here. For example, this would be the case in flows where unobservable
modes have a strong dynamical impact even tough their signature is weak or null on the wall. For
example, Kim and Bewley (2) clearly show that a significant number of leading eigenmodes of the
Orr-Sommerfield/Squire operator for the turbulent channel flow have very limited support at the
wall, and they are thus not easily observable nor controllable by wall mounted sensors and actuators.
As it is discussed in more depth later, this behaviour might prevent a correct identification of a
dynamic model.

In a similar vein, the implicit truncation of flow structure which do not influence the force is
analogous to that of highly truncated low order Galerkin models, of which the circular cylinder
problem in the laminar regime is a well-known example (42). In these cases, the unresolved small
scale features of the flow have a crucial dynamical role as they represent the energy dissipation,
but are often truncated by the order reduction. These truncated models often display drifts, long-
term instabilities of other unphysical solutions not pertinent to the full order system described
by the original infinite-dimensional partial differential equations. A turbulence closure, or model
calibration, that models the unresolved cascade of energy is then required (43; 44; 45; 46; 10; 47; 5).

The second and more controllable way where dimensionality reduction is introduced is how
the surface distributions are represented. We assume that the distributions can be represented by
separating the time and space variables into a linear combination of a few “wall basis functions” as

N, N,
p(t,0) = po(0) + Z al(t)pi(0) and T(t,0) = 10(0) + Z al () (0) (5)

where we have adopted a decomposition using the known time-averaged distributions py(6) and
70(0) implying that af(t) = af(t) = 1, while we have expanded the fluctuating components into a
weighted sum of the wall basis functions and the associated temporal coefficients.

For model reduction purposes, the number of wall basis functions N, and N, which do not
need to be equal, is small compared to the number of sensors N but is sufficiently large that
the basis functions correctly describe the large-scale fluctuations. Among the numerous possible
ways to derive the wall basis functions p;(0) and 7;(6), we use in this paper the Proper Orthogonal
Decomposition. Although, these basis functions do not have a dynamical meaning (48), they
approximate optimally the energy of the wall fluctuations, so that the amplitude of the unsteady
forces on the cylinder is optimally represented.

Because M > Nj, the classical POD method, described in Berkooz et al. (7) can be used,
instead of the snapshot method described by Sirovich (49), which is widely used when N; > M.
With the definition of the inner product between two scalar functions defined on the cylinder wall

27

(f9) = f(0)g(6)do, (6)

0
which results in the standard norm
£l = (f, )2, (7)
the Proper Orthogonal Decomposition reduces to the problem of seeking functions f;(6), with f
indicating wall pressure or wall shear stress, which are “most similar” in average to the snapshot
ensemble.



It has been shown (7), that these functions are the eigenfunctions of the following integral

eigenvalue problem
2

RI(0,07)£(6%)d0" = M f(0) (®)
0

where R/ is the two-point spatial correlation tensor associated to f given by

RI(0,6%) = / £(t,0) £(t,07) dt (9)

The eigenvalues )\Zf of (8) are all positive and define a convergent series. The POD basis functions
are normalised such that || f;(0)|| = 1. The temporal coefficients a{ (t) are then obtained by the
projection of the i-th POD mode with the snapshots a{(t) = (f(t,0), fi(8)). By construction, the
temporal coefficients form an orthogonal set, i.e. they satisfy the property

1 T
= /0 of (Dal (1) dt = M 635 (10)

where d;; is the Kronecker delta. As a measure of the information content in the POD basis functions
of the variable f, we introduce the relative information content (RIC), see e.g. (30), defined as

n N
RICT (n) =Y A/ AL (11)

3.2.1 Reduced order modelling by wall-based POD: results

In figure 5, the relative information content RIC(n) is reported for both the wall pressure and the
wall shear stress fluctuations. Numerical values are also reported for reference in table 2. We observe
that a very small number of basis functions are sufficient to describe with significant accuracy the
energy of the fluctuations of the two flow variables at the wall. In particular, four spatial modes
capture more than 99.9% of the total fluctuation energy for both the wall variables. As a result,
in the rest of the paper we will consider only these eight basis functions for the representation of
the variables. Interestingly, the spatial structure of the wall pressure appears slightly simpler than
that of the shear stress, as more energy is captured for the same number of modes.

Similar data compression results are obtained for full-field decompositions, see for instance
Bergmann et al. (30). This appears to indicate that all the large scale structures in the flow field
have a strong impact on the fluctuations on the wall, as will be elucidated better later in the paper,
in section 4. This fact is certainly not obvious a priori, and should not hold as a general rule, because
the wall and full-field bases are optimal in two different senses. The full-field decomposition is biased
to represent those regions of the flow field where fluctuations are more intense, while the dynamics
in other regions of the flow field might have lesser representation in the POD basis, even though
they might have strong dynamical importance, or they might have more fundamental interest, see
e.g. Rowley (48). In contrast, for the wall-based modelling discussed here, the POD focuses on a
very specific and localised region of the flow field, to represent optimally the wall fluctuations.

Polar plots of the first six spatial structures 7;(0) identified by the POD analysis for the wall
shear stress are reported in figure 6. For each distribution, the thin grey line represents the time
averaged wall shear stress distribution 74(6), whereas the basis functions are represented wth a
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Figure 5: Relative information content for the Proper Orthogonal Decomposition of the wall pres-
sure and wall shear stress fluctuations.

n 1 2 3 4
RICP(n) 0.954 0.985 0.998 0.999
RIC" (n) 0.912 0.963 0.996 0.999

Table 2: Numerical values of the relative information content for the wall pressure and the wall
shear stress decompositions as in figure 5, for the first four modes.
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Figure 6: First six empirical modes identified by the POD analysis of the wall shear stress data,
(thick red line). The thinner grey line represents the time averaged wall shear stress distribution.
Negative values are represented by a dashed line.

thicker red line. For both, the dashed part denotes a negative value. For graphical purposes, the
modes have been reported on an arbitrary radial scale, such that their maximum value equals the
maximum value of the mean distribution in the background.

The basis functions display a high degree of symmetry, similarly to full-field pod modes (e.g.
(26)). Modes that are symmetric with respect to 6 = 0, i.e. such that 7;(#) = 7(—6), modes 1,
2, 5, and 6, describe fluctuations of the viscous force in the vertical direction, i.e. of the lift. On
the other hand, anti-symmetric modes, i.e. such that 7;(6) = —7;(—0), modes 3 and 4, describe
fluctuations of the drag component. The first wall shear stress mode, which captures about 91% of
the total fluctuation energy, describes a large scale fluctuation of the wall shear stress induced by
the periodic “rotation” of the flow around the cylinder generated by the alternated reattachment
of the separated shear layers over the upper and lower parts of the cylinder.

The other modes represent less energetic fluctuations of the wall shear stress in the rear part of
the cylinder, in the region of separated flow. These basis functions capture the fluctuations of the
shear stress induced at the wall by those small scale features, e.g. recirculation bubbles and shear
layers detaching from the wall, that populate the rather active back region in close vicinity of the
cylinder (37).

The first six wall pressure modes p;(6) identified by the POD are shown in figure 7. Similarly
to the wall shear stress, these basis functions display a high degree of symmetry. For this case,
anti-symmetric modes, (1, 2, 5 and 6), describe lift fluctuations whereas symmetric modes, 3 and
4, described drag fluctuations. The first pressure mode displays two large lobes of opposite sign,
which describe the large scale fluctuations of lift induced by the shedding. Similarly, the second

12



Figure 7: First six basis function identified by the POD analysis for the wall pressure, (thick red
line). The thin grey line represents the time averaged wall pressure distribution. Negative values
are indicated by a dashed line.

mode has a four-lobe structure. Together, these two modes account for a total of about 98% of
the total energy of the wall pressure fluctuations. The fact that the two symmetric modes have a
relatively small contribution to the total energy of the pressure fluctuation is related to the fact
that the lift coefficient show much larger fluctuations than the drag coefficient.

The time histories of the measured temporal coefficients a (¢) and a? (t) of the first six wall shear
stress and wall pressure basis functions are reported in the top and bottom panels, respectively,
of figure 8. The panels show the temporal evolution of the pairs of modes (1, 2), (3, 4) and (5,
6). A notable feature, for both the pressure and the shear stress, is that the n-th pair of modes
approximately defines an oscillation at the n-th harmonic of shedding frequency.

A similar property has been also observed for the full-field decomposition of the cylinder flow
(25; 50; 26). The first pair of modes describes the fluctuations of the lift coefficient, while the second
pair of modes the fluctuations of the drag, which oscillates at twice the fundamental frequency. The
third pair also describes a lift fluctuation but at a higher harmonic of the shedding frequency.

3.3 Dynamic model for the wall shear stress

It is evident that there is no governing equation that determines the evolution of the shear stress at
the wall because the Navier-Stokes equations refer to the evolution of the flow within the domain.
As a result there is no dynamical equation that could be possibly used for the Galerkin projection
to obtain a system of ordinary differential equation for the temporal coefficients of the wall pressure
or the wall shear stress.
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Figure 8: Time histories of the temporal coefficients for the first six basis functions of the wall shear
stress, top three panels, and for the wall pressure, bottom panels.
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The apparent difficulty can be overcome by using the Galerkin projection method for the vor-
ticity form of the Navier-Stokes equations, which we outline for the case of a two-dimensional flow.
An extension to the three-dimensional case is presented in appendix A. To provide an in depth
basis on the projection for the vorticity equation, the classical work of Rempfer et al. (44) and the
more recent work of Cordier et al. (5) can be consulted.

We assume that it is possible to represent, to an arbitrary degree of accuracy, the scalar vorticity
field w = dv/dx — u/dy as a weighted sum of a set of vorticity basis functions {w;(x)}%), as

N,
w(w, t) ~ wo(@) + Y af (twi(x) (12)

i=1

where wg(x) is the time-averaged field, hence a§ (t) = 1 for all times. There is no requirement for
how the vorticity basis functions are derived, except for the constraint that the associated velocity
fields {ui}fvz‘“o must be solenoidal and must satisfy the boundary conditions of the original problem
in the velocity-pressure formulation. The Galerkin projection of the vorticity transport equation

%: = —u-Vw+éV2w, (13)
onto each vorticity basis function yields a system of ordinary differential equations of the form
N Ne N
Zl Y dt ZLW aj + ZJkZON”ka ay fori=1,. (14)
J J

where the tensors M;;, L;; and Njjj, are defined by integrals over the flow domain 2 as

1
ij = / windQ, Lij = R—/ in2wde, Nijk = —/ wi(uj . V)wde (15)
Q e Ja Q

Specification of appropriate initial conditions and time integration of the system (45) provides a
reduced order solution of the vorticity field by equation (12). This approach is fairly standard and
general properties of these systems are well-known.

Now, because the vorticity fields w;(x) are global modes defined on the entire domain, it can
be argued that the time evolution of the vorticity along some curve in the domain parametrised
by the coordinate n is given by the weighted sum of the vorticity basis functions evaluated on the
curve and where the weights are just the temporal coefficient solution of (45) i.e.

w(n,t) = wo(n —I—Za (16)

If that curve is a wall, the wall shear stress can be easily obtained from the vorticity as 7(n, t) = w(n,t)/Re.
As a result, the temporal evolution of the shear stress on the surface is also given by

T(n,t) = 10(n —i—Za (17)

where 7;(n) is the wall shear stress associated to the vorticity mode w;(x) evaluated on the curve.
By comparing equations (12) and (51), it can be argued that the system (45) also describes the
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evolution of the temporal coefficients associated with the wall basis functions {Tl-(n)}fv:“O. Thus, any
solution of (45) provides the required spatio-temporal description of the wall shear stress.

A necessary relaxation, then, comes from the fact that (12) does not impose any particular
constraint on the choice of the vorticity basis functions. As a result, one can take the reverse
direction and choose the wall basis functions {7;(1)}X% as it is more convenient, for example such
that these wall functions are optimal to represent the energy of the fluctuations at the wall, as it
has been discussed in section 3.2.

3.4 Identification of the shear stress dynamic model

For an arbitrary choice of the set of {7;(1)}Y one would need to have handy the associated
vorticity basis functions on the rest of the domain. If these are available, numerical evaluation of
the integrals in (46) specifies the set of coefficients M;;, L;; and Njjx

However, within the framework of the wall-based modelhng addressed in this paper, we assume
that only the signature at the wall of the vorticity basis functions, i.e. measurements of the wall
shear stress, is available. Hence, it is not possible to adopt the projection method to derive the
coefficients of the low order model. The difficulty can be circumvented by assuming that the same
set of unknown coefficients in (45) can be identified from raw wall measurements, an approach
which we pursue in this work.

In the context of low order modelling for fluids, model calibration methods to correct the dynamic
behaviour have been discussed extensively. In the identification method discussed in (51; 46; 52),
the system parameters are obtained by fitting, in the least squares sense, the time derivatives of
the temporal coefficients to the quadratic structure of the right hand side of the state equation.
The resulting system of linear equations is structurally very ill-conditioned and severely affects the
result. More robust solution methods, based on a truncated singular value decomposition of using
other regularisation approaches, have to be used for the numerical solution, (52). However, based on
extensive tests of this approach on the present dataset, we have found that the systems identified
with this method are extremely unstable when they are integrated in time, and the instability
worsens for models with a high number of modes, quickly exhibiting numerical blow-up, similarly
to the behaviour discussed by Cordier et al., (52).

Hence, to cope with this issue we have used a system identification scheme that ensures a more
accurate representation of the long-term behaviour of the ROM. We follow the approach reported
in reference (52) and references therein. For convenience, the system in equation (45) is rewritten
in a form that is more suited for identification. This form is given by

N, N,
_A +ZB”~T ZZ Cyralay fori=1,...,N;, (18)
j=1k=j

where the sums start from 7 = 1, and the interaction with the mean mode is given by the constants
A;. All the coefficients A;, B;; and Cjji have to be identified. Note that a compact form is used
for the double summation in nonlinear term, so that the pairs of quadratic monomials with j # k
are considered only once. The tilde indicates the model prediction as opposed to the analogous
measured quantities obtained by POD. A more compact form can be given as

da™
dt

= f(@’(t);0) (19)
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where a” (t) € RM is the state vector containing the predictions of the temporal coefficients. The
vector function f: RN — RN7 wraps the sums in (18) and it is parametrised by the matrix

@:[01,...,01',...,0]\[7] ERN""XNT (20)
where each column 6; € R¥= lists the N, coefficients for the i-th state equation in (18), i.e.
0i = [Az| Bil . BiNT ‘ Cill Ci12 . CilN.r Cigg . Ci2NT . CiNTNT] (S RNm (21)

The initial conditions for (19) are taken from the measured values, that is a(to) = a(to) for some to.
The dimension N, is the number of unique monomials for a quadratic polynomial in N, variables,
which is equal to 1 + N, + N (N, +1)/2.

The system identification problem consists in finding a model whose predictions are closest,
in average and in some norm, to the analogous measured quantities. Hence, we first define the
instantaneous error vector e(t) = a”(t) — a”(t) € RN and the symmetric positive definite matrix
A € RN~XN+ that induces the norm ||e(t)|% = e(t)T Ae(t). We thus seek the matrix of coefficients
©° that minimises the cost

g©1) =7 [ lewl ar (22)

subject to the state equation (19). In the present case we used a diagonal structure for A with
entries Aj;' = 1/T fOT al (t)2dt to weight each state according to its relative mean energy content.

1
This improves the conditioning of the problem and speeds up the optimisation.

Besides the difficulty of the solution of this optimisation problem due to the large number of
parameters, a further and principal issue stems from the non-convexity of this class of optimisation
problems, which are usually plagued by the presence of many local optima, (46). Hence, in order to
relax this complexity we adopted an iterative approach where the integration horizon T in (22) is
increased gradually to include first a few data points and eventually the complete data set. When
the time horizon is increased, the optimisation problem is restarted from the optimal solution found
at the previous iteration. At first, © = 0. This approach results in a sequence of better behaved
optimisation problems, each of which started from a solution which is already close to the global
minimum at the current iteration. Although this procedure is not guaranteed to converge in the
most general case, it worked satisfactorily on the present dataset. An interesting alternative is
the so-called multiple-shooting method, (53), where time integration of the system is performed
from several initial conditions and the sum of the errors over all the blocks of data is taken as the
performance index to be minimised.

In the present case, N, = 4, with a total of 60 parameters to estimate. We used with success the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to solve the optimisation problems at each
outer iteration. We have found that the time horizon had to be increased quite finely during the
first iterations covering the first shedding cycle, in order to prevent instabilities.

In figure 9 the time histories of the optimised model predictions a7 (¢) are compared to analogous
measured quantities a] (). The match between the model predictions and the full-order system data
is good. A major source of error, especially for the first state, is a frequency component at four
times the shedding frequency, which disappears when identifying a model with six states, instead
of four. For clarity the figure shows only the first two shedding cycles, but the resulting model is
quite stable and does not show drifts or instabilities over the time span of the data from which it
was identified, i.e. for about 200 time units.
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Figure 9: Comparison between the measured and predicted time histories of the temporal coeffi-
cients of the wall shear stress basis functions.

There is one important remark that needs to be included in this discussion. In the most general
case, the wall shear stress distribution does not uniquely determine its future evolution. This occurs
because there might exist more than one vorticity field distribution, hence with different temporal
evolution given by (44), with the same identical wall distribution of shear stress. This might be the
case where the motion of coherent structures decouples from their signature on the wall, for more
complex flows, or when the flow is actuated. Such events would likely affect the model identification
stage discussed here, resulting in a less accurate model.

3.5 Estimation of the wall pressure distribution

For flows around bluff bodies, and generally for separated flows at large Reynolds number, the
wall pressure distribution determines the forces acting on the body itself, whereas the viscous
contribution is often negligible. However, since the dynamic model derived in the previous section
only contains the wall shear stress, a method that allows an accurate estimation of the wall pressure
distribution from the wall shear stress is needed.

We start with the ansatz that the vorticity field equals the weighted sum of a finite number of
vorticity basis functions,

N,

wiz,t) =Y a (twi(x) (23)

i=0
The sum includes the mean vorticity field wo(x), with the corresponding weight afj(¢t) = 1 being
constant over time. The velocity field is then readily obtained upon use of the Biot-Savart law (54),

v(x,t) = %/QK(QJ —yw(y)dQ (24)
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where the vector kernel K (z) is defined as
_(_ % 2
K(Z) - ( |Z‘2, |Z‘2) (25)

Plugging the ansatz (23) into equation (24) the velocity field is then obtained as

No,

v(x,t) = Za;"(t)ui(a:) (26)

=0

where the basis functions u;(x) are derived for each of the vorticity global modes from (24) as

w@%;%[}aw—ww@MQ (27)

Obtaining the pressure field, and thus the pressure on the surface, would require the solution of
a Poisson equation. To this end, we follow the approach and some of the notation introduced
by Noack et al. (24). The pressure Poisson equation is derived by taking the divergence of the
Navier-Stokes equations (1). For a two-dimensional flow it is given by

o™ ot
APZ_ZZ$31~%:8' (28)

In this equation, the superscripts [ and m run over the Cartesian components of the vectors v and
x. To reduce clutter in the notation, the source term at the right hand side of the Poisson equation
will be denoted by s. We assume that an appropriate choice of the boundary condition for the
solution of equation (28) is made. This is actually not required, since the Poisson equation needs
not to be solved. With the ansatz of equation (26), the source term s in (28) reads as a quadratic
functional of the temporal coefficients a¥’

2
2

w

s= sija; ay (29)

w

«
I
o
I
=

J
where the quantities s;; are defined for each pair of modes

oul” 3U§-
ozl 9™’

(30)

Sij:—

2 2
1=

1 m=1

where the subscripts denote the mode number as in the rest of the paper. As a result, the solution
of the Poisson equation (28) can be expressed as

N, N,
pla.t) =33 pi()at (t)a (1) (31)

i=0 j=0

where each of the partial pressures p;; fields satisfies its own Poisson equation Ap;; = s;;.
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Equation (31) states that the pressure field can be obtained as a weighted sum of partial pressure
fields, derived from the vorticity modes, with weights quadratic in their amplitudes. On the surface
of the cylinder, equation (31) results in

N, N
p(O,1) = > pijB)as (t)as (b). (32)

i=0 j=0

whereas, within the reduced order modelling framework discussed here, the same quantity is ex-
pressed by the expansion in (5). This results in the equality

Np N. N,
> dltpi(0) =YD pij(0)al (t)a] (t) (33)
=0 i=0 j=0

where we have changed the superscript from w to 7, because of the fundamental equivalence of
the two quantities. This equation closely relates the unknown temporal coefficients af (t) with the
known temporal coefficients a7 (t). To obtain an explicit relation we multiply both sides by each
of the wall pressure basis function pg(6) in turn and we integrate along the cylinder body. The
mutual orthogonality property of the wall pressure basis functions obtained via the POD of the
surface data leads to the final expression

N, N.
af(t):ZZw”jaZ(t)a;(t), l=1,...,NP, (34)

i=0 j=0

where wy;; = (pi(0),pi;(0)). Note that afj(t) = 1 by construction and does not need to be estimated.

Equation (34) states that at any time it is possible to determine the fluctuating pressure field
on the surface from measurements of the wall shear stress. In principle, numerical values of the
weights wy;; could be rigorously derived from the solution of the partial pressures Poisson equations,
with appropriate boundary conditions. However, this approach would require the full-field vorticity
modes w; () to be available, whereas within the proposed technique only their values at the wall, i.e.
the wall shear stress distribution is available. For this reason, we propose that a more direct way to
derive these weights is to use a least-square fitting approach using the temporal coefficients obtained
from POD. Because the least squares problem is ill-conditioned we have adopted a solution based
on truncation of the singular value decomposition, see references (51; 52; 55) for details. Using time
histories of a? (t) and a] (¢), the convex optimisation problem amounts to finding the optimal set of
coefficients w;;; that minimises the cost

Ef (wiij) = /OT [af(t) - %%wzijaﬂﬂa;(ﬂrdt (35)

i=0 ;=0

for each | =1,..., N, separately.

Despite the fact that the structure (34) is quadratic, linear terms are still included since the
mean mode amplitude af (¢) is equal to one, and thus the cross terms resulting from the interaction
with the mean mode are such that aja] = a]. It is thus important to understand if the inclusion
of the quadratic terms significantly improves the estimate, with respect to a linear expansion of the
form

NT
af(t) = wvual(t), 1=1,...,N?, (36)
=1
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€1 €2 €3 €4
linear 0.035 0.093 0.056 0.060
quadratic  0.000 0.000 0.002 0.010

Table 3: Normalised root-mean-square error in the estimation of the wall pressure temporal coeffi-
cients from the wall shear stress temporal coefficients, based on linear or quadratic expansion.

where optimal weights v}, can be obtained similarly to the quadratic case by solution of an analogous
linear least squares problem. This observation relates to the development of linear models of the
pressure gradient term in the Galerkin projection for full-field decompositions, as discussed by
Galletti (23). To quantify the accuracy of the estimation we report in table 3 the normalised

root-mean-square error
T
o= \/Ef// al(t)%dt (37)
0

computed for the four-mode model for both the linear and the quadratic expansions. It is clear
that the linear expansion (36) already provides a very accurate description of the wall pressure
distribution. The addition of the quadratic term does not change substantially the results.

This result is evident by observing the time histories of the measured af (t), and predicted, a?(t),
wall pressure temporal coefficients, reported in figure 10, for the first and the last wall pressure
temporal coefficients, in the left and right panels, respectively. It can be observed that the match
between the predictions and the measured values is actually quite good.

A fundamental explanation for why the linear expansion already works remarkably well lies in
the fact that the spectral content of the wall pressure and the wall shear stress temporal coefficients
is very similar between pairs of modes. In fact, as discussed in figure 8, the i-th pair of modes
describes fluctuations at the i-the harmonic of the shedding frequency, for both the wall pressure
and the wall shear stress. As a result, to estimate the first wall pressure mode af (¢) it is sufficient
to use a linear combination of the first two shear stress modes a](t) and a3 (t), to recover the right
phase difference, since these two are orthogonal to each other and basically represent sine/cosine
functions oscillating at the shedding frequency. The third and fourth shear stress modes have a
limited effect on af(t) because the energy at twice the shedding frequency is relatively small in
a?(t). A similar argument can be introduced for the other modes.

The need for a quadratic term arises when the spectral content of the a] is not sufficient to
match the spectral content of some of the a} in a linear sense. This would be the case when the
spectral content of the temporal coefficients is more complex and a lesser separation of frequency
components is found. For instance, building a model with three modes only, e.g. eliminating mode
4 from the current model, results in the fact that mode a¥ cannot be accurately determined using
only mode af because there is a phase difference between the two, (compare panels b and e of figure
8). As a result a quadratic term containing modes with lower frequency is required to generate
components at twice the shedding frequency, to match the right phase of af.
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Figure 10: Time histories of the measured and estimated temporal coefficients of the wall pressure
basis function p;(0) and ps(6). Results for both linear and quadratic formulations are displayed.

3.6 Lift, drag and separation point predictions

The drag and lift forces can be computed as linear combinations of the temporal coefficients as

N, Np

Cp(t) =Y Chal(t)+>_ Chal(t) (38a)
1=0 1=0
N, Ny

CrL(t)=> Cral(t)+ > C}al(t) (38b)
1=0 1=0

where the coefficients C7,,;, C¥, and CJ,, C¥, are the viscous and pressure contributions to the drag
and lift coefficients, respectively, and are computed for each wall shear stress and wall pressure basis
function in (5) with equations (3) and (4). This aspect would be certainly advantageous in cases
where control of the flow over aerodynamic bodies is of interest, although it is beyond the scope
of this paper to discuss this aspect. It can be argued that the wall-based formulation provides a
straightforward and accurate way to express the aerodynamic forces as a function of the system
state, thus avoiding the need to define arbitrary “drag-related” cost functions of states representing
full-field modes (56; 30).

In figure 11 we report time histories of the predicted lift, panel (a), and drag coefficients, panel
(b), compared to the same quantities measured from direct numerical simulations. We observe
that the predictions are in very good agreement with the measured data. This is particularly
true for the lift coefficient, which accounts for the largest contribution to the forces, while a slight
difference can be detected for the drag, essentially because of the early truncation of the basis. For
a model based on six modes, we have observed that the measured and predicted time histories are
indistinguishable from the plot. This is because the basis functions were derived by POD and the
wall pressure fluctuations are distributed such that the fluctuations in the vertical direction are
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Figure 11: Time histories of the measured and predicted drag, (a), and lift, (b), coefficients.

dominant with respect to those along the free stream direction. In particular, only modes ps(6)
and p4(f) describe fluctuations that contribute to the drag while all the other four describe the lift
fluctuations.

The force coefficients are integral quantities from which the prediction accuracy of the model can
be assessed only globally. In spite of this, the model derived with the proposed approach also allows
a very accurate description of the flow features on the wall. Such knowledge might be advantageous
in certain situations. One example, that we investigate in this case, is the time-dependent separation
location 0se,(t), intended in the current case as the angle where the wall shear stress vanishes.

In figure 12 we report time histories of the measured and predicted separation location. The
predictions of the model is obtained by first reconstructing the surface shear stress distribution
from the predicted temporal coefficients a] (¢) of the four-mode model and from the basis functions
7:(6) with equation (5) and then seeking in the expected region of separation the angle where the
shear stress changes sign. Note that the mean shear stress distribution 74() is also used in the
reconstruction. The separation location fluctuates with time in reason of the periodic shedding of
vorticity from the cylinder. However, a relatively accurate prediction of the separation location,
well within one degree, can be obtained by the wall-based model.

4 Comparison with full-field POD analysis

The wall-based modelling technique described in this paper focuses on providing a low-dimensional
description of the forces acting on the cylinder body, which are due to the dynamics of the large
scale structures. However, to obtain a reliable and physically sound model, it is important to
understand in deeper detail the relation between the coherent structures in the flow field and the
surface distributions of the pressure and the shear stress.

In figure 13 the colour map of the mean square value of the vorticity fluctuations (), defined
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Figure 12: Measured and predicted separation point on the upper cylinder surface. Predictions are
obtained from a calibrated model with N, = 4.

as
T
£(z) = % /O W2(z, 1)dt. (39)

The colour scale is truncated at £ = 14 for illustration purposes, even though maximum values of
about 36 are reached in the rear region of the cylinder, where the intense fluctuations are due to
the generation and growth of vortical structures. This is the area of the cylinder surface where
the largest fluctuations of the wall shear stress are observed, and which are described by the wall
shear stress basis functions, see figure 3-(a). However, the spatial distribution of ¢ also displays a
relatively large area in the near-wake region behind the cylinder, peaking at around 0.9 diameters
behind the rear point, where fluctuations are much larger than those measured over most of the
cylinder surface. In addition, the entire wake flow is subject to intense vorticity fluctuations, due to
the periodic shedding and convection of vortices of alternating sign from the cylinder. As a result
when POD is applied to the full-field dataset, the resulting basis functions may be biased by these
fluctuations in the near- and far-field regions of the flow.

To identify a ranked set of full-field basis functions that optimally describe the large scale
vortex dynamics in the near- and far-field regions of the cylinder, we used the snapshot variant
(49) of the Proper Orthogonal Decomposition. The POD is applied to the fluctuating component
of the vorticity dataset, based on 300 snapshot covering around 6 shedding cycles, to obtain the
orthonormal set {w; (a:)};vgl Tt is worth noticing that the full-field basis functions have unit norm
in the sense given by the norm

oy ()| = / W2(x) A0 (40)

and thus their signature at the wall w;(6) does not have unit norm in the sense given by (7). In
figure 14 colour maps of the spatial distribution of the first six full-field POD vorticity modes w;(x)
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Figure 13: Colour map of the mean square value of the vorticity fluctuations £(x) in the near-wake.

n 1 2 3 4 5 6
RICY(n) 0.514 0.850 0.888 0.919 0.948 0.977

Table 4: Numerical values of the relative information content for the Proper Orthogonal Decom-
position of the vorticity field, for the first six modes.

are shown. The plots show that the full-field basis functions target fluctuations in the wake region.
Similarly to the shear stress wall functions, vorticity modes display a strong symmetry with respect
to the axis y = 0. Interestingly, only the first four modes have a clearly visible signature on the
cylinder surface, and thus influence the wall shear stress directly. High-order modes, which are
commonly attributed to small-scale dissipative flow features, have very little support at the wall,
and define vorticity fluctuations in the far-wake. This observation is related to the fact that the
number of full-field POD basis functions required to recover a given fraction of fluctuation energy
is different, and in particular larger that the analogous number required to describe the fluctuation
energy at the wall. Analysis of the relative information content, as defined in equation (11), and
reported in table 4 for the full-field vorticity POD analysis indicates that at least three times the
number of full-field vorticity basis functions is necessary to achieve the same energy recovery at the
wall obtained from 4 wall-modes. This is a clear indication of the strong reduction of dimensionality
operated by considering fluctuations at the wall only, because all the flow structures that have no
signature on it are intrinsically discarded.

In order to understand in a more quantitative manner the relationship between the full-field
POD modes analysis and those obtained with the wall-based POD we calculate the unnormalised
projection-like quantity

P = /O 72(0)w; (6) A6 (41)

as a metric that quantifies the similarity between the i-th wall shear stress basis function 7;(f) and
the j-th full-field POD vorticity mode w;(x) evaluated at the wall. Strictly speaking, the physical
dimensions of the two terms in the integral are different, but they are related to each other by the
Reynolds number.

In figure 15 the distribution of the entries of P is illustrated for the first six wall shear stress
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Figure 14: Colour maps of the first six full-field vorticity POD modes, reported over an arbitrary
colour scale. Blue negative, red positive.

basis function and for the first six full-field vorticity modes. The quantity P has been rescaled for
illustrative purposes by dividing it by its maximum absolute value. It can be seen that the matrix
P has a relatively strong block diagonal structure up to i, 7 = 4, indicating that there is a relatively
close relation between pairs field vorticity modes of figure 14 and pairs of wall shear stress modes
in figure 6. This is due to the fact that the wall and field modes 1 and 2 describe lift fluctuations,
while modes 3 and 4 described drag fluctuation. The result is a clear indication that the dynamics
of the energy-relevant, large scale structures in the cylinder wake are taken into account by the
wall-based model, as they have a relatively strong signature on the wall. However, the entries
of P become increasingly smaller for i,5 > 4, and the diagonal structure also starts to weaken.
This feature confirms the qualitative discussion made for figure 14. In particular, the small-scale
dissipative modes do not have in average a strong signature on the wall, and thus, they do not
influence directly the aerodynamic forces, even though they influence the large scale dynamics via
nonlinear inter-modal energy transfer. Hence, it can be argued that, in this case, the boundary
1,j = 4 defines conceptually a separation between coherent structures that influence the unsteady
loads on the cylinder and flow features that do not.

The role of the projection matrix P can be also viewed from a more generic system-theory-related
standpoint. In general, for low order models constructed from the full-field data, the problem of
estimating the state of the system from wall measurement arises, resulting in techniques as the
Linear Stochastic Estimation, see Bonnet et al. (57) and references therein, and its variants,
(58; 16; 59; 60), or in more rigorous methods for nonlinear dynamic systems (61; 62). From this
standpoint, the quantity F;; can be understood as an output equation that relates the observed
outputs of the system a7, (which are, fundamentally, appropriate linear combinations of the sensor
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Figure 15: Absolute values of the normalised projection matrix P;; of equation (41).

readings), to the internal states aj. This output equation would simply read as

N,
al (t) =Y _ Pyjas(t). (42)
j=1

Even though the concept of observability of a dynamical system is more complex than what is
briefly discussed here, it helps to build a conceptual model of the problem to see that if the matrix
P is rank deficient, as it turns out to be in this case if i and j are large enough, some states a?, i.e.
those corresponding to the small-scale features, are not directly observable simply by inverting P,
but require the full nonlinear dynamics to be taken into account. Clearly, adopting the wall-based
low order modelling approach discussed here completely circumvents the observer design problem,

because all the states a] of the system are directly observable.

5 Conclusions

We have presented a novel methodology for model order reduction of fluid flows that produces low
dimensional models that can accurately describe the spatio-temporal evolution of the pressure and
shear stress of the surface of a body. In this method, the surface distribution of these two variables
is decomposed and represented by a small finite set of wall basis functions, obtained by means of
the Proper Orthogonal Decomposition. Subsequently, the methodology reduces to the identification
of the coefficients of a dynamical model for the temporal evolution of the amplitudes of the wall
shear stress basis functions. The functional form of the dynamical model is a system of ordinary
differential equations with quadratic polynomial right-hand-side derived from the vorticity form of
the governing equations. In order to produce an accurate estimation of the unsteady forces on the
body, the system is complemented with a linear or quadratic data-based model used to estimate
the amplitude of the temporal coefficients of the wall pressure basis functions.
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In this paper we have applied this methodology to the paradigmatic example modelling the flow
past a circular cylinder in the laminar regime. We have shown that a system based on four basis
functions for both the shear stress and the pressure is able to accurately describe global features
of the flow, such the unsteady forces acting on it, as well as local surface features, like the periodic
oscillation of the separation point.

The novelty and fundamental interest with respect to existing methods based on full-field POD
Galerkin models can be summarised by the following properties:

e Modelling of complex, three-dimensional unsteady flows might be easier than with standard
approaches, because the requirement of detailed full-field measurements can be relaxed to the
need of wall measurements only. This is one of the motivations for investigating wall-based
models. In addition, this property might simplify the real-time update of the entire model in
case where a change of the dynamics occurs as a result of application of flow control or with
varying flow conditions.

e All the states of the system constituting the model have a very strong and direct relation with
the aerodynamic forces acting on the body. Hence, these wall-based models are well oriented
to describe in an accurate manner unsteady loads and fluid structure interactions, especially
in the case of fluid induced oscillations, where the body is subject to large displacements.
This latter aspect is a current object of research by the authors.

e One further important property of this method is that it circumvents the problem of designing
observers to estimate the system states. This is made possible by exploiting the feature that
all the states are directly measured, since the wall POD basis functions are obtained as a
linear combination of the sensor readings.

Despite these advantages, there remain certain fundamental aspects that are left to future work,
that need to be addressed for more complex cases. One major issue, although not observed in
the current case, arises from the possible decoupling of the dynamics of coherent structures from
their wall signature in more complex flows. In other words, this is because the wall distribution
does not, in general, uniquely determines its future evolution, as there might exist more than one
flow field with identical wall signature. We argue that the side effect of this phenomenon in our
formulation would be a more difficult model identification. A second aspect of major interest will
be to include in the model the effects of flow actuation, such that that reduced order controllers
that target optimisation of the aerodynamic forces can be designed.

Acknowledgements

Funding from EPSRC under the grants EP/J011126/1, EP/J010537/1, and EP/J010073/1 and
support from Airbus Operation Ltd., ETH Zurich (Automatic Control Laboratory), University of
Michigan (Department of Mathematics), and University of California, Santa Barbara (Department
of Mechanical Engineering) are gratefully acknowledged. The first author is grateful to Prof. Sergei
Chernyshenko and Dr. Ati Sharma for fruitful discussions.

28



References

1]

2]

Bewley TR, Moin P, Temam R. Dns-based predictive control of turbulence: an optimal bench-
mark for feedback algorithms. Journal of Fluid Mechanics 2001; 447:179-225.

Kim J, Bewley TR. A linear systems approach to flow control. Annual Review of Fluid Me-
chanics 2007; 39:383-417.

Colburn CH, Cessna JB, Bewley TR. State estimation in wall-bounded flow systems. part 3.
the ensemble kalman filter. Journal of Fluid Mechanics 2011; 682:289-303.

Holmes P, Lumley JL, Berkooz G. Turbulence, coherent structures, dynamical systems and
symmetry. Cambridge university press, 1998.

Cordier L, Noack B, Tissot G, Lehnasch G, Delville J, Balajewicz M, Daviller G, Niven R.
Identification strategies for model-based control. Ezperiments in Fluids 2013; 54(8):1580.

Samimy M, Debiasi M, Caraballo E, Serrani A, Yuan X, Little J, Myatt JH. Feedback control of
subsonic cavity flows using reduced-order models. Journal of Fluid Mechanics 2007; 579:315—
346.

Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of
turbulent flows. Annual Review of Fluid Mechanics 1993; 25(1):539-575.

Bergmann M, Cordier L. Optimal control of the cylinder wake in the laminar regime by
trust-region methods and pod reduced-order models. Journal of Computational Physics 2008;
227(16):7813 — 7840.

Ravindran S. Reduced-order adaptive controllers for fluid flows using pod. Journal of Scientific
Computing 2000; 15(4):457-478.

Bergmann M, Bruneau CH, Iollo A. Enablers for robust pod models. Journal of Computational
Physics 2009; 228(2):516 — 538.

Prabhu RD, Collis SS, Chang Y. The influence of control on proper orthogonal decomposition
of wall-bounded turbulent flows. Physics of Fluids (1994-present) 2001; 13(2).

Lehmann O, Luchtenburg M, Noack B, King R, Morzynski M, Tadmor G. Wake stabilization
using pod galerkin models with interpolated modes. Decision and Control, 2005 and 2005
European Control Conference. Cdc-Ecc ’05, 2005; 500-505.

Podvin B, Lumley J. Reconstructing the flow in the wall region from wall sensors. Physics of
Fluids (1994-present) 1998; 10(5).

Heepfiner J, Chevalier M, Bewley TR, Henningson DS. State estimation in wall-bounded flow
systems. part 1. perturbed laminar flows. Journal of Fluid Mechanics 2005; 534:263-294.

Jones BL, Kerrigan EC, Morrison JF, Zaki TA. Flow estimation of boundary layers using
dns-based wall shear information. International Journal of Control 2011; 84(8):1310-1325.

Buffoni M, Camarri S, Tollo A, Lombardi E, Salvetti M. A non-linear observer for unsteady
three-dimensional flows. Journal of Computational Physics 2008; 227(4):2626 — 2643.

29



[17]

[18]

23]

[24]

[25]

[26]

[29]

[30]

[31]

32]

Rowley C, Juttijudata V. Model-based control and estimation of cavity flow oscillations. De-
cision and Control, 2005 and 2005 European Control Conference. Cdc-Ecc '05. 44th Ieee Con-
ference on, 2005; 512-517.

Nagarajan KK, Cordier L, Airiau C, et al.. Development and application of a reduced order
model for the control of self-sustained instabilities in cavity flows. Communication in Compu-
tational Physics 2013; 14.

Kegerise M, Cabell R, IIT LC. Real-time feedback control of flow-induced cavity tones-part 1:
Fixed-gain control. Journal of Sound and Vibration 2007; 307(35):906 — 923.

Hervé A, Sipp D, Schmid PJ, Samuelides M. A physics-based approach to flow control using
system identification. Journal of Fluid Mechanics 2012; 702:26-58.

Becker R, King R, Petz R, Nitsche W. Adaptive closed-loop separation control on a high-lift
configuration using extremum seeking. ATAA Journal 2007; 45(6):1382-1392.

Gillies E. Low-dimensional control of the circular cylinder wake. Journal of Fluid Mechanics
1998; 371(1):157-178.

Galletti B, Bruneau CH, Zannetti L, Tollo A. Low-order modelling of laminar flow regimes past
a confined square cylinder. Journal of Fluid Mechanics 2004; 503:161-170.

Noack BR, Papas P, Monkewitz PA. The need for a pressure-term representation in empirical
galerkin models of incompressible shear flows. Journal of Fluid Mechanics 2005; 523:339-365.

Deane AE, Kevrekidis IG, Karniadakis GE, Orszag SA. Low-dimensional models for complex
geometry flows: Application to grooved channels and circular cylinders. Physics of Fluids A:
Fluid Dynamics (1989-1993) 1991; 3(10):2337-2354.

Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F. A hierarchy of low-dimensional
models for the transient and post-transient cylinder wake. Journal of Fluid Mechanics 2003;
497:335-363.

Hay A, Borggaard JT, Pelletier D. Local improvements to reduced-order models using sen-
sitivity analysis of the proper orthogonal decomposition. Journal of Fluid Mechanics 2009;
629:41-72.

Hinze M, Kunisch K. Three control methods for time-dependent fluid flow. Flow, Turbulence
and Combustion 2000; 65(3-4):273-298.

Afanasiev K, Hinze M. Adaptive control of a wake flow using proper orthogonal decomposition.
Lecture Notes in Pure and Applied Mathematics 2001; :317-332.

Bergmann M, Cordier L, Brancher JP. Optimal rotary control of the cylinder wake using
proper orthogonal decomposition reduced-order model. Physics of Fluids (1994-present) 2005;
17(9):097101.

Jasak H, Jemcov A, Tukovic Z. Openfoam: A c++ library for complex physics simulations.
International workshop on coupled methods in numerical dynamics, vol. 1000, 2007; 1-20.

Ferziger JH, Peri¢ M. Computational methods for fluid dynamics, vol. 3. Springer Berlin, 2002.

30



[33]

[34]

Franke R, Rodi W, Schnung B. Numerical calculation of laminar vortex-shedding flow past
cylinders. Journal of Wind Engineering and Industrial Aerodynamics 1990; 35(0):237 — 257.

He JW, Glowinski R, Metcalfe R, Nordlander A, Periaux J. Active control and drag optimiza-
tion for flow past a circular cylinder: I. oscillatory cylinder rotation. Journal of Computational
Physics 2000; 163(1):83 — 117.

Wang Z, Fan J, Cen K. Immersed boundary method for the simulation of 2d viscous flow
based on vorticity-velocity formulations. Journal of Computational Physics 2009; 228(5):1504
—1520.

Lu L, Qin J, Teng B, Li Y. Numerical investigations of lift suppression by feedback rotary
oscillation of circular cylinder at low reynolds number. Physics of Fluids (1994-present) 2011;
23(3):033601.

Wu MH, Wen CY, Yen RH, Weng MC, Wang AB. Experimental and numerical study of the
separation angle for flow around a circular cylinder at low reynolds number. Journal of Fluid
Mechanics 2004; 515:233-260.

Rajani B, Kandasamy A, Majumdar S. Numerical simulation of laminar flow past a circular
cylinder. Applied Mathematical Modelling 2009; 33(3):1228 — 1247.

Jordan SK, Fromm JE. Oscillatory drag, lift, and torque on a circular cylinder in a uniform
flow. Physics of Fluids (1958-1988) 1972; 15(3):371-376.

Cohen K, Siegel S, McLaughlin T. Sensor placement based on proper orthogonal decomposition
modeling of a cylinder wake. ATAA Paper 2003; 4259:2003.

Willcox K. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposi-
tion. Computers & Fluids 2006; 35(2):208 — 226.

Rempfer D. On low-dimensional galerkin models for fluid flow. Theoretical and Computational
Fluid Dynamics 2000; 14(2):75-88.

Aubry N, Holmes P, Lumley JL, Stone E. The dynamics of coherent structures in the wall
region of a turbulent boundary layer. Journal of Fluid Mechanics 1988; 192:115-173.

Rempfer D, Fasel HF. Dynamics of three-dimensional coherent structures in a flat-plate bound-
ary layer. Journal of Fluid Mechanics 1994; 275:257-283.

Sirisup S, Karniadakis GE. A spectral viscosity method for correcting the long-term behavior
of pod models. Journal of Computational Physics 2004; 194(1):92-116.

Couplet M, Basdevant C, Sagaut P. Calibrated reduced-order pod-galerkin system for fluid
flow modelling. Journal of Computational Physics 2005; 207(1):192 — 220.

Noack BR, Niven RK. Maximum-entropy closure for a galerkin model of an incompressible
periodic wake. Journal of Fluid Mechanics 2012; 700:187-213.

Rowley CW. Model reduction for fluids, using balanced proper orthogonal decomposition.
International Journal of Bifurcation and Chaos 2005; 15(03):997-1013.

31



[49]

Sirovich L. Turbulence and the dynamics of coherent structures. i-coherent structures. ii-
symmetries and transformations. iii-dynamics and scaling. Quarterly of applied mathematics
1987; 45:561-571.

Ma X, Karniadakis GE. A low-dimensional model for simulating three-dimensional cylinder
flow. Journal of Fluid Mechanics 2002; 458:181-190.

Perret L, Collin E, Delville J. Polynomial identification of pod based low-order dynamical
system. Journal of Turbulence 2006; :N17.

Cordier L, Majd E, Abou B, Favier J. Calibration of pod reduced-order models using tikhonov
regularization. International Journal for Numerical Methods in Fluids 2010; 63(2):269-296.

Peifer M, Timmer J. Parameter estimation in ordinary differential equations for biochemical
processes using the method of multiple shooting. Systems Biology, IET 2007; 1(2):78-88.

Majda AJ, Bertozzi AL. Vorticity and incompressible flow, vol. 27. Cambridge University Press,
2002.

Hansen P. Truncated singular value decomposition solutions to discrete ill-posed problems
with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing
1990; 11(3):503-518.

Graham WR, Peraire J, Tang KY. Optimal control of vortex shedding using low-order models.
part ii model-based control. International Journal for Numerical Methods in Engineering 1999;
44(7):973-990.

Bonnet J, Cole D, Delville J, Glauser M, Ukeiley L. Stochastic estimation and proper orthogo-
nal decomposition: Complementary techniques for identifying structure. Experiments in Fluids
1994; 17(5):307-314. URL 10.1007/BF018744009.

Tinney C, Coiffet F, Delville J, Hall A, Jordan P, Glauser M. On spectral linear stochastic
estimation. Ezperiments in Fluids 2006; 41(5):763-775. URL 10.1007/s00348-006-0199-5.

Durgesh V, Naughton J. Multi-time-delay lse-pod complementary approach applied to un-
steady high-reynolds-number near wake flow. Experiments in Fluids 2010; 49(3):571-583.

Lasagna D, Orazi M, Tuso G. Multi-time delay, multi-point linear stochastic estimation of a
cavity shear layer velocity from wall-pressure measurements. Physics of Fluids (1994-present)
2013; 25(1):017101.

Bewley TR, Sharma AS. Efficient grid-based bayesian estimation of nonlinear low-dimensional
systems with sparse non-gaussian pdfs. Automatica 2012; 48(7):1286-1290.

Wynn A, Goulart P. Observer design for systems with an energy preserving nonlinearity, with
application to fluid flow. Decision and Control and European Control Conference (Cdec-Ecc),
2011 50th Ieee Conference on, 2011; 7524-7529.

32



A  Formulation for 3D flows

An ansatz for the three-dimensional velocity vector field is first introduced as

N
u™ (x,t) = up(x) + Z ai(t)u;(x), (43)

i=1
where the vector fields u;(x), ¢ = 1,..., N, form an orthonormal set of solenoidal basis functions.

The transport equation of the vorticity vector w =V x u

Ow i

5 = —(u-V)w+ (w-V)u+ Rev%, (44)
is then projected onto the curl of each of the velocity basis function w; = V x u;, i = 1,..., N,
resulting in a coupled system of NV ordinary differential equations
N da. N N N
ZMWd—tJ :ZLijaj—i—ZZNijkajak fOYiZ 1,...,N, (45)
j=1 j=0 §=0 k=0
where the tensors M;;, L;; are defined as
1 2
Mij = w; - wde, Lij = R_ w; - Vv wde, (46)
Q e Jo
and
Now == [ i+ (0 Ve = (@1 Ty, s (47)
Q

With appropriate initial conditions, equation (45) provides the temporal evolution of the am-
plitudes a;(t).

We then introduce a curvilinear local coordinate system (s,l,n) at the wall, with n being the
wall normal direction, as in figure 16. The spatio-temporal evolution of the vorticity at the wall is

n

Figure 16: Local coordinate system, vorticity components and viscous shear stresses.

given by
N

WM (s,1,1) = wo(s, 1) + Y a;(t)wi(s, 1), (48)

i=1
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where the notation w;(s,!) denotes the spatial distribution of the vorticity vector field w;(x) eval-
uated at the wall. Tt is easy to show that at the wall the wall-normal component w?(s,,t), where
the superscript denotes the component, is identically zero for homogeneous boundary conditions.
Hence, for each vorticity basis function as well as for the mean distribution, it holds that

w;(s,1) = (Wi (s, 1), wi(s,1),0). (49)
According to the reference system in figure 16, the two components of the viscous shear stress
at the wall are related to the two components of vorticity as
(s 1 wh(s,1)

Tis,1) = (Tf(S,l)) " Re (—wf(s,l) ' (50)

It follows that v
TV (s, 1 t) = To(s,1) + Y ai(t)Ti(s,1). (51)

i=1
Hence, similarly to the 2D case discussed before, the solution of (45) also provides the temporal
evolution of the shear stress components at the wall. As a result, the basis functions 7;(s,[) can

be chosen a priori, and coefficients of a model structure similar to that of equation (45) can be
identified from data.
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