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ABSTRACT

In business surveys, data typically are skewed and the standard approach for small area
estimation based on linear mixed models lead to inefficient estimates. In this paper, we
discuss small area estimation techniques for skewed data that are linear following a
suitable transformation. In this context, implementation of the empirical best linear
unbiased prediction (EBLUP) approach under transformation to a linear mixed model is
complicated. However, this is not the case with the model-based direct (MBD) approach
(Chambers and Chandra, 2006), which is based on weighted linear estimators. We
extend the MBD approach to skewed data using sample weights derived via model
calibration based on a log transform model with random area effects. Our results show
this estimator is both efficient and robust with respect to the distribution of these random
effects. An application to real data demonstrates the satisfactory performance of the

method.
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Abstract
In business surveys, data typically are skewed and the standard approach for small area
estimation based on linear mixed models lead to inefficient estimates. In this paper, we
discuss small area estimation techniques for skewed data that are linear following a suitable
transformation. In this context, implementation of the empirical best linear unbiased
prediction (EBLUP) approach under transformation to a linear mixed model is complicated.
However, this is not the case with the model-based direct (MBD) approach (Chambers and
Chandra, 2006), which is based on weighted linear estimators. We extend the MBD approach
to skewed data using sample weights derived via model calibration based on a log transform
model with random area effects. Our results show this estimator is both efficient and robust
with respect to the distribution of these random effects. An application to real data

demonstrates the satisfactory performance of the method.
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1. Introduction

Small area estimation (SAE) is typically an increasingly important secondary objective of
many sample surveys, and several methods exist in the literature (Rao, 2003). However,
research is continuing on several important practical problems related to small area
estimation. Standard methods for SAE such as the empirical best linear unbiased prediction
(EBLUP) approach (Prasad and Rao, 1990) and the model-based direct (MBD) approach
(Chambers and Chandra, 2006) assume a linear mixed model can be used to characterize the
small areas of interest. However, it happens (typically for skewed data) that the variable of
interest Y is linear on some transformed scale (e.g. in business surveys, often variables are
linear on logarithmic scale). In this context, estimation based on linear model for Y leads to
inefficient estimates. In such situation, an appropriate technique for SAE should essentially be
based on a linear mixed model for a transformed variable. The use of transform variables for
survey estimation with skewed data has been investigated by Carroll and Ruppert (1988),
Chen and Chen (1996), Karlberg (2000) and Chambers and Dorfman (2003). In this paper we
explore transform variable based estimation in context of SAE for skewed data, focussing on
the widely used logarithmic (log) transformation function. Implementation of the EBLUP
approach under transformation to a linear mixed model is quite complicated. However, this is
not the case with the MBD approach, which is based on weighted linear estimators. In this
paper we extend the MBD approach of Chambers and Chandra (2006) to small area
estimation for skewed data. In particular, we consider the use of sample weights derived via
model calibration (Wu and Sitter, 2001) based on a log transform model with random area
effects. A simple MSE estimator for weighted small area estimation is also developed. We
also relax the usual normality assumption for random errors in order to examine robustness
with respect to this assumption.

In the following section we summarize the model calibration approach for estimation of
population quantities. In section 3 we then discuss the expected value model derived from a
transform linear mixed model for small area estimation of skewed data. Section 4 introduces
the survey weights based on expected value model derived from a transform linear mixed
model and describes the MBD estimator for SAE in this case. In section 5 we provide
illustrative empirical results that contrast the proposed MBD estimator for skewed data with
the MBD and EBLUP method under a linear mixed model. Finally, in section 6 some
concluding remarks are made and some related issues that needs further attention are

discussed.



2. Model Calibration for Population Estimation
In this section we briefly review model calibration for estimation of population level
quantities. To start, we fix our notation. Let Y denote an N-vector of population values of a

characteristic of interest, and suppose that our primary aim is estimation of the total 7, of the

values in Y (or their mean Y). In order to assist us in this objective, we shall assume that we
have ‘access’ to X, an N x p matrix of values of p auxiliary variables that are related, in some
sense, to the values in Y. In particular, we assume that the individual sample values in X are
known. The non-sample values in X may not be individually known, but are assumed known
at some aggregate level. At a minimum, we know the population totals 7' of the columns of

X. Given this set up, Deville and Sarndal (1992) introduce the notation of a calibration

estimator of population total of Y as fy = Z/ w;y;, where the calibration weights w,’s are
chosen to minimise their average distance (®,, say) from the basic design weights, d, = ﬂ_;l

with 7, =Pr(;j es), that are used in Horvitz-Thompson (HT) estimator T, ,, :Z

Jjes djyj !

subject to the calibration constraint

ZA;ES WiX; = Zj/:lxj =T, 1)

Deville and Séarndal (1992) argue “weights that perform well for the auxiliary variables also
should perform well for the study variable”. However, there is an implicit underlying
assumption that Y and X are linearly related that makes this a valid argument, i.e. the
conventional calibration approach (Deville and Sarndal, 1992, Chambers, 1997) implicitly
relies on the assumption that the survey variable and the auxiliary variables are linearly
related. Thus, if the underlying model is non-linear then the calibrated estimator derived
under a linearity assumption cannot be very efficient. Let us assume the relationship between

Y and X can be described by a super population model

E (v, |x)=h(x;n), Ve(y,|x)) =00, j=1..,N, (2)
where 77, typically vector-valued, and o® are model parameters, and the mean function
h(x;;n) is a known function of x; and 7, the variance function @, is a known function of x,
and A(x;;n7). Here E. and V. denotes the expectation and variance with respect to super
population model. In matrix notation we write (2) as

E.(Y|X)=h(X;n) and V(Y| X)=Q (3)

The model (3) is quite general and includes linear, non-linear, and generalized linear models



as special cases. In this context, Wu and Sitter, (2001) proposed the use of sample weights

derived via model calibration. They defined the calibration estimator for population mean of Y
as i:N‘lzjesw_,yj with weights sought to minimize the distance measure ®_ under the
constraints:
2w =N and 3 wh(xii) =30 k(i) 4

where 7 is a design consistent estimator for 7. That is calibration is performed with respect
to the population mean of the “fitted values’ fzj = h(xj;ﬁ) of h(x_j;ﬁ). Provided the model (3)
is a reasonable one, y; is then (at least approximately) a linear function of its “fitted values’
h(x_,;ﬁ) under this model. The basic idea of this approach is then we can carry out linear

estimation using these “fitted or expected values’ as auxiliary variables.
The above discussion represents what might be referred to the design-based interpretation
of model calibration. A model-based perspective on model calibration can be described as

follows. We assume that Y and 4(X;#7) are related by the linear model of the form
Y=al,+ah(X;n)+e=al+¢ (5)
where J denotes the ‘design matrix’ for the linear model (5) linking Y and A(X;7),
a =(a,,a,)" is a vector of unknown parameters, ¢ denotes a N-vector of random variables
with E.(£)=0 and V.(¢) =Q=[w,]. We called model (5) the ‘expected value’ or “fitted
value’ model defined by (3). For ¢, =0 in model (5) we refer as ratio specification of this

model, otherwise regression specification. The model (5) can have either ratio or regression
specification. Without loss of generality, we arrange the vector Y so that the first » elements

correspond to the sample units, and partition Y, J and Q according to sample and non-

Yv _ Js _ ster
Y_{Yr] J—{JJ and Q_[QHQJ'

Here J, is the n xI vector of ‘fitted values’ of the auxiliary variables and Q_ isthe n x n

sample units:

covariance matrix associated with the » sample units that make up the nx1 sample vector Y. .

A subscript of » is used to denote corresponding quantities defined by the N —» non-sample

units, with Q_ denoting the (N —n)x n matrix defined by Cov(Y,,Y,). In what follows we
denote 1,, 1 and 1 asvectorsof 1’sand /,, /,and /, as identity matrices of order N, n and

N —n respectively. In practice the variance components that define covariance matrix Q are



unknown and so need to be estimated from the sample data. We use a “hat” to denote such an
estimate. Further, throughout this paper we assume that sampling is uninformative, so the
sample data also follow the population model.

Given this notation, the sample weights that define the BLUP for population total of Y

under a general linear “fitted value” model (5) are

1)+, -H,J)QQ 1 (6)

n

WZLUP =1,+H;(J1,-J,

N

where H, = (J!Q.'J,)"J'Q . See Royall (1976). The sample weights (6) derived via model

calibration are calibrated on J, i.e. J'wl,,, =J1,. The weights (6) are based on a model

appropriate for estimation of population as a whole (i.e. population weighting) and using
these weights for small area estimation will be inefficient. The most commonly used class of
models for small area estimation model is essentially a mixed model, i.e. model implied by
the covariance structure that includes the random area effect components. The next section
describes the model that includes the random area effects and suitable for small area

estimation.

3. Small Area Models under Transformation
3.1  Linear Mixed Model
Let Y, be the N, x1 vector of values of variable of interest in small area i (i =1,....,m) and let

X, be the N, x p matrix of values of the auxiliary variables associated with Y,. We assume
that ¥, and X, are not related by a linear model on themselves, but they are linearly related

on logarithm (natural) transform model. We consider the following linear mixed model
specification for the distribution of /, =log(Y;) given Z,:

L=Zp+Gu, +e, (7)
where Z, = (1, ,log(X,)) is the N,x(p+1) matrix of values of the auxiliary variables in area
i, pis a (p+1)x1 vector of fixed effects, G, is a N, xqg matrix of known covariates
characterising differences between small areas, N, is the number of population units in the
small area 7, 1, is a vector of 1’s of order N, u, is a random area effect associated with the
i"" small area and e, is a N, x1 vector of individual level random errors. The two random

variables u, and e, are assumed to be independently normally distributed, with zero means

and with variances ¥ (u,) =2 and V' (e,) = 6’1 x, respectively. The covariance matrix of / is



V.=Var(l.)= G,.Z(H)G,.'+O':'IM , with v, =Var(l,) = G,Z(0)G; +V (e;) and v, =Cov(l;,1,)
=G,2(0)G,; j,k=1,....,N,. The covariance of /, depends on a vector of fixed parameters &,

usually called the variance components of the model.
By grouping the area-specific models (7) over the population, we are led to the population
level model:
I=Zp+Gu+e (8)
where [=(l,....I)",Z=(Z],....... Z'), G=diag(G;1<i<m), u=(u,....,u,) and

m

e=(e,...,e/ ). The variance-covariance matrix of / is V' = diag(V;;1<i < m) . We assume that

Z has full column rank. In practice the variance components of the model that define the
covariance matrix 7 are unknown and we estimate them from the sample data under the
model (8) with suitable estimation methods such as maximum likelihood (ML), restricted

maximum likelihood (REML) or method of moments (Harville, 1977). The estimated
variance-covariance matrix of / is J = diag(f}i;lé i <m) with I} :&EZIN[ +GZEG' . Again, we
consider the decomposition of /, Z, G and V' into sample and non-sample components as
mentioned before (6). We use similar notation at the small area level by introducing an extra
subscript 7 to denote small area. For example, we denote by s, the set of », sample units in

area i, r the corresponding N,—mn, non-sampled units in the area and put

A

v 21 +G, ZG' and V =G, ZG'

AN

With this notation, and assuming (8) holds, the empirical best linear unbiased estimator of
pis p=(Xr.20:2,) (S0,20:,) with E.(5)=p and V() =X, 27,02, ) . so
that E.([/-[)~0 for large n. We denote ¢fi=Zl.ﬁA’ with E§(¢31.):Zl.,6’ and

ng((/;,.):Zi( ZVSSZ) Z', where a,jkzz,j( ZVSSZ) Z, -0 as n—>o. We

denote by a, =(a,;,.....a, ) and v. =y, ..,vyy ), the vectors of diagonal elements of

the covariance matrices Vf(&) and V. (/) respectively.

In order to use the Chambers and Chandra (2006) MBD method to get estimates for small
areas we require sample weights. For skewed data that follows a linear mixed model on the
log scale (8), the sample weights can be derived via model calibration, so first we need to
evaluate ‘expected value’ model (Section 2). In other words, we need to evaluate the first and

second moments, i.e. 2, Q under the model (8) to derive the sample weights (6). We can use



parameter estimates derived under model (8) to obtain the predicted values of the transform
variable and then back-transform to get predicted values of Y. These lead to the naive-
lognormal predictor. However, this predictor is biased (Chambers and Dorfman, 2003). Bias
corrected first and second order moments that define the expected value model are expressed

below.

3.2  An Expected Value Model for Small Area Estimation
Let us consider

E§ (Yy) = Eg I:exp(lij)] = exp(ZU.,B+ Vi /2) = (R(U) * Eg [eXp(Zj)} = Eg (2]) (9)

Thus, we need to adjust this bias. To this end we write ¢, = ¢,(7) =exp[Z,; 5+ (v,

ijj

/2)] and

then by a two-step Taylor series approximation:

yon

(pi(ﬁ)E(/%(n)ﬂoi'(ﬁ—n)%(ﬁ—n) o (1-1),
~ ’ ~ 1 ", oA ~ '
sothat E.[p (7)]= p.(r) + ¢/ E.Gi—n) + | E: [ G- =Y} |

Here, ' and ¢ are the first and second derivatives of ¢.(17) with respect to 7 at =7,

ﬁ:(,é,ﬁw.)’ is the estimate of vector of unknown fixed parameters 7 =(f,v,

)" such that

Eé(ﬁ—n) ~0 for large n . Further, ,@ and ﬁijj are independent (McCulloch and Searle, 2001)

and thus

B0 G-n)i-n) || =BG - mGi )|

(Z2,8+2) moo Ao Yo, 1 -
=e | 2 {ZU( i:lZl_SViSSIZiS) Zij+ZVar(vw)}

. v, v
Zyp+y 2 Zif+y EZ“eZﬂﬁ@%
- ! ij 4 y y
with ¢, 1 2, and ¢, 1 ozptn ot
= —e 2 e 2
2 2 4

Substituting these expressions, we get

N N | 1.
E.[pn)]ze " 2 {1+E[aw+zV(v&i)}} #E.[p(n)]=¢

v
(Zv,-ﬁ”r%)

This indicates that transformation leads to biased estimator. A second order bias corrected

estimate of £, (Y; ) is defined as



5 LA 1 @#ﬁm) . C e
Y, =h(Z;n)=k;e 2 i=L...,m;j=L...,N

i

(10)

so that E.(Y,) ~exp(Z,8+v, /2)=E.(Y,)=h(Z,:n), i.e. ¥, is an approximately ¢ unbiased

[/ g

Var(v R

predictor of Y. Here IQJ {1+%(a“+T’”H is the bias correction and Var(v.) is the

ijj ijj

asymptotic covariance matrix of v,. given by inverse of the relevant information matrix. Note

that the bias adjustment in (10) has same form as Karlberg (2000). However, Karlberg (2000)
assumes uncorrelated variables. In contrast, predictor (10) is defined for general case allowing
correlated variables.

Under normality of the random errors u, and e,, covariance between Y, and Y, in small

areai is
Zi/+Zi 4 Gijui G kUi T ik Gij”f G ik"i T ik
Covg(Yij'Yik):wijk :e( ) {ng(e * €y oGy +el)—E§(€ + )Eé(eGm +ey )}
(Z:+Z:) B i(Vi//‘*"’ikk) V. . .
_Je T [e? (e™ =1 if j=k (12)
¢ e" (e ~1)] if j=k

We group the bias corrected predictor (10) and the covariance (11) at the small area level as

V=25 = (T T ) =k eXpZ S 4) (12)

I m ~ -1 I/A'ar ﬁ
with £, :1"'%(2,'( Z! V’lZis) Zl-'+_( U/)J and

j=1""is" iss 4
Varg (Y)=Q,= [a)ijk] =A4A, A (13)

where Ai:{diag(ez”ﬁ);lﬁ jSM} and A, is N x N, positive definite matrix with (j k)"

elements as 5, = {exp(vijj +Vik% ]{exp(vi,,{) —1}]

For example, under random intercept model (i.e. model specification-I described in Chandra

)

and Chambers, 2005): V() =o,, V(e)=o. and V,=c’l, +o’1,1, with v, =o’+0] |

v, =2 ,and then ¥, (¥,) =0, = 4 [e“’f < exp(a?l,, +051N[1;V[)—1N[1;V[}} A



The area-specific approximately bias corrected estimator (12) and variance-covariance matrix
(13), grouped at population level define the population level version of ‘expected value’
model

E.(Y|h) =1y +oh(Z;n)=aJ and Var, (Y |h) =Q (14)

where Y =(Y,.....Y'), h=(h,....,h) and Q=diag(Q,;1<i<m). Note that the ‘expected

value’ models (5) and (14) have same form. However, model (5) is suitable for the population
estimation, while model (14) includes the random area effects and is suitable for small area

estimation.

4. Small Area Estimator under the Expected Value Model (14)
With appropriate sample and non-sample partition of ¥, J and Q, as in section 2, the EBLUP

version of sample weights (6) under the model (14) are

WZBLUP = ln + 19;1 (J’lN - J’l )+ (In - ﬁf’t‘]!)g’\zs_slfzsrlr (15)

s n

A

where H, = (J'Q:1J.) " J'Qt. We note that the sample weights (15) depend on random area

N SS s

effects of the mixed model (7) via the covariance structure of model (14) and are thus suitable
for small area estimation. We now use the MBD approach of Chambers and Chandra (2006)
to define estimator for small areas. They only consider the Hajek form of the MBD estimator
for small areas using sample weights derived under a linear mixed model. However, the
weights (15) are derived via model calibration under the expected value model (14) where
estimator is defined as the HT form (Section 2). Thus, we consider both forms of MBD

estimators. The sample weights (15) associated with the sample units in the small area i can
be used to define the following model-based direct (MBD) estimators for the i” small area
mean Y, :

o The Hajek form of the weighted sample for area i

?- e = ZS[. Wb, / Z.s-,. Wi (16)

e  The Horvitz-Thompson form of the weighted sample for area i
?HT = ZS ijj/Ni (17)
Both estimators (16) and (17) also depend on how the model calibration weights (15) are
specified. In particular, we consider two different specifications for the expected value model

(14), the ratio and the regression specification (see below equation (5)). This leads to four
different MBD estimators that are set out below.



Estimator  Estimator type Model specification

TrMBD1  Hajek type Ratio specification
TrMBD2  Horvitz-Thompson type  Ratio specification
TrMBD3  Hajek type Regression specification
TrMBD4  Horvitz-Thompson type  Regression specification

Estimation of mean squared error (MSE) of (16) and (17) follows the approach of Chambers
and Chandra (2006), and treats these expressions as simple weighted domain mean estimates
under the population level model (5). Under this approach the sample weights derived from
(15) are treated as fixed and the prediction variance of (16) or (17) is estimated using a
standard robust variance estimator. See Royall and Cumberland (1978). A “plug-in” estimate
of the squared bias of (16) and (17) under this model is added to this estimated prediction
variance to finally define a simple estimate of the MSE. Note that under this approach the
EBLUP weights underlying (16) and (17) “borrow strength” via the assumed small area
model (14), but this model is not used in inference. In particular, we treat the expected value
model (14) as a vehicle for generating estimation weights, but base inference on the model
(5), thus ensuring consistency with the way mean squared errors are estimated at population
level. See Chambers and Chandra (2006) and Chandra and Chambers (2005).

5. Simulation Study

In this section we illustrate the performance of seven different small area estimators. These
are the proposed MBD estimators (TrMBD1-TrMBD4) for skewed data (Section 4), the
Hajek type (MBD1), and HT type (MBD2) MBD estimators based on sample weights derived
under a linear mixed model (Chambers and Chandra, 2006) and the EBLUP under a linear
mixed model (Prasad and Rao, 1990).

We consider two types of simulation studies. The first type of study uses model-based
simulation to generate artificial population and sample data. These data are then used to
contrast the performance of different estimators. We carried out two sets of model-based
simulations, labelled A and B. In first set of simulations (simulation set-A), we investigate the
performance of these estimators. However, in second set of simulations (simulation set-B), we
examine the robustness of proposed method under wrong model choices. The second type of
simulation study was carried out using real data and design-based simulations to test these

estimators in the context of a real population and realistic sampling methods.

10



Four measures of estimation performance were computed using the estimates generated in
the simulation study. These were the relative mean error (or relative bias) and the relative root
mean squared error (RMSE), both expressed as percentages, of regional mean estimates and
the coverage rate (CR) of nominal 95 per cent confidence intervals and the width of interval
(Width) for regional means.

5.1  The Model Based Simulation Study

In model-based simulations, we consider a population size N =15,000 and generated
randomly the small area population sizes N,, i=1,...,m =30, so that Zl_Ni =N and was
kept fixed throughout the simulations. Further, we consider the sample size » = 600 and
generated the small area sample sizes as n, = N,(n/ N) so that Zi”i =n and kept fixed for
all simulations (i.e. simulation set-A and set-B).

In simulation set-A, we generated the population values y, from a multiplicative

model y, = 5.0x[fu[el.j. The generated population is skewed on the raw scale and linear on the

log transform scale. The random errors e, were independently generated from a lognormal
distribution with parameter x, =0 and o,, denoted by LN (0,o,). The random area effects
u; were generated from LN (0, o, ). The covariate values x, were generated from LN (6, o, ).
The values of parameter o, and o, were fixed up so that intra-area correlation varies

between 0.20-0.25. We used six different sets of parameter to bring different level of variation
in generated data as shown below:

Parameter B o, o, o,
ParAl 0.5 0.30 0.50 3.00
ParA2 0.8 0.35 0.60 2.50
ParA3 1.0 0.40 0.70 2.25
ParA4 1.3 0.45 0.80 1.75
ParAS5 15 0.50 0.90 1.50
ParA6 2.0 0.60 1.00 1.20

From this multiplicative model, values of the response variable y, were generated for 25

small areas of sizes N; and then random samples of sizes »; were drawn from each area. Using
this generated data we estimated the parameters using the /me function in R (Bates and
Pinheiro, 1998), and then calculated the estimates for small areas (Section 4). The process of

generating population and sample data and estimation of model parameters were

11



independently replicated 1000 times. The results from this simulation study are reported in
Table 1.

In simulation set B, population data were generated from the model
V= 5.0x}j'° [exp(log(xij.))z] u.e; . The generated population is non-linear in the raw scale and

quadratic on the log scale. Here, independent random errors ¢, and the random area effects
u;, were generated from LN (0, 1.0) and LN (0, 0.5) respectively. The covariate values x;

were generated from a LN (3, 0.2). We used five different values for parameter » (-1.0, -0.5,

0.0, 0.5 and 1.0) to bring different degree of curvature in generated data, these parameter sets
are denoted by ParB1-ParB5. Rest of the process was similar to simulation set-A. Table 2

presents the results from this simulation study.

5.2 The Design Based Simulation Study

In design-based simulations, our basic data come from the same sample of 1652 Australian
broadacre farms (AAGIS) that were used in the simulation study reported in Chambers and
Chandra (2006) and Chandra and Chambers (2005). In particular, we use the same target
population of 81982 farms (obtained by sampling with replacement from the original sample
of 1652 farms with probabilities proportional to their sample weights). The same 1000
independent stratified random samples as used in Chambers and Chandra (2005) were then
drawn from this (fixed) population, with total sample size in each draw equal to the original
sample size (1652) and with the small areas of interest defined by the 29 Australian
agricultural regions represented in this population. Sample sizes within these regions were
fixed to be the same as in the original sample. Note that these varied from a low of 6 to a high
of 117, allowing an evaluation of the performance of the different methods considered across
a range of realistic small area sample sizes. Here, our aim is to estimate average annual farm
costs (A$) in these regions with farm size (hectares) as auxiliary variable. We used random
intercept model specification of the mixed model. Details of this simulated population are
described in Chambers and Chandra (2006) and Chandra and Chambers (2005). Table 3 set
out the results from this simulation study.

5.3 Results of the Simulation Studies

5.3.1 Model Based Simulations
These results show that the average relative mean errors and the average relative RMSEs for

12



Hajek type of estimators (TrMBD1 and TrMBD3) under expected value model (14) are
significantly large for all parameter choices. Further, high coverage rates under these
estimators (TrMBD1 and TrMBD3) are the consequence of large biases and wider intervals
(Table 1). These estimators are severely biased since under model calibration an appropriate
estimator is HT type (Section 2). However, the HT type estimators (TrMBD2 and TrMBD4)
derived under ratio and regression specifications for the expected value model are almost
identical. Among conventional calibration weighting based MBD estimators, both Hajek type
(MBD1) and HT type (MBD2) estimators are identical. Therefore, in further discussion we
drop the Hajek type of estimator under model calibration and HT type estimator under
classical calibration.

Table 1 shows that the average relative mean errors and the average relative RMSEs for
TrMBD?2 estimator are consistently lower than both MBD1 and EBLUP estimator for all
choices of parameters. However, with same order of average relative mean errors, the relative
RMSE of EBLUP estimator is lower order than MBD1. The average coverage rates for
TrMBD?2 estimator are relatively higher with smaller width of 2-sigma confidence intervals as
compare to MBD1 and EBLUP. However, with almost same coverage rates, the EBLUP has
smaller average widths than MBD1.

Figure 1-2 shows the region-specific performance measures generated by three estimators
(TrMBD2, MBD1 and EBLUP) for simulation set-A. These results show that both the relative
mean error and the relative RMSEs of TrMBD2 are smaller than MBD1 and EBLUP method
in all regions. The relative biases and the RRMSE of MBD1 and EBLUP increases
proportionately with non-linearity (ParAl to ParA6). Figure 2 indicates that the coverage rate
increases and the interval width decreases, hence accuracy increases in transformation-based
methods. Further, the relative interval width under TrMBD2 reduced more rapidly as non-
linearity in data increases. The results indicate a significant gain due to transformation based
method of small area estimation for skewed data. Further, this gain is proportionate to non-
linearity in the data. Between MBD1 and EBLUP methods, the EBLUP appears to perform
better.

The results from simulation set-B correspond to population data that is non-linear on raw
as well as log transform scale. Here, with same justification as mentioned earlier, we consider
the results generated by three estimators (TrMBD2, MBD1 and EBLUP) only. These results
show when transform model is not linear then the average biases under TrMBD2 are larger
than MBD1 and EBLUP and difference increases as values of 5§ moves away from zero. On

the other hand, MBD1 and EBLUP have same order of mean errors. However, the relative
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RMSEs of TrMBD2 method are lower than MBD1, but neither estimator dominates between
TrMBD2 and EBLUP. The average coverage rates of EBLUP are higher than both MBD1 and
TrMBD2. However, EBLUP has larger average widths than TrMBD?2 (Table 2).

Figure 3-4 summarizes the region-specific performance measures generated by three
estimators (TrMBD2, MBD1 and EBLUP) for simulation set-B. Figure 3 shows that for

parameter set ParB1 and ParB5 (with quadratic rate » = -1 and +1 respectively), the relative
biases of TrMBD?2 are larger than both MBD1 and EBLUP. However, for small values of

(0.5 i.e. near to zero), the relative biases are marginally same order for all methods. The
relative RMSEs of TrMBD2 are lower than both MBD1 and EBLUP in most of the areas for
all parameter sets except the parameter sets ParB2 and ParB3, where EBLUP is marginally
better. Figure 4 demonstrates that although coverage rates of TrMBD2 are marginally lower
for ParB2-ParB5 but interval widths are consistently smaller for all parameter choices (ParB1-
ParB5). We noticed that in regional estimation loss in terms of coverage are marginal,
however, gain in terms of reduced width is significant.

5.3.2 Design Based Simulations

The results from the design-based simulation using the real data (AAGIS) show that the average
relative bias of TrMBD?2 is smaller than EBLUP and but larger than MBD1. The relative RMSE
of TrMBD2 is marginally larger and the average coverage rate higher overall (Table 3).
However, Figure 5 indicates that the high relative bias and RRMSE of TrMBD2 estimator is
due to an outlier in region 21. The estimator TrMBD?2 is more affected by this outlying point. If
we discard the outlier contaminated estimates in region 21 and examine the average based on 28
regions then the TrMBD2estimator seems to be performing better. Overall transform variable
based small area estimation methods for AAGIS data appears to provide efficient set of
estimates.

Note that the TrMBD2 estimator provides significant gain under linearity on transform
model. However, gain may not be significant if linearity does not hold. At the same time, we
noticed that if the transform model is approximately linear then it is in safer to use TrMBD?2
method. For the AAGIS data, the fitted model on the transform scale (on log scale) is not
exactly linear (but linear in many areas) overall. Thus, overall TrMBD?2 estimator performs

marginally better and provides a gain in those areas where linearity holds, not in all areas.

14



6. Conclusions and Further Research

Our results show that transformed variable based method for small area estimation of skewed
data performs well. We note that the gain in efficiency by accounting non-linearity in data via
log transform linear model is quite significant, and thus we propose to use this method for
small area estimation of skewed data. Further, even though assumed model deviates slightly
from linearity on transform scale, the proposed method still works well with marginal gain.
These results are based on normality assumption of random errors. However, we also
investigated the method assuming a gamma distribution for the random errors and noticed that
the form of the estimators remain the same. This indicates that method is robust with respect
to distribution of random errors. The application of proposed SAE techniques to real data
from AAGIS provides a satisfactory performance. The proposed method is advisable for
skewed data but identification of appropriate transform model is crucial in application of this
method, otherwise results can be misleading.

In the proposed method for SAE under log transform model, the survey variables only can
have strictly positive values. However, the survey variables can take zero or negative values
as well and therefore it would be useful to generalise the estimation procedure for skewed
data that includes these cases. We are currently working on this issue, and results obtained so

far are very encouraging.
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Table 1 Average relative mean error (ARME), average relative RMSE (ARRMSE), average coverage
rate (ACR) and average 2-sigma confidence interval width (AW) for simulation set-A

Criterion Estimator ParAl ParA2 ParA3 ParA4 ParA5 ParA6
ARME TrMBD1 -86.02  -96.54 -98.43 -98.58 -98.45 -99.06
TrMBD2 -0.01 -0.05 0.27 0.09 -0.43 0.76
TrMBD3 -75.2  -95.97 -97.97 -98.55 -98.12 -98.66
TrMBD4 0.02 -0.07 0.28 0.11 -0.39 0.75
MBD1 10.98 411 -0.29 -6.28 -7.81 -9.59
MBD2 12.63 5.47 0.48 -5.91 -7.58 9.5
EBLUP 12.65 5.44 0.49 -5.85 -7.68 -9.32
ARRMSE TrMBD1 0.92 1.13 1.2 1.29 1.43 1.56
TrMBD2 0.15 0.29 0.39 0.52 0.7 0.88
TrMBD3 7.98 1.25 1.22 1.3 1.44 1.59
TrMBD4 0.15 0.29 0.39 0.52 0.7 0.88
MBD1 1.03 1.47 1.79 1.89 1.98 2.78
MBD2 1.16 1.6 1.83 1.91 1.99 2.79
EBLUP 0.76 0.69 0.61 0.75 0.98 1.29
ACR TrMBD1 0.99 0.98 0.96 0.95 0.94 0.92
TrMBD2 0.94 0.9 0.89 0.89 0.89 0.89
TrMBD3 0.99 0.98 0.96 0.95 0.94 0.92
TrMBD4 0.94 0.91 0.89 0.89 0.89 0.89
MBD1 0.87 0.85 0.85 0.87 0.88 0.87
MBD2 0.87 0.85 0.85 0.87 0.88 0.87
EBLUP 0.85 0.85 0.85 0.87 0.87 0.87
AW TrMBD1 1265 22389 140563 27x10°  35x10° 44x10°
TrMBD2 208 4326 33228 7x10* 11x10° 15x10°
TrMBD3 1753 22487 141001 27x10*  35x10° 43x10°
TrMBD4 220 4426 33722 8x10* 11x10° 16x10°
MBD1 1007 19318 139346 28x10* 38x10° 56x10°
MBD2 1033 19677 140626 28x10* 38x10° 56 x10°
EBLUP 380 7253 55498 13x10* 20x10° 31 x10°
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Table 2 Average relative mean error (ARME), average relative RMSE (ARRMSE), average coverage
rate (ACR) and average 2-sigma confidence interval width (AW) for simulation set-B

Criterion Estimator ParB1 ParB2 ParB3 ParB4 ParB5
ARME TrMBD2 3.46 0.37 0.14 -0.9 -7.54
MBD1 -0.21 0.04 0.12 0.16 -0.85
EBLUP -0.19 0.04 0.13 0.17 -0.77
ARRMSE TrMBD2 0.35 0.33 0.33 0.34 0.39
MBD1 0.56 0.36 0.34 0.53 1.2
EBLUP 0.38 0.3 0.29 0.36 0.56
ACR TrMBD2 0.93 0.92 0.92 0.91 0.86
MBD1 0.91 0.92 0.92 0.92 0.9
EBLUP 0.93 0.94 0.94 0.93 0.92
AW TrMBD2 0.04 2.4 207 26409 5077959
MBD1 0.06 2.7 214 38660 12659988
EBLUP 0.05 2.6 214 33442 9929767

Table 3 Average relative mean error (ARME), average relative RMSE (ARRMSE) and average
coverage rate (ACR) for AAGIS data

TrMBD2 MBD1 EBLUP
ARME ARRMSE ACR ARME ARRMSE ACR ARME ARRMSE ACR

Average of 3.00 2200 099  -2.49 20.55  0.92 4.24 19.92  0.90

29 areas

“Average 2.54 1715 099  -2.58 1733 093  4.74 19.40  0.90

of 28 areas

*excluding region number 21
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Figure 2 Area-specific coverage rates and widths of CI for simulation set-A
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Figure 4 Area-specific coverage rates and widths of ClI for simulation set-B
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Figure 5 Area-specific relative biases and RRMSE for AAGIS data
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