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On coarse geometric properties of discrete and locally compact groups

by Christopher Cave

The reduced group C∗-algebra is one place where geometric group theory and operator

theory overlap. Usually one can expect that a geometric property can be captured by this

group algebra. For example a discrete group is amenable if and only if the reduced group

C∗-algebra is nuclear. In this thesis we investigate the relationship between exactness of the

reduced group C∗-algebra and amenable actions on compact Hausdorff spaces (amenability at

infinity) for locally compact second countable groups. In the discrete case, it is known that a

group is amenable at infinity if and only if the reduced group C∗-algebra is exact.

Amenability at infinity is known to satisfy strong topological and index type conjectures,

such as the Novikov and the coarse Baum–Connes conjecture. The Baum–Connes conjectures

serve as a unifying theme throughout this thesis and is part of the motivation to study large-

scale (or coarse) invariants of the group. Indeed one coarse invariant we study is whether a

group can coarsely embed into a Hilbert space. It was shown by G. Yu [127] and G. Skandalis,

J. Tu and G. Yu [108] that if a group can coarsely embed into a Hilbert space then the assembly

maps in the Baum–Connes conjecture are injective. It was shown by G. Yu and N. Higson and

J. Roe in [127, 67] that if a group is amenable at infinity then it can coarsely embed into a

Hilbert space.

Compression was defined to measure how close a coarse embedding is to a quasi-isometric

embedding. A lot of research has been done to calculate the precise compression value of a

group embedding into a Hilbert space. In this thesis we will study different group constructions

that preserve the positivity of the compression.

Chapter 2 is devoted to the study permanence properties of equivariant compression. In

particular we give results that control the equivariant compression of a group in terms of

properties of open subgroups whose direct limit is the group. We also study the behaviour

of equivariant compression under amalgamation of free products where the common subgroup

has finite index inside the two larger groups.

Chapter 3 is devoted to showing that coarse embeddability into a Hilbert space is preserved

over generalised metric wreath products. We show that positive Hilbert space compression is

also preserved by taking generalised metric wreath products.

Chapter 4 is devoted to the study of reduced cross products. When a group G acts on a

C∗-algebra A, we can form a larger C∗-algebra that encodes that action. This is called the

reduced cross product which we denote by Aor G. Indeed the reduced group C∗-algebra of G

is ∗-isomorphic to C or G. In this chapter we show that a locally compact second countable

group is amenable at infinity if and only if its reduced cross product preserves short exact

sequences.
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Introduction

The Baum–Connes conjecture serves as a unifying theme throughout this thesis. It is because

of this conjecture that several notions in this thesis were first introduced. In essence, the Baum–

Connes conjecture is one of the tools we have to analyse the group algebra of an infinite or

a topological group. We begin by introducing some some classical representation theory and

soon we will see the importance of the group algebra.

Representation theory

When an abstract group comes into existence the group yearns to have a concrete geometric

interpretation. This naturally gives rise to the study of representing groups as invertible oper-

ators on a vector space. For a discrete group G we can form a natural algebra called the group

algebra where elements are finite formal sums of group elements with coefficients in the field of

complex numbers. There is a nice universal property for finite groups: for any C-algebra A, if

there is a group homomorphism G→ A× then this uniquely lifts to a C-algebra homomorphism

C[G] → A. This means that representation theory of the group is encoded in the C-algebra

representations of C[G].

The representation theory of finite groups first began around 100 years ago when in 1896,

F.G. Frobenius first extended the definition of characters from finite abelian groups to finite

non-abelian groups. Later he proved the very powerful correspondence between linear represen-

tations and characters. One of the first applications of representation theory was in the proof

of Burnside’s theorem: all groups of order paqb (primes p and q) are soluble [24]. Nowadays

character tables have several applications to chemistry and molecular vibrations [20, 68]

However what can one say when the group is no longer finite, i.e. countably infinite or is

a topological group? Suppose first the group is countably infinite. We now represent the

group as unitary operators on a Hilbert space. For a group G we shall denote the collection of

equivalence classes of irreducible unitary representations by Ĝ. Given a unitary representation

U : G→ U(H) of a discrete group we can uniquely extend this to a ∗-algebra representation of

C[G]→ B(H), where B(H) is the space of bounded linear operators on the Hilbert space H.

However the image of C[G] inside B(H) is not complete and if we want to use the power

of functional analysis and operator algebras then we should really find a way to complete

this. There are two completions we have in mind: the reduced completion and the maximal

completion. Every group G acts by unitaries on `2(G) by extending the left multiplication

action on itself to finitely supported functions. The completion of C[G] with respect to this

∗-representation is called the reduced group C∗-algebra, which we denote by C∗r (G). The com-

pletion of C[G] with respect to the direct sum of all (cyclic) unitary representations of G is

called the maximal group C∗-algebra. When G is a toplogical group we can form continuous

analogues of C∗r (G) and C∗(G) by considering completions of Cc(G), the continuous compactly

supported functions on G.
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When the group is locally compact and abelian then every irreducible unitary representation

is one dimensional. This means we can identify Ĝ with the group of homomorphisms from the

group to the unit circle in C. In particular Ĝ is abelian and becomes a locally compact

group when equipped with the topology of uniform convergence on compact subsets of G. In

fact Pontrjagin’s Duality theorem shows that ˆ̂G and G are homeomorphic and canonically

isomorphic as groups.

Plancherel’s theorem shows that the Fourier transform F : L1(G) → C0(Ĝ) extends to

a unitary operator F : L2(G) → L2(Ĝ). As a consequence the left regular representation

is unitarily equivalent to the multiplication operator Cc(G) → B(L2(Ĝ)), f 7→ TFf where

(TFfξ)(χ) = Ff(χ)ξ(χ) for all ξ ∈ L2(Ĝ) and χ ∈ Ĝ. The Stone–Weierstrass theorem gives us

that the C∗-algebras C∗r (G) and C0(Ĝ) are ∗-isomorphic for all locally compact abelian groups

G.

When we are out of the world of locally compact abelian groups we can form the set of

irreducible unitary representations of the group and equip it with a topology that coincides

with uniform convergence on compact sets when the group is abelian. This space is usually

very badly behaved, e.g. the space is usually not Hausdorff. However we do have a better

object at our disposal to study: C∗r (G).

Baum–Connes conjectures

Unfortunately C∗r (G) is not that much better behaved. For example the C∗-algebra is usually

simple. Indeed if C∗r (G) is simple then the amenable radical (the largest normal amenable

subgroup) is trivial. One can think of simplicity as the opposite of amenability. In fact it has

been an open question for many years whether this is the only obstruction to simplicity [41,

Question 4]. Recently there has been progress in this area: for a discrete group G, C∗r (G)

is simple if and only if the action of G on its Furstenberg boundary is topologically free [69,

Theorem 1.5.].

We do have algebraic topological tools to help with this algebra C∗r (G). Indeed when G is

discrete and abelian then we have the nice isomorphism

Kj(Ĝ) ∼= Kj(C(Ĝ)) ∼= Kj(C
∗
r (G))

where Kj(Ĝ) is the topological K-theory of the compact space Ĝ. When G is no longer abelian

then we can not take Kj(Ĝ) but we can still take the K-theory of C∗r (G). The idea of the

following conjecture is to find the correct object that replaces Kj(Ĝ) when G is not abelian.

Conjecture (Baum–Connes conjecture). The following assembly maps

(∗) µj : KG
j (EG)→ Kj(C

∗
r (G)) (j = 0, 1)

are isomorphisms of abelian groups.

The left hand side is the G-equivariant K-homology with compact supports and the right

hand side is K-theory of the reduced C∗-algebra. The space EG is the universal example of

proper actions of G [15, Definition 1.6.]. In a lot of cases there exists simple models for EG

[15, Section 2.] which makes the left hand side usually more computable than the right hand

side. See the books [87, 119] for introductory texts to the Baum–Connes conjecture.
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The diagram below shows that the Baum–Connes conjecture is a part of several other con-

jectures from topology and functional analysis.

Baum–Connes

conjecture

µjepi

��

µjmono
+3 Strong Novikov

conjecture
+3

��

Novikov

conjecture

Kaplansky–Kadison

conjecture

Trace

conjecture
ks Gromov–Lawson–Rosenberg

conjecture

For a full digram of implications, statements of conjectures and references of implications

see [87, Section 7]. The current formulation of the conjecture was given in [15] but was first set

forth in a 1982 preprint of P. Baum and A. Connes [14] and was published 18 years after it was

first written. The conjecture originates in work of G. Kasparov [70] and A. Mishchenko [86]

in the Novikov conjecture, ideas of A. Connes in foliation theory [36] and P. Baum’s geometric

description of K-homology theory [16]. The following is a stronger version of the conjecture.

Conjecture (Baum–Connes conjecture with coefficients). Assume A is a separable C∗-

algebra with an action of a locally compact group G. Then the following assembly maps

(∗∗) µj : KG
j (EG;A)→ Kj(Aor G)

are isomorphisms of abelian groups.

In 1997, N. Higson and G. Kasparov proved that a large class of groups satisfy the Baum–

Connes conjecture with coefficients: countable groups that have the Haagerup property [65].

The Haagerup property first appeared in 1978 when U. Haagerup proved that the reduced group

C∗-algebra of any non-abelian free group of finite rank has Grothendieck’s metric approximation

property [60]. Indeed a group has the Haagerup property if it can act properly and affinely on

a Hilbert space. This includes the class of amenable groups [19].

It is known that the assembly map in (∗∗) is an isomorphism for all discrete hyperbolic

groups. In 2003 G. Kasparov and G. Skandalsis proved injectivity [71] and in 2012, V. Lafforgue

proved surjectivity [78]. There are no known counterexamples to the Baum–Connes conjecture

but there do exist counterexamples to the Baum–Connes conjecture with coefficients [64].

One of the ways of attacking the Baum–Connes conjecture is using the coarse Baum–Connes

conjecture.

Conjecture (Coarse Baum–Connes conjecture). Let X be a proper discrete metric space

with bounded geometry. Then the following assembly maps are an isomorphism of groups:

(∗ ∗ ∗) A∞ : KXi(X)→ Ki(C
∗X) (i = 0, 1).

The conjecture was first outlined in 1993 by J. Roe [98] and precisely formulated in 1995

by N. Higson and J. Roe [66]. The right hand side is the K-theory of the Roe algebra and

the left hand side is the coarse K-homology of the space X. The right hand side is a coarse

invariant and captures the coarse geometry of the space while the left hand side captures the

local topological data of smoothened versions of X of increasing scale. The “moral” of this

conjecture is that the study of the coarse structure of the space is equivalent to studying the

topology of smoothened copies of X of increasing scale.

If a countable group, when considered as a discrete proper metric space satisfies the coarse

Baum–Connes conjecture and admits a finite complex as a classifying space then the assembly

maps in (∗) are injective [99, Theorem 8.4.]. An important class of spaces that satisfy the coarse
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Baum–Connes conjecture are those that coarsely embed into a Hilbert space [127]. Indeed it

was M. Gromov that introduced coarse embeddability into a Hilbert space in [53] and hinted at

its importance to the Novikov conjecture in [50, Problems (4) and (5)]. In 2000, G. Yu showed

that if a discrete group coarsely embeds into a Hilbert space and admits a finite complex as a

classifying space then it satisfies the Novikov conjecture. This result was strengthened in 2002

by G. Skandalis, J. Tu and G. Yu where they showed the assembly maps (∗∗) are injective for

any discrete group that coarsely embeds into a Hilbert space [108, Theorem 6.1.]. In 2012,

G. Kasparov and G. Yu gave the same result for any group that coarsely embeds into `p(N)

for 1 ≤ p <∞ [72].

In [127], G. Yu introduced a coarse invariant called property A. If a metric space has

property A then the space can coarsely embed into a Hilbert space and so property A gives a

criterion for coarse embeddability into a Hilbert space. In [101] J. Roe generalised this idea

to general metric spaces and in 2014, S. Deprez and K. Li extended the result of G. Skandalis,

J. Tu and G. Yu to locally compact second countable groups [44].

The following table is the current status of the Baum–Connes conjectures.

Status
Class of groups/spaces

conjecture is true

Counterexamples

Injectivity fails Surjectivity fails

Baum–Connes

conjecture with

coefficients.

False. The class of countable

groups LHET H, which

includes all countable

Haagerup groups [65, 87],

discrete hyperbolic groups

[78].

Open. B or Γ where Γ

is the Gromov

monster and B is a

particular separable

Γ-C∗-subalgebra

of `∞(N; c0(Γ))

[64]. The assem-

bly map in this

example is injective

[124, 125].

Baum–Connes

conjecture.

Open. One relator groups [17],

fundamental groups

of Haken 3-manifolds

[93, 117], groups with

property (RD) that ad-

mit proper, cocompact,

isometric action on a

strongly bolic metric

space [76].

Open. Open.

Coarse Baum–

Connes conjec-

ture.

False for metric

spaces, open

for discrete

groups.

Spaces that coarsely em-

bed into a Hilbert space

[127].

Open. A sequence of ex-

pander graphs [64].

Coarse geometry

The right hand side of the coarse Baum–Connes conjecture is the K-theory of the Roe

algebra. This is a coarse invariant and so does not depend on the local topological structure

but the macroscopic properties of the space. This allows a lot of flexibility and gives a nice

link to the study of asymptotic behaviour of groups. The philosophy of studying asymptotic

behaviour of groups can be captured in the following quote by M. Gromov in [53]:

“To regain the geometric perspective one has to change his/her position and move the

observation point far away from Γ [a finitely generated group]. Then the metric in Γ seen

from the distance d becomes the original distance divided by d and for d→ ∞ the points
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in Γ coalesce into a connected continuous solid unity which occupies the visual horizon

without any gaps or holes and fills our geometer’s heart with joy.”

The idea of asymptotic study of infinite groups begins with viewing a finitely generated group

as a metric space by equipping it with a word metric. The metric depends on the generating

set so we can not hope for metrics from different generating sets to be isometric. Fortunately

the metrics are quasi-isometric. This idea does not end at finitely generated groups. Every

locally compact second countable group has a proper left invariant metric that generates the

topology and any two such metrics are coarsely equivalent [59, 109]. This motivates the study

of finding coarse invariants of a group.

The first asymptotic ideas in group theory appeared in the mid-fifties in the papers by

V. Efremovic [47], E. Følner [51], and A. Švarc [111]. However the area was revolutionised in

1993 by M. Gromov’s paper [53]. In the early 50s, V. Efremovic and A. Švarc both observed

that the growth rate of the volume of balls in the universal cover of a Riemannian manifold is a

topological invariant and only depends on the fundamental group [47, 111]. In 1955, A. Švarc

applied this idea to show that the fundamental group of a compact n-dimensional manifold

can not be an abelian group of rank less than n [111]. Similar results on non-positively curved

spaces were obtained independently by J. Milnor in 1968 [85].

Amenability and amenable actions. In [51], E. Følner gave a geometric character-

isation of amenability in terms of slow growth of boundaries of finite subsets of the group.

This automatically gives that any group with subexponential growth is amenable and that

amenability is a quasi-isometric invariant for discrete groups [38, Proposition 3.D.32.].

The story of amenability started in 1904 with H. Lebesgue where in [79] he gave a list of

properties that uniquely specified his integral on R. The only property he listed that differed

from the Riemann integral was the monotone convergence theorem. In [12], S. Banach considers

three questions all of which involve the invariance of finitely additive measures.

Question. Let Mb(R) be the family of bounded Lebesgue measurable sets on R. If µ is a

finitely additive positive translation invariant measure on Mb(R) such that µ([0, 1]) = 1, does

µ = λ where λ is the Lebesgue measure on [0, 1]?

Question. Let Gn = Rn o O(n) be the group of isometries on Rn. Does there exists a

Gn-invariant, finitely additive, positive measure µ on P(Rn), the power set of Rn, such that

µ([0, 1]n) = 1?

Question. Does there exist a finitely additive O(n + 1)-invariant, positive measure µ on

Mb(S
n) such that µ(Sn) = 1 and µ 6= λ where λ is the Lebesgue measure on Sn?

The first question was raised initially by H. Lebesgue in [79]. H. Lebesgue asked if the inte-

gral was still uniquely specified if the monotone convergence theorem was dropped. S. Banach

showed that the answer to the first question is negative. He constructs such a measure on

Pb(X), the family of bounded subsets of R such that

(1) µ(A) <∞ for every bounded subset A of R.

(2)
∫ b
a
ϕ(x) dµ(x) =

∫ b
a
ϕ(x) dx for every Riemann integrable functions ϕ on [a, b].

(3) There exists a Lebesgue integrable function ψ on an interval [c, d] such that∫ d

c

ψ(x) dµ(x) 6=
∫ d

c

ψ(x) dλ(x)

where λ is the Lebesgue measure on R.
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The second question arose out of results by F. Hausdorff in 1914 in his paper “Grundzüge der

Mengenlehre” (see the collected works [61]). F. Hausdorff showed that no such measure exists

for n ≥ 3. His line of thinking initiated the idea of paradoxical decompositions which is central

to the Banach–Tarski paradox in [13] and Tarski’s theorem on amenability in [113, 114]. For

the cases n = 1, 2, S. Banach showed that such measures in the second question do exist and

this is because G1 and G2 are amenable.

It was J. von Neumann in [120] that realised the cases for n = 1, 2 could be generalised to

groups that carry a finitely additive, invariant, positive measure of total mass one. It was in

[120] where amenability was first defined under the German name “messbar”.

The third question is known as the Banach–Ruziewicz Problem. S. Banach showed that the

answer to this question is positive for S1 but left the cases n ≥ 2 unanswered. It was not until

the 1980s when the other cases were answered. For n ≥ 2 the answer is negative. For the cases

n ≥ 4 the problem was solved independently by D. Sullivan [110] and G. Margulis [83]. For

the cases n = 2, 3 the problem was solved by V. Drinfel′d in [46]. For an extensive survey on

this topic see A. Paterson’s book on amenability and S. Wagon’s book on the Banach–Tarski

paradox [95, 121]

The notion of amenable ergodic actions was first introduced by R. Zimmer in 1978 and has

had great influence in ergodic theory and von Neumann algebras [128]. C. Anantharaman-

Delaroche generalised the ideas in [128] and introduced an amenable group action on a von

Neumann algebra [2, 3]. In 1987 these ideas were generalised further to incorporate amenable

actions on C∗-algebras and it was shown that a group acts amenably on a C∗-algebra if and

only if the reduced cross product was nuclear [4]. In 2000, C. Anantharaman-Delaroche and

J. Renault extended the definition of amenability to groupoids and this encodes the definition

of a topological amenable action on a locally compact space.

In 2000, N. Higson and J. Roe showed that a discrete group acts topologically amenably on

a compact Hausdorff space (also known as amenable at infinity) if and only if the group has

G. Yu’s property A [67]. In particular amenability at infinity is a coarse invariant and satisfies

the coarse Baum–Connes conjecture and the Novikov conjecture. This result was extended to

locally compact second countable groups by S. Deprez and K. Li in 2014 [44].

In 1999, E. Kirchberg and S. Wassermann in [75] introduced a seemingly separate notion

of exact groups. For any locally compact group G, the universal cross product functor from

the category of G-C∗-algebras to G-C∗-algebras preserves short exact sequences. In [75] the

authors introduced the class of exact groups: the groups of which the reduced cross product

functor preserves short exact sequences. They asked whether every group is exact and in the

same paper they showed that for discrete groups, exactness of the reduced group C∗-algebra is

equivalent to exactness of the group but left the question open for locally compact groups.

Amenability has a lot of characterisations in different areas of mathematics. In particular

in operator theory, a discrete group is amenable if and only if the reduced group C∗-algebra

is nuclear. An analogue exists for groups that are amenable at infinity. Indeed it was proved

independently by N. Ozawa and C. Anantharaman-Delaroche that amenability at infinity for

discrete groups is characterised by exactness of the reduced group C∗-algebra [5, 94]. They

left the question of equivalence open for locally compact groups.

C. Anantharaman-Delaroche in [5] showed that if a locally compact group is amenable at

infinity then the group is exact in the sense of E. Kirchberg and S. Wassermann. However

in the same paper she introduced property (W) to provide a partial converse. That is if a

locally compact group is exact and has property (W) then the group is amenable at infinity.
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Property (W) can be thought of as a weaker version of inner amenability and is satisfied by

every discrete countable group. In Chapter 4 we answer one of the questions in [5, Question

9.3.] for locally compact second countable groups and show the converse is true without the

assumption of property (W).

Theorem (Theorem 4.6.3). Let G be a locally compact second countable group that does

not have property A. Then there exists a non-compact operator in the kernel of the natural

surjective map Clu(G) oL,r G→ (Clu(G)/C0(G)) oL,r G.

We have the following consequence of this result that characterises amenability at infinity

for locally compact second countable groups.

Corollary (Corollary 4.6.4). Let G be a locally compact second countable group. Then the

following are equivalent.

(1) G has property A.

(2) G is amenable at infinity.

(3) G is exact.

(4) The following sequence

0 // C0(G) oL,r G // Clu(G) oL,r G // (Clu(G)/C0(G)) oL̇,r G // 0

is exact.

Coarse embeddings into Hilbert space. We have established that coarse embeddings

into a Hilbert space have important consequences in the Baum–Connes and Novikov conjec-

tures. To establish which groups coarsely embed into a Hilbert space, it is interesting to

establish permanence properties of this class of groups. In general it is unknown whether

coarse embeddings into a Hilbert space are preserved by extensions however if the quotient

group has property A and the subgroup is coarsely embeddable then the central group can

coarsely embed [57].

In [39], the authors proved that coarse embeddability into a Hilbert space is preserved by

particular extensions. Indeed if G and H coarsely embed into a Hilbert space then G o H =⊕
H G oH also coarsely embeds into a Hilbert space without the mention of property A. In

Chapter 3 we extend these results.

Theorem (Theorem 3.3.5). Assume X is a proper metric space with bounded geometry and

coarsely embeds into a Hilbert space. If G and H are groups that coarsely embeds into Hilbert

spaces and H acts transitively on X then G oX H =
⊕

X GoH coarsely embeds into a Hilbert

space.

In [58], E. Guentner and J. Kaminker introduce compression to measure how close a coarse

embedding is to a quasi-isometry in both an equivariant and non-equivariant sense. A lot

of research has gone into finding precise values of compression for discrete groups [8, 9, 11,

21, 40, 80, 90, 89]. In Chapter 2 we find a lower bound of the behaviour of equivariant

compression under direct limits.

Theorem (Theorem 2.1.3). Let G be a locally compact, second countable group equipped

with a proper left invariant metric d that generates the topology of G. Suppose there exists a

sequence of open subgroups (Gi)i∈N, each equipped with the restriction of d to Gi, such that

lim−→Gi = G and α = inf{α#
2 (Gi, d)} > 0. If (Gi)i∈N has (α, l, q)-polynomial property, then we
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have the following two cases:

l ≥ q ⇒ α#
2 (G, d) ≥ α

2l + 1
or,

l ≤ q ⇒ α#
2 (G, d) ≥ α

l + q + 1
.

One useful application of compression is that whenever a finitely generated group has com-

pression strictly greater than 1/2 then the group has property A [58]. Likewise when a

finitely generated group has equivariant compression strictly greater than 1/2 then the group is

amenable. In [40], the authors extend the equivariant result to all locally compact, compactly

generated groups. In section 4.7 we generalise the non-equivariant result to all locally compact

second countable groups.

Theorem (Theorem 4.7.7). Let G be a locally compact second countable group and let d be

a plig metric with exponentially controlled growth. If α2(G, d) > 1/2 then G has property A.

Overview of the thesis

In Chapter 1 we introduce the language of coarse geometry and the metric properties that are

central to this thesis: property A, coarse embeddability into a Hilbert space and compression.

Near the end of the chapter we give a list of examples of groups that have property A, groups

that are coarsely embeddable into a Hilbert space and the compression of some particular

groups.

In Chapter 2 we study the behaviour of compression under direct limits. To do this we

introduce the (α, l, q)-polynomial property, which measures the growth of Lipschitz constants,

and apply it to find a lower bound of the compression in terms of α, l and q.

In Chapter 3 we show that coarse embeddability into a Hilbert space is preserved under

wreath products. Indeed we do this in a more general context than groups and we introduce the

notion of wreath products of metric spaces. We then show that this metric space construction

preserves coarse embeddability into a Hilbert space when it has the coarse path lifting property.

In Chapter 4 we prove that in the class of locally compact second countable groups, amenabil-

ity at infinity and exactness in the sense of E. Kirchberg and S. Wassermann [75] are equivalent.

This is done by presenting a sequence of algebras that fails to be exact after taking the re-

duced cross product functor whenever the group is not amenable at infinity. This is done by

using results known in the discrete case about a particular ideal of operators and lifting to the

locally compact setting. Then we use a slice map to show that these lifted operators prevents

the exactness of a particular sequence. In the last section of this chapter we generalise a result

of compression to the locally compact second countable case.

The material in Chapters 2, 3 and Section 4.7 has been submitted as the following papers:

[26] Chris Cave and Dennis Dreesen. Embeddings of locally compact hyperbolic groups

into Lp-spaces. Preprint arXiv:1303.4250.

[27] Chris Cave and Dennis Dreesen. Equivariant compression of certain direct limit groups

and amalgamated free products. Preprint arXiv:1309.4636.

[28] Chris Cave and Dennis Dreesen. Embeddability of generalized wreath products. Bull.

Aust. Math. Soc, 2015, 91, 250-263

The material in Section 4.6 is currently a preprint in preparation:

[22] Jacek Brodzki, Chris Cave and Kang Li. Exactness of locally compact second count-

able groups. In preparation.



CHAPTER 1

Background

1.1. Metric Geometry

Definition 1.1.1. Let (X, d) be a metric space. A metric is proper if every bounded subset is

relatively compact. If X = G is a group then the metric is left invariant if d(gh, gh′) = d(h, h′)

for all g, h, h′ ∈ G.

Definition 1.1.2. A metric space is discrete if every point is an open set. A metric space is

uniformly discrete if there exists δ > 0 such that B(x, δ) = {x} for all x ∈ X.

Unless stated otherwise, all discrete metric spaces are assumed to be countable.

Definition 1.1.3. Let G be a group. A map l : G → R+ is a length function if it satisfies

the following conditions

(1) l(g) = 0⇔ g = 1.

(2) l(g) = l(g−1) ∀g ∈ G.

(3) l(gh) ≤ l(g) + l(h) ∀g, h ∈ G.

If l is a length function then d(x, y) := l(x−1y) is a left invariant metric. If d is a left

invariant metric then l(g) := d(e, g) is a length function.

Definition 1.1.4 ([100, Definition 1.8.]). Let X and Y be metric spaces and let f : X → Y

be a map.

(1) The map f is proper if the pre-image of every bounded subset of Y is a bounded

subset of X.

(2) The map is bornologous if for every R > 0 there is S > 0 such that

d(x, x′) < R⇒ d(f(x), f(x′)) < S ∀x, x′ ∈ X.

(3) The map f is coarse if it is proper and bornologous.

The composition of proper (bornologous or coarse) maps is proper (bornologous or coarse).

Definition 1.1.5. Two maps f, f ′ from a set X to a metric space Y are close if d(f(x), f ′(x))

is bounded, uniformly in x. We say two metric spaces X and Y are coarsely equivalent if there

exists coarse maps f : X → Y and g : Y → X such that f ◦ g and g ◦ f are close to the identity

maps on Y and X respectively.

The fundamental example is the inclusion Z→ R and the ceiling or floor map R→ Z. It is

obvious that coarse equivalence is an equivalence relation among metric spaces.

Definition 1.1.6. Let X and Y be metric spaces. A function f : X → Y is a coarse embed-

ding if there exists increasing functions ρ± : [0,∞)→ R such that limt→∞ ρ±(t) =∞ and

ρ−(d(x, x′)) ≤ d(f(x), f(x′)) ≤ ρ+(d(x, x′)) ∀x, x′ ∈ X.

A function f : X → Y is called a coarse surjection if there exists C > 0 such that for all y ∈ Y
there exists x ∈ X such that d(f(x), y)) ≤ C.
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It is not hard to show that a function is a coarse equivalence if and only if it is a coarse

embedding and a coarse surjection. A particular class of metric spaces we shall be interested

in are those that can coarsely embed into a Hilbert space.

Definition 1.1.7. A map f : X → Y is large-scale Lipschitz if there exists constants A,B

such that d(f(x), f(x′)) ≤ Ad(x, x′) + B for all x, x′ ∈ X. The map f is called Lipschitz if

B = 0 and called a quasi-isometry if

1

A
d(x, x′)−B ≤ d(f(x), f(x′)) ≤ Ad(x, x′) +B ∀x, x′ ∈ X.

If B = 0 then f is called bi-Lipschitz. Two metric spaces X and Y are quasi-isometric if there

exists a coarse surjective quasi-isometry between the two.

Observe that if X is a uniformly discrete metric space then every large-scale Lipschitz map

(quasi-isometry) is a Lipschitz (bi-Lipschitz) map.

Definition 1.1.8. A discrete metric space (X, d) is called quasi-geodesic if there exists δ > 0

and λ ≥ 1 such that for all x, y ∈ X there exists a sequence x = x0, x1, . . . , xn = y of elements

of X such that
n∑
i=1

d(xi−1, xi) ≤ λd(x, y) and d(xi, xi+1) ≤ δ for all 1 ≤ i ≤ n.

Proposition 1.1.9 ([58, Proposition 2.9.]). Let X and Y be metric spaces and suppose

X is a quasi-geodesic space. If f : X → Y is bornologous then f is large-scale Lipschitz.

Let G be a locally compact group. A set F generates G if the subgroup generated by F is

equal to G. That is every element of G can be written as a word of finitely many elements in

F .

Definition 1.1.10. Let G be a group and suppose F generates G. For g ∈ G the word length

of g relative to F is

|g|F := inf {n : g = h1h2 · · ·hn for some h1, . . . , hk ∈ F} .

This forms a length function on G and so defines the word metric d(x, y) := |x−1y| relative

to F . This is the same metric as the graph metric on the Cayley graph Cay(G,F ). For a

subset S ⊂ G, the Cayley graph of G with respect to S has vertices as elements of G and

two vertices g, h are connected by an edge if and only if h = gs for some s ∈ S ∪ S−1. It

follows that Cay(G,S) is connected if and only if S generates G and the graph metric on

Cay(G,S) is precisely the word metric on G relative to S. Clearly the word metric depends on

the generating set however the coarse equivalence class does not.

Proposition 1.1.11 ([100, Proposition 1.15.][82, pp14–16]). Suppose G is compactly

generated and suppose d and d′ are word metrics associated to compact generating sets. Then

(G, d) and (G, d′) are quasi-isometric.

When G is not compactly generated, it is not obvious what metric to use. The word metric

with respect to a generating set will no longer be proper. Fortunately with the following result

we can equip all locally compact second countable groups with a sensible metric.

Theorem 1.1.12 ([109], [38, Theorem 2.B.4.]). For a locally compact group G the fol-

lowing are equivalent

(1) G is second countable.

(2) G is σ-compact and first countable.
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(3) there exists a proper left invariant metric on G that generates the topology.

We shall call such metrics plig metrics.

Proof (Sketch). (1)⇔ (2). This is well known.

(3) ⇒ (2). Any metrizable space is first countable. As the metric is proper then G is

σ-compact. This is because G = ∪n∈NB(1, n) and by properness B(1, n) is compact.

(2)⇒ (3). This proof is originally from [38, Theorem 2.B.4.]. Let V = (Vn)n≥0 be a count-

able neighbourhood basis of the identity. As G is locally compact, it follows after relabeling

that V0 is relatively compact. As G is σ-compact, G =
⋃
n≥0 Ln where Ln are symmetric com-

pact subsets that contain the identity for all n ≥ 0. Set K0 = L0 ∪ V 0 and define inductively

for n ≥ 1, Kn+1 = Ln ∪ (Kn)3.

There exists A0 ∈ V such that (A0)3 ⊂ V0. This is because multiplication is continuous on G.

Set K−1 = A0 ∩V1. Then (K−1)3 ⊂ K0 and K−1 ⊂ V1. In particular, K−1 is a neighbourhood

of the identity so there exists A−1 ∈ V such that (A−1)3 ⊂ K−1. Set K−2 = A−1 ∩ V2. Then

(K−2)3 ⊂ K−1 and K−2 ⊂ V2. We continue this procedure so that we obtain (Kn)n∈Z so that

Kn is symmetric, contain the identity, have non-empty interior and G = ∪n∈ZKn. Then define

the length function to be

|g| = inf

t ∈ R : g = wn1
· · ·wnk such that wnj ∈ Knj and t =

k∑
j=1

2nj


By construction |·| is continuous and proper. By using an inductive argument one can show that

if |g| < 2n then g ∈ Kn for all n. If U is an open set then x−1U is an open neighbourhood of the

identity for all x ∈ U . Therefore for all x ∈ U there exists n(x) ∈ N such that Vn(x) ⊂ x−1U .

As K−n ⊂ Vn for all n ∈ N, we have that B(x, 2−n(x)) ⊂ U for all x ∈ U . Hence this metric

generates the topology on G. �

Theorem 1.1.13 ([38, Corollary 4.A.6 (2).][59, Theorem 2.8.]). Let G be a locally

compact second countable group. Assume d and d′ are plig metrics on G. Then the identity

map (G, d)→ (G, d′) is a coarse equivalence.

Proof (Sketch). Each R-ball of d is compact therefore there exists SR such that Bd(1, R) ⊂
Bd′(1, SR) for all R > 0 as d′ is proper. By reversing the roles of d and d′ we have that the

identity map is a coarse equivalence. �

Observe that word metrics relative to generating sets do not usually generate the topology.

For example [−1, 1] generates R but the length function is not continuous with respect to the

standard topology. However word metrics with respect to a compact generating set is coarsely

equivalent to one (hence all) plig metrics [38, Corollary 4.A.6(2).]. See [38] for an extensive

survey on metric geometry of locally compact groups.

Remark 1.1.14. It is important to observe that the coarse equivalence is not necessarily a

quasi-isometry. Take F∞, the free group on countably many generators. Label the generators

by (xn)n∈N and define two functions l1(x±1
n ) = n and l2(x±1

n ) = n2. We extend to length

functions on all of F∞ by setting

li(g) := li(x
ε1
n1

) + · · ·+ li(x
εk
nk

) for i = 1, 2

where g = xε1n1
· · ·xεknk and εi = ±1. The metrics d1(x, y) := l1(x−1y) and d2(x, y) = l2(x−1y)

are proper and left invariant but not quasi-isometric because for all constants A,B > 0 there

exists n ∈ N such that n2 ≥ An+B. However these metrics are coarsely equivalent.
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Definition 1.1.15. A discrete metric space (X, d) has bounded geometry if for all R > 0

there exists NR such that |B(x,R)| ≤ NR for all x ∈ X.

Definition 1.1.16. A general metric space (i.e. not necessarily discrete) has bounded geom-

etry if it is coarsely equivalent to a discrete metric space with bounded geometry.

If a metric space is coarsely equivalent to a uniformly discrete metric space with bounded

geometry then we call the image of the discrete metric space under the coarse equivalence a

coarse lattice.

Proposition 1.1.17 ([59, Lemma 3.3.]). Every locally compact second countable group

equipped with a plig metric is coarsely equivalent to a uniformly discrete space with bounded

geometry.

Proof (Sketch). This proof is originally from [59, Lemma 3.3.]. Choose a maximal family of

elements Z = {zi}i∈N such that d(zi, zj) ≥ 1. Therefore G =
⋃
i∈NB(zi, 1) and so the metric

space (G, d) is coarsely equivalence to Z when equipped with the subspace metric from G.

Fix R > 0 and z0 ∈ Z. Then
∑
z∈B(z0,R)∩Z µ(B(z, 1/2)) ≤ µ(z,R + 1/2), because the sets

B(z, 1/2) and B(z′, 1/2) are disjoint for any two distinct points. Hence by left invariance of

the Haar measure, |B(z,R) ∩ Z| ≤ µ(1, R + 1/2)/µ(B(1, 1/2)) for any z ∈ Z. Hence Z has

bounded geometry. �

1.2. Some metric geometry properties

1.2.1. Property A. A kernel on a set X is a function k : X ×X → C (or R). Usually

one can think of k as an infinite X × X matrix and k(x, y) is the value at the x-th row and

y-th column.

Definition 1.2.1. Let X be a set. A kernel of positive type is a function k : X × X → C
such that for all finite sequences x1, . . . , xn ∈ X and λ1, . . . , λn ∈ C,

n∑
i,j=1

λiλjk(xi, xj) ≥ 0.

Definition 1.2.2. Let X be a set. A kernel of negative type is a function k : X × X → R
such that for all finite sequences x1, . . . , xn ∈ X and λ1, . . . , λn ∈ R such that

∑n
i=1 λi = 0,

n∑
i,j=1

λiλjk(xi, xj) ≤ 0.

We say a kernel is self-adjoint (or symmetric if real valued) if k(x, y) = k(y, x) for all

x, y ∈ X. We say a positive (negative) type kernel is normalised if k(x, x) = 1 (k(x, x) = 0)

for all x ∈ X. For a group G a function ϕ : G → C is of positive type (or negative type) if the

kernel k(g, h) := ϕ(g−1h) is of positive type (respectively negative type).

For a locally compact, σ-compact space X (e.g. a space with bounded geometry), de-

note the space of regular Borel probability measures by Prob(X). The space Prob(X) can

be identified with the space of all positive linear functionals on C0(X) with norm 1 [104,

Theorem 6.19.]. For a fixed positive regular Borel measure µ we can identify Prob(X) ={
f ∈ L1(X,µ) : ‖f‖1 = 1 and f ≥ 0

}
[35, Proposition 7.3.8.]. So Prob(X) comes with two

topologies, the norm and the weak-∗ topology. When X = G is a locally compact second

countable group then we will use a fixed Haar measure µ. Recall the following characterisa-

tions of amenability.
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Definition and Theorem 1.2.3 ([95, Theorem 4.4.], [18, Theorem G.3.2.]). Let G

be a locally compact group. Then the following are equivalent

(1) for all compact subsets K ⊂ G and ε > 0 there exists f ∈ Prob(G) such that

sup
g∈K
‖g · f − f‖1 ≤ ε

where g · f(h) = f(g−1h) for all g, h ∈ G.

(2) The trivial representation is weakly contained in the left regular representation λ : G→
L2(G). That is for all compact subsets K ⊂ G and ε > 0 there exists unit vectors

ξ ∈ L2(G) such that

sup
g∈K
|1− 〈λgξ, ξ〉| < ε.

If G has one of the two equivalent properties then we say G is amenable.

There are a large amount of applications and characterisations of amenability however we

shall only use it to demonstrate the similarity between this definition and the definition of

property A.

Definition 1.2.4. [102, Definition 2.1.] Let X be a proper metric space with bounded

geometry. We say X has property A if there exists a sequence of weak-∗ continuous maps

fn : X → Prob(X) such that

(1) for each n there is an R such that for each x ∈ X, Supp(fn(x)) ⊂ B(x,R) and

(2) for each S > 0, as n→∞

sup
d(x,y)<S

‖fn(x)− fn(y)‖1 → 0.

When X is discrete, this coincides with the definition of property A from [127].

Proposition 1.2.5 ([123, Proposition 1.1.3.]). Assume X and Y are discrete metric

spaces with bounded geometry and X has property A. If there exists a coarse embedding ι : Y →
X then Y has property A.

Proposition 1.2.6 ([102, Lemma 2.2.]). Let X be a (not necessarily discrete) proper

metric space with bounded geometry. Then X has property A if and only if some (hence every)

coarse lattice in X has property A.

This means when we consider locally compact second countable groups, we can refer to a

group having property A without referring to a plig metric. For a locally compact group G

and a subset L ⊂ G, the tube of L is the set Tube(L) :=
{

(x, y) ∈ G×G : x−1y ∈ L
}

. If L is

compact and a kernel is supported on Tube(L) then we say the kernel has compact width. If

G is discrete then we will say that the kernel has finite width. We have the following useful

characterisation of property A and coarse embeddability into a Hilbert space.

Proposition 1.2.7 ([44, Theorem 2.3.] [118, Proposition 3.2.]). A locally compact

second countable group G has property A if and only if for every compact subset K ⊂ G and

ε > 0, there exists a compact subset L ⊂ G and a positive type kernel k : G×G→ C such that

Supp(k) ⊂ Tube(L) and

sup
(s,t)∈Tube(K)

|1− k(s, t)| < ε.

Theorem 1.2.8 ([123, Theorem 3.2.8.]). Let X be a metric space (not necessarily dis-

crete). Then the following are equivalent

(1) X is coarsely embeddable into a Hilbert space.
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(2) For all R, ε > 0 there exists a normalised symmetric kernel k : X×X → R of positive

type such that:

(a) supd(x,y)≤R |1− k(x, y)| < ε and

(b) limS→∞ sup {|k(x, y)| : d(x, y) ≥ S} = 0.

Corollary 1.2.9. If a locally compact second countable group is amenable then it has prop-

erty A.

Proof. If G is amenable then for all R > 0 and ε > 0 there exists a unit vector ξ ∈ L2(G)

such that sup|g|<R |1 − 〈λgξ, ξ〉| < ε/3. Choose a compactly supported unit vector η ∈ L2(G)

such that ‖ξ − η‖2 < ε/3. Hence for all g ∈ B(1, R)

|1−〈λgη, η〉| ≤ |1−〈λgξ, ξ〉|+|〈λgξ, ξ〉−〈λgη, η〉| < ε/3+|〈λgξ, ξ−η〉|+|〈λg(ξ−η), η〉| ≤ ε.

Set ϕ(g) = 〈λgη, η〉, this is a compactly supported positive definite function [18, Proposition

C.4.3.] and so the positive definite kernel k(g, h) = ϕ(g−1h) suffices. �

Finding a coarse embedding into a Hilbert space is difficult. However the following result

shows that property A guarantees a coarse embedding into a Hilbert space.

Theorem 1.2.10 ([127]). A discrete metric space with property A coarsely embeds into a

Hilbert space.

Proposition 1.2.11 ([44, Proposition 3.2.]). A locally compact second countable group

with property A coarsely embeds into a Hilbert space.

Let G be a locally compact group and define a convolution operation on L1(G) where

f ∗ g(s) =

∫
G

f(r)g(r−1s) dµ(r).

This turns L1(G) into a Banach ∗-algebra. More generally for any f ∈ L1(G) and g ∈ Lp(G),

f ∗ g belongs to Lp(G) [63, Corollary 20.14.]. For every unitary representation π : G → U(G)

there is an associated ∗-representation π : L1(G)→ B(H) defined by

π(f) =

∫
G

f(g)π(g) dµ(g)

where this operator is uniquely defined by

〈π(f)ξ, η〉 =

∫
G

f(g)〈π(g)ξ, η〉 dµ(g)

for all ξ, η ∈ H. Conversely, any non-degenerate ∗-representation of L1(G) is of this form.

There are two important C∗-algebras that we can form from this procedure.

Definition 1.2.12. Let λ : G → L2(G) be the left regular representation. Then for any

f ∈ L1(G) and ξ ∈ L2(G), λ(f) = f ∗ ξ. Denote C∗r (G) to be the completion of L1(G) with

respect to the norm

‖f‖r = ‖λ(f)‖B(L2(G)).

This C∗-algebra is called the reduced group C∗-algebra.

The completion of C[G] with respect to the norm ‖ · ‖max : L1(G)→ R,

‖f‖max := sup {‖π(f)‖ : π is a non-degenerate ∗-homomorphism}

is called the maximal group C∗-algebra of G, which we denote by C∗(G). In particular ‖f‖r ≤
‖f‖univ ≤ ‖f‖1 for all f ∈ L1(G).
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Suppose X is a countable uniformly discrete metric space with bounded geometry e.g. a

countable discrete group. For an operator T ∈ B(`2(X)) let Tx,y be the matrix entry 〈Tδy, δx〉,
where δx and δy are point masses at x and y respectively. An operator T ∈ B(`2(X)) has finite

propagation if there exists R > 0 such that Tx,y = 0 whenever d(x, y) > R. This forms a ∗-
algebra inside B(`2(X)) and the closure of this ∗-algebra is called the uniform Roe algebra. We

denote this completion by C∗u(X). For the next proposition, see Section 4.3 for the definition

of cross products and reduced cross products.

Proposition 1.2.13 ([23, Proposition 5.1.3.]). Let Γ be a discrete countable group and

let λ : Γ→ Aut(`∞(Γ)) be the action λgf(h) = f(g−1h) for all f ∈ `∞(Γ) and g, h ∈ Γ. Then

C∗u(Γ) ∼= `∞(Γ) oλ,r Γ.

The proof of this is similar to the proof of Lemma 4.4.2. From this we can see that C∗r (Γ)

is a closed ∗-subalgebra of C∗u(Γ) when Γ is a discrete countable group.

Definition 1.2.14. A linear map ϕ between C∗-algebras A and B is completely positive if

the map ϕn : Mn(A)→Mn(B), defined by ϕn([ai,j ]) = [ϕ(ai,j)]i,j is positive for every n.

Definition 1.2.15. An operator space is a closed subspace of a C∗-algebra. A linear map ϕ

from an operator space X ⊂ A into an operator space Y ⊂ B is called completely bounded if

‖ϕ‖cb := sup
n∈N
‖ϕ : Mn(X)→Mn(Y )‖ <∞.

We say ϕ is completely contractive if ‖ϕ‖cb ≤ 1.

Definition 1.2.16. Let A and B be separable C∗-algebras. A map θ : A → B is called

nuclear if there exist a sequence of completely contractive positive maps ϕn : A → Mk(n)(C)

and ψn : Mk(n)(C)→ B such that

‖ψn ◦ ϕn(a)− θ(a)‖ → 0 ∀a ∈ A.

Definition 1.2.17. Let A be a separable C∗-algebra. Then A is nuclear if the identity map

idA : A→ A is a nuclear map. A is exact if there exists a faithful representation π : A→ B(H)

such that π is nuclear.

Indeed every nuclear C∗-algebra is exact and every closed ∗-algebra of a nuclear or exact

C∗-algebra is exact. This is because one can restrict the nuclear map to the ∗-subalgebra and

this will still be a nuclear map.

We have characterisations of nuclearity and exactness of C∗-algebras. Given two C∗-algebra,

one can form the algebraic tensor product. Similar to the group algebra, there are two different

completions on the algebraic tensor product to make the algebra into a C∗-algebra: the maximal

and a natural minimal completion. We denote these two completions by ⊗max and ⊗min.

A C∗-algebra A is nuclear if and only if A ⊗max B = A ⊗min B for any C∗-algebra B [23,

Theorem 3.8.7.] [34, 74]. A is exact if and only if the functor A ⊗min − preserves short

exact sequences of C∗-algebras [23, Theorem 3.9.1.] [73]. When a group G acts trivially on a

C∗-algebra A, then Aor G ∼= A⊗min C
∗
r (G).

Theorem 1.2.18. Let Γ be a countable discrete group. Then the following are equivalent:

(1) Γ has property A.

(2) C∗r (Γ) is exact.

(3) Γ is exact (for exactness see Definition 4.3.7).

(4) C∗u(Γ) is nuclear.
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(5) C∗u(Γ) is exact.

(6) Γ admits a topological amenable action on its Stone-Čech compactification (for topo-

logical amenable action see Definition 4.5.1).

(7) Every ghost operator in C∗u(Γ) is compact (for ghost operators see Definition 4.6.1).

(8) The following sequence is exact

0→ c0(Γ) oλ,r G→ `∞(Γ) oλ,r Γ→ (`∞(Γ)/c0(Γ)) oλ̇,r Γ→ 0.

We reference where these implications first appeared but the equivalences of (1), (2), (3)

and (6) can all be found in [23]. The thin arrows indicate when an implication follows easily

from definitions or from well known facts which can also be found in [23].

(3)

��

KS

[75]

// (8) oo // (7)
KS

[100, 103]

��
(2) ks

[5, 94]
+3 (6) ks

[67]
+3

��

KS

[94]

(1)

(5)

OO

(4)oo

``

We give a sketch of proofs of these equivalence.

Proof (Sketch). (1)⇔ (6). The definitions of property A and amenable action on a compact

Hausdorff space are very similar and it only requires a bit of technical work to show that they

are equivalent. If G acts amenably on a compact Hausdorff space then one can use the universal

property of the Stone-Čech compactification to put an amenable action on βG. Most of the

work in [67] was done by showing the original definition of property A from [127] is equivalent

to the definition we have given here.

(2)⇔ (3). If Γ is exact then in particular the functor −or,τΓ preserves short exact sequences

where τ is the trivial action. Hence C∗r (Γ) is exact. Nothing about discreteness has been used

so this direction is true for locally compact groups as well.

For any C∗-dynamical system (A,α,Γ) one can define maps πA : Aoα,r Γ ↪→ (Aoα Γ)⊗min

Γ using Fell’s absorption principle [23, Proposition 4.1.7.]. Likewise one can also construct

ΦA : (Aoα Γ)⊗min Γ→ Aoα,r Γ such that ΦA ◦πA = idAoα,rΓ. If C∗r (Γ) is exact then we have

a commuting diagram

0 // I oα,r Γ //

πI

��

Aoα,r Γ

πA

��

// (A/I) oα,r Γ

πA/I

��

// 0

0 // I oα Γ⊗min C
∗
r (Γ)

ΦI

��

// Aoα Γ⊗min C
∗
r (Γ) //

ΦA

��

(A/I) oα ⊗minC
∗
r (Γ) //

ΦA/I

��

0

0 // I oα,r Γ // Aoα,r Γ // (A/I) oα,r Γ // 0

such that the middle row is exact. This is because the maximal cross product preserves short

exact sequences. By a diagram chase one can show the other two rows are exact. Interestingly,

the construction of the two maps πA and ΦA depend on Γ being exact. It is unknown whether

this implication is true for locally compact groups, see [5, Question 9.3.] and the remarks in

[75, Section 6.].

(2)⇒ (1). As C∗r (G) is exact the left regular representation λ : C∗r (Γ)→ B(`2(G)) is nuclear.

So for any finite subset E ⊂ Γ one can find a sequence of map θn : C∗r (Γ) → B(`2(G)) that
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factors through a finite dimensional C∗-algebra such that ‖θn(λ(s))− λ(s)‖ → 0 uniformly on

E. We can define a positive definite kernel k(s, t) = 〈θ(λ(s−1t)δt−1 , δs〉. We can ensure k has

finite width by carefully choosing the finite dimensional C∗-algebra θ factors through. This

means that k satisfies the conditions in Proposition 1.2.7.

(4)⇒ (2). C∗r (Γ) is a closed ∗-algebra of C∗u(Γ) ∼= `∞(Γ)oL,r Γ because Γ is discrete. Hence

if C∗u(Γ) is nuclear then C∗r (Γ) is exact.

(5)⇒ (2). Similarly, exactness passes to closed ∗-subalgebras.

(6) ⇒ (4). As Γ acts amenably on βΓ, Γ acts amenably on the C∗-algebra C(βΓ). Hence

C(βΓ) oL,r Γ = `∞(Γ) oL,r Γ ∼= C∗u(Γ) is nuclear where L is the left action of Γ on C(βΓ).

(7)⇔ (8). In [64, Lemma 9.], there is the following commuting diagram of continuous maps

Aoα,r Γ //

��

(A/I) oα,r Γ

��
C0(Γ, A) // C0(Γ, A/I).

When A = `∞(Γ) and I = c0(Γ) then we see that the ghost operators are precisely the kernel

of the surjective map in the sequence in (8).

(1)⇔ (7). We comment on this equivalence after Theorem 4.6.2 �

Observe the similarities between property A and amenability. A discrete countable group Γ

is amenable if and only if C∗r (Γ) is nuclear, if and only if Γ admits a topological amenable action

on a point [23, Theorem 2.6.8.]. Some of these equivalences can be generalised to uniformly

discrete metric spaces with bounded geometry.

Theorem 1.2.19 ([23, Theorem 5.5.7.] [103, Theorem 1.3.]). Let X be a countable

uniformly discrete metric space with bounded geometry. Then the following are equivalent:

(1) X has property A.

(2) C∗u(X) is nuclear.

(3) Every ghost operator in C∗u(X) is a compact operator.

We now give some examples and permanence properties of property A and coarse embed-

dability into a Hilbert space.

Examples 1.2.20. (1) Every compact metric space has property A.

(2) Every amenable group has property A.

(3) Any discrete metric space with bounded geometry that has finite asymptotic dimen-

sion has property A [67, Lemma 4.3.]. For a metric space X, a cover U = {Ui}i∈I
has multiplicity k if each point in X is contained in at most k elements of U . The

cover U has Lebesgue number L if any ball of radius at most L is wholly contained

in one element of U . We say that a metric space X has finite asymptotic dimension

if there exists k > 0 such that for all L > 0 there exists a uniformly bounded cover

U = {Ui}i∈I that has Lebesgue number at most L and multiplicity k + 1 . The

smallest such k is called the asymptotic dimension of X.

In order to show that X has property A we will provide a sequence that satisfies

the conditions in Definition 1.2.4 for a space that is coarsely equivalent to X. This

proof is original from [123, Corollary 2.2.11.]. Fix R, ε > 0 and set L ≥ R
35k2ε . Then

there exists a cover U = {Ui}i∈I with Lebesgue number L and multiplicity k+ 1 and
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there exists N such that diam(Ui) < N for all i ∈ N. Define a partition of unity

ϕi(x) =
d(x,X \ Ui)∑
j∈I d(x,X \ Uj)

.

This is well defined as the multiplicity implies there are only at most k + 1 sums

being performed for each x ∈ X. Now define a metric on I, where d(i, j) = 0 if

i = j and is equal to 1 if i 6= j. The space X × I is coarsely equivalent to X when

X × I is equipped with the metric d((x, i), (y, j)) = d(x, y) + d(i, j). This is because

the inclusion ι : X → X × I, x 7→ (x, i0) for some fix i0 ∈ I and the projection

p : X × I → X are coarse maps and are uniformly close to the identity map. That is

d(ι ◦ p(x, j), (x, j)) ≤ 1 and d(p ◦ ι(x), x) = 0 for all x ∈ X and i ∈ I.

For each i ∈ I fix yi ∈ Ui and define ξ(x,i)(y, j) = ϕj(x) if y = yj and 0 otherwise.

Thus ‖ξ(x,i)‖ = 1 and Supp(ξ(x,i)) is contained in a ball of radius N + 1 about (x, i).

For short hand write Cx =
∑
j∈I d(x,X \ Uj) for x ∈ X. Observe that Cx ≥ L and

d(x,X \Ui)/Cx ≤ 1 and by the triangle inequality and that U has k+ 1 multiplicity,

|Cx −Cy| ≤ (2k+ 2)d(x, y) for all x, y ∈ X. By using the triangle inequality we have

that |ϕi(x)−ϕi(y)| ≤ 1/Cx|d(x,X \Ui)− d(y,X \Ui)|+ 1/Cyd(y,X \Ui)|Cx−CyCy
| ≤

2k+3
L d(x, y). Hence by multiplicity again

∑
i∈I |ϕi(x) − ϕi(y)| ≤ (2k+2)(2k+3)

L d(x, y).

Altogether, if d(x, y) < R then ‖ξ(x,i) − ξ(y,j)‖ < ε.

(4) Every discrete countable group that is hyperbolic has finite asymptotic dimension

and so has property A [101].

(5) Every finite dimensional CAT(0) cube complex has compression 1 [25, Theorem A.]

and so has property A by Theorem 1.3.9. In particular any group acting properly, co-

compactly on a finite dimensional CAT(0) cube complex has property A [25, Theorem

B.]. This includes right-angled Artin groups and Coxeter groups.

(6) Groups that admit a presentation 〈X|R〉 where R is a single word have property A

[56, Corollary 2.6.].

(7) Every closed subgroup of a connected Lie group has property A [5, Examples 3.2(1).].

(8) Every almost connected group has property A [5, Proposition 3.3.].

(9) Any discrete subgroup of GLn(K) for a field K has property A [55].

(10) Suppose we have the following exact sequence of discrete countable groups

1→ N → Γ→ K → 1.

If K and N have property A then Γ has property A [123, Theorem 2.3.6.]. If N has

property A and K coarsely embeds into a Hilbert space then Γ also coarsely embeds

into a Hilbert space [37, Theorem 4.1.].

(11) These results are extended in [43] to the locally compact second countable case. In

each of the following cases if H has property A (is coarsely embeddable into a Hilbert

space) then G has property A (is coarsely embeddable into a Hilbert space).

(a) H ⊂ G is a uniform lattice. That is H is discrete and G/H is compact.

(b) H ⊂ G is a lattice. That is H is discrete and G/H has finite covolume.

(c) H ⊂ G is a closed coamenable subgroup in the sense of Eymard [49].

(d) H ⊂ G is a closed normal subgroup and G/H has property A.

(e) H = G/Q where Q is a compact normal subgroup.

(f) G is a measure equivalence subgroup of H (for measure equivalence see [43,

Definition 3.5.]).
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(12) The class of groups with property A is closed under subgroups, direct limits, amal-

gamations over a common subgroup and HNN extensions [123].

(13) The class of groups that coarsely embed into a Hilbert space is closed under subgroups,

direct limits, amalgamation over a common subgroup, HNN extensions [57].

(14) The class of groups that coarsely embed into a Hilbert space is also closed under

wreath products [39, Theorem 5.10.].

(15) Let X = (V,E) be a finite graph. We say X is a C-expander if there exists a C > 0

such that for all f ∈ `2(V ),∑
x,y∈V

|f(x)− f(y)|2 ≤ C
∑

(x,y)∈E

|f(x)− f(y)|2.

We call this a Poincaré inequality. A sequence of k-regular graphs (Xn)n∈N is an

expander sequence if |Vn| → ∞ and there exists a global C > 0 such that each Xn is

a C-expander. Expanders can be formed by taking the box space of residually finite

property (T) groups [81, Section 3.3.]. Given a sequence of graphs (Xn)n∈N we define

a metric d on the disjoint union X = tn∈NXn where d(Xn, Xm)→∞ as n+m→∞
and d is the graph metric when restricted to each component Xn.

We will show that when (Xn)n∈N is an expander sequence then the disjoint union

X when equipped with the above metric does not coarsely embed into a Hilbert space.

This proof is an adaptation of [92, Theorem 4.9.]. For a k-regular graph Y = (V,E)

and for a fixed distance R there are at most kR vertices within distance R of a given

point. If R = logk(|V |/2), then there are at least |V |/2 vertices that are distance

greater than R away from any given vertex.

Suppose f : X → H is a coarse embedding and let ρ± be the functions defined

in Definition 1.1.6 associated to the coarse embedding. Without loss of general-

ity we can assume that H = L2(0, 1). By the Poincaré inequality we have that∑
x,y∈Vn |fx(t)− fy(t)|2 ≤ C

∑
(x,y)∈En |fx(t)− fy(t)|2 for all t ∈ (0, 1) and all n ∈ N.

By integrating over t we have that
∑
x,y∈Vn ‖fx − fy‖

2 ≤ C
∑

(x,y)∈En ‖fx − fy‖
2 for

all n ∈ N. By substituting ρ± we have that
∑
x,y∈Vn ρ−(d(x, y))2 ≤ ρ+(1)Ck|Vn|/2.

However because there are at least |Vn|/2 vertices that are distance greater than

logk(|Vn|/2) away from any point we have and that ρ− is a non-decreasing function

we have that
∑
x,y∈Vn ρ−(d(x, y))2 ≥ ρ−(logk(|Vn|/2))|Vn|2/2. Hence we have a con-

tradiction because ρ− is unbounded and |Vn| → ∞ as n→∞ but ρ− must also satisfy

ρ−(logk(|Vn|/2)) ≤ ρ+(1)Ck
2|Vn| for all n ∈ N .

In fact a sequence of graphs (Xn)n∈N is an expander sequence if and only if it

satisfies an `p-Poincaré inequality for all 1 ≤ p <∞. So by using a similar argument as

above an expander sequence can not coarsely embed into an `p space for all 1 ≤ p <∞
[84, Proposition 3.], [100, Proposition 11.30.].

(16) There exist countable discrete metric spaces with bounded geometry that do not

coarsely contain an expander (in fact the metric space does not even weakly contain

an expander, see [10] for the definition) and does not coarsely embed into any `p-space

for 1 ≤ p <∞ [10].

(17) The first examples of groups that do not coarsely embed into a Hilbert space were

constructed by Gromov [54, 7]. These groups are finitely generated and weakly

contain an expander (see the discussion in [91, Subsection 2.4.]), which is enough to

prevent a group from coarsely embedding into a Hilbert space.
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(18) There exist finitely generated groups that isometrically contain a copy of an expander

sequence [91] and finitely presented groups that contains a quasi-isometric copy of an

expander sequence. Furthermore there exist closed aspherical manifolds of dimension

4 and higher whose fundamental groups contain a quasi-isometric copy of an expander

sequence [91, Corollary 3.5.][106].

(19) There exist finitely generated groups that act properly on a CAT(0) cube complex but

do not have property A [91, Theorem 6.2.]. In particular these are the first examples

of groups that have the Haagerup property but do not have property A [33].

1.2.2. The Haagerup property. Let E be a Banach space and let Isom(E) be the space

of bounded linear operators that are isometries. A continuous affine action on a Banach space

E consists of a strongly continuous representation π : G → Isom(E) (v 7→ πs(v) is continuous

for all s ∈ G) and a continuous function b : G→ E that satisfies the cocycle condition

b(st) = πs(b(t)) + b(s) ∀s, t ∈ G.

The action is given by s · v = πs(v) + b(s) for all s ∈ G and v ∈ E. A function that satisfies the

cocycle condition is called a 1-cocycle. Observe that b(eG) = 0 and the image of the 1-cocycle is

the orbit of the origin under the action. We say that such an action is proper if for all bounded

subsets B,C ⊂ E the set {g ∈ G : αg(B) ∩ C 6= ∅} is finite. Notice that α is proper if and only

if the 1-cocycle associated to α is a proper map. We have the following useful relation between

1-cocycles on Hilbert spaces and continuous functions of negative type.

Proposition 1.2.21 ([42, pp 62]). Let H be a Hilbert space and b : G → H a 1-cocycle

associated to a unitary representation. Then the continuous map g 7→ ‖b(g)‖2 is of negative

type.

Proposition 1.2.22 ([42, pp 63]). Let ψ : G → R be a continuous function of negative

type. Then there exists an affine isometric action on a Hilbert space H such that the associated

1-cocycle b : G→ H satisfies, ψ(g) = ‖b(g)‖2.

The following theorem relates the two notions of positive and negative type functions on

groups.

Theorem 1.2.23 (Schoenberg’s theorem [18, Theorem C.3.2.,Corollary C.4.19.]). Let

G be a topological group and let ψ be a continuous real valued function (kernel) with ψ(e) = 0

and ψ(g) = ψ(g−1) for all g ∈ G (ψ(g, g) = 0 and ψ(g, h) = ψ(h, g) for all g, h ∈ G). Then

the following are equivalent:

(1) ψ is of negative type.

(2) The function e−tψ is of positive type for every t ≥ 0.

Definition and Theorem 1.2.24 ([32, Theorem 2.1.1.]). Let G be a locally compact

second countable noncompact group. Then the following are equivalent:

(1) G admits a proper, affine, isometric action on a Hilbert space.

(2) There exists a proper, continuous negative type function ψ on G.

(3) There exists a sequence of normalised continuous functions of positive type (ϕn)n∈N

such that ϕn → 1 uniformly on compact subsets of G.

(4) There exists a C0-unitary representation (π,H), that is the map g 7→ 〈π(g)ξ, η〉 be-

longs to C0(G) for all ξ, η ∈ H, which weakly contains the trivial representation. That

is for all compact subsets K ⊂ G and ε > 0 there exists unit vectors ξ ∈ L2(G) such
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that

sup
g∈K
|1− 〈π(g)ξ, ξ〉| < ε

If G satisfies one of the equivalent properties we say G has the Haagerup property.

Proof (Sketch). (1)⇔ (2). Every negative type function is of the form g 7→ ‖b(g)‖2 for some

1-cocycle b. This map is proper if and only if the action associated to the 1-cocycle is proper.

(2)⇔ (3). By Schoenberg’s theorem the function e−nψ is positive type for all n ≥ 0. As ψ

is proper, the sequence of positive functions e−nψ converges uniformly to 1 on compact subsets

of G.

If (ϕn)n∈N are a sequence of positive definite functions that converge uniformly to 1 on

compact sets then define a negative type function by ψ(g) =
∑
n≥1 αn(1 − ϕn(g)) for some

unbounded, increasing positive sequence αn. One has to be a bit careful in choosing subse-

quences on ϕn such that this well defined. As ϕn → 1 uniformly on compact sets it follows

that ψ is proper.

(3) ⇔ (4). Every positive type function is of the form g 7→ 〈π(g)ξ, ξ〉 for some unitary

representation π : G → H and unit vectors ξ ∈ H. So for each n there exists a representation

πn : G→ Hn and vectors ξn ∈ Hn such that ϕn(g) = 〈πn(g)ξn, ξn〉. Set π = ⊕πn.

Conversely if π weakly contains the trivial representation then one takes an exhaustive

sequence of compact sets Kn such that G = ∪nKn. Choose a sequence of vectors ξn ∈ H such

that limn→∞ supg∈Kn |1 − 〈π(g)ξn, ξn〉| = 0. Now set ϕn(g) = 〈π(g)ξn, ξn〉 for all g ∈ G and

n ∈ N.

�

If a group is amenable then the left regular representation weakly contains the trivial repre-

sentation. It is routine to check that the left regular representation is a C0-representation and

so amenable groups have the Haagerup property. Furthermore, the existence of a sequence of

positive type functions that converge uniformly to 1 on compact sets implies that that a group

with the Haagerup property admits a coarse embedding into a Hilbert space by Theorem 1.2.8.

1.3. Compression

Let (X, dX) and (Y, dY ) be metric spaces and denote Lipls(X,Y ) to be the set of large-scale

Lipschitz maps from X to Y .

Definition 1.3.1. For f ∈ Lipls(X,Y ) the compression function of f , denoted by ρf , is

ρf (r) := inf
dX(x,x′)≥r

dY (f(x), f(x′)).

Definition 1.3.2 ([58, Definition 2.2.]). Suppose X is a metric space that is unbounded.

(1) For f ∈ Lipls(X,Y ) the asymptotic compression Rf is

Rf := lim inf
r→∞

log ρ∗f (r)

log r
,

where ρ∗f (r) = max{ρf (r), 1}.
(2) The compression of X in Y is

R(X,Y ) := sup
{
Rf : f ∈ Lipls(X,Y )

}
.

(3) If Y = Lp(Ω) for some measure space Ω then

αp(X) := R(X,Lp(Ω)).
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Remark 1.3.3. For f ∈ Lipls(X,Y ) one can think of compression Rf as the supremum over

all α ∈ [0, 1] such that

1

A
dX(x, x′)α −B ≤ dY (f(x), f(x′)) ≤ AdX(x, x′) +B ∀x, x′ ∈ X

for some constants A,B depending on α. Compression is measuring how close one can quasi-

isometrically embed a metric space X into Y .

Theorem 1.3.4 ([58, Theorem 2.12.]). Let X1 and X2 be metric spaces. If there exists a

quasi-isometry ϕ : X1 → X2 then R(X1, Y ) ≥ R(X2, Y ) for every metric space Y .

Corollary 1.3.5 ([58, Corollary 2.13.]). If the metric spaces X1 and X2 are quasi-

isometric then R(X1, Y ) = R(X2, Y ) for all metric spaces Y .

This means that compression is a quasi-isometric invariant. In particular when we consider

word metrics on groups associated to compact generating sets, the compression of the group

does not depend on the choice of the compact generating set. Unfortunately for general locally

compact second countable groups G, compression is no longer an invariant and does depend on

the plig metric used. This is because plig metrics are not necessarily quasi-isometric. When

we specify the plig metric d we shall write αp(G, d). However we will show in Section 4.7 that

it is still useful to consider compression with respect to particular plig metrics.

We can incorporate an action of a group to the previous ideas and obtain equivariant com-

pression. Let X be a metric space and fix an isometric action of G on X. For a Banach space

E and an affine isometric action α of the group G on E we consider the following space of

functions.

Lipls
G(X,E, α) =

{
f ∈ Lipls(X,E) | f is G-equivariant with respect to α

}
.

We write Lipls
G(X,E) =

⋃{
Lipls

G(X,E, α) : α is an affine isometric action on E
}

. The G-

equivariant Banach space compression of X is defined by

RG(X,E) := sup
{
Rf : f ∈ Lipls

G(X,E)
}
.

This definition depends on the isometric action of G on X. However most of the time we shall

consider G acting on itself by left multiplication.

Theorem 1.3.6 ([58, Theorem 5.1.]). Let X and Y be metric spaces where G acts by

isometries. If there exists an equivariant quasi-isometry X → Y then RG(X,E) ≥ RG(Y,E)

for any Banach space E.

Corollary 1.3.7 ([58, Corollary 5.2.]). Let G be a compactly generated group. Then

RG(G,E) is independent of the choice of compact generating set.

For all 1 ≤ p < ∞ we denote RG(G,Lp) by α#
p (G). Unfortunately in the general setting

the equivariant Hilbert space compression depends on the choice of plig metric d. When we

want to specify we shall write α#
p (G, d). Suppose G is generated by a compact symmetric set

S and suppose α is an affine isometric action on a Hilbert space H. Let b be the associated

1-cocycle of α and set M = max {‖b(s)‖ : s ∈ S}. For g ∈ G there exists s1, . . . , sn ∈ S such

that g = s1 · · · sn and n = |g|S . Using the cocycle relation we have that

‖b(g)‖ = ‖b(s1 · · · sn)‖ ≤
n∑
i=1

‖b(si)‖ ≤M |g|S and ‖b(x)− b(y)‖ = ‖b(x−1y)‖ ≤M |x−1y|S
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for all x, y ∈ G. This means that every 1-cocycle is an equivariant Lipschitz map. Conversely

suppose f : G→ H is a G-equivariant large-scale Lipschitz map. As f is equivariant it follows

that ‖f(x)‖ = ‖α(x)f(1)‖ = ‖π(x)f(1)+b(x)‖ where π and b are the orthogonal and translation

parts of the action α respectively. Hence

‖b(x)‖ − ‖f(1)‖ ≤ ‖f(x)‖ ≤ ‖b(x)‖+ ‖f(1)‖

for all x ∈ G. This implies that the compression of b is equal to the compression of f . Therefore

when we consider equivariant compression of a compactly generated group it is enough to

restrict ourselves to the set of all 1-cocycles.

Far less is known about equivariant compression than non-equivariant compression.

Examples 1.3.8. (1) Let (X, d) be a metric space such that |X| < ∞ and let C =

diam(X). Let E be a Banach space and f : X → E be the zero map. Then d(x, y)−
C ≤ ‖f(x) − f(y)‖E ≤ d(x, y) for all x, y ∈ X. Hence R(X,E) = 1 for any finite

metric space and any Banach space E.

(2) Let (X, d) be a metric space such that |X| <∞ and let C = diam(X). Suppose G acts

by isometries on X and let G act trivially on a Banach space E. That is g · v = v for

all v ∈ E. Let x1, . . . , xn ∈ X be representatives of the orbits of the action of G on X.

Thus X = tni=1Gxi. Let f be a function that is constant on the orbits of the action

of G on X. This implies f is G-equivariant. Set δ := min {d(x, y) : x, y ∈ X} and

M = max {‖f(xi)− f(xj)‖E : 1 ≤ i, j ≤ n}. Therefore ‖f(x) − f(y)‖E ≤ M
δ d(x, y)

for all x, y ∈ X and so f is Lipschitz. It follows that d(x, y)−C ≤ ‖f(x)− f(y)‖E ≤
M
δ d(x, y) for all x, y ∈ X. Hence RG(X,E) = 1 for any finite metric space X and for

any group G acting isometrically on X and any Banach space E.

(3) RG(X,E) ≤ R(X,E) for any metric space X, Banach space E and any group G.

(4) If Z is a subspace of a metric space X then R(X,Y ) ≤ R(Z, Y ) and RG(X,E) ≤
RG(Z,E) for any metric space Y , Banach space E and any group G.

(5) For metric spaces X and Y , α2(X × Y ) = min {α2(X), α2(Y )} where X × Y has the

`1-metric [58, Proposition 4.1.].

(6) Let G be a compactly generated group. Then α2(G) ≤ αp(G) for all 1 ≤ p <∞ [26,

Proposition 1.4.][89, Lemma 2.3.].

(7) In [58, Proposition 4.2.] it was shown that α2(F2) = 1. This was generalised so that

αp(G) = 1 for all 1 ≤ p < ∞ for any finitely generated word hyperbolic group [21]

[115, Corollary 2.].

(8) In [115] it was shown that for all 1 ≤ p < ∞, αp(G) = 1 for any group G in the

class of groups denoted by L′ [115, Corollary 2.]. This includes polycyclic groups,

connected amenable Lie groups, Baumslag–Solitar groups BS(1,m) for any m ≥ 1,

wreath products F oZ for any finite group F , connected Lie groups and their cocompact

lattices [115] and finitely generated word hyperbolic groups.

(9) α#
2 (F2) = 1/2 [58, pp 15–16]. Let X = Cay(F2, a, b) and consider H := `2(E) where

E is the set of edges in X. Define a 1-cocycle

b : F2 → `2(E) b(s) = χ[1,s]

where χ[1,s] is the characteristic function on the unique path from s to the identity. It

follows that ‖b(s)− b(t)‖ =
√
d(s, t). As F2 is not amenable it follows that α#

2 (F2) =

1/2.
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(10) For any locally compact second countable amenable group G, α2(G, d) = α#
2 (G, d)

where d is a proper left invariant metric that generates the topology on G [40, Propo-

sition 4.4.].

(11) There exists a finitely generated amenable group G such that α2(G) = 0 [11].

(12) For any α ∈ [0, 1] there exists a finitely generated group Gα with asymptotic dimen-

sion at most 2 and with α2(Gα) = α [9, Theorem 1.5.]. We shall use this example in

section 2.3.

The construction is as follows: we take a carefully chosen decreasing chain of

finite index normal subgroups of a discrete lattice Γ in SL3(F ) for a local field F

where for some m ∈ N, Γ is generated by m involutions. Let (Mk)k∈N be the family

of quotients and denote σ1(k), . . . , σm(k) to be the image of the involutions under the

quotient map.

There exists a natural metric on the finite quotients Mk and we denote the family

of metric spaces by (Πk)k∈N. We equip the disjoint union tΠk such that the restriction

to each quotient is the natural metric and that d(Πk,Πj) ≥ diam(Πk) + diam(Πj)

for all k 6= j. It is shown in [77] that such tkΠk does not embed into any uniformly

convex Banach space.

For each α ∈ [0, 1] there exists a sequence of constants (λk)k∈N such that the

rescaled family of metric spaces (λkΠk)k∈N has compression α2(tλkΠk) = α [9,

Proposition 1.4.]. For all k ∈ N define mk to be the integer part of λk−1
2 .

The group is constructed as a graph of groups. Let F be the free product ∗k∈NMk

and for every 1 ≤ i ≤ m let Hi be the free product Z/2 ∗ Z where the Z/2-factor

is denoted by σi and the Z-factor is denoted by ti. For every k ∈ Z we denote the

element tki σit
−k
i by σ

(k)
i . The vertex groups are F and H1, . . . ,Hm and the only

edges are (F,Hi). The edge group of (F,Hi) are free products ∗k∈NZ/2Z, where the

k-factor Z/2Z is identified with σi(k) ∈Mk in F and with σ
(mk)
i in Hi.

Now Gα is taken to be the fundamental group of this graph of groups and so is

generated by the set {σ1(1), . . . , σm(1), t1, . . . , tm}. In particular the word metric is

proper and left-invariant. The free product naturally embeds into the fundamental

group Gα [107, Chapter I, Section 5]. We equip ∗kMk with the subspace metric from

Gα and so this gives a proper left-invariant metric on ∗kMk. In [9, Lemma 5.7.] it is

shown that

dGα(g, h) = (2mk + 1)dMk
(g, h)

for all g, h ∈ Mk. Thus for all k ∈ N, the metric space λkΠk is uniformly quasi-

isometric to (Mk, dGα) and so (∗kMk, dGα) contains a quasi-isometric copy of the

metric space tkλkΠk. Thus α is an upper bound of the compression of Gα and

careful analysis of the word metric shows this bound is realised [9, Theorem 5.5.].

In the example in Section 2.3 we will chose α to be zero. Hence ∗kMk will have

compression 0 when equipped with the word metric from Gα.

(13) Define recursively Z(1) = Z and Z(k+1) = Z(k)oZ. Then α2(Z(k)) = α#
2 (Z(k)) = 1

2−21−k

[89, Corollary 1.3.]. In the same article it is shown that α#
2 (Z o Z/2Z) = 1/2 [89,

Corollary 1.3.].

It was first shown that α#
2 (ZoZ) ∈ [1/2, 3/4] [8, Theorem 3.10.]. The upper bound

is obtained by showing that α#
2 (
⊕

Z, dZoZ) = α2(
⊕

Z, dZoZ) ≤ 3/4 [8, Theorem 3.9.]

and we shall use this compression bound in Example 2.1.1.
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(14) In the same article it is shown that α#
2 (F ) = α2(F ) = 1/2 for Thompson’s group F

[8, Theorem 1.3.].

(15) There exists a general lower bound for wreath products. Indeed for any finitely

generated groups G and H

αp(G oH) ≥ max{1/p, 1/2}min

{
α1(G),

α1(H)

α1(H) + 1

}
for any 1 ≤ p <∞ [80, Theorem 1.1.].

(16) Let G and H be finitely generated groups and let G be the free product G = G1 ∗G2.

Then

min{αp(G1), αp(G2), 1/p} ≤ αp(G) ≤ min{αp(G1), αp(G2)}

for all 1 ≤ p <∞ [45, Corollary 2.5.].

We have the following useful application of compression.

Theorem 1.3.9 ([58, Theorem 3.2., Theorem 5.3.]). Let Γ be a finitely generated group.

If α2(Γ) > 1/2 then Γ has property A. If α#
2 (Γ) > 1/2 then Γ is amenable.

This has been partially extended extended to locally compact, compactly generated groups.

Theorem 1.3.10 ([40, Theorem 4.1.]). Let G be a locally compact, compactly generated

group. If α#
2 (G) > 1/2 then G is amenable.

In section 4.7 we shall extend the non-equivariant part of Theorem 1.3.9 to all locally compact

second countable groups.





CHAPTER 2

Compression of direct limits of groups and amalgamated

free products

The results in this Chapter were done in joint work with Dennis Dreesen and can be found

in [27].

2.1. (α, l, q)-polynomial property

In this section of results we compute the equivariant Hilbert space compression of certain

direct limits of groups. Specifically we assume that a given group G, equipped with a proper

length function, can be viewed as a direct limit of open (hence closed) subgroups G1 ⊂ G2 ⊂
G3 ⊂ . . . ⊂ G. We equip each Gi with the subspace metric from G. Our main objective will be

to find bounds on α#
2 (G) in terms of properties of the Gi. Observe that, as each Gi is a metric

subspace of G, we have α#
2 (G) ≤ infi∈N α

#
2 (Gi). The main challenge is to find a sensible lower

bound on α#
2 (G). The next example will show that it is not enough to only consider α#

2 (Gi).

Example 2.1.1. Consider the wreath product Z o Z equipped with the standard word met-

ric relative to {(δ1, 0), (0, 1)}, where δ1 is the characteristic function of {0}. Let Z(Z) =

{f : Z→ Z : f is has finite support} be equipped with the subspace metric from ZoZ. Consider

the direct limit of groups

Z ↪→ Z3 ↪→ Z5 · · · ↪→ Z(Z)

where Z2n+1 has the subspace metric from Z(Z). This metric is quasi-isometric to the standard

word metric on Z2n+1 and so each term has equivariant compression 1. So Z(Z) is a direct

limit of groups with equivariant compression 1 but by [8, Theorem 3.9.], Z(Z) has equivariant

compression less than 3/4. On the other hand the sequence

Z→ Z→ · · · → Z

is a sequence of groups with equivariant compression 1 and the equivariant compression of the

direct limit is 1.

This example shows that in order to predict the equivariant compression of the direct limit

it will be necessary to incorporate more information than only the compression exponent of

1-cocycles.

The key property that we introduce is the (α, l, q)-polynomial property. We assume that

the sequence (Gi)i∈N is normalized, i.e. each open ball B(1, i) ⊂ G is contained in Gi. Up to

taking a subsequence, one can make this assumption without loss of generality.

Definition 2.1.2. Let G be a topological group equipped with a proper length function

| · | and suppose that (Gi)i∈N is a normalized nested sequence of open subgroups such that

lim−→Gi = G. Assume that α := infi∈N α
#
2 (Gi) ∈ (0, 1]. For l, q ∈ N the sequence (Gi)i∈N has

the (α, l, q)-polynomial property ((α, l, q)-PP) if there exists:

(1) a sequence (ηi)i∈N ⊂ R+ converging to 0 such that ηi < α for each i ∈ N,
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(2) (Ai, Bi)i∈N ⊂ R>0 × R≥0,

(3) a sequence of 1-cocycles (bi : Gi → Hi)i∈N, where each bi is associated to a unitary

action πi of Gi on a Hilbert space Hi
such that

1

Ai
|g|2α−ηi −Bi ≤ ‖bi(g)‖2 ≤ Ai|g|2 +Bi ∀g ∈ Gi,∀i ∈ N

and there is C,D > 0 such that Ai ≤ Cil, Bi ≤ Diq for all i ∈ N.

Observe that the only real restrictions are the inequalities Ai ≤ Cil, Bi ≤ Diq; we exclude

sequences Ai, Bi that are superpolynomial. The intuition is that equivariant compression is

a polynomial property, so sequences growing faster than every polynomial would force the

compression of the limit group to be 0. On the other hand if the sequences grow polynomially,

then one can use compression to compensate for this growth. One then obtains a strictly

positive lower bound on α#
2 (G) which may decrease depending on how fast the sequences

grow.

Every locally compact second countable group G has a proper left invariant metric d that

generates the topology on G, see Theorem 1.1.12. Define a metric d′ such that for any x 6= y,

d′(x, y) =

1 if d(x, y) ≤ 1

d(x, y) otherwise.

Then (G, d′) is quasi-isometric to (G, d) and for any x ∈ G\{e}, |x| = d′(x, e) ≥ 1. In particular

compression does not change. Without loss of generality we assume that the metric on the

group is 1-uniformly discrete. That is |g| ≥ 1 for all g ∈ G \ {e}.

Theorem 2.1.3. Let G be a locally compact, second countable group equipped with a proper,

1-uniformly discrete metric d. Suppose there exists a sequence of open subgroups (Gi)i∈N, each

equipped with the restriction of d to Gi, such that lim−→Gi = G and α = inf{α#
2 (Gi, d)} > 0. If

(Gi)i∈N has (α, l, q)-PP, then there are the following two cases:

l ≥ q ⇒ α#
2 (G, d) ≥ α

2l + 1

or,

l ≤ q ⇒ α#
2 (G, d) ≥ α

l + q + 1
.

We have the following useful characterisation of (α, l, q)-polynomial property.

Lemma 2.1.4. Let G be a topological group equipped with a proper length function | · | and

suppose there exists a sequence of open subgroups (Gi)i∈N such that lim−→Gi = G. Then (Gi)i∈N

has the (α, l, q)-polynomial property if and only if there exists C,D > 0 such that for all ε > 0

there exists

(1) a sequence (Ai, Bi)i∈N ⊂ R>0 × R≥0 such that Ai ≤ Cil and Bi ≤ Diq;
(2) a sequence of 1-cocycles (bi : Gi → Hi)i∈N

such that
1

Ai
|g|2α−ε −Bi ≤ ‖bi(g)‖2 ≤ Ai|g|2 +Bi ∀g ∈ Gi,∀i ∈ N.

Proof. Suppose we satisfy the conditions of the lemma. Then take εn = α/2n to obtain a

sequence of 1-cocycles that satisfy the conditions in Definition 2.1.2.

Suppose (Gi)i∈N has the (α, l, q)-PP with respect to a sequence ηi converging to 0. Choose

kε large enough so that ηk < ε whenever k ≥ kε. The 1-cocycles bk associated to (α, l, q)-PP
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will satisfy the conditions in the lemma for k ≥ kε. For k ≤ kε restrict bkε to Gk so the

sequence of 1-cocycles satisfy the conditions for every group Gi. �

Proposition 2.1.5. Let G be a locally compact second countable group equipped with a proper

length function | · | and suppose there exists a sequence of open subgroups (Gi)i∈N such that

lim−→Gi = G. If α := α#
2 (G) > 0 then (Gi)i∈N has (α, 0, 0)-polynomial property.

Proof. For all 0 < ε < α there exists a 1-cocycle b such that

1

A
|g|α−ε −B ≤ ‖b(g)‖ ∀g ∈ G.

The restriction of b to each Gi is a 1-cocycle and gives (Gi)i∈N the (α, 0, 0)-polynomial property.

�

Combining this result with Theorem 2.1.3 we can confirm our intuition that if the sequences

of Lipschitz constants grow superpolynomially then the compression of the direct limit group

is forced to be 0.

Corollary 2.1.6. Suppose G is a locally compact second countable group with a plig metric

d. Then (Gi)i∈N has the (α, l, q)-polynomial property for some α ∈ (0, 1] and l, q ≥ 0 if and

only if α#
2 (G, d) > 0

2.2. The proof of Theorem 2.1.3

Proof of Theorem 2.1.3. Take sequences (ψi : Gi → R)i∈N, (ηi)i and (A,B) = (Ai, Bi)i∈N ⊂
R>0×R≥0 satisfying the conditions of (α, l, q)-PP. We assume here, without loss of generality,

that the sequences (Ai)i, (Bi)i are non-decreasing.

For each i ∈ N, define a sequence of continuous maps (ϕik : G→ R)k∈N by

ϕik(g) =

exp
(
−ψi(g)
k

)
if g ∈ Gi

0 otherwise.

Each ϕik is continuous as Gi is open and also closed, being the complement of ∪g/∈GigGi.
Observe that for all i, k ∈ N, ϕik(e) = 1. By (α, l, q)-PP, for all i, k ∈ N, we have

exp

(
−Ai|g|2 −Bi

k

)
≤ ϕik(g) ∀g ∈ Gi, and

ϕik(g) ≤ exp

(
−|g|2α−ηi +AiBi

Aik

)
∀g ∈ G.

Fix some p > 0, set J(i) = (Ai +Bi)i
1+p and define ψ : G→ R by

ψ(g) =
∑
i∈N

1− Φi(g),

where Φi(g) := ϕiJ(i)(g). To check that ψ is well defined, choose any g ∈ G and note that for

i > |g|, we have g ∈ Gi and so ϕik(g) ≥ exp(−Ai|g|
2−Bi
k ). Hence

∑
i>|g|

1− Φi(g) ≤
∑
i>|g|

1− exp

(
−Ai|g|2 −Bi
(Ai +Bi)i1+p

)
≤
∑
i>|g|

1− exp

(
−|g|2

i1+p

)
≤
∑
i>|g|

|g|2

i1+p

= |g|2
∑
i>|g|

1

i1+p
.

As ψ(g) =
∑|g|
i=1 1−Φi(g) +

∑
i>|g| 1−Φi(g), we see that ψ is well defined and that it can be

written as a limit of continuous functions converging uniformly on compact sets. Consequently,
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it is itself continuous. By Schoenberg’s theorem [42, Theorem 5.16.], all of the maps ϕik are

positive definite on G [62, Section 32.43(a)]. Hence, ψ is a conditionally negative definite map

[18, Proposition C.2.4(i),(iii).]. Moreover, using that | · | is 1-uniformly discrete, we can find a

constant E > 0 such that

(1) ψ(g) ≤ |g|+ |g|2
∑
i>|g|

1

i1+p
≤ E|g|2

so the 1-cocycle associated to ψ via Proposition 1.2.22 is large-scale Lipschitz.

We now find a lower bound to the compression of this 1-cocycle. Set V I : N→ R to be the

function

V I(i) = (AiJ(i) ln(2) +AiBi)
1

2α−ηi .

One checks easily that

(2) |g| ≥ V I(i)⇒ Φi(g) = ϕiJ(i)(g) ≤ 1

2
.

To make the function V I more concrete, let us look at the values of Ai, Bi and J(i). Recall

that by assumption, we have Ai ≤ Cil, Bi ≤ Diq. Hence for i sufficiently large, we have

J(i) ≤ (Cil +Diq)i1+p ≤ FiX where F is some constant and X = 1 + 2p+ max(l, q). We thus

obtain that there is a constant K > 0 such that for i sufficiently large,

V I(i) ≤ KiY/(2α−ηi),

where

Y = max(X + l, l + q) = max(1 + 2p+ 2l, 1 + 2p+ l + q).

The sequences ηi converges to 0 so for all ε > 0 there exists Iε such that ηi < ε any i > Iε.

Hence for all i > Iε,

V I(i) ≤ KiY/(2α−ε).

Together with Equation (2), this implies that for i > I,

(3) |g| ≥ KiY/(2α−ε) ⇒ Φi(g) = ϕiJ(i)(g) ≤ 1

2
.

For every g ∈ G, set

c(g)p,ε = sup
{
i ∈ N | KiY/(2α−ε) ≤ |g|

}
.

We then have for every g ∈ G with |g| large enough, that

ψ(g) ≥
c(g)p,ε∑
i=1

1− ϕiJ(i)(g) ≥
c(g)p,ε∑
i=Iε+1

1/2 =
c(g)p,ε − I

2
.

As c(g)p,ε ≥
(
|g|
K

)(2α−ε)/Y
− 1, we conclude that

R(b) ≥ 2α− ε
2 max(1 + 2p+ 2l, 1 + 2p+ l + q)

,

for all ε > 0. By taking the limit as ε, p→ 0 we that α#
2 (G) ≥ α

max(1+2l,1+l+q) . Hence, we have

the following two cases:

l ≥ q ⇒ α#
2 (G) ≥ α

1 + 2l
or,

l ≤ q ⇒ α#
2 (G) ≥ α

l + q + 1
. �
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2.3. Examples

Theorem 2.3.1. Let G and H be finitely generated groups where H has polynomial growth

of degree d > 1. Further assume that 0 < α#
2 (G) < 1

2(1+d) . Then

α#
2

(⊕
H

G

)
≥ α#

2 (G)

1 + 2α#
2 (G)(1 + d)

.

Remark 2.3.2. At the time of writing, these assumptions are empty because the values of

α#
2 (G) are not as well understood as the non-equivariant counterpart. The only known values

for α#
2 (G) are 1, 1/2, 0 and 1

2−21−k for k ∈ N [8, 89, 11] but in the non-equivariant case any

value for compression can be achieved [9]. It is likely there exists values for α#
2 between 0 and

1/2. For groups where equivariant compression is known, [80, Theorem 1.1.] provides a lower

bound of α#
2 (G)/2. However whenever 0 < α#

2 (G) < 1
2(1+d) then the above theorem provides

a larger lower bound than α#
2 (G)/2.

Proof. We consider
⊕

H G to be the group of functions f : H → G that have finite support.

Let f ∈
⊕

H G and let Supp(f) = {h1, . . . , hn} ⊂ H. Set the length of f as follows

|f |GoH = inf
σ∈Sn

(
dH(1, hσ(1)) +

n∑
i=1

dH(hσ(i), hσ(i+1)) + dH(hσ(n), 1)

)
+
∑
h∈H

|f(h)|G.

This is the induced length metric from G oH and so this is a proper length function on
⊕

H G.

Consider the following group

Gi = {f : H → G | Supp(f) ⊂ B(1, i)}

and set ni = |B(1, i)|. It follows from the definition of the metric on G oH that

|(g1, . . . , gni)|GoH − 2i|B(1, i)| ≤
ni∑
j=1

|gj |G ≤ |(g1, . . . , gni)|GoH

for all (g1, . . . , gni) ∈ Gi. Hence the metric on Gi induced from G oH is quasi-isometric to the

metric on Gi induced from the word metric on G. Hence α#
2 (Gi) = α#

2 (G) for all i ∈ N [58,

Proposition 4.1. and Corollary 2.13.]. Whenever |(g1, . . . , gni)| > 4i|B(1, i)| then it follows that

|(g1, . . . , gn)|GoH − 2i|B(1, i)| > 1

2
|(g1, . . . , gn)|GoH .

Set 0 < α < α#
2 (G) and consider a 1-cocycle b : G→ H such that

1

C
|g|2αG ≤ ‖b(g)‖2 ≤ C|g|2G.

Define a 1-cocycle bi : Gi → Hni , where bi(g1, . . . , gni) = (b(g1), . . . , b(gni)). First suppose

|(g1, . . . , gni)|GoH > 4i|B(1, i)|. It follows that because

(a+ b)x ≤ ax + bx for all a, b ≥ 1 and x ∈ [0, 1]

then

‖bi(g1, . . . , gni)‖2 =

ni∑
j=1

‖b(gj)‖2 ≥
1

C

ni∑
j=1

|gj |2αG ≥
1

C

 ni∑
j=1

|gj |

2α

≥ 1

C
(|(g1, . . . , gni)|GoH − 2i|B(1, i)|)2α ≥ 1

4αC
|(g1, . . . , gni)|2αGoH .
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If |(g1, . . . , gni)|GoH < 4i|B(1, i)| then |(g1, . . . , gni)|2αGoH − 8i2α|B(1, i)|2α ≤ 0. Putting this

together we have that for all (g1, . . . , gni) ∈ Gi it follows that

1

2C
|(g1, . . . , gni)|2αGoH −

8i2α

4αC
|B(1, i)|2α ≤ ‖bi(g1, . . . , gni)‖2.

Hence (Gi)i∈N has the (α, 0, 2α(1 + d)) polynomial property for all α < α#(G). Hence

α#
2

(⊕
H

G

)
≥ α

1 + 2α(1 + d)
�

Example 2.3.3. Our result also allows to consider spaces
⊕

H Gh where Gh actually depends

on the parameter h ∈ H. For example, we could take a collection of finite groups Fi with

F0 = {0} and look at G =
⊕

i∈N Fi equipped with a proper length function | · | as follows:

|g| := min(n ∈ N | g ∈ ⊕ni=0Fi) ∀g ∈ G

Set Gi =
⊕i

j=0 Fj and note that α#
2 (Gi) = 1 as Gi is finite. Moreover, it is easy to see that

the sequence (Gi)i is normalized. Define fi : Gi → R to be the 0-map. This is a 1-cocycle of

Gi relative to any unitary representation of Gi. The associated conditionally negative definite

map satisfies

∀g ∈ Gi : |g|2 − i2 ≤ ψi(g) ≤ |g|2 + i2.

We obtain the lower bound α#
2 (G) ≥ 1/3 by Theorem 2.1.3. This is the first available lower

bound on the equivariant compression of G.

Example 2.3.4. We will use the construction in [9] to provide an example of a sequence

that does not have (α, l, q)-polynomial property for any α ∈ (0, 1] and l, q > 0. Let Πk, k ≥ 1

be a sequence of Lafforgue expanders that do not embed into any uniformly convex Banach

space [77]. These are finite factor groups Mk of a discrete lattice Γ of SL3(F ) for a local field

F .

For every α ∈ [0, 1] there exists a finitely generated group G and a sequence of scaling

constants λk such that λkΠk has compression α and G is quasi-isometric to λkΠk. Furthermore

G contains the free product ∗kMk as a subgroup. Let α = 0 and let G and the scaling constants

λk be such that G has compression 0. We can equip ∗kMk with a proper left invariant metric

coming from G. Hence we have a sequence

M1 ↪→M1 ∗M2 ↪→ · · · ↪→ ∗nk=1Mk ↪→ · · · ↪→ ∗kMk.

For each n > 0, ∗nk=1Mk has equivariant compression 1/2 [45, Theorem 1.4.] however the limit

group ∗kMk contains a quasi-isometric copy of λkΠk and so has compression 0. Thus this

sequence can not have the (α, l, q)-polynomial property for any α ∈ (0, 1] and l, q > 0.

2.4. The behaviour of compression under free products amalgamated over finite

index subgroups

In [52], S.R. Gal proves the following result.

Theorem 2.4.1 ([52, Corollary 5.3.]). Let G1 and G2 be finitely generated groups with the

Haagerup property and have a common finite index subgroup H. For each i = 1, 2, let βi be a

proper affine isometric action of Gi on a Hilbert space Vi(= l2(Z)). Assume that W < V1 ∩ V2

is invariant under the actions (βi|H) and moreover that both these (restricted) actions coincide

on W . Then G1 ∗H G2 is Haagerup.
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Under the same conditions as above, we want to give estimates on α#
2 (G1 ∗H G2) in terms

of the equivariant Hilbert space compressions of G1, G2 (see Theorem 2.4.3 below). Note that

the following lemma shows that α#
2 (G1) = α#

2 (H) = α#
2 (G2) when H is of finite index in both

G1 and G2. We are indebted to Alain Valette for this lemma and its proof.

Lemma 2.4.2. Let G be a compactly generated, locally compact group, and let H be an open,

finite-index subgroup of G. Then α#
p (H) = α#

p (G) for all 1 ≤ p <∞.

Proof. As H is embedded H-equivariantly, quasi-isometrically in G, we have α#
p (H) ≥ α#

p (G).

To prove the converse inequality, we may assume that α#
p (H) > 0. Let S be a compact

generating subset of H. Let A(h)v = π(h)v + b(h) be an affine isometric action of H on Lp,

such that for some α < α#
p (H) we have ‖b(h)‖p ≥ C|h|αS , for every h ∈ H. Now we induce up

the action A from H to G, as on p.98 in Section 2.5. of [18]1. The affine space of the induced

action is

E := {f : G→ Lp : f(gh) = A(h)−1f(g), ∀h ∈ H and almost every g ∈ G},

with distance given by ‖f1 − f2‖pp =
∑
x∈G/H ‖f1(x) − f2(x)‖pp. The induced affine isometric

action Ã of G on E is then given by (Ã(g))f(g′) = f(g−1g′), for f ∈ E, g, g′ ∈ G.

A function ξ0 ∈ E is then defined as follows. Let s1 = e, s2, , ..., sn be a set of representatives

for the left cosets of H in G. Set ξ0(sih) = b(h−1), for h ∈ H, i = 1, ..., n. Define the 1-cocycle

b̃ on G by b̃(g) = Ã(g)ξ0 − ξ0, for g ∈ G. For an h ∈ H, we then have:

‖b̃(h)‖pp =

n∑
i=1

‖ξ0(h−1si)− ξ0(si)‖pp =

n∑
i=1

‖ξ0(h−1si)‖pp ≥ ‖ξ0(h−1)‖pp = ‖b(h)‖pp.

Set K = max1≤i≤n ‖b̃(si)‖p. Take T = S ∪ {s1, ..., sn} as a compact generating set of G. For

g ∈ G, write g = sih for 1 ≤ i ≤ n, h ∈ H. Then

‖b̃(g)‖p ≥ ‖b̃(h)‖p −K ≥ ‖b(h)‖p −K ≥ C|h|αS −K ≥ C|h|αT −K

≥ C(|g|T − 1)α −K ≥ C ′|g|αT −K ′.

So the compression of the 1-cocycle b̃ is at least α, hence α#
p (G) ≥ α#

p (H). �

The following proof uses a construction by S.R. Gal, see page 4 of [52].

Theorem 2.4.3. Let H be a finite index subgroup of G1 and G2 and assume there is a proper

affine isometric action βi (with compression αi) of each Gi on a Hilbert space Vi. Assume that

W < V1 ∩ V2 is invariant under the actions (βi|H) and moreover that both these (restricted)

actions coincide on W . Then α#
2 (G1 ∗H G2) ≥ min(α1,α2)

2 . In particular, α#
2 (G1 ∗H G2) ≥

α#
2 (H)

2 .

Proof. Following [52], let us build a Hilbert space WΓ on which Γ = G1 ∗H G2 acts affinely

and isometrically. Let ω be a finite alternating sequence of 1’s and 2’s and suppose π is a linear

action of H on some Hilbert space denoted Hω. One can induce up the linear action from H

to Gi, obtaining a Hilbert space

V :=
{
f : Gi → Hω | ∀h ∈ H, f(gh) = π(h−1)f(g)

}
and an orthogonal action πi : Gi → O(V ) defined by πi(g)f(g′) = f(g−1g′). The subspace{

f : Gi → Hω | ∀h ∈ H, f(h) = π(h−1)f(1), f |Gi\H = 0
}

1We seize this opportunity to correct a misprint in the definition of the vector ξ0 in that construction on p.98
of [18].
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can be identified with Hω by letting an element f correspond to f(1). It is clear that the action

πi restricted to H coincides with the original linear action π via this identification.

So, starting from any linear H-action on a Hilbert space Hω, we can obtain a linear action

of say G1 on a Hilbert space that can be written as Hω ⊕H1ω for some H1ω. We can restrict

this action to a linear H-action on H1ω and we can lift this to an action of G2 on a space

H1ω ⊕ H21ω and so on, repeating the process indefinitely. Here, we will execute this infinite

process twice.

The first linearH-action on which we apply the process is obtained as follows. As βi(H)(W ) =

W for each i = 1, 2, the restriction to H of β1, gives naturally a linear H-action onH1 := V1/W .

The second linear H-action is obtained by similarly noting that the restriction to H of β2 gives

a linear H-action on H2 := V2/W . We then apply the above process indefinitely.

H•1 :=

G2y︷ ︸︸ ︷
H1 ⊕ ︸ ︷︷ ︸

G1y

H21 ⊕
G2y︷ ︸︸ ︷

H121 ⊕H2121 ⊕ · · ·︸ ︷︷ ︸, H•2 :=

G1y︷ ︸︸ ︷
H2 ⊕ ︸ ︷︷ ︸

G2y

H12 ⊕
G1y︷ ︸︸ ︷

H212 ⊕H1212 ⊕ · · ·︸ ︷︷ ︸,
where for ω a sequence of alternating 1’s and 2’s, Gi acts on Hω⊕Hiω. Note that there are two

H-actions on H•1 as H acts on the first term H1. One can verify that both H-actions coincide

(this fact is also mentioned in [52],page 4). The same is true for H•2.

Denote H◦1 = H•1 	 H1 = H21 ⊕ H121 ⊕ H2121 ⊕ · · · , and similarly, set H◦2 = H•2 	 H2 =

H12 ⊕H212 ⊕H1212 ⊕ · · · . We denote

WΓ = W ⊕H•1 ⊕H•2 = V1 ⊕H◦1 ⊕H•2 = V2 ⊕H◦2 ⊕H•1.

The above formula, which decomposes W as a direct sum in three distinct ways, shows that

both G1 and G2 act on WΓ. As mentioned before, the actions coincide on H and so we obtain

an affine isometric action of Γ on WΓ. Note that the corresponding 1-cocycle, when restricted

to G1 (or G2), coincides with the 1-cocycle of β1(or β2).

We inductively define a length function ψT : Γ → N by ψT (h) = 0 for all h ∈ H and

ψT (γ) = min {ψT (η) + 1 | γ = ηg, where g ∈ G1 ∪G2}. By [96, Theorem 1.] we see that this

map is conditionally negative definite and thus the normed square of a 1-cocycle associated to

an affine isometric action of Γ on a Hilbert space.

Let ψΓ be the conditionally negative definite function associated to the action of Γ on WΓ.

We now find the compression of the conditionally negative definite map ψ = ψΓ + ψT . First

set

M = max
{
|tij |Gi : i = 1, 2 and 1 ≤ j ≤ [Gi : H]

}
,

where tij are right coset representatives of H in Gi such that ti1 = 1Gi for i = 1, 2.

Denote α = min(α1, α2) and fix some ε > 0 arbitrarily small. Let γ ∈ Γ and suppose in

normal form γ = gti1j1 · · · t
ik
jk

, where g ∈ Gi for some i = 1, 2. Assume first that ψT (γ) ≥ |γ|
α−ε

M .

In that case, ψ(γ) ≥ |γ|
α−ε

M . Else, we have that ψT (γ) < |γ|α−ε
M and so for all γ ∈ Γ such that

|γ| is sufficiently large, we have

ψ(γ) ≥ ψΓ(γ) = ‖γ · 0‖2 ≥ (‖g · 0‖ − ψT (γ)M)2 & ((|γ| − ψT (γ)M)α−ε/2 − ψT (γ)M)2

≥ ((|γ| − |γ|α−ε)α−ε/2 − |γ|α−ε)2 & |γ|2α−ε,

where & represents inequality up to a multiplicative constant; we use here that one can always

assume, without loss of generality, that the 1-cocycles associated to β1 and β2 satisfy ‖bi(gi)‖ &
|gi|α−ε (see Lemma 3.4 in [6]).
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So now, by the first case, ψ(γ) ≥ |γ|α−ε for all γ ∈ Γ that are sufficiently large. Hence, we

obtain the lower bound α#
2 (Γ) ≥ α#

2 (H)/2. �





CHAPTER 3

Coarse embeddability of generalised wreath products

The results in this Chapter were done in joint work with Dennis Dreesen and can be found

in [28].

3.1. Generalised wreath products

Throughout this chapter groups will be finitely generated and metric spaces will be countable

and discrete. Given two finitely generated groups G and H, the wreath product, written as

G oH is the set of pairs (f , h) where h ∈ H and f : H → G is a finitely supported function (i.e.

f(h) = eG for all but finitely many h ∈ H) together with a group operation

(f , h) · (g, h′) = (f · (hg), hh′)

where (hg)(z) = g(h−1z) for all h, z ∈ G. One can think of G o H as being the semi-direct

product
⊕

H G oH where H acts on
⊕

H G by permuting the indices. If finite sets S and T

generate G and H respectively then G oH is generated by the finite set

{(e, t) : t ∈ T} ∪ {(δs, eH) : s ∈ S}

where e(h) = eG for all h ∈ H and

δs(h) =

s if h = eH

eG otherwise.

The word metric on G o H coming from this generating set can be thought of as follows.

Given two elements (f , x) and (g, y), take the shortest path in the Cayley graph Cay(H,T )

going from x to y that passes through the points in Supp(f−1g) = {h1, . . . , hn}. At each point

hi ∈ Supp(f−1g) travel from f(hi) to g(hi) in G. Explicitly for (f , x), (g, y) ∈
⊕

g∈H G o H

and Supp (f−1g) = {h1, . . . , hn} define

p(x,y)(f ,g) = inf
σ∈Sn

(
dH(x, hσ(1)) +

n∑
i=1

dH(hσ(i), hσ(i+1)) + dH(hσ(n), y)

)
where the infimum is taken over all permutations in Sn. The number p(x,y)(f ,g) corresponds

to the shortest path between x and y in H going through each element in Supp(f−1g). Hence

the distance between (f , x) and (g, y) is

dGoH((f , x), (g, y)) = p(x,y)(f ,g) +
∑
h∈H

dG(f(h),g(h)).

Suppose G, H are groups and H acts transitively on a set X. Fix a base point x0 ∈ X and

define the permutational wreath product to be the group G oX H :=
⊕

X GoH where⊕
X

G = {f : X → G : f(x) = eG for all but finitely many x ∈ X}
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and H acts on
⊕

X G by permuting the indices. If S and T generate G and H respectively

then G oX H is generated by

{(e, t) : t ∈ T} ∪ {(δs, eH) : s ∈ S}

where e(x) = eG for all x ∈ X and

δs(x) =

s if x = x0

eG otherwise.

The metric on G oXH from the generating set can be thought of as follows. Given two elements

(f , x) and (g, y) take the shortest path going from x to y in Cay(H,T ) that passes through points

{h1, . . . , hn} such that Supp(f−1g) = {h1x0, . . . , hnx0}. At each element hi ∈ Supp(f−1g)

travel from f(hix0) to g(hix0) in G. In general the shortest path is not necessarily unique.

Explicitly for (f , x), (g, y) ∈
⊕

x∈X G o H, let I = Supp(f−1g) and let n = |Supp(f−1g)|.
Define PI to be the set

PI := {(h1, . . . , hn) ⊂ Hn : {h1x0, . . . , hnx0} = I} .

In particular if (h1, . . . , hn) ∈ PI then any permutation of (h1, . . . , hn) is also in PI . Hence the

length of the shortest path between x and y in H passing though the points that project onto

Supp(f−1g) is precisely

ρ(x,y)(f ,g) := inf
(h1,...,hn)∈PI

(
d(x, h1) +

n−1∑
i=1

d(hi, hi+1) + d(hn, y)

)
.

Hence the distance between (f , x) and (g, y) is

dGoXH((f , x), (g, y)) = ρ(x,y)(f ,g) +
∑
z∈X

dG(f(z),g(z)).

One can ask whether we can generalise this construction. Suppose Y and Z are metric spaces

and p : Y → Z is a C-dense map, i.e. BZ(p(Y ), C) = Z. Given two points y, y′ ∈ Y and a

finite sequence of points I = {z1, . . . , zn} in Z, we define PI to be the set

PI :=
{

(y1, . . . , yn) ⊂ Y n : ∃σ ∈ Sn such that ∀i, p(yi) ∈ B(zσ(i), C)
}
.

In particular, if (y1, . . . , yn) ∈ PI then any permutation of (y1, . . . , yn) also lies in PI . We now

define the length of the path from y to y′ going through I by

pathI(y, y
′) = inf

(y1,...,yn)∈PI

(
dY (y, y1) +

n−1∑
i=1

dY (yi, yi+1) + dY (yn, y
′)

)
.

Let X be another metric space and fix a base point x0 ∈ X. Define
⊕

Z X to be the set⊕
Z

X = {f : Z → X : f(z) = x0 for all but finitely many z ∈ Z} .

For f ,g ∈
⊕

Z X define Supp(f−1g) = (Supp(f) ∪ Supp(g)) \ {z ∈ Z : f(z) = g(z)}. Let

(f , y), (g, y′) ∈
⊕

Z X × Y and let I = Supp(f−1g). Define a metric on the set
⊕

Z X × Y by

d((f , y), (g, y′)) = pathI(y, y
′) +

∑
z∈Z

dX(f(z),g(z)).

We obtain a metric space (
⊕

Z X × Y, d), which we denote by X oCZ Y . Here the C refers to

the C-dense map p : Y → Z. When X and Y are groups and Y acts transitively on Z then

the map p : Y → Z is surjective thus C = 0. When there is no risk for confusion, we will omit
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C from this notation. When X and Y are graphs, then the metric wreath product X oY Y

coincides with the wreath product of graphs [48, Definition 2.1.].

3.2. Measured wall structures

Let X be a set and 2X the power set of X. We endow 2X with the product topology.

For x ∈ X, denote Ax = {A ⊂ X : x ∈ A}. This is a clopen subset in 2X . For two elements

x, y ∈ X we say a set A ⊂ X cuts x and y, denoted A ` {x, y} if x ∈ A and y ∈ Ac or x ∈ Ac

and y ∈ A. Likewise we say that A cuts another set Y if neither Y ⊂ A nor Y ⊂ Ac.

Definition 3.2.1. A measured wall structure on a set X is a Borel measure µ on 2X such

that for every x, y ∈ X,

dµ(x, y) := µ
({
A ∈ 2X : A ` {x, y}

})
<∞.

Since
{
A ∈ 2X : A ` {x, y}

}
= Ax 4 Ay, the set is measurable. It follows that dµ is well

defined and is a pseudometric on X, called the wall metric associated to µ.

If f : X → Y is a map between sets and (Y, µ) is a measured wall structure, then we can

push forward the measure µ via the inverse image map f−1 : 2Y → 2X and obtain a measured

wall structure (X, f∗µ), where for A ⊂ 2X , f∗µ(A) = µ({f(B) | B ∈ A,B = f−1(f(B))}). It

follows that df∗µ(x, x′) = dµ(f(x), f(x′)) [39, Section 2.].

Given a family of spaces Xi with measured wall structures µi and the natural projection

maps pi :
⊕
Xj → Xi, then the measure µ =

∑
I p
∗
iµi defines a measured wall structure on⊕

iXi. The associated wall metric is dµ((xi), (yi)) =
∑
i dµi(xi, yi).

Proposition 3.2.2 ([29, Proposition 6.16.], [39, Proposition 2.6.]). Let X be a set and

k : X ×X → R+ a kernel. Then the following are equivalent:

(1) There exists f : X → L1(X) such that k(x, y) = ‖f(x)− f(y)‖1 for all x, y ∈ X.

(2) For every p ≥ 1, there exists f : X → Lp(X) such that (k(x, y))1/p = ‖f(x)− f(y)‖p
for all x, y ∈ X.

(3) k = dµ for some measured wall structure (X,µ).

In order to prove our main result we make use of a method of lifting measured wall structures.

First we require some technical definitions. Let W,X be sets and A = 2(X), the set of finite

subsets of X.

Definition 3.2.3 ([39, Definition 3.1.]). An A-gauge on W is a function φ : W ×W → A
such that:

φ(w,w′) = φ(w′, w) ∀w,w′ ∈W

φ(w,w′′) ⊂ φ(w,w′) ∪ φ(w′, w′′) ∀w,w′, w′′ ∈W.

If W is a group then φ is called left invariant if φ(ww′, ww′′) = φ(w′, w′′) for all w,w′, w′′ ∈
W .

Theorem 3.2.4 ([39, Theorem 4.2]). Let X,W be sets, A = 2(X). Let φ be an A-gauge

on W and assume that φ(w,w) = ∅ for all w ∈ W . Let (X,µ) be a measured wall structure.

Then there is a naturally defined measure µ̃ on 2W×X such that (W ×X, µ̃) is a measured wall

structure with corresponding pseudometric

dµ̃(w1x1, w2x2) = µ ({A ∈ A : A ` φ(w1, w2) ∪ {x1, x2}}) .
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A consequence of this theorem is that if X,Y, Z are metric spaces where X has a fixed point

x0 ∈ X then Supp(f−1g) is an A-gauge on
⊕

Z X, where A = 2(Z). Hence if Z has a measured

wall structure there exists a lifted measured wall structure on
⊕

Z X × Z.

3.3. Coarse embeddings of wreath products

Definition 3.3.1. We say that a metric space X has C-bounded geometry for some C > 0,

if there exists a constant N(C) > 0 such that |B(x,C)| ≤ N(C) for all x ∈ X. A metric space

has bounded geometry if it has C-bounded geometry for every C > 0.

Example 3.3.2. Note that C-bounded geometry for some C does not in general imply

bounded geometry. As an easy example, one can consider an infinite metric space equipped

with the discrete metric, i.e. d(x, y) = 1 for every x, y ∈ X distinct.

Definition 3.3.3. [122, Definition 1.2.] Let Y and Z be metric spaces. A map p : Y → Z

has the C-coarse path lifting property if there exists C > 0 and a non-decreasing function

θ : R+ → R+, such that for any z, z′ ∈ Z and y ∈ Y with dZ(p(y), z) ≤ C there exists y′ ∈ Y
such that dZ(p(y′), z′) ≤ C and dY (y, y′) ≤ θ(dZ(z, z′)).

Example 3.3.4. The path lifting property occurs naturally in the setting of groups. Let

Y = H be a group and let N / H be a normal subgroup. The most natural way of defining

a distance function on Z := H/N is by setting d(hN, h′N) to be the infimum of d(hn, h′n′)

over all n, n′ ∈ N . The projection map p : H → H/N is a bornologous map and one checks

easily that it satisfies the coarse path lifting property. Actually, one only needs the fact that

N is “almost normal” in H, i.e. that for every finite subset F of H, there exists a finite subset

F ′ ⊂ H with NF ⊂ F ′N .

For each R > 0 there exists a finite subset FR of H such that NB(1, R) ⊂ FRN . Set

θ : R 7→ max {d(e, f) : f ∈ FR}. Then d(xN, yN) ≤ R if and only if x−1y ∈ NB(1, R)N and

so as N is almost normal it follows that x−1y ∈ FR. Hence the quotient map has the coarse

path lifting property.

Another example can be obtained by taking Z to be the set of right N -cosets of H, where

N is any (not necessarily normal) subgroup of H. In this case, the projection map p : H →
N\H, g 7→ Ng is a bornologous map that has the coarse path lifting property.

Theorem 3.3.5. Let X,Y, Z be metric spaces and p : Y → Z be a C-dense bornologous map

with the C ′-coarse path lifting property where C ≤ C ′. Let θ : R+ → R+ be a non-decreasing

function satisfying the properties in Definition 3.3.3. Assume that Y is uniformly discrete and

that Z has C-bounded geometry. If X,Y, Z are coarsely embeddable into an L1-space, then so

is X oCZ Y .

Remark 3.3.6. Observe that, by Proposition 3.2.2, the conclusion of the theorem also implies

Lp-embeddability of X oZ Y for any p ≥ 1. On the other hand, it is known that Lp embeds

isometrically into L1 for 1 ≤ p ≤ 2. Hence in the formulation of Theorem 3.3.5, we can just as

well replace L1-embeddability by Lp-embeddability for 1 ≤ p ≤ 2.
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Proof. By Proposition 3.2.2, there exists measured wall structures (X,σ), (Y, ν), (Z, µ) and

functions ρX , ρY , ρZ , ηX , ηY , ηZ : R+ → R+ increasing to infinity, such that

ρX(dX(x1, x2)) ≤ dσ(x1, x2) ≤ ηX(dX(x1, x2)) ∀x1, x2 ∈ X(4)

ρY (dY (y1, y2)) ≤ dν(y1, y2) ≤ ηY (dY (y1, y2)) ∀y1, y2 ∈ Y(5)

ρZ(dZ(z1, z2)) ≤ dµ(z1, z2) ≤ ηZ(dZ(z1, z2)) ∀z1, z2 ∈ Z.(6)

By Theorem 3.2.4, there exists a measured wall structure µ̃ on
⊕

Z X×Z where for (f , z), (g, z′) ∈⊕
Z X × Z

dµ̃((f , z), (g, z′)) = µ({A : A ` Supp(f−1g) ∪ {z, z′}}).

We have a projection map p :
⊕

Z X ×Y →
⊕

Z X ×Z where (f , y) 7→ (f , p(y)). Using this we

can pullback a measured wall structure on
⊕

Z X × Y where

dpµ̃((f , y), (g, y′)) = dµ̃((f , p(y)), (g, p(y′)))

We define three other wall structures, σ̃, ν̃ and ω̃, on X oZ Y where

dσ̃((f , y), (g, y′)) =
∑
z∈Z

dσ(f(z),g(z)),

dν̃((f , y), (g, y′)) = dν(y, y′),

dω̃((f , y), (g, y′)) =|Supp(f−1g)|.

It is clear from our comments in Section 3.2 that σ̃ and ν̃ are indeed wall space structures.

Observe that dω̃ is associated to the map Λ :
⊕

Z X × Y → `1(X × Z), where

Λ(f , y) : (x, z) 7→

1/2 if f(z) = x

0 if otherwise

and ‖Λ(f , y) − Λ(g, y′)‖1 = |Supp(f−1g)| = dω̃((f , y), (g, y′)). We now aim to show that we

can coarsely embed X oZ Y into an L1-space. Define λ = pµ̃+ σ̃+ ν̃ + ω̃ to be a measured wall

space structure on X oZ Y . By Proposition 3.2.2, it suffices to show that for every R > 0 if

dλ((f , y), (g, y′)) ≤ R then dXoZY ((f , y), (g, y′)) ≤ C1(R) and if dXoZY ((f , y), (g, y′)) ≤ R then

dλ((f , y), (g, y′)) ≤ C2(R) where C1, C2 are constants depending only on R. Fix R > 0 and

suppose dλ((f , y), (g, y′)) ≤ R for some (f , y), (g, y′) ∈ X oZ Y . In particular

dµ̃((f , p(y)), (g, p(y′))) ≤ R,(7) ∑
z∈Z

dσ((f(z),g(z)) ≤ R,(8)

dν(y, y′) ≤ R,(9)

|Supp(f−1g)| ≤ R.(10)

Set z0 := p(y) and write Supp(f−1g) = {z1, z2, . . . , zn} for some n ≤ R. By (7) it fol-

lows that µ(A : A ` Supp(f−1g) ∪ {p(y), p(y′)}) ≤ R. In particular dµ(a, b) ≤ R for all

a, b ∈ Supp(f−1g) ∪ {p(y), p(y′)}. By Equation (6), this implies that dZ(a, b) ≤ ρ−1
Z (R) for

all a, b ∈ Supp(f−1g) ∪ {p(y), p(y′)}. Starting from y0 = y, by the path lifting property, we

can find y1 such that dZ(p(y1), z1) ≤ C and dY (y, y1) ≤ θ(ρ−1
Z (R)). We can then find y2 with

dZ(p(y2), z2) ≤ C and dY (y1, y2) ≤ θ(ρ−1
Z (R)). Continuing inductively and by the triangle

inequality, we obtain

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y0) ≤ 2

n−1∑
i=0

θ(ρ−1
Z (R)) ≤ 2Rθ(ρ−1

Z (R)).
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Using Equation (9) and denoting y0 = y, we thus have that

(11) pathI(y, y
′) ≤

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y0) + dY (y, y′) ≤ 2Rθ(ρ−1
Z (R)) + ρ−1

Y (R).

Now we can deduce that

pathI(y, y
′) +

∑
z∈Z

dX((f(z),g(z))

≤ 2Rθ(ρ−1
Z (R)) + ρ−1

Y (R) +
∑

z∈Supp(f−1g)

ρ−1
X (R) by (4), (8) and (11)

≤ 2Rθ(ρ−1
Z (R)) + ρ−1

Y (R) +Rρ−1
X (R) by (10).

It suffices to set C1(R) = 2Rθ(ρ−1
Z (R)) + ρ−1

Y (R) + Rρ−1
X (R). Now suppose conversely that

dXoZY ((f , y), (g, y′)) ≤ R. In particular

pathI(y, y
′) ≤ R(12) ∑

z∈Z
dX(f(z), g(z)) ≤ R.(13)

Let (y1, . . . , yn) ∈ PI such that

(14) dY (y, y1) +

n−1∑
i=1

dY (yi, yi+1) + dY (yn, y
′) ≤ R+ 1.

As Y is uniformly discrete, we have δY := inf(d(a, b) | a, b ∈ Y ) > 0. This implies that,

although some of the yi may be equal, the number of distinct yi is bounded by R+1
δY

. Any

point in the support of f−1g lies, by definition, in a C-neighbourhood of some p(yi). As such

neighbourhoods contain at most N(C) elements, we can conclude that

(15) n = |Supp(f−1g)| ≤ E(R) := N(C)
R+ 1

δY
.

From Equation (14) and the triangle inequality, it follows that

(16) dY (a, b) ≤ R+ 1 ∀a, b ∈ {y, y′, y1, . . . , yn} .

As p is bornologous, there exists S = S(R+1) such that for all z, z′ ∈ {p(y), p(y′), p(y1), . . . , p(yn)},
we have dZ(z, z′) ≤ S . By definition of (y1, . . . , yn) and the triangle inequality it follows that

dZ(z, z′) ≤ S + 2C for every z, z′ ∈ Supp(f−1g) ∪ {p(y), p(y′)}. By (6) it follows that

(17) dµ(z, z′) ≤ ηZ(S + 2C) ∀z, z′ ∈ Supp(f−1g) ∪ {p(y), p(y′)} .

Let us enumerate Supp(f−1g) t {p(y), p(y′)} = {p(y) = z0, z1, . . . , zn+1 = p(y′)}. Note that, if

A cuts Supp(f−1g) ∪ {p(y), p(y′)}, then A must cut {zi, zi+1} for some i ∈ {0, 1, . . . ,m − 1}.
Hence dpµ̃((f , y), (g, y′)) ≤

∑n
i=0 dµ(zi, zi+1). It now follows that

dλ((f , y), (g, y′)) =(dν̃ + dpµ̃ + dσ̃ + dω̃)((f , y), (g, y′))

≤ dν(y, y′) +

n∑
i=0

dµ(zi, zi+1) +
∑
z∈Z

dσ(f(z),g(z)) + dω̃((f , y), (g, y′))

≤ ηY (R) +

n∑
i=0

ηZ(S + 2C) +
∑
z∈Z

ηX(R) + E(R) by (5), (13), (17), (15)

≤ ηY (R) + E(R)ηZ(S + 2C) + E(R)ηX(R) + E(R).
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Hence, it suffices to set C2(R) := ηY (R) + E(R)(ηZ(S + 2C) + ηX(R) + 1). This shows by

Proposition 3.2.2 that X oZ Y embeds coarsely into an Lp-space. �

Remark 3.3.7. The only time that we used the conditions Y is uniformly discrete was to show

that Equations (12) and (13) imply that |Supp(f−1g)| is bounded by some function of R. One

checks easily that this condition can be replaced by Y has bounded geometry. Alternatively,

it would also be sufficient to require nothing on Y and Z but to ask that X is a uniformly

discrete metric space.

3.4. The compression of X oZ Y

We can modify the previous proof to give information on the L1-compression of X oZ Y in

terms of the growth behaviour of θ and the L1-compression of X,Y and Z.

Definition 3.4.1. Let Y and Z be metric spaces and let p : Y → Z be a C-dense map with

the coarse path lifting property with respect to a non-decreasing function θ : R+ → R+. If

δ > 0 is such that θ(r) . rδ + 1 for every r ∈ R+, then we say that p has the δ-polynomial path

lifting property.

Here, . denotes inequality up to a multiplicative constant.

Theorem 3.4.2. Let X,Y, Z be metric spaces as in Theorem 3.3.5 and p : Y → Z a C-dense

large-scale Lipschitz map. If p has the δ-polynomial path lifting property for some δ > 0 then

α1(X oCZ Y ) ≥ min

(
α1(X), α1(Y ),

α1(Z)

α1(Z) + δ

)
Remark 3.4.3. Our bound generalizes the bound of Theorem 1.1 in [80], which covers the

cases when X and Y are finitely generated groups and Z = Y . Observe that, as both X and

Y can be considered as metric subspaces of X oZ Y , one also has an upper bound, namely

min(α, β), for the compression of X oZ Y .

Proof. Assume that there are constants a, b > 0 such that dZ(p(y), p(y′)) ≤ adY (y, y′) + b

for every y, y′ ∈ Y .The starting point for this proof is the proof of Theorem 3.3.5 and we will

often refer to inequalities stated there. For now, assume that α, β, γ are real numbers and that

f1 : X → L1, f2 : X → L1 and f3 : Z → L1 are large scale Lipschitz functions into L1-spaces

such that

dX(x, x′)α . ‖f1(x)− f1(x′)‖1

dY (y, y′)β . ‖f2(y)− f2(y′)‖1

dZ(z, z′)γ . ‖f3(z)− f3(z′)‖1.

Let dσ, dν , and dµ be the measured wall space structures associated to the functions f1, f2, f3

by Proposition 3.2.2. Define the measured wall dpµ̃, dµ̃, dσ̃, dω̃ on X oZ Y as in Theorem 3.3.5.

As a first step, we are going to show that the function associated to the measured wall dλ =

dpµ̃ + dµ̃ + dσ̃ + dω̃ is Lipschitz. That is, there is a constant C̃ ∈ R such that for every

(f , y), (g, y′) ∈ X oZ Y ,

dλ((f , y), (g, y′)) ≤ C̃dXoZY ((f , y), (g, y′)).

By Equation (15), it follows that dω̃ corresponds to a large-scale Lipschitz function if Y is

uniformly discrete and Z has C-bounded geometry. Starting from Equation (12) and (13), one

can easily show the same fact using only uniform discreteness of X.
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As dν and dσ both correspond to large scale Lipschitz functions, this implies that so does

dν̃ + dσ̃:

dν̃((f , y), (g, y′)) + dσ̃((f , y), (g, y′)) = dν(y, y′) +
∑
z∈Z

dσ(f(z),g(z))

. dY (y, y′) + 1 +
∑
z∈Z

dX(f(z),g(z)) + dω̃((f , y), (g, y′)) . dXoZY ((f , y), (g, y′)) + 1.

It thus remains to show that dpµ̃ corresponds to a Lipschitz function. Denote y0 = y, yn+1 = y′

and choose (y1, . . . , yn) ∈ PI such that

pathI(y, y
′) ≤

n∑
i=0

dY (yi, yi+1) ≤ pathI(y, y
′) + 1.

Write z0 = p(y), zn+1 = p(y′) and enumerate the elements of Supp(f−1g) as {z1, z2, . . . , zn}
where each zi lies in a C-ball around p(yi). As p is bornologous, we have that dZ(zi, zi+1) ≤
2C + ad(yi, yi+1) + b for each i. Hence,

dpµ̃((f , y), (g, y′)) ≤
n∑
i=0

dµ(zi, zi+1) .
n∑
i=0

dZ(zi, zi+1) + dω̃((f , y), (g, y′))

≤ n(2C+b)+a

n∑
i=0

dY (yi, yi+1)+dω̃((f , y), (g, y′)) = dω̃((f , y), (g, y′))(2C+b+1)+a

n∑
i=0

dY (yi, yi+1)

≤ dω̃((f , y), (g, y′))(2C + b+ 1) + a+ a pathI(y, y
′) . dXoZY ((f , y), (g, y′)) + 1,

where we use that dω̃ corresponds to a large-scale Lipschitz function. We conclude that dλ is

associated to a large scale Lipschitz map of X oZ Y into an L1-space.

As a second step, we calculate the compression of dλ. Assume first that dλ((f , y), (g, y′)) ≤ R
for some R > 0 such that Equations (7), (8), (9) and (10) are valid. Enumerate the elements

of Supp(f−1g), say z1, z2, . . . , zn. Set z0 = p(y). Denote y0 = y, then use the path lifting

property to take y1 such that dZ(p(y1), z1) < C and d(y0, y1) ≤ ad(z0, z1)δ + b. Next, take y2

such that dZ(p(y2), z2) < C and such that d(y1, y2) ≤ adZ(z1, z2)δ+b and so on. By definition,

we have

pathI(y, y
′) ≤ (

n−1∑
i=0

dY (yi, yi+1)) + dY (yn, y
′).

We now obtain

pathI(y, y
′) ≤

n−1∑
i=0

dY (yi, yi+1) + dY (yn, y
′) .

n−1∑
i=0

dY (yi, yi+1) + dY (y, y′)

.
n−1∑
i=0

(dZ(zi, zi+1)δ + 1) + dY (y, y′) . R+

n−1∑
i=0

dZ(zi, zi+1)δ + dν(y, y′)1/β

≤ R+

n−1∑
i=0

dZ(zi, zi+1)δ +R1/β . R+

n−1∑
i=0

dµ(zi, zi+1)δ/γ +R1/β . R+RRδ/γ +R1/β ,

where the last inequality follows from the fact that

dµ(zi, zi+1) ≤ dpµ̃((f , y), (g, y′)) ≤ R.



The compression of X oZ Y 45

Consequently, we obtain

dXoZY ((f , y), (g, y′)) = pathI(y, y
′)+
∑
z∈Z

dX(f(z), g(z)) . R
δ
γ+1+R1/β+

∑
z∈Z

dσ(f(z), g(z))1/α

. R
δ+γ
γ +R1/β + (

∑
z∈Z

dσ(f(z), g(z)))1/α . RX ,

where X = max( δ+γγ , 1
α ,

1
β ). Consequently, the compression of dλ, and hence of X oZ Y is

bounded from below by

min

(
α, β,

γ

δ + γ

)
. �

Remark 3.4.4. At the end of Section 2 in [80], the author shows that the Lp-compression

α∗p(X) of a metric space X is always greater than max( 1
2 ,

1
p )α∗1(X). Moreover, Lp embeds

isometrically into L1 for any p ∈ [1, 2]. So, for p ∈ [1, 2], we deduce that the positivity of

the Lp-compression is preserved under generalized wreath products with the polynomial path

lifting property.





CHAPTER 4

Exactness of locally compact groups

In this chapter we show that exactness of a locally compact second countable group is

equivalent to amenability at infinity. First we need revise some preliminaries.

Given a Hilbert space H, the space of unitaries U(H) with the operator norm topology

forms a topological group. However this topology is usually too strong, for example the left

regular representation λ : G→ U(H), where λg(ξ)(h) = ξ(g−1h) is only a continuous function

when when G is discrete. Fortunately the representation is continuous in the strong operator

topology. That is a net (Uλ)λ∈Λ ⊂ U(H) converges to U in U(H) if and only if Uλ(ξ)→ Uλ(ξ)

for all ξ ∈ H. When we consider unitary representations of groups we will assume they are

continuous with respect to the strong operator topology.

SupposeG is a locally compact second countable group with a fixed Haar measure µ and let A

be a C∗-algebra where π : A→ B(H) is a non-degenerate representation. Suppose f ∈ Cc(G,A)

and U : G→ U(H) be a unitary representation of G. We want to make sense out of the integrals

(∗)
∫
G

π(f(s))Us dµ(s) ∈ B(H).

4.1. Von Neumann algebras

There is an enormous amount of research into von Neumann algebras however in this section

we shall only introduce the results we shall be using in Section 4.6. We refer the reader to

[112, Chapter IV] and [88, Chapter 4] for introductory texts.

For a Banach space E, the dual space of E is the space of all continuous linear functionals

on E. We denote this space by E∗. It is a well known fact that E can isometrically embed

into E∗∗, the double dual of E.

Definition 4.1.1. Let H be a Hilbert space and let A be a ∗-subalgebra of B(H). If A is

strongly closed then we call A a von Neumann algebra.

Since the strong topology is weaker than the norm topology it follows that every von Neu-

mann algebra is a C∗-algebra. One example of a von Neumann algebra is the space of bounded

linear operators on a Hilbert space. The intersection of a family of von Neumann algebras is

a von Neumann algebra [88, pp 117]. Thus for any set C ⊂ B(H) there is the smallest von

Neumann algebra that contains C. We call this the von Neumann algebra generated by C.

Theorem 4.1.2. [88, Theorem 4.2.9.] Let A be a von Neumann algebra on a Hilbert space

H. Then there exists a Banach space A∗ such that (A∗)
∗ is linearly isometrically isomorphic

to A.

We shall call A∗ the pre-dual of A. One useful construction we shall be using is the tensor

product of von Neumann algebras. Given two vector spaces X and Y we denote their algebraic

tensor product by X � Y .
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Definition 4.1.3. Let H, K be Hilbert spaces. The tensor product of H and K is the

completion of H�K with respect to the inner product

〈
∑
i

hi ⊗ ki,
∑
j

h′j ⊗ k′j〉 =
∑
i,j

〈hi, h′j〉〈ki, k′j〉.

We denote this completion by H⊗K.

Proposition 4.1.4. [23, Proposition 3.2.3.] If S ∈ B(H) and T ∈ B(K) then there exists a

unique linear operator S ⊗ T ∈ B(H⊗K) such that

S ⊗ T (v ⊗ w) = Sv ⊗ Tw

for all v ∈ H, w ∈ K. Moreover ‖S ⊗ T‖ = ‖S‖‖T‖.

As a consequence there is a natural injective ∗-homomorphism B(H)� B(K) → B(H⊗K).

Indeed we can identify B(H) with B(H)� C1 ⊂ B(H⊗K).

Definition 4.1.5. Let A and B be von Neumann algebras on H and K respectively. The

von Neumann algebra on H⊗K generated by a⊗ b, a ∈ A, b ∈ B is called the von Neumann

tensor product of A and B. This is denoted by A⊗̄B.

Proposition 4.1.6 ([112, Chapter 4, Proposition 1.6.]). Let H and K be Hilbert spaces.

Then B(H)⊗̄B(K) = B(H⊗K)

4.2. Bochner integral

Let G be a locally compact group and E a Banach space. Let Cc(G, ) be the space of

continuous, compactly supported functions on G with values in E. We now introduce the

inductive limit topology on Cc(G,E). For each compact subset K ⊂ G, let CK(G,E) de-

note the space of continuous functions with support contained in K. Indeed Cc(G,E) =⋃
{CK(G,E) : K ⊂ G is compact}

Proposition 4.2.1 ([126, Proposition D.7.]). There exists a topology on Cc(G,E) such

that

(1) Cc(G,E) is a locally convex topological vector space.

(2) For all compact subsets K ⊂ G, the inclusions ιK : CK(G,E) ↪→ Cc(G,E) are home-

omorphisms onto their images, when CK(G,E) is equipped with the supremum norm.

(3) For any locally convex topological vector space M and any linear map F : Cc(G,E)→
M , F is continuous if and only if F ◦ ιK : CK(G,E) → M is continuous for all

compact subsets K ⊂ G.

Proof (Sketch). For each K ⊂ G, let TK(0) be a neighbourhood basis of the identity of

CK(G,E). We define a neighbourhood basis of the identity T (0) of Cc(G,E) where

T (0) = {X ⊂ Cc(G,E) : X is convex and X ∩ CK(G,E) ∈ TK(0) for all compact K ⊂ G} .
�

We call this topology the inductive limit topology. We say that a net (fλ)λ∈Λ is eventually

compactly supported if there exists a compact set K0 and an index λ0 ∈ Λ such that Supp(fλ) ⊂
K0 for all λ ≥ λ0. This means that a net (fλ)λ∈Λ of eventually compactly supported functions

converges to f in the inductive limit topology if and only if the net converges to f uniformly.

This is because the inclusion functions are homeomorphisms onto their image and there exists

a compact K ⊂ G such that for all λ ≥ λ0, fλ ∈ CK(G,E).
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Proposition 4.2.2. Let M be a locally convex topological vector space and let F : Cc(G)→
M be a linear map. Then F is continuous if and only if F maps eventually compactly supported

convergent nets to convergent nets in M .

Proof (Sketch). Suppose fλ → f in CK(G,E). Indeed ιK(fλ)→ ιK(f) in the inductive limit

topology and is eventually compactly supported. Hence F (ιK(fλ))→ F (ιK(f)) and so F ◦ ιK
is continuous for all compact subsets K ⊂ G. By the previous proposition this is enough. �

There is a natural inclusion of Cc(G) � E into Cc(G,E) where z ⊗ a maps to the function

s 7→ z(s)a.

Lemma 4.2.3 ([126, Lemma 1.87.]). Suppose E0 is a dense subset of a Banach space E.

Then the span of elements z⊗a ∈ Cc(G)�E where z ∈ Cc(G) and a ∈ E0 is dense in Cc(G,E)

with the inductive limit topology.

Proof (Sketch). In fact we show a stronger result: for each f ∈ Cc(G,E) there exists a

compact K ⊂ G such that for all small enough ε > 0 there exist g ∈ CK(G) � E0 such that

‖f − g‖∞ < ε.

Let W be a fixed compact symmetric neighbourhood of the identity. If ε > 0 then choose a

symmetric open neighbourhood of the identity V ⊂ W such that ‖f(s)− f(r)‖ < ε whenever

s−1r ∈ V . Choose s1, . . . , sn ∈ Supp(f) such that Supp(f) ⊂ ∪ni=1siV . This means that

Supp(f)c ∪ s1V ∪ · · · ∪ snV is an open cover of G and so choose a partition of unity {zi}ni=0

such that Supp(z0) ⊂ Supp(f)c and Supp(zi) ⊂ siV for all i = 1, . . . , n. For each si, choose

xi ∈ E0 such that ‖f(si)−xi‖ < ε/2. Now set g =
∑n
i=1 zi⊗xi. It follows that g is compactly

supported as Supp(g) ⊂ KW , and for all r ∈ G,

‖f(r)− g(r)‖ ≤
n∑
i=1

zi(r)‖f(r)− xi‖ ≤
n∑
i=1

zi(r)‖f(r)− f(si)‖+

n∑
i=1

zi(r)‖f(si)− xi‖ ≤ ε. �

Let H be a Hilbert space and set L2(G,H) =
{
f : G→ H |

∫
G
‖f(s)‖2H <∞

}
. For f ∈

L2(G,H) we will usually use the notation fg for f(g) ∈ H. This is a Hilbert space under

the inner product 〈f, g〉 =
∫
G
〈f(h), g(h)〉H dµ(h) for all f, g ∈ L2(G,H). We can also form

L2(G)⊗H, which is a Hilbert space under the inner product 〈ξ ⊗ v, η ⊗ v′〉 = 〈ξ, η〉〈v, v′〉 for

all ξ, η ∈ L2(G) and v, v′ ∈ H. Observe that ‖z ⊗ a‖ is equal to the norm of the function

s 7→ z(s)a.

Corollary 4.2.4. The inclusion of Cc(G)�H into Cc(G,H) extends to an isometric linear

isomorphism from L2(G)⊗H to L2(G,H).

Proof. It is clear that Cc(G) � H is dense inside L2(G) ⊗ H and Cc(G,H) is dense inside

L2(G,H). It suffices to show that Cc(G) � H is dense inside Cc(G,H) with respect to the

inner product on L2(G,H). If f ∈ Cc(G,H) then by the previous proposition there exists an

eventually compactly supported net (fλ)λ∈Λ such that fλ → f uniformly. Hence there exists

K ⊂ G and λ0 ∈ Λ such that Supp(fλ) ∪ Supp(f) ⊂ K for all λ ≥ λ0. If ε > 0 then choose

λ ≥ λ0 large enough so that ‖fλ − f‖∞ < ε. Hence
∫
G
‖fλ(s) − f(s)‖2H dµ(s) ≤ µ(K)ε2.

Therefore Cc(G) � H is dense inside Cc(G,H) and so the operator extends to an isometric

linear isomorphism. �

For f ∈ Cc(G,E), the function s 7→ ‖f(s)‖E belongs to Cc(G). Define the L1-norm as

‖f‖1 :=

∫
G

‖f(s)‖E dµ(s).
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Proposition 4.2.5 ([126, Lemma 1.91.]). Suppose E is a Banach space and G is a locally

compact group with left Haar measure µ. Then there is a unique linear map IE : Cc(G,E)→ E

such that

(1) I(z ⊗ a) = a
∫
G
z(s) dµ(s).

(2) ‖I(f)‖E ≤ ‖f‖1.

(3) ϕ(I(f)) =
∫
G
ϕ(f(s)) dµ(s) for all ϕ ∈ E∗.

(4) If L : E → F is a bounded linear operator then L(IE(f)) = IF (L(f)), where L(f) is

the function s 7→ L(f(s)).

For f ∈ Cc(G,E) we shall write I(f) as
∫
G
f(s) dµ(s).

Proposition 4.2.6 ([126, Proposition 1.105.]). Let E be a Banach space and G a locally

compact group with a left Haar measure µ. Suppose that F ∈ Cc(G × G,E). Then the maps

s 7→
∫
G
F (s, r) dµ(r) and r 7→

∫
G
F (s, r) dµ(s) belong to Cc(G,E) and the iterated integrals∫

G

∫
G
F (s, r) dµ(r)dµ(s),

∫
G

∫
G
F (s, r) dµ(s)dµ(r) are well defined and have common value.

Definition 4.2.7. A net Ti converges strictly to T if and only if ‖TiK−TK‖ and ‖KTi−KT‖
tend to 0 for all compact operators K ∈ K(H). We denote Bs(H) to be the space of bounded

linear operators with the strict topology.

Definition 4.2.8. A net Ti converges ∗-strongly to T if and only if Ti and T ∗i converge

strongly to T and T ∗ respectively.

Proposition 4.2.9. [97, Proposition C.7.] On B(H), strict convergence implies ∗-strong

convergence. On norm bounded subsets of B(H) the strict and ∗-strong topologies coincide.

Proposition 4.2.10. [97, Corollary C.8.] Suppose U : G → U(H) is a unitary representa-

tion of G. Then U is strictly continuous.

Suppose π : A→ B(H) is a non-degenerate representation of a C∗-algebra A and let U : G→
B(H) be a unitary representation of a locally compact group G. For any function f ∈ Cc(G,A),

the function G→ B(H), s 7→ π(f(s))Us is not necessarily continuous under the operator norm

and so we can not apply Proposition 4.2.5 directly. However this does not stop us defining the

integral.

Proposition 4.2.11 ([126, Lemma 1.101]). There is a unique linear map I : Cc(G,Bs(H))→
B(H) such that

〈I(f)v, w〉 =

∫
G

〈f(s)v, w〉 dµ(s) ∀f ∈ Cc(G,Bs(H)) and ∀v, w ∈ H.

We write I(f) as
∫
G
f(s) dµ(s). If L : H → K is a linear map then L(

∫
G
f(s) dµ(s)) =∫

G
L(f(s)) dµ(s).

This uniquely defines the operator in (∗).

4.3. Cross products

Definition 4.3.1. Let (A,G, α) be a triple consisting of C∗-algebra A, a locally compact

group G, and a group homomorphism α : G→ Aut(A), g 7→ αg. The triple (A,G, α) is called

a C∗-dynamical system if for every a ∈ A the map G→ A, g 7→ αg(a) is continuous.
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Given a C∗-dynamical system (A,G, α) we can construct a Banach ∗-algebra encoding this

action. Define a convolution product and adjoint on Cc(G,A) by

f ∗α g(s) :=

∫
G

f(r)αr(g(s)) dµ(r), f∗(s) := ∆(s−1)αs(f(s−1)∗).

One can show that Cc(G,A) becomes a ∗-algebra under convolution, involution and pointwise

addition [126, Section 2.3.]. We denote the completion of Cc(G,A) with respect to the L1-

norm, ‖ · ‖1, by L1(G,A). This is a Banach ∗-algebra.

Definition 4.3.2. Let (A,G, α) be a C∗-dynamical system. A covariant representation of

(A,G, α) is a pair (π, U) where π : A → B(H) is a ∗-homomorphism and U : G → B(H) is a

unitary representation of G such that Ugπ(a)U∗g = π(αg(a)) for all g ∈ G and a ∈ A.

Definition 4.3.3. Let A be a ∗-algebra. We say that a ∗-homomorphism π : A → B(H) is

non-degenerate if the set

{π(a)h : a ∈ A and h ∈ H}

spans a dense subset of H.

Proposition 4.3.4 ([126, Proposition 2.23.]). Suppose that (π, U) is a covariant repre-

sentation of a C∗-dynamical system (A,G, α) on H. Then

π o U(f) :=

∫
G

π(f(s))Us dµ(s)

defines a ∗-homomorphism of Cc(G,A) to B(H). Furthermore ‖πoU(f)‖B(H) ≤ ‖f‖1 and πoU
is non-degenerate if π is non-degenerate. Conversely every non-degenerate ∗-homomorphism

of Cc(G,A) arises from some covariant representation.

We can complete Cc(G,A) with respect to the norm ‖f‖ := ‖π o U(f)‖B(L2(G)) and we

denote the completion by Aoπ,U,α G. On Cc(G,A) we can define a norm

‖f‖max := sup {‖π o U(f)‖ : (π, U) is a covariant representation of (A,G, α)} ∀f ∈ Cc(G,A).

This is called the maximal norm and the completion of Cc(G,A) with respect to this norm is

called maximal cross product, which is denoted by A oα G. For every C∗-dynamical system

(A,G, α) there exists a naturally associated cross product. Let π : A → B(H) be a faithful

representation of A. Define π̃ : A→ B(L2(G,H)) by

(π̃(a)f)s := π(αs−1(a))(fs)

for all f ∈ L2(G,H), s ∈ G and a ∈ A. Define a unitary representation Λ: G→ U(L2(G,H)),

(Λtf)s = ft−1s for all s, t ∈ G. It is routine to show that (π̃,Λ) is a covariant representation of

(A,G, α).

Lemma 4.3.5 ([126, Lemma 2.26.]). Let (A,G, α) be a C∗-dynamical system. If π : A→
B(H) is a faithful representation then the representation π̃ o Λ: Cc(G,A) → B(L2(G,H)) is

also a faithful.

Proposition 4.3.6 ([126, Lemma 7.8.]). Suppose π1 and π2 are two faithful representa-

tions of A. Then Aoπ̃1,Λ,α G and Aoπ̃2,Λ,α G are ∗-isomorphic.

The consequence of this is that the completion only depends on the C∗-dynamical system.

We call this completion the reduced cross product of (A,G, α) and denote the C∗-algebra by

Aoα,rG. If (A,α,G) and (B, β,G) are C∗-dynamical systems and θ : A→ B is an equivariant
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∗-homomorphism, then there is a canonical ∗-homomorphism θr : A oα,r G → B oβ,r G such

that for all f ∈ Cc(G,A), θr(f)(g) = θ(f(g)) for all g ∈ G.

Let (A,G, α) be a C∗-dynamical system and J ⊂ A a closed two sided ideal of A such that

for all αg(J) ⊂ J for all g ∈ G. In this situation α restricts to an action on J and α is well

defined on the quotient A/J which we denote by α̇. Hence (J,G, α|J) and (A/J,G, α̇) are also

C∗-dynamical systems.

Definition 4.3.7 ([75]). A locally compact group G is exact if for every C∗-dynamical

system (A,G, α) and every α-invariant closed two sided ideal J of A the sequence

0→ J oα|J,r G→ Aoα,r G→ (A/J) oα̇,r G→ 0

is exact.

Let (A,α,G) be a C∗-dynamical system and suppose π : A→ B(H) is a faithful representa-

tion. For ϕ ∈ B(L2(G))∗ we can consider ϕ as a linear functional on B(L2(G)) because ϕ also

belongs to the double dual (B(L2(G))∗)
∗∗ = B(L2(G))∗. In particular im(ϕ) ⊂ C. We denote

by SAϕ the restriction to Aoα,r G of the slice map ϕ⊗̄idB(H) : B(L2(G))⊗̄B(H)→ B(H). The

map ϕ⊗̄idB(H) is continuous when B(H) has the operator norm topology and B(L2(G))⊗̄B(H)

has the strong operator topology, indeed ‖ϕ⊗̄id‖ = ‖ϕ‖ [116, Proposition 12.4.4.]. We shall

refer to SAϕ as the slice map corresponding to ϕ.

Lemma 4.3.8 ([75, Lemma 2.1.]). (1) If x ∈ Aoα,r G then SAϕ (x) ∈ A.

(2) Let (A,α,G) and (B, β,G) be C∗-dynamical systems and let θ : A → B be a G-

equivariant ∗-homomorphism. Then the following diagram commutes

Aoα,r G

SAϕ
��

θr // B oβ,r G

SBϕ
��

A
θ

// B.

for all ϕ ∈ B(L2(G))∗.

Proof (Sketch). Fix ξ, η ∈ Cc(G) and define ϕ ∈ B(L2(G))∗ by ϕ(S) = 〈Sξ, η〉 for all S ∈
B(L2(G)). For T ∈ B(L2(G))⊗̄B(H), ϕ(T )⊗̄id ∈ B(H) is defined to be the unique operator

that satisfies 〈ϕ(T )⊗̄id v, v′〉 = σT (v, v′), where σT (v, v′) = 〈T (ξ ⊗ v), η ⊗ v′〉 for all v, v′ ∈ H
[116, Proposition 12.4.4.].

For f ∈ Cc(G,A), write Tf to be the operator (π̃ o Λ)(f) ∈ B(L2(G))⊗̄B(H). Hence for

h ∈ G, Tf (ξ ⊗ v)(h) =
∫
G
ξ(g−1h)π(αh−1(fg))(v) dµ(g). Therefore

(18) SAϕ (Tf ) =

∫
G

∫
G

ξ(g−1h)η(h)αh−1(fg) dµ(g)dµ(h) ∀f ∈ Cc(G,A).

For short hand write F (g, h) = ξ(g−1h)η(h)αh−1(fg). By Proposition 4.2.6, the iterated inte-

gral
∫
G

∫
G
F (g, h) dµ(g)dµ(h) belongs to A. As Cc(G,A) is norm dense in Aoα,r G and SAϕ is

continuous then SAϕ (T ) ∈ A for any T ∈ Aoα,r G.

The span of the linear functionals of the form T 7→ 〈Tξ, η〉 for some ξ, η ∈ Cc(G) is dense

in B(L2(G))∗ [112, Theorem 1.6.]. So for ϕ ∈ B(L2(G))∗ and ε > 0, there exists a sequence

ξ1, . . . , ξn, η1, . . . , ηn ∈ Cc(G) such that ‖ϕ(T ) −
∑n
i=1〈Tξn, ηn〉‖ < ε for all T ∈ B(L2(G))

with ‖T‖ ≤ 1. For short hand write the linear functional T 7→ 〈Tξ, η〉 as ωξ,η. Hence for any

T ∈ Aoα,r G, ‖SAϕ (T )−
∑n
i=1 S

ϕ
ωξi,ηi

(T )‖ ≤ ‖ϕ−
∑n
i=1 ωξi,ηi‖‖T‖ ≤ ε‖T‖. Thus SAϕ (T ) ∈ A

for all ϕ ∈ B(L2(G)) and T ∈ Aoα,r G.
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(2) follows because the diagram commutes on the dense subsets Cc(G,A) and Cc(G,B) and

the slice maps SAϕ , SBϕ are continuous. �

Proposition 4.3.9 ([75, Proposition 2.2.]). Let (A,α,G) be a C∗-dynamical system and

let J be a two-sided ideal in A such that α(G)J ⊂ J . Denote the surjection of A onto A/J by

θ and the canonical ∗-homomorphism θr : A oα,r G → (A/J) oα̇,r G. Then for T ∈ A oα,r G
the following are equivalent:

(1) T ∈ ker(θr).

(2) SAϕ (T ) ∈ J for all ϕ ∈ B(L2(G))∗.

(3) SAωξ,η (T ) ∈ J for all ξ, η ∈ Cc(G).

4.4. Left and right uniformly continuous functions on G

Let Cb(G) be the space of bounded continuous complex valued functions on G equipped with

the supremum norm ‖ · ‖∞. Let π be the faithful representation π : Cb(G)→ B(L2(G)) where

(π(f)ξ)(x) = f(x)ξ(x) for f ∈ Cb(G), ξ ∈ L2(G) and x ∈ G. Let L and R be homomorphisms

from G to Aut(Cb(G)) such that (Lgf)(x) = f(g−1x) and Rgf(x) = f(xg) for all f ∈ Cb(G)

and x, g ∈ G. A bounded continuous function f : G → C is left uniformly continuous if

‖Lgf − f‖∞ → 0 as g → 1 and right uniformly continuous if ‖Rgf − f‖∞ → 0 as g → 1. We

denote the space of bounded left (right) uniformly continuous functions by Clu(G) (respectively

Cru(G)). We denote the restriction of π to Clu(G) (Cru(G)) by πL (respectively πR).

We have the left and right regular unitary representations λ, ρ : G → U(L2(G)) where for

ξ ∈ L2(G) and g, x ∈ G, (λgξ)(x) = ξ(g−1x) and (ρgξ)(x) = ξ(xg)∆(g)1/2. It is not hard

to show that (πL, λ) and (πR, ρ) are covariant representations of the C∗-dynamical systems

(Clu(G), G, L) and (Cru(G), G,R) respectively. The aim of this section is to show that the

following ∗-isomorphisms hold

Cru(G) oπR,ρ,R G ∼= Clu(G) oπL,λ,L G ∼= Clu(G) oL,r G

Proposition 4.4.1. There exists a unitary U3 ∈ B(L2(G)) such that

U3(Cru(G) oπR,ρ,R G)U∗3 = Clu(G) oπL,λ,L G

Proof. Define a G-equivariant ∗-isomorphism ψ : Cru(G) → Clu(G) such that ψ(f)(x) =

f(x−1) for all f ∈ Cru(G) and x ∈ G. Define a unitary U3 : L2(G) → L2(G) such that

(U3ξ)(x) = ξ(x−1)∆(x−1)1/2 for all ξ ∈ L2(G) and x ∈ G. Then U3ρg = λgU3 and U3π
R(f) =

πL(ψ(f))U3 for all g ∈ G and f ∈ Cru(G). Hence this extends to a ∗-isomorphism between

Cru(G) oπR,ρ,R G and Clu(G) oπL,λ,L G �

Let 1 ⊗ πL : Clu(G) → B(L2(G,L2(G))) where [(1 ⊗ πL)(f)(ξ)]g = f(g)ξg and Λ: G →
B(L2(G,L2(G))) where [(Λhξ)]g = ξh−1g for all f ∈ Clu(G), ξ ∈ L2(G,L2(G)) and g, h ∈ G. It

is clear that (1⊗πL,Λ) is a covariant representation of the C∗-dynamical system (Clu(G), G, L).

Furthermore it is also clear that there exists a unitary U2 : L2(G)→ L2(G,L2(G)) such that

U2(Clu(G) oπL,λ,L G)U∗2 = Clu(G) o1⊗πL,Λ,L G.

Indeed fix η0 ∈ L2(G) such that ‖η0‖2 = 1 and for any ξ ∈ L2(G) define U2 : L2(G) →
L2(G,L2(G)), where (U2ξ)g(x) = ξ(g)η0(x). Thus ‖U2ξ‖2 = ‖ξ‖2, U2π

L(f) = 1 ⊗ πL(f)U2

and U2λg = ΛgU2 for all ξ ∈ L2(G), f ∈ Clu(G) and g ∈ G.
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Lemma 4.4.2. Let U∗1 : L2(G,L2(G))→ L2(G,L2(G)) be a linear map such that (U∗1 ξ)g(x) =

ξgx−1(x)∆(x−1)1/2. Then U∗1 is a unitary map and U∗1 (Clu(G)oL,rG)U1 = (Clu(G)o1⊗πL,Λ,L

G), where U1 is the adjoint of U∗1 .

Proof. This is an adaptation of the map in [23, Proposition 5.1.3.]. By changing variables

x 7→ x−1g, and the property of the modular function we have∫
G

|ξgx−1(x)|2∆(x−1) dµ(x) =

∫
G

|ξx(x−1g)|2 dµ(x).

Thus by Fubini’s theorem and left invariance of the Haar integral ‖U∗1 ξ‖22 = ‖ξ‖22.

It follows that U∗1 Λg = ΛgU
∗
1 and U∗1 π̃

L(f) = 1 ⊗ πL(f)U∗1 for all g ∈ G and f ∈ Clu(G),

where π̃L is defined after Proposition 4.3.4. �

We denote the composition U1 ◦ U2 ◦ U3 : L2(G)→ L2(G,L2(G)) and the adjoint U∗3 ◦ U∗2 ◦
U∗1 : L2(G,L2(G)) → L2(G) by U1,2,3 and U∗1,2,3 respectively. Putting this all together we

obtain the following isomorphisms.

Corollary 4.4.3.

U1,2,3(Cru(G) oπR,ρ,R G)U∗1,2,3 = Clu(G) oL,r G

4.5. Amenable actions

We will assume that all topological spaces in this section are Hausdorff. A group G acts on

a locally compact space X if there exists a homomorphism α : G → Homeo(X) such that the

map X ×G→ X, (x, s) 7→ αs(x) is continuous.

Definition 4.5.1. A locally compact group G admits a topologically amenable action on a

locally compact space X if there exists a net (mi)i∈I of weak-∗ continuous maps mi : X →
Prob(G) such that for all ε > 0 and compact sets K ×K ′ ⊂ X × G there exists J ∈ I such

that for all i ≥ J ,

sup
(x,s)∈K×K′

‖smx
i −msx

i ‖1 < ε,

where Prob(G) is the space of probability measures on G and smx
i (g) = mx

i (s−1g) for all

s, g ∈ G and x ∈ X.

We say that a locally compact group is amenable at infinity if it admits an amenable action

on a compact space. The spectrum of a C∗-algebra is the set of unitary equivalence classes

of irreducible representations of the C∗ algebra endowed with the hull kernel topology [88,

Section 5.4.]. The spectrum of Clu(G) is compact because Clu(G) is unital [88, Theorem 5.4.8].

We shall denote the spectrum by βuG and when G is discrete then βuG is the Stone–Čech

compactification of G.

Proposition 4.5.2 ([5, Proposition 3.4.]). Let G be a locally compact group. Then G is

amenable at infinity if and only if the action of G on βuG is amenable.

Examples 4.5.3. (1) An amenable group acts amenably on a point.

(2) Every discrete hyperbolic group acts amenably on its Gromov boundary [1], [23,

Theorem 5.3.15.].

(3) Every almost connected group is amenable at infinity [5, Proposition 3.3.].

Recall the definition of property A for general metric space.
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Definition 4.5.4 ([102, Definition 2.1.]). Let X be a bounded geometry proper metric

space. We say that X has property A if there exists a sequence of weak-∗ continuous maps

fn : X → Prob(X) such that

• for all n there exists an R > 0 such that Supp(fn(x)) ⊂ B(x,R),

• for each S > 0, as n→∞,

sup
d(x,y)<S

‖fn(x)− fn(y)‖1 → 0.

Theorem 4.5.5 ([5, Proposition 3.5.] [44, Theorem 2.3.]). A locally compact second

countable group has property A if and only if it acts amenably on a compact Hausdorff space.

Theorem 4.5.6 ([5, Theorem 7.2.]). If a locally compact second countable group is amenable

at infinity then it is exact.

4.6. Exactness of locally compact second countable groups

In this section we show that exactness of a locally compact second countable group is equiv-

alent to admitting an amenable action on a compact Hausdorff space. The material here is

joint work with Jacek Brodzki and Kang Li.

4.6.1. Ghost operators. We introduce an important ideal inside the uniform Roe alge-

bra.

Definition 4.6.1. Let Z be a discrete metric space with bounded geometry. An operator

T ∈ C∗u(Z) is called a ghost if Tx,y → 0 as x→∞ and y →∞. The space of all ghost operators

in C∗u(Z) forms a closed two sided ideal and is called the ghost ideal.

Clearly every finite rank operator is a ghost operator so every compact operator is a ghost.

So when do these ideals coincide?

Theorem 4.6.2 ([103, Theorem 1.3.]). Let Z be a discrete metric space with bounded

geometry. Then Z has property A if and only if all ghost operators are compact.

If Z has property A then every ghost operator is compact is an easy result [100, Proposition

11.43.]. We can show this another way. Let I be a two-side ideal in C∗u(Z) and set Fin(I) to be

the intersection of the ideal I with the space of all finite propagation operators. If G is a ghost

then Fin(〈G〉) ⊂ K(`2(Z)) [31, Theorem 3.1.]. It follows that G is compact if Z has property

A because [31, Theorem 4.4.] states that if Z has property A then Fin(I) is dense inside I.

Hence every ghost is the limit of compact operators and so is compact.

The other direction uses another characterisation of property A called operator norm local-

isation [30] [105, Theorem 4.1.] to build an operator that asymptotically has a spectral gap.

This is enough to provide a non-compact ghost operator that lives in the uniform Roe algebra.

4.6.2. Plan of proof. We plan to show that if a locally compact second countable group

G is not amenable at infinity then the following sequence

0 // C0(G) oL,r G
ι // Clu(G) oL,r G

θr // (Clu(G)/C0(G)) oL̇,r G // 0

that is not exact. The maps ι and θr are injective and surjective respectively so we will show

the sequence is not exact in the middle, i.e im ι ( ker θr.

As G is not amenable at infinity, it does not have property A by Theorem 4.5.5. This

means that some coarse lattice Z does not have property A by Theorem 1.2.6. By Theorem

4.6.2 there exists a non-compact ghost operator T ∈ C∗u(Z). We will isometrically lift T to
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Cru(G)oπR,R,ρG and map this to Clu(G)oL,rG via the unitaries in Corollary 4.4.3. By using

the slice map in Proposition 4.3.9 we shall show that this operator belongs to ker θr. The

algebra C0(G)oL,rG is ∗-isomorphic to the compact operators on L2(G,L2(G)) and since T is

non-compact, it follows that the image of the lift in Clu(G)oL,r G is also non-compact. Hence

this operator belongs to ker θr \ im ι.

In order to apply the slice map we need to make the distinction between the functions in

Clu(G) oL,r G that are in the dense subset Cc(G,Clu(G)) and the operators these functions

represent. Given a finite propagation operator in C∗u(Z) we will need to find a function T̂ ∈
Cc(G,Cru(G)) such that the image of T̂ under the representation πR o ρ : Cc(G,Cru(G)) →
B(L2(G)) is the lift of the operator T belonging to Cru(G)oπR,R,ρG ⊂ B(L2(G)). The reason

we have gone through Cru(G) oπR,R,ρ G instead of directly to Clu(G) oL,r G is because it is

easier to find this function T̂ in Cc(G,Cru(G))

4.6.3. Lifting operators from a coarse lattice. Let G be a locally compact second

countable group and Z a coarse lattice inside G. Z is uniformly discrete so fix δ > 0 such that

for all z, z′ ∈ Z, d(z, z′) > δ, whenever z 6= z′. Let ϕ be a continuous positive valued function

on G such that Supp(ϕ) ⊂ B(1, δ/2) and

‖ϕ‖22 =

∫
G

|ϕ(g)|2 dµ(g) = 1.

For z ∈ Z, set ϕz to be the function g 7→ ϕ(z−1g) for g ∈ G. This is a bump function supported

on a δ/2-neighbourhood around z. As Z is δ-uniformly discrete, each bump function ϕz has

disjoint support. In particular {ϕz : z ∈ Z} forms an orthonormal set in L2(G).

Define an operator W : `2(Z) → L2(G), δz 7→ ϕz and extend linearly. Hence for η ∈ `2(Z),

(Wη)(x) =
∑
z∈Z η(z)ϕz(x) for all x ∈ G. For ξ ∈ L2(G), W ∗ξ(z) =

∫
ξ(y)ϕz(y) dµ(y). It is

clear that W is an isometry as it sends an orthonormal basis to an orthonormal set.

Let T ∈ C∗u(Z) be a finite propagation operator and denote 〈Tδw, δz〉 by Tz,w. By left

invariance of the Haar integral we have that for x ∈ G and ξ ∈ L2(G) we have that

(WTW ∗)(ξ)(x) =

∫
G

∑
z,w∈Z

ϕz(x)ϕw(xy)Tz,wξ(xy) dµ(y).

As T has finite propagation we are only performing finitely many sums. This means we are

able to exchange the order of summation and integration without worry. For all x, y ∈ G define

a continuous function T̂y : G→ C such that

T̂y(x) =
∑
z,w∈Z

ϕz(x)ϕw(xy)Tz,w∆(y)−1/2.

The supports of ϕz are pairwise disjoint so for all x, y ∈ G, either T̂y(x) = 0 or there exists

exactly one pair z, w ∈ Z such that ϕz(x) and ϕw(xy) are non-zero. Observe z ∈ B(x, δ/2)

and w ∈ B(xy, δ/2) as the support of ϕ is contained in a ball of radius δ. The map T̂y is right

uniformly continuous and the function T̂ : G→ Cru(G), y 7→ T̂y is compactly supported. This is

because if there exists an R such that Tz,w = 0 whenever d(z, w) > R then the function y 7→ T̂y

is supported on a ball of radius R+ δ. Therefore the function T̂ belongs to Cc(G,Cru(G)).

By construction, the function T̂ is represented by the operatorWTW ∗ on B(L2(G)). In other

words the operatorWTW ∗ is the image of T̂ under the ∗-representation πRoρ : Cc(G,Cru(G))→
B(L2(G)) defined in Proposition 4.3.4 for the covariant representation (πR, ρ). Indeed for all



Exactness of locally compact second countable groups 57

ξ ∈ L2(G) and x ∈ G

(πR o ρ)(T̂ )(ξ)(x) =

∫
T̂y(x)ξ(xy)∆(y)1/2 dµ(y) = (WTW ∗)(ξ)(x).

Let ψ : Cru(G) → Clu(G) be the function ψ(f)(g) = f(g−1). We can extend this to the

function ψ : Cc(G,Cru(G)) → Cc(G,Clu(G)) where ψ(f)g = ψ(fg). By the ∗-isomorphism

in Corollary 4.4.3 it follows that ψ(T̂ ) is represented by the operator U1,2,3WTW ∗U∗1,2,3 on

B(L2(G,L2(G))). Indeed

U1,2,3WTW ∗U∗1,2,3 = U1,2,3

(∫
G

T̂yρy dµ(y)

)
U∗1,2,3 = (π̃L o Λ)(ψ(T̂ ))

where π̃L o Λ is the representation associate the reduced cross product in Proposition 4.3.6.

4.6.4. Main theorem.

Theorem 4.6.3. Let G be a locally compact second countable group that does not have prop-

erty A. Then there exists an operator in the kernel of Clu(G)oL,rG→ (Clu(G)/C0(G))oL,rG
that is non-compact.

Proof. For any operator T ∈ C∗u(Z) we shall write T̃ for the operator U1,2,3WTW ∗U∗1,2,3 ∈
Clu(G) oL,r G. We shall write Sξ,η for the slice map defined in (18) for any ξ, η ∈ Cc(G).

Let Z be a coarse lattice inside G. As G does not have property A then Z does not have

property A by Proposition 1.2.6. Hence C∗u(Z) contains a non-compact ghost operator and call

it T . Since T is non-compact, it follows that T̃ is also non-compact. This is because the lifting

map W : `2(Z)→ L2(G) is an isometry and U1,2,3 is a unitary operator and so the composition

of these operators preserves the non-compactness of T . In order to prove the statement of the

theorem it is enough to show that Sξ,η(T̃ ) belongs to C0(G) for all ξ, η ∈ Cc(G) by Proposition

4.3.9. We shall show that for any ε > 0 there exists C > 0 such that whenever |x| > C then

|Sξ,η(T̃ )(x)| < ε.

The kernel k(g, h) := ξ(g−1h)η(h) is bounded above by ‖ξ‖∞‖η‖∞ and is compactly sup-

ported, say on K1 × K2, as ξ, η are compactly supported. The modular function, the dis-

tance function and the length function are all continuous so there exists a D > 0 such that

d(g, h) + |h|+ ∆(g)−1/2 ≤ D for all (g, h) ∈ K1 ×K2.

Set ε′ to be

ε′ :=
ε

3D‖ξ‖∞‖η‖∞µ(K1)µ(K2)
.

Choose M > 0 such that if |z|, |w| > M then |Tz,w| ≤ ε′. Let T (n) be an operator of finite

propagation such that ‖T (n) − T‖ → 0 as n → ∞. The function Sξ,η : A oL,r G → A is

continuous so choose n large enough so that ‖T − T (n)‖B(H) + ‖Sξ,η(T̃ ) − Sξ,η(T̃ (n))‖∞ ≤
min(ε/3, ε′). In particular |Tz,w − T (n)

z,w| ≤ ε′ for all z, w ∈ Z.

Set C = M +D + δ/2. Hence whenever |x| > C and (g, h) ∈ K1 ×K2 it follows that

|T̂ (n)
g (x−1h−1)| = ϕz0(x−1h−1)ϕw0(x−1h−1g)|T (n)

z0,w0
|∆(g)−1/2 ≤ 2ε′D

for some (z0, w0) ∈ B(x−1h−1, δ/2)×B(x−1h−1g, δ/2). This is because |T (n)
z0,w0 | ≤ |Tz0,w0

|+ ε′

and if |x| > C then |z0|, |w0| > M . Now putting all of this together, whenever |x| > C it

follows that

|Sξ,η(T̃ )(x)| ≤ |Sξ,η(T̃ (n))(x)|+ε/3 ≤
∫
K1×K2

|k(g, h)T̂ (n)
g (x−1h−1)| dµ(g)dµ(h)+ε/3 ≤ ε �
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Corollary 4.6.4. Let G be a locally compact second countable group. Then the following

are equivalent.

(1) G has property A.

(2) G is amenable at infinity.

(3) G is exact.

(4) The following sequence

0 // C0(G) oL,r G // Clu(G) oL,r G // (Clu(G)/C0(G)) oL̇,r G // 0

is exact.

Proof. The implication (3)⇒ (4) is trivial, the equivalence (1)⇔ (2) was established in [44]

and the implication (2) ⇒ (3) is done in [5]. The above theorem is the implication (4) ⇒ (1)

as C0(G) oL,r G is isomorphic to the compact operators on L2(G,L2(G)). �

4.7. Compression of locally compact second countable groups

In this section we show that when compression of a locally compact second countable group

is strictly larger than 1/2 then it has property A. We shall use the following characterisation

of property A for locally compact second countable groups.

Theorem 4.7.1 ([44, Theorem 2.3.]). Let G be a locally compact second countable group.

Then G has property A if and only if for any compact subset K ⊂ G there exists a sequence of

positive kernels with compact width uk : G×G→ C such that

sup
(s,t)∈Tube(K)

|1− uk(s, t)| → 0 as k →∞.

Definition 4.7.2. Let (G, d) be a locally compact second countable group with a plig metric,

and let µ denote the Haar measure on G. Then we say that the metric d has exponentially

controlled growth if there exists constants α, β > 0 such that

µ(Bd(e, n)) ≤ βeαn ∀n ∈ N.

Theorem 4.7.3. [59, Theorem 5.3.] Every locally compact second countable group G has a

plig metric d such that the metric has exponentially controlled growth.

Proposition 4.7.4. [44, Proposition 3.3.] Let G be a locally compact, second countable

group. Then the following are equivalent:

(1) G admits a coarse embedding into a Hilbert space;

(2) G admits a continuous coarse embedding into a Hilbert space.

Lemma 4.7.5. Let G be a locally compact, second countable group and d a plig metric. Let

f : G→ H be a large scale Lipschitz map. Then there exists a continuous large-scale Lipschitz

map f̂ such that

Rf = Rf̂ .

Proof. In the proof of [44, Proposition 3.3.] there exists a continuous function f̂ : G→ H and

R > 0 such that

‖f(x)− f̂(x)‖H ≤ R

for all x ∈ G. Hence f̂ is large-scale Lipschitz and has the same compression as f . �
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Let G be a locally compact, second countable group. Given a measurable complex-valued

kernel k : G×G→ C define an operator Op(k) : L2(G)→ L2(G) by convolution

Op(k)ξ(x) =

∫
G

k(x, y)ξ(y) dµ(y).

Proposition 4.7.6. Under the following conditions Op(k) is a bounded operator.

(1) If k is bounded and has compact width then Op(k) is bounded.

(2) Let k be a non-negative and real-valued kernel with the property that there exists C > 0

such that ∫
G

k(s, t) dµ(s) ≤ C, for all t ∈ G, and∫
G

k(s, t) dµ(t) ≤ C, for all s ∈ G.

Then Op(k) is bounded and ‖Op(k)‖ ≤ C.

Proof. We shall only prove (1) as (2) is known as the Schur Test. We aim to show that for

all f ∈ L2(G) there exists a constant M > 0 such that ‖Op(k)f‖ ≤M‖f‖L2(G).

Suppose Supp(k) ⊂ Tube(L) where L is compact subset of G. If x ∈ G is fixed and

k(x, y) 6= 0 then y ∈ xL. Hence ‖Op(k)f‖22 =
∫
G

(∫
xL
k(x, y)f(y) dµ(y)

)2
dµ(x). Choose

K > 0 such that k(x, y) ≤ K for all x, y ∈ G. Then by the Cauchy–Schwarz inequality it fol-

lows that
∫
G

(∫
xL
k(x, y)f(y) dµ(y)

)2
dµ(x) ≤ µ(L)K2

∫
G

∫
xL
|f(y)|2 dµ(y)dµ(x). By using left

invariance of the Haar integral and Fubini’s theorem we have that
∫
G

∫
xL
|f(y)|2 dµ(y)dµ(x) =∫

L
‖f‖22 dµ(y). Hence putting this together we have that ‖Op(k)f‖22 ≤ µ(L)2K2‖f‖22. �

Theorem 4.7.7. Let G be a locally compact second countable group and d a plig metric with

exponentially controlled growth. If α2(G, d) > 1/2 then G has property A.

To prove this we will first have to prove a technical lemma. Let A be the C∗-algebra of

bounded operators on L2(G) which is the norm closure of the subalgebra of operators generated

by Op(k), where k is a bounded compact width kernel.

Let f be a large-scale Lipschitz function from a locally compact second countable group

G to a Hilbert space H such that for some 0 < ε < 1/2, d(s, t)
1+ε
2 ≤ ‖f(s) − f(t)‖H for all

x, y ∈ G. For all k ≥ 1, Define a kernel uk : G × G → R by uk(s, t) = e‖f(s)−f(t)‖k−1

. By

Schoenberg’s theorem in Theorem 1.2.23, this kernel is positive definite. In fact this kernel

satisfies the conditions in Theorem 1.2.8. As the function f is large-scale Lipschitz we have

that for some constant D, uk(s, t) ≥ eDk
−1d(s,t)2 for all s, t ∈ G. In particular for all R, ε > 0

we can chose k large enough so that |1 − ek−1d(s,t)2 | < ε whenever d(s, t) < R. However the

kernels uk do not have compact width so the plan of this theorem is to approximate the kernels

uk by positive ones with compact width. Then we would satisfy the conditions in Theorem

4.7.1 and so G would have property A.

Lemma 4.7.8. The operators Op(uk) belong to A for all k ≥ 1.

Proof. The metric has exponentially controlled growth so let α, β > 0 be constants such that

µ(B(e, n)) ≤ βeαn for all n ∈ N. Fix κ > 0. We will show that the kernel u : G × G → C
defined by u(s, t) = e−‖f(s)−f(t)‖2κ defines an element in A.

Define for n ∈ N,

kn(s, t) =

u(s, t), if d(s, t) > n

0 otherwise.
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It follows that u − kn is bounded compact width kernel so Op(u − kn) belongs to A. We will

show that ‖Op(u) − Op(u − kn)‖2 → 0 as n → ∞. Since Op(u) − Op(u − kn) = Op(kn) on

compactly supported elements of L2(G), it is enough to show that ‖Op(kn)‖ → 0 as n → ∞.

To do this we will provide a sequence Cn that converges to 0 such that
∫
G
kn(s, t) dµ(t) ≤ Cn

for all s ∈ S. Then by the Schur test, ‖Op(kn)‖ is bounded above by Cn for each n and so

converges to 0.

Fix s ∈ G and set Fm = B(s,m + 1) \ B(s,m). Now for all m ≥ 0,
∫
Fm

u(s, t) dµ(t) ≤
µ(Fm)(e−κm

1+ε

) because u(s, t) ≤ e−κm1+ε

for all t ∈ Fm. Hence for all n ∈ N,

(19)

∫
B(s,n)c

u(s, t) dµ(t) ≤ (βeα − 1)
∑
m≥n

(
βeα

eκmε

)m
.

This is because B(s, n)c = ∪m≥nFm and µ(Fm) ≤ βeαm(βeα − 1) for m ∈ N. There exists

n0 such that for all m ≥ n0, βeα ≤ eκm
ε

. This means that the sum on the right hand side

converges to 0 as n→∞. Now we are done because
∫
G
kn(s, t) dµ(t) =

∫
B(s,n)c

u(s, t) dµ(t) for

all n ∈ N and if we set Cn to equal the right hand side of (19) for all n ≥ n0 then by the Schur

test, ‖Op(kn)‖ ≤ Cn. The sequence Cn converges to 0 so Op(uk) ∈ A for all k ≥ 1. �

In fact what we can deduce from this proof is that there exists C such that ‖Op(uk)‖ ≤ C

for all k ≥ 1. Indeed for each k there exists mk such that 2βeα ≤ ekm
ε

for all m ≥ mk.

As k increases, mk decreases and so
∫
G
uk(s, t) dµ(t) ≤ µ(B(1,mk)) +

∫
B(s,mk)c

uk(s, t) dµ(t).

From our choice of mk and from the proof above we can deduced that
∫
B(s,mk)c

uk(s, t) dµ(t) ≤
βeα − 1. By the Schur test and the fact that m1 ≥ mk for all k ≥ 1, we have that ‖Op(uk)‖ ≤
µ(B(1,m1)) + βeα − 1 for all k ≥ 1.

Proof of Theorem 4.7.7. As we did in Section 2.1 we can assume the metric is uniformly

discrete. Up to a multiplicative constant we can assume there exists a function f : G → H
such that d(s, t)

1+ε
2 ≤ ‖f(s)− f(t)‖H for some ε > 0. As the kernels uk are positive definite it

follows that the operators Op(uk) are positive. Let Vk be the positive square root of Op(uk),

see [88, Theorem 2.2.1.]. By the C∗-identity and because supk≥1 ‖Op(uk)‖ <∞ we can deduce

that supk≥1 ‖Vk‖ <∞. Therefore by the previous lemma we can choose a sequence of compact

width kernels wk such that such that ‖Vk − Op(wk)‖‖Vk‖ → 0. For short hand we will write

Wk = Op(wk). Define kernels ûk by

ûk(s, t) =
1

µ(B(e, 1/k))2
〈WkχB(s,1/k),WkχB(t,1/k)〉L2(G) ∀s, t ∈ G.

We shall show that ûk are positive, have compact width and approximate uk. For short

hand we will write Bk for µ(B(e, 1/k))2 and χs,k for the function χB(s,1/k). It is a fact

that T ∗T is a positive operator for any operator T on a Hilbert space H. This means that

〈T ∗Tv, v〉 ≥ 0 for all v ∈ H. So for any s1, . . . , sn ∈ G and λ1, . . . , λn ∈ C it follows that

〈W ∗W (
∑n
i=1 λiχsi,k),

∑n
i=1 λiχsi,k〉 ≥ 0. In particular

∑n
i,j λiλj ûk(si, sj) ≥ 0 and so it is a

positive kernel.

We know that each wk have compact width so suppose for each k there exists Lk > 0 such

that if d(s, t) > Lk then wk(s, t) = 0. Then for all s, x ∈ G and k ∈ N, if d(x, s) > Lk+1/2k then∫
B(s,1/k)

wk(x, y) dµ(y) = 0. In particular, if d(s, t) > Lk + 1/k then
∫
B(s,1/k)

wk(x, y) dµ(y) ·∫
B(t,1/k)

wk(x, y) dµ(y) = 0 for all x ∈ G. Therefore 〈Wkχs,k,Wkχt,k〉 = 0 whenever d(s, t) >

Lk + 1/k and so for all k ≥ 1, the positive kernels ûk have compact width.



Compression of locally compact second countable groups 61

Now we want to show that ûk can approximate uk uniformly on compact tubes. As an

intermediate step define the kernels

vk(s, t) =
1

Bk
〈Vkχs,k, Vkχt,k〉L2(G) ∀s, t ∈ G.

By the Cauchy–Schwarz inequality and that ‖χs,k‖2 = B
1/2
k it follows that |ûk(s, t)−vk(s, t)| ≤

‖V ∗k Vk−W ∗kWk‖. Hence by the triangle inequality and that Vk is self adjoint, ‖VkVk−W ∗kWk‖ ≤
‖Vk−Wk‖(‖Vk‖+‖Wk‖) ≤ ‖Vk−Wk‖(2‖Vk‖+‖Vk−Wk‖). Hence |ûk(s, t)−vk(s, t)| converges

to 0 uniformly as k →∞.

To prove the statement of the theorem it is enough to show that for all R, ε > 0 there exists

a k0 ∈ N such that for all k ≥ k0, |uk(s, t)− vk(s, t)| < ε whenever d(s, t) ≤ R. This is because

ûk converges uniformly to vk.

As the exponential function is a convex function it follows that for all a, b > 0, |e−a−e−b| ≤
|a+ b|. In particular, as f is a large-scale Lipschitz function, |uk(s, t)− uk(x, y)| ≤ D(d(s, t) +

d(x, y))k−1 for any s, t, x, y ∈ G, where D is the Lipschitz constant for f . Fix R, ε > 0 and

choose k large enough so that D(2R + 1)k−1 < ε. Then |uk(s, t) − vk(s, t)| < ε whenever

d(s, t) < R. This is because

|uk(s, t)− vk(s, t)| ≤ 1

µ(B(e, 1/k))2

∫
B(s,1/k)

∫
B(t,1/k)

|uk(s, t)− uk(x, y)| dµ(x)dµ(y)

for all s, t ∈ G. Hence when d(s, t) ≤ R and x and y are within a ball of radius 1/k of s and t

respectively then |uk(s, t)− uk(x, y)| ≤ D(2R+ 1)k−1 < ε. �
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