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Abstract 

In business surveys, data typically are skewed and the standard approach for small area 

estimation based on linear mixed models lead to inefficient estimates. In this paper, we 

discuss small area estimation techniques for skewed data that are linear following a suitable 

transformation. In this context, implementation of the empirical best linear unbiased 

prediction (EBLUP) approach under transformation to a linear mixed model is complicated. 

However, this is not the case with the model-based direct (MBD) approach (Chambers and 

Chandra, 2006), which is based on weighted linear estimators. We extend the MBD approach 

to skewed data using sample weights derived via model calibration based on a log transform 

model with random area effects. Our results show this estimator is both efficient and robust 

with respect to the distribution of these random effects. An application to real data 

demonstrates the satisfactory performance of the method. 
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1.  Introduction  

Small area estimation (SAE) is typically an increasingly important secondary objective of 

many sample surveys, and several methods exist in the literature (Rao, 2003). However, 

research is continuing on several important practical problems related to small area 

estimation. Standard methods for SAE such as the empirical best linear unbiased prediction 

(EBLUP) approach (Prasad and Rao, 1990) and the model-based direct (MBD) approach 

(Chambers and Chandra, 2006) assume a linear mixed model can be used to characterize the 

small areas of interest. However, it happens (typically for skewed data) that the variable of 

interest Y is linear on some transformed scale (e.g. in business surveys, often variables are 

linear on logarithmic scale). In this context, estimation based on linear model for Y leads to 

inefficient estimates. In such situation, an appropriate technique for SAE should essentially be 

based on a linear mixed model for a transformed variable. The use of transform variables for 

survey estimation with skewed data has been investigated by Carroll and Ruppert (1988), 

Chen and Chen (1996), Karlberg (2000) and Chambers and Dorfman (2003). In this paper we 

explore transform variable based estimation in context of SAE for skewed data, focussing on 

the widely used logarithmic (log) transformation function. Implementation of the EBLUP 

approach under transformation to a linear mixed model is quite complicated. However, this is 

not the case with the MBD approach, which is based on weighted linear estimators. In this 

paper we extend the MBD approach of Chambers and Chandra (2006) to small area 

estimation for skewed data. In particular, we consider the use of sample weights derived via 

model calibration (Wu and Sitter, 2001) based on a log transform model with random area 

effects. A simple MSE estimator for weighted small area estimation is also developed. We 

also relax the usual normality assumption for random errors in order to examine robustness 

with respect to this assumption.  

In the following section we summarize the model calibration approach for estimation of 

population quantities. In section 3 we then discuss the expected value model derived from a 

transform linear mixed model for small area estimation of skewed data. Section 4 introduces 

the survey weights based on expected value model derived from a transform linear mixed 

model and describes the MBD estimator for SAE in this case.  In section 5 we provide 

illustrative empirical results that contrast the proposed MBD estimator for skewed data with 

the MBD and EBLUP method under a linear mixed model. Finally, in section 6 some 

concluding remarks are made and some related issues that needs further attention are 

discussed.  
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2.  Model Calibration for Population Estimation  

In this section we briefly review model calibration for estimation of population level 

quantities. To start, we fix our notation. Let Y denote an N-vector of population values of a 

characteristic of interest, and suppose that our primary aim is estimation of the total  of the 

values in Y (or their mean 

Ty

Y ). In order to assist us in this objective, we shall assume that we 

have ‘access’ to X, an N × p matrix of values of p auxiliary variables that are related, in some 

sense, to the values in Y. In particular, we assume that the individual sample values in X are 

known. The non-sample values in X may not be individually known, but are assumed known 

at some aggregate level. At a minimum, we know the population totals T  of the columns of 

X. Given this set up, Deville and Särndal (1992) introduce the notation of a calibration 

estimator of population total of Y as 

x

,ŷ c j jj s
T

∈
= w y∑ , where the calibration weights jw ’s are 

chosen to minimise their average distance ( sΦ , say) from the basic design weights, 1
j jd π −=  

with , that are used in Horvitz-Thompson (HT) estimator , 

subject to the calibration constraint  

Pr( )jπ j s= ∈ ,ŷ HT j jj s
T d

∈
= ∑ y

=

j j jE y x h xξ

1

N
j j j xj s j

w x x T
∈ =

=∑ ∑        (1) 

Deville and Särndal (1992) argue “weights that perform well for the auxiliary variables also 

should perform well for the study variable”. However, there is an implicit underlying 

assumption that Y and X are linearly related that makes this a valid argument, i.e.  the 

conventional calibration approach (Deville and Särndal, 1992, Chambers, 1997) implicitly 

relies on the assumption that the survey variable and the auxiliary variables are linearly 

related. Thus, if the underlying model is non-linear then the calibrated estimator derived 

under a linearity assumption cannot be very efficient. Let us assume the relationship between 

Y and X can be described by a super population model  

( | ) ( ; )η= 2( | )j jxξ, V y jσ ω= 1,...,j N=; ,   (2) 

where η , typically vector-valued, and 2σ  are model parameters, and the mean function 

( ; )jh x η  is a known function of jx  and η , the variance function jω  is a known function of jx  

and ( ; )jh x η . Here  and  denotes the expectation and variance with respect to super 

population model.  In matrix notation we write (2) as  

ξE ξV

( | ) ( ; )E Y X h Xξ η=  and ( | )V Y Xξ = Ω      (3) 

The model (3) is quite general and includes linear, non-linear, and generalized linear models 
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as special cases. In this context, Wu and Sitter, (2001) proposed the use of sample weights 

derived via model calibration. They defined the calibration estimator for population mean of Y 

as 1ˆ
c j s

Y N w y−
∈

= ∑ j j  with weights sought to minimize the distance measure sΦ  under the 

constraints: 

jj s
w N

∈
=∑  and 

1
ˆ( ; ) ( ; )N

j j jj s j
w h x h x ˆη η

∈ =
=∑ ∑      (4) 

where η̂  is a design consistent estimator for η .  That is calibration is performed with respect 

to the population mean of the ‘fitted values’ ˆ ˆ( ; )j jh h x η=  of ˆ( ; )jh x η . Provided the model (3) 

is a reasonable one,  is then (at least approximately) a linear function of its ‘fitted values’ jy

ˆ( ; )jh x η  under this model. The basic idea of this approach is then we can carry out linear 

estimation using these ‘fitted or expected values’ as auxiliary variables. 

The above discussion represents what might be referred to the design-based interpretation 

of model calibration. A model-based perspective on model calibration can be described as 

follows. We assume that Y  and ( ; )h X η  are related by the linear model of the form 

0 11 ( ; )NY h X Jα α η ε α= + + = +ε      (5) 

where  denotes the ‘design matrix’ for the linear model (5) linking Y  and J ( ; )h X η , 

0 1( , )α α α ′=  is a vector of unknown parameters, ε  denotes a N-vector of random variables 

with ( ) 0Eξ ε =  and ( ) [ ]jkVξ ε ω= Ω = . We called model (5) the ‘expected value’ or ‘fitted 

value’ model defined by (3). For 0 0α =  in model (5) we refer as ratio specification of this 

model, otherwise regression specification. The model (5) can have either ratio or regression 

specification. Without loss of generality, we arrange the vector Y so that the first n elements 

correspond to the sample units, and partition Y ,  and J Ω  according to sample and non-

sample units:  

s

r

YY Y
⎡ ⎤= ⎢ ⎥⎣ ⎦

, s

r

JJ J
⎡ ⎤= ⎢ ⎥⎣ ⎦

 and ss sr

rs rr

Ω Ω⎡ ⎤Ω = ⎢ ⎥Ω Ω ⎦⎣
. 

Here sJ  is the n ×1 vector of ‘fitted values’ of the auxiliary variables and ssΩ  is the n × n 

covariance matrix associated with the n sample units that make up the n×1 sample vector sY . 

A subscript of r is used to denote corresponding quantities defined by the N − n  non-sample 

units, with  denoting the (rsΩ N − n) × n  matrix defined by . In what follows we 

denote 1 , 1 and 1  as vectors of 1’s and , and  as identity matrices of order N, n and 

),( sr YYCov

N n r IN In Ir

N − n  respectively. In practice the variance components that define covariance matrix Ω  are 
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unknown and so need to be estimated from the sample data. We use a “hat” to denote such an 

estimate. Further, throughout this paper we assume that sampling is uninformative, so the 

sample data also follow the population model. 

Given this notation, the sample weights that define the BLUP for population total of Y 

under a general linear ‘fitted value’ model (5) are  
11 ( 1 1 ) ( )h

BLUP n h N s n n h s ss sr rw H J J I H J −′ ′ ′ ′ ′= + − + − Ω Ω 1

1
ss′

     (6) 

where . See Royall (1976). The sample weights (6) derived via model 

calibration are calibrated on , i.e. 

1 1( )h s ss s sH J J J− − −′= Ω Ω

J 1h
s BLUP NJ w J′ ′= . The weights (6) are based on a model 

appropriate for estimation of population as a whole (i.e. population weighting) and using 

these weights for small area estimation will be inefficient. The most commonly used class of 

models for small area estimation model is essentially a mixed model, i.e. model implied by 

the covariance structure that includes the random area effect components. The next section 

describes the model that includes the random area effects and suitable for small area 

estimation. 

 

3.   Small Area Models under Transformation 

3.1  Linear Mixed Model  

Let  be the  vector of values of variable of interest in small area i  and let 

 be the  matrix of values of the auxiliary variables associated with Y . We assume 

that  and  are not related by a linear model on themselves, but they are linearly related 

on logarithm (natural) transform model. We consider the following linear mixed model 

specification for the distribution of 

Yi Ni ×1 ( 1,...., )i = m

iY

Xi Ni × p i

iY iX

log( )il =  given iZ : 

i i i il  Z  G u  eiβ= + +         (7) 

where (1 , log( ))
ii N iZ X=  is the  matrix of values of the auxiliary variables in area 

i, 

( 1)iN p× +

β  is a ( 1  vector of fixed effects,  is a )p + ×1 iG Ni × q  matrix of known covariates 

characterising differences between small areas,  is the number of  population units in the 

small area i, 1  is a vector of 1’s of order ,  is a random area effect associated with the 

i

iN

iN iN iu
th small area and  is a  vector of individual level random errors. The two random 

variables  and  are assumed to be independently normally distributed, with zero means 

and with variances  and  respectively. The covariance matrix of  is  

ei Ni ×1

iu ie

( )iV u Σ= 2( )
ii eV e σ I= N il
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2( ) ( )
ii i i i eV Var l G G Iθ σ′= = Σ + N , with ( ) ( ) ( )ijj ij ij ij ijv Var l G G   V e  θ ′= = Σ +  and  ( , )ijk ij ikv Cov l l=

( )ij ikG Gθ ′= Σ ; . The covariance of  depends on a vector of fixed parameters , 1,....., ij k N= il θ , 

usually called the variance components of the model.  

By grouping the area-specific models (7) over the population, we are led to the population 

level model: 

l Z Gu eβ= + +         (8) 

where ,1( ,......, )ml l l′ ′ ′= 1( ,......., )mZ Z Z′ ′= ( ;1 )iG diag G i m′ , = ≤ ≤ ′,  and 

. The variance-covariance matrix of l is 

1( , .., )mu u u′ ′= …

  e = ( ′e1,…, ′em ′) ( ;1 )iV diag V i m= ≤ ≤ . We assume that 

Z has full column rank. In practice the variance components of the model that define the 

covariance matrix V are unknown and we estimate them from the sample data under the 

model (8) with suitable estimation methods such as maximum likelihood (ML), restricted 

maximum likelihood (REML) or method of moments (Harville, 1977). The estimated 

variance-covariance matrix of l is  with V̂ = diag(V̂i;1≤ i ≤ m) 2ˆ ˆˆ
ii e N iV I Gσ ′iG= + Σ . Again, we 

consider the decomposition of l, Z, G and V into sample and non-sample components as 

mentioned before (6). We use similar notation at the small area level by introducing an extra 

subscript i to denote small area. For example, we denote by  the set of  sample units in 

area i,  the corresponding 

si ni

ri Ni − ni  non-sampled units in the area and put 

 and 2ˆ ˆˆ
iiss e n is isV I Gσ ′= + ΣG ˆ ˆ

isr is irV G G′= Σ .  

With this notation, and assuming (8) holds, the empirical best linear unbiased estimator of 

β is ( ) ( )-1
1 1

1 1
ˆ ˆ ˆm m

is iss is is iss isi i
Z V Z Z V lβ − −

= =
′ ′= ∑ ∑ ˆ( )Eξ with β β=  and , so 

that  for large n. We denote 

( )-1
1

1
ˆ ˆ( ) m

is iss isi
V Z Vξ β −

=
′= ∑ Z

0 ˆ( )i iE l lξ ′ − ≈ î iZφ β=  with ˆ( )i iE Zξ φ β=  and 

, where ( -1
1

1
ˆ ˆ( ) m
i i is iss is ii

V Z Z V Zξ φ
−

=
′= ∑ ) Z ′ ( )-1

1
1

ˆ 0m
ijk ij is iss is iki

a Z Z V Z Z−
=

′ ′= →∑  as . We 

denote by  and 

∞→n

11( ,...., )
i ii iN Ni a aa ′= 11( ,..., )

i ii iN Ni v vv ′= ,  the vectors of diagonal elements of 

the covariance matrices ˆ( )iVξ φ  and  respectively. ( )iV lξ

In order to use the Chambers and Chandra (2006) MBD method to get estimates for small 

areas we require sample weights. For skewed data that follows a linear mixed model on the 

log scale (8), the sample weights can be derived via model calibration, so first we need to 

evaluate ‘expected value’ model (Section 2). In other words, we need to evaluate the first and 

second moments, i.e. ,  under the model (8) to derive the sample weights (6). We can use h Ω
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parameter estimates derived under model (8) to obtain the predicted values of the transform 

variable and then back-transform to get predicted values of Y. These lead to the naïve-

lognormal predictor. However, this predictor is biased (Chambers and Dorfman, 2003). Bias 

corrected first and second order moments that define the expected value model are expressed 

below. 

 

3.2  An Expected Value Model for Small Area Estimation 

Let us consider 

( ) exp( )ij ijE Y E lξ ξ ⎡ ⎤= ⎣ ⎦ ( )exp / 2 ( )ij ijj iZ vβ ϕ η= + = ˆ ˆexp( )  = ( )ij ijE l E Yξ
⎡ ⎤≠ ⎣ ⎦ ξ   (9) 

Thus, we need to adjust this bias. To this end we write ( ) exp[ ( 2)]i i ij ijjZ vϕ ϕ η β= = +  and 

then by a two-step Taylor series approximation:  

1ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
2i i i i ˆϕ η ϕ η ϕ η η η η ϕ η η′ ′′≅ + − + − −′ ,  

so that  { }1ˆ ˆ ˆ ˆ[ ( )] ( ) ( ) ( )( )
2i i i iE E tr Eξ ξ ξϕ η ϕ η ϕ η η ϕ η η η η .⎡ ⎤′ ′′ ′≅ + − + − −⎢ ⎥⎣ ⎦

 

Here, iϕ ′  and iϕ ′′ are the first and second derivatives of ( )iϕ η  with respect to η  at ˆη η= ,  

 is the estimate of vector of unknown fixed parameters ˆˆ ˆ( , )ijjvη β ′= ( , )ijjvη β ′=  such that 

ˆ( )Eξ 0η η− ≈  for large n . Further, β̂  and  are independent (McCulloch and Searle, 2001) 

and thus  

îjjv

{ } { }ˆ ˆ ˆ ˆ( )( ) [( )( )i itr E tr Eξ ξϕ η η η η ϕ η η η η⎡ ⎤′′ ′′′− − = − −
⎣ ⎦

]′      

        ( )-1( ) 12
1

1ˆ ˆ( )
4

ijj
ij

v
Z m

ij is iss is ij ijji
e Z Z V Z Z Var v

β + −
=

⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦
∑  

with 
2

21
2

ijj
ij

ijj
ij

v
Z

ij v
i Z

Z e

e

β

βϕ
+

+

⎛ ⎞
⎜ ⎟′ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 
2 2 2

2 2

1
2

1 1
2 4

ijj ijj
ij ij

ijj ijj
ij ij

v v
Z Z

ij ij
v vi Z Z

Z e Z e

e e

β β

β β
ϕ

+ +

+ +

⎛ ⎞
⎜ ⎟

′′ = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
.  

Substituting these expressions, we get  

[ ]
( )

2 1 1ˆ ˆ( ) e 1 ( )
2 4

ijj
ij

v
Z β

i ijj ijjE η a V vξ ϕ
+ ⎧ ⎫⎡ ⎤≅ + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

[ ]( )iE ηξ ϕ≠
( )

2e
ijj

ij
v

Z β+
= .  

This indicates that transformation leads to biased estimator. A second order bias corrected 

estimate of  is defined as  ( ijE Yξ )
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ˆˆ( )1 2ˆˆ ˆ( ; ) ,  1,...., ;  1,....,
ijj

ij
v

Z

ij ij ij iY h Z k e i m j N
β

η
+−= = = =     (10) 

so that ( )ˆ( ) exp 2 ( ) ( ; )ij ij ijj ij ijE Y Z v E Y h Zξ ξβ η≈ + = = , i.e.  is an approximately ξ unbiased 

predictor of . Here 

ijŶ

ijY
ˆ ˆ( )1ˆ 1

2 4
ijj

ij ijj

Var v
k a

⎡ ⎤⎛ ⎞
⎢= + +⎜⎜⎢ ⎥⎝ ⎠⎣ ⎦

⎥⎟⎟
 is the bias correction and  is the 

asymptotic covariance matrix of  given by inverse of the relevant information matrix. Note 

that the bias adjustment in (10) has same form as Karlberg (2000). However, Karlberg (2000) 

assumes uncorrelated variables. In contrast, predictor (10) is defined for general case allowing 

correlated variables.  

ˆ( )ijjVar v

îjjv

Under normality of the random errors and , covariance between  and  in small 

area i  is 

iu  ie  ijY ikY

( ) { }( , ) ( ) ( ) ( )ij ik ij i ij ij i ijik i ik ik i ik
Z Z G u   e G u   eG u   e G u   e

ij ik ijkCov Y Y e E e e E e E eβ
ξ ξ ξω + + ++ += = − ξ  

1 ( )( ) 2

2

[ ( 1)]    

[ ( 1)]    

ijj ikkij ik ijk

ij ijj ijj

v vZ Z v

Z v v

e e e     if j

e e e                  if j k

β

β

++⎧⎪ k− ≠= ⎨
⎪ − =⎩

    (11) 

 

We group the bias corrected predictor (10) and the covariance (11) at the small area level as 

1
1

ˆˆ ˆˆ ˆ ˆˆ( ; ) ( ,...., ) exp( )
2i

i
i i i iN i i

vY h Z Y Y k Zη −′= = = +β     (12) 

with ( )-1
1

1

ˆ ˆ( )1 ˆ1
2 4

ˆ m ijj
i is iss is iii

Var v
Z Z V Z Zk −

=

⎛ ⎞
′ ′= + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  and  

( ) [ ]i i ijk i i Var Y A A  ξ iω ′= Ω = = ∆       (13) 

where { }( ) ;1ijZ
iA diag e  j Nβ= ≤ i≤  and i  ∆ is ii NN ×  positive definite matrix with ( , )thj k  

elements as { }exp exp( ) 12
ijj ikk

ijk  ijk
v v vδ ⎡ ⎤+⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

.  

 

For example, under random intercept model (i.e. model specification-I described in Chandra 

and Chambers, 2005): 2( )i uV u σ= , 2( )iV e eσ=  and 2 21 1
i ii e N u NV Iσ σ

iN′= +  with , 

, and  then 

2 2
ijj e uv σ σ  = +

2
ijk uv σ  = ( ) { }2 2( ) 2 2exp( 1 1 ) 1 1  e u

i i i i ii i i e N u N N N N iV Y A e I Aσ σ
ξ σ σ+⎡ ⎤′ ′ ′= Ω = + −⎣ ⎦ .     
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The area-specific approximately bias corrected estimator (12) and variance-covariance matrix 

(13), grouped at population level define the population level version of ‘expected value’ 

model  

0 1( | ) 1 ( ; )NE Y h h Z Jξ α α η α= + =  and ( | )Var Y hξ = Ω    (14) 

where ,  and 1( ,....., )mY Y Y′ ′ ′= 1( ,...., )mh hh ′ ′ ′= ( ;1 )idiag i m= Ω ≤ ≤Ω . Note that the ‘expected 

value’ models (5) and (14) have same form. However, model (5) is suitable for the population 

estimation, while model (14) includes the random area effects and is suitable for small area 

estimation.  

 

4.  Small Area Estimator under the Expected Value Model (14) 

With appropriate sample and non-sample partition of Y,  and J Ω , as in section 2, the EBLUP 

version of sample weights (6) under the model (14) are 
1ˆ ˆ1 ( 1 1 ) ( )h

EBLUP n h N s n n h s ss sr rw H J J I H J −′ ′ ′ ′ ′= + − + − Ω Ωˆ ˆ 1

1ˆ
ss′

     (15) 

where . We note that the sample weights (15) depend on random area 

effects of the mixed model (7) via the covariance structure of model (14) and are thus suitable 

for small area estimation. We now use the MBD approach of Chambers and Chandra (2006) 

to define estimator for small areas. They only consider the Hájek form of the MBD estimator 

for small areas using sample weights derived under a linear mixed model. However, the 

weights (15) are derived via model calibration under the expected value model (14) where 

estimator is defined as the HT form (Section 2). Thus, we consider both forms of MBD 

estimators. The sample weights (15) associated with the sample units in the small area i can 

be used to define the following model-based direct (MBD) estimators for the  small area 

mean 

1 1ˆ ˆ( )h s ss s sH J J J− − −′= Ω Ω

thi

iY : 

• The Hájek form of the weighted sample for area i  

   ˆ
i i i

Hájek
j j js

Y w y=∑ ∑ s
w         (16) 

• The Horvitz-Thompson form of the weighted sample for area i 

   ˆ
i i

HT
j j is

Y w y=∑ N         (17) 

Both estimators (16) and (17) also depend on how the model calibration weights (15) are 

specified. In particular, we consider two different specifications for the expected value model 

(14), the ratio and the regression specification (see below equation (5)). This leads to four 

different MBD estimators that are set out below. 

 9



Estimator Estimator type Model specification  

TrMBD1 Hájek type  Ratio specification  

TrMBD2 Horvitz-Thompson type Ratio specification 

TrMBD3 Hájek type  Regression specification 

TrMBD4 Horvitz-Thompson type Regression specification 

 

Estimation of mean squared error (MSE) of (16) and (17) follows the approach of Chambers 

and Chandra (2006), and treats these expressions as simple weighted domain mean estimates 

under the population level model (5). Under this approach the sample weights derived from 

(15) are treated as fixed and the prediction variance of (16) or (17) is estimated using a 

standard robust variance estimator. See Royall and Cumberland (1978). A “plug-in” estimate 

of the squared bias of (16) and (17) under this model is added to this estimated prediction 

variance to finally define a simple estimate of the MSE. Note that under this approach the 

EBLUP weights underlying (16) and (17) “borrow strength” via the assumed small area 

model (14), but this model is not used in inference. In particular, we treat the expected value 

model (14) as a vehicle for generating estimation weights, but base inference on the model 

(5), thus ensuring consistency with the way mean squared errors are estimated at population 

level. See Chambers and Chandra (2006) and Chandra and Chambers (2005). 

 
5.  Simulation Study  

In this section we illustrate the performance of seven different small area estimators. These 

are the proposed MBD estimators (TrMBD1-TrMBD4) for skewed data (Section 4), the 

Hájek type (MBD1), and HT type (MBD2) MBD estimators based on sample weights derived 

under a linear mixed model (Chambers and Chandra, 2006) and the EBLUP under a linear 

mixed model (Prasad and Rao, 1990). 

We consider two types of simulation studies. The first type of study uses model-based 

simulation to generate artificial population and sample data. These data are then used to 

contrast the performance of different estimators. We carried out two sets of model-based 

simulations, labelled A and B. In first set of simulations (simulation set-A), we investigate the 

performance of these estimators. However, in second set of simulations (simulation set-B), we 

examine the robustness of proposed method under wrong model choices. The second type of 

simulation study was carried out using real data and design-based simulations to test these 

estimators in the context of a real population and realistic sampling methods.  
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Four measures of estimation performance were computed using the estimates generated in 

the simulation study. These were the relative mean error (or relative bias) and the relative root 

mean squared error (RMSE), both expressed as percentages, of regional mean estimates and 

the coverage rate (CR) of nominal 95 per cent confidence intervals and the width of interval 

(Width) for regional means.  

 

5.1  The Model Based Simulation Study 

 In model-based simulations, we consider a population size  ,N 00015=  and generated 

randomly the small area population sizes ,  1,..., 30,iN i m= =  so that  and was 

kept fixed throughout the simulations. Further, we consider the sample size  and 

generated the small area sample sizes as 

ii
N N=∑

600 n =

( / )i in N n N=  so that ii
n n=∑  and kept fixed for 

all simulations (i.e. simulation set-A and set-B).  

In simulation set-A, we generated the population values  from a multiplicative 

model . The generated population is skewed on the raw scale and linear on the 

log transform scale. The random errors  were independently generated from a lognormal 

distribution with parameter 

ijy

5.0ij ij i ijy x uβ= e

ije

0=eµ  and eσ , denoted by LN (0, eσ ).  The random area effects 

 were generated from LN (0,iu uσ ). The covariate values  were generated from LN (6,ijx xσ ). 

The values of parameter eσ  and uσ  were fixed up so that intra-area correlation varies 

between 0.20-0.25. We used six different sets of parameter to bring different level of variation 

in generated data as shown below:  

Parameter  β uσ eσ xσ  
ParA1 0.5 0.30 0.50 3.00 
ParA2 0.8 0.35 0.60 2.50 
ParA3 1.0 0.40 0.70 2.25 
ParA4 1.3 0.45 0.80 1.75 
ParA5 1.5 0.50 0.90 1.50 
ParA6 2.0 0.60 1.00 1.20 

 

From this multiplicative model, values of the response variable  were generated for 25 

small areas of sizes N

ijy

i and then random samples of sizes ni were drawn from each area. Using 

this generated data we estimated the parameters using the lme function in R (Bates and 

Pinheiro, 1998), and then calculated the estimates for small areas (Section 4). The process of 

generating population and sample data and estimation of model parameters were 
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independently replicated 1000 times. The results from this simulation study are reported in 

Table 1. 

In simulation set B, population data were generated from the model 

. The generated population is non-linear in the raw scale and 

quadratic on the log scale. Here, independent random errors  and the random area effects 

 were generated from LN (0, 1.0) and LN (0, 0.5) respectively. The covariate values  

were generated from a LN (3, 0.2). We used five different values for parameter 

( )21.05.0  exp log( )ij ij ij i ijy x x u
γ

⎡= ⎢⎣
e⎤

⎥⎦

ije

iu ijx

γ  (-1.0, -0.5, 

0.0, 0.5 and 1.0) to bring different degree of curvature in generated data, these parameter sets 

are denoted by ParB1-ParB5. Rest of the process was similar to simulation set-A. Table 2 

presents the results from this simulation study. 

 

5.2  The Design Based Simulation Study  

In design-based simulations, our basic data come from the same sample of 1652 Australian 

broadacre farms (AAGIS) that were used in the simulation study reported in Chambers and 

Chandra (2006) and Chandra and Chambers (2005). In particular, we use the same target 

population of 81982 farms (obtained by sampling with replacement from the original sample 

of 1652 farms with probabilities proportional to their sample weights). The same 1000 

independent stratified random samples as used in Chambers and Chandra (2005) were then 

drawn from this (fixed) population, with total sample size in each draw equal to the original 

sample size (1652) and with the small areas of interest defined by the 29 Australian 

agricultural regions represented in this population. Sample sizes within these regions were 

fixed to be the same as in the original sample. Note that these varied from a low of 6 to a high 

of 117, allowing an evaluation of the performance of the different methods considered across 

a range of realistic small area sample sizes. Here, our aim is to estimate average annual farm 

costs (A$) in these regions with farm size (hectares) as auxiliary variable. We used random 

intercept model specification of the mixed model. Details of this simulated population are 

described in Chambers and Chandra (2006) and Chandra and Chambers (2005). Table 3 set 

out the results from this simulation study.  

 

5.3  Results of the Simulation Studies 

5.3.1  Model Based Simulations  

These results show that the average relative mean errors and the average relative RMSEs for 
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Hajek type of estimators (TrMBD1 and TrMBD3) under expected value model (14) are 

significantly large for all parameter choices. Further, high coverage rates under these 

estimators (TrMBD1 and TrMBD3) are the consequence of large biases and wider intervals 

(Table 1). These estimators are severely biased since under model calibration an appropriate 

estimator is HT type (Section 2). However, the HT type estimators (TrMBD2 and TrMBD4) 

derived under ratio and regression specifications for the expected value model are almost 

identical. Among conventional calibration weighting based MBD estimators, both Hajek type 

(MBD1) and HT type (MBD2) estimators are identical. Therefore, in further discussion we 

drop the Hajek type of estimator under model calibration and HT type estimator under 

classical calibration.  

Table 1 shows that the average relative mean errors and the average relative RMSEs for  

TrMBD2 estimator are consistently lower than both MBD1 and EBLUP estimator for all 

choices of parameters. However, with same order of average relative mean errors, the relative 

RMSE of EBLUP estimator is lower order than MBD1. The average coverage rates for 

TrMBD2 estimator are relatively higher with smaller width of 2-sigma confidence intervals as 

compare to MBD1 and EBLUP. However, with almost same coverage rates, the EBLUP has 

smaller average widths than MBD1.  

Figure 1-2 shows the region-specific performance measures generated by three estimators 

(TrMBD2, MBD1 and EBLUP) for simulation set-A. These results show that both the relative  

mean error and the relative RMSEs of TrMBD2 are smaller than MBD1 and EBLUP method 

in all regions. The relative biases and the RRMSE of MBD1 and EBLUP increases 

proportionately with non-linearity (ParA1 to ParA6). Figure 2 indicates that the coverage rate 

increases and the interval width decreases, hence accuracy increases in transformation-based 

methods. Further, the relative interval width under TrMBD2 reduced more rapidly as non-

linearity in data increases. The results indicate a significant gain due to transformation based 

method of small area estimation for skewed data. Further, this gain is proportionate to non-

linearity in the data. Between MBD1 and EBLUP methods, the EBLUP appears to perform 

better. 

The results from simulation set-B correspond to population data that is non-linear on raw 

as well as log transform scale. Here, with same justification as mentioned earlier, we consider 

the results generated by three estimators (TrMBD2, MBD1 and EBLUP) only. These results 

show when transform model is not linear then the average biases under TrMBD2 are larger 

than MBD1 and EBLUP and difference increases as values of δ  moves away from zero. On 

the other hand, MBD1 and EBLUP have same order of mean errors. However, the relative 
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RMSEs of TrMBD2 method are lower than MBD1, but neither estimator dominates between 

TrMBD2 and EBLUP. The average coverage rates of EBLUP are higher than both MBD1 and 

TrMBD2. However, EBLUP has larger average widths than TrMBD2 (Table 2).  

Figure 3-4 summarizes the region-specific performance measures generated by three 

estimators (TrMBD2, MBD1 and EBLUP) for simulation set-B. Figure 3 shows that for 

parameter set ParB1 and ParB5 (with quadratic rate γ  = -1 and +1 respectively), the relative 

biases of TrMBD2 are larger than both MBD1 and EBLUP. However, for small values of γ  

(±0.5 i.e. near to zero), the relative biases are marginally same order for all methods. The 

relative RMSEs of TrMBD2 are lower than both MBD1 and EBLUP in most of the areas for 

all parameter sets except the parameter sets ParB2 and ParB3, where EBLUP is marginally 

better. Figure 4 demonstrates that although coverage rates of TrMBD2 are marginally lower 

for ParB2-ParB5 but interval widths are consistently smaller for all parameter choices (ParB1- 

ParB5).  We noticed that in regional estimation loss in terms of coverage are marginal, 

however, gain in terms of reduced width is significant.  

 

5.3.2  Design Based Simulations  

The results from the design-based simulation using the real data (AAGIS) show that the average 

relative bias of TrMBD2 is smaller than EBLUP and but larger than MBD1. The relative RMSE 

of TrMBD2 is marginally larger and the average coverage rate higher overall (Table 3). 

However, Figure 5 indicates that the high relative bias and RRMSE of TrMBD2 estimator is 

due to an outlier in region 21. The estimator TrMBD2 is more affected by this outlying point. If 

we discard the outlier contaminated estimates in region 21 and examine the average based on 28 

regions then the TrMBD2estimator seems to be performing better. Overall transform variable 

based small area estimation methods for AAGIS data appears to provide efficient set of 

estimates.  

Note that the TrMBD2 estimator provides significant gain under linearity on transform 

model. However, gain may not be significant if linearity does not hold. At the same time, we 

noticed that if the transform model is approximately linear then it is in safer to use TrMBD2 

method. For the AAGIS data, the fitted model on the transform scale (on log scale) is not 

exactly linear (but linear in many areas) overall. Thus, overall TrMBD2 estimator performs 

marginally better and provides a gain in those areas where linearity holds, not in all areas. 
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6.  Conclusions and Further Research  

Our results show that transformed variable based method for small area estimation of skewed 

data performs well. We note that the gain in efficiency by accounting non-linearity in data via 

log transform linear model is quite significant, and thus we propose to use this method for 

small area estimation of skewed data. Further, even though assumed model deviates slightly 

from linearity on transform scale, the proposed method still works well with marginal gain. 

These results are based on normality assumption of random errors. However, we also 

investigated the method assuming a gamma distribution for the random errors and noticed that 

the form of the estimators remain the same. This indicates that method is robust with respect 

to distribution of random errors. The application of proposed SAE techniques to real data 

from AAGIS provides a satisfactory performance. The proposed method is advisable for 

skewed data but identification of appropriate transform model is crucial in application of this 

method, otherwise results can be misleading. 

In the proposed method for SAE under log transform model, the survey variables only can 

have strictly positive values. However, the survey variables can take zero or negative values 

as well and therefore it would be useful to generalise the estimation procedure for skewed 

data that includes these cases. We are currently working on this issue, and results obtained so 

far are very encouraging. 
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Table 1 Average relative mean error (ARME), average relative RMSE (ARRMSE), average coverage 
rate (ACR) and average 2-sigma confidence interval width  (AW) for simulation set-A  
 

Criterion Estimator ParA1 ParA2 ParA3 ParA4 ParA5 ParA6
ARME TrMBD1 -86.02 -96.54 -98.43 -98.58 -98.45 -99.06
  TrMBD2 -0.01 -0.05 0.27 0.09 -0.43 0.76
  TrMBD3 -75.2 -95.97 -97.97 -98.55 -98.12 -98.66
  TrMBD4 0.02 -0.07 0.28 0.11 -0.39 0.75
  MBD1 10.98 4.11 -0.29 -6.28 -7.81 -9.59
  MBD2 12.63 5.47 0.48 -5.91 -7.58 -9.5
  EBLUP 12.65 5.44 0.49 -5.85 -7.68 -9.32
 ARRMSE TrMBD1 0.92 1.13 1.2 1.29 1.43 1.56
  TrMBD2 0.15 0.29 0.39 0.52 0.7 0.88
  TrMBD3 7.98 1.25 1.22 1.3 1.44 1.59
  TrMBD4 0.15 0.29 0.39 0.52 0.7 0.88
  MBD1 1.03 1.47 1.79 1.89 1.98 2.78
  MBD2 1.16 1.6 1.83 1.91 1.99 2.79
  EBLUP 0.76 0.69 0.61 0.75 0.98 1.29
 ACR TrMBD1 0.99 0.98 0.96 0.95 0.94 0.92
  TrMBD2 0.94 0.9 0.89 0.89 0.89 0.89
  TrMBD3 0.99 0.98 0.96 0.95 0.94 0.92
  TrMBD4 0.94 0.91 0.89 0.89 0.89 0.89
  MBD1 0.87 0.85 0.85 0.87 0.88 0.87
  MBD2 0.87 0.85 0.85 0.87 0.88 0.87
  EBLUP 0.85 0.85 0.85 0.87 0.87 0.87
 AW TrMBD1 1265 22389 140563 27x104 35 x105 44x106

  TrMBD2 208 4326 33228 7x104 11x105 15x106

  TrMBD3 1753 22487 141001 27x104 35 x105 43x106

  TrMBD4 220 4426 33722 8x104 11x105 16x106

  MBD1 1007 19318 139346 28x104 38x105 56x106

  MBD2 1033 19677 140626 28x104 38x105 56 x106

  EBLUP 380 7253 55498 13x104 20x105 31 x106
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Table 2 Average relative mean error (ARME), average relative RMSE (ARRMSE), average coverage 
rate (ACR) and average 2-sigma confidence interval width (AW) for simulation set-B 
 
 Criterion Estimator ParB1 ParB2 ParB3 ParB4 ParB5
 ARME TrMBD2 3.46 0.37 0.14 -0.9 -7.54
  MBD1 -0.21 0.04 0.12 0.16 -0.85
  EBLUP -0.19 0.04 0.13 0.17 -0.77
 ARRMSE TrMBD2 0.35 0.33 0.33 0.34 0.39
  MBD1 0.56 0.36 0.34 0.53 1.2
  EBLUP 0.38 0.3 0.29 0.36 0.56
 ACR TrMBD2 0.93 0.92 0.92 0.91 0.86
  MBD1 0.91 0.92 0.92 0.92 0.9
  EBLUP 0.93 0.94 0.94 0.93 0.92
 AW TrMBD2 0.04 2.4 207 26409 5077959
  MBD1 0.06 2.7 214 38660 12659988
  EBLUP 0.05 2.6 214 33442 9929767
 
 
 
Table 3 Average relative mean error (ARME), average relative RMSE (ARRMSE) and average 
coverage rate (ACR) for AAGIS data   
 

TrMBD2 MBD1 EBLUP  

ARME ARRMSE ACR ARME ARRMSE ACR ARME ARRMSE ACR
Average of 
29 areas 

3.00 22.00 0.99 -2.49 20.55 0.92 4.24 19.92 0.90 

*Average 
of 28 areas 

2.54 17.15 0.99 -2.58 17.33 0.93 4.74 19.40 0.90 

*excluding region number 21 
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  Figure 1 Area-specific relative biases and RRMSE for simulation set-A 
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Figure 2 Area-specific coverage rates and widths of CI for simulation set-A   
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Figure 3 Area-specific relative biases and RRMSE for simulation set-B 
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Figure 4 Area-specific coverage rates and widths of CI for simulation set-B 
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Figure 5 Area-specific relative biases and RRMSE for AAGIS data 
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