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On coarse geometric properties of discrete and locally compact groups

by Christopher Cave

The reduced group C*-algebra is one place where geometric group theory and operator
theory overlap. Usually one can expect that a geometric property can be captured by this
group algebra. For example a discrete group is amenable if and only if the reduced group
C*-algebra is nuclear. In this thesis we investigate the relationship between exactness of the
reduced group C*-algebra and amenable actions on compact Hausdorff spaces (amenability at
infinity) for locally compact second countable groups. In the discrete case, it is known that a
group is amenable at infinity if and only if the reduced group C*-algebra is exact.

Amenability at infinity is known to satisfy strong topological and index type conjectures,
such as the Novikov and the coarse Baum—Connes conjecture. The Baum—Connes conjectures
serve as a unifying theme throughout this thesis and is part of the motivation to study large-
scale (or coarse) invariants of the group. Indeed one coarse invariant we study is whether a
group can coarsely embed into a Hilbert space. It was shown by G. Yu [127] and G. Skandalis,
J. Tu and G. Yu [108] that if a group can coarsely embed into a Hilbert space then the assembly
maps in the Baum—Connes conjecture are injective. It was shown by G. Yu and N. Higson and
J. Roe in [127, 67] that if a group is amenable at infinity then it can coarsely embed into a
Hilbert space.

Compression was defined to measure how close a coarse embedding is to a quasi-isometric
embedding. A lot of research has been done to calculate the precise compression value of a
group embedding into a Hilbert space. In this thesis we will study different group constructions
that preserve the positivity of the compression.

Chapter 2 is devoted to the study permanence properties of equivariant compression. In
particular we give results that control the equivariant compression of a group in terms of
properties of open subgroups whose direct limit is the group. We also study the behaviour
of equivariant compression under amalgamation of free products where the common subgroup
has finite index inside the two larger groups.

Chapter 3 is devoted to showing that coarse embeddability into a Hilbert space is preserved
over generalised metric wreath products. We show that positive Hilbert space compression is
also preserved by taking generalised metric wreath products.

Chapter 4 is devoted to the study of reduced cross products. When a group G acts on a
C*-algebra A, we can form a larger C*-algebra that encodes that action. This is called the
reduced cross product which we denote by A x, G. Indeed the reduced group C*-algebra of G
is *-isomorphic to C x, G. In this chapter we show that a locally compact second countable
group is amenable at infinity if and only if its reduced cross product preserves short exact

sequences.
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Introduction

The Baum—Connes conjecture serves as a unifying theme throughout this thesis. It is because
of this conjecture that several notions in this thesis were first introduced. In essence, the Baum—
Connes conjecture is one of the tools we have to analyse the group algebra of an infinite or
a topological group. We begin by introducing some some classical representation theory and

soon we will see the importance of the group algebra.

Representation theory

When an abstract group comes into existence the group yearns to have a concrete geometric
interpretation. This naturally gives rise to the study of representing groups as invertible oper-
ators on a vector space. For a discrete group G we can form a natural algebra called the group
algebra where elements are finite formal sums of group elements with coefficients in the field of
complex numbers. There is a nice universal property for finite groups: for any C-algebra A, if
there is a group homomorphism G — A* then this uniquely lifts to a C-algebra homomorphism
C[G] — A. This means that representation theory of the group is encoded in the C-algebra
representations of C[G].

The representation theory of finite groups first began around 100 years ago when in 1896,
F.G. Frobenius first extended the definition of characters from finite abelian groups to finite
non-abelian groups. Later he proved the very powerful correspondence between linear represen-
tations and characters. One of the first applications of representation theory was in the proof
of Burnside’s theorem: all groups of order p®q® (primes p and q) are soluble [24]. Nowadays
character tables have several applications to chemistry and molecular vibrations [20, 68]

However what can one say when the group is no longer finite, i.e. countably infinite or is
a topological group? Suppose first the group is countably infinite. We now represent the
group as unitary operators on a Hilbert space. For a group G we shall denote the collection of
equivalence classes of irreducible unitary representations by G. Given a unitary representation
U: G — U(H) of a discrete group we can uniquely extend this to a *-algebra representation of
C[G] — B(H), where B(H) is the space of bounded linear operators on the Hilbert space H.

However the image of C[G] inside B(H) is not complete and if we want to use the power
of functional analysis and operator algebras then we should really find a way to complete
this. There are two completions we have in mind: the reduced completion and the maximal
completion. Every group G acts by unitaries on ¢?(G) by extending the left multiplication
action on itself to finitely supported functions. The completion of C[G] with respect to this
«-representation is called the reduced group C*-algebra, which we denote by C*(G). The com-
pletion of C[G] with respect to the direct sum of all (cyclic) unitary representations of G is
called the mazimal group C*-algebra. When G is a toplogical group we can form continuous
analogues of C¥(G) and C*(@G) by considering completions of C..(G), the continuous compactly

supported functions on G.
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When the group is locally compact and abelian then every irreducible unitary representation
is one dimensional. This means we can identify G with the group of homomorphisms from the
group to the unit circle in C. In particular G is abelian and becomes a locally compact
group when equipped with the topology of uniform convergence on compact subsets of G. In
fact Pontrjagin’s Duality theorem shows that G and G are homeomorphic and canonically
isomorphic as groups.

Plancherel’s theorem shows that the Fourier transform F: L'(G) — Co(G) extends to
a unitary operator F: L2(G) — L%(G). As a consequence the left regular representation
is unitarily equivalent to the multiplication operator Co(G) — B(L2(G)), f Tr¢ where
(Tré)(x) = Ff(x)€(x) for all £ € LQ(é) and x € G. The Stone-Weierstrass theorem gives us
that the C*-algebras C*(G) and Cy(G) are s-isomorphic for all locally compact abelian groups
G.

When we are out of the world of locally compact abelian groups we can form the set of
irreducible unitary representations of the group and equip it with a topology that coincides
with uniform convergence on compact sets when the group is abelian. This space is usually
very badly behaved, e.g. the space is usually not Hausdorff. However we do have a better

object at our disposal to study: C(G).

Baum—Connes conjectures

Unfortunately C}(G) is not that much better behaved. For example the C*-algebra is usually
simple. Indeed if C}(G) is simple then the amenable radical (the largest normal amenable
subgroup) is trivial. One can think of simplicity as the opposite of amenability. In fact it has
been an open question for many years whether this is the only obstruction to simplicity [41,
Question 4]. Recently there has been progress in this area: for a discrete group G, C¥(G)
is simple if and only if the action of G on its Furstenberg boundary is topologically free [69,
Theorem 1.5.].

We do have algebraic topological tools to help with this algebra C(G). Indeed when G is

discrete and abelian then we have the nice isomorphism
K'(G) = K;(C(G)) = K;(C(G))

where K7 ((A?) is the topological K-theory of the compact space G. When G is no longer abelian
then we can not take KJ(G) but we can still take the K-theory of Cf(G). The idea of the

following conjecture is to find the correct object that replaces K7 (CA?) when G is not abelian.

Conjecture (Baum—Connes conjecture). The following assembly maps
(%) i K§(BG) — K;(C/(@) (j=0,1)
are isomorphisms of abelian groups.

The left hand side is the G-equivariant K-homology with compact supports and the right
hand side is K-theory of the reduced C*-algebra. The space EG is the universal example of
proper actions of G [15, Definition 1.6.]. In a lot of cases there exists simple models for EG
[15, Section 2.] which makes the left hand side usually more computable than the right hand

side. See the books [87, 119] for introductory texts to the Baum—Connes conjecture.
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The diagram below shows that the Baum—Connes conjecture is a part of several other con-
jectures from topology and functional analysis.

Baum—Connes Strong Novikov Novikov
conjecture pjmono conjecture conjecture
" epi\H/ \H/
Kaplansky—Kadison Trace Gromov—-Lawson—Rosenberg
conjecture conjecture conjecture

For a full digram of implications, statements of conjectures and references of implications
see [87, Section 7]. The current formulation of the conjecture was given in [15] but was first set
forth in a 1982 preprint of P. Baum and A. Connes [14] and was published 18 years after it was
first written. The conjecture originates in work of G. Kasparov [70] and A. Mishchenko [86]
in the Novikov conjecture, ideas of A. Connes in foliation theory [36] and P. Baum’s geometric

description of K-homology theory [16]. The following is a stronger version of the conjecture.

Conjecture (Baum—Connes conjecture with coefficients). Assume A is a separable C*-

algebra with an action of a locally compact group G. Then the following assembly maps
(xx) Wi KJ»G(EG; A) = K;j(Ax,G)
are isomorphisms of abelian groups.

In 1997, N. Higson and G. Kasparov proved that a large class of groups satisfy the Baum—
Connes conjecture with coefficients: countable groups that have the Haagerup property [65].
The Haagerup property first appeared in 1978 when U. Haagerup proved that the reduced group
C*-algebra of any non-abelian free group of finite rank has Grothendieck’s metric approximation
property [60]. Indeed a group has the Haagerup property if it can act properly and affinely on
a Hilbert space. This includes the class of amenable groups [19].

It is known that the assembly map in (%*) is an isomorphism for all discrete hyperbolic
groups. In 2003 G. Kasparov and G. Skandalsis proved injectivity [71] and in 2012, V. Lafforgue
proved surjectivity [78]. There are no known counterexamples to the Baum—Connes conjecture
but there do exist counterexamples to the Baum-Connes conjecture with coefficients [64].
One of the ways of attacking the Baum—Connes conjecture is using the coarse Baum—Connes

conjecture.

Conjecture (Coarse Baum—Connes conjecture). Let X be a proper discrete metric space

with bounded geometry. Then the following assembly maps are an isomorphism of groups:
(3 * %) Aw: KX;(X) —» K;(C*X) (:=0,1).

The conjecture was first outlined in 1993 by J. Roe [98] and precisely formulated in 1995
by N. Higson and J. Roe [66]. The right hand side is the K-theory of the Roe algebra and
the left hand side is the coarse K-homology of the space X. The right hand side is a coarse
invariant and captures the coarse geometry of the space while the left hand side captures the
local topological data of smoothened versions of X of increasing scale. The “moral” of this
conjecture is that the study of the coarse structure of the space is equivalent to studying the
topology of smoothened copies of X of increasing scale.

If a countable group, when considered as a discrete proper metric space satisfies the coarse
Baum-Connes conjecture and admits a finite complex as a classifying space then the assembly

maps in () are injective [99, Theorem 8.4.]. An important class of spaces that satisfy the coarse
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Baum—Connes conjecture are those that coarsely embed into a Hilbert space [127]. Indeed it
was M. Gromov that introduced coarse embeddability into a Hilbert space in [53] and hinted at
its importance to the Novikov conjecture in [50, Problems (4) and (5)]. In 2000, G. Yu showed
that if a discrete group coarsely embeds into a Hilbert space and admits a finite complex as a
classifying space then it satisfies the Novikov conjecture. This result was strengthened in 2002
by G. Skandalis, J. Tu and G. Yu where they showed the assembly maps (xx) are injective for
any discrete group that coarsely embeds into a Hilbert space [108, Theorem 6.1.]. In 2012,
G. Kasparov and G. Yu gave the same result for any group that coarsely embeds into ¢P(N)
for 1 <p< oo |[72].

In [127], G. Yu introduced a coarse invariant called property A. If a metric space has
property A then the space can coarsely embed into a Hilbert space and so property A gives a
criterion for coarse embeddability into a Hilbert space. In [101] J. Roe generalised this idea
to general metric spaces and in 2014, S. Deprez and K. Li extended the result of G. Skandalis,
J. Tu and G. Yu to locally compact second countable groups [44].

The following table is the current status of the Baum—Connes conjectures.

Class of groups/spaces Counterexamples
Status conjecture is true Injectivity fails Surjectivity fails
Baum—Connes | False. The class of countable | Open. B x, I' where I
conjecture with groups LHETH, which is  the  Gromov
coefficients. includes all countable monster and B is a
Haagerup groups [65, 87], particular separable
discrete hyperbolic groups I'-C*-subalgebra
[78]. of £2°(N; co (1))
[64]. The assem-
bly map in this
example is injective
(124, 125].
Baum—Connes | Open. One relator groups [17], | Open. Open.
conjecture. fundamental groups
of Haken 3-manifolds
(93, 117], groups with
property (RD) that ad-
mit proper, cocompact,
isometric action on a
strongly  bolic  metric
space [76].
Coarse Baum— | False for metric | Spaces that coarsely em- | Open. A sequence of ex-
Connes conjec- | spaces, open | bed into a Hilbert space pander graphs [64].
ture. for discrete | [127].
groups.

Coarse geometry

The right hand side of the coarse Baum—Connes conjecture is the K-theory of the Roe
algebra. This is a coarse invariant and so does not depend on the local topological structure
but the macroscopic properties of the space. This allows a lot of flexibility and gives a nice
link to the study of asymptotic behaviour of groups. The philosophy of studying asymptotic
behaviour of groups can be captured in the following quote by M. Gromov in [53]:

“To regain the geometric perspective one has to change his/her position and move the
observation point far away from I' [a finitely generated group]. Then the metric in I" seen

from the distance d becomes the original distance divided by d and for d — oo the points
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in I coalesce into a connected continuous solid unity which occupies the visual horizon

without any gaps or holes and fills our geometer’s heart with joy.”

The idea of asymptotic study of infinite groups begins with viewing a finitely generated group
as a metric space by equipping it with a word metric. The metric depends on the generating
set so we can not hope for metrics from different generating sets to be isometric. Fortunately
the metrics are quasi-isometric. This idea does not end at finitely generated groups. Every
locally compact second countable group has a proper left invariant metric that generates the
topology and any two such metrics are coarsely equivalent [59, 109]. This motivates the study
of finding coarse invariants of a group.

The first asymptotic ideas in group theory appeared in the mid-fifties in the papers by
V. Efremovic [47], E. Folner [51], and A. Svarc [111]. However the area was revolutionised in
1993 by M. Gromov’s paper [53]. In the early 50s, V. Efremovic and A. Svarc both observed
that the growth rate of the volume of balls in the universal cover of a Riemannian manifold is a
topological invariant and only depends on the fundamental group [47, 111]. In 1955, A. Svarc
applied this idea to show that the fundamental group of a compact n-dimensional manifold
can not be an abelian group of rank less than n [111]. Similar results on non-positively curved

spaces were obtained independently by J. Milnor in 1968 [85].

Amenability and amenable actions. In [51], E. Fglner gave a geometric character-
isation of amenability in terms of slow growth of boundaries of finite subsets of the group.
This automatically gives that any group with subexponential growth is amenable and that
amenability is a quasi-isometric invariant for discrete groups [38, Proposition 3.D.32.].

The story of amenability started in 1904 with H. Lebesgue where in [79] he gave a list of
properties that uniquely specified his integral on R. The only property he listed that differed
from the Riemann integral was the monotone convergence theorem. In [12], S. Banach considers

three questions all of which involve the invariance of finitely additive measures.

Question. Let M,(R) be the family of bounded Lebesgue measurable sets on R. If p is a
finitely additive positive translation invariant measure on M;(R) such that u([0,1]) = 1, does

1= X where ) is the Lebesgue measure on [0, 1]?

Question. Let G,, = R™ x O(n) be the group of isometries on R™. Does there exists a

G-invariant, finitely additive, positive measure p on P(R™), the power set of R™, such that
u([0,1]7) = 17

Question. Does there exist a finitely additive O(n + 1)-invariant, positive measure p on
My(S™) such that p(S™) =1 and pu # X\ where ) is the Lebesgue measure on S™?

The first question was raised initially by H. Lebesgue in [79]. H. Lebesgue asked if the inte-
gral was still uniquely specified if the monotone convergence theorem was dropped. S. Banach
showed that the answer to the first question is negative. He constructs such a measure on
Py(X), the family of bounded subsets of R such that

1 < oo for every bounded subset A of R.

( y

(2) f o(x =/, * (z) dz for every Riemann integrable functions ¢ on [a, b].
(

3) There exists a Lebesgue integrable function ¢ on an interval [c, d] such that

[wmmw[wmm>

where X is the Lebesgue measure on R.



6 Introduction

The second question arose out of results by F. Hausdorff in 1914 in his paper “Grundziige der
Mengenlehre” (see the collected works [61]). F. Hausdorff showed that no such measure exists
for n > 3. His line of thinking initiated the idea of paradoxical decompositions which is central
to the Banach-Tarski paradox in [13] and Tarski’s theorem on amenability in [113, 114]. For
the cases n = 1,2, S. Banach showed that such measures in the second question do exist and
this is because G; and G5 are amenable.

It was J. von Neumann in [120] that realised the cases for n = 1,2 could be generalised to
groups that carry a finitely additive, invariant, positive measure of total mass one. It was in
[120] where amenability was first defined under the German name “messbar”.

The third question is known as the Banach—Ruziewicz Problem. S. Banach showed that the
answer to this question is positive for S but left the cases n > 2 unanswered. It was not until
the 1980s when the other cases were answered. For n > 2 the answer is negative. For the cases
n > 4 the problem was solved independently by D. Sullivan [110] and G. Margulis [83]. For
the cases n = 2,3 the problem was solved by V. Drinfel’d in [46]. For an extensive survey on
this topic see A. Paterson’s book on amenability and S. Wagon’s book on the Banach—Tarski
paradox [95, 121]

The notion of amenable ergodic actions was first introduced by R. Zimmer in 1978 and has
had great influence in ergodic theory and von Neumann algebras [128]. C. Anantharaman-
Delaroche generalised the ideas in [128] and introduced an amenable group action on a von
Neumann algebra [2, 3]. In 1987 these ideas were generalised further to incorporate amenable
actions on C*-algebras and it was shown that a group acts amenably on a C*-algebra if and
only if the reduced cross product was nuclear [4]. In 2000, C. Anantharaman-Delaroche and
J. Renault extended the definition of amenability to groupoids and this encodes the definition
of a topological amenable action on a locally compact space.

In 2000, N. Higson and J. Roe showed that a discrete group acts topologically amenably on
a compact Hausdorff space (also known as amenable at infinity) if and only if the group has
G. Yu’s property A [67]. In particular amenability at infinity is a coarse invariant and satisfies
the coarse Baum—Connes conjecture and the Novikov conjecture. This result was extended to
locally compact second countable groups by S. Deprez and K. Li in 2014 [44].

In 1999, E. Kirchberg and S. Wassermann in [75] introduced a seemingly separate notion
of exact groups. For any locally compact group G, the universal cross product functor from
the category of G-C*-algebras to G-C*-algebras preserves short exact sequences. In [75] the
authors introduced the class of exact groups: the groups of which the reduced cross product
functor preserves short exact sequences. They asked whether every group is exact and in the
same paper they showed that for discrete groups, exactness of the reduced group C*-algebra is
equivalent to exactness of the group but left the question open for locally compact groups.

Amenability has a lot of characterisations in different areas of mathematics. In particular
in operator theory, a discrete group is amenable if and only if the reduced group C*-algebra
is nuclear. An analogue exists for groups that are amenable at infinity. Indeed it was proved
independently by N. Ozawa and C. Anantharaman-Delaroche that amenability at infinity for
discrete groups is characterised by exactness of the reduced group C*-algebra [5, 94]. They
left the question of equivalence open for locally compact groups.

C. Anantharaman-Delaroche in [5] showed that if a locally compact group is amenable at
infinity then the group is exact in the sense of E. Kirchberg and S. Wassermann. However
in the same paper she introduced property (W) to provide a partial converse. That is if a

locally compact group is exact and has property (W) then the group is amenable at infinity.
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Property (W) can be thought of as a weaker version of inner amenability and is satisfied by
every discrete countable group. In Chapter 4 we answer one of the questions in [5, Question
9.3.] for locally compact second countable groups and show the converse is true without the

assumption of property (W).

Theorem (Theorem 4.6.3). Let G be a locally compact second countable group that does

not have property A. Then there exists a mon-compact operator in the kernel of the natural

surjective map Ciy(G) Xpr G = (C1(G)/Co(G)) %1, G.

We have the following consequence of this result that characterises amenability at infinity

for locally compact second countable groups.

Corollary (Corollary 4.6.4). Let G be a locally compact second countable group. Then the

following are equivalent.

1
2) G is amenable at infinity.

(1) G has property A.
(2)
(3) G is exact.
(4)

4) The following sequence

0—— OO(G) ><1L,r G — CIU(G) ><1L,r G —— (Clu(G)/C()(G)> NL,T G ——0

18 exact.

Coarse embeddings into Hilbert space. We have established that coarse embeddings
into a Hilbert space have important consequences in the Baum—Connes and Novikov conjec-
tures. To establish which groups coarsely embed into a Hilbert space, it is interesting to
establish permanence properties of this class of groups. In general it is unknown whether
coarse embeddings into a Hilbert space are preserved by extensions however if the quotient
group has property A and the subgroup is coarsely embeddable then the central group can
coarsely embed [57].

In [39], the authors proved that coarse embeddability into a Hilbert space is preserved by
particular extensions. Indeed if G and H coarsely embed into a Hilbert space then G H =
@D G x H also coarsely embeds into a Hilbert space without the mention of property A. In

Chapter 3 we extend these results.

Theorem (Theorem 3.3.5). Assume X is a proper metric space with bounded geometry and
coarsely embeds into a Hilbert space. If G and H are groups that coarsely embeds into Hilbert
spaces and H acts transitively on X then Gix H =@ G x H coarsely embeds into a Hilbert

space.

In [58], E. Guentner and J. Kaminker introduce compression to measure how close a coarse
embedding is to a quasi-isometry in both an equivariant and non-equivariant sense. A lot
of research has gone into finding precise values of compression for discrete groups [8, 9, 11,
21, 40, 80, 90, 89]. In Chapter 2 we find a lower bound of the behaviour of equivariant

compression under direct limits.

Theorem (Theorem 2.1.3). Let G be a locally compact, second countable group equipped
with a proper left invariant metric d that generates the topology of G. Suppose there ezists a
sequence of open subgroups (G;)icn, each equipped with the restriction of d to G;, such that
li_n}Gi =G and a = inf{af(Gi,d)} > 0. If (Gy)ien has (a,l,q)-polynomial property, then we
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have the following two cases:
o

#
> g = >
l>q az(G,d)_% 1

or,

lgq@a?(G,d) > l-i-;%

One useful application of compression is that whenever a finitely generated group has com-
pression strictly greater than 1/2 then the group has property A [58]. Likewise when a
finitely generated group has equivariant compression strictly greater than 1/2 then the group is
amenable. In [40], the authors extend the equivariant result to all locally compact, compactly
generated groups. In section 4.7 we generalise the non-equivariant result to all locally compact

second countable groups.

Theorem (Theorem 4.7.7). Let G be a locally compact second countable group and let d be
a plig metric with exponentially controlled growth. If as(G,d) > 1/2 then G has property A.

Overview of the thesis

In Chapter 1 we introduce the language of coarse geometry and the metric properties that are
central to this thesis: property A, coarse embeddability into a Hilbert space and compression.
Near the end of the chapter we give a list of examples of groups that have property A, groups
that are coarsely embeddable into a Hilbert space and the compression of some particular
groups.

In Chapter 2 we study the behaviour of compression under direct limits. To do this we
introduce the (o, 1, ¢)-polynomial property, which measures the growth of Lipschitz constants,
and apply it to find a lower bound of the compression in terms of «, [ and q.

In Chapter 3 we show that coarse embeddability into a Hilbert space is preserved under
wreath products. Indeed we do this in a more general context than groups and we introduce the
notion of wreath products of metric spaces. We then show that this metric space construction
preserves coarse embeddability into a Hilbert space when it has the coarse path lifting property.

In Chapter 4 we prove that in the class of locally compact second countable groups, amenabil-
ity at infinity and exactness in the sense of E. Kirchberg and S. Wassermann [75] are equivalent.
This is done by presenting a sequence of algebras that fails to be exact after taking the re-
duced cross product functor whenever the group is not amenable at infinity. This is done by
using results known in the discrete case about a particular ideal of operators and lifting to the
locally compact setting. Then we use a slice map to show that these lifted operators prevents
the exactness of a particular sequence. In the last section of this chapter we generalise a result
of compression to the locally compact second countable case.

The material in Chapters 2, 3 and Section 4.7 has been submitted as the following papers:

[26] Chris Cave and Dennis Dreesen. Embeddings of locally compact hyperbolic groups
into L,-spaces. Preprint arXiv:1303.4250.

[27] Chris Cave and Dennis Dreesen. Equivariant compression of certain direct limit groups
and amalgamated free products. Preprint arXiv:1309.4636.

[28] Chris Cave and Dennis Dreesen. Embeddability of generalized wreath products. Bull.
Aust. Math. Soc, 2015, 91, 250-263

The material in Section 4.6 is currently a preprint in preparation:

[22] Jacek Brodzki, Chris Cave and Kang Li. Exactness of locally compact second count-

able groups. In preparation.



CHAPTER 1

Background

1.1. Metric Geometry

Definition 1.1.1. Let (X, d) be a metric space. A metric is proper if every bounded subset is
relatively compact. If X = G is a group then the metric is left invariant if d(gh, gh') = d(h,h’)
for all g,h,h' € G.

Definition 1.1.2. A metric space is discrete if every point is an open set. A metric space is
uniformly discrete if there exists ¢ > 0 such that B(z,0) = {z} for all z € X.

Unless stated otherwise, all discrete metric spaces are assumed to be countable.
Definition 1.1.3. Let G be a group. A map I: G — RT is a length function if it satisfies
the following conditions

(1) l{lg)=0&g=1
(2) lg)=1Ug™") Vg €G.
(3) l(gh) <l(g)+1(h) Vg,h € G.

If [ is a length function then d(x,y) := I(z71y) is a left invariant metric. If d is a left

invariant metric then I(g) := d(e, g) is a length function.

Definition 1.1.4 ([100, Definition 1.8.]). Let X and Y be metric spaces and let f: X — Y

be a map.

(1) The map f is proper if the pre-image of every bounded subset of Y is a bounded
subset of X.
(2) The map is bornologous if for every R > 0 there is S > 0 such that

d(z,2") < R=d(f(z), f(z') < S Vax,2' € X.
(3) The map f is coarse if it is proper and bornologous.

The composition of proper (bornologous or coarse) maps is proper (bornologous or coarse).

Definition 1.1.5. Two maps f, f’ from a set X to a metric space Y are close if d(f(z), f'(z))
is bounded, uniformly in x. We say two metric spaces X and Y are coarsely equivalent if there
exists coarse maps f: X — Y and ¢g: Y — X such that fog and go f are close to the identity

maps on Y and X respectively.

The fundamental example is the inclusion Z — R and the ceiling or floor map R — Z. It is

obvious that coarse equivalence is an equivalence relation among metric spaces.

Definition 1.1.6. Let X and Y be metric spaces. A function f: X — Y is a coarse embed-

ding if there exists increasing functions py : [0,00) — R such that lim;_, p+ (t) = 0o and
o (A1) < d(f(2), f&')) < pi(d(z,a')) Vool € X.

A function f: X — Y is called a coarse surjection if there exists C' > 0 such that for all y € Y
there exists x € X such that d(f(x),y)) < C.
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It is not hard to show that a function is a coarse equivalence if and only if it is a coarse
embedding and a coarse surjection. A particular class of metric spaces we shall be interested

in are those that can coarsely embed into a Hilbert space.

Definition 1.1.7. A map f: X — Y is large-scale Lipschitz if there exists constants A, B
such that d(f(z), f(z)) < Ad(z,z’) + B for all x,2’ € X. The map f is called Lipschitz if
B =0 and called a quasi-isometry if

1

Zd(m,x’) — B <d(f(z), f(z)) < Ad(z,2") + B Vz,2' € X.

If B =0 then f is called bi-Lipschitz. Two metric spaces X and Y are quasi-isometric if there

exists a coarse surjective quasi-isometry between the two.

Observe that if X is a uniformly discrete metric space then every large-scale Lipschitz map

(quasi-isometry) is a Lipschitz (bi-Lipschitz) map.

Definition 1.1.8. A discrete metric space (X, d) is called quasi-geodesic if there exists § > 0
and A > 1 such that for all z,y € X there exists a sequence x = xg, z1,...,x, =y of elements
of X such that

n

Zd(mi_l,xi) < Ad(xz,y) and d(z;,zip1) <06 foralll<i<mn.

i=1
Proposition 1.1.9 ([58, Proposition 2.9.]). Let X and Y be metric spaces and suppose
X is a quasi-geodesic space. If f: X — Y is bornologous then f is large-scale Lipschitz.

Let G be a locally compact group. A set F' generates G if the subgroup generated by F' is
equal to G. That is every element of G can be written as a word of finitely many elements in
F.

Definition 1.1.10. Let G be a group and suppose I generates G. For g € G the word length

of g relative to F' is
lglr :=inf{n: g = hihy---h, for some hy,... hy € F}.

This forms a length function on G and so defines the word metric d(z,y) := |z~ 'y relative
to F. This is the same metric as the graph metric on the Cayley graph Cay(G, F). For a
subset S C G, the Cayley graph of G with respect to S has vertices as elements of G and
two vertices g, h are connected by an edge if and only if h = gs for some s € SUS™L. It
follows that Cay(G,S) is connected if and only if S generates G and the graph metric on
Cay(G, S) is precisely the word metric on G relative to S. Clearly the word metric depends on

the generating set however the coarse equivalence class does not.

Proposition 1.1.11 ([100, Proposition 1.15.][82, ppl4—16]). Suppose G is compactly
generated and suppose d and d' are word metrics associated to compact generating sets. Then
(G,d) and (G,d") are quasi-isometric.

When G is not compactly generated, it is not obvious what metric to use. The word metric
with respect to a generating set will no longer be proper. Fortunately with the following result

we can equip all locally compact second countable groups with a sensible metric.

Theorem 1.1.12 ([109], [38, Theorem 2.B.4.]). For a locally compact group G the fol-

lowing are equivalent

(1) G is second countable.

(2) G is o-compact and first countable.
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(3) there exists a proper left invariant metric on G that generates the topology.

We shall call such metrics plig metrics.

Proof (Sketch). (1) < (2). This is well known.

(3) = (2). Any metrizable space is first countable. As the metric is proper then G is
o-compact. This is because G = UneNm and by properness m is compact.

(2) = (3). This proof is originally from [38, Theorem 2.B.4.]. Let V = (V;,)n>0 be a count-
able neighbourhood basis of the identity. As G is locally compact, it follows after relabeling
that Vp is relatively compact. As G is o-compact, G = |J,,~( Ln Where L,, are symmetric com-
pact subsets that contain the identity for all n > 0. Set K} = Lo UV, and define inductively
forn > 1, K41 = L, U (K,)3.

There exists Ag € V such that (A)® C Vp. This is because multiplication is continuous on G.
Set K_1 = AgNVj. Then (K_1)® C Ky and K_; C V;. In particular, K_; is a neighbourhood
of the identity so there exists A_; € V such that (A_1)> C K_;. Set K_5 = A_; N V. Then
(K_3)* C K_1 and K_5 C V5. We continue this procedure so that we obtain (K, ),cz so that
K, is symmetric, contain the identity, have non-empty interior and G' = U, ¢z K,,. Then define
the length function to be

k
lg| =inf ¢t €R: g=wy, - wy,, such that w,; € K,,;, and t = 22"1
j=1
By construction |-| is continuous and proper. By using an inductive argument one can show that
if |g| < 2" then g € K, for all n. If U is an open set then 21U is an open neighbourhood of the
identity for all € U. Therefore for all z € U there exists n(z) € N such that V) C 27U
As K_,, C V, for all n € N, we have that B(x,27"(®) C U for all 2 € U. Hence this metric
generates the topology on G. ]

Theorem 1.1.13 ([38, Corollary 4.A.6 (2).][59, Theorem 2.8.]). Let G be a locally
compact second countable group. Assume d and d’' are plig metrics on G. Then the identity

map (G,d) = (G,d') is a coarse equivalence.

Proof (Sketch). Each R-ball of d is compact therefore there exists Si such that Bg(1, R) C
Ba(1,Sg) for all R > 0 as d' is proper. By reversing the roles of d and d’ we have that the

identity map is a coarse equivalence. O

Observe that word metrics relative to generating sets do not usually generate the topology.
For example [—1,1] generates R but the length function is not continuous with respect to the
standard topology. However word metrics with respect to a compact generating set is coarsely
equivalent to one (hence all) plig metrics [38, Corollary 4.A.6(2).]. See [38] for an extensive

survey on metric geometry of locally compact groups.

Remark 1.1.14. Tt is important to observe that the coarse equivalence is not necessarily a
quasi-isometry. Take F.,, the free group on countably many generators. Label the generators
by (Zn)nen and define two functions Iy (x-1) = n and ly(zE!) = n?. We extend to length

n

functions on all of Fo, by setting
li(g) == Li(wy)) + -+ li(ayf) fori=1,2

where g = 2§ - 2% and ¢; = £1. The metrics di(z,y) := l1(z~'y) and da(z,y) = l2(z"'y)
are proper and left invariant but not quasi-isometric because for all constants A, B > 0 there

exists n € N such that n? > An + B. However these metrics are coarsely equivalent.
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Definition 1.1.15. A discrete metric space (X, d) has bounded geometry if for all R > 0
there exists Ng such that |B(x, R)| < Ng for all x € X.

Definition 1.1.16. A general metric space (i.e. not necessarily discrete) has bounded geom-

etry if it is coarsely equivalent to a discrete metric space with bounded geometry.

If a metric space is coarsely equivalent to a uniformly discrete metric space with bounded
geometry then we call the image of the discrete metric space under the coarse equivalence a

coarse lattice.

Proposition 1.1.17 ([59, Lemma 3.3.]). Every locally compact second countable group
equipped with a plig metric is coarsely equivalent to a uniformly discrete space with bounded

geometry.

Proof (Sketch). This proof is originally from [59, Lemma 3.3.]. Choose a maximal family of
elements Z = {z;},cy such that d(z;,z;) > 1. Therefore G = J;cy B(2:,1) and so the metric
space (G, d) is coarsely equivalence to Z when equipped with the subspace metric from G.
Fix R>0and 20 € Z. Then }_ g, r)nz M(B(2,1/2)) < p(z, R+ 1/2), because the sets
B(z,1/2) and B(z’,1/2) are disjoint for any two distinct points. Hence by left invariance of
the Haar measure, |B(z, R) N Z| < u(l, R+ 1/2)/u(B(1,1/2)) for any z € Z. Hence Z has
bounded geometry. O

1.2. Some metric geometry properties

1.2.1. Property A. A kernel on a set X is a function k: X x X — C (or R). Usually
one can think of k as an infinite X x X matrix and k(z,y) is the value at the z-th row and

y-th column.

Definition 1.2.1. Let X be a set. A kernel of positive type is a function k: X x X — C
such that for all finite sequences z1,...,z, € X and A1,..., A\, € C,

Z /\Z)\Tk(mz,mj) Z 0.

i,j=1
Definition 1.2.2. Let X be a set. A kernel of negative type is a function k: X x X — R
such that for all finite sequences x1,...,z, € X and A1,..., A, € R such that Z;;l A =0,

i,j=1

We say a kernel is self-adjoint (or symmetric if real valued) if k(z,y) = k(y,x) for all
z,y € X. We say a positive (negative) type kernel is normalised if k(z,z) = 1 (k(z,z) = 0)
for all x € X. For a group G a function ¢: G — C is of positive type (or negative type) if the
kernel k(g, h) := (g~ 1h) is of positive type (respectively negative type).

For a locally compact, o-compact space X (e.g. a space with bounded geometry), de-
note the space of regular Borel probability measures by Prob(X). The space Prob(X) can
be identified with the space of all positive linear functionals on Cp(X) with norm 1 [104,
Theorem 6.19.]. For a fixed positive regular Borel measure p we can identify Prob(X) =
{fe L (X,p):|Ifl1=1and f >0} [35, Proposition 7.3.8.]. So Prob(X) comes with two
topologies, the norm and the weak-*x topology. When X = G is a locally compact second
countable group then we will use a fixed Haar measure u. Recall the following characterisa-

tions of amenability.
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Definition and Theorem 1.2.3 ([95, Theorem 4.4.], [18, Theorem G.3.2.]). Let G

be a locally compact group. Then the following are equivalent

(1) for all compact subsets K C G and € > 0 there exists f € Prob(G) such that
sup flg- f — fllhh <«
geK

where g - f(h) = f(g~th) for all g,h € G.

(2) The trivial representation is weakly contained in the left regular representation A\: G —
L?*(G). That is for all compact subsets K C G and € > 0 there exists unit vectors
¢ € L*(G) such that

sup [1— (A€, §)] <e.
geEK

If G has one of the two equivalent properties then we say G is amenable.

There are a large amount of applications and characterisations of amenability however we
shall only use it to demonstrate the similarity between this definition and the definition of

property A.

Definition 1.2.4. [102, Definition 2.1.] Let X be a proper metric space with bounded
geometry. We say X has property A if there exists a sequence of weak-+ continuous maps
fn: X — Prob(X) such that

(1) for each n there is an R such that for each x € X, Supp(f,(x)) C B(z, R) and
(2) for each S >0, as n — o0
sup || fu(2) = fu(y)lli = 0.

d(z,y)<S

When X is discrete, this coincides with the definition of property A from [127].

Proposition 1.2.5 ([123, Proposition 1.1.3.]). Assume X and Y are discrete metric
spaces with bounded geometry and X has property A. If there exists a coarse embedding 1:'Y —
X then'Y has property A.

Proposition 1.2.6 ([102, Lemma 2.2.]). Let X be a (not necessarily discrete) proper
metric space with bounded geometry. Then X has property A if and only if some (hence every)

coarse lattice in X has property A.

This means when we consider locally compact second countable groups, we can refer to a
group having property A without referring to a plig metric. For a locally compact group G
and a subset L C G, the tube of L is the set Tube(L) := {(x,y) €EGxG:27lye L}. If Lis
compact and a kernel is supported on Tube(L) then we say the kernel has compact width. If
G is discrete then we will say that the kernel has finite width. We have the following useful

characterisation of property A and coarse embeddability into a Hilbert space.

Proposition 1.2.7 ([44, Theorem 2.3.] [118, Proposition 3.2.]). A locally compact
second countable group G has property A if and only if for every compact subset K C G and
€ > 0, there exists a compact subset L C G and a positive type kernel k: G X G — C such that
Supp(k) C Tube(L) and

sup |1 —k(s,t)| <e.
(s,t)€Tube(K)

Theorem 1.2.8 ([123, Theorem 3.2.8.]). Let X be a metric space (not necessarily dis-

crete). Then the following are equivalent

(1) X is coarsely embeddable into a Hilbert space.
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(2) For all R,e > 0 there exists a normalised symmetric kernel k: X x X — R of positive
type such that:

(a) Supd(z,y)gR |1 - k(x,y” <e and
(b) limg_oo sup {|k(z,y)| : d(z,y) > S} = 0.

Corollary 1.2.9. If a locally compact second countable group is amenable then it has prop-
erty A.

Proof. If G is amenable then for all R > 0 and € > 0 there exists a unit vector £ € L*(G)
such that sup|g. g [1 — (A€, §)| < /3. Choose a compactly supported unit vector 7 € L?(G)
such that || — n|l2 < €/3. Hence for all g € B(1, R)

|1_<)‘gn’77>| < |1_</\g§7£>|+|<)‘g£’§>_</\g77777>| < 6/3+‘</\g§7€_n>‘+|<)‘g(£_"7)an>‘ Se.

Set ¢(g) = (Agn, ), this is a compactly supported positive definite function [18, Proposition
C.4.3.] and so the positive definite kernel k(g,h) = p(g~'h) suffices. O

Finding a coarse embedding into a Hilbert space is difficult. However the following result
shows that property A guarantees a coarse embedding into a Hilbert space.

Theorem 1.2.10 ([127]). A discrete metric space with property A coarsely embeds into a
Hilbert space.

Proposition 1.2.11 ([44, Proposition 3.2.]). A locally compact second countable group

with property A coarsely embeds into a Hilbert space.

Let G be a locally compact group and define a convolution operation on L'(G) where
Frats) = [ £)als) dutr).

This turns L!(G) into a Banach x-algebra. More generally for any f € L'(G) and g € LP(G),
f * g belongs to LP(G) [63, Corollary 20.14.]. For every unitary representation 7: G — U(G)
there is an associated x-representation 7: L*(G) — B(H) defined by

w(f) = /G F(9)m() dulg)

where this operator is uniquely defined by

()€, 1) = /G F(9){m(g)€, m) dulg)

for all £,n € H. Conversely, any non-degenerate *-representation of L!(G) is of this form.

There are two important C*-algebras that we can form from this procedure.

Definition 1.2.12. Let A\: G — L?*(G) be the left regular representation. Then for any
f € LY(G) and ¢ € L*(G), M\(f) = f = £. Denote C(G) to be the completion of L'(G) with
respect to the norm

1 £ll- = A BL2(6))-
This C*-algebra is called the reduced group C*-algebra.

The completion of C[G] with respect to the norm || - [|max: L1 (G) — R,
I/ llnax := sup {||7(f)] : = is a non-degenerate *-homomorphism}

is called the mazimal group C*-algebra of G, which we denote by C*(G). In particular || f], <
[ luniv < [If]]1 for all f € LY(G).
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Suppose X is a countable uniformly discrete metric space with bounded geometry e.g. a
countable discrete group. For an operator 7' € B(¢*(X)) let T}, ,, be the matrix entry (1'6,,0,),
where &, and d, are point masses at z and y respectively. An operator 7' € B(¢*(X)) has finite
propagation if there exists R > 0 such that T, , = 0 whenever d(x,y) > R. This forms a *-
algebra inside B(¢?(X)) and the closure of this *-algebra is called the uniform Roe algebra. We
denote this completion by C}(X). For the next proposition, see Section 4.3 for the definition

of cross products and reduced cross products.

Proposition 1.2.13 ([23, Proposition 5.1.3.]). Let ' be a discrete countable group and
let \: T — Aut(¢>°(T)) be the action \yf(h) = f(g~'h) for all f € £>°(T) and g,h € I'. Then
O () 2 £°°(T) 35, T

The proof of this is similar to the proof of Lemma 4.4.2. From this we can see that C*(T")

is a closed *-subalgebra of C(I") when I' is a discrete countable group.

Definition 1.2.14. A linear map ¢ between C*-algebras A and B is completely positive if
the map ¢, : M, (A) — M,(B), defined by ¢, ([a; ;]) = [¢(ai ;)]i,; is positive for every n.

Definition 1.2.15. An operator space is a closed subspace of a C*-algebra. A linear map ¢

from an operator space X C A into an operator space Y C B is called completely bounded if

lellen := sup [lo: Mn(X) = Mn (V)] < o0.

We say ¢ is completely contractive if ||| < 1.
Definition 1.2.16. Let A and B be separable C*-algebras. A map 0: A — B is called

nuclear if there exist a sequence of completely contractive positive maps ¢, : A — My, ,)(C)
and ¢y, : Mj,)(C) — B such that

1¥n © @n(a) —6(a)|| =0 Va € A.

Definition 1.2.17. Let A be a separable C*-algebra. Then A is nuclear if the identity map
ida: A — Ais a nuclear map. A is exact if there exists a faithful representation 7: A — B(H)

such that 7 is nuclear.

Indeed every nuclear C*-algebra is exact and every closed x-algebra of a nuclear or exact
C*-algebra is exact. This is because one can restrict the nuclear map to the x-subalgebra and
this will still be a nuclear map.

We have characterisations of nuclearity and exactness of C*-algebras. Given two C*-algebra,
one can form the algebraic tensor product. Similar to the group algebra, there are two different
completions on the algebraic tensor product to make the algebra into a C*-algebra: the maximal
and a natural minimal completion. We denote these two completions by ®max and Qmin-

A C*-algebra A is nuclear if and only if A ®pax B = A ®min B for any C*-algebra B [23,
Theorem 3.8.7.] [34, 74]. A is exact if and only if the functor A ®min — preserves short
exact sequences of C*-algebras [23, Theorem 3.9.1.] [73]. When a group G acts trivially on a
C*-algebra A, then A X, G 2 A Quin CX(G).

Theorem 1.2.18. Let T be a countable discrete group. Then the following are equivalent:

(1) T has property A.

(2) CX(T) is exact.

(3) T is exact (for exactness see Definition 4.3.7).
(4) C

4) Cx(T) is nuclear.
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(5) C(T) is exact.

(6) T' admits a topological amenable action on its Stone-Cech compactification (for topo-
logical amenable action see Definition 4.5.1).

(7) Every ghost operator in C(T') is compact (for ghost operators see Definition 4.6.1).

(8) The following sequence is exact
0= co(l) x50 G = £2°(T) %, I' = (0(1) /eo(T)) x5, T — 0.

We reference where these implications first appeared but the equivalences of (1), (2), (3)
and (6) can all be found in [23]. The thin arrows indicate when an implication follows easily

from definitions or from well known facts which can also be found in [23].

B) —= @) =—()

[75] m ﬂ[loo, 103]
(5, 94]
(

2) <— (6) <= (1)

|\l

() =— &)

We give a sketch of proofs of these equivalence.

Proof (Sketch). (1) < (6). The definitions of property A and amenable action on a compact
Hausdorff space are very similar and it only requires a bit of technical work to show that they
are equivalent. If G acts amenably on a compact Hausdorff space then one can use the universal
property of the Stone-Cech compactification to put an amenable action on 3G. Most of the
work in [67] was done by showing the original definition of property A from [127] is equivalent
to the definition we have given here.

(2) & (3). If T is exact then in particular the functor — X, . I" preserves short exact sequences
where 7 is the trivial action. Hence C*(T") is exact. Nothing about discreteness has been used
so this direction is true for locally compact groups as well.

For any C*-dynamical system (A, o, T") one can define maps m4: A Xq, I' = (A %o T') @min
T using Fell’s absorption principle [23, Proposition 4.1.7.]. Likewise one can also construct
Pa: (AXaT) @min ' = A X, T such that ®4o0ma =idax, . If C;(T) is exact then we have

a commuting diagram

0 ———>Ixg, —————— > Ax,, T

(A/T) ¥gy T ———= 0

- - -

0 ——1 N r Qmin 07* (F) — A N r Qmin Cr (F) - (A/I) N ®Inil’10:f (F) —0

r

i@ lm l%/,

0 ——> I x4, T (A/I) xgp T ———> 0

such that the middle row is exact. This is because the maximal cross product preserves short
exact sequences. By a diagram chase one can show the other two rows are exact. Interestingly,
the construction of the two maps 74 and ® 4 depend on I' being exact. It is unknown whether
this implication is true for locally compact groups, see [5, Question 9.3.] and the remarks in
[75, Section 6.].

(2) = (1). As C}(G) is exact the left regular representation A\: C*(T') — B(¢?(G)) is nuclear.
So for any finite subset £ C I' one can find a sequence of map 6,,: C/(I') — B(¢*(G)) that
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factors through a finite dimensional C*-algebra such that ||6,,(A(s)) — A(s)|| = 0 uniformly on
E. We can define a positive definite kernel k(s,t) = (§(A(s~1t)d,-1,d5). We can ensure k has
finite width by carefully choosing the finite dimensional C*-algebra 6 factors through. This
means that k satisfies the conditions in Proposition 1.2.7.

(4) = (2). C(T) is a closed *-algebra of C(T") = ¢>°(T") x 1, I" because T is discrete. Hence
it C*(T") is nuclear then C*(T") is exact.

(5) = (2). Similarly, exactness passes to closed *-subalgebras.

(6) = (4). As T acts amenably on ST, T' acts amenably on the C*-algebra C'(8T"). Hence
C(BT) ¥, T =42(T) xp, I = CT) is nuclear where L is the left action of I" on C(8T).

(7) < (8). In [64, Lemma 9.], there is the following commuting diagram of continuous maps

AXg, ' —— (A/I) xo, T

i l

Co(T, A) —— Co(T, A/T).

When A = ¢>°(T") and I = ¢o(I") then we see that the ghost operators are precisely the kernel
of the surjective map in the sequence in (8).
(1) & (7). We comment on this equivalence after Theorem 4.6.2 O

Observe the similarities between property A and amenability. A discrete countable group I'
is amenable if and only if C*(T") is nuclear, if and only if I" admits a topological amenable action
on a point [23, Theorem 2.6.8.]. Some of these equivalences can be generalised to uniformly

discrete metric spaces with bounded geometry.

Theorem 1.2.19 ([23, Theorem 5.5.7.] [103, Theorem 1.3.]). Let X be a countable

uniformly discrete metric space with bounded geometry. Then the following are equivalent:

(1) X has property A.
(2) C*(X) is nuclear.
(3) Ewvery ghost operator in C(X) is a compact operator.

We now give some examples and permanence properties of property A and coarse embed-

dability into a Hilbert space.

Examples 1.2.20. (1) Every compact metric space has property A.

(2) Every amenable group has property A.

(3) Any discrete metric space with bounded geometry that has finite asymptotic dimen-

sion has property A [67, Lemma 4.3.]. For a metric space X, a cover U = {U;},.;

has multiplicity k if each point in X is contained in at most k elements of U/. The
cover U has Lebesgue number L if any ball of radius at most L is wholly contained
in one element of Y. We say that a metric space X has finite asymptotic dimension
if there exists k > 0 such that for all L > 0 there exists a uniformly bounded cover
U = {Ui};c; that has Lebesgue number at most L and multiplicity £ +1 . The
smallest such k is called the asymptotic dimension of X.

In order to show that X has property A we will provide a sequence that satisfies
the conditions in Definition 1.2.4 for a space that is coarsely equivalent to X. This
proof is original from [123, Corollary 2.2.11.]. Fix R,e > 0 and set L > ﬁ. Then
there exists a cover U = {U;},.; with Lebesgue number L and multiplicity &+ 1 and
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there exists N such that diam(U;) < N for all ¢ € N. Define a partition of unity

d(z, X\ Uj)

pi(z) = 5

jel
This is well defined as the multiplicity implies there are only at most k& + 1 sums
being performed for each z € X. Now define a metric on I, where d(i,j) = 0 if
i = j and is equal to 1 if 4 # j. The space X x I is coarsely equivalent to X when
X x I is equipped with the metric d((z,1), (y,4)) = d(x,y) + d(4,j). This is because
the inclusion ¢: X — X x I, x — (z,ip) for some fix ix € I and the projection
p: X x I — X are coarse maps and are uniformly close to the identity map. That is
d(top(z,j),(z,7)) <1land d(pot(x),z) =0forall z € X and i € I.

For each i € I fix y; € U; and define £, ;)(y, j) = ¢;j(x) if y = y; and 0 otherwise.
Thus [|{(z,5) ]| = 1 and Supp(§(s,s)) is contained in a ball of radius N + 1 about (z,1).
For short hand write C; = 3_,c; d(2, X \ U;) for x € X. Observe that C; > L and
d(z, X\ U;)/C, <1 and by the triangle inequality and that ¢/ has k 4+ 1 multiplicity,
|Cy — Cy| < (2k+2)d(z,y) for all z,y € X. By using the triangle inequality we have
that [ps(@) — ps(y)] < 1/Cald(z, X \ Us) = d(y, X \ Uy)| +1/Cyd(y, X \ Uy)| <54 <
283 (2, y). Hence by multiplicity again Yicrlpi(®) —@i(y)] < Wd(x, Y).
Altogether, if d(x,y) < R then ||§,) — &l <e.

Every discrete countable group that is hyperbolic has finite asymptotic dimension
and so has property A [101].

Every finite dimensional CAT(0) cube complex has compression 1 [25, Theorem A.]
and so has property A by Theorem 1.3.9. In particular any group acting properly, co-
compactly on a finite dimensional CAT(0) cube complex has property A [25, Theorem
B.]. This includes right-angled Artin groups and Coxeter groups.

Groups that admit a presentation (X|R) where R is a single word have property A
[56, Corollary 2.6.].

Every closed subgroup of a connected Lie group has property A [5, Examples 3.2(1).].
Every almost connected group has property A [5, Proposition 3.3.].

Any discrete subgroup of GL,,(K) for a field K has property A [55].

Suppose we have the following exact sequence of discrete countable groups
1-N—->I—-K-—1

If K and N have property A then I' has property A [123, Theorem 2.3.6.]. If N has
property A and K coarsely embeds into a Hilbert space then I' also coarsely embeds
into a Hilbert space [37, Theorem 4.1.].
These results are extended in [43] to the locally compact second countable case. In
each of the following cases if H has property A (is coarsely embeddable into a Hilbert
space) then G has property A (is coarsely embeddable into a Hilbert space).

(a) H C G is a uniform lattice. That is H is discrete and G/H is compact.

(b) H C G is a lattice. That is H is discrete and G/H has finite covolume.

(¢c) H C G is a closed coamenable subgroup in the sense of Eymard [49].

(d) H C G is a closed normal subgroup and G/H has property A.

(e) H=G/Q where @ is a compact normal subgroup.

(f) G is a measure equivalence subgroup of H (for measure equivalence see [43,

Definition 3.5.]).
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(12)
(13)
(14)

(15)

(16)

The class of groups with property A is closed under subgroups, direct limits, amal-
gamations over a common subgroup and HNN extensions [123].

The class of groups that coarsely embed into a Hilbert space is closed under subgroups,
direct limits, amalgamation over a common subgroup, HNN extensions [57].

The class of groups that coarsely embed into a Hilbert space is also closed under
wreath products [39, Theorem 5.10.].

Let X = (V, E) be a finite graph. We say X is a C-expander if there exists a C' > 0
such that for all f € (2(V),

Y@ - fwP<C Y 1f@) - Wl
z,yeV (z,y)EE
We call this a Poincaré inequality. A sequence of k-regular graphs (X, )nen is an
expander sequence if |V;,| — oo and there exists a global C' > 0 such that each X, is
a C-expander. Expanders can be formed by taking the box space of residually finite
property (T) groups [81, Section 3.3.]. Given a sequence of graphs (X,,),en we define
a metric d on the disjoint union X = U,enX,, where d(X,,, X,,,) — 00 as n+m — 0o
and d is the graph metric when restricted to each component X,,.

We will show that when (X, )nen is an expander sequence then the disjoint union
X when equipped with the above metric does not coarsely embed into a Hilbert space.
This proof is an adaptation of [92, Theorem 4.9.]. For a k-regular graph Y = (V, E)
and for a fixed distance R there are at most & vertices within distance R of a given
point. If R = log,(|V]/2), then there are at least |V|/2 vertices that are distance
greater than R away from any given vertex.

Suppose f: X — H is a coarse embedding and let py be the functions defined
in Definition 1.1.6 associated to the coarse embedding. Without loss of general-
ity we can assume that % = L2(0,1). By the Poincaré inequality we have that
D eyeva [Fe(O) = fy (O < C X, ep, [fo(t) = fy(8)]? for all t € (0,1) and all n € N.
By integrating over ¢ we have that > v | fz — fyll? < CYwyen, Ife— fyl? for
all n € N. By substituting p+ we have that >° . p— (d(z,y))? < py(1)CK|V,|/2.

However because there are at least |V,,|/2 vertices that are distance greater than

log;.(|Vi]/2) away from any point we have and that p_ is a non-decreasing function
we have that >0y, p— (d(z,9))? > p—_(logs(|Val/2))|Vi|?/2. Hence we have a con-
tradiction because p_ is unbounded and |V,,| — oo as n — oo but p_ must also satisfy
p—(logy,(|Vn]/2)) < E5 for all n € N.

In fact a sequence of graphs (X, )nen is an expander sequence if and only if it
satisfies an fP-Poincaré inequality for all 1 < p < co. So by using a similar argument as
above an expander sequence can not coarsely embed into an P space for all 1 < p < 0o
[84, Proposition 3.], [100, Proposition 11.30.].

There exist countable discrete metric spaces with bounded geometry that do not
coarsely contain an expander (in fact the metric space does not even weakly contain
an expander, see [10] for the definition) and does not coarsely embed into any ¢P-space
for 1 <p < oo [10].

The first examples of groups that do not coarsely embed into a Hilbert space were
constructed by Gromov [54, 7]. These groups are finitely generated and weakly
contain an expander (see the discussion in [91, Subsection 2.4.]), which is enough to

prevent a group from coarsely embedding into a Hilbert space.
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(18) There exist finitely generated groups that isometrically contain a copy of an expander
sequence [91] and finitely presented groups that contains a quasi-isometric copy of an
expander sequence. Furthermore there exist closed aspherical manifolds of dimension
4 and higher whose fundamental groups contain a quasi-isometric copy of an expander
sequence [91, Corollary 3.5.][106].

(19) There exist finitely generated groups that act properly on a CAT(0) cube complex but
do not have property A [91, Theorem 6.2.]. In particular these are the first examples
of groups that have the Haagerup property but do not have property A [33].

1.2.2. The Haagerup property. Let F be a Banach space and let Isom(FE) be the space
of bounded linear operators that are isometries. A continuous affine action on a Banach space
E consists of a strongly continuous representation 7: G — Isom(E) (v — m4(v) is continuous

for all s € G) and a continuous function b: G — E that satisfies the cocycle condition
b(st) = ms(b(t)) +b(s) Vs,t€G.

The action is given by s-v = ms(v) +b(s) for all s € G and v € E. A function that satisfies the
cocycle condition is called a I-cocycle. Observe that b(eg) = 0 and the image of the 1-cocycle is
the orbit of the origin under the action. We say that such an action is proper if for all bounded
subsets B,C' C E the set {g € G : ay(B) N C # (0} is finite. Notice that « is proper if and only
if the 1-cocycle associated to « is a proper map. We have the following useful relation between
1-cocycles on Hilbert spaces and continuous functions of negative type.

Proposition 1.2.21 ([42, pp 62]). Let H be a Hilbert space and b: G — H a 1-cocycle
associated to a unitary representation. Then the continuous map g — |b(g)]|?

type.

s of negative

Proposition 1.2.22 ([42, pp 63]). Let ¢: G — R be a continuous function of negative

type. Then there exists an affine isometric action on a Hilbert space H such that the associated
I-cocycle b: G — H satisfies, ¥(g) = ||b(g)||*.

The following theorem relates the two notions of positive and negative type functions on

groups.

Theorem 1.2.23 (Schoenberg’s theorem [18, Theorem C.3.2.,Corollary C.4.19.]). Let
G be a topological group and let v be a continuous real valued function (kernel) with 1(e) = 0

and 1(g) = (g~") for all g € G ((g,9) = 0 and 1(g,h) = 9(h,g) for all g,h € G). Then
the following are equivalent:

(1) 4 is of negative type.
(2) The function e~ ¥ is of positive type for every t > 0.

Definition and Theorem 1.2.24 ([32, Theorem 2.1.1.]). Let G be a locally compact

second countable noncompact group. Then the following are equivalent:

(1) G admits a proper, affine, isometric action on a Hilbert space.

(2) There exists a proper, continuous negative type function 9 on G.

(3) There exists a sequence of normalised continuous functions of positive type (¢n)nen
such that ¢,, — 1 uniformly on compact subsets of G.

(4) There exists a Cp-unitary representation (m,H), that is the map g — (w(g)&,n) be-
longs to Co(G) for all £,n € H, which weakly contains the trivial representation. That
is for all compact subsets K C G and ¢ > 0 there exists unit vectors £ € L?(G) such
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that
sup [1 — (m(g)€,€)| <e
geEK

If G satisfies one of the equivalent properties we say G has the Haagerup property.

Proof (Sketch). (1) & (2). Every negative type function is of the form g ~ ||b(g)||* for some
1-cocycle b. This map is proper if and only if the action associated to the 1-cocycle is proper.

(2) < (3). By Schoenberg’s theorem the function e="% is positive type for all n > 0. As 1)
is proper, the sequence of positive functions e~ "% converges uniformly to 1 on compact subsets
of G.

If (¢n)nen are a sequence of positive definite functions that converge uniformly to 1 on
compact sets then define a negative type function by ¥(g) = >, <, @n(1 — ¢yn(g)) for some
unbounded, increasing positive sequence a,,. One has to be a bit careful in choosing subse-
quences on ¢, such that this well defined. As ¢,, — 1 uniformly on compact sets it follows
that v is proper.

(3) & (4). Every positive type function is of the form g — (m(g)&,&) for some unitary
representation 7: G — H and unit vectors £ € H. So for each n there exists a representation
mn: G — H,, and vectors &, € H,, such that ¢, (9) = (mn(9)&n, En). Set m = &my,.

Conversely if m weakly contains the trivial representation then one takes an exhaustive
sequence of compact sets K, such that G = U, K,,. Choose a sequence of vectors &, € H such
that lim, o0 SUpge g, |1 — (m(9)&n, &n)| = 0. Now set ¢, (g) = (7(g)&n,&n) for all g € G and
n € N.

([l

If a group is amenable then the left regular representation weakly contains the trivial repre-
sentation. It is routine to check that the left regular representation is a Cy-representation and
so amenable groups have the Haagerup property. Furthermore, the existence of a sequence of
positive type functions that converge uniformly to 1 on compact sets implies that that a group
with the Haagerup property admits a coarse embedding into a Hilbert space by Theorem 1.2.8.

1.3. Compression
Let (X,dx) and (Y,dy) be metric spaces and denote Lip™(X,Y) to be the set of large-scale
Lipschitz maps from X to Y.

Definition 1.3.1. For f € Lip®(X,Y) the compression function of f, denoted by py, is

pr(r) = inf dy(f(x), f(2')).

dx (z,x’)>r
Definition 1.3.2 ([58, Definition 2.2.]). Suppose X is a metric space that is unbounded.
(1) For f € LiplS(X, Y') the asymptotic compression Ry is

log p%(r
Ry :=liminf M,
r—oo  logr

where p}(r) = max{ps(r), 1}.
(2) The compression of X inY is

R(X,Y) = sup {Rf . f € Lip®(X, Y)} .
(3) If Y = LP(Q) for some measure space €2 then

ap(X) = R(X, LP(2)).
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Remark 1.3.3. For f € Lip®(X,Y) one can think of compression Ry as the supremum over
all @ € [0, 1] such that

1

de(x,x')o‘ — B <dy(f(z), f(2')) < Adx(z,2")+ B Vz,2' € X

for some constants A, B depending on «. Compression is measuring how close one can quasi-

isometrically embed a metric space X into Y.

Theorem 1.3.4 ([58, Theorem 2.12.]). Let X; and X5 be metric spaces. If there exists a
quasi-isometry ¢: X1 — Xo then R(X1,Y) > R(Xo,Y) for every metric space Y.

Corollary 1.3.5 ([58, Corollary 2.13.]). If the metric spaces X1 and X are quasi-
isometric then R(X1,Y) = R(X»,Y) for all metric spaces Y.

This means that compression is a quasi-isometric invariant. In particular when we consider
word metrics on groups associated to compact generating sets, the compression of the group
does not depend on the choice of the compact generating set. Unfortunately for general locally
compact second countable groups G, compression is no longer an invariant and does depend on
the plig metric used. This is because plig metrics are not necessarily quasi-isometric. When
we specify the plig metric d we shall write o, (G, d). However we will show in Section 4.7 that
it is still useful to consider compression with respect to particular plig metrics.

We can incorporate an action of a group to the previous ideas and obtain equivariant com-
pression. Let X be a metric space and fix an isometric action of G on X. For a Banach space
E and an affine isometric action o of the group G on E we consider the following space of

functions.

Lipg(X, E o) = {f € LiplS(X, E) | f is G-equivariant with respect to a} .

We write Lips(X,E) = U {Liplcs;(X, E, ) : « is an affine isometric action on E} The G-

equivariant Banach space compression of X is defined by
Re(X, E) == sup {Rf . f € Lip(X, E)} .

This definition depends on the isometric action of G on X. However most of the time we shall

consider G acting on itself by left multiplication.

Theorem 1.3.6 ([58, Theorem 5.1.]). Let X and Y be metric spaces where G acts by
isometries. If there exists an equivariant quasi-isometry X — Y then Rg(X,E) > Ra(Y, E)
for any Banach space E.

Corollary 1.3.7 ([58, Corollary 5.2.]). Let G be a compactly generated group. Then
R (G, E) is independent of the choice of compact generating set.

For all 1 < p < oo we denote R (G, LP) by af(G). Unfortunately in the general setting
the equivariant Hilbert space compression depends on the choice of plig metric d. When we
want to specify we shall write af (G,d). Suppose G is generated by a compact symmetric set
S and suppose « is an affine isometric action on a Hilbert space H. Let b be the associated
1-cocycle of a and set M = max {||b(s)|| : s € S}. For g € G there exists s1,...,s, € S such

that g = s1 -+ s, and n = |g|g. Using the cocycle relation we have that

o)l = llb(s1 -+~ sa) < D NIb(si)| < Mlgls and  [[b(z) = by)|| = [[b(z~"y)Il < Mlz™"yls

=1
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for all z,y € G. This means that every 1-cocycle is an equivariant Lipschitz map. Conversely
suppose f: G — H is a G-equivariant large-scale Lipschitz map. As f is equivariant it follows
that || f(2)|| = |la(z) f(1)|| = ||7(x) f(1)+b(z)|| where m and b are the orthogonal and translation
parts of the action « respectively. Hence

1oC@) | = I < [1f @) < o) + £ D]

for all z € G. This implies that the compression of b is equal to the compression of f. Therefore
when we consider equivariant compression of a compactly generated group it is enough to
restrict ourselves to the set of all 1-cocycles.

Far less is known about equivariant compression than non-equivariant compression.

Examples 1.3.8. (1) Let (X,d) be a metric space such that |X| < oo and let C =
diam(X). Let F be a Banach space and f: X — FE be the zero map. Then d(z,y) —
C < |f(x) = fy)llg < d(z,y) for all z,y € X. Hence R(X,E) = 1 for any finite
metric space and any Banach space E.

(2) Let (X, d) be a metric space such that | X| < co and let C' = diam(X). Suppose G acts
by isometries on X and let G act trivially on a Banach space E. That is g - v = v for
allv € E. Let x1,...,z, € X be representatives of the orbits of the action of G on X.
Thus X = U Gz;. Let f be a function that is constant on the orbits of the action
of G on X. This implies f is G-equivariant. Set ¢ := min {d(z,y) : z,y € X} and
M = max {||f(z:) = f(z;)|p:1 <4, < n}. Therefore || f(z) - f(y)llz < d(z,y)
for all x,y € X and so f is Lipschitz. It follows that d(x,y) — C < ||f(z) — f(y)|lg <
%d(w, y) for all z,y € X. Hence Rg(X, E) =1 for any finite metric space X and for
any group G acting isometrically on X and any Banach space E.

(3) Rg(X,E) < R(X, E) for any metric space X, Banach space F and any group G.

(4) If Z is a subspace of a metric space X then R(X,Y) < R(Z,Y) and Rg(X,FE) <
R (Z, E) for any metric space Y, Banach space E and any group G.

(5) For metric spaces X and Y, as(X X Y) = min {az(X), a2(Y)} where X x Y has the
¢t-metric [58, Proposition 4.1.].

(6) Let G be a compactly generated group. Then as(G) < a,(G) for all 1 < p < oo [26,
Proposition 1.4.][89, Lemma 2.3.].

(7) In [58, Proposition 4.2.] it was shown that as(F2) = 1. This was generalised so that
ap(G) =1 for all 1 < p < oo for any finitely generated word hyperbolic group [21]
[115, Corollary 2.].

(8) In [115] it was shown that for all 1 < p < oo, a,(G) = 1 for any group G in the
class of groups denoted by £’ [115, Corollary 2.]. This includes polycyclic groups,
connected amenable Lie groups, Baumslag—Solitar groups BS(1,m) for any m > 1,
wreath products FZ for any finite group F', connected Lie groups and their cocompact
lattices [115] and finitely generated word hyperbolic groups.

(9) o (Fy) = 1/2 [58, pp 15-16]. Let X = Cay(F2,a,b) and consider H := (2(E) where
E is the set of edges in X. Define a 1-cocycle

b: ]FQ — €2(E) b(S) = X[1,s]

where X[y 4 is the characteristic function on the unique path from s to the identity. It
follows that [|b(s) — b(t)|| = \/d(s,t). As F is not amenable it follows that off (Fy) =
1/2.
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(10)

(13)

For any locally compact second countable amenable group G, as(G,d) = ozf (G, d)
where d is a proper left invariant metric that generates the topology on G [40, Propo-
sition 4.4.].

There exists a finitely generated amenable group G such that ae(G) =0 [11].

For any « € [0, 1] there exists a finitely generated group G, with asymptotic dimen-
sion at most 2 and with as(G,) = o [9, Theorem 1.5.]. We shall use this example in
section 2.3.

The construction is as follows: we take a carefully chosen decreasing chain of
finite index normal subgroups of a discrete lattice T' in SL3(F') for a local field F
where for some m € N, I" is generated by m involutions. Let (My)ren be the family
of quotients and denote o1 (k), ..., 0, (k) to be the image of the involutions under the
quotient map.

There exists a natural metric on the finite quotients M} and we denote the family
of metric spaces by (Il )ren. We equip the disjoint union UITj such that the restriction
to each quotient is the natural metric and that d(IIg,II;) > diam(II;) + diam(II;)
for all k # j. It is shown in [77] that such LTI, does not embed into any uniformly
convex Banach space.

For each o € [0,1] there exists a sequence of constants (Ag)gen such that the
rescaled family of metric spaces (ApIlg)reny has compression ao(UAII;) = o [9,

Ap—1
5 -

The group is constructed as a graph of groups. Let F' be the free product *genMp
and for every 1 < i < m let H; be the free product Z/2 * Z where the Z/2-factor
is denoted by o; and the Z-factor is denoted by t;. For every k € Z we denote the

Proposition 1.4.]. For all k € N define my, to be the integer part of

element tfoit;k by ng). The vertex groups are F' and Hy,...,H,, and the only
edges are (F, H;). The edge group of (F, H;) are free products *yenZ/27Z, where the
k-factor Z,/27 is identified with o;(k) € My, in F and with o™ in H;.

Now G, is taken to be the fundamental group of this graph of groups and so is
generated by the set {o1(1),...,0m(1),t1,...,tm}. In particular the word metric is
proper and left-invariant. The free product naturally embeds into the fundamental
group G, [107, Chapter I, Section 5]. We equip #; M}, with the subspace metric from
G, and so this gives a proper left-invariant metric on %M. In [9, Lemma 5.7.] it is
shown that

da,(g:h) = (2my + 1)da, (9, h)
for all g,h € M. Thus for all & € N, the metric space AiIly is uniformly quasi-
isometric to (Mjy,dq,) and so (% My, dg,) contains a quasi-isometric copy of the
metric space LgApIl;. Thus « is an upper bound of the compression of G, and
careful analysis of the word metric shows this bound is realised [9, Theorem 5.5.].

In the example in Section 2.3 we will chose a to be zero. Hence M}, will have
compression 0 when equipped with the word metric from G,.

Define recursively Zy = Z and Z 11y = Z()1Z. Then a(Zi)) = a?(Z(k)) = 2_2%
[89, Corollary 1.3.]. In the same article it is shown that off (Z1Z/2Z) = 1/2 [89,
Corollary 1.3.].

It was first shown that a;&(ZZZ) € [1/2,3/4] [8, Theorem 3.10.]. The upper bound

is obtained by showing that off (@ Z, dzz) = ao(@ Z, dzyz) < 3/4 [8, Theorem 3.9.]

and we shall use this compression bound in Example 2.1.1.
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(14) In the same article it is shown that o (F) = aa(F) = 1/2 for Thompson’s group F

[8, Theorem 1.3.].
(15) There exists a general lower bound for wreath products. Indeed for any finitely

generated groups G and H

o (H) }

ap(GUH) > max{1/p,1/2} min {al(G)’ al(H)+1

for any 1 < p < 0o [80, Theorem 1.1.].
(16) Let G and H be finitely generated groups and let G be the free product G = G * Gs.

Then
min{a, (G1), 0 (Ga), 1/p} < ay(G) < min{a,(G1), ay(G2)}
for all 1 < p < oo [45, Corollary 2.5.].
We have the following useful application of compression.

Theorem 1.3.9 ([58, Theorem 3.2., Theorem 5.3.]). Let T be a finitely generated group.
If as(T) > 1/2 then T has property A. If off (T) > 1/2 then T is amenable.

This has been partially extended extended to locally compact, compactly generated groups.

Theorem 1.3.10 ([40, Theorem 4.1.]). Let G be a locally compact, compactly generated
group. If o (G) > 1/2 then G is amenable.

In section 4.7 we shall extend the non-equivariant part of Theorem 1.3.9 to all locally compact

second countable groups.






CHAPTER 2

Compression of direct limits of groups and amalgamated

free products

The results in this Chapter were done in joint work with Dennis Dreesen and can be found
in [27].

2.1. (o,l,q)-polynomial property

In this section of results we compute the equivariant Hilbert space compression of certain
direct limits of groups. Specifically we assume that a given group G, equipped with a proper
length function, can be viewed as a direct limit of open (hence closed) subgroups G; C Ga C
G3 C ... C G. We equip each G; with the subspace metric from G. Our main objective will be

to find bounds on a2# (G) in terms of properties of the G;. Observe that, as each G; is a metric

subspace of @, we have of (G) < inf;ey off (G;). The main challenge is to find a sensible lower

bound on off (G). The next example will show that it is not enough to only consider off (G;).

Example 2.1.1. Consider the wreath product ZZ equipped with the standard word met-
ric relative to {(1,0),(0,1)}, where &; is the characteristic function of {0}. Let Z®* =
{f:Z —7Z: fishas finite support} be equipped with the subspace metric from ZZ. Consider
the direct limit of groups
77275 —7®

where Z2"t1 has the subspace metric from Z(®). This metric is quasi-isometric to the standard
word metric on Z2"*! and so each term has equivariant compression 1. So Z® is a direct
limit of groups with equivariant compression 1 but by [8, Theorem 3.9.], Z*) has equivariant

compression less than 3/4. On the other hand the sequence
7—7Z—---—=1Z

is a sequence of groups with equivariant compression 1 and the equivariant compression of the

direct limit is 1.

This example shows that in order to predict the equivariant compression of the direct limit
it will be necessary to incorporate more information than only the compression exponent of
1-cocycles.

The key property that we introduce is the («,l, ¢)-polynomial property. We assume that
the sequence (G;);en is normalized, i.e. each open ball B(1,7) C G is contained in G;. Up to

taking a subsequence, one can make this assumption without loss of generality.

Definition 2.1.2. Let G be a topological group equipped with a proper length function
| - | and suppose that (G;);en is a normalized nested sequence of open subgroups such that
ligGi = @. Assume that « := inf;ey af(Gi) € (0,1]. For I,q € N the sequence (G;);en has
the (a1, q)-polynomial property ((c,1,q)-PP) if there exists:

(1) a sequence (7;);eny C R converging to 0 such that n; < « for each 7 € N,
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(2) (A;, Bi)ien C R0 x R20,
(3) a sequence of 1-cocycles (b;: G; — H;)ien, where each b; is associated to a unitary

action 7; of G; on a Hilbert space H;

such that

1
9P = Bi < lbi(g)|I” < Ailgl® + B Vg € Gi,VieN

and there is C, D > 0 such that A; < Ci', B; < Di4 for all i € N.

Observe that the only real restrictions are the inequalities A; < Ci!, B; < Di%; we exclude
sequences A;, B; that are superpolynomial. The intuition is that equivariant compression is
a polynomial property, so sequences growing faster than every polynomial would force the
compression of the limit group to be 0. On the other hand if the sequences grow polynomially,
then one can use compression to compensate for this growth. Omne then obtains a strictly
positive lower bound on a;# (G) which may decrease depending on how fast the sequences
grow.

Every locally compact second countable group G has a proper left invariant metric d that
generates the topology on G, see Theorem 1.1.12. Define a metric d’ such that for any x # y,
2 () = 1 if d(z,y) <1

d(z,y) otherwise.
Then (G, d') is quasi-isometric to (G, d) and for any « € G\{e}, |z| = d'(z,e) > 1. In particular
compression does not change. Without loss of generality we assume that the metric on the

group is l-uniformly discrete. That is |g| > 1 for all g € G\ {e}.

Theorem 2.1.3. Let G be a locally compact, second countable group equipped with a proper,
1-uniformly discrete metric d. Suppose there exists a sequence of open subgroups (G;)ien, each
equipped with the restriction of d to Gi, such that lim G; = G and o = inf{aZ (G, d)} > 0. If
(Gi)ien has (a,l,q)-PP, then there are the following two cases:

> # >_@

or,

o
I<q=df (G d)>—.
<q=az( )_l—i-q—i-l

We have the following useful characterisation of («,{, ¢)-polynomial property.

Lemma 2.1.4. Let G be a topological group equipped with a proper length function | -| and
suppose there exists a sequence of open subgroups (G;);en such that hﬂGi = G. Then (G))ien
has the (a1, q)-polynomial property if and only if there exists C, D > 0 such that for alle >0
there exists

(1) a sequence (A;, B;)ien C R0 x RZ0 such that A; < Cil and B; < Di4;

(2) a sequence of 1-cocycles (b;: G; — H;)ien
such that )

E‘g‘za% — B; < ||bi(9)|I* < Ailg]* + B; Vg€ Gy, VieN.

Proof. Suppose we satisfy the conditions of the lemma. Then take &, = a/2n to obtain a
sequence of 1-cocycles that satisfy the conditions in Definition 2.1.2.

Suppose (G;)ien has the («, 1, q)-PP with respect to a sequence 7; converging to 0. Choose
k. large enough so that n, < & whenever k > k.. The 1-cocycles by associated to («, 1, q)-PP
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will satisfy the conditions in the lemma for k& > k.. For k < k. restrict by, to Gy so the

sequence of 1-cocycles satisfy the conditions for every group G;. O

Proposition 2.1.5. Let G be a locally compact second countable group equipped with a proper
length function | - | and suppose there exists a sequence of open subgroups (G;)ien such that
imG; =G. If o= o (G) > 0 then (Gy)ien has (a,0,0)-polynomial property.

Proof. For all 0 < € < « there exists a 1-cocycle b such that
1 —e
Fl* " =B = b9l Vvged.

The restriction of b to each G; is a 1-cocycle and gives (G;);en the («, 0,0)-polynomial property.
([l

Combining this result with Theorem 2.1.3 we can confirm our intuition that if the sequences
of Lipschitz constants grow superpolynomially then the compression of the direct limit group
is forced to be 0.

Corollary 2.1.6. Suppose G is a locally compact second countable group with a plig metric
d. Then (G;)ien has the (a,l, q)-polynomial property for some o € (0,1] and l,q > 0 if and
only if off (G,d) > 0

2.2. The proof of Theorem 2.1.3

Proof of Theorem 2.1.3. Take sequences (¢;: G; — R);en, (1:); and (A, B) = (A;, Bi)ien C
R>0 x R0 satisfying the conditions of (a1, q)-PP. We assume here, without loss of generality,
that the sequences (A;);, (B;); are non-decreasing.

For each 7 € N, define a sequence of continuous maps (cp}‘c: G — R)gen by
exp (7_%(9)) ifgeG;
0 otherwise.

Each go}; is continuous as G; is open and also closed, being the complement of Uy¢q, 9Gi.
Observe that for all i,k € N, ¢} (e) = 1. By (a,1,¢)-PP, for all i,k € N, we have

—Ailgl* — B ;
exp (|gl|€) < i(g) VgeG;, and

. _ QO‘_U'i +A1,Bl
©1(g9) < exp 9 Vg € G.
Ak

Fix some p > 0, set J(i) = (A; + B;)i'*? and define 1): G — R by

g)zzl_q)z

1€EN

where ®,(g) = goiJ(l.)(g). To check that 1 is well defined, choose any g € G and note that for

—Ailg|*-B
k

i > |g|, we have g € G; and so ¢} (g) > exp( ). Hence

Ailg® - Bi lgI” lgI*
Zl— i Zl exp<A+Bl)1+p><Zl—exp< Tip Z FEm

i>lg| i>|g| i>g|

As Y(g) = Z‘g‘ 1= ®i(g) + > 5 1g 1 — Pilg), we see that 1 is well defined and that it can be

written as a limit of continuous functions converging uniformly on compact sets. Consequently,
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it is itself continuous. By Schoenberg’s theorem [42, Theorem 5.16.], all of the maps ¢! are

positive definite on G [62, Section 32.43(a)]. Hence, 1 is a conditionally negative definite map

[18, Proposition C.2.4(i),(iii).]. Moreover, using that |- | is 1-uniformly discrete, we can find a
constant £/ > 0 such that
— 1
2 2
(1) W(9) <lgl +191* Y 57 < Elg]
i>|g|

so the 1-cocycle associated to ¢ via Proposition 1.2.22 is large-scale Lipschitz.
We now find a lower bound to the compression of this 1-cocycle. Set VI: N — R to be the
function
1

VI(i) = (A;J (i) In(2) + A; B;) 7= .
One checks easily that

N | =

(2) gl = VI(i) = @i(g) = ¢5;(9) <

To make the function VI more concrete, let us look at the values of A;, B; and J (7). Recall
that by assumption, we have 4; < Ci',B; < Di?. Hence for i sufficiently large, we have
J(i) < (Ci + Di?)il*P < FiX where F is some constant and X = 1+ 2p + max(l, q). We thus
obtain that there is a constant K > 0 such that for ¢ sufficiently large,

VI@) < KiY/(Ga=m)
where
Y =max(X + 1,1+ ¢) =max(14+2p+2[,14+2p+1+q).

The sequences 7; converges to 0 so for all € > 0 there exists I. such that n; < € any ¢ > I..
Hence for all i > I,
VI(i) < Ki¥/(2a=e),

Together with Equation (2), this implies that for ¢ > T,
- a— 7 1
Q ol > K709 5 3,(g) = o) (9) < 5.

For every g € G, set
c(g)p,e = sup {z eN| KiY/2a=e) < |g|} .
We then have for every g € G with |g| large enough, that

I N S W
¥(g) = Z 1—¢Y4)(9) = Z 1/2:%.
i=1 i=I.+1
(2a—¢)/Y
As c(9)p.e > (‘%) — 1, we conclude that
20 —
R(b) a—¢

>
T 2max(1+2p+20,1+2p+1+q)’

for all € > 0. By taking the limit as €, p — 0 we that af @) >

(6]
= m Hence, we have

the following two cases:

«
lzq:a?(G)zHQl

or,

(%
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2.3. Examples

Theorem 2.3.1. Let G and H be finitely generated groups where H has polynomial growth

of degree d > 1. Further assume that 0 < aif (G) < ﬁ, Then

7(G
ot (Do) G
I 14225 (G)(1+4d)
Remark 2.3.2. At the time of writing, these assumptions are empty because the values of
af (G) are not as well understood as the non-equivariant counterpart. The only known values

for off (G) are 1, 1/2, 0 and T

value for compression can be achieved [9]. Tt is likely there exists values for af between 0 and

for k € N [8, 89, 11] but in the non-equivariant case any

1/2. For groups where equivariant compression is known, [80, Theorem 1.1.] provides a lower

bound of off (G)/2. However whenever 0 < off (G) < then the above theorem provides

2(11+d)
a larger lower bound than off (G)/2.

Proof. We consider @, G to be the group of functions f: H — G that have finite support.
Let f € @, G and let Supp(f) = {h1,...,hn} C H. Set the length of f as follows

flcm = Jnf (dH(l ho(1)) +ZdH (i) ho(i+1)) + da (ho (), 1 ) + Y lth
i=1 heH

This is the induced length metric from G H and so this is a proper length function on @, G.
Consider the following group

G;={f: H— G| Supp(f) C B(1,i)}

and set n; = |B(1,7)|. It follows from the definition of the metric on G H that

cur = 2i[B(L)| <> gila < 915+ 9n,)
j=1

‘(917"'7977,1') G'H

for all (g1,...,9n,) € G;. Hence the metric on G; induced from G H is quasi isometric to the
metric on @ induced from the word metric on G. Hence o (G;) = off (G) for all i € N [58,
i|B(1,4)| then it follows that

Proposition 4.1. and Corollary 2.13.]. Whenever |(g1, ..., gn;)
1 gl = 2B > 3 (g1 gn)leun
Set 0 < ar < af(G’) and consider a 1-cocycle b: G — H such that
ol < b(g)IP < Clol2.

Define a 1-cocycle b;: G; — H™, where b;i(g1,--.,9n;) = (b(g1),...,b(gn;)). First suppose
(g1, 9n;) /| B(1,1)|. It follows that because

(a+b)* <a®+b" foralla,b>1andz € [0,1]

then

2

1B:(g1s- - ga)I? = angj )2 > Zm“zg Z|gy

1 . . 2 1 @
Z 6 (|(917 -7gn7¢)|G2H - 27’|B(177’)|) Z 4ac|(gl77gm)|é2H
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If [(91:---s9n)|lar < 4| B(1,4)| then |(g1,--.,9n,)|e0y — 8:2*|B(1,i)[** < 0. Putting this
together we have that for all (¢1,...,9n,) € G; it follows that

1 L8 on
% (917"'7gni)|%}1H - R'B(lvl)ﬁ < ||b1(gl7vg7h)||2

Hence (G});en has the (,0,2a(1 + d)) polynomial property for all @ < a#(G). Hence

# Gl>—& O
@2 (@ > “1+2a(l+d)
Example 2.3.3. Our result also allows to consider spaces @ ;; G, where G, actually depends

on the parameter h € H. For example, we could take a collection of finite groups F; with

Fy = {0} and look at G = P,y F; equipped with a proper length function |- | as follows:
lg| =min(n e N|ge @ F;) VYgeCG

Set G; = @;:0 F; and note that off (G;) = 1 as G, is finite. Moreover, it is easy to see that
the sequence (G;); is normalized. Define f; : G; — R to be the O-map. This is a 1-cocycle of
G; relative to any unitary representation of GG;. The associated conditionally negative definite
map satisfies

Vg e Gyt |gl* —i® < 4ilg) < |gf* +4°
We obtain the lower bound o (G) > 1/3 by Theorem 2.1.3. This is the first available lower

bound on the equivariant compression of G.

Example 2.3.4. We will use the construction in [9] to provide an example of a sequence
that does not have (o, 1, ¢)-polynomial property for any o € (0,1] and I,q > 0. Let IT, k > 1
be a sequence of Lafforgue expanders that do not embed into any uniformly convex Banach
space [77]. These are finite factor groups My, of a discrete lattice T' of SL3(F) for a local field
F.

For every a € [0,1] there exists a finitely generated group G and a sequence of scaling
constants A such that AiIlx has compression a and G is quasi-isometric to AgIl;. Furthermore
G contains the free product x; M} as a subgroup. Let a = 0 and let G and the scaling constants
Ak be such that G has compression 0. We can equip *, M} with a proper left invariant metric

coming from G. Hence we have a sequence
My — My« My — -+ = s My — -+ — 5 M.

For each n > 0, *}'_, M}, has equivariant compression 1/2 [45, Theorem 1.4.] however the limit
group M} contains a quasi-isometric copy of AglIl; and so has compression 0. Thus this

sequence can not have the (o, !, ¢)-polynomial property for any o € (0,1] and I, ¢ > 0.

2.4. The behaviour of compression under free products amalgamated over finite

index subgroups
In [52], S.R. Gal proves the following result.
Theorem 2.4.1 ([52, Corollary 5.3.]). Let Gy and G2 be finitely generated groups with the

Haagerup property and have a common finite index subgroup H. For each i = 1,2, let §; be a
proper affine isometric action of G; on a Hilbert space Vi(= 12(Z)). Assume that W < Vi NV,
is invariant under the actions (5;|i) and moreover that both these (restricted) actions coincide

on W. Then G1 xg G2 is Haagerup.
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Under the same conditions as above, we want to give estimates on af (G1 *g G2) in terms
of the equivariant Hilbert space compressions of Gy, Gy (see Theorem 2.4.3 below). Note that
the following lemma shows that off (G1) = a¥ (H) = o (G3) when H is of finite index in both
G1 and Go. We are indebted to Alain Valette for this lemma and its proof.

Lemma 2.4.2. Let G be a compactly generated, locally compact group, and let H be an open,
finite-index subgroup of G. Then af(H) = a#(G) for all 1 < p < oo.

Proof. As H is embedded H-equivariantly, quasi-isometrically in G, we have off (H) > o (G).
To prove the converse inequality, we may assume that a# (H) > 0. Let S be a compact
generating subset of H. Let A(h)v = w(h)v + b(h) be an affine isometric action of H on LP,
such that for some a < aff (H) we have [|b(h)||, > C|h|g, for every h € H. Now we induce up
the action A from H to G, as on p.98 in Section 2.5. of [18]'. The affine space of the induced

action is
E:={f:G— LP: f(gh) = A(h)""f(g), Vh € H and almost every g € G},

with distance given by |[f1 — foll} = >, cq/m /1(2) — f2(2)[]f. The induced affine isometric
action A of G on E is then given by (A(9))f(¢) = f(g~'¢'), for f € E, 9,4 € G.

A function &, € FE is then defined as follows. Let s; = e, s3,, ..., §, be a set of representatives
for the left cosets of H in G. Set &y(s;h) = b(h™1), for h € H, i = 1,...,n. Define the 1-cocycle
bon G by l;(g) = A(g)€& — &, for g € G. For an h € H, we then have:

oL = Io(h™ si) = Eolsa)lls =D llgo(h ™ sa)llf > lléo (™ML = lIb(R)]I.
i=1 i=1

Set K = max)<i<y, ||b(si)|l,- Take T'= S U {sy,...,5,} as a compact generating set of G. For
g € G, write g = s;h for 1 <i<n, h € H. Then
16(9) = 16(M)]l, — K = [[b()ll, — K > Clh|§ — K > Clhlg — K
> C(lglr —=1)* = K = C'lgly — K.
So the compression of the 1-cocycle b is at least a, hence o (G) > o (H). O
The following proof uses a construction by S.R. Gal, see page 4 of [52].

Theorem 2.4.3. Let H be a finite index subgroup of G1 and Go and assume there is a proper
affine isometric action B; (with compression «;) of each G; on a Hilbert space V;. Assume that
W < Vi N Vs is invariant under the actions (Bi|m) and moreover that both these (restricted)

actions coincide on W. Then a;#(Gl xg Ga) > W In particular, cﬁ;(Gl xg Ga) >
of (H)
Caa

Proof. Following [52], let us build a Hilbert space Wr on which I' = Gy xg G2 acts affinely
and isometrically. Let w be a finite alternating sequence of 1’s and 2’s and suppose 7 is a linear
action of H on some Hilbert space denoted #H,,. One can induce up the linear action from H

to Gy, obtaining a Hilbert space
Vi={f:Gi—> M, |VheH, f(gh)=r(h"")f(9)}
and an orthogonal action 7;: G; — O(V) defined by 7;(g9)f(¢') = f(g~'¢"). The subspace
{f: Gi =My |VheH, f(h)=n(h™")f(1), fla,\u =0}

We seize this opportunity to correct a misprint in the definition of the vector £ in that construction on p.98
of [18].
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can be identified with #,, by letting an element f correspond to f(1). It is clear that the action
m; restricted to H coincides with the original linear action 7 via this identification.

So, starting from any linear H-action on a Hilbert space H,,, we can obtain a linear action
of say G1 on a Hilbert space that can be written as H,, & Hi, for some Hi,. We can restrict
this action to a linear H-action on Hi, and we can lift this to an action of G5 on a space
Hiw @ Ho1w and so on, repeating the process indefinitely. Here, we will execute this infinite
process twice.

The first linear H-action on which we apply the process is obtained as follows. As 8;(H)(W) =
W for each i = 1,2, the restriction to H of 31, gives naturally a linear H-action on H; := Vi /W.
The second linear H-action is obtained by similarly noting that the restriction to H of (5 gives

a linear H-action on Ho := Vo/W. We then apply the above process indefinitely.

Gars Gary Gir Gi
. —— ——— . —f— —
1:=H1® Hot @ Hi21 ® Hot21 P -+, 5 :=Ho® Hi2 @ Ho12 ® Hi212P - -,
Gi1 Gary

where for w a sequence of alternating 1’s and 2’s, G; acts on H,, & H;,,. Note that there are two
H-actions on H} as H acts on the first term H;. One can verify that both H-actions coincide
(this fact is also mentioned in [52],page 4). The same is true for H3.

Denote ‘H = H} © H1 = Ho1 @ Hi21 © Hoi21 & - -+, and similarly, set H5 = HS © He =
Hiz ® Hoi2 © Hi212 @ - --. We denote

Wr=WeaeHl eH;=VieH]dH; =VadH; &HS.

The above formula, which decomposes W as a direct sum in three distinct ways, shows that
both G1 and G5 act on Wr. As mentioned before, the actions coincide on H and so we obtain
an affine isometric action of I' on Wr. Note that the corresponding 1-cocycle, when restricted
to G1 (or Ga), coincides with the 1-cocycle of 8y (or B2).

We inductively define a length function ¢7: I' — N by ¢r(h) = 0 for all h € H and
Yr(y) =min{¢r(n) + 1 | v =ng, where g € G1 UG2}. By [96, Theorem 1.] we see that this
map is conditionally negative definite and thus the normed square of a 1-cocycle associated to
an affine isometric action of I on a Hilbert space.

Let ¢r be the conditionally negative definite function associated to the action of I' on Wr.
We now find the compression of the conditionally negative definite map v = ¢r + . First
set

M:max{|t§|gi ri=1,2and 1 <j <[G;: HJ},
where t; are right coset representatives of H in G; such that t! = 1, for i = 1,2.

Denote o = min(ay, a2) and fix some £ > 0 arbitrarily small. Let v € T' and suppose in

a—e

normal form v = gtj-l1 . ~t§27 where g € G; for some ¢ = 1,2. Assume first that ¥ (y) > MM
In that case, ¥(v) > % Else, we have that ¢p(y) < % and so for all v € " such that

|v| is sufficiently large, we have

D) = ¢r() = Iy - 01 = (llg - Oll = ¥r(MM)* Z (Y] = ¥r(M)* =% = pr(7)M)?
> (vl = "> =2 = %) Z P,
where 2 represents inequality up to a multiplicative constant; we use here that one can always

assume, without loss of generality, that the 1-cocycles associated to 81 and S satisfy ||b;(g:)|| =
lgi|®¢ (see Lemma 3.4 in [6]).
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So now, by the first case, ¥(vy) > |y|*¢ for all v € T that are sufficiently large. Hence, we
obtain the lower bound o (I') > o (H)/2. O






CHAPTER 3

Coarse embeddability of generalised wreath products

The results in this Chapter were done in joint work with Dennis Dreesen and can be found
in [28].

3.1. Generalised wreath products

Throughout this chapter groups will be finitely generated and metric spaces will be countable
and discrete. Given two finitely generated groups G and H, the wreath product, written as
G H is the set of pairs (f,h) where h € H and f: H — G is a finitely supported function (i.e.
f(h) = eq for all but finitely many h € H) together with a group operation

(£,7) - (g, 1) = (£ - (hg), hh)

where (hg)(z) = g(h™!'z) for all h,2 € G. One can think of G H as being the semi-direct
product @, G x H where H acts on @, G by permuting the indices. If finite sets S and T
generate GG and H respectively then G ! H is generated by the finite set

{(e,t) : t € T} U{(ds,em):s €S}
where e(h) = eg for all h € H and

5.(h) = s ifh=egy
eq otherwise.

The word metric on G ! H coming from this generating set can be thought of as follows.
Given two elements (f,z) and (g, y), take the shortest path in the Cayley graph Cay(H,T)
going from z to y that passes through the points in Supp(f~'g) = {h1,...,h,}. At each point
h; € Supp(f~'g) travel from f(h;) to g(h;) in G. Explicitly for (f,z),(g,y) € D,en G H
and Supp (f~'g) = {h1,...,h,} define

P(z,y) (fa g) = 016115{1 <dH (xa ha(l)) + Z dH(ha(i)a ha(iJrl)) + dH(hU(n)v y))

i=1
where the infimum is taken over all permutations in S,,. The number p(, ,(f,g) corresponds
to the shortest path between z and y in H going through each element in Supp(f~'g). Hence
the distance between (f,z) and (g, y) is

e ((F,2), (89)) = Py (£:8) + Y da(f(h), g(h)).
heH

Suppose G, H are groups and H acts transitively on a set X. Fix a base point o € X and
define the permutational wreath product to be the group G ix H := @ G x H where

@G: {f: X = G : f(z) = e for all but finitely many = € X}
X
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and H acts on @y G by permuting the indices. If S and T generate G and H respectively
then G ix H is generated by

{(e,t) : t € T} U{(ds,en):s €S}
where e(x) = e¢ for all z € X and

s if £ =g
bs(z) =

ea otherwise.
The metric on Gix H from the generating set can be thought of as follows. Given two elements
(f,z) and (g, y) take the shortest path going from x to y in Cay(H, T') that passes through points
{h1,...,hn} such that Supp(f~'g) = {hi70,...,hn2o}. At each element h; € Supp(f~—'g)
travel from f(h;zg) to g(h;xo) in G. In general the shortest path is not necessarily unique.

Explicitly for (f,z),(g,y) € @,cx G % H, let I = Supp(f~'g) and let n = |[Supp(f~'g)|.

Define P; to be the set

P] = {(hl,,hn) CHn : {hll'(),...,hnl’o}:.[}.

In particular if (hq, ..., hy) € Py then any permutation of (hq,...,hy) is also in P;. Hence the
length of the shortest path between x and y in H passing though the points that project onto
Supp(f~!g) is precisely

n—1
P(z.y) (f, g) = inf <d(a:, hl) + Z d(h“ hi+1) + d(hn, y)) .

(h1,.shn)EPY ‘
=1

Hence the distance between (f,x) and (g, y) is
darem (£,2),(8,9) = pay (£:8) + Y da(f(2), 8(2)).
zeX
One can ask whether we can generalise this construction. Suppose Y and Z are metric spaces
and p: Y — Z is a C-dense map, i.e. Bz(p(Y),C) = Z. Given two points y,3’ € Y and a

finite sequence of points I = {z1,...,2,} in Z, we define Py to be the set
Pr = {(yl7 ceyYn) C Y™ : 3o € S, such that Vi, p(y;) € B(za(i),C)} .

In particular, if (y1,...,yn) € Pr then any permutation of (yi,...,yn) also lies in P;. We now
define the length of the path from y to y' going through I by

n—1
path/(y,y’) =  inf <dy(y, v1) + Y dy (i, yir1) + dy (yn, y’)) :

(Y15--yn)EPI i—1

Let X be another metric space and fix a base point zy € X. Define @, X to be the set

@X ={f: Z = X : f(2) = x¢ for all but finitely many z € Z}.
z
For f,g € @, X define Supp(f~'g) = (Supp(f) U Supp(g)) \ {z € Z: f(z) = g(2)}. Let
(£,v).(g,v) € P, X xY and let I = Supp(f~'g). Define a metric on the set @, X x Y by

d((£,y), (8.y)) = path; (y.y) + > _ dx(£(2),8(2)).
z€Z
We obtain a metric space (), X x Y,d), which we denote by X 7 Y. Here the C refers to
the C-dense map p: ¥ — Z. When X and Y are groups and Y acts transitively on Z then

the map p: Y — Z is surjective thus C = 0. When there is no risk for confusion, we will omit
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C from this notation. When X and Y are graphs, then the metric wreath product X iy Y
coincides with the wreath product of graphs [48, Definition 2.1.].

3.2. Measured wall structures

Let X be a set and 2% the power set of X. We endow 2% with the product topology.
For € X, denote A, = {A C X : z € A}. This is a clopen subset in 2X . For two elements
xz,y € X we say aset A C X cuts x and y, denoted A+ {z,y} if x € A and y € A° or = € A°
and y € A. Likewise we say that A cuts another set Y if neither Y C A nor Y C A°.

Definition 3.2.1. A measured wall structure on a set X is a Borel measure p on 2% such

that for every z,y € X,

du(z,y) =p({A€2¥ : At {z,y}}) < cc.

Since {A € 2% : Ak {z,y}} = A, A Ay, the set is measurable. It follows that d, is well
defined and is a pseudometric on X, called the wall metric associated to .

If f: X — Y is a map between sets and (Y, ) is a measured wall structure, then we can
push forward the measure p via the inverse image map f~1: 2¥ — 2% and obtain a measured
wall structure (X, f*u), where for A C 2%, f*u(A) = u({f(B) | B€ A,B = f~Y(f(B))}). It
follows that d-,(z,2") = d,(f(x), f(z')) [39, Section 2.].

Given a family of spaces X; with measured wall structures p; and the natural projection
maps p;: @ X; — X;, then the measure p = Y, piu; defines a measured wall structure on
@, Xi. The associated wall metric is d,((z;), (v:)) = >_; du, (@i, Yi)-

Proposition 3.2.2 (|29, Proposition 6.16.], [39, Proposition 2.6.]). Let X be a set and
k: X x X - R4 a kernel. Then the following are equivalent:

(1) There exists f: X — LY(X) such that k(x,y) = ||f(z) — f(y)||1 for all x,y € X.
(2) For every p > 1, there exists f: X — LP(X) such that (k(z,y))"/? = ||f(z) — f()|,
forallx,y € X.

(3) k=d, for some measured wall structure (X, ).

In order to prove our main result we make use of a method of lifting measured wall structures.
First we require some technical definitions. Let W, X be sets and A = 25| the set of finite
subsets of X.

Definition 3.2.3 ([39, Definition 3.1.]). An A-gauge on W is a function ¢: W x W — A
such that:

o(w',w) Yw,w' € W

d(w,w") C p(w,w) Up(w,w") Yw,w' v’ eW.

SS

B
S\
I

If W is a group then ¢ is called left invariant if ¢p(ww’, ww”) = ¢(w’,w”) for all w,w’, w"” €
w.
Theorem 3.2.4 ([39, Theorem 4.2]). Let X, W be sets, A = 2X). Let ¢ be an A-gauge
on W and assume that ¢(w,w) = 0 for all w € W. Let (X, u) be a measured wall structure.

Then there is a naturally defined measure ji on 2> such that (W x X, i) is a measured wall

structure with corresponding pseudometric

di(wizy, wexe) = p({A € A AF ¢p(wr,wa) U{z1,22}}).



40 Coarse embeddability of generalised wreath products

A consequence of this theorem is that if X, Y, Z are metric spaces where X has a fixed point
Ty € X then Supp(f~'g) is an A-gauge on €, X, where A = 2(2) | Hence if Z has a measured

wall structure there exists a lifted measured wall structure on @, X x Z.

3.3. Coarse embeddings of wreath products

Definition 3.3.1. We say that a metric space X has C-bounded geometry for some C > 0,
if there exists a constant N(C) > 0 such that |B(x,C)| < N(C) for all z € X. A metric space
has bounded geometry if it has C-bounded geometry for every C' > 0.

Example 3.3.2. Note that C-bounded geometry for some C does not in general imply
bounded geometry. As an easy example, one can consider an infinite metric space equipped

with the discrete metric, i.e. d(z,y) = 1 for every z,y € X distinct.

Definition 3.3.3. [122, Definition 1.2.] Let Y and Z be metric spaces. A map p: Y — Z
has the C-coarse path lifting property if there exists C' > 0 and a non-decreasing function
0: RT — RT, such that for any 2,2’ € Z and y € Y with dz(p(y), z) < C there exists y’ € Y
such that dz(p(y'),z") < C and dy (y,y') < 0(dz(z,2")).

Example 3.3.4. The path lifting property occurs naturally in the setting of groups. Let
Y = H be a group and let NV < H be a normal subgroup. The most natural way of defining
a distance function on Z := H/N is by setting d(hN,h'N) to be the infimum of d(hn,h'n’)
over all n,n’ € N. The projection map p : H — H/N is a bornologous map and one checks
easily that it satisfies the coarse path lifting property. Actually, one only needs the fact that
N is “almost normal” in H, i.e. that for every finite subset F of H, there exists a finite subset
F' Cc H with NF C F'N.

For each R > 0 there exists a finite subset Fr of H such that NB(1,R) C FrN. Set
0: R+ max{d(e, f): f € Fg}. Then d(xN,yN) < R if and only if 7'y € NB(1, R)N and
so as N is almost normal it follows that = 'y € Fg. Hence the quotient map has the coarse
path lifting property.

Another example can be obtained by taking Z to be the set of right N-cosets of H, where
N is any (not necessarily normal) subgroup of H. In this case, the projection map p : H —

N\H, g+— Ng is a bornologous map that has the coarse path lifting property.

Theorem 3.3.5. Let X,Y,Z be metric spaces and p: Y — Z be a C-dense bornologous map
with the C'-coarse path lifting property where C < C'. Let §: Rt — R™ be a non-decreasing
function satisfying the properties in Definition 3.3.8. Assume that'Y is uniformly discrete and
that Z has C-bounded geometry. If X,Y,Z are coarsely embeddable into an L'-space, then so
is X 1§ Y.

Remark 3.3.6. Observe that, by Proposition 3.2.2, the conclusion of the theorem also implies
LP-embeddability of X 1z Y for any p > 1. On the other hand, it is known that LP embeds

isometrically into L' for 1 < p < 2. Hence in the formulation of Theorem 3.3.5, we can just as
well replace L'-embeddability by LP-embeddability for 1 < p < 2.
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Proof. By Proposition 3.2.2, there exists measured wall structures (X, o), (Y,v), (Z, ) and

functions px, py, pz,Nx,Ny,Nz: RT — RT increasing to infinity, such that

(4) px(dx(z1,22)) < do(z1,22) < Mx(dx(1,22)) Ya1,22 € X
(5) py (dy (y1,92)) < du(y1,y2) < ny(dy (y1,92)) V1,92 €Y
(6) pz(dz(z1,22)) < du(21,22) <nz(dz(z1,22)) V21,22 € Z.

By Theorem 3.2.4, there exists a measured wall structure 1z on @, X x Z where for (f, 2), (g, 2') €
b, X xZ

di((£,2), (g,2")) = n({A: A+ Supp(f~'g) U {z,2'}}).
We have a projection map p: @, X xY — @, X x Z where (f,y) — (f,p(y)). Using this we

can pullback a measured wall structure on €, X x Y where

dpr((£,9), (8,9) = da((£,p(v)), (8,p(¥")))

We define three other wall structures, o,v and @, on X {z Y where

ds((£, ), ( =Y do(f

z€Z
dz((£,9),(8,9)) = du(y,9),
dz((£,9), (g,y")) =[Supp(f~*g)l.

It is clear from our comments in Section 3.2 that ¢ and v are indeed wall space structures.
Observe that dg is associated to the map A : @, X x Y — ¢*(X x Z), where

1/2 if f(z) ==

0 if otherwise

and ||[A(f,y) — Alg,v)|l1 = |[Supp(f~'g)| = dz((f,v), (g,v')). We now aim to show that we
can coarsely embed X {7 Y into an L'-space. Define A = pji + & + I 4+ @ to be a measured wall
space structure on X !z Y. By Proposition 3.2.2, it suffices to show that for every R > 0 if
dx((f,9), (8,y)) < R then dxy, v ((f,9), (g,9')) < C1(R) and if dx,, v ((f,9), (8,4')) < R then
dx((f,y),(g,y")) < Ca(R) where C1,Cy are constants depending only on R. Fix R > 0 and
suppose dx((f,y), (g,y")) < R for some (f,y),(g,y') € X 1z Y. In particular

(7) dg((£,p(y )%(gm( ) <R,

(8) > do (2)) <R,
z€Z

(9) d,(y,y') <R,

(10) [Supp(f~'g)| < R.

Set zo := p(y) and write Supp(f~'g) = {21,22,...,2,} for some n < R. By (7) it fol-
lows that (A : A + Supp(f~'g) U {p(y),p(y')}) < R. In particular d,(a,b) < R for all
a,b € Supp(f~'g) U {p(y),p(y')}. By Equation (6), this implies that dz(a,b) < p,*(R) for
all a,b € Supp(f~tg) U {p(y),p(y’)}. Starting from yo = y, by the path lifting property, we
can find y; such that dz(p(y1),21) < C and dy (y,y1) < 0(p," (R)). We can then find y, with
dz(p(y2),22) < C and dy (y1,v2) < 0(p,"(R)). Continuing inductively and by the triangle
inequality, we obtain

n—1 n—1

Z dy (Yi, yi+1) + dy (yn, yo) < 2 Z 0(p7" (R)) < 2R0(p," (R)).

=0 =0
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Using Equation (9) and denoting yo = y, we thus have that

n—1

(1) path;(y,y) < > dy (yi, yir1) + dy (Yn: 90) + dv (y,y') < 2R0(p," (R)) + py" (R).
=0

Now we can deduce that

path;(y,5') + D dx((£(2),8(2))
z€Z

<2RO(p; (R) +py (R)+ D> px'(R) by (4), (8) and (11)

2€Supp(f-1g)

< 2R0(p,' (R)) + py' (R) + Rpx'(R) by (10).

It suffices to set C1(R) = 2R9(921(R)) + P{/l(R) + Rp;(l(R). Now suppose conversely that
dx,v ((f,v),(g,9)) < R. In particular

(12) path;(y, y’) <R
(13) > dx(f )< R.

z2€EZ
Let (y1,-..,yn) € Pr such that

n—1

(14) dy (y,01) + > dy (i, yit1) + dy (yn,y') < R+ 1.
i=1
As Y is uniformly discrete, we have dy := inf(d(a,b) | a,b € Y) > 0. This implies that,

although some of the y; may be equal, the number of distinct y; is bounded by R'H

. Any
point in the support of f~!g lies, by definition, in a C-neighbourhood of some p(yl). As such
neighbourhoods contain at most N(C) elements, we can conclude that
R+1

Sy

(15) n = |Supp(f 'g)| < E(R) := N(C)
From Equation (14) and the triangle inequality, it follows that
(16) dy(a,b) <R+1  Va,b€{y,y' y1,--. yn}-

As pis bornologous, there exists S = S(R+1) such that for all z, 2’ € {p(y), p(v'),p(y1), ..., p(yn)},
we have dz(z,2") < S . By definition of (y1,...,y,) and the triangle inequality it follows that
dz(z,2") < S+ 2C for every z,2" € Supp(f~1g) U {p(y),p(y')}. By (6) it follows that

(17) du(z,2') <nz(S+2C)  Vz,2' € Supp(f~'g) U{p®),p(y/)} .

Let us enumerate Supp(f~'g) U {p(y),p(v")} = {p(y) = 20, 21, .-, 2nt1 = p(y’)}. Note that, if
A cuts Supp(f~'g) U {p(y),p(y')}, then A must cut {2;, 2,41} for some i € {0,1,...,m — 1}.
Hence dp; (£, ), (8, ¥")) < Yoo dul2is zit1). It now follows that

dr((£,9), (8,9)) =(d5 + dpp + d5 + d3)((f, 1), (8, ¢))

oy +Zd zizign) + Y do(f ) +dz((£,9), (8,9))
z€EZ
z€Z

< ny(R)+ E( nz(S +2C) + E(R)nx (R) + E(R).
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Hence, it suffices to set Ca3(R) := ny(R) + E(R)(nz(S + 2C) + nx(R) + 1). This shows by
Proposition 3.2.2 that X 1z Y embeds coarsely into an LP-space. ]

Remark 3.3.7. The only time that we used the conditions Y is uniformly discrete was to show
that Equations (12) and (13) imply that |Supp(f~1g)| is bounded by some function of R. One
checks easily that this condition can be replaced by Y has bounded geometry. Alternatively,
it would also be sufficient to require nothing on Y and Z but to ask that X is a uniformly

discrete metric space.

3.4. The compression of X ;Y

We can modify the previous proof to give information on the L'-compression of X 17 Y in

terms of the growth behaviour of § and the L'-compression of X,Y and Z.

Definition 3.4.1. Let Y and Z be metric spaces and let p: Y — Z be a C-dense map with
the coarse path lifting property with respect to a non-decreasing function §: Rt — RT. If
§ > 0 s such that 6(r) < r°+1 for every r € R, then we say that p has the -polynomial path
lifting property.

Here, < denotes inequality up to a multiplicative constant.

Theorem 3.4.2. Let X,Y,Z be metric spaces as in Theorem 3.3.5 andp: Y — Z a C-dense
large-scale Lipschitz map. If p has the §-polynomial path lifting property for some § > 0 then
(X Y) > min (al(X),al(Y), al‘j(‘lz()zlé)

Remark 3.4.3. Our bound generalizes the bound of Theorem 1.1 in [80], which covers the
cases when X and Y are finitely generated groups and Z =Y. Observe that, as both X and
Y can be considered as metric subspaces of X 1z Y, one also has an upper bound, namely

min(a, 8), for the compression of X 1z Y.

Proof. Assume that there are constants a,b > 0 such that dz(p(y),p(v’)) < ady(y,y’) +b
for every y,y’ € Y.The starting point for this proof is the proof of Theorem 3.3.5 and we will
often refer to inequalities stated there. For now, assume that «, 3,7 are real numbers and that
fi: X = L', fo: X = L' and f3: Z — L' are large scale Lipschitz functions into L'-spaces
such that

[e3

dx(z,2')* < | f1(z) = f(@')|h
dy (y.9")" < f2(y) = 241
dz(2,2)7 S |1fs(2) = f3()-

Let dg, d,, and d,, be the measured wall space structures associated to the functions fi, fa, f3
by Proposition 3.2.2. Define the measured wall d,,;, ds, dz,dz on X 1z Y as in Theorem 3.3.5.
As a first step, we are going to show that the function associated to the measured wall dy =
dpi + dj + dz + dz is Lipschitz. That is, there is a constant C € R such that for every
(f.9), (8, y) € X127 Y,

dA((£,9), (8,)) < Cdxy,v ((£.9), (&8 9)-

By Equation (15), it follows that dgz corresponds to a large-scale Lipschitz function if Y is
uniformly discrete and Z has C-bounded geometry. Starting from Equation (12) and (13), one

can easily show the same fact using only uniform discreteness of X.
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As d,, and d, both correspond to large scale Lipschitz functions, this implies that so does
dy + dz:

ds((£,9), (8:9)) + ds((£,), (8:¥)) = du(y, )+ Y do(f(2),8(2))

2€Z
< dY ya +1+ZdX +d ((fay)a(gay/)) ngZZY((fay)7(g7y/))+l'
z€Z
It thus remains to show that d; corresponds to a Lipschitz function. Denote yo = ¥, yn+1 =¥’
and choose (y1,...,Yyn) € P; such that

n

path;(y,9') <Y dy (yi,yi1) < path;(y,¢/) + 1.
i=0
Write 20 = p(y), znt1 = p(y’') and enumerate the elements of Supp(f~'g) as {z1,22,...,2n}
where each z; lies in a C-ball around p(y;). As p is bornologous, we have that dz(z;, zi41) <
2C + ad(y;,yi+1) + b for each i. Hence,

dpi((£,9), Z (215 Zi41) Z dz(zi, ziv1) + dz((£,y), (8,9"))
=0

n(20+b)+a Z dy (yia yi+1)+d5 ((f’ y)v (g7 yl)) =dg ((fa y)7 (gv y/))(2C+b+1)+a Z dy (yi7 yi-‘rl)
=0 1=0

< d@((fv y)7 (ga ?/))(20 + b + 1) +a+a path[(yv y/) S dXZzY((fa y)» (g> yl)) + 1;

where we use that dg corresponds to a large-scale Lipschitz function. We conclude that d is
associated to a large scale Lipschitz map of X 1z Y into an L'-space.

As a second step, we calculate the compression of dy. Assume first that dy((f,y),(g,y")) < R
for some R > 0 such that Equations (7), (8), (9) and (10) are valid. Enumerate the elements
of Supp(f~'g), say z1,22,...,2,. Set zo = p(y). Denote yo = y, then use the path lifting
property to take y; such that dz(p(y1),21) < C and d(yo,y1) < ad(z,21)® + b. Next, take 3,
such that dz(p(y2), 22) < C and such that d(y1,y2) < adz(z1,22)° +b and so on. By definition,

we have
n—1

path; (y,y') < (Z dy (yi, yi+1)) + dy (Y, ¥').
i=0
We now obtain

n—1 n—1

path; (y,5') <Y dy (Y, yi1) + dy (yn,¥') S Y dy (yi,9i1) + dv (9,9/)
1=0 1=0

|
—

n—1

(dz(zi,2001)° + 1) +dy (y,0)) SR+ D dz(2i,2i01)° + du(y,4)"°
i=0

n

S

m
= OM

n— n—1

SR+ dz(zi,2i41)" + RYP SR+ du(zi,201)°7 + RVYP < R+ RRYY + RYP,
=0

(=)

i=

where the last inequality follows from the fact that

du(zi7 Zi-‘rl) < dpﬁ((fv y)a (g7y/)) <R
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Consequently, we obtain

dxiy ((£.9), (8,9) = path; (y,5)+ > dx (f(2),9(2)) S RVPHRYP4 " dy(£(2), (=)
zeZ z€Z

S+~ a
SR+ RYP 4+ (3 do(f(2), 9(2))M™ S RY,
z€Z

where X = max(m é7 %) Consequently, the compression of dy, and hence of X 1z Y is

min (a,ﬁ,ﬂ) . |
v

Remark 3.4.4. At the end of Section 2 in [80], the author shows that the LP-compression
a(X) of a metric space X is always greater than max(3, %)a{(X). Moreover, LP embeds

isometrically into L' for any p € [1,2]. So, for p € [1,2], we deduce that the positivity of

v )
bounded from below by

the LP-compression is preserved under generalized wreath products with the polynomial path

lifting property.






CHAPTER 4

Exactness of locally compact groups

In this chapter we show that exactness of a locally compact second countable group is
equivalent to amenability at infinity. First we need revise some preliminaries.

Given a Hilbert space H, the space of unitaries U(H) with the operator norm topology
forms a topological group. However this topology is usually too strong, for example the left
regular representation A: G — U(H), where \;(€)(h) = £(g~'h) is only a continuous function
when when G is discrete. Fortunately the representation is continuous in the strong operator
topology. That is a net (Ux)xea C U(H) converges to U in U(H) if and only if Uy (&) — Ux(§)
for all £ € H. When we consider unitary representations of groups we will assume they are
continuous with respect to the strong operator topology.

Suppose G is a locally compact second countable group with a fixed Haar measure p and let A
be a C*-algebra where m: A — B(H) is a non-degenerate representation. Suppose f € C.(G, A)
and U: G — U(H) be a unitary representation of G. We want to make sense out of the integrals

() /G 7 (f(5))Us dp(s) € B(H).

4.1. Von Neumann algebras

There is an enormous amount of research into von Neumann algebras however in this section
we shall only introduce the results we shall be using in Section 4.6. We refer the reader to
[112, Chapter IV] and [88, Chapter 4] for introductory texts.

For a Banach space F, the dual space of E is the space of all continuous linear functionals
on E. We denote this space by E*. It is a well known fact that F can isometrically embed
into E**, the double dual of F.

Definition 4.1.1. Let H be a Hilbert space and let A be a x-subalgebra of B(H). If A is

strongly closed then we call A a von Neumann algebra.

Since the strong topology is weaker than the norm topology it follows that every von Neu-
mann algebra is a C*-algebra. One example of a von Neumann algebra is the space of bounded
linear operators on a Hilbert space. The intersection of a family of von Neumann algebras is
a von Neumann algebra [88, pp 117]. Thus for any set C' C B(H) there is the smallest von

Neumann algebra that contains C. We call this the von Neumann algebra generated by C.

Theorem 4.1.2. [88, Theorem 4.2.9.] Let A be a von Neumann algebra on a Hilbert space
H. Then there exists a Banach space A, such that (A,)* is linearly isometrically isomorphic
to A.

We shall call A, the pre-dual of A. One useful construction we shall be using is the tensor
product of von Neumann algebras. Given two vector spaces X and Y we denote their algebraic
tensor product by X ® Y.
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Definition 4.1.3. Let H, K be Hilbert spaces. The tensor product of H and K is the
completion of H @ I with respect to the inner product

O hi @k, > W @Ky =3 (hi, b ki, k).

2¥)

We denote this completion by H ® K.

Proposition 4.1.4. |23, Proposition 3.2.3.] If S € B(H) and T € B(K) then there exists a
unique linear operator S Q@ T € B(H ® K) such that

SRTvew)=SveTw
for allv e H, we K. Moreover ||S®T| = [|S|I|T]|-

As a consequence there is a natural injective *-homomorphism B(H) © B(K) — B(H ® K).
Indeed we can identify B(H) with B(H) © C1 C B(H ® K).

Definition 4.1.5. Let A and B be von Neumann algebras on H and K respectively. The
von Neumann algebra on H ® K generated by a ® b, a € A, b € B is called the von Neumann
tensor product of A and B. This is denoted by AR B.

Proposition 4.1.6 ([112, Chapter 4, Proposition 1.6.]). Let H and K be Hilbert spaces.
Then B(H)®B(K) = B(H ® K)

4.2. Bochner integral

Let G be a locally compact group and E a Banach space. Let C.(G,) be the space of
continuous, compactly supported functions on G with values in E. We now introduce the
inductive limit topology on C.(G, E). For each compact subset K C G, let Ck (G, E) de-
note the space of continuous functions with support contained in K. Indeed C.(G,E) =
U{Ck(G,E): K C G is compact}

Proposition 4.2.1 ([126, Proposition D.7.]). There exists a topology on C.(G, E) such
that

(1) C.(G, E) is a locally convex topological vector space.

(2) For all compact subsets K C G, the inclusions i : Cx (G, E) — C.(G, E) are home-
omorphisms onto their images, when Ck (G, E) is equipped with the supremum norm.

(3) For any locally convex topological vector space M and any linear map F: C.(G, E) —
M, F is continuous if and only if F oix: Cx(G,E) — M is continuous for all
compact subsets K C G.

Proof (Sketch). For each K C G, let Tx(0) be a neighbourhood basis of the identity of
Ck (G, E). We define a neighbourhood basis of the identity 7(0) of C.(G, E) where

T(0)={X C C.(G,E) : X is convex and X N Ck (G, E) € Tk (0) for all compact K C G}.
]

We call this topology the inductive limit topology. We say that a net (fy)aea is eventually
compactly supported if there exists a compact set Ky and an index A\g € A such that Supp(fy) C
Ky for all A > Ag. This means that a net (f))rea of eventually compactly supported functions
converges to f in the inductive limit topology if and only if the net converges to f uniformly.
This is because the inclusion functions are homeomorphisms onto their image and there exists
a compact K C G such that for all A > Ao, f) € Ck (G, E).
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Proposition 4.2.2. Let M be a locally convex topological vector space and let F': C.(G) —
M be a linear map. Then F is continuous if and only if F' maps eventually compactly supported

convergent nets to convergent nets in M.

Proof (Sketch). Suppose f) — fin Ck(G, E). Indeed tx(f\) = ti(f) in the inductive limit
topology and is eventually compactly supported. Hence F(tx(fr)) = F(tx(f)) and so F ok

is continuous for all compact subsets K C G. By the previous proposition this is enough. O

There is a natural inclusion of C.(G) ® E into C.(G, E) where z ® a maps to the function
s+ z(s)a.

Lemma 4.2.3 ([126, Lemma 1.87.]). Suppose Ey is a dense subset of a Banach space E.
Then the span of elements z®@a € C.(G) ® E where z € C.(G) and a € Ey is dense in Co(G, F)
with the inductive limit topology.

Proof (Sketch). In fact we show a stronger result: for each f € C.(G,FE) there exists a
compact K C G such that for all small enough € > 0 there exist g € Cx(G) ® Ey such that
If = gllec <&

Let W be a fixed compact symmetric neighbourhood of the identity. If € > 0 then choose a
symmetric open neighbourhood of the identity V' C W such that || f(s) — f(r)]| < € whenever
sir € V. Choose si,...,s, € Supp(f) such that Supp(f) C U ;s;V. This means that
Supp(f)¢U sV U---Us,V is an open cover of G and so choose a partition of unity {z;};_,
such that Supp(zo) C Supp(f)© and Supp(z;) C s;V for all i = 1,...,n. For each s;, choose
z; € Ey such that || f(s;) — 2i]| < /2. Now set g =Y. | z; @ z;. It follows that g is compactly
supported as Supp(g) C KW, and for all r € G,

n n

1£(r) Z ) = zll < 3z 0) = f(s0)] |+Zzz (i) — il <e. O
i—1 i=1

Let H be a Hilbert space and set L2(G,H) = {f: G = H | [, If(s)[]}, <oo}. For f €

L*(G,H) we will usually use the notation fy for f(g) € H. This is a Hilbert space under

the inner product ( = [, (f( W du(h) for all f,g € L?(G,H). We can also form

L?(G) ® H, which is a Hllbert space under the inner product (£ ® v,n ® v') = (£, n){v,v’) for

all £,n € L*(G) and v,v" € H. Observe that ||z ® a| is equal to the norm of the function
s+ z(s)a.

Corollary 4.2.4. The inclusion of C.(G) ®©H into C.(G,H) extends to an isometric linear
isomorphism from L*(G) @ H to L*(G,H).

Proof. It is clear that C.(G) ® H is dense inside L?*(G) ® H and C.(G,H) is dense inside
L?(G,H). Tt suffices to show that C.(G) ® H is dense inside C.(G,H) with respect to the
inner product on L?(G,H). If f € C.(G,H) then by the previous proposition there exists an
eventually compactly supported net (fy)xea such that fy — f uniformly. Hence there exists
K C G and A\ € A such that Supp(fy) U Supp(f) C K for all A > Ag. If € > 0 then choose
A > Ao large enough so that |[fx — fllec < . Hence [ |lfa(s) — f(s)[IF, du(s) < p(K)e?
Therefore C.(G) ® H is dense inside C.(G,H) and so the operator extends to an isometric

linear isomorphism. O
For f € C.(G, E), the function s+ || f(s)||z belongs to C.(G). Define the L'-norm as

T /G 17() 1 du(s).



50 Exactness of locally compact groups

Proposition 4.2.5 ([126, Lemma 1.91.]). Suppose E is a Banach space and G is a locally
compact group with left Haar measure p. Then there is a unique linear map Ig: C.(G,E) - E
such that

(1) I(z®@a) =a [ 2(s) du(s).

(2) [l1(f )llE <|Ifl-

(3) w(I(f) = Jg(f(s))du(s) for all o € E*.

(4) If L: E — F is a bounded linear operator then L(Ig(f)) = Ip(L(f)), where L(f) is
the function s — L(f(s)).

For f € C.(G, E) we shall write I(f) as [ f(s) du(s).

Proposition 4.2.6 ([126, Proposition 1.105.]). Let E be a Banach space and G a locally
compact group with a left Haar measure p. Suppose that F € C.(G x G, E). Then the maps
s fG s,7) d,u( ) and ro— fG s,7) du(s) belong to C.(G,E) and the iterated integrals
Jo Jo F(s,7m)du(r)du(s), [o [qF(s,r)du(s)du(r) are well defined and have common value.

Definition 4.2.7. A net T} converges strictly to T if and only if || T; K —T K| and | KT;— KT)||
tend to 0 for all compact operators K € IC(H). We denote B;(H) to be the space of bounded

linear operators with the strict topology.

Definition 4.2.8. A net T; converges *-strongly to 7' if and only if 7; and T} converge
strongly to T" and T™ respectively.

Proposition 4.2.9. [97, Proposition C.7.] On B(H), strict convergence implies *-strong

convergence. On norm bounded subsets of B(H) the strict and x-strong topologies coincide.

Proposition 4.2.10. [97, Corollary C.8.] Suppose U: G — U(H) is a unitary representa-

tion of G. Then U is strictly continuous.

Suppose m: A — B(H) is a non-degenerate representation of a C*-algebra A andlet U: G —
B(H) be a unitary representation of a locally compact group G. For any function f € C.(G, A),
the function G — B(H), s — w(f(s))Us is not necessarily continuous under the operator norm
and so we can not apply Proposition 4.2.5 directly. However this does not stop us defining the

integral.
Proposition 4.2.11 ([126, Lemma 1.101]). There is a unique linear map I: C.(G,Bs(H)) —
B(H) such that
I(fHv,w) = / (f(s)v,w)du(s) Vf e CG,Bs(H)) and Vv, w € H.
G
We write I(f) as [, f(s)du(s). If L: H — K is a linear map then L( [ f(s)du(s)) =
Jo L(f(s)) dp(s).

This uniquely defines the operator in ().

4.3. Cross products

Definition 4.3.1. Let (A4, G, a) be a triple consisting of C*-algebra A, a locally compact
group G, and a group homomorphism a: G — Aut(A), g — a4. The triple (4, G, a) is called
a C*-dynamical system if for every a € A the map G — A, g — «ag4(a) is continuous.
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Given a C*-dynamical system (A, G, ) we can construct a Banach -algebra encoding this

action. Define a convolution product and adjoint on C.(G, A) by

fmg@ﬁaéfmmm@»wwx () = A Das(F(s™)").

One can show that C.(G, A) becomes a *-algebra under convolution, involution and pointwise
addition [126, Section 2.3.]. We denote the completion of C.(G, A) with respect to the L1-
norm, || - ||1, by L'(G, A). This is a Banach *-algebra.

Definition 4.3.2. Let (4,G,a) be a C*-dynamical system. A covariant representation of
(A,G,a) is a pair (m,U) where m: A — B(H) is a *-homomorphism and U: G — B(H) is a
unitary representation of G' such that Uym(a)Uy = m(a,(a)) for all g € G and a € A.

Definition 4.3.3. Let A be a x-algebra. We say that a *-homomorphism m: A — B(H) is
non-degenerate if the set
{m(a)h:a € Aand h € H}

spans a dense subset of H.

Proposition 4.3.4 ([126, Proposition 2.23.]). Suppose that (w,U) is a covariant repre-
sentation of a C*-dynamical system (A,G,«) on H. Then

w1 U(f) = [ @)Vduts)
defines a x-homomorphism of C.(G, A) to B(H). Furthermore ||mxU(f)||gz) < || fll1 and mxU
is non-degenerate if w is non-degenerate. Conuversely every non-degenerate x-homomorphism

of C.(G, A) arises from some covariant representation.

We can complete C.(G, A) with respect to the norm | f| = |7 x U(f)llpr2(a)) and we
denote the completion by A %, o G. On C.(G, A) we can define a norm

I flmax :=sup {||m x U(f)]| : (w,U) is a covariant representation of (A,G,«)} Vf € C.(G,A).

This is called the mazimal norm and the completion of C.(G, A) with respect to this norm is
called mazimal cross product, which is denoted by A x, G. For every C*-dynamical system
(A, G, a) there exists a naturally associated cross product. Let m: A — B(H) be a faithful
representation of A. Define 7: A — B(L?*(G,H)) by

(7(a)f)s == m(as-1(a))(fs)
for all f € L?(G,H), s € G and a € A. Define a unitary representation A: G — U(L*(G,H)),

(Aif)s = fi—1, for all s,t € G. Tt is routine to show that (7, A) is a covariant representation of

(A,G,a).

Lemma 4.3.5 ([126, Lemma 2.26.]). Let (A, G, ) be a C*-dynamical system. If m: A —
B(H) is a faithful representation then the representation @ x A: C.(G,A) — B(L*(G,H)) is
also a faithful.

Proposition 4.3.6 ([126, Lemma 7.8.]). Suppose w1 and 72 are two faithful representa-
tions of A. Then A Xz, Ao G and A Xz, Ao G are x-isomorphic.

The consequence of this is that the completion only depends on the C*-dynamical system.
We call this completion the reduced cross product of (A,G,a) and denote the C*-algebra by
AxarG. If (A a,G) and (B, §8,G) are C*-dynamical systems and 6: A — B is an equivariant
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*-homomorphism, then there is a canonical *-homomorphism 6,.: A x,, G = B xg, G such
that for all f € C.(G, A), 0,.(f)(g) =0(f(g)) for all g € G.

Let (A, G, a) be a C*-dynamical system and J C A a closed two sided ideal of A such that
for all ay(J) C J for all g € G. In this situation « restricts to an action on J and « is well
defined on the quotient A/J which we denote by &. Hence (J, G, «|J) and (A/J, G, &) are also

C*-dynamical systems.

Definition 4.3.7 ([75]). A locally compact group G is ezact if for every C*-dynamical

system (A, G, «) and every a-invariant closed two sided ideal J of A the sequence
0—=JXa7rp G = AXa, G—= (A)J) Xar G—0
is exact.

Let (A4, a, @) be a C*-dynamical system and suppose m: A — B(H) is a faithful representa-
tion. For ¢ € B(L?(G)). we can consider ¢ as a linear functional on B(L?(G)) because ¢ also
belongs to the double dual (B(L?(G)).)** = B(L*(G))*. In particular im(p) C C. We denote
by 52 the restriction to A X4, G of the slice map p®idgz): B(L*(G))@B(H) — B(H). The
map ¢®idg(y is continuous when B(H) has the operator norm topology and B(L*(G))®@B(H)
has the strong operator topology, indeed ||¢®id| = |¢|| [116, Proposition 12.4.4.]. We shall

refer to S:} as the slice map corresponding to .

Lemma 4.3.8 ([75, Lemma 2.1.]). (1) Ifz € Axa, G then S5 (x) € A.
(2) Let (A, a,G) and (B,B,G) be C*-dynamical systems and let : A — B be a G-

equivariant x-homomorphism. Then the following diagram commutes

Or
AXgr G—— B xg, G

A B

A B.

for all ¢ € B(L*(G))x.

Proof (Sketch). Fix &, € C.(G) and define ¢ € B(L*(G))« by ¢(S) = (S¢,n) for all S €
B(L*(G)). For T € B(L*(Q))®B(H), o(T)®id € B(H) is defined to be the unique operator
that satisfies (o(T)®idv,v") = or(v,v’), where or(v,v") = (T(§ ® v),n ® V') for all v,v" € H
[116, Proposition 12.4.4.].

For f € C.(G, A), write T} to be the operator (7 x A)(f) € B(L*(G))@B(H). Hence for
he G, Ty€®0)(h) = J, £g~ hm(an-1(f,))(v) du(g). Therefore

(18) SA(TY) = / / &g WnB) -1 (f,) dulg)dp(h) Vi € Co(G, A).
GJG

For short hand write F(g,h) = £(g'h)n(h)a,-1(f,). By Proposition 4.2.6, the iterated inte-
gral [, [ F(g,h)du(g)du(h) belongs to A. As C.(G, A) is norm dense in A x4, G and Sj;1 is
continuous then S2(T) € A for any T € A xq,, G.

The span of the linear functionals of the form T +— (T¢,n) for some £, € C.(G) is dense
in B(L?(G)). [112, Theorem 1.6.]. So for ¢ € B(L?*(G)). and € > 0, there exists a sequence
&y énymy ey € Ce(G) such that ||o(T) — Y0 ((Tén,mn)|| < € for all T € B(L*(G))
with ||T']] < 1. For short hand write the linear functional T' — (T'€,n) as we . Hence for any
T € Asta, G, ISAT) — X0y 85, () < llp — Sy wepn IIT] < €[] Thus SAT) € A
for all o € B(L*(G)) and T € A x4, G.



Left and right uniformly continuous functions on G 53

(2) follows because the diagram commutes on the dense subsets C.(G, A) and C.(G, B) and

A

the slice maps S, Sg are continuous. O

Proposition 4.3.9 ([75, Proposition 2.2.]). Let (A, o, G) be a C*-dynamical system and
let J be a two-sided ideal in A such that o(G)J C J. Denote the surjection of A onto A/J by
0 and the canonical x-homomorphism 0,: A Xo,r G — (A/J) X4, G. Then for T € A Xy, G

the following are equivalent:

(1) T € ker(6,).
(2) SA(T) € J for all ¢ € B(L*(G))x.
(3) S:,‘u (T) € J for all &,n € C.(G).

4.4. Left and right uniformly continuous functions on G

Let Cy(G) be the space of bounded continuous complex valued functions on G equipped with
the supremum norm | - ||e. Let 7 be the faithful representation 7: Cy(G) — B(L?*(G)) where
(m(f)€)(z) = f(x)é(x) for f € Cb(G), £ € L*(G) and = € G. Let L and R be homomorphisms
from G to Aut(Cy(Q)) such that (L,f)(z) = f(g7'z) and R, f(z) = f(xg) for all f € C\(GQ)
and z,9 € G. A bounded continuous function f: G — C is left uniformly continuous if
|ILgf — flloo = 0 as g — 1 and right uniformly continuous if |Ryf — flloc = 0 as g — 1. We
denote the space of bounded left (right) uniformly continuous functions by Cj,,(G) (respectively
Cru(G)). We denote the restriction of 7 to Cp,(G) (Cru(G)) by wL (respectively 7ft).

We have the left and right regular unitary representations \,p: G — U(L*(G)) where for
¢ € L*(G) and g,z € G, (\&)(w) = &£(g7 ) and (py€)(x) = £(xg)A(g)Y/?. Tt is not hard
to show that (wf,\) and (7, p) are covariant representations of the C*-dynamical systems
(Ciu(G),G, L) and (C,(G), G, R) respectively. The aim of this section is to show that the

following *-isomorphisms hold
Cru(G) ><17TR7p’R G = Clu(G) ><|.n.L’)\7L G = Clu(G) XLr G
Proposition 4.4.1. There exists a unitary Us € B(L*(G)) such that
Us(Cru(G) ¥zr g G)Us = Cru(G) Xpr 5 1, G
Proof. Define a G-equivariant x-isomorphism ¢: Cy,,(G) — Ci,(G) such that ¢(f)(z) =
f(z™1) for all f € Cpy(G) and z € G. Define a unitary Us: L?(G) — L?*(G) such that
(Us€)(z) = E(x~ Az Y2 for all € € L2(G) and = € G. Then Usp, = \,Us and Usm?(f) =

7L (p(f))Us for all g € G and f € C,y(G). Hence this extends to a *-isomorphism between
Cru(G) XrR 5 R G and Cp, (G) XoL AL G O

Let 1 ® 7l C,(G) — B(L*(G, L*(G))) where [(1 @ 75)(£)(&)]y = f(9)é, and A: G —
B(L*(G, L*(G))) where [(Ap€)]y = &1, for all f € C(G), € € L*(G, L*(G)) and g,h € G. Tt
is clear that (1@7%, A) is a covariant representation of the C*-dynamical system (Cj, (G), G, L).
Furthermore it is also clear that there exists a unitary Us: L*(G) — L?(G, L?*(G)) such that

UQ(C[U(G) ><17|-L7>\’L G)U; = Clu(G) >41®7rL,A’L G.

Indeed fix 9 € L?*(G) such that |[nollz = 1 and for any ¢ € L?(G) define Uy: L?(G) —
L*(G, L*(G)), where (U2€)4(z) = &(g)no(@). Thus [[Uz€]l2 = [[€]l2, U (f) = 1 @ 72 (f)U2
and Us A, = AUy for all € € L3(G), f € C1,(G) and g € G.
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Lemma 4.4.2. LetU;: L*(G,L*(G)) — L*(G, L*(G)) be a linear map such that (U;€),(z) =
Ego—1 () A(z™1)Y2. Then Uy is a unitary map and U; (Cr,(G) ¥ 1, G)Ur = (C1u(G) Xy gnr a1
QG), where Uy is the adjoint of U .

Proof. This is an adaptation of the map in [23, Proposition 5.1.3.]. By changing variables

x +— 27 1g, and the property of the modular function we have

/ €pot () PAG) du(a) = / €a(ag)? du(a).
G G

Thus by Fubini’s theorem and left invariance of the Haar integral ||U;¢||3 = ||€]|3.
It follows that UyA, = A U and UfrL(f) = 1@ nl(f)Us for all g € G and f € C1,(G),
where 77 is defined after Proposition 4.3.4. O

We denote the composition Uy o U o Us: L*(G) — L*(G, L*(G)) and the adjoint U3 o U o
Uf: L*(G,L*(G)) — L*(G) by Uizs and U, 3 respectively. Putting this all together we

obtain the following isomorphisms.

Corollary 4.4.3.

U1,2,3(C'r‘u(G) ><]7TR7/;7R G)Uf7273 = Olu(G) XIL,T‘ G

4.5. Amenable actions

We will assume that all topological spaces in this section are Hausdorff. A group G acts on
a locally compact space X if there exists a homomorphism a: G — Homeo(X) such that the

map X X G — X, (z,s) — as(z) is continuous.

Definition 4.5.1. A locally compact group G admits a topologically amenable action on a
locally compact space X if there exists a net (m;);c; of weak-+ continuous maps m;: X —
Prob(G) such that for all € > 0 and compact sets K x K’ C X x G there exists J € I such
that for all i > J,

sup llsmi — mi®||1 < e,
(z,8)e KXK'

where Prob(G) is the space of probability measures on G and sm¥(g) = m¥(s~!g) for all
s,g € Gand x € X.

We say that a locally compact group is amenable at infinity if it admits an amenable action
on a compact space. The spectrum of a C*-algebra is the set of unitary equivalence classes
of irreducible representations of the C* algebra endowed with the hull kernel topology [88,
Section 5.4.]. The spectrum of C,, (G) is compact because Cy,, (G) is unital [88, Theorem 5.4.8].
We shall denote the spectrum by %G and when G is discrete then S“G is the StoneCech

compactification of G.

Proposition 4.5.2 ([5, Proposition 3.4.]). Let G be a locally compact group. Then G is

amenable at infinity if and only if the action of G on [“G is amenable.

Examples 4.5.3. (1) An amenable group acts amenably on a point.
(2) Every discrete hyperbolic group acts amenably on its Gromov boundary [1], [23,
Theorem 5.3.15.].

(3) Every almost connected group is amenable at infinity [5, Proposition 3.3.].

Recall the definition of property A for general metric space.



Exactness of locally compact second countable groups 55

Definition 4.5.4 ([102, Definition 2.1.]). Let X be a bounded geometry proper metric
space. We say that X has property A if there exists a sequence of weak-x continuous maps
fn: X — Prob(X) such that

e for all n there exists an R > 0 such that Supp(f.(z)) C B(z, R),
e for each S > 0, as n — oo,

sup || fu(@) = fu(y)llr — 0.
d(z,y)<S

Theorem 4.5.5 ([5, Proposition 3.5.] [44, Theorem 2.3.]). A locally compact second

countable group has property A if and only if it acts amenably on a compact Hausdorff space.

Theorem 4.5.6 ([5, Theorem 7.2.]). If a locally compact second countable group is amenable

at infinity then it is exact.

4.6. Exactness of locally compact second countable groups

In this section we show that exactness of a locally compact second countable group is equiv-
alent to admitting an amenable action on a compact Hausdorff space. The material here is

joint work with Jacek Brodzki and Kang Li.

4.6.1. Ghost operators. We introduce an important ideal inside the uniform Roe alge-
bra.

Definition 4.6.1. Let Z be a discrete metric space with bounded geometry. An operator
T € C}(Z) is called a ghost if T, ,, — 0 as © — oo and y — co. The space of all ghost operators
in C}(Z) forms a closed two sided ideal and is called the ghost ideal.

Clearly every finite rank operator is a ghost operator so every compact operator is a ghost.

So when do these ideals coincide?

Theorem 4.6.2 ([103, Theorem 1.3.]). Let Z be a discrete metric space with bounded
geometry. Then Z has property A if and only if all ghost operators are compact.

If Z has property A then every ghost operator is compact is an easy result [100, Proposition
11.43.]. We can show this another way. Let I be a two-side ideal in C}(Z) and set Fin(I) to be
the intersection of the ideal I with the space of all finite propagation operators. If G is a ghost
then Fin((G)) C K(¢?(Z)) [31, Theorem 3.1.]. It follows that G is compact if Z has property
A because [31, Theorem 4.4.] states that if Z has property A then Fin(I) is dense inside I.
Hence every ghost is the limit of compact operators and so is compact.

The other direction uses another characterisation of property A called operator norm local-
isation [30] [105, Theorem 4.1.] to build an operator that asymptotically has a spectral gap.

This is enough to provide a non-compact ghost operator that lives in the uniform Roe algebra.

4.6.2. Plan of proof. We plan to show that if a locally compact second countable group

G is not amenable at infinity then the following sequence
0 —— Co(G) %1, G —> Ca(G) %10 G — (Cru(G)/Co(G)) %1, G — 0

that is not exact. The maps ¢ and 6, are injective and surjective respectively so we will show
the sequence is not exact in the middle, i.e im¢ C ker6,..

As G is not amenable at infinity, it does not have property A by Theorem 4.5.5. This
means that some coarse lattice Z does not have property A by Theorem 1.2.6. By Theorem

4.6.2 there exists a non-compact ghost operator T' € C*(Z). We will isometrically lift T' to
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Cru(G) Xzr g , G and map this to Cy,(G) ¥, G via the unitaries in Corollary 4.4.3. By using
the slice map in Proposition 4.3.9 we shall show that this operator belongs to ker6,.. The
algebra Co(G) %1, G is *-isomorphic to the compact operators on L?(G, L?(G)) and since T is
non-compact, it follows that the image of the lift in C,,(G) X1 G is also non-compact. Hence
this operator belongs to ker 6, \ im .

In order to apply the slice map we need to make the distinction between the functions in
Ciu(G) %, G that are in the dense subset C.(G, C,(G)) and the operators these functions
represent. Given a finite propagation operator in Cj(Z) we will need to find a function T e
C.o(G,Cru(G)) such that the image of 7' under the representation 7% x p: Co(G, Cpu(G)) —
B(L*(@G)) is the lift of the operator T belonging to Cry(G) X g, G C B(L*(G)). The reason
we have gone through C,..(G) X, r r , G instead of directly to Cp,(G) X, G is because it is
easier to find this function 7' in Co(G, Cyy(G))

4.6.3. Lifting operators from a coarse lattice. Let G be a locally compact second
countable group and Z a coarse lattice inside G. Z is uniformly discrete so fix § > 0 such that
for all z,2" € Z, d(z,7') > &, whenever z # 2’. Let ¢ be a continuous positive valued function
on G such that Supp(p) C B(1,46/2) and

loll2 = /G o(g)? dug) = 1.

For z € Z, set ¢, to be the function g — p(271g) for g € G. This is a bump function supported
on a d/2-neighbourhood around z. As Z is é-uniformly discrete, each bump function ¢, has
disjoint support. In particular {p, : 2 € Z} forms an orthonormal set in L?(G).

Define an operator W: ¢?(Z) — L?(G), 6, + ¢, and extend linearly. Hence for n € ¢*(Z),
(Wn)(@) = ey 1(2)p- () for all € G. For € € L3(G), W*e(2) = [ €(y)¢-(y) duly). Tt is
clear that W is an isometry as it sends an orthonormal basis to an orthonormal set.

Let T € Ci(Z) be a finite propagation operator and denote (T'8,,,0,) by T, .. By left
invariance of the Haar integral we have that for € G and ¢ € L?(G) we have that

(WTW™)(€)(x) = /G S (@) (@9) Tt (o) du(y).

zZWEZ
As T has finite propagation we are only performing finitely many sums. This means we are
able to exchange the order of summation and integration without worry. For all z,y € G define

a continuous function fy: G — C such that

T)(@)= D ea(@)pu(ay)Towl(y) />
zweZ

The supports of ¢, are pairwise disjoint so for all z,y € G, either T y(z) = 0 or there exists
exactly one pair z,w € Z such that ¢,(x) and ¢, (zy) are non-zero. Observe z € B(z,§/2)
and w € B(zy,d/2) as the support of ¢ is contained in a ball of radius 6. The map fy is right
uniformly continuous and the function T:G— Cru(G),y — fy is compactly supported. This is
because if there exists an R such that T, ,, = 0 whenever d(z, w) > R then the function y — ﬁ/
is supported on a ball of radius R + §. Therefore the function 7' belongs to Ce(G, Cru(G)).

By construction, the function Tis represented by the operator WTW* on B(L?(G)). In other
words the operator WTW* is the image of T under the #-representation 7%xp: Co(G, Cy(G)) —
B(L?(@)) defined in Proposition 4.3.4 for the covariant representation (7%, p). Indeed for all
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Eel?G)and €@
(x" % TNE)e) = [ Ty@)en) M) diy) = (WTW)(©)(a).

Let v: Cru(G) — C1u(G) be the function ¥(f)(g) = f(g~'). We can extend this to the
function ¢: Co(G, Cru(G)) — Co(G, Cru(G)) where ¥(f)g = ¥(fy). By the xisomorphism
in Corollary 4.4.3 it follows that ¢(T) is represented by the operator Ui 23WTW?*U{ 5 5 on
B(L?(G,L?*(@G))). Indeed

Ur o s WIW*US 5y = Usog ( [ Tms du(y)> Uty = (7 2 A)((T)
G

where 7 x A is the representation associate the reduced cross product in Proposition 4.3.6.

4.6.4. Main theorem.

Theorem 4.6.3. Let G be a locally compact second countable group that does not have prop-
erty A. Then there ezists an operator in the kernel of C,,(G) X1 G — (C1(G)/Co(G)) ¥, G

that is non-compact.

Proof. For any operator T' € C;(Z) we shall write T' for the operator U2 sWTW*U{ 55 €
Ciu(G) xr,» G. We shall write S, for the slice map defined in (18) for any &,n € C.(G).

Let Z be a coarse lattice inside G. As G does not have property A then Z does not have
property A by Proposition 1.2.6. Hence C(Z) contains a non-compact ghost operator and call
it T'. Since T is non-compact, it follows that T is also non-compact. This is because the lifting
map W: £2(Z) — L?(G) is an isometry and U o3 is a unitary operator and so the composition
of these operators preserves the non-compactness of T. In order to prove the statement of the
theorem it is enough to show that ng(f) belongs to Cy(G) for all £, 1 € C.(G) by Proposition
4.3.9. We shall show that for any € > 0 there exists C' > 0 such that whenever |z| > C then
Sen(T)(@)] < <.

The kernel k(g,h) := £(g~*h)7(h) is bounded above by ||€]|oo||n]lcc and is compactly sup-
ported, say on K; x Ky, as &,n are compactly supported. The modular function, the dis-
tance function and the length function are all continuous so there exists a D > 0 such that
d(g,h) + |h| + A(g)~Y2 < D for all (g,h) € K1 x Ko.

Set €’ to be

! . €

" Dl Il (Ka(K)
Choose M > 0 such that if |z|, |w| > M then |T, | < . Let T be an operator of finite
propagation such that |7 — T|| — 0 as n — oo. The function S¢,: A xz, G — A is

continuous so choose n large enough so that |7 — T |5 + [Se.n(T) = Sen(TM)]| 0 <
min(e/3,¢’). In particular |T, , — TZ(TB| < ¢ forall z,w € Z.
Set C' = M + D + §/2. Hence whenever |z| > C and (g, h) € K; x K it follows that

T (@7 DY) = oo (@7 ) (@7 R TE, [ Ag) T2 < 26D

Z0,Wo

for some (z9,wo) € B(z=*h™1,6/2) x B(x='h~1g,4/2). This is because \Tz(gt)wo\ <Ny wol +€
and if x| > C then |zol,|wo| > M. Now putting all of this together, whenever |z| > C' it
follows that
|Se.n(T)(@)] < [Se.n(T™) ()| +e/3 < /K g T @) dulg)dp(h) +e/3 < O
1X 82
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Corollary 4.6.4. Let G be a locally compact second countable group. Then the following

are equivalent.
(1)

(2) G is amenable at infinity.

(3)

(4)

G has property A.

G is exact.

The following sequence
0—— Co(G) AL.r G —— Clu(G) XLp.r G—— (Clu(G)/Co(G)) X]L,r G——0

15 exact.

Proof. The implication (3) = (4) is trivial, the equivalence (1) < (2) was established in [44]
and the implication (2) = (3) is done in [5]. The above theorem is the implication (4) = (1)
as Co(G) % G is isomorphic to the compact operators on L?(G, L*(G)). O

4.7. Compression of locally compact second countable groups

In this section we show that when compression of a locally compact second countable group
is strictly larger than 1/2 then it has property A. We shall use the following characterisation

of property A for locally compact second countable groups.

Theorem 4.7.1 ([44, Theorem 2.3.]). Let G be a locally compact second countable group.
Then G has property A if and only if for any compact subset K C G there exists a sequence of
positive kernels with compact width uy: G x G — C such that

sup |1 —ug(s,t)] =0 ask — oc.
(s,t)€Tube(K)

Definition 4.7.2. Let (G, d) be a locally compact second countable group with a plig metric,

and let p denote the Haar measure on G. Then we say that the metric d has exponentially

controlled growth if there exists constants «, 8 > 0 such that
1(Ba(e,n)) < Be*™ Vn € N.

Theorem 4.7.3. [59, Theorem 5.3.] Every locally compact second countable group G has a

plig metric d such that the metric has exponentially controlled growth.

Proposition 4.7.4. [44, Proposition 3.3.] Let G be a locally compact, second countable

group. Then the following are equivalent:

(1) G admits a coarse embedding into a Hilbert space;

(2) G admits a continuous coarse embedding into a Hilbert space.

Lemma 4.7.5. Let G be a locally compact, second countable group and d a plig metric. Let
f: G —= H be a large scale Lipschitz map. Then there exists a continuous large-scale Lipschitz
map f such that

Ry = RfA.

Proof. In the proof of [44, Proposition 3.3.] there exists a continuous function ]?: G — H and
R > 0 such that

~

() = f@)ln < R

for all x € G. Hence fis large-scale Lipschitz and has the same compression as f. (|
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Let G be a locally compact, second countable group. Given a measurable complex-valued
kernel k: G x G — C define an operator Op(k): L?(G) — L*(G) by convolution

Op(k)¢(x) = /G k(e 9)E(w) du(y).

Proposition 4.7.6. Under the following conditions Op(k) is a bounded operator.

(1) If k is bounded and has compact width then Op(k) is bounded.
(2) Letk be a non-negative and real-valued kernel with the property that there exists C' > 0
such that

/ k(s,t)du(s) < C, forallt € G, and
G

/ E(s,t)du(t) < C, forallseG.
G
Then Op(k) is bounded and ||Op(k)|| < C.

Proof. We shall only prove (1) as (2) is known as the Schur Test. We aim to show that for
all f € L?(G) there exists a constant M > 0 such that ||Op(k) f|| < M||f| r2(c)-
Suppose Supp(k) C Tube(L) where L is compact subset of G. If x € G is fixed and

2
k(z.y) # 0 then y € wL. Hence [Op(k)fl3 = [q ([, k(= y)f(y) du(y))” du(z). Choose
K > 0 such that k(x,y) < K for all z,y € G. Then by the Cauchy—Schwarz inequality it fol-

2 .

lows that [, ([, k(z,9)f(y) du(y))” du(z) < w(L)K? [, [, |F@)]? du(y)dp(z). By using left
invariance of the Haar integral and Fubini’s theorem we have that [, [, [f(y)]* du(y)du(z) =
S 1113 due(y). Hence putting this together we have that ||Op(k)f]13 < n(L)2K2[|f|)3. O

Theorem 4.7.7. Let G be a locally compact second countable group and d a plig metric with
exponentially controlled growth. If as(G,d) > 1/2 then G has property A.

To prove this we will first have to prove a technical lemma. Let A be the C*-algebra of
bounded operators on L?(G) which is the norm closure of the subalgebra of operators generated
by Op(k), where k is a bounded compact width kernel.

Let f be a large-scale Lipschitz function from a locally compact second countable group
G to a Hilbert space H such that for some 0 < ¢ < 1/2, d(s,t)lga < ||f(s) = f(t)]| for all
2,y € G. For all k > 1, Define a kernel u,: G x G — R by uy(s,t) = elf&-f@I" By

Schoenberg’s theorem in Theorem 1.2.23, this kernel is positive definite. In fact this kernel

satisfies the conditions in Theorem 1.2.8. As the function f is large-scale Lipschitz we have
that for some constant D, uy(s,t) > ePk™1d(sD) for all s,¢ € G. In particular for all R,e > 0
we can chose k large enough so that |1 — e#~ 4D*| < & whenever d(s,t) < R. However the
kernels u; do not have compact width so the plan of this theorem is to approximate the kernels
uy, by positive ones with compact width. Then we would satisfy the conditions in Theorem

4.7.1 and so G would have property A.

Lemma 4.7.8. The operators Op(uy) belong to A for all k > 1.

Proof. The metric has exponentially controlled growth so let o, 8 > 0 be constants such that
w(B(e,n)) < pe*™ for all n € N. Fix x > 0. We will show that the kernel u: G x G — C
defined by u(s, t) = e~ 17 =FOI*% defines an element in A.
Define for n € N,
u(s, t), if d(s,t) >n

kn(s,t) =
0 otherwise.
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It follows that u — k,, is bounded compact width kernel so Op(u — k) belongs to A. We will
show that ||Op(u) — Op(u — ky)|l2 = 0 as n — oo. Since Op(u) — Op(u — k,) = Op(ky) o
compactly supported elements of L?(G), it is enough to show that ||Op(ky,)|| — 0 as n — oo.
To do this we will provide a sequence C,, that converges to 0 such that [, k,(s,t) du(t) < Cy
for all s € S. Then by the Schur test, ||Op(k,)|| is bounded above by C,, for each n and so
converges to 0.

Fix s € G and set Fy,, = B(s,m + 1) \ B(s,m). Now for all m > 0, meu(s,t) du(t) <
1(F) (e="™" ") because u(s,t) < e=*™"" for all t € F,,. Hence for all n € N,

(19) /B(Syn)cu(s,t) du(t) < (Be* —1) Z <§j;)m

m>n
This is because B(s,n)¢ = Up>nFy and p(Fy,) < pe®™(Be* — 1) for m € N. There exists
ng such that for all m > ng, fe® < ef™° This means that the sum on the right hand side
converges to 0 as n — co. Now we are done because fG (s,t) du(t) fB (5,1) u(s,t) du(t) for
all n € N and if we set C,, to equal the right hand side of (19) for all n > ng then by the Schur
test, ||Op(k,)|| < C,. The sequence C,, converges to 0 so Op(uy) € A for all k > 1. O

In fact what we can deduce from this proof is that there exists C' such that ||Op(ug)|| < C
for all £ > 1. Indeed for each k there exists my such that 28e* < e for all m > my,.
As k increases, my, decreases and so [ ux(s,t) du(t) < p(B(1,my)) + fB(s,mk)C ug(s,t) du(t).
From our choice of my, and from the proof above we can deduced that fB(s,mk)c ug (s, t) du(t) <
Be®* — 1. By the Schur test and the fact that my > my for all k¥ > 1, we have that ||Op(ug)|| <
w(B(1,mq)) + fe* — 1 for all k > 1.

Proof of Theorem 4.7.7. As we did in Section 2.1 we can assume the metric is uniformly
discrete. Up to a multiplicative constant we can assume there exists a function f: G — H
such that d(s, t) <||f(s) = f(t)|l3 for some € > 0. As the kernels uy, are positive definite it
follows that the operators Op(uy) are positive. Let Vi be the positive square root of Op(uy),
see [88, Theorem 2.2.1.]. By the C*-identity and because sup; 1 [|[Op(ur)|| < oo we can deduce
that supy > [|Vk|| < oo. Therefore by the previous lemma we can choose a sequence of compact
width kernels wy, such that such that ||V — Op(wy)||||Vk|| — 0. For short hand we will write
Wi = Op(wg). Define kernels uy by
ug(s,t) = m(WkXB(s,l/k)aWkXB(t,l/k)>L2(G) Vs,t € G.

We shall show that u, are positive, have compact width and approximate wug. For short
hand we will write By for pu(B(e,1/k))* and x for the function xp(s1/k)- It is a fact
that T*T is a positive operator for any operator T on a Hilbert space . This means that
(T*Tw,v) > 0 for all v € H. So for any s1,...,5, € G and Aq,...,\, € C it follows that
(WHW (307 AiXsik)s 2oy AiXsik) > 0. In particular 377 AiXjig(si, 85) > 0 and so it is a
positive kernel.

We know that each wy have compact width so suppose for each k there exists Ly > 0 such
that if d(s,t) > Ly then wi(s,t) = 0. Thenforall s,z € Gand k € N, ifd(x, s) > Ly+1/2k then
fB(s’l/k) wi(x,y) du(y) = 0. In particular, if d(s,t) > Ly + 1/k then fB(s,l/k) wi(z,y) du(y) -
fB(t,l/k) w(z,y) du(y) = 0 for all x € G. Therefore (Wixs ks Wixe,x) = 0 whenever d(s,t) >
L + 1/k and so for all k£ > 1, the positive kernels @y have compact width.
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Now we want to show that % can approximate u uniformly on compact tubes. As an

intermediate step define the kernels
1
vg(s,t) = Fk<Vsz,k, Vixe k)2 Vs,teG.

By the Cauchy—Schwarz inequality and that ||xs k|2 = B,i/z it follows that |ty (s, t) — vk (s, t)]| <
|V Vi —WiWy||. Hence by the triangle inequality and that Vj, is self adjoint, ||V Vi —WEW,| <
Ve = Will (Ve + IWill) < Vi = Will @11 Vll+ [V — Wi ). Henee [@i(s, £) — un(s, £)] converges
to 0 uniformly as k — oo.

To prove the statement of the theorem it is enough to show that for all R, > 0 there exists
a ko € N such that for all k& > ko, |ug(s,t) —vr(s,t)| < € whenever d(s,t) < R. This is because
Uy, converges uniformly to vg.

As the exponential function is a convex function it follows that for all a,b > 0, [e™¢ —e™?| <
|a + b|. In particular, as f is a large-scale Lipschitz function, |ug(s,t) — ug(z,y)| < D(d(s,t) +
d(z,y))k~! for any s,t,z,y € G, where D is the Lipschitz constant for f. Fix R,e > 0 and
choose k large enough so that D(2R + 1)k~ < e. Then |ui(s,t) — vg(s,t)| < e whenever
d(s,t) < R. This is because

1
o )~ on(o, 01 < gt [ [ e~ )l dn)dn()

for all s,t € G. Hence when d(s,t) < R and x and y are within a ball of radius 1/k of s and ¢
respectively then |uy(s,t) — ug(z,y)] < DR+ 1)k~! <e. O






(1]

[20]

21]

22]

Bibliography

S. Adams. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of
simple groups. Topology, 33(4):765-783, 1994.

C. Anantharaman-Delaroche. Action moyennable d’un groupe localement compact sur une algebre de von
Neumann. Math. Scand., 45(2):289-304, 1979.

C. Anantharaman-Delaroche. Action moyennable d’un groupe localement compact sur une algebre de von
Neumann. II. Math. Scand., 50(2):251-268, 1982.

Claire Anantharaman-Delaroche. Systémes dynamiques non commutatifs et moyennabilité. Math. Ann.,
279(2):297-315, 1987.

Claire Anantharaman-Delaroche. Amenability and exactness for dynamical systems and their C*-algebras.
Trans. Amer. Math. Soc., 354(10):4153-4178 (electronic), 2002.

Y. Antolin and D. Dreesen. The Haagerup property is stable under graph products. Preprint
arXiv:1305.6748.

G. Arzhantseva and T. Delzant. Examples of random groups. Preprint available
www.unige.ch/math/folks/arjantse/Abs/random.pdf.

G. N. Arzhantseva, V. S. Guba, and M. V. Sapir. Metrics on diagram groups and uniform embeddings in
a Hilbert space. Comment. Math. Helv., 81(4):911-929, 2006.

Goulnara Arzhantseva, Cornelia Drutu, and Mark Sapir. Compression functions of uniform embeddings
of groups into Hilbert and Banach spaces. J. Reine Angew. Math., 633:213—-235, 2009.

Goulnara Arzhantseva and Romain Tessera. Relative expanders. Geom. Funct. Anal., 25(2):317-341,
2015.

Tim Austin. Amenable groups with very poor compression into Lebesgue spaces. Duke Math. J.,
159(2):187-222, 2011.

S. Banach. Sur le problemé de mésure. Fundamenta Mathematicae, 4:7-33, 1923.

S. Banach and A. Tarski. Sur la décomposition des ensembles de points en parts respectivement congruents.
Fundamenta Mathematicae, 6:244-277, 1924.

Paul Baum and Alain Connes. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2),
46(1-2):3-42, 2000.

Paul Baum, Alain Connes, and Nigel Higson. Classifying space for proper actions and K-theory of group
C*-algebras. In C*-algebras: 1943-1998 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages
240-291. Amer. Math. Soc., Providence, RI, 1994.

Paul Baum and Ronald G. Douglas. K homology and index theory. In Operator algebras and applications,
Part I (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pages 117-173. Amer. Math.
Soc., Providence, R.I., 1982.

Cédric Béguin, Hela Bettaieb, and Alain Valette. K-theory for C*-algebras of one-relator groups. K-
Theory, 16(3):277—298, 1999.

Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazhdan’s property (T), volume 11 of New Mathe-
matical Monographs. Cambridge University Press, Cambridge, 2008.

M. E. B. Bekka, P.-A. Cherix, and A. Valette. Proper affine isometric actions of amenable groups. In
Nowikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 227 of London
Math. Soc. Lecture Note Ser., pages 1-4. Cambridge Univ. Press, Cambridge, 1995.

David M. Bishop. Group theory and chemistry. Dover Publications, Inc., New York, 1993. Corrected
reprint of the 1973 original.

N. Brodskiy and D. Sonkin. Compression of uniform embeddings into Hilbert space. Topology Appl.,
155(7):725-732, 2008.

J. Brodzki, C. Cave, and K. Li. Exactness of locally compact second countable groups. In preparation.



64 Bibliography

[23] Nathanial P. Brown and Narutaka Ozawa. C*-algebras and finite-dimensional approzimations, volume 88
of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

[24] W. Burnside. On Groups of Order palphagbeta. Proc. London Math. Soc., S2-1(1):388, 1904.

[25] Sarah Campbell and Graham A. Niblo. Hilbert space compression and exactness of discrete groups. J.
Funct. Anal., 222(2):292-305, 2005.

[26] Chris Cave and Dennis Dreesen. Embeddings of locally compact hyperbolic groups into Ly-spaces. Preprint
arXiv:1303.4250.

[27] Chris Cave and Dennis Dreesen. Equivariant compression of certain direct limit groups and amalgamated
free products. Preprint arXiv:1309.4636.

[28] Chris Cave and Dennis Dreesen. Embeddability of generalised wreath products. Bull. Aust. Math. Soc.,
91(2):250-263, 2015.

[29] Indira Chatterji, Cornelia Drutu, and Frédéric Haglund. Kazhdan and Haagerup properties from the
median viewpoint. Adv. Math., 225(2):882-921, 2010.

[30] Xiaoman Chen, Romain Tessera, Xianjin Wang, and Guoliang Yu. Metric sparsification and operator
norm localization. Adv. Math., 218(5):1496-1511, 2008.

[31] Xiaoman Chen and Qin Wang. Ghost ideals in uniform Roe algebras of coarse spaces. Arch. Math. (Basel),
84(6):519-526, 2005.

[32] Pierre-Alain Cherix, Michael Cowling, Paul Jolissaint, Pierre Julg, and Alain Valette. Groups with the
Haagerup property, volume 197 of Progress in Mathematics. Birkhduser Verlag, Basel, 2001. Gromov’s
a-T-menability.

[33] Pierre-Alain Cherix, Florian Martin, and Alain Valette. Spaces with measured walls, the Haagerup prop-
erty and property (T). Ergodic Theory Dynam. Systems, 24(6):1895-1908, 2004.

[34] Man Duen Choi and Edward G. Effros. Nuclear C*-algebras and the approximation property. Amer. J.
Math., 100(1):61-79, 1978.

[35] Donald L. Cohn. Measure theory. Birkhduser Boston, Mass., 1980.

[36] A. Connes. A survey of foliations and operator algebras. In Operator algebras and applications, Part
I (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pages 521-628. Amer. Math. Soc.,
Providence, R.I., 1982.

[37] Marius Dadarlat and Erik Guentner. Constructions preserving Hilbert space uniform embeddability of
discrete groups. Trans. Amer. Math. Soc., 355(8):3253-3275 (electronic), 2003.

[38] Y. de Cornulier and Pierre de la Harpe. Metric geometry of locally compact groups. Book in preparation,
preprint arXiv:1403.3796.

[39] Y. de Cornulier, Y. Stalder, and A. Valette. Proper actions of wreath products and generalizations. Trans.
Amer. Math. Soc., 364(6), 2012.

[40] Yves de Cornulier, Romain Tessera, and Alain Valette. Isometric group actions on Hilbert spaces: growth
of cocycles. Geom. Funct. Anal., 17(3):770-792, 2007.

[41] Pierre de la Harpe. On simplicity of reduced C*-algebras of groups. Bull. Lond. Math. Soc., 39(1):1-26,
2007.

[42] Pierre de la Harpe and Alain Valette. La propriété (T') de Kazhdan pour les groupes localement compacts
(avec un appendice de Marc Burger). Astérisque, (175):158, 1989. With an appendix by M. Burger.

[43] S. Deprez and K. Li. Permanence properties of property A and coarse embeddability for locally compact
groups. Preprint arXiv:1403.7111.

[44] S. Deprez and K. Li. Property A and uniform embeddings for locally compact groups. Preprint
arXiv:1309.7290.

[45] Dennis Dreesen. Hilbert space compression for free products and HNN-extensions. J. Funct. Anal.,
261(12):3585-3611, 2011.

[46] V. G. Drinfel’d. Finitely-additive measures on S? and S3, invariant with respect to rotations. Funktsional.
Anal. i Prilozhen., 18(3):77, 1984.

[47] V. A. Efremovic. The proximity geometry of riemannian manifolds. Uspekhi Mat. Nauk, 8:189, 1953.

[48] Anna Erschler. Generalized wreath products. Int. Math. Res. Not., pages Art. ID 57835, 14, 2006.

[49] Pierre Eymard. Moyennes invariantes et représentations unitaires. Lecture Notes in Mathematics, Vol.
300. Springer-Verlag, Berlin-New York, 1972.

[50] Steven C. Ferry, Andrew Ranicki, and Jonathan Rosenberg, editors. Novikov conjectures, index theo-

rems and rigidity. Vol. 1, volume 226 of London Mathematical Society Lecture Note Series. Cambridge



65

[64]

[65]

(6]

(71]

[72]

73]

[74]

University Press, Cambridge, 1995. Including papers from the conference held at the Mathematisches
Forschungsinstitut Oberwolfach, Oberwolfach, September 6-10, 1993.

Erling Fglner. On groups with full Banach mean value. Math. Scand., 3:243-254, 1955.

Swiatostaw R. Gal. a-T-menability of groups acting on trees. Bull. Austral. Math. Soc., 69(2):297-303,
2004.

M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991),
volume 182 of London Math. Soc. Lecture Note Ser., pages 1-295. Cambridge Univ. Press, Cambridge,
1993.

M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73-146, 2003.

E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear groups. Publ Math-Paris,
101(1):243 — 268, 2005.

Erik Guentner. Exactness of the one relator groups. Proc. Amer. Math. Soc., 130(4):1087-1093, 2002.
Erik Guentner. Permanence in coarse geometry. In K.P. Hart, J. van Mill, and P. Simon, editors, Recent
Progress in General Topology 111, pages 507-533. Atlantis Press, 2014.

Erik Guentner and Jerome Kaminker. Exactness and uniform embeddability of discrete groups. J. London
Math. Soc. (2), 70(3):703-718, 2004.

U. Haagerup and A. Przybyszewska. Proper metrics on locally compact groups, and proper affine isometric
actions on Banach spaces. Preprint arXiv:0606794.

Uffe Haagerup. An example of a nonnuclear C*-algebra, which has the metric approximation property.
Invent. Math., 50(3):279-293, 1978/79.

Felix Hausdorft. Feliz Hausdorff—gesammelte Werke. Band II. Springer-Verlag, Berlin, 2002. “Grundziige
der Mengenlehre”. [“Foundations of set theory”], Edited and with commentary by E. Brieskorn, S. D.
Chatterji, M. Epple, U. Felgner, H. Herrlich, M. Husek, V. Kanovei, P. Koepke, G. Preufl, W. Purkert
and E. Scholz.

Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. II: Structure and analysis for
compact groups. Analysis on locally compact Abelian groups. Die Grundlehren der mathematischen Wis-
senschaften, Band 152. Springer-Verlag, New York, 1970.

Edwin Hewitt and Kenneth A. Ross. Abstract harmonic analysis. Vol. I, volume 115 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag,
Berlin-New York, second edition, 1979. Structure of topological groups, integration theory, group repre-
sentations.

N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum—Connes conjecture. Geom.
Funct. Anal., 12(2):330-354, 2002.

Nigel Higson and Gennadi Kasparov. Operator K-theory for groups which act properly and isometrically
on Hilbert space. Electron. Res. Announc. Amer. Math. Soc., 3:131-142 (electronic), 1997.

Nigel Higson and John Roe. On the coarse Baum—Connes conjecture. In Nowvikov conjectures, index
theorems and rigidity, Vol. 2 (Oberwolfach, 1993), volume 227 of London Math. Soc. Lecture Note Ser.,
pages 227-254. Cambridge Univ. Press, Cambridge, 1995.

Nigel Higson and John Roe. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math.,
519:143-153, 2000.

Gordon James and Martin Liebeck. Representations and characters of groups. Cambridge University
Press, New York, second edition, 2001.

M. Kalantar and M. Kennedy. Boundaries of reduced C*-algebras of discrete groups. Preprint
arXiv:1405.4359.

G. G. Kasparov. Operator K-theory and its applications. In Current problems in mathematics. Newest
results, Vol. 27, Itogi Nauki i Tekhniki, pages 3—-31, 232. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i
Tekhn. Inform., Moscow, 1985.

Gennadi Kasparov and Georges Skandalis. Groups acting properly on “bolic” spaces and the Novikov
conjecture. Ann. of Math. (2), 158(1):165-206, 2003.

Gennadi Kasparov and Guoliang Yu. The Novikov conjecture and geometry of Banach spaces. Geom.
Topol., 16(3):1859-1880, 2012.

E. Kirchberg. On restricted perturbations in inverse images and a description of normalizer algebras in
c*-algebras. Journal of Functional Analysis, 129(1):1 — 34, 1995.

Eberhard Kirchberg. C*-nuclearity implies CPAP. Math. Nachr., 76:203-212, 1977.



66

Bibliography

[75] Eberhard Kirchberg and Simon Wassermann. Exact groups and continuous bundles of C*-algebras. Math.

[76

[77

(78

(79

[100
[101
[102

[103
[104

]

]

]

]

]
]

Ann., 315(2):169-203, 1999.

Vincent Lafforgue. Une démonstration de la conjecture de Baum-Connes pour les groupes réductifs sur
un corps p-adique et pour certains groupes discrets possédant la propriété (T). C. R. Acad. Sci. Paris
Sér. I Math., 327(5):439-444, 1998.

Vincent Lafforgue. Un renforcement de la propriété (T). Duke Math. J., 143(3):559-602, 2008.

Vincent Lafforgue. La conjecture de Baum-Connes & coefficients pour les groupes hyperboliques. J. Non-
commut. Geom., 6(1):1-197, 2012.

Henri Leon Lebesgue. Lecons sur l'intégration et la recherche des fonctions primitives professées au
College de France. Cambridge Library Collection. Cambridge University Press, Cambridge, 2009. Reprint
of the 1904 original.

Sean Li. Compression bounds for wreath products. Proc. Amer. Math. Soc., 138(8):2701-2714, 2010.
Alexander Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress
in Mathematics. Birkh&user Verlag, Basel, 1994. With an appendix by Jonathan D. Rogawski.
Alexander Lubotzky, Shahar Mozes, and M. S. Raghunathan. The word and Riemannian metrics on
lattices of semisimple groups. Inst. Hautes Etudes Sci. Publ. Math., (91):5-53 (2001), 2000.

G. A. Margulis. Some remarks on invariant means. Monatsh. Math., 90(3):233-235, 1980.

Jiff Matousek. On embedding expanders into I, spaces. Israel J. Math., 102:189-197, 1997.

J. Milnor. A note on curvature and fundamental group. J. Differential Geometry, 2:1-7, 1968.

A. S. Mishchenko. C*-algebras and K-theory. In Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ.
Aarhus, Aarhus, 1978), volume 763 of Lecture Notes in Math., pages 262-274. Springer, Berlin, 1979.
Guido Mislin and Alain Valette. Proper group actions and the Baum-Connes conjecture. Advanced
Courses in Mathematics. CRM Barcelona. Birkhauser Verlag, Basel, 2003.

Gerard J. Murphy. C*-algebras and operator theory. Academic Press Inc., Boston, MA, 1990.

A. Naor and Y. Peres. Embeddings of discrete groups and the speed of random walks. Int. Math. Res.
Not., 2008.

Assaf Naor and Yuval Peres. L, compression, traveling salesmen, and stable walks. Duke Math. J.,
157(1):53-108, 2011.

Damian Osajda. Small cancellation labellings of some infinite graphs and applications. Preprint
arXiv:1406.5015.

Mikhail Ostrovskii. Metric embeddings. Bilipschitz and coarse embeddings into Banach spaces, volume 49
of Studies in Mathematics. De Gruyter, Boston, 2013.

Hervé Oyono-Oyono. La conjecture de Baum-Connes pour les groupes agissant sur les arbres. C. R. Acad.
Sci. Paris Sér. I Math., 326(7):799-804, 1998.

N. Ozawa. Amenable actions and exactness for discrete groups. C.R. Acad. Sci. Paris Ser. I Math, 330:691
— 695, 2000.

Alan L. T. Paterson. Amenability, volume 29 of Mathematical Surveys and Monographs. American Math-
ematical Society, Providence, RI, 1988.

Massimo A. Picardello. Positive definite functions and LP convolution operators on amalgams. Pacific J.
Math., 123(1):209-221, 1986.

Tain Raeburn and Dana P. Williams. Morita equivalence and continuous-trace C*-algebras, volume 60 of
Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.

John Roe. Coarse cohomology and index theory on complete Riemannian manifolds. Mem. Amer. Math.
Soc., 104(497):x+90, 1993.

John Roe. Index theory, coarse geometry, and topology of manifolds, volume 90 of CBMS Regional
Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences,
Washington, DC, 1996.

John Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. American Mathematical
Society, Providence, RI, 2003.

John Roe. Hyperbolic groups have finite asymptotic dimension. Proc. Amer. Math. Soc., 133(9):2489-2490
(electronic), 2005.

John Roe. Warped cones and property A. Geom. Topol., 9:163-178 (electronic), 2005.

John Roe and Rufus Willett. Ghostbusting and property A. J. Funct. Anal., 266(3):1674-1684, 2014.
Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, second edition, 1974.
McGraw-Hill Series in Higher Mathematics.



67

[126]

[127]

[128]

Hiroki Sako. Property A and the operator norm localization property for discrete metric spaces. J. Reine
Angew. Math., 690:207-216, 2014.

Mark Sapir. A Higman embedding preserving asphericity. J. Amer. Math. Soc., 27(1):1-42, 2014.
Jean-Pierre Serre. Trees. Springer-Verlag, Berlin, 1980. Translated from the French by John Stillwell.

G. Skandalis, J. L. Tu, and G. Yu. The coarse Baum-Connes conjecture and groupoids. Topology,
41(4):807-834, 2002.

Raimond A. Struble. Metrics in locally compact groups. Compositio Math., 28:217-222, 1974.

Dennis Sullivan. For n > 3 there is only one finitely additive rotationally invariant measure on the n-sphere
defined on all Lebesgue measurable subsets. Bull. Amer. Math. Soc. (N.S.), 4(1):121-123, 1981.

A. S. Svarc. A volume invariant of coverings. Dokl. Akad. Nauk SSSR (N.S.), 105:32-34, 1955.
Masamichi Takesaki. Theory of operator algebras. I. Springer-Verlag, New York-Heidelberg, 1979.

A. Tarski. Algebraische Fassung des Massproblems. Fundamenta Mathematicae, 31:47-66, 1938.

Alfred Tarski. Cardinal Algebras. With an Appendiz: Cardinal Products of Isomorphism Types, by Bjarni
Jénsson and Alfred Tarski. Oxford University Press, New York, N. Y., 1949.

Romain Tessera. Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Com-
ment. Math. Helv., 86(3):499-535, 2011.

Thomas Timmermann. An invitation to quantum groups and duality. EMS Textbooks in Mathematics.
European Mathematical Society (EMS), Ziirich, 2008. From Hopf algebras to multiplicative unitaries and
beyond.

Jean-Louis Tu. The Baum-Connes conjecture and discrete group actions on trees. K-Theory, 17(4):303—
318, 1999.

Jean-Louis Tu. Remarks on Yu’s “property A” for discrete metric spaces and groups. Bull. Soc. Math.
France, 129(1):115-139, 2001.

Alain Valette. Introduction to the Baum-Connes conjecture. Lectures in Mathematics ETH Ziirich.
Birkhauser Verlag, Basel, 2002. From notes taken by Indira Chatterji, With an appendix by Guido Mislin.
John von Neumann. Zur allgemeinen theorie des Masses. Fundamenta Mathematicae, 13:73—-116, 1929.
S. Wagon. The Banach—Tarski paradozr. Cambridge University Press, 1993.

Kevin Whyte. Coarse bundles. Preprint arXiv:1006.3347.

Rufus Willett. Some notes on property A. In Limits of graphs in group theory and computer science,
pages 191-281. EPFL Press, Lausanne, 2009.

Rufus Willett and Guoliang Yu. Higher index theory for certain expanders and Gromov monster groups,
1. Adv. Math., 229(3):1380-1416, 2012.

Rufus Willett and Guoliang Yu. Higher index theory for certain expanders and Gromov monster groups,
II. Adv. Math., 229(3):1762-1803, 2012.

Dana P. Williams. Crossed products of C*-algebras, volume 134 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 2007.

Guoliang Yu. The coarse Baum—Connes conjecture for spaces which admit a uniform embedding into
Hilbert space. Invent. Math., 139(1):201-240, 2000.

Robert J. Zimmer. Amenable ergodic group actions and an application to Poisson boundaries of random
walks. J. Functional Analysis, 27(3):350-372, 1978.



