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In this work we study the two-body problem in general relativity for the extreme-mass-ratio regime,

where the problem is amenable to perturbation theory. The orbital dynamics in this configuration

is driven by a back-reaction or self-force, caused by the interaction of a particle with its own

gravitational field. In this thesis we develop and implement a new approach for self-force calculations

in Kerr spacetime.

We choose to move from the original Lorenz-gauge formulation of the self-force to work in a

radiation gauge. In the Lorenz gauge the perturbation is obtained by solving a set of ten coupled

differential equations, and in Kerr the equations are not separable. In the radiation gauges the

computational cost is reduced by solving the fully separable Teukolsky equation to obtain curvature

scalars, and applying certain differential operators to recover the metric perturbations. There are

two main challenges in calculating the self-force in these radiations gauges: understanding how

to include the “completion” piece that is not recovered in the reconstruction procedure (but it’s

necessary to satisfy the linearised Einstein field equations); and having a rigorous and well-justified

self-force formalism to use these radiation-gauge perturbation.

We identify three types of radiation gauges according to their singular structure: half-, full- and

no-string gauges. We obtain modifications to the standard Lorenz-gauge mode-sum formula for

the half- and no-string gauges, and explain why the full-string gauges are too pathological to be

considered in a numerical implementation. Our method is based on a local analysis of the gauge

transformation relating the Lorenz and radiation gauges. This analysis provides the framework to

modify the Lorenz-gauge self-force formulation and obtain modifications to the traditional Lorenz-

gauge mode-sum formula.

We propose a new method to address the inclusion of the completion piece of the perturbation in

Kerr. It is based on imposing smoothness of certain auxiliary gauge-invariant-quantities away from

the particle to determine the amplitudes of the mass and angular momentum perturbations that

are not accessible through the metric-reconstruction procedure. We obtain the completion piece for

Schwarzschild, and for equatorial orbits in Kerr. We discuss how our method could be extended for

geodesic non-equatorial orbits around Kerr.

As a first implementation of our formalism, we compute the gravitational self-force in the fre-

quency domain for a particle moving on a circular orbit around a Schwarzschild black-hole. This

calculation is carried out using our new version of the mode-sum formula. We obtained numerical

solutions to the spin-±2 Teukolsky equation and apply the reconstruction procedure. We compare

our numerical integration with the analytical method of Mano, Susuki and Takasugi. We test the

numerical efficiency of our method compared with Lorenz-gauge implementations available in the

literature. We find numerical agreement between the results obtained in the outgoing and ingoing

radiation-gauges for our particular setup. We show that our results for the self-force agree with the

Lorenz-gauge ones at large orbital-radii, and provide an explanation of why this is expected. We

discuss the extension of this implementation to more general orbits around Kerr.
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Chapter 1

Introduction

1.1 2-body problem in general relativity and the self-force

approach

The gravitational two-body problem in physics consists of an isolated system of two objects in

motion due to their gravitational interaction. In the Newtonian limit the motion of a gravitationally

bound system of two point masses has two conserved quantities — the energy and the angular

momentum (AM) — and the motion is precisely periodic. However, when we take into account the

relativistic behaviour of the motion, these quantities will not remain constant due to the emission

of gravitational waves, which causes a reduction of the orbital period of the two bodies. This

phenomenon was first observed in 1974 by Hulse and Taylor for the PSR 1913+16 binary-pulsar [3].

The two-body problem in General Relativity (GR) is as old as the theory itself. Lorentz and Droste

[4] obtained the first relativistic correction to the Newtonian interaction. Einstein himself, with

Infeld and Hoffmann [5], formulated a method to approximate the equations of particles moving in

a relativistic field, giving birth to post-Newtonian (PN) theory.

In the relativistic context the concept of point particle is not suitable to approach this problem

directly, since we can not take advantage of the linearity that the equations of motion exhibit in

the Newtonian case: the usual representation of the point-particle as a delta-function becomes

inconsistent with the non-linearity of Einstein’s field equation (EFE) [6]. The simplest problem

we can try to understand in GR is that of a binary black-hole (BH) system, without taking into

account any internal properties that make the problem considerably more complicated.

The description of this problem in GR can be treated in different ways depending on the mass-

ratio and separation of the orbiting objects. We can identify three different regimes, see Fig. 1.1.

The first one corresponds to a sufficiently large separation between the two objects, where the

objects are treated as point-like at first approximation, and this regime allows a PN treatment.

In this scheme we incorporate GR corrections to the Newtonian dynamics order by order in the

separation. However, when the two masses are of the same scale and the separation distance is of

the same order of magnitude as the radius of the bodies then the only description possible is given

by Numerical Relativity (NR) simulations.

There is a third scenario possible, the so-called extreme-mass-ratio inspiral (EMRI), see Fig.

1.2. In this regime the separation distance is small but the mass-ratio of the bodies is large.

The problem is then amenable to a perturbative treatment in which at zeroth-order the motion is

geodesic in the background geometry of the large BH. At the next order we take into account the
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Figure 1.1: Parameter space of the relativistic two-body problem. The mass ratio of the two bodies
in log scale is on the x-axis, the average separation of the orbiting bodies in log scale is on the
y-axis. The overlap between PN theory and self-force calculations allows to test both frameworks
and obtain high-order PN terms. The dotted lines indicate a blur and smooth transition between
these regimes.

linear perturbation due to the small but finite mass of the particle. This arrangement gives rise to

an effective gravitational-self-force (GSF) which “accelerates” the particle.

We may identify two pieces of the self-force (SF), the conservative and the dissipative. The

dissipative piece of the SF removes energy and AM from the orbiting bodies, and radiates them

away as gravitational waves. The conservative piece of the SF modifies the positional elements of

the orbit; for example, it is responsible for the shift in orbital precession [7, 8].

Figure 1.2: Artistic representation of the extreme-mass-ratio-inspiral (EMRI) regime, where a com-
pact object of mass m is embedded in the gravitational field of a central BH of mass M ≫ m. The
‘small’ particle experiences a back-reaction effect or self-force. Credit: NASA.

One of the key sources of gravitational waves for low-frequency gravitational-wave detectors is

the inspiral of compact objects into massive BHs in galactic nuclei. Ground and future space-based

detectors require accurate models of the inspiral orbits, which must take into account general-

relativistic radiation-reaction and other gravitational back-reaction effects of the SF. The European

Space Agency plans to launch in the year 2034 the European New Gravitational Wave Observatory

[9] (based on the Laser Interferometer Space Antenna, LISA) which would have its peak sensitivity

around 1 mHz. This sensitivity would enable observation of signals from inspirals into Kerr BHs

with masses in the range of ∼ 5 × 105 − 5 × 107M⊙. Ground-based detectors, such as the Laser

Interferometer Gravitational-Wave Observatory (LIGO), have not been able to detect gravitational
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waves so far, but the ongoing upgrade to advanced LIGO will lead to an improvement in the sensit-

ivity [10] by at least a factor of 10 and it may be able to observe intermediate mass-ratio inspirals

(IMRIs) with mass-ratios in the range of ∼ 10 : 1 to ∼ 100 : 1 [11]. Such IMRIs could be modelled

combining GSF results and NR simulations. The planned underground Einstein Telescope [12] (one

of the third generation gravitational-wave detectors), with improved sensitivity at frequencies in the

range ∼ 1 − 10 Hz, may be able to see from a few to several hundred IMRIs events per year [13].

To make an accurate parameter-extraction and exploit the full scientific value of EMRI signals it is

required to have accurate theoretical templates of EMRI waveforms, which requires the knowledge

of the SF as prerequisite.

Figure 1.3: Artistic representation of a space-based detector (like the project eLISA) detecting
gravitational waves. Credit: NASA.

The modern history of SF calculations began in 1997 with the formulation of the first-order

equations of motion for the GSF by Mino, Sasaki and Tanaka [14], and independently by Quinn

and Wald [15]. The resulting equation of motion is usually referred to simply as the MiSaTaQuWa

equation [see Eq. (2.41)]. Shortly after that, in 1998, the inaugural Capra meeting was held in

California and has continuously brought together relativists devoted to the various aspects of SF

calculations and its application to the exciting prospect of detecting gravitational waves emitted by

EMRIs.

1.2 Recent advances in self-force studies

The basic idea behind the MiSaTaQuWa formulation is to identify two length-scales of the problem,

one associated with the small orbiting particle and a second one related to the radius of curvature

of the background in which the particle is moving. The first scale corresponds to a “near” zone

where the geometry is given approximately by the particle’s geometry (in the original derivation

it was considered Schwarzschild but this restriction was removed by Gralla and Wald [16]) with

tidal-type corrections due to the background metric. The “far” zone, where the internal structure

of the moving particle becomes less important, is then given by the background spacetime weakly

perturbed by the now distant “point-particle”. The two asymptotic expansions of the metric are

then matched in a “buffer” zone where the two geometrical descriptions are valid. This constrains

the motion of the particle (from a far-zone point of view) yielding the expression for the SF in terms

of the “tail ” field. This tail can be interpreted physically as the part of the metric perturbations

(MP) arising from the waves being scattered off the background curvature. This is broadly speaking
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the description of the matched asymptotic expansions method (See Appendix A for a brief review

of the method). MiSaTaQuWa equation was later formulated more rigorously by Pound [17] and

Gralla-Wald [16]. A full pedagogical derivation can be found in the review by Poisson et al. [18].

The SF is a gauge-dependent notion, as we explain in the next Chapter. The behaviour of the

SF under a gauge transformation was first studied by Barack and Ori in ref. [19]. The MiSaTaQuWa

equation was formulated in the Lorenz gauge (LG), where the field equations become hyperbolic and

the representation of the particle’s singularity is locally isotropic. These two features (hyperbolicity

and local-isotropy) are essential to apply matched asymptotic expansions. This provides a practical

way to solve the field equations numerically.

Several schemes have been proposed in order to implement the LG formalism of the SF in

practical calculations. The basic challenge is how to subtract the singular piece of the MP to obtain

the correct tail field, responsible for the SF [see Eq. (2.41) and the discussion below for further

details]. Instead of referring to the tail piece of the MP, Detweiler-Whiting [20] proposed that we

could decompose the physical MP into regular and singular pieces [see Eq. (2.47)]. The regular part

corresponds to a solution of the vacuum Einstein equation and it is smooth, unlike the tail field.

The regular field gives rise to the same SF as the one obtained from the tail field and it allows an

interesting interpretation of the SF: the particle moves along a geodesic of an effective spacetime

with a metric given by the sum of the background metric and the regular field, gαβ +hR
αβ. However,

in practical calculations both interpretations involve subtracting divergent quantities, which is not

easily done numerically.

Let us present a brief description of three techniques proposed to implement MiSaTaQuWa’s

formulation in practice. We focus our attention on the one that has been the most successful in

practical calculations (see Table 1.1) and it is also the one we will use throughout this work (see

Sec. 2.4). This method is referred as ‘mode-sum’ method.

Worldline/matched expansions. This method1 involves computing the SF as an integral over the

past worldline of the particle. The integrand corresponds to the Green’s function for the appropriate

wave equation, namely the linearised EFE. This integral is calculated directly by matching together

two independent expansions, see Fig. 1.4. As suggested by Anderson [21], in the quasi-local regime

the integral is dominated by the recent past, and can be represented using the Hadamard expansion.

The analytical form for the Hadamard expansion was obtained to very high accuracy by Ottewill

and Wardell [22, 23].

The quasi-local expansion is matched to a second one, which takes into account the distant past

along the worldline. It was shown by DeWitt and DeWitt (for the EM case) [24], and by Pfenning

and Poisson [25] (for the gravitational case) that this second expansion is relevant for the SF. The

signal produced by the particle at a certain time in the past will scatter off the centre of mass of

the system and then re-interact with the particle at its current location. The full Green’s function

was obtained by Casals and Dolan for a static scalar-particle in a Nariai spacetime2 [26] and for

Schwarzschild [27]. Some progress to evaluate the Green’s function in the Kerr case was recently

reported [28].

Mode-sum method. This method was introduced by Barack and Ori [29–31]. In this approach one

calculates the contributions to the tail-field mode by mode in a multipole expansion by subtracting

finite quantities, “regularization parameters”, for each mode. The values of the regularization para-

meters are obtained analytically by analysing the singular behaviour of the field near the particle.

1Not to be confused with the matched asymptotic expansions method described previously in this section and in
Appendix A.

2A simple toy model of a BH.
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This method is also practical in the sense that it provides a self-testing mechanism: if either the

value of the regularization parameters or the value of one of the numerically computed modes of

the unregularized “force” are wrong, then the mode-sum formula [see Eq. (2.55) below] may not

converge (since at large ℓ the computed modes have to agree with the analytical regularization

parameters).

Γ(τ)

Present location of
the particle

z(τ0)

Matching pointz(τmat)

Boundary of the valid domain

for the Hadamard expansion

Integral using the

Hadamard expansion

Integral outside the

quasi-local region

Figure 1.4: Schematic representation of the matched
expansions method. Two independent expansions are
used to obtain the SF at z(τ0), the two of them are
matched at z(τmat) in the past history of the world-
line (τmat < τ0). The past light-cone (shown in pink)
is bent due to the curvature of the background. The
first expansion (blue), in the recent past, is domin-
ated by the Hadamard expansion. The second expan-
sion accounts for the early past of the history (green),
and it is computed by an integral over the Green’s
function along the worldline Γ(τ).

Implementations using the mode-sum

formula have been successful so far in a vari-

ety of calculations [32–35]. There has been

work by Barack and Sago regarding the GSF

in a Schwarzschild background for circular

orbits [36] and eccentric orbits [37]. War-

burton and Barack have computed the scalar

SF for a particle orbiting around a Kerr

BH for circular-equatorial orbits [38, 39],

circular-inclined orbits [40] and for eccentric-

equatorial orbits [41]. In the electromag-

netic case of a charged particle following a

geodesic around a Schwarzschild BH, the SF

has been calculated by Haas [42] using mode-

sum regularization. Linz et al. [43] and

independently Zimmerman et al. [44] con-

sider the problem of calculating the SF when

the gravitational field couples with an elec-

tromagnetic field (the work of Zimmerman

also considered separately the coupling of

the gravitational field with a scalar field).

Higher-order regularization parameters have

been found in the LG by Heffernan et al.

[45, 46], and this now allows for a faster rate

of convergence of the mode-sum method.

Puncture methods (Effective-Source) [47–52]. This method was proposed for time-domain nu-

merical implementations in 2+1 or 3+1 dimensions. It involves splitting the regular part of the MP

tensor in terms of an auxiliary puncture field and a second residual field. The puncture field is given

analytically, as an approximation to the singular-field near the particle, so that the residual field

will yield the correct SF. Implementations relying on the puncture method have been successful for

the scalar SF both in Schwarzschild [50, 51, 53, 54] and Kerr spacetimes [48], with extensions to the

GSF in Schwarzschild geometry in 2+1 dimensions [49]. And recent progress has been reported for

the Kerr case [55].

1.3 Challenges in self-force calculations and radiation-gauge

approach

Traditional calculations of the SF rely on numerical solutions of the linearised EFE in the LG [77].

With the MP as an input one may obtain the value of the SF at the particle’s location using the

mode-sum method or the puncture method. On Kerr spacetime the tensorial field equations in
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Table 1.1: Summary of regularization methods developed for self-force calculations of BH binary
inspirals. The references for the scalar SF include a full computation of the SF value, except
the (quasi-local) entry. The distinction (quasi-local) is made to indicate that the full worldline-
calculation is not included in the references. The entry labelled with (approx) used an approximated
expression, accurate to leading-order in M , for the Green’s function to calculate the SF. For the
EM and gravitational cases, the references for Kerr address only the regularization method and not
the full computation of the SF. Similarly the branch cut entry refers to an unpublished attempt to
evaluate the branch-cut piece required in the early-time expansion of the worldline method. Taken
from [56].

Case Worldline/matched expansions Mode-sum Effective Source

S
ca

la
r

S
ch

w
a
rz

sc
h
il
d circular (approx)[21];

generic (quasi-local)
[22, 26];
generic[27, 57, 58];
static[59];
accelerated[23];

radial[60];
circular[61–64];
eccentric[32, 45, 51, 65, 66];
static[59];

circular
[33, 39, 47, 50, 53, 67];
eccentric[68];
evolving[69];

K
er

r generic[22];
accelerated[23];

circular[70];
equatorial[38, 46];
inclined circular[40] ;
accelerated[43];
static[71, 72];

circular[48];
eccentric[73];

E
M

S
ch

w
a
rz

sc
h
il
d

static[59];

static[59];
eccentric[42, 45];
static(Schwarzschild-
de Sitter)[74];
radial (Reissner-
Nordström)[35];

—

K
er

r

—
equatorial[46];
accelerated[43];

—

G
ra

v
it

a
ti

o
n
a
l

S
ch

w
a
rz

sc
h
il
d

generic (quasi-local)[75];
circular[54]

radial[76];
circular[2, 34, 77–83];
eccentric[1, 45, 84–90];
osculating[91];

circular[49];

K
er

r circular (quasi-local)[21];
branch cut[28];

equatorial[46];
accelerated[43];
circular[1, 92];

circular[55];
generic[52];
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the LG are not separable and one has to deal with partial differential equations. This has been

a motivation to work in time-domain implementations [48–53] of MiSaTaQuWa formula with a

puncture, but the numerical evolution in this scheme is usually computationally expensive.

The numerical treatment of BH perturbations in Kerr spacetime becomes much simpler in the

radiation gauges. In these gauges it is possible to use Teukolsky’s formalism and the Chrzanowski-

Cohen-Kegeles (CCK) procedure to reconstruct the MP from the Weyl curvature scalars [81, 93, 94].

This only involves obtaining the solution of scalar-like wave equations, which admit full separation

of variables for each multipole mode. This procedure has been successful calculating gauge-invariant

quantities, such as energy fluxes [95, 96] and the red-shift invariant [83, 92] (see Sec. 2.6 for a review

of this invariant). However, in this gauge a SF formulation was still unavailable until the present

thesis [1], which provides two methods that use the reconstructed perturbations in a radiation gauge

(RG).

The perturbation associated with a point-particle in the RGs takes the form of a string-like radial

singularity [19] at any given time (this is a gauge artefact of this class of gauges) as we will show

in Chapter 3. This string singularity can be removed, but only by paying the price of introducing

a discontinuity across a surface intersecting the particle. In short, we can say that while the LG is

regular but not practical for SF calculations in Kerr, the RG is practical but generally not regular.

In this sense the methods developed in this thesis are both regular and practical. The basic

idea is to work in a gauge where it is relatively easy to obtain the MP numerically, such as the

RGs. We will discuss two different classes of gauges that take advantage of the ‘simplicity’ of BH

perturbation theory.

The first of those classes corresponds to a local deformation of the RG to resemble the LG to

leading-order. In this class we can directly apply MiSaTaQuWa equation [19] and use the standard

LG mode-sum formula. Another advantage is that the interpretation of motion follows the same

description as its LG counterpart (see Appendix A for a review of the motion of the centre of mass

in the LG). The difficulty of these gauges lies in relating them to the undeformed RG. This idea

had been suggested previously [19, 97] but never fully implemented until the present work.

Our second class of gauges corresponds to full RGs without any deformation. In this class the LG

mode-sum is not valid any more, and a different regularization method is required. Furthermore the

understanding of the LG equation of motion requires modification to accommodate the pathologies

of the RG (see Appendix A.2).

The main practical results of these two approaches are modifications to the standard LG mode-

sum formula. In other words, two new mode-sum formulae: the first one requires the modes of the

unregularised force calculated from either the “inside” or the “outside” limit of the orbit, and certain

corrections to the LG regularization parameters; the second one requires both of those one-sided

values.

The MP in the RG, recovered using the CCK procedure, do not satisfy the linearised EFE. The

full solution — required to obtain the unregularised force — then needs an extra piece, which we

will refer to as the completion piece. Wald [98] showed that this completion part corresponds to

perturbations in the mass and AM parameters, perturbations to other algebraically-special solutions

(C-metric and Kerr-NUT), and gauge perturbations. In Schwarzschild, the completion describes

solutions to the monopole and dipole parts of the EFE. The situation does not follow directly in

the Kerr case where there is an infinite coupling between different harmonic modes. This remained

an open problem of BH perturbation theory until we fully addressed it in this thesis [99] for all

(equatorial) orbits in Kerr.

We accompany our analytical method with a numerical calculation of the GSF of a particle
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orbiting a Schwarzschild BH, which serves as a test case for the more complicated problem of Kerr.

This test case provides a comparison of the computational cost with respect of a similar computation

in the LG. It also serves to anticipate some of the difficulties we will encounter in the Kerr case.

1.4 Layout of this work

In Chapter 2 of this thesis we give a brief review on the general formalism of the SF calculation. In

Sec. 2.1 we give review Teukolsky’s formalism, which will be useful when we attempt to calculate

the MP required to obtain the SF of a particle orbiting a Kerr BH. A practical way to solve the

Teukolsky equation numerically comes in the form of the Sasaki-Nakamura equation included in

Sec. 2.1.4. The solution of this equation, usually referred as Sasaki-Nakamura field, is related

to solutions of the homogeneous Teukolsky equations by a simple transformation. This will be the

basis of our numerical implementation, in which we will use the metric-reconstruction procedure first

formulated by Chrzanowski [93] and Cohen-Kegeles [94] (CCK reconstruction). This reconstruction

starts at the ℓ = 2 spin-weighted harmonic mode, and it requires the inclusion of the completion

piece mentioned above. The treatment of the completion piece requires special considerations and

it will be reserved for Chapter 5. Together the reconstructed and completion pieces correspond to

what we will refer in Sec. 2.1.6 as a completed radiation-gauge. This completed gauge is a solution

of the full linearised-EFE. In Sec. 2.2 we give MiSaTaQuWa formula, and the equation of motion

in Sec. 2.3. In Sec. 2.4 we will summarize the essence of the mode-sum approach, which is the

one we will be using in our implementation. As mentioned above, the SF is not a gauge-invariant

quantity. In Sec. 2.5 we consider how gauge transformations from the LG to other regular gauges

affect the SF. In Sec. 2.6 we present a gauge-invariant quantity, which is useful for comparisons of

SF calculations in different gauges.

In Chapter 3 we give a detailed description of the formalism we obtained for SF calculations.

This reformulation will allow us to calculate the SF using the RG reconstructed-perturbation.

In Sec. 3.2 we will work in a basis of Fermi-like coordinates, which allows for a straightforward

analysis of the Kerr spacetime. We include a detailed calculation of the leading-order term of the

gauge-transformation generator that locally relates the singularity of the RG perturbation with

the singularity of the LG perturbation. We give a classification of the RGs based on their singular

structure. We discuss which of these types of RGs are suitable for numerical implementations, and in

particular useful for SF calculations. We develop the approach (proposed in [97]) of locally deforming

the RGs to fall in the class of gauges that relate to the LG by a regular gauge-transformation [19],

and in which the standard LG mode-sum is still valid. We also discuss the use of the direct (without

deformation) computation of the SF using the CCK-reconstructed modes. In the two approaches

we just described, using deformed and undeformed RGs, we will require modifications to the Lorenz

mode-sum formula. These modifications will be presented in Sec. 3.3 for the locally-deformed gauge,

where we also find corrections to the standard LG regularization-parameters. In Sec. 3.4 we find

the modifications for the undeformed gauge. The particular expressions for the ‘new’ regularization

parameters will be given explicitly (for a particular extension) in BL coordinates in Appendix D.

In Chapter 4 we present the numerical results of the first implementation of the method described

in Chapter 3. We specialise to a particle orbiting a Schwarzschild BH in a circular orbit. The

algorithm of our computation appears as Sec. 4.1. This algorithm can be used for the Kerr case

with minor modifications. The details of the implementation are given in Sec. 4.2. In Sec. 4.2.1

we discuss the inclusion of the analytical axially-symmetric modes. In Sec. 4.2.2 we discuss the
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numerical evolution of the Sasaki-Nakamura field. This implementation uses the RG reconstructed

modes of the MP for obtaining the retarded force, and we work in both the Ingoing and Outgoing

RGs. The final value of the GSF will be obtained using the appropriate mode-sum formula. The

completion, which is not obtained in the reconstruction procedure, is included in the LG as described

in Sec. 4.2.4. Our numerical implementation will have a cut-off in the number of calculated modes,

and the remaining modes are included by performing a fitting to a power series. In Sec. 4.2.5 we

describe the details of this fitting for the force. The numerical results appearing in Sec. 4.3 include

the convergence plots of the radial and temporal components of the SF, the convergence plot of

the gauge-invariant quantity H (see Sec. 2.6). The sources of numerical errors are discussed in Sec.

4.3.1, and in Sec. 4.3.2 we show the convergence of the GSF. In Sec. 4.3.3 we show results for the

energy-fluxes and H generated with our code, and demonstrate agreement with the literature. In

Sec. 4.3.4 we make an asymptotic comparison of our GSF values with the corresponding LG values,

and estimate the gain in efficiency of working in the RG against a LG implementation [36].

The homogeneous pieces that complete the reconstructed MP, namely the completion piece

we mentioned before, can be included in the ‘Boyer-Lindquist gauge’. This gauge corresponds to

variations of the Kerr mass and AM in Boyer-Lindquist (BL) coordinates to other solutions with

arbitrary amplitudes. In Chapter 5 we present a rigorous procedure to determine those amplitudes,

based on imposing regularity of some gauge-invariant quantities off the particle. In Sec. 5.1 we give a

derivation of those auxiliary invariants. We will briefly discuss other approaches to this problem: in

Schwarzschild by Price [100], Keidl et al. [81] and by Dolan-Barack [49]. We also discuss a numerical

method for a similar configuration, in Schwarzschild and Kerr, that was recently presented by

Sano-Tagoshi [101, 102]. The analytical implementation of our method for circular orbits (around

Schwarzschild and Kerr) will appear in detail in Sec. 5.2 and 5.3 respectively. In Sec. 5.4 we perform

the appropriate modifications to our procedure, and consider eccentric-equatorial orbits around Kerr

spacetime. This will be done analytically just like the circular-orbit cases. Our method is consistent

in the case of circular orbits with the results of Dolan-Barack [49]. While logically this should

appear before the formulation of Chapter 3, we address it last to avoid impacting the flow of the

discussion.

Notation: Throughout this work we use geometrized units (with G = c = 1) and the metric

signature −+++. For gauge transformations generated by a vector ξα, we use the sign convention

xα → xα − ξα. Greek indices α, β, γ, ... run from 0 to 4. Lowercase Latin indices refer to spatial

coordinates and run from 1 to 3, except briefly in Chapter 5. Uppercase Latin indices refer to the two

angular coordinates {θ, ϕ}. We denote the metric-compatible covariant derivatives by semicolon,

and partial derivatives with a comma. Bold indices correspond to projections with respect to the

Kinnersley tetrad (ℓ, n,m, m̄). We denote complex conjugation of any quantity a by ā except for the

metric perturbation h in Chapter 2, where h̄ will denote the trace-reversed perturbation. Metric-

compatible connections are calculated using Γα
βγ = gαδ

2 (gδβ,γ + gγδ,β − gβγ,δ) and components of

the Riemann tensor are calculated with Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

σγΓσ
βδ − Γα

σδΓσ
βγ according to

the notation in [103].
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Chapter 2

Self-force Preliminaries

This Chapter will introduce the concepts that are usually the starting point in the description of BH

perturbation theory for EMRI modelling. In Sec. 2.1 we include a brief review of BH perturbation

theory in the Newman-Penrose formalism, in which Teukolsky equation is formulated. As part

of this review, in Sec. 2.1.4 we give a short discussion of the Sasaki-Nakamura transformation.

This transformation allows a straightforward numerical evolution of Teukolsky equation. This

Sasaki-Nakamura transformation will be relevant in Chapter 4, where we will use it to obtain the

homogeneous solutions of Teukolsky equation. We describe in Sec. 2.1.5 the analytical method

by Mano-Suzuki-Takasugi [104] which allows to compute highly accurate homogeneous solutions

of Teukolsky equation. Even though we do not use this method in practice, we include it in this

Chapter for completeness.

In Sec. 2.2, Eq. (2.41) corresponds to MiSaTaQuWa equation as it was derived using the method

of matched asymptotic expansions of Appendix A. We will deviate from the original interpretation

of the SF arising from a ‘tail’ field and rather adopt the more intuitive (effective) interpretation by

Detweiler-Whiting [20] where the SF arises from certain regular piece of the MP.

In Sec. 2.3 we discuss the motion of a particle in the perturbed spacetime. This will be presented

as a correction to the geodesic equation of the background spacetime. This deviation arises from

the curvature of the background where the particle is embedded, and from a SF term.

Still in the context of the LG, we provide in Sec. 2.4 a brief review of the mode-sum formula.

The LG mode-sum is (to date) the most successful regularization method to obtain the SF (see

Table 1.1 in the previous Chapter). The explicit expressions for the regularization parameters in

the LG are given in Appendix B.

In Sec. 2.5 we describe how the SF (and the motion driven by it) is a gauge-dependent quantity.

We consider how moving away form the LG requires careful considerations in terms of the equation

of motion. We consider three general classes of gauges: gauges related to the LG by a continuous

gauge transformation; gauges related to LG by a discontinuous (but bounded at the particle’s

limit) transformation; and “parity-regular” gauges where the SF can be obtained using averaging

procedures around the particle.
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2.1 Gravitational perturbations of a Kerr Black-Hole

The study of gravitational perturbations around a Kerr BH can be done using Newman-Penrose

formalism [105]. In particular we are interested in reconstructing the components of the MP in a

RG hRad (See Eq. (2.18) in Sec. 2.1.3 below). Full derivations and detailed explanations can be

found in Chandrasekhar’s book [106].

In BL coordinates the line-element for the Kerr geometry is given by [103],

ds2 = −
(

∆ − a2 sin2 θ

Σ

)

dt2 − 2a sin2 θ(r2 + a2 − ∆)

Σ
dtdϕ

+

[

(r2 + a2)2 − ∆a2 sin2 θ

Σ

]

sin2 θdϕ2 +
Σ

∆
dr2 + Σdθ2, (2.1)

where we have used

Σ ≡ r2 + a2 cos2 θ, and ∆ ≡ r2 + a2 − 2Mr. (2.2)

The event-horizon (EH) of the Kerr BH in these coordinates is at r = r+ ≡ M +
√
M2 − a2 and

the inner horizon is at r = r− ≡ M −
√
M2 − a2.

The Kerr metric has two Killing-vector fields ξα
(t) = (∂/∂t)α and ξα

(ϕ) = (∂/∂ϕ)α and correspond-

ing conserved quantities: the specific energy E = −ξα
(t)uα = −ut and specific azimuthal component

of the AM L = ξα
(ϕ)uα = uϕ. Namely the Kerr BH is stationary and axially symmetric. The

Kerr metric also admits a Killing tensor Qαβ with the Carter constant Q = Qαβuαuβ as associated

conserved-quantity. Any orbit described by a test particle around a Kerr BH is fully specified by

these three parameters up to initial phases. The quantity Q is related to E and L according to [107]

Q = u2
θ + cos2 θ

[

a2(1 − E2 + csc2 θL2)
]

, (2.3)

where θ is evaluated at the test particle. Eq. (2.3) vanishes for equatorial orbits where θ = π/2 and

uθ = 0.

2.1.1 Geodesic equations

A time-like test body of mass m in any spacetime will follow the geodesic equation muα∇αu
β = 0,

see Fig. 2.1. In BL coordinates the components of the geodesic equation in Kerr are [107]

Σ2

(

dr

dτ

)2

=
[

E(r2 + a2) − aL
]2 − ∆

[

r2 + (L − aE)2 + Q
]

≡ Vr, (2.4a)

Σ2

(

dθ

dτ

)2

=Q − L cot2 θ − a2 cos2 θ(1 − E)2 ≡ Vθ, (2.4b)

Σ

(

dϕ

dτ

)2

=L csc2 θ + aE
(

r2 + a2

∆
− 1

)

− a2L
∆

, (2.4c)

Σ

(

dt

dτ

)2

=E
[

(r2 + a2)2

∆
− a2 sin2 θ

]

+ aL
(

1 − r2 + a2

∆

)

. (2.4d)

where the roots of Vr = 0 and Vθ = 0 give the turning points of the orbit. In Chapter 5 we use a

more practical parametrization for eccentric-equatorial orbits.



2.1 Gravitational perturbations of a Kerr Black-Hole 13

Figure 2.1: Example of an approximated geodesic orbit. A small BH follows the orbit as it falls
into a supermassive BH. Credit: Drasco and Cutler [108]

2.1.2 Newman-Penrose formalism

Let us now summarise some useful results from the method developed by Newman and Penrose

[105]. We will use this method as a starting point for the MP reconstruction.

The principal null-vectors are given in BL coordinates by

ℓα =

(

r2 + a2

∆
, 1, 0,

a

∆

)

, nα =
1

2Σ

(

r2 + a2,−a, 0, a
)

, (2.5a)

which are normalized as ℓαnα = −1 = ℓαn
α according to Kinnersley’s choice [103]. The two

remaining null-vectors of the tetrad are

mα =
1√

2(r + ia cos θ)

(

ia sin θ, 0, 1,
i

sin θ

)

and (2.6a)

m̄α =
−1√

2(r − ia cos θ)

(

ia sin θ, 0,−1,
i

sin θ

)

, (2.6b)

with mαm̄α = 1 = mαm̄
α. The null-vectors in Eqs. (2.5) and (2.6) also satisfy orthogonality

relations: ℓαm
α = ℓαm̄

α = nαm
α = nαm̄

α = 0 and ℓαℓα = nαnα = mαmα = 0. The corresponding

directional derivatives are D = ℓµ∂µ, ∆ = nµ∂µ, δ = mµ∂µ and δ̄ = m̄µ∂µ. The non-vanishing

spin-coefficients are

̺ = − 1

r − ia cos θ
, β = − ¯̺

cot θ

2
√

2
, π =

i√
2
a̺2 sin θ, τ = − i√

2
a̺ ¯̺sin θ,

µ =
1

2
̺2 ¯̺∆, γ = µ+

1

2
̺ ¯̺(r −M), α = π − β̄, (2.7)

where Σ = (̺ ¯̺)−1.

The ten independent components of the traceless part of the Riemann tensor are encoded in five

complex curvature-scalars or Weyl scalars. These scalars are given in terms of the components of

the Weyl tensor Cαβγδ as [103]
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ψ0 = − Cαβγδ ℓ
αmβℓγmδ, (2.8a)

ψ1 = − Cαβγδ ℓ
αmβℓγnδ, (2.8b)

ψ2 = − Cαβγδ ℓ
αmβm̄γnδ, (2.8c)

ψ3 = − Cαβγδ ℓ
αnβm̄γnδ, (2.8d)

ψ4 = − Cαβγδ n
αm̄βnγm̄δ, (2.8e)

and asymptotically behave as ψi = O(r−5+i) with i = 0, 1, ..., 4 for outgoing waves [105]. For a Kerr

BH the curvature scalars have values ψ0 = ψ1 = ψ3 = ψ4 = 0, and ψ2 = M̺3.

The presence of the orbiting particle will produce a perturbation δψi, for i = 0, 1, ..., 4 as before.

In general we write ψi = ψ
(0)
i + δψi. In the full EMRI system ψ0, and ψ4 correspond to the

perturbations themselves. The two scalars ψ1 and ψ3 are gauge dependent, and one can always use

the gauge freedom to also set them to zero. This leaves only ψ
(0)
2 = M̺3 in the background, and

the perturbation is denoted by δψ2.

The first-order perturbations ψ0 and ψ4 can be obtained by solving the inhomogeneous Teukolsky

equation [109] sourced by Ts [explicitly given below in Eq. (2.16)]. For a particular spin-value s the

equation is given by

[

(r2 + a2)2

∆
− a2 sin2 θ

]

∂2ψs

∂t2
+

4Mar

∆

∂2ψs

∂t∂ϕ
+

[

a2

∆
− 1

sin2 θ

]

∂2ψs

∂ϕ2

−∆−s ∂

∂r

(

∆s+1ψs

∂r

)

− 1

sin θ

∂

∂θ

(

sin θ
∂ψs

∂θ

)

− 2s

[

a(r −M)

∆
+
i cos θ

sin2 θ

]

∂ψs

∂ϕ

−2s

[

M(r2 − a2)

∆
− r − ia cos θ

]

∂ψs

∂t
+(s2 cot2 θ − s)ψs = 4πΣTs, (2.9)

which was shown to be separable (also by Teukolsky [109]), if we write a decomposition of the form

ψs =
∑

ℓm

ei(mϕ−ωt)Rsℓm(r) sSℓm(θ). (2.10)

The relevant gravitational perturbations are given by ψs=−2(r) ≡ ̺−4ψ4(r) and ψs=2(r) ≡ ψ0(r).

In the circular-equatorial orbits case (that will concern us in Chapter 4) we have ω ≡ mΩ, where Ω

corresponds to the angular frequency. This frequency is calculated in terms of components of the

four-velocity by

Ω ≡ uϕ

ut
=

M1/2

r
3/2
0 + aM1/2

. (2.11)

In vacuum (Ts = 0) Eq. (2.9) separates into

∆−s d

dr

(

∆s+1 dRs

dr

)

+
{[

(r2 + a2)2ω2 − 4aMrωm+ a2m2 + 2ia(r −M)ms

−2iM(r2 − a2)ωs
]

∆−1 + 2irωs− Λℓm − a2ω2
}

Rs = 0, (2.12a)

1

sin θ

d

dθ

(

sin θ
dS

dθ

)

+

(

a2ω2 cos2 θ − m2

sin2 θ
− 2aωs cos θ − 2ms cos θ

sin2 θ

−s2 cot2 θ + Λℓm − s2
)

S = 0. (2.12b)
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We have omitted the arguments and harmonic indices ℓm of Rs(r) and S(θ) in Eq. (2.12) for

simplicity. When a 6= 0 the eigenvalues of the spheroidal harmonics are given by Λℓm = λs +

2amω − a2ω2 + s+ s2, with λs = (ℓ − s)(ℓ + s+ 1). When a = 0, Λℓm reduces to ℓ(ℓ+ 1) and the

eigenfunctions correspond to the spin-weighted spherical harmonics sSℓm(θ)eimϕ = sYℓm(θ, ϕ) (see

Appendix E for further details).

Explicitly for s = 2,−2 we get equations for Rs=2(r) ≡ R0(r) and Rs=−2(r) ≡ R4(r):

∆−2 d

dr

(

∆3 dR0

dr

)

+ V2(r)R0 = − 4πT2, (2.13a)

∆2 d

dr

(

1

∆

dR4

dr

)

+ V−2(r)R4 = − 4πT−2, (2.13b)

where the potential Vs(r) is read from Eq. (2.12a):

Vs(r) =
K2 − 2is(r −M)K

∆
+ 4isωr − λs, with, (2.14a)

K(r) =(r2 + a2)ω −ma. (2.14b)

The stress-energy tensor for the orbiting particle is modelled as a δ-function distribution along

the worldline. It can be explicitly written as

Tαβ =m

∫

uαuβδ(4)(xα − xα
0 (τ))(−g)−1/2dτ

=m

∫

uαuβ

Σ sin θ
δ(r − r0(τ))δ(cos θ − cos θ0(τ))δ(ϕ − ϕ0(τ))δ(t − t0(τ))dτ

=
m

utr2
0

uαuβδ(r − r0)δ(cos θ − cos θ0)δ(ϕ− ϕ0), (2.15)

where m is located at the point x0 with coordinates (r0, t0, θ0, ϕ0), and (−g)1/2 = Σ sin θ. The third

line is obtained by changing the integration variable from τ to t and integrating in a time-t interval

containing t0. The source Ts can be obtained in terms of the components of Tαβ projected along

the Newman-Penrose tetrad. Explicitly for s = −2, 2 (which are the values of s relevant to our

work) we have [106]

T−2 =2̺−4
{

(∆ + 3γ − γ̄ + 4µ+ µ̄)
[

(δ̄ − 2τ̄ + 2α)T24 − (∆ + 2γ − 2γ̄ + µ̄)T44

]

+(δ̄ − τ̄ + β̄ + 3α+ 4π)
[

(∆ + 2γ + 2µ̄)T24 − (δ̄ − τ̄ + 2β̄ + 2α)T22

]}

, (2.16a)

T2 =2 {(δ + π̄ − ᾱ− 3β − 4τ) [(D − 2ǫ− 2¯̺)T13 − (δ + π̄ − 2ᾱ− 2β)T11]

+(D − 3ǫ+ ǭ− 4̺− ¯̺) [(δ + 2π̄ − 2β)T13 − (D − 2ǫ+ 2ǭ− ¯̺)T33]} , (2.16b)

where the projections of the stress-energy tensor are given by:

Tab ≡ eα
ae

β
b
Tαβ, (2.17)

with eα
a = {ℓα, nα,mα, m̄α}.
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2.1.3 CCK metric reconstruction procedure

The RGs are given by the conditions

ℓβhIRG
αβ =0 = gαβhIRG

αβ , for the ingoing radiation-gauge, and (2.18a)

nβhORG
αβ =0 = gαβhORG

αβ , for the outgoing radiation-gauge, (2.18b)

where gαβ is the metric of the background spacetime and hαβ corresponds to the MP. The second

equality corresponds to the extra requirements of the RGs to be trace-free.

The procedure to obtain the vacuum perturbation in the RG starting from the curvature scalars

ψ0 and ψ4 was first proposed by Cohen and Kegeles for the electromagnetic case [110], and soon after

generalized to the gravitational case by Chrzanowski [93] and independently by Cohen-Kegeles [111].

The CCK reconstruction (after the names of the authors) can be computed from the expressions

hORG
αβ = − ̺−4

{

nαnβ

(

δ̄ − 3α− β̄ + 5π
) (

δ̄ − 4α+ π
)

+ m̄αm̄β (∆ + 5µ− 3γ + γ̄) (∆ + µ− 4γ)

−n(αm̄β)

[(

δ̄ − 3α+ β̄ + 5π + τ̄
)

(∆ + µ− 4γ)

+ (∆ + 5µ− µ̄− 3γ − γ̄)
(

δ̄ − 4α+ π
)]}

ΨORG + c.c., (2.19a)

hIRG
αβ = −

{

ℓαℓβ

(

δ̄ + α+ 3β̄ − τ̄
) (

δ̄ + 4β̄ + 3τ̄
)

+ m̄αm̄β (D − ¯̺) (∆ + 3¯̺)

−ℓ(αm̄β)

[(

δ̄ − α+ 3β̄ − π − τ̄
)

(D + 3¯̺) + (D + ̺− ¯̺)
(

δ̄ + 4β̄ + 3τ̄
)]}

Ψ̄IRG + c.c.,

(2.19b)

where Ψ is the appropriate ‘Hertz potential’. The Hertz potential can be obtained from the Weyl

scalars according to [112]

8ψ0 = L
4Ψ̄ORG + 12̺−3ψ

(0)
2 ∂tΨ

ORG, 32̺−4ψ4 = ∆2
D̃

4
∆2Ψ̄ORG, (2.20a)

8̺−4ψ4 = L
4Ψ̄IRG − 12̺−3ψ

(0)
2 ∂tΨ

IRG, 2ψ0 = D
4Ψ̄IRG, (2.20b)

with L = − [∂θ − s cot θ + i csc θ∂ϕ] − ia sin θ∂t and

D̃ ≡ −2∆

Σ
∆ = −r2 + a2

∆
∂t + ∂t − a

∆
∂ϕ. (2.21)

In the vacuum region, Ψ satisfies the homogeneous Teukolsky equation with the opposite spin

of that of the Weyl scalar from which it is obtained. This implies that Ψ can be also decomposed

into harmonics as

Ψs =
∞
∑

ℓm

R̃s ℓm(r) sSℓm(θ)ei(mϕ−ωt), (2.22)

where R̃s ℓm(r) and sSℓm(θ) are solutions of Eq. (2.12) as before. The function R̃s ℓm(r) can

be obtained by inverting Eq. (2.20) mode by mode. We also require the Teukolsky–Starobinsky

identity[106]:

L
4

2Sℓm = D −2Sℓm, (2.23)

whereD2 = λ2
Ch(λCh+2)2+8aω(m−aω)λCh(5λCh+6)+48a2ω2[2λCh+3(m−aω)2]. The eigenvalue

λCh used by Chandrasekhar in [106] is related to the one we used in Eq. (2.12) by λCh = λs + s+ 2.
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2.1.4 Sasaki–Nakamura transformation

In principle one should be able to integrate the homogeneous Teukolsky equation from the horizon

(and from infinity). This approach does not work well in numerical implementations. The funda-

mental reason for this difficulty is that the Teukolsky potential is long-ranged, and the asymptotic

form of its homogeneous solutions are ill-behaved. This long-range potential makes it difficult to

properly set the phases of the asymptotic solutions [113]. The outgoing piece of the solution grows

∼ r4 times the ingoing piece as r → ∞ in BL coordinates. The latter is easily lost in numerical

calculations.

To overcome this difficulty, Sasaki and Nakamura [114] introduced a new variable to obtain

Teukolsky’s radial function R4(r). The so-called Sasaki-Nakamura function X(r) is governed by an

equation with a short-ranged potential. The physical solutions of the Sasaki-Nakamura equation

have desired asymptotic behaviours at horizon and infinity [106]. The Sasaki-Nakamura equation

in Kerr is
d2X

dr2
∗

− F (r)
dX

dr∗
− U(r)X = 0. (2.24)

The tortoise coordinate is defined as
dr∗

dr
≡ r2 + a2

∆
, (2.25)

and it is explicitly given in Kerr by

r∗(r) = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−

r+ − r−
ln
r − r−

2M
. (2.26)

The functions F (r) and U(r) of Eq. (2.24) are given [114] by

F (r) =
1

η

dη

dr

∆

r2 + a2
, (2.27a)

U(r) =
∆U1(r)

(r2 + a2)2
+G(r)2 +

∆

r2 + a2

dG

dr
− F (r)G(r), (2.27b)

with

η(r) = c0 +
c1

r
+
c2

r2
+
c3

r3
+
c4

r4
, (2.28)

and

G(r) = −2(r −M)

r2 + a2
+

r∆

(r2 + a2)2
, (2.29a)

U1(r) = V−2(r) +
∆2

β

[

d

dr

(

2α+
1

∆

dβ

dr

)

− 1

η

dη

dr

(

α+
1

∆

dβ

dr

)]

, (2.29b)

α = −iK β

∆2
+ 3i

dK

dr
+ λs + 6

∆

r2
, (2.29c)

β = 2∆

[

−iK + r −M − 2
∆

r

]

, (2.29d)

where the functions K(r) and V−2(r) are taken from the Teukolsky equation (2.13a) given above,

and λs is the same as that in Eq. (2.12b). The coefficients of η are

c0 = −12iωM + λs(λs + 2) − 12aω(aω −m), (2.30a)

c1 = 8ia[3aω − λs(aω −m)], (2.30b)

c2 = −24iaM(aω −m) + 12a2[1 − 2(aω −m)2], (2.30c)
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c3 = 24ia3(aω − m) − 24Ma2, (2.30d)

c4 = 12a4. (2.30e)

The explicit transformation that allows to calculate the radial function R4(r) that satisfies

Teukolsky equation in terms of the Sasaki-Nakamura field X(r) is

R4(r) =
1

η

[(

α+
β′

∆

)

χ− β

∆
χ′

]

, (2.31)

where the prime denotes derivative with respect of r, and χ ≡ X(r)∆/
√
r2 + a2.

2.1.5 MST (Mano-Suzuki-Takasugi) method

Analytical solutions to the radial part of the homogeneous Teukolsky equation were given by Mano,

Suzuki and Tagoshi, usually referred simply as MST method [104, 115]. These solutions are written

as an infinite series of known hypergeometric functions: the ingoing solution RH (which is regular

at the EH) is written as a sum over hypergeometric functions 2F1 and the outgoing solution R∞

(regular at infinity) is written as a sum over (Tricomi’s) confluent-hypergeometric functions U ,

RH =Ase
iǫκx(−x)−2−iǫ+(1 − x)iǫ−

n=∞
∑

n=−∞

aν
n(s) 2F1 (n+ ν + 1 − iτ,−n− ν − iτ ; 1 − s− 2iǫ+;x) ,

R∞ =2νe−πǫe−iπ(ν+1+s)eizzν+iǫ+(z − ǫκ)−s−iǫ+×
n=∞
∑

n=−∞

in
(ν + 1 + s− iǫ)n

(ν + 1 − s+ iǫ)n
(2z)naν

n(s)U(n+ ν + 1 + s− iǫ, 2n+ 2ν + 2; −2iz), (2.32)

where the different variables are defined as

x = − ω

ǫκ
(r − r+), ǫ = 2Mω, z =ǫκ(1 − x) = ǫκx̃, ǫ± =

ǫ± τ

2
,

κ =
√

1 − ã2, τ =
ǫ−mã

κ
, ã =

a

M
. (2.33)

The parameter ν (renormalized AM ) has the low frequency limit ν → ℓ as ǫ → 0. In general ν is

determined by solving the condition

Rn(ν)Ln−1(ν) = 1, (2.34)

where Rn(ν) and Ln(ν) are the continued fractions defined by

Rn(ν) =
aν

n(s)

aν
n−1(s)

= − γν
n(s)

βν
n(s) + αν

n(s)Rn+1(ν)
,

Ln(ν) =
aν

n(s)

aν
n+1(s)

= − αν
n(s)

βν
n(s) + γν

n(s)Ln−1(ν)
. (2.35)

The coefficients αn
ν , βn

ν and γn
ν are given [116] by

αn
ν =

iǫκ(n+ ν + 1 + s+ iǫ)(n+ ν + 1 + s− iǫ)(n+ ν + 1 + iτ)

(n+ ν + 1)(2n+ 2ν + 3)
,

βn
ν = − λs − s(s+ 1) + (n+ ν)(n+ ν + 1) + ǫ2 + ǫ(ǫ−mã) +

ǫ(ǫ−mã)(s2 + ǫ2)

(n+ ν)(n+ ν + 1)
,
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γn
ν = − iǫκ(n+ ν − s+ iǫ)(n+ ν − s− iǫ)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
. (2.36)

The normalization coefficients As in Eq. (2.32) are

A−s = 1, As = C̄s

( ω

ǫκ

)2s Γ(1 + s− 2iǫ+)

Γ(1 − s− 2iǫ+)

∣

∣

∣

∣

Γ(ν + 1 − s− iǫ)

Γ(ν + 1 − s+ iǫ)

∣

∣

∣

∣

2

, (2.37)

with the relevant Starobinsky constants Cs (with s = 2):

|C2| =(Q2
2 + 4aωm− 4a2ω2)

[

(Q2 − 2)2 + 36aωm− 36a2ω
]

(2.38)

+ (2Q2 − 1)(96a2ω2 − 48aωm) + 144ω2(M2 − a2), with Qs = Λℓm + a2ω2 − 2aωm.

2.1.6 Completed Radiation Gauges

The CCK-reconstruction procedure described in Sec. 2.1.3 starts at the ℓ = 2 spin-weighted har-

monic mode, since the spin-weighted spherical harmonics are not defined when ℓ < |s|. The Weyl

scalars (ψ0 or ψ4) required in this procedure give the full gauge-invariant information about the

radiative content of the solution. For vacuum perturbations Wald showed [98] that the remaining

contributions correspond to perturbations of the mass and AM, gauge perturbations and perturba-

tions of the Kerr metric to other solutions, namely to C-metric and Kerr-NUT solutions. The mass

and AM perturbations of Schwarzschild were studied (in the LG) by Detweiler and Poisson [117],

who showed the importance of these contributions in the context of BH perturbation theory and

SF calculations.

Thus the full MP in a RG has two pieces: a perturbation constructed using the CCK-reconstruction

procedure together with a ‘completion’ piece. We write this completed radiation-gauge as

hRad
αβ = h

(rec)
αβ + h

(comp)
αβ , (2.39)

where h
(rec)
αβ is the CCK-reconstructed piece (given in the IRG or ORG) and h

(comp)
αβ is whatever is

required so that hRad
αβ satisfies the linearised EFE. The completion piece in Schwarzschild can be

obtained by solving the ℓ = 0, 1 modes of the EFE [83]. The non-separability of the EFE in Kerr

makes the problem much more difficult, which we address in Chapter 5.

2.2 The MiSaTaQuWa formula and Detweiler-Whiting re-

formulation

Consider a point-like particle of mass m moving on the geometry of a Kerr BH with metric gαβ . We

recall that in general the concept of point-particle is not suitable in the context of GR. However

through the method of matched asymptotic expansions — as discussed in Appendix A— it has been

shown [14, 15] that the particle is described by the usual delta-function distribution within linear

perturbation-theory. The Kerr BH is characterized by its mass M and spin parameter a, and we

consider m ≪ M . Due to the finite mass of the particle, the motion will not be geodesic in g. Let

hLor
αβ represent the MP due to m in the LG. hLor

αβ satisfies the gauge condition

gβγhLor
αβ;γ =

1

2
gβγhLor

βγ;α. (2.40)
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In what follows, for simplicity, we will refer to the LG perturbation as just hαβ . The distinction

from other gauges will only be required later in Sec. 2.5.

Assume that the trajectory of the particle in gαβ = gαβ + hαβ is given by xα
0 (λ), where λ is an

arbitrary parameter. Given a choice of a coordinate system in g we can project the worldline xα
0 (λ)

onto the background g on the basis of “same coordinates values” (we assume that the coordinates

in the two spacetimes would be the same in the limit m → 0 where the motion is geodesic). This

projection defines an accelerated worldline on the background, and we interpret such acceleration

as being caused by a GSF Fα
self . We denote by τ the proper-time along this worldline and the

four-velocity of the particle is given by uα ≡ dxα
0 /dτ .

According to the MiSaTaQuWa formula [14, 15] the GSF at a given point xα
0 can be calculated

from the tail field htail
αβ . This tail arises from waves being scattered due to the spacetime-curvature

and interacting with the field in later times. The tail field is continuous and differentiable every-

where, even on the worldline, but it is not a smooth function on the worldline: generally it is

not twice differentiable. The MiSaTaQuWa equation, as derived using the method of matched

asymptotic expansions of Appendix A, takes the form

Fα
self(x0) = lim

x→x0

m∇αβγ h̄tail
βγ (x). (2.41)

Here h̄αβ is the trace-reversed MP 1 given by

h̄αβ ≡ hαβ − 1

2
gαβg

µνhµν . (2.42)

The operator ∇αβγ in Eq. (2.41) is the “force” operator [97]. The explicit form of the force operator

arises from considering the difference between the trajectory in a perturbed spacetime and the one

in the background spacetime, where the particle experiences an external force perpendicular to

its velocity. The perturbation can be any smooth external weak gravitational-perturbation, and

produces a fictitious ‘gravitational’ force Fα
grav. When the perturbation h is produced by the test

particle, Fα
grav corresponds to the SF. This difference between the accelerations in the two spacetimes

can be expressed according to [19]

Fα
grav ≡ −m(δα

λ + uαuλ)∆Γλ
µνu

µuν , (2.43)

where ∆Γλ
µν ≡ Γ′λ

µν − Γλ
µν is the difference of the connections compatible with the perturbed metric

(Γ′) and the background metric (Γ). ∆Γλ
µν can be written in terms of h as

∆Γλ
µν =

1

2
gλα (hαµ;ν + hαν;µ − hµν;α) . (2.44)

Explicitly, the force operator is given in terms of the metric tensor gαβ , the metric-compatible

covariant derivative ∇α and uα by

∇αβγ =
1

4

(

2gαδuβuγ − 4gαβuγuδ − 2uαuβuγuδ + uαgβγuδ + gαδgβγ
)

∇δ, (2.45)

where uα is a smooth extension of the four velocity in the neighbourhood of the worldline. A useful

way to calculate Fgrav (which we will use in Chapters 3 and 4) is to substitute Eqs. (2.45) and (2.42)

1Here and for any MP h̄ refers to trace-reversed fields, not to complex conjugation.
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in Eq. (2.41) to obtain

Fα
grav(x) = − m

2
(gαβ + uαuβ) [∇µhνβ(x) + ∇νhµβ(x) − ∇βhµν(x)]uµuν

= − mPαβ

[

∇µhνβ(x) − 1

2
∇βhµν(x)

]

uµuν . (2.46)

where Pαβ ≡ gαβ + uαuβ. When the hαβ in Eq. 2.46 is replaced by the tail part of the LG

perturbation Fα
grav gives the SF.

Let us consider the retarded perturbation h
(ret)
αβ , which satisfies the inhomogeneous EFE. Det-

weiler and Whiting showed that the same physical SF— as the one obtained from the tail perturbation—

can be obtained in terms of a regular (smooth) field h̄R
αβ, which is a solution of the vacuum Einstein

equation [118]. This regular field is related to the retarded perturbation as

h̄
(ret)
αβ = h̄ S

αβ + h̄ R
αβ, (2.47)

where h̄S
αβ is certain locally-defined singular piece of the retarded field near the location of the

particle [the leading-order expression for the S part of the MP in the Lorenz gauge will be given in

Fermi-like coordinates explicitly in Eq. (3.8)]. The Detweiler-Whiting singular field at a point xα,

off the worldline, depends only on the points of the worldline that are space- and null-like separated.

The regular field depends an all the points on the worldline up to the advanced time v, as shown

in Fig. 2.2.

Γ(τ) Γ(τ)

x x

x0(u)

x0(v)

Singular Regular

Figure 2.2: In green we show the region of the worldline which supports the Green’s function of
a point x. The worldline Γ(τ) appears in blue. In curved spacetime the singular field depends on
the history of the particle in the interval u ≤ τ ≤ v; the regular field depends only on the interval
−∞ < τ < v. u and v are the retarded and advanced times respectively. The regular field is only
causal at coincidence.

The singular part of the MP does not contribute to the value of the SF [118]. We can then

calculate the SF as

Fα
self(x0) = m∇αβγ h̄ R

βγ(x0). (2.48)

We comment that the fact that the particle will move along a geodesic of the spacetime gαβ =

gαβ +h R
αβ is not enough to give any physical “substance” to the R-field of the particle, and it should

be understood as an effective field; the physical perturbation is still given by h
(ret)
αβ .
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2.3 Equation of motion in the Lorenz-gauge

Defining the position of the particle requires more than just giving the value of the SF. The SF

is gauge dependent, and any expression of it must be accompanied by the information about the

gauge to which it corresponds.

Γ

zα
0 (τ) zα(τ)

zα
0 (τ) zα

1 (τ)

zα(τ) =

zα
0 (τ) + ǫzα

1 (τ) + O(ǫ2)

Figure 2.3: Perturbative treatment of the world-
line Γ. The vector field zα

1 (τ) describes the first
order deviation of the object’s centre of mass. We
neglect the contributions of terms O(ǫ2).

Let us consider that the point-mass m pro-

duces a perturbation εhµν +O(ε2), where ε ≡ 1

is used to count powers of m, in the background

spacetime gµν . We write the object’s worldline

as the perturbative expansion2

zµ(τ, ε) = zµ
0 (τ) + εzµ

1 (τ) +O(ε2). (2.49)

The leading term zµ
0 (τ) is the coordinate de-

scription of a geodesic Γ of the background

spacetime. The term, zµ
1 , is a vector field

defined on Γ and describes the first-order de-

viation of the object’s centre of mass from the

worldline, where the centre of mass is defined

by the object’s mass dipole moment in a locally

inertial frame centred on Γ, see Fig. 2.3. This first-order correction is [16]

m
D2zα

1Lor

dτ2
= −mRα

µβνu
µzβ

1Loru
ν + Fα

self , (2.50)

where Fα
self ∝ m2 is the SF in the LG produced by the MP of the point-mass moving along Γ. In

addition to the SF, the equation of motion contains the term −Rα
µβνu

µzβ
1Loru

ν , which is purely a

background effect. This term describes the fact that if Fα
self forces the small object slightly off Γ,

the object continues to move relative to Γ due to the background curvature.

The SF in the LG can be written in several (equivalent) forms: an alternative form to Eqs.

(2.41) and (2.48) is that by Gralla. Gralla, based on the work by Quinn and Wald [15], showed that

the tail formula of Eq. (2.41) can be written in terms of a spatial average [123], which we shall refer

as the Quinn-Wald-Gralla form

Fα
self = lim

s→0

1

4πs2

∫

Fα Lor
(ret) dS. (2.51)

The integral in Eq. (2.51) is taken over a small two-sphere centred on the worldline Γ with a

constant geodesic radius s perpendicular to Γ, dS = s2dΩ is the surface element on that sphere and

dΩ ≡ sin θdθdφ corresponds to the surface element on a unit sphere. The angles (θ, φ) on the unitary

sphere around the particle are defined in the usual way from xa = (sin θ cosφ, sin θ sinφ, cos θ). The

integration is performed for each component in a local coordinate frame centred on the worldline3.

The choice of local coordinates warranties asymptotic flatness to leading-order [123]. The quantity

Fα Lor
(ret) is the retarded force, calculated from hret

αβ using Eq. (2.46). Fα Lor
(ret) diverges at the particle,

and it is only defined as a field off the particle by taking a smooth extension of the four velocity

2An alternative “self-consistent” description of the motion, used often in the literature and put on a system-
atic basis in Refs. [119–122], instead describes the trajectory in its unexpanded form zµ(τ, ε). We prefer to use a
perturbative expansion of the worldline, as presented by Gralla and Wald [16].

3Gralla showed that Eq. (2.51) can be expressed alternatively as an average over a circle or over two antipodal
points [123].



2.4 Mode-Sum regularization 23

uα off Γ, which we denote as ũα. This extension is defined in [123] by parallel propagation along

geodesics perpendicular to Γ.

2.4 Mode-Sum regularization

A practical way to implement MiSaTaQuWa formula and obtain the SF is given by the mode-sum

regularization procedure. As we mentioned in previous sections, the SF (at the particle’s location

xα = xα
0 ) can be obtained by subtracting the singular part of the force from the retarded value

Fα
self(x0) = lim

x→x0

[

Fα
(ret)(x) − Fα

S (x)
]

, (2.52)

where the fields Fα
(ret)(x) = m∇αβγ h̄

(ret)
βγ (x) and also Fα

S (x) = m∇αβγh̄S
βγ(x).

Let us expand Fα
(ret)(x) and Fα

S (x) in spherical harmonics on the surface t, r = const. (ignoring

the vectorial nature of the SF and treating each of their components as a scalar function; see [66]

for a more sophisticated covariant approach). The SF can be written as a sum over finite ℓ-modes

(obtained by summing over the m dependence of the harmonic modes for a given ℓ) [124]:

Fα
self(x0) = lim

x→x0

∞
∑

ℓ=0

[

Fαℓ
(ret)(x) − Fαℓ

S (x)
]

. (2.53)

The quantities Fα
(ret)(x) and Fα

S (x) are divergent at the particle since the retarded and singular

perturbations diverge there. However, each of the individual ℓ-modes Fαℓ
(ret)(x) and Fαℓ

S (x) are

finite, even at the particle.

It is known that Fαℓ
S has the large-ℓ expansion Fαℓ

S = AαL + Bα + Cα/L + ... [124], with

L ≡ ℓ + 1/2. Since the mode-sum in Eq. (2.53) converges faster than any power of 1/ℓ (recall

F(ret)(x) − FS(x) is smooth), we expect that both the retarded and singular pieces share the same

large-ℓ power expansion with the same coefficients. We can then express Eq. (2.53) as a difference

of two convergent sums, in the form

Fα
self(x0) =

∞
∑

ℓ=0

[

Fαℓ
(ret)±(x0) ∓ AαL−Bα − Cα/L

]

−
∞
∑

ℓ=0

[

Fαℓ
S±(x0) ∓AαL−Bα − Cα/L

]

, (2.54)

where the sign ± depends on the side we approach the value of r0, (the quantity Fαℓ
(ret)± ∓ AαL

turns out to be direction independent). We expect that both sums converge at least as ∼ 1/ℓ. We

arrive at

Fα
self(x0) =

∞
∑

ℓ=0

(

Fαℓ
(ret)±(x0) ∓AαL−Bα − Cα/L

)

−Dα, (2.55)

with

Dα ≡
∞
∑

ℓ=0

(

Fαℓ
S±(x0) ∓AαL−Bα − Cα/L

)

. (2.56)

Equation (2.55) is the mode-sum formula to calculate the SF in the LG. The coefficients Aα,

Bα, Cα and Dα are the ℓ-independent regularization parameters for each component of the SF. The

LG regularization parameters appear explicitly for eccentric orbits of Kerr in Appendix B of this

thesis (see [125] for a full derivation). The values of the regularization parameters remain invariant
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under gauge transformations from LG that are sufficiently regular [19]. As in Eq. (2.51), F(ret)(x)

is only defined as a field off the particle by choosing an extension ũα. The choice is arbitrary in Eq.

(2.55) as long as the regularization parameter Aα, Bα, Cα, and Dα are calculated accordingly.

2.5 Gauge and motion

Let us now consider the effect on the SF induced by a gauge transformation. First we look at

the class of gauges studied by Barack and Ori [19], namely those related to LG by a continuous

gauge transformation. Calculations of the SF in a different gauge correspond simply to determining

how Eq. (2.50) transforms under the gauge transformation that relates the new gauge with LG,

xα → x′α = xα − ξα.

Let us prescribe a foliation of spacetime near Γ with 3-dimensional spatial hypersurfaces Σ

intersecting Γ orthogonally. Let xa be coordinates on each Σ, with xa = 0 at Γ. We can arrange

for zα
1 to be orthogonal to Γ and then focus on the spatial component za

1 . Due to our foliation of

spacetime, the ξa component is tangent to the spatial hypersurfaces, and the parallel component

does not contribute to the SF. We shall require ξa to be bounded in the limit to the worldline. The

remaining Σ-perpendicular component can diverge as we take the limit to Γ, but no more strongly

than ln s. This divergence must also be spherically symmetric. Furthermore, these statements must

be valid on each Σ, eliminating pathological changes in the singular structure as we move forward

in time. Among other things, these conditions imply that: (a) the divergence of the first-order MP

in the new gauge, hαβ = hLor
αβ + 2ξ(α;β), is no stronger than in the LG, behaving as 1/s near the

particle; and (b) the leading-order singularity is constant in time. If ξα satisfies these conditions,

which also imply that Eq. (2.59) together with its proper-time derivatives along Γ evaluate to a

finite result, we say the gauge is sufficiently regular to define the SF [1].

The gauge perturbation δhαβ ≡ 2ξ(α;β) induces a change in the SF δFα
Lor which can be calculated

using Eq. (2.46):

δFα
Lor = −1

2
mPαλ (δhαµ;ν + δhαν;µ − δhµν;α)uµuν . (2.57)

Substituting δh and using the Ricci identity ξµ;λν − ξµ;νλ = ξρR
ρ
µλν , we obtain [19]

δFα
Lor = − mPαλ

(

ξλ;µν + ξρR
ρ
µλν

)

uµuν

= − m

[

PαλD
2ξλ

Dτ2
+ Rα

µλνu
µξλuν

]

, (2.58)

where Dξλ/Dτ ≡ ξλ;µu
µ stands for the covariant derivative with respect of the proper-time along

Γ.

In the Barack-Ori class of gauges ξλ is continuous, and Eq. (2.58) has a definite value. The

equality used to get the second line of Eq. (2.58) holds only for geodesics. When uµ is not geodesic

we will have an extra term ∼ aµξλ;µ, with a being the acceleration with respect to the geodesic.

Let us consider the LG equation of motion, Eq. (2.50). Under a gauge transformation, za
1

transforms as za
1 → za

1 + ∆za
1 , with

∆za
1 = − lim

s→0

3

4π

∫

nanbξbdΩ, (2.59)

where na is the unit vector normal to the two-sphere centred on the worldline and containing the

particle, as before. A derivation of Eq. (2.59) appears in Appendix A.2.
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The vector ξα, that transform from the LG, can be written as ξα(xa) = limxa→0 ξα(xa)+o(1) for

a gauge within the Barack-Ori class. Considering the identity
∫

nanbdΩ = 4π/3, we can evaluate

Eq. (2.59) to find

∆za
1 = −ξa|Γ. (2.60)

In words, the gauge contribution to the deviation term from moving away from the LG is just the

transformation xa → xa −ξa evaluated at the worldline. This means that any gauge transformation

within the Barack-Ori class are just translations of the centre of mass.

Barack and Ori [19] showed that the regularization parameters are gauge-independent under a

continuous gauge-transformation from the LG. This continuity condition can be relaxed as long as

the gauge vector has a well-defined limit at the particle’s location.

We want to extend the class of gauges where Eqs. (2.50) and (2.58) may still be used, in particular

we want to include discontinuous gauges. This requires investigating how zα
1Lor, in Eq. (2.50), is

affected by a discontinuous gauge-transformation.

Gralla and Wald [16, 126] showed how the SF can be obtained in gauges related to LG by a

transformation whose generator may have a direction dependence at the particle (but is bounded

there, and smooth elsewhere). For a subset of the Gralla-Wald class satisfying a certain parity

condition near the particle, Gralla eliminated the preferred role of the LG [123], showing that the

SF in this “parity-regular” class can be obtained by averaging the retarded force over a small sphere

around the particle, using Eq. (2.51). Gralla also showed that the LG mode-sum formula applies

within this class. Let us consider a gauge in this class: this gauge is related to the LG by a gauge

vector ξα that is smooth off Γ, but is allowed a certain type of ill-defined limit to Γ. The vector must

be bounded at Γ and its spatial components must have the local form ξa(xb) = Za(0)+Ka(nb)+O(s)

with Ka having odd parity, Ka(−nb) = −Ka(nb), under the parity transformation na → −na. We

say that any ξα is parity-regular if its spatial components have the leading-order form Za(0)+Ka(nb)

with odd Ka. Note that the integral of nanbKb(n
c) vanishes because Kb is odd and nanb is even.

For such a gauge vector we can reduce Eq. (2.59) to the simple average

∆za
1 = − 1

4π
lim
s→0

∫

ξadΩ, (2.61)

which gives ∆za
1 = −Za(0). This type of transformation of the object’s position are as reasonable as

the result ∆za
1 = −ξa|Γ: if the shift in position of a point depends on the direction one approaches

it from, then the average over all directions yields the net shift. Gralla also showed that for any

MP in his class, the GSF is given by the same simple spherical average of Eq. (2.51) as in the LG.

This form was originally taken as an axiom by Quinn and Wald in their derivation of the GSF in

the LG [15]. Gralla’s work shows, without assuming it as an axiom, that it holds true in a large

class of gauges; hence the name Quinn-Wald-Gralla we have given it. Additionally, Gralla showed,

based on this result, that in his class of gauges the GSF can be written in the standard mode-sum

form of Eq. (2.55), with the standard LG parameter values, lending great utility to these gauges.

Last, a gauge in the Gralla-Wald class is related to LG by a gauge vector ξα. ξα is smooth

off Γ but is allowed an arbitrary (bounded) direction-dependent limit to Γ, as before the spatial

component has the form ξa(xb) = Za(0) + Ka(nb) + O(s) but now Ka(nb) is allowed any smooth

dependence on na. This means that Eq. (2.51) does not generically holds true, since any piece

of Ka(nb) that is not parity regular will contribute to the integral in a finite amount. Ka(nb) is

referred to as a supertranslation. A parity-irregular MP is related to a parity-regular one by a

parity-irregular transformation [1].
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2.6 Conservative effects of the GSF and the red-shift invari-

ant

Γ(τ) Γ(τ)

x x

x0(u)

x0(v)

Retarded Advanced

Figure 2.4: In green we show the region of the worldline where the corresponding fields have
support. The worldline Γ appears in blue. In curved spacetime the retarded field depends on the
past history of the particle where −∞ < τ ≤ u; the advanced field depends on the future history
where v ≤ τ < ∞. u and v are the retarded and advanced times respectively.

To understand the physical consequences of the SF it is useful to distinguish between “conser-

vative” and “dissipative” effects. The physical SF is a sum of two pieces: Fα
self = Fα

cons +Fα
diss, where

the conservative and dissipative pieces of the SF are defined in terms of the retarded and advanced

perturbation, see Fig. 2.4. The advanced perturbation has support starting from the intersection of

the future light-cone with Γ. The conservative and dissipative pieces are defined by [97, 127]

Fα
cons(τ) =

1

2

[

Fα
self(ret)(τ) + Fα

self(adv)(τ)
]

, Fα
diss(τ) =

1

2

[

Fα
self(ret)(τ) − Fα

self(adv)(τ)
]

, (2.62)

where Fα
self(ret) is the retarded SF and Fα

self(adv) is the advanced one. Both Fα
self(ret),(adv) satisfy Eq.

(2.41) with h̄tail
αβ (x) → h̄

(ret),(adv)
αβ (x) in turn. In Schwarzschild, the components of the retarded and

advanced SF are related in the simple way [97]

Fα
self(ret/adv)(τ) = ǫ(α)F

α
self(adv/ret)(−τ), (2.63)

with ǫ(α) = (−1, 1, 1,−1), and choosing τ = 0 at a radial turning-point of the orbit. For circular

orbits F t
cons = Fϕ

cons = F r
diss = 0. Hence the t and ϕ components are just dissipative, and the r

component contributes only to the conservative effects.

Suppose that we carry out two independent calculations of the SF in two different gauges and

we want to test our results by comparing the two sets of results. As we showed in the previous

section, comparing the value of the SF itself would require knowledge of the gauge-generator that

relates the two gauges. Detweiler showed, for circular orbits in Schwarzschild [118], that there are

two invariant quantities that carry out non-trivial information about the conservative SF dynamics:

the orbital frequency Ω ≡ uϕ/ut and the contravariant t component of the four velocity ut ≡ U .

The gauge invariance of Ω and U is restricted to gauge transformations (generated by the vector
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ξα) that respect the helical symmetry of the perturbed spacetime. In other words, ξα satisfies

(∂t + Ω∂ϕ)ξα = 0. (2.64)

The physical interpretation of the gauge invariant U is less obvious than that of the orbital

frequency Ω. Two physical interpretations of U were discussed by Detweiler [118]. First, U is a

measure of the gravitational red-shift experienced by photons emitted by the orbiting particle. The

photons are observed at a large distance on the orbital axis in the effective metric gαβ + hR
αβ rather

than the true physical metric gαβ + hαβ. The second interpretation is related to the helical Killing-

vector kα ≡ {1, 0, 0,Ω} of the perturbed spacetime: the gauge independence of U implies that the

constant of motion E − ΩL ≡ 1/ut is also gauge-independent, while E ≡ −ut (energy) and L ≡ uφ

(AM) are not.

Explicit expressions for Ω and U , including SF terms, are obtained from the conservative r

component of the equation of motion muβ∇βu
α = Fα

cons: the dissipative piece of the SF is ignored

for this analysis. For circular orbits (ur = 0) to linear order in m we get [128]

Ω = Ω0

[

1 − r0(r0 − 3M)

2mM
Fr cons

]

and U = U0

(

1 − r0

2m
Fr cons

)

, (2.65)

where r0 is the orbital radius (Schwarzschild r coordinate), Ω0 = (M/r3
0)1/2 and U0 ≡ (1 −

3M/r0)−1/2 are the geodesic values of Ω and U , respectively. The expression in Eq. (2.65) tells us

that the effect of the conservative SF is to “shift” the values of Ω and U from their non-perturbed

values Ω0 and U0 at constant r0.

Despite the formal gauge-invariance of Ω and U , the shift ∆Ω(r0) ≡ Ω − Ω0 is in fact gauge-

dependent, because the radius r0 is itself gauge dependent. In other words, two calculations of the

SF in different gauges with the same value of r0 will correspond to two physically distinct orbits. To

overcome this problem we can express one of the gauge-invariant quantities in terms of the other.

Let τ̃ be proper time along the geodesic of the effective metric g = g + hR. For a given event

along the orbit we will have two proper times: τ̃ along g and τ along the projection on g. We

choose that τ̃ = τ at the initial time, and in general they will be different everywhere else. We

associate each point along the trajectory given by g with a point with the same coordinates along

the trajectory given by g. Then to O(m) at the worldline of the particle it is easy to show that [82]

dτ

dτ̃
= 1 +HR, with, HR ≡ 1

2
hR

αβu
αuβ. (2.66)

In terms of the four-velocity ũα ≡ dxα/dτ̃ we have

Ω̃ ≡ ũϕ/ũt = uϕ/ut = Ω, Ũ ≡ ũt = U(1 +HR). (2.67)

Expressing Ũ in terms of the gauge-invariant radius R = R̃ ≡ (M/Ω2)1/3, we obtain the SF-induced

difference

∆Ũ(R) ≡ Ũ(R) − (1 − 3M/R)−1/2 = (1 − 3M/R)−1/2HR. (2.68)

Comparing the function ∆U(R) obtained in different gauges provides a non-trivial test of the cal-

culation of hR
αβ , and to some extent of the SF itself.

The equivalence of calculating the SF using different gauges was demonstrated by Sago et al.

[82] with the explicit calculation of ∆U(R). Two implementations (one in the LG [36] and the other

one in the Regge-Wheeler gauge [118]) showed an agreement for ∆Ũ(R) within the computational
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error (∼ 10−5 in fractional terms).

The regular part of H(ret) ≡ 1
2h

(ret)
αβ uαuβ (denoted by HR) is obtained using the mode-sum

formula [128]

HR =

∞
∑

ℓ=0

[

H
(ret)
ℓ (x0) −BH − CH/ℓ

]

−DH , (2.69)

with

DH =

∞
∑

ℓ=0

[

HS
ℓ (x0) −BH − CH/ℓ

]

, (2.70)

where H
(ret)
ℓ are the modes computed from the retarded MP h

(ret)
αβ and HS is the singular piece of

H(ret). The regularization parameters in Eq. (2.69) are explicitly [128]

BH =
2m

π
√

r2
0 + L2

K̂

( L2

r2
0 + L2

)

, CH = DH = 0, (2.71)

where K̂ is the complete-integral of first kind as defined in Appendix B.

The quantity HR is useful for validating different implementations [48, 82, 83, 92] and for the

extraction of PN parameters (coefficients in the large-distance expansion). A generalization for

eccentric orbits around Schwarzschild was recently presented by Akcay et al. [129].

Other gauge-invariant effects of the GSF can be studied. Among those effect we find the shift

of the innermost stable circular-orbit [130–132] (ISCO shift) and the periastron advance [128, 133].

Moreover, other gauge-invariant quantities have been identified [134]: the spin precession, and four

independent tidal degrees of freedom (which correspond to three eigenvalues —two electric and one

magnetic—, and the angle from a scalar product between the electric and magnetic eigenvectors).

These invariants quantities have been recently studied [78, 135] and successfully calculated [79] for

quasi-circular orbits around Schwarzschild. Recently the invariants in the octopolar sector (three de-

rivatives of the metric) have also been computed successfully by Nolan et al. [136]. These invariants

may be useful to compare between perturbation theory and PN theory.



Chapter 3

Gravitational self-force from

curvature scalars

The previous Chapter provided an outline of the ‘traditional’ theory behind SF calculations in the

LG. We focused our review on the mode-sum regularization method. We stressed the importance

of a careful analysis regarding gauge transformations of the SF, in particular those transformations

that are not related to LG by a continuous gauge transformation. We also introduced some of the

main tools required to apply BH perturbation theory in a RG, namely to recover the MP by solving

the separable Teukolsky equation. The formalism to obtain the GSF taking advantage of the RGs

requires careful considerations.

The preliminary analysis of Barack-Ori [19] identified that in general the RGs have a string-

like singularity, namely a singularity that is not confined to the location of the particle (like the

LG singularity), but rather extends from the particle to infinity (or to the EH) along a radial-null

direction. These string-like singularities would render the RGs not suitable to directly implement

the LG mode-sum formula.

In this Chapter we present a detailed explanation of how to derive a mode-sum formula for the

RG. This is a non-trivial task since these gauges fall outside the class of gauges related to the LG

by a regular and continuous gauge transformation, for which the usual description of the motion

in terms of MiSaTaQuWa equation was first derived. However, some of the RGs will fall within

the Quinn-Wald-Gralla class where the net shift in the position is obtained by averaging over the

two-sphere containing the particle, as discussed in Sec. 2.5.

The structure of this Chapter is as follows. We start in Sec. 3.1 by defining a set of useful

Fermi-like coordinates around the particle’s worldline. In Sec. 3.2 we will look at the singular

structure of the RGs near a point-particle; this will be done by obtaining the leading-order gauge

transformation between the LG and RG perturbations. According to the singular structure of this

gauge transformation we will identify three types of RGs: full-, half- and no-string RGs. Our

considerations apply to either the ingoing and outgoing RGs. In Sec. 3.2.7 we describe how to

change our Fermi-like coordinates results to any other choice of coordinates.

Equipped with the gauge transformation we will allow for slight modifications of the RG to

define a different gauge, as it was proposed originally proposed by Barack in [97]. This class of

‘Locally Lorenz’ (LL) gauges will fall within the class of regular gauges described by Barack-Ori

in [19], where the motion driven by the mode-sum SF has a well understood description using

matched asymptotic expansions. In Sec. 3.3 we provide the prescription to implement the mode-



30 Gravitational self-force from curvature scalars

sum formula for these LL gauges, and we derive corrections to the standard LG mode-sum formula.

The expressions for the corrections to the LG regularization parameters in BL coordinates will be

relegated to Appendix D.

In Sec. 3.4 we tackle the description in terms of the original undeformed RGs and provide the

relevant modification to the mode-sum formula. All the results presented in this Chapter were

published in [1]. The use of Fermi-like coordinates was proposed by Adam Pound. These coordin-

ates allowed us to independently check our preliminary results obtained in Eddington-Finkelstein

coordinates [137], and the generalization of the formalism to Kerr.

3.1 Fermi-like coordinates

Let Γ denote the zeroth-order geodesic orbit of a particle of mass m, in some arbitrary coordinates

xα = xα
0 (τ), where τ is the proper time as before. The four velocity of the particle uα ≡ dxα

0 /dτ

satisfies uαuα = −1. Let us use Fermi-like coordinates (τ, xa) centred on Γ, as shown in Fig. 3.1.

The usual Fermi normal coordinates are used for convenient calculations near a worldline. We

modify them to accommodate the preferred direction given by the principal null-vector ℓα (in our

analysis this null vector will be either ℓα or nα).

Στ

Γ(τ )

sxα
0 (τ) xα

xa
0(τ) ̺

sz

ℓa

xA

xa

Figure 3.1: Fermi-like coordinates centred
on Γ. A set of Cartesian coordinates is es-
tablished on each spatial hypersurface Στ .
The orientation of the coordinates is fixed by
choosing the z positive direction to lie along
the spatial projection of the null vector ℓα.

The usual Fermi normal coordinates are con-

structed by first erecting an orthonormal basis

(uα, eα
a ), with a = 1, 2, 3, that is parallelly propag-

ated along Γ. In a neighbourhood of Γ, a foliation

of spatial hypersurfaces Στ is prescribed to space-

time. Each Στ is generated by spatial geodesics

orthogonally intersecting Γ at a point x0(τ). On

each hypersurface, a Cartesian coordinates system

is established, with coordinates defined as xa ≡
−ea

ᾱ∇ᾱσ(x̄, x). The barred indices correspond to

the location of the particle x̄ ≡ x0(τ), and σ(x̄, x)

is Synge’s world function [18], equal to one half the

squared geodesic distance from x̄ to x. With this

definition, xa has a magnitude

s ≡
√

δabxaxb (3.1)

equal to the geodesic distance to x, which has a dir-

ection along the triad leg eα
a . On the worldline, we

have xa = 0. By labelling each point on Στ with the

time τ , one arrives at a 4D coordinate system (τ, xa).

In these coordinates the metric gµν takes the locally

flat form ηµν +O(s2), where ηµν = diag(−1, 1, 1, 1), with Christoffel symbols Γα
βγ = O(s).

Let us now define our choice of Fermi-like coordinates. The RG condition [explicitly given for

the ingoing and outgoing RGs in Eq. (2.18)], provides a natural choice of singling out the direction

along the principal null vector ℓα on each Στ . Let xa = (xA, z), with A = 1, 2, and keep the spatial

projection of ℓα fixed in the positive z direction at s = 0, such that

ℓa = ℓ̂δa
z +O(s), ℓ̂ > 0. (3.2)
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Since ℓα is null, we have ℓτ = ℓ̂+O(s). By keeping the orientation of our coordinates fixed relative

to ℓα in this way, we cease to parallel propagate the spatial triad eα
a along Γ, unlike the usual

Fermi-normal coordinates. Instead, we allow it to rotate along the worldline, according to

Deα
a

dτ
= ωa

beα
b , (3.3)

where ωa
b is a time-dependent rotation matrix. More specifically, we have chosen one of our triad

legs to be

eα
3 =

Pα
βℓ

β

√

Pµνℓµℓν
, (3.4)

where

Pαβ ≡ gαβ(x0) + uαuβ (3.5)

is the operator (defined along Γ) that projects a vector onto Στ . This way we have forced an

adaptive rotation of the triad. Despite this rotation, the rest of the coordinate construction is

identical to the Fermi construction, with the exception that due to the non-inertial rotation, we

now have gµν = ηµν +O(s) and Γα
βγ = O(1).

We denote the geodesic distance in the direction orthogonal to both uα and ℓa by

̺ ≡
√

δABxAxB, (3.6)

and we also introduce the unit vectors

na ≡ xa/s, and NA ≡ xA/̺, (3.7)

which satisfy δabn
anb = 1 and δABN

ANB = 1. We also note the useful rules ∂as = na and

∂A̺ = xA/̺.

3.2 Local singularity structure in radiation gauges

3.2.1 Local gauge transformation

Let us consider the LG perturbation hLor
αβ [satisfying Eq. (2.40)]. In our Fermi-like coordinates, hLor

αβ

has the leading-order singular form [18]

hLor
αβ =

2m

s
δαβ + o(s−1). (3.8)

We wish to make a local gauge-transformation to a completed RG perturbation1 starting from

hLor
αβ . For the time being we will assume that the completion piece h

(comp)
αβ is given in a gauge regular-

enough so that it has no contribution to the leading-order singular structure of the RG perturbation.

This will be later obtained explicitly for a Kerr spacetime in Chapter 5. The reconstructed piece

h
(rec)
αβ satisfies the RG and trace-free conditions [here h

(rec)
αβ stands for either hIRG

αβ or hORG
αβ satisfying

Eq. (2.18)] as before.

1Let us recall Eq. (2.39) in Sec. 2.1.6, where the completed RG perturbation was defined as hRad
αβ ≡ h

(rec)
αβ

+h
(comp)
αβ

.

h
(rec)
αβ

is the piece obtained via the CCK reconstruction procedure, and h
(comp)
αβ

is the extra price required to satisfy

the full linearised EFE.
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Let us consider the O(m) gauge transformation2 ξα = ξRad→Lor
α which takes hRad

αβ to hLor
αβ :

hLor
αβ = hRad

αβ + ξα;β + ξβ;α + o(s−1). (3.9)

Here the o(s−1) terms account for the contribution from the completion piece. Contracting both

sides with ℓβ and using the gauge conditions leads to

ℓβ(ξα,β + ξβ,α) = ℓβhLor
αβ + o(s−1), (3.10)

where the covariant derivatives are replaced by partial derivatives, assuming that the singularity

in ξα,β is stronger than the singularity in ξα, which makes the connection terms sub-dominant.

We seek a solution for ξα that is well behaved as a function of time τ , i.e., whose τ derivatives

do not change the degree of singularity; more precisely, we assume ∂τ ξα ∼ o(s−1), such that time

derivatives can be neglected.

We recall that in our choice of coordinates we have ℓα = ℓ̂(δα
τ + δα

z ), which allows us to obtain

the four components of Eq. (3.10):

∂zξτ =
2m

√

̺2 + z2
+ o(s−1), (3.11a)

2∂zξz + ∂zξτ =
2m

√

̺2 + z2
+ o(s−1), (3.11b)

∂zξA + ∂Aξτ + ∂Aξz = o(s−1), (3.11c)

where we have divided out the common factor ℓ̂ and used Eq. (3.1) to replace s. The trace-free

condition constrains ξα to satisfy

2ξα
,α =gαβhLor

αβ + o(s−1), or

∂aξ
a =

2m

s
+ o(s−1) in Fermi-like coordinates. (3.12)

We can now solve Eq. (3.11) together with Eq. (3.12).

3.2.2 General solutions

One can see by inspection that ξ±
τ = ±2m ln(s ± z) are both solutions to Eq. (3.11a). The most

general solution can include arbitrary functions of τ and xA:

ξ±
τ = ±2m ln(s± z) + ζ±

τ (τ, xA) + o(1). (3.13)

According to condition 1 in Appendix A.2 we could allow o(ln s) sub-leading terms in the gauge

transformation without affecting its regularity. These type of contributions would not correspond

to the required form of a LG solution3, and so we just keep o(1) sub-leading terms. Inspection of

2Logically, we should be considering here the opposite transformation, ξLor→Rad
α = −ξα. We instead choose to

work with ξRad→Lor
α for later convenience.

3Recall that the first-order LG perturbation has the form

hαβ = s−1h
(1,−1)
αβ

+ h1,0
αβ

+ sh
(1,1)
αβ

+ O(s2), (3.14)

where h
(1,−1)
αβ

, h
(1,0)
αβ

, and h
(1,1)
αβ

are s-independent [138].
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Eqs. (3.11b) and (3.11c) similarly yields the general solutions

ξ±
z = ζ±

z (τ, xA) + o(1), (3.15a)

ξ±
A =

2mxA

s± z
− z∂A

[

ζ±
τ (τ, xA) + ζz(τ, xA)

]

+ ζ±
A (τ, xA) + o(1), (3.15b)

where ζ±
α are all arbitrary functions of τ and xA.

The trace-free condition constrains the arbitrary functions, yielding ζ±(τ, xA) ≡ 0. Substituting

the general solutions (3.13) and (3.15) into the trace-free condition gives ∂Aξ±
A = 2m

s +o(s−1), which

becomes z∂A∂A (ζ±
τ + ζ±

z ) = ∂Aζ±
A + o(s−1). Since the right-hand side is independent of z, each

side must vanish independently at leading order, implying

∂A∂A (ζτ + ζz) = o(s−2) for z 6= 0, (3.16)

∂AζA = o(s−1). (3.17)

In words, at leading order the sum ζ±
τ + ζz must be a harmonic function of xA, and ζ±

A must not

diverge in the 2D flat space charted by xA.

Note that the terms involving ζ±
α in the general solutions (3.13)–(3.15) represent “homogeneous”

solutions to the gauge transformation Eq. (3.9) and trace-free condition, namely, solutions to ξα;β +

ξβ;α = 0 and ξα
,α = 0. They therefore arise from the freedom to perform gauge transformations

within the family of RGs.

The solutions ξ±
α in Eqs. (3.13)–(3.15) are completely general. We will show that any particular

solution falls into one of three classes, each with its own distinct type of irregularity away from the

particle.

3.2.3 Half-string solutions

Let us set the arbitrary functions ζ±
α = 0 in Eqs. (3.13) and (3.15). This corresponds to a particular

choice of gauge. These solutions obviously diverge on Γ (where s = 0 = z), but they also diverge

away from the particle. Recall s± z = (̺2 + z2)1/2 ± z, so s+ z vanishes on the (“radial”) half-ray

̺ = 0, z < 0, while s− z vanishes on the half-ray ̺ = 0, z > 0. Hence, ξ+
α is singular on the z < 0

half-ray, and ξ−
α is singular on the z > 0 half-ray. Taking the limit ̺ → 0 at fixed z 6= 0, on the

singular half-ray, gives for the remaining components

ξ±
τ ∼ ±4m ln ̺, ξ±

A ∼ 4m|z|xA

̺2
. (3.18)

In words, (i) the component of ξ±
α tangent to Γ diverges logarithmically on a half-ray emanating

radially from the particle either inward (for ξ+
α ) or outward (for ξ−

α ), and (ii) the component of ξ±
α

orthogonal to both Γ and ℓα diverges like the inverse distance to the corresponding half-rays (with

a directional dependence).

These solutions (diverging either inwards or outwards) have the general structure of what we

shall refer as half-string solutions.

The remaining gauge freedom given by ζ±
α can be used to switch between the two half-string

solutions by choosing ζ±
τ (τ, xA) = ∓2m ln̺2 and ζ±

z = 0 = ζ±
A . We get

ξ±
τ = ±2m ln

s± z

̺2
+ o(1) = ∓2m ln(s∓ z) + o(1), (3.19)
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and

ξ±
A =

2mxA

s± z
± 2mz∂A ln ̺2 + o(1) =

2mxA

s∓ z
+ o(1), (3.20)

where we have used ∂A̺ = xA/̺, and ̺2 = (s+ z)(s− z). One can easily verify that this choice of

ζ±
α satisfies the constraints (3.16) and (3.17).

However, switching between half-string singularities in this way requires ζα to diverge along

xA = 0. If we restrict ζ±
α (τ, xA) to be continuous, then the string singularity is fixed on one side.

Furthermore, restricting ζ±
α (τ, xA) to be C0 functions of xA implies ζ±

α (τ, xA) = ζ±
α (τ, 0) + O(s),

making the term z∂A(ζ±
τ + ζ±

z ) in Eq. (3.15b) of order s. The half-string solutions are then given

by

ξ±
α = ξ0±

α (xa) + Z±
α (τ) + o(1), (3.21)

where

ξ0±
τ = ±2m ln(s± z), (3.22a)

ξ0±
z = 0, (3.22b)

ξ0±
A =

2mxA

s± z
, (3.22c)

and with Z±
α (τ) ≡ ζ±

α (τ, 0). For simplicity, we consider Z±
α (τ) to be smooth.

Equation (3.21) defines a family of half-string solutions where ξ±
τ diverges like ln ̺ when ̺ → 0,

and ξ±
A diverges as 1/̺ in the half of spacetime described above.

We note that the half-string solutions ξ±
α of Eq. (3.21) have no definite parity, since ξ0±

A (−xa) 6=
±ξ0±

A (xa). To see this note that under a transformation xa → −xa we have (z, xA) → (−z,−xA)

and s → s. Hence Eq. (3.22) under xa → −xa reads

ξ0±
τ (−xa) = ±2m ln(s∓ z), (3.23a)

ξ0±
z (−xa) = 0, (3.23b)

ξ0±
A (−xa) = −2mxA

s∓ z
. (3.23c)

3.2.4 Full-string solutions

The half-string fields ξ+
α and ξ−

α in Eq. (3.21) correspond to independent trace-free solutions to Eq.

(3.9). Any linear combination nξ+
α + (1 −n)ξ−

α , n ∈ R− {0, 1}, is also a solution. Such solutions are

singular on the ray ̺ = 0, on both sides of the particle, and we will call them full-string. We write the

gauge vector as ξ
(n)
α = ξ

0(n)
α +Zα(u)+o(1), where Z0

α(τ) is arbitrary, and ξ
0(n)
α = nξ0+

α +(1−n)ξ0−
α .

In words: the divergences on each side of the particle has different magnitudes, and is proportional

to n and 1 − n.

Let us consider the case where the divergences are weighted identically, namely by choosing

n = 1/2. This solution is

ξα = ξ0
α(xa) + Zα(τ) + o(1), (3.24)

where

ξ0
τ = m ln

s+ z

s− z
, (3.25a)

ξ0
z = 0, (3.25b)
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ξ0
A =

2msxA

̺2
, (3.25c)

and we have defined Zα(τ) = 1
2Z

+
α (τ) + 1

2Z
−
α (τ). We again assume Zα(τ) to be smooth. These

solutions inherit the singular form of the two half-string solutions from which they were constructed.

Explicitly ξα diverges along the entire ray ̺ = 0, for both z > 0 and z < 0: in the limit ̺ → 0 at

fixed z 6= 0 we have

ξτ ∼ −2m sign(z) ln ̺, ξA ∼ 2m|z|xA

̺2
. (3.26)

Unlike the half-string solutions, these solutions are parity-regular: ξa at leading order is com-

prised of an odd-parity piece ξ0
a(xb) that is discontinuous at xb = 0, plus a piece Zα that is inde-

pendent of the limit we approach the worldline..

3.2.5 No-string solutions

In a similar construction as the one we just used for the full-string gauges, namely combining two

half-string solutions, we can obtain a no-string solution. Let us consider combining two half-string

solutions by gluing together the regular regions of each. The gluing surface can be chosen almost

arbitrarily, as long as the two half-strings lie on opposite sides of it. As a simple choice, let us

take the gluing surface to be smooth. This way the leading-order term can be approximately a

plane intersecting the particle at each given τ . Each plane can be written as pa(τ)xa = 0, for

some pa perpendicular to the plane. In Chapter 5 we will take pax
a = 0 to be the leading-order

approximation to a sphere of constant Boyer–Lindquist (t, r), in the Kerr case.

We define the no-string solution ξα = ξ+θ(pax
a) + ξ−θ(−pax

a) + o(1) as

ξα = ξ0
α(xa) + Zα(τ, z) + o(1), (3.27)

where

ξ0
τ = 2m ln(s+ z)θ(pax

a) − 2m ln(s− z)θ(−pax
a), (3.28a)

ξ0
z = 0, (3.28b)

ξ0
A =

2mxA

s+ z
θ(pax

a) +
2mxA

s− z
θ(−pax

a), (3.28c)

and

Zα = Z+
α (τ)θ(pax

a) + Z−
α (τ)θ(−pax

a). (3.29)

We again assume each Z±
α is a smooth function of τ , but in general we let Z+

α 6= Z−
α . The no-string

solutions, considered as distributions, solve the transformation Eq. (3.11) together with the trace-

free condition, even on the surface pax
a = 0, at the relevant order: the delta-function terms arising

from differentiating (3.27) are formally sub-leading, and are contained within the o(s−1) terms in

these equations.

The no-string solutions constructed this way are smooth for both paxa > 0 and paxa < 0, but the

divergences have been removed at the cost of introducing a jump discontinuity at paxa = 0. Like the

equal-weight full-string solutions and unlike the half-string ones, these solutions are parity-regular

(since they have odd-parity). More accurately, they are very nearly, but not quite parity-regular.

They come in the correct general form ξa = ξ0
a(ni) + Za + o(1), where ∂aξ

0
b ∼ 1/s, ∂aZb ∼ s0, and

ξ0
a is odd under ni → −ni. But here Za is not necessarily continuous at xa = 0, this will have
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Singular along ℓα
Regular at ℓα+ Regular at ℓα− Discontinuous across a surface

through the particle

Figure 3.2: Singular structure of the RGs. From left to right: full-string solutions are singular
along ℓα; half-string solutions are either regular in the exterior or the interior of a closed surface
intersecting the particle; no-string solutions are regular everywhere off-the-particle but discontinuous
at a surface intersecting the particle.

important implications in later sections.

3.2.6 Singular form of the metric perturbation

We can now describe the local singular form of the MP in the completed RGs. As we recall the

singular structure is determined by h
(rec)
αβ only (since we have assumed that h

(compl)
αβ is regular

enough). Each of the above classes of gauge transformations will have a distinct singular MP. By

inverting Eq. (3.9) to obtain hRad
αβ and substituting Eq. (3.8), we have

hRad
αβ =

2m

s
δαβ − ξα;β − ξβ;α + o(s−1). (3.30)

Where ξα is given, in turn, by Eqs. (3.21), (3.24) and (3.27). This way we obtain expressions for

the leading-order term of the half-string, equal-weight full-string, and no-string RG perturbation,

see Figure 3.2.

Table 3.1: The leading-order singular form of the RG perturbation near the particle. The half-string
solutions in the left column, h±

αβ , corresponds to ξ±
α of Eq. (3.21). The full-string and no-string

solutions, middle and right columns, are constructed from the corresponding gauge transformations
ξα, given in Eqs. (3.24) and (3.27), respectively. We used θ± = θ(±pax

a), and omitted the label
‘Rad’ from the MP for brevity.

Half-string solutions Full-string solution No-string solution

h±
ττ =

2m

s
hττ =

2m

s
hττ =

2m

s

h±
τz = −

2m

s
hτz = −

2m

s
hτz = −

2m

s

h±
zz =

2m

s
hzz =

2m

s
hzz =

2m

s

h±
τA

= ∓
2mxA

s(s ± z)
hτA =

2mzxA

s̺2
hτA = h+

τA
θ+ + h−

τA
θ−

h±
zA

= ±
2mxA

s(s ± z)
hzA = −

2mzxA

s̺2
hzA = h+

zA
θ+ + h−

zA
θ−

h±
AB

=
2m

s(s ± z)2

(

2xAxB − ̺2δAB

)

hAB =
2m(s2 + z2)

s̺4
(2xAxB − ̺2δAB) hAB = h+

AB
θ+ + h−

AB
θ−

The MP inherits the string singularities of the gauge transformation vector from which it was

constructed, see Table 3.1. The divergences on the MP are stronger than they were in the gauge

vector. Near the singular strings we have, as ̺ → 0 with fixed z 6= 0,

h±
τA ∼ ∓4mxA

̺2
, h±

zA ∼ ±4mxA

̺2
, h±

AB ∼ 8m|z|(2xAxB − ̺2δAB)

̺4
, (3.31)



3.2 Local singularity structure in radiation gauges 37

for the half-string solutions, and

h±
τA ∼ 2m sign(z)xA

̺2
, h±

zA ∼ −2m sign(z)xA

̺2
, h±

AB ∼ 4m|z|(2xAxB − ̺2δAB)

̺4
, (3.32)

for the full-string solutions. The leading-order singularity for the three types of RG are summarized

in Table 3.1.

3.2.7 Re-expressing the gauge transformation in a covariant form

So far we have relied on our Fermi-like coordinates to obtain expressions for the gauge transform-

ations and the relevant MP. In the following sections we will use those results to tackle the SF

problem, and we will require the transformation from the local coordinates to an arbitrary coordin-

ate system (like BL coordinates). We will do it in two steps, first writing the gauge transformation

in covariant form, and then expanding that covariant form in arbitrary coordinates.

Starting from the covariant definition of three scalar fields

xa ≡ −ea
ᾱσ

;ᾱ (3.33)

together with the condition

σ;ᾱu
ᾱ = 0, (3.34)

which states that the point x off-the-worldline is connected to a point x̄ = x0(τ) on the worldline

by a geodesic that intersects the worldline orthogonally. We will also make use of the fact that the

triad ea
ᾱ satisfies

Deᾱ
a

dτ
= ωa

beᾱ
b . (3.35)

The quantity σ(x, x̄) in these expressions is one-half the squared geodesic distance from x to x̄.

Now, since the point x̄ depends on the point x, when differentiating a function of the two points,

say f(x, x̄), we have

df(x, x̄(x))

dxα
=

∂f

∂xα
+

∂f

∂x̄β

dx̄β

dxα
=

∂f

∂xα
+

∂f

∂x̄β
uβ̄ dτ

dxα
. (3.36)

In terms of one-forms, this reads

df =
∂f

∂xα
dxα +

∂f

∂x̄β
uβ̄dτ. (3.37)

By applying the same principle, we can differentiate Eq. (3.34) to find

dτ = νσ;ᾱβu
ᾱdxβ (3.38)

where ν ≡ −(σ;ᾱβ̄u
ᾱuβ̄)−1. We can differentiate Eq. (3.33) in the same manner to find

dxa = −Dea
ᾱ

dτ
σ;ᾱ − ea

ᾱ

(

σ;ᾱ
αdx

β + σ;ᾱ
β̄u

β̄dτ
)

. (3.39)

Substituting Eqs. (3.35) and (3.38) into this equation returns

dxa = −eb
ᾱ

[

δa
b σ

;ᾱ
α + ν

(

ωa
bσ

;ᾱ + δa
bσ

;ᾱ
β̄u

β̄
)

σ;αγ̄u
γ̄
]

dxα. (3.40)
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We can now write any one-form ξα = (ξτ , ξa) in covariant form using ξα = ξτ
dτ

dxα + ξa
dxa

dxα . All of

these expressions are exact.

Since we require only leading-order behaviour in the transformation, we can use the standard

covariant expansions [18]

σᾱβ̄ = gᾱβ̄ +O(s2), σαβ̄ = −gᾱ
αgᾱβ̄ +O(s2), (3.41)

where gᾱ
α is the parallel propagator from x̄α = xα

0 (τ) to xα and σ;β̄ ∼ s. With these expansions, at

leading-order we find

dxa

dxα
= gᾱ

αe
a
ᾱ +O(λ), (3.42)

dτ

dxα
= −gᾱ

αuᾱ +O(λ2). (3.43)

For a covector with components ∼ s0, this allows us to write

ξα = gᾱ
α (−ξτuᾱ + ξae

a
ᾱ) +O(sξ). (3.44)

Notice that because we work at leading-order, we do not require the rotation ωa
b. Equation (3.44) is

the key result of this section, and it can be used to obtain the gauge vector in any set of coordinates.

Let us now consider the gauge-generator we found for the RGs, substituting the form of ξα [Eqs.

(3.21), (3.24) and (3.27)] in (3.44) gives

ξα = gᾱ
α(−ξ0

τuᾱ + ξ0
Ae

A
ᾱ + Zᾱ) + o(1), (3.45)

where we have used ξ0
z = 0. The triad vector in Eq. (3.4) can be simplified by noting that Pµνℓ

µℓν =

(uµℓ
µ)2:

eα
3 = −

Pα
β ℓ

β

uµℓµ
. (3.46)

The remaining two legs of the triad can be determined by the orthonormality condition between

the tetrad and the four velocity, gαβu
αeβ

a = 0 and gαβe
α
ae

β
b = δab, to give

uαe
α
A = 0, ℓαe

α
A = 0, eαAe

α
B = δAB. (3.47)

The expression for Pαβ can be found in terms of the triad legs inverting the completeness relation

−uαuβ + eaαe
a
β = gαβ , namely Pαβ = eaαe

a
β. We express the product eαAe

A
β in terms of eα

3 as

eαAe
A
β = eaαe

a
β − e3αe

3
β = Qαβ, (3.48)

where we defined

Qαβ ≡ Pαβ − PαµPβνℓ
µℓν

(uγℓγ)2
. (3.49)

The non vanishing spatial components of ξ0
α are proportional to xA = −eA

ᾱ σ̄
;ᾱ and can be written

as

ξ0
A = −ξeA

ᾱσ
;ᾱ, (3.50)
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where according to Eqs. (3.22c), (3.25c) and (3.28c) define

ξ± ≡ 2m

s± z
in the half-string case, (3.51a)

ξ ≡2ms

̺2
in the full-string case, (3.51b)

ξ ≡ξ+θ+ + ξ−θ− in the no-string case. (3.51c)

Substituting back in Eq. (3.45) and using (3.48) we find

ξα = −gᾱ
α

(

ξ0
τuᾱ + ξQᾱβ̄σ

;β̄ − Zᾱ

)

+ o(1). (3.52)

Which is the covariant form of the gauge transformation relating the LG and RGs.

3.2.8 Coordinate expansion

We now wish to express the covariant expansion of Eq. (3.52) in arbitrary coordinates, or rather in

terms of the coordinate differences δxα′ ≡ xα −xα′

. This will allows us to move from the coordinate

system centred on the worldline to any other system, for example that where the origin coincides

with the centre of the background BH of the EMRI system. The differences δxα′

give the distance

from a point of coordinates xα relative to a point of nearby coordinates xα′

on the worldline. We

will use the coordinate expansions [66]

gα′

β (x, x′) =δα′

β +O(s), (3.53a)

σ;α′

(x, x′) = − δxα′

+O(s2), (3.53b)

σ;α′β′(x, x′) =gα′β′ +O(s2). (3.53c)

To relate our Fermi-like coordinates (τ, xa) with the differences δxα′

, we replace the dependence

on x̄ with the coordinates of the particle xα′

= xα
0 (τ ′) at some other location on Γ. Let us choose

τ ′ to be the proper time on which δt = t(x) − t(x′) = 0, where t is the BL time-coordinate,

which is practical in explicit coordinate calculations. This replacement involves defining xa(τ) =

−ea
α(x0(τ))∇ασ(x, x0(τ)) and expanding xa(τ) about τ ′ = τ − δτ . We get

xa(τ) =xa(τ ′) + uα′

xa
;α′(τ ′)δτ +O(s2) = −ea

α′

[

σ;α′

(x, x′) + uβ′

σ;α′

β′ (x, x′)δτ +O(s2)
]

= − ea
α′

[

σ;α′

(x, x′) + uα′

δτ +O(s2)
]

= ea
α′δxα′

+O(s2), (3.54)

where the primes denote the coordinates associated with x′. We have used the expansions in Eq.

(3.53) and ea
α′uα′

= 0. Combining Eq. (3.54) with Eq. (3.46) gives z = z0 +O(s2), where

z0 ≡ −uα′δxα′ − ℓα′δxα′

ℓβ′uβ′ . (3.55)

In the same way we can obtain expressions for the distances s and ̺2; using Eq. (3.1) to get

s = s0 +O(s2), with

s2
0 = Pα′β′δxα′

δxβ′

. (3.56)

Straightforwardly for ̺2 = s2 − z2 we get ̺2 = s2
0 − z2

0 +O(s3). We now can expand ξα in terms of
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the coordinate differences by substituting the expansions for s, σ and ̺ in Eq. (3.52). Expanding

ξα about x′ we get

ξα = −gα′

α

(

ξ0
τuα′ + ξQα′β′σ;β′ − Zα′

)

+ o(1). (3.57)

Using Eq. (3.53) we arrive at

ξα = −ξ0
τuα′ + ξQα′β′δxβ′ − Zα′ + o(1). (3.58)

We note that the first term of Eq. (3.58) is parallel to the four-velocity, while the second term

is orthogonal to both uα′

and ℓα′

. This allows us to split ξ0
α′ into a parallel and perpendicular

component:

ξ0
α′ = ξ‖α′ + ξ⊥α′ , (3.59)

with ξ‖α′ ≡ −ξ0
τuα′ and ξ⊥α′ ≡ ξQα′β′δxβ′

. We use, in turn, the corresponding expressions for ξ

[Eq. (3.51) for each type of gauge transformation] to get

ξ0±
τ = ± 2m ln(s0 ± z0), ξ± =

2m

s0 ± z0
(half-string), (3.60a)

ξ0
τ =m ln

s0 + z0

s0 − z0
, ξ =

2ms0

s2
0 − z2

0

(full-string), (3.60b)

ξ0
τ =ξ0+

τ θ+ + ξ0−
τ θ− ξ =ξ+θ+ + ξ−θ

− (no-string). (3.60c)

We observe that, at leading-order, if all the components ξ±
a have the same definite-parity under

xa → −xa, then all the components of ξα⊥ have that same parity under the transformation δxα′ →
−δxα′

, regardless of the choice of coordinates. This can be seen from Eq. (3.44) together with the

facts that gᾱ
αe

a
ᾱ does not alter the parity, and that each xa is a linear combination of δxα′

.

3.3 Self-force in a Locally deformed radiation gauge

To define what we mean by a locally-Lorenz (LL) gauge, we first recall the form of the globally Lorenz

MP near the particle, given in our Fermi-like coordinates in Eq. (3.8). In arbitrary coordinates, the

expression reads [18]

hLor
αβ =

2m

s
(gαβ + 2ũαũβ) +O(1), (3.61)

where s is the geodesic distance to the worldline, and ũβ corresponds to any smooth extension of

the four velocity uα off Γ. The terms O(1) are finite but not necessarily continuous on Γ. By an

LL gauge, we mean any gauge in which the metric possesses the same leading-order singularity

structure as hLor
αβ ; that is,

hLL
αβ =

2m

s
(gαβ + 2ũαũβ) + o(s−1). (3.62)

The terms o(s−1) may diverge at the particle, but not as strongly as does the leading-order singu-

larity. In particular, we shall need to allow logarithmic divergences, which potentially arise in the

RG at sub-leading order, as our analysis in the previous section suggests.

We wish to start from hRad
αβ and locally transform it to some hLL

αβ . The gauge transformation
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ξα = ξRad→LL
α must satisfy

ℓβ(ξα;β + ξβ;α) =
2m

s
(ℓα + 2ũαũβℓ

β) + o(s−1), (3.63)

and

ξα
;α =

2m

s
+ o(s−1). (3.64)

Finding an LL gauge is now a matter of solving Eqs. (3.63) and (3.64) for ξα, which was done in

the previous section.

Starting from the MP hRad
αβ we can obtain the corresponding MP in the LL gauge in any of

the three categories (full-, half-, and no-string gauges) from the corresponding gauge vector ξα =

ξ0
α + Zα + o(1) given in Sec. 3.2. The sub-leading terms Zα + o(1) correspond to different choices

of LL gauge, and this choice is left arbitrary.

In the context of SF calculations, recalling that the force is gauge dependent, we require to give

its value and to fully specify the MP in which it was calculated. A numerical implementation of the

CCK-reconstruction and completion will give the MP in a particular RG. In our analysis we will

choose a specific LL gauge. We set

ξRad→LL
α = ξ0

α, (3.65)

where ξ0
α in arbitrary coordinates is obtained from Eqs. (3.58) and (3.60).

3.3.1 Mode-sum formula for the SF in an LL gauge

From the local singularity structures of Eqs. (3.61) and (3.62), it follows that the generator ξ̂α ≡
ξLor→LL

α of the gauge transformation from hLor
αβ to hLL

αβ satisfies

ξ̂α;β + ξ̂β;α = o(s−1) (3.66)

near the worldline. The o(s−1) term in Eq. (3.66) imply that ξ̂α may fall outside of the Barack-Ori

class of gauge; this term could, for example, give jump discontinuities. We shall demand ξ̂α to be

continuous.

With this restriction, these LL gauges fall within the class of gauges studied by Barack and Ori

[19], in which the LG mode-sum of Eq. (2.55) and the corresponding regularization parameters are

gauge invariant. Namely for the LL gauges we can write directly

FLL
α =

∞
∑

ℓ=0

[

(F̃LL
α )ℓ

± −A±
αL−Bα − Cα/L

]

−Dα, (3.67)

where the ℓ-independent parameters A±
α , Bα, Cα, and Dα take their Lorenz-gauge values4 given

in the Appendix B and in Refs. [97, 125]. The quantities (F̃LL
α )ℓ are the multipole modes of the

retarded force in the LL-gauge evaluated at the particle limit x → x0. If hLL
αβ is known in advance,

(F̃LL
α )ℓ

± are calculated using Eq. (2.46) mode by mode. We have used F̃α to denote the retarded

force instead of F
(ret)
α (the notation of Chapter 2) to simplify notation.

Given F̃LL
α , the ℓ modes (F̃LL

α )ℓ
± are constructed by expanding each coordinate component of this

field (artificially considered as a scalar field) in spherical-harmonic functions on a surface of constant

BL radius r, then adding up all azimuthal numbers m for a given multipole number ℓ, and finally

4The LG retarded force (F̃LL
α )ℓ

±
and regularization parameters depend on the off-worldline extension of the

four-velocity and the affine connections.
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evaluating the result at the particle’s limit. This limit will generally be direction-dependent, and

one must ensure that it is taken from the same direction as the one used to derive the regularization

parameters. In the mode-sum formula (3.67) the limit is taken from one of the radial directions,

r → r±
0 , holding t, θ, ϕ fixed. (F̃LL

α )ℓ
± and A±

α denote the corresponding one-sided values (the values

of the parameters Bα, Cα and Dα turn out not to depend on the direction).

Let us now rewrite Eq. (3.67) in terms of the modes of the retarded force in the RG, (F̃Rad
α )ℓ,

which are the modes we will be calculating in practice. The difference between the two gauges due

to ξRad→LL
α can be obtained according to Eq. (2.58). Let δξF̃

Rad→LL
α be the change in the retarded

force induced by transforming to the LL gauge, and denote its ℓ-modes by (δξF̃
Rad→LL
α )ℓ

±, where

we allow for a directional dependence corresponding to r → r±
0 . We can rewrite Eq. (3.67) as

FLL
α =

∞
∑

ℓ=0

[

(F̃Rad
α )ℓ

± + (δξF̃
Rad→LL
α )ℓ

± −A±
αL−Bα − Cα/L

]

−Dα, (3.68)

where both (F̃Rad
α )ℓ

± and (δξF̃
Rad→LL
α )ℓ

± must be calculated via the same directional limit to the

particle as were the regularization parameters, and all terms must be defined with the same off-

worldline extension of uα and Pα
β .

We assume, tentatively, that (δξF̃
Rad→LL
α )ℓ

± admits a large-ℓ asymptotic with a similar form to

that of (F̃Lor
α )ℓ

±, namely

(δξF̃
Rad→LL
α )ℓ

± = δA±
αL+ δBα + δCα/L+O(1/L2), (3.69)

where δA±
α , δBα and δCα are ℓ-independent parameters [we will verify this form with an explicit

calculation in next subsection, showing that the parameter values are in fact zero through O(1/L)].

With this assumption, Eq. (3.68) becomes

FLL
α =

∞
∑

l=0

[

(F̃Rad
α )ℓ

± − (A±
α − δA±

α )L− (Bα − δBα) − (Cα − δCα)/L
]

− (Dα − δDα), (3.70)

where

δDα ≡
∞
∑

ℓ=0

[

(δξF̃
Rad→LL
α )ℓ

± − δA±
αL− δBα − δCα/L

]

. (3.71)

Since the argument in the last sum is O(L−2) at large ℓ, the sum should be convergent. And since

we started with a convergent sum in Eq. (3.68), the sum in Eq. (3.70) should therefore also be

convergent.

Eq. (3.70) is the mode-sum formula for the SF in the LL gauge. It requires three pieces of

input: (i) the modes (F̃Rad
α )ℓ, which are constructed from the MP obtained numerically via CCK-

reconstruction and completion; (ii) the standard, LG regularization parameters {A±
α , Bα, Cα, Dα},

given in Appendix B for generic orbits in Kerr and for a particular choice of extension; and (iii) the

corrections to the LG parameters {δA±
α , δBα, δCα, δDα} associated with the particular LL-gauge

chosen. The latter will be obtained analytically in Sec. 3.3.2 via a local analysis.

Having three types of RGs (full-, half-, and no-string gauges) leads to considering which of

them are suitable as input for the mode-sum formula (3.70). As we argued above, the CCK-

reconstruction probably cannot be used to compute the full-string MP, so this class of solutions is

irrelevant in practice. The retarded-force modes (F̃Rad
α )ℓ

± could be derived from either “halves” of a

no-string MP, by taking the corresponding limits r → r±
0 . However, the gauge vector ξ̂α = ξLor→LL

α

associated with the no-string solution would not have a well defined limit to the particle [due to the
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unmodelled discontinuous term Zα(τ, z) in ξRad→LL
α ; recall Eq. (3.27)], which we do not allow here:

a discontinuous LL gauge would fall outside the Barack-Ori class, and there would be no guarantee

that the mode-sum formula (3.70) applies in that form.

Rather, the retarded-force modes (F̃Rad
α )ℓ

± should be derived from a half-string MP, with the

limit r → r±
0 taken from the regular side of pax

a = 0. Gauge vectors ξLor→LL
α associated with half-

string solutions are continuous, because the corresponding vector ξRad→LL
α accounts explicitly for

the full discontinuity in hRad
αβ at the relevant order. Hence, an LL gauge derived from a half-string

RG belongs to the Barack-Ori class as required. A CCK reconstruction (and completion) gives only

the “regular half” of a half-string solution (as shown in [1] for the flat case toy model), so fixing

the string’s direction (by fixing the half-string gauge) dictates the direction from which the limit

r → r±
0 should be taken when computing (F̃Rad

α )ℓ
± and A±

α in Eq. (3.70): for a string extending

over r > r0 take r → r−
0 ; for a string extending over over r < r0 take r → r+

0 .

3.3.2 Regularization parameters

Let us now calculate expressions for δAα, δBβ, δCα and δDα appearing in Eq. (3.70). This will be

done for the general setup of a particle in geodesic motion in Kerr spacetime. We will stress the

importance of the choice of extension and comment on the impact of different choices of LL gauges.

Let us assume we have obtained (numerically) the reconstructed modes (F̃Rad
α )ℓ

+ and/or the

modes (F̃Rad
α )ℓ

− in a half-string RG and wish to obtain the SF in an LL gauge related to this RG

by the gauge vector ξ±
α = ξ0±

α given in Eq. (3.21). The calculation of δAα, δBβ , δCα and δDα

follows the method first implemented by Barack-Ori to derived the LG regularization parameters

[31, 97, 125, 139].

In BL coordinates the particle is at xα
0 = (t, r0, θ0, ϕ0). We introduce new polar coordinates

(θ̃, ϕ̃), so that the particle is located at the pole (θ̃0 = 0) of the new system, and ϕ̃ is chosen so that

the particle’s velocity at x0 (projected onto the 2-sphere) points along the ϕ̃0 = 0 longitudinal line.

This construction simplifies the multipole decomposition required for the mode-sum formula since

the value of each ℓ-mode of the retarded force at the particle has a sole contribution from the axially-

symmetric, m = 0 azimuthal mode. We use locally Cartesian coordinates x̂ = ρ cos ϕ̃, ŷ = ρ sin ϕ̃,

where ρ = ρ(θ̃) is some smooth function with the property ρ = θ̃+O(s2) near the particle. In terms

of these variables, we have δθ = θ̃ − θ̃0 = x̂ + O(s2) and δϕ = ϕ̃ − ϕ̃0 = ŷ/ sin θ0 + O(s2) [97]. At

leading-order, we can write δξF̃
±
α (x′, δx′) as δξF̃

±
α (δr, x̂, ŷ;x0). We have chosen δt = 0 as before.

The ℓ modes of δξF
±
α in Eq. (3.68) are calculated by evaluating the Legendre integral [31, 97]

(δξF̃α)ℓ
± =

L

2π
lim

δr→0±

∫ 1

−1

d(cos θ̃)Pℓ(cos θ̃)

∫ 2π

0

dϕ̃ δξF̃
±
α (δr, x̂, ŷ), (3.72)

where Pℓ is the Legendre polynomial. Notice that Eq. (3.72) depends on the off-worldline extension

via δξF̃
±
α [see Eq. (2.58) in Chapter 2]. Let us recall that the singularity of F̃±

α is inherited from

the local behaviour of ξ±
α : it ‘starts’ at x0 and extends into the ∓pax

a > 0 part of spacetime. The

analysis by Barack and Ori [139] showed that the only contribution to the integral in Eq. (3.72)

comes from the immediate neighbourhood of the singularity. Therefore only a regular neighbourhood

around the particle is needed to evaluate (δξF̃α)ℓ
±. Note that the integral in Eq. (3.72) is calculated

in the side of spacetime where the RG is regular, before taking the limit to the particle, to avoid

encountering the string-like singularity.

To simplify the integral in Eq. (3.72) we recall that in general ξ±
α contains pieces that are parallel

ξ±
α‖ and perpendicular ξ±

α⊥ to uα. ξ⊥ in Eq. (3.22) is bounded, and so is the corresponding δξ⊥ F̃
±
α .
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Using the fact that the integrand is bounded to exchange the order in which we evaluate the integral

and the limit we get

(δξF̃α)ℓ
± =

L

2π

∫ 1

−1

d(cos θ̃)Pℓ(cos θ̃)

∫ 2π

0

dϕ̃ lim
δr→0±

δξ⊥ F̃
±
α (δr, x̂, ŷ), (3.73)

where we have also used the fact that δξ‖
F̃±

α does not contribute to δξF̃
±
α as was mentioned in Sec.

2.2 and Appendix C.

Equation (3.73) is valid for any extension. We will choose the rigid extension ũα(x) ≡ uα(x0)

and Γ̃α
βγ(x) ≡ Γα′

β′γ′(x0) expressed in BL coordinates. The effect of the choice of extension in the

force is discussed in Appendix C. This way the components of the four velocity and the Christoffel

symbols do not depend on the coordinates of the field point, namely they are constant when taking

derivatives with respect to δx′. This allows us to write (δξ⊥ F̃α)ℓ = δ(ξ⊥)ℓ F̃α and obtain the ℓ modes

of δξF̃α directly from those of ξ±
α⊥.

These modes are calculated from

(ξα⊥)ℓ
± =

mL

π
Qαβ lim

δr→0±

∫ 1

−1

d(cos θ̃)Pℓ(cos θ̃)

∫ 2π

0

dϕ̃
δxβ

s0 ± z0
, (3.74)

where Qαβ , s0 and z0 are given in Eqs. (3.49), (3.55) and (3.56), respectively. We then note that

at δt = δr = 0, both the numerator and denominator of the integrand scale linearly with ρ. The

integral over cos θ̃ therefore reduces to 2δℓ
0, leaving us with

(ξα⊥)ℓ
± =

m

π
δℓ

0

∫ 2π

0

dϕ̃
Qαθ cos ϕ̃+Qαϕ sin ϕ̃/ sin θ0

R±(x0, ϕ̃)
, (3.75)

where R±(x0, ϕ̃) is (s0 ± z0)/ρ evaluated at δt = 0 = δr.

The general form of the integral in Eq. (3.75) is valid for any orbit. In the example of equatorial

orbits (θ0 = π/2), we find

R± = r0

[

1 + (Pϕϕ/r
2
0 − 1) sin2 ϕ̃

]1/2 ∓
(

uϕ +
ℓϕ

ℓαuα

)

sin ϕ̃, (3.76)

and

(ξα⊥)ℓ
± = ± m

r0
δℓ

0Qαϕ
2c

b− c2

(

1 − 1√
1 + b− c2

)

, (3.77)

where b ≡ Pϕϕ/r
2
0 − 1 and c ≡ 1

r0
[uϕ + ℓϕ/(ℓαu

α)] are the factors appearing in Eq. (3.76), and we

have used the fact that Pθθ = r2
0 for equatorial orbits.

Given (ξα⊥)ℓ
±, calculating (δξF̃α)ℓ

± is a straightforward matter of substituting Eq. (3.77) into Eq.

(2.58). In Appendix C we explore the choice of extension in Eq. (2.58), and we write it explicitly

for two different extensions. Since ξα⊥ is ℓ-independent and only contains the ℓ = 0 mode, by

comparing with Eq. (3.69) we can read off

δAα = δBα = δCα = 0. (3.78)

We compare Eq. (3.77) with Eq. (3.71) to write

δD±
α =

∑

ℓ

(δξF̃α)ℓ
± = (δξF̃α)ℓ=0

± = δ(ξ⊥)ℓ=0
±
F̃α. (3.79)
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To shorten the discussion of this section we present the relevant expressions for δDα in Appendix

D. With the explicit value of δDα we can now calculate the SF in an LL gauge from the reconstructed

modes of a half-string RG. Let us recall that the computation of the retarded force will depend on

the chosen extension, and that in particular the chosen rigid-extension might not be the best choice

for practical schemes. For a different extension (for example a rigid extension of uα leaving Γα
βγ as

a field) we may get different values of δDα. An important fact is that, regardless of its actual value,

we will have δD+
α = −δD−

α in general. This property of δD±
α is proven in Appendix D, and it will

be useful in the next section.

3.3.3 Alternative choices of LL gauge

In our construction of the LL gauges, we made a specific choice: a particular half-, full-, or no-

string RG related to the LL gauge by the gauge vector ξα = ξ0
α. Adding terms of o(1) to ξα has

no impact on the GSF in the LL gauge, meaning such terms are not worth considering for our

purposes. But adding an O(1) term does affect the GSF, and we could have made the alternative

choice ξα = ξ0
α + Zα(τ), with Zα(τ) left arbitrary. Suppose we had done so, and then Eq. (3.70)

would have become

FLL
α =

∞
∑

ℓ=0

[

(F̃Rad
α )ℓ −AαL−Bα − Cα/L

]

+ δDnew
α , (3.80)

where the new δDα parameter is

δDnew
α =

∞
∑

ℓ=0

(δξF̃α)ℓ =

∞
∑

ℓ=0

[

(δξ0 F̃α)ℓ + (δZ F̃α)ℓ
]

. (3.81)

The first term is the δDα that we have already calculated, and the second term is the change to it

due to the nonzero Zα. From this new term, one can see that the freedom to choose Zα allows us

to almost arbitrarily alter δDα. The question then arises of whether we have made the best choice

in setting Zα to zero. For example, we might try to choose a Zα for which δDnew
α = 0. To do so,

we note that δZF̃α is smooth at the worldline, allowing us to write
∑

ℓ(δZF̃α)ℓ simply as

δZ F̃α = −m

(

Pλ
α

D2Zλ

dτ2
+Rαµλνu

µZλuν

)

, (3.82)

where here all quantities are evaluated on the worldline. Finding a Zα for which δDnew
α = 0 simply

requires solving the ordinary differential equation

m

(

Pλ
α

D2Zλ

dτ2
+Rαµλνu

µZλuν

)

= δDα, (3.83)

with δDα given by
∑∞

ℓ=0(δξ0 F̃α)ℓ as before.

Let us stress once more that since the SF is gauge dependent, when we calculate the SF we

must fully specify the LL gauge in which we are working. For that reason, there is no apparent

advantage to knowing that there might exist an LL gauge in which δDnew
α vanishes; finding such a

gauge would still require us to calculate
∑

ℓ(δξ0 F̃α)ℓ analytically, and it would only add the extra

step of solving an ODE for Zα.
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3.4 Self-force in an undeformed radiation-gauge

Let us now work in an undeformed RG, namely we now seek to obtain a way to calculate the SF

using directly the CCK-reconstructed modes of the RG. We will begin in the LG, where the first-

order deviation from geodesic motion zµ
1 is governed by Eq. (2.50). We will transform to a no-string

gauge and find the corrected equation of motion via Eq. (2.59). We will need to write the SF using

the Quinn-Wald-Gralla angle-averaged form of Eq. (2.51) to derive a new mode-sum formula. We

will rely on the results of the half-string analysis—in particular the fact that δD+
α + δD−

α = 0— to

show that this new mode-sum is also applicable in the LL gauge. We refer to Appendix D.4, where

δD+
α + δD−

α = 0 is established as an extension-independent property.

3.4.1 Equation of motion formulated in an undeformed radiation-gauge

The gauge vector that brings a global LG to a no-string gauge is given by ξα = −ξ0
α − Zα + o(1),

where ξ0
α and Zα are found in (3.28) and (3.29). Substituting ξα into Eq. (2.59), we find that the

transformation induces a change in position

∆za
1 =

3

4π
lim
s→0

∫

nanb(ξ0
b + Zb)dΩ, (3.84)

where the integral is over a sphere of radius s around the particle, and dΩ ≡ sin θdθdφ. As

before, the angles (θ, φ) on the unit sphere around the particle are defined in the usual way from

xa = (sin θ cosφ, sin θ sinφ, cos θ). The first term of Eq. (3.84) vanishes, since nαnβ has even parity

while ξ0
β has odd parity. We write

∆za
1 =

3

4π

(

Z+
b

∫

1
2

S2

nanbdΩ + Z−
b

∫

1
2

S2

nanbdΩ

)

, (3.85)

where integrals are evaluated in half of the two-sphere 1
2S

2 in which Z±
b is regular. Using

∫

nanbdΩ =
4π
3 δ

ab and the even parity of the integrand, we arrive at

∆za
1 =

1

2

[

Za
+(τ) + Za

−(τ)
]

. (3.86)

Because the term ξ0
α of the no-string gauge vector has odd parity, it does not produce a change in

position; instead, we have a simple average of the shifts in position induced by the smooth functions

Z±
a . The odd parity of ξ0

α also allows us to write our result for ∆zα
1 in terms of the full gauge-vector

as

∆za
1 = −1

2
lim

xb→0

[

ξa
+(τ, xb) + ξa

−(τ,−xb)
]

, (3.87)

where xb is a point chosen so that the two terms are regular in the region ±pax
a > 0, where ξa

± are

regular respectively. With this coordinated choice of limit to the particle, the singular pieces of ξ+
α

and ξ−
α cancel. If the limit were not coordinated in this way, it would be ill-defined, since ξ+

α and

ξ−
α do not separately have unique limits at the particle.

For a point x on the worldline, P̃αβξβ(x + δx) has the same parity (at leading-order) under

δx → −δx as does ξα under xa → −xa. The change in position is then

∆zα
1 = −1

2
lim

δx→0

[

P̃αβξ+
β + P̃αβξ−

β

]

, (3.88)

where we have multiplied Eq. (3.87) by eα
a and used eα

a ξ
a = P̃αβξβ +O(sξ) for any smooth extension.
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ξ±
α are evaluated at xα ± δxα in the corresponding side of the spacetime where they are regular.

From the shift in position, the acceleration can be found simply by taking two derivatives along the

worldline, leading to

m
D2∆zα

1

dτ2
= − 1

2
m lim

δx→0

[

Pαβuµ∇µ

(

uν∇νξ
+
α

)

+ Pαβuµ∇µ

(

uν∇νξ
−
α

)]

= − mRα
µβνu

µ∆zβ
1 u

ν

+
1

2
m lim

δx→0

[

δξ+ F̃α − Pαβ(uµ∇µu
ν)∇νξ

+
β + δξ− F̃α − Pαβ(uµ∇µu

ν)∇νξ
−
β

]

. (3.89)

The first line holds for any smooth extensions of uµ, Pαβ , and ∇ off the worldline, [see Eqs. (C.9)-

(C.10)]. In the second line, we have expressed Pαβuµ∇µ (uν∇νξ
±
α ) in terms of δξ± F̃ β, where a tilde

denotes the retarded-force off the worldline as before. The contribution from ξ0
α has odd parity,

which causes the terms involving (uµ∇µu
ν) to cancel one another, hence

m
D2∆zα

1

dτ2
= −mRα

µβνu
µ∆zβ

1 u
ν +

1

2
m lim

δx→0

[

δξ+ F̃α + δξ− F̃α
]

. (3.90)

Comparing with the SF Eq. (2.50), we find that

∆ξF
α =

1

2
m lim

δx→0

[

δξ+ F̃α + δξ− F̃α
]

, (3.91)

and it corresponds to the average of the change in the retarded-force computed on two opposite

sides of the particle. The contributions from ξ0
α cancel [see Eq. (3.28)] and we can write Eq. (3.91)

as

∆ξF
α =

1

2

(

δZ+ F̃α + δZ− F̃α

)

, (3.92)

where we have taken the limit, on the corresponding side where ξ+ and ξ− are regular, so that all

quantities are evaluated at the worldline. The total SF in the no-string gauge can be written in

terms of the SF computed in the LG and an extra term corresponding to the gauge transformation:

Fα = Fα
Lor + ∆ξF

α. (3.93)

3.4.2 Mode-sum formula

In practice Eq. (3.93) would still require the previously obtained value of the Lorenz SF, which is

exactly what we seek to avoid. We now can express the term Fα
Lor in terms of the LG mode-sum

Eq. (2.55), namely

Fα = Fα
Lor +

1

2
lim

δx→0

[

δξ+ F̃α + δξ− F̃α
]

(3.94)

=
1

2

∑

ℓ

[

(F̃α
Lor+)ℓ −Aα

+L−Bα − Cα/L
]

+
1

2

∑

ℓ

[

(F̃α
Lor−)ℓ −Aα

−L−Bα − Cα/L
]

+
1

2

∑

ℓ

[

(δξ+ F̃α)ℓ + (δξ− F̃α)ℓ
]

. (3.95)

To arrive at this, we have made simple manipulations: we wrote Fα
Lor as an average of the two one-

sided limit mode-sums
∑

ℓ

[

(F̃α
Lor±)ℓ −Aα

±L−Bα − Cα/L
]

and decomposed δξ± F̃α into ℓ-modes.

It is understood that the same extension must be chosen for the LG mode-sums and the modes of

the extra terms from the gauge transformation. We now can note that the combination (F̃α
Lor±)ℓ +
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(δξ± F̃α)ℓ gives (F̃α
±)ℓ, the mode of the retarded-force in the no-string gauge. This leads to the

simple mode-sum formula

Fα =
∑

ℓ

[

1

2
(F̃α

+)ℓ +
1

2
(F̃α

−)ℓ −Bα − Cα/L

]

, (3.96)

where Bα and Cα are the regularization parameters in the LG for the chosen extension, and we

have used the fact that in general Aα
+ = −Aα

− [97, 125].

In summary, Eq. (3.96) can be applied to calculate the SF in an undeformed no-string RG. As

input it requires the modes of the retarded-force calculated from the completed RG perturbations

and the standard LG regularization parameters. We will present a numerical implementation of Eq.

(3.96) for a particle orbiting a Schwarzschild BH in Chapter 4.

We could repeat the calculations of Sec. 3.4.1 with the locally deformed no-string gauge. In

other words, we would take the average of the two-sided half-string-mode-sums of Eq. (3.70). By

virtue of δD+
α = −δD−

α we would find that the GSF in the LL gauge can be obtained with the same

mode-sum as in the undeformed gauge Eq. (3.96). The reason for this is that the gauge vector ξ0
α,

which relates the no-string gauge to its LL version, has odd parity around the particle. Therefore,

the SF calculated from the mode-sum or Eq. (3.96) can be interpreted equally well as the SF in the

undeformed no-string gauge or in its LL counterpart.

3.4.3 Summary

Before proceeding to the numerical implementation, let us summarise the main outcomes of the

analysis presented in this Chapter. Using Fermi-like coordinates we solved for the local gauge-

transformation relating the LG and the RG. This led us to identify three types of RGs, according

to the singular structure of the transformation. The first class is the half-string gauges where the

singularity is not confined to the particle, but rather extends radially in half of the spacetime from

the particle to either the EH or infinity. The components of the gauge transformation to the half-

string gauges are given in Eq. (3.22). The second class corresponds to gauges with a full-string,

where the singularity extends along a null direction from the EH across the particle and reaches

infinity. The gauge transformation to the full-string gauges is Eq. (3.25). The third class is the

no-string gauges, which is constructed by gluing the two halves of spacetime where the half-string

gauges are regular. This construction introduces a discontinuity on a closed surface containing the

particle as seen from Eq. (3.28). The singular structure of these gauges permeates to the components

of the MP, which are summarised in Fermi-like coordinates in Table 3.1.

We considered two practical methods to compute the SF. The first one involves working in a

deformed RG or LL-gauge. This deformation takes place near the particle so that the RG perturb-

ation agrees to leading order with the LG singularity. In this LL gauge the standard LG mode-sum

formula is still valid and the regularization parameters take their LG values. The MP in the LL

gauge, or directly the modes of the LL retarded-force can be calculated from the corresponding

RG modes. The GSF can be calculated using the mode-sum formula (3.70). This new mode-sum

includes corrections to the LG parameters and it is valid on the regular side of spacetime, opposite

to the half-string singularity.
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The second method allows us to calculate the SF directly from the RG perturbation. We used

the angle-average representation of the SF to work in the no-string RG. We related the GSF in

the no-string RG with its LG counterpart expressed in terms of the standard LG mode-sum. We

expanded the extra contribution from the gauge transformation in harmonic modes, and rewrote

everything in terms of the modes of the retarded-force in the undeformed RG. The outcome was

another mode-sum formula, Eq. (3.96), which uses the values of the LG regularization parameters,

and involves the average of the two-sided retarded-force. This is the method we will numerically

implement. We will consider the test case of a Schwarzschild background in the next Chapter.
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Chapter 4

Numerical implementation for

circular orbits in Schwarzschild

spacetime

In this Chapter we present the numerical implementation of the method described in Chapter 3 to

obtain the GSF. We specialize to circular orbits around a Schwarzschild BH. The main goals of this

implementation are:

1. study the applicability of a GSF calculation based on curvature scalars,

2. correct results in the literature [83],

3. provide an insight into the challenges we may find in the Kerr case,

4. compare the computational efficiency with respect to LG calculations.

The numerical results of this Chapter were previously published in [2]. The results from the MST

method where provided by Abhay G. Shah.

Section 4.1 describes the frequency-domain algorithm we follow. In Sec. 4.2 we will give more

details of our specific calculation. Our implementation takes advantage of the formalism presented

in Secs. 2.1.3 and 3.4. We start in Sec. 4.2.1 with a short description of the static modes, which

will be also relevant in Chapter 5. In Sec. 4.2.2 we give the explicit form of the Sasaki-Nakamura

transformation in Schwarzschild, namely the a → 0 limit of what we reviewed in Sec. 2.1.4. With

the reconstructed perturbations as an input, we calculate the retarded-force modes using Eq. 2.46,

and finally regularize. This last step will be done using the averaged version of the mode-sum

formula Eq. (3.96) as derived in Sec. 3.4. We obtain the SF values in both the ingoing and outgoing

RGs. In Sec. 4.2.3 we include the explicit Teukolsky sources and expressions for the retarded force.

In Sec. 4.2.4 we describe the inclusion of the low multipoles, this will be done in the LG. We will

briefly argue why this can be done in this particular case. The large-ℓ modes that are not computed

numerically are included by performing a fitting of the regularised modes to an analytical power

series. In Sec. 4.2.5 this tail fitting is described.

As we argued in Chapter 1, the mode-sum formula is a robust method to check the consistency of

the calculated value of the SF; in Sec. 4.3.2 we show the convergence plots of the mode-sum for the

radial and temporal components of the GSF. Among other consistency checks we performed to our
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code, in Sec. 4.3.3 we show the energy fluxes at the EH and at infinity, and the red-shift invariant H .

We compare the GSF values obtained from two methods: the first one using numerically obtained

values of the Sasaki-Nakamura field; and the second one using the analytical MST method described

in Sec. 2.1.5. In Sec. 4.3.5 we compare the efficiency of our numerical code with that of Barack-Sago

in the LG [36]. We also present in Sec. 4.3.4 a large-r comparison with the LG-gauge values for the

radial component of the SF, again comparing with [36].

4.1 Algorithm

The algorithm to numerically obtain the GSF in a Schwarzschild background for circular orbits

follows the one used by Shah et al. [83], except where stated. Our method requires to numerically

obtain ψ0 for the ORG and ψ4 for the IRG. We outline the steps of our numerical implementation

here.

• Choose the orbit at radius r0. Obtain the relevant orbital parameters E = r0f0√
r2

0
−3Mr0

, L =
√

r2
0

M

r0−3M and Ω2 = M
r3

0

, with f0 ≡ 1 − 2M/r0. We fix the maximum number of modes

to compute, ℓmax = 80. This choice of ℓmax comes as a trade-off between controlling the

numerical error of the large-ℓ modes and keeping the computational time manageable.

• For each static mode (m = 0) with ℓ ≥ 2 we analytically calculate the radial function R0(r)

via Eq. (4.2). We obtain R4(r) using R4(r) = r4f2R̄0(r) with f ≡ 1 − 2M/r.

• For each m 6= 0 we numerically integrate the radial Sasaki-Nakamura equation in r∗ with

suitable boundary-conditions [95] (see Sec. 4.2.2). The numerical value of the boundaries

is set to r∗ = −95M for the EH and r∗ = 6000M for infinity. The integration is done

using a modification from real to complex variables with quadruple precision of the adaptive

stepsize Bulirsch-Stoer routine described in [140]. The integration routine returns the value

of the function and the first derivative with respect to r∗. We algebraically relate the Sasaki-

Nakamura field withR4(r) andR′
4(r) at the particle’s location using Eq. (4.7) and an analytical

first derivative of it. To calculate second-order (and higher) derivatives of R4(r) we use

the Teukolsky equation. The field R0(r) and its derivatives are obtained using R0(r) =

r−4f−2R̄4(r) and the corresponding Teukolsky equation. The homogeneous solutions can also

be found using the MST method described Sec. 2.1.5 as shown in [2]. The agreement between

the two methods will be discussed in Sec. 4.3.4.

• We construct the inhomogeneous solutions using the standard variation of parameters method.

We explicitly impose junction conditions for the homogeneous solutions and their first derivat-

ives at r = r0, using the gravitational source. Shah et al. [83] performed a formal integration of

the Green’s function over the source terms to construct the particular inhomogeneous solution

ψ0. The resulting fields ψ0(r) and ψ4(r) are discontinuous at the location of the particle.

• With the modes of fields ψ0(r) and ψ4(r) we find the harmonic modes of the Hertz potential

ΨORG
ℓm (r) and ΨIRG

ℓm (r), respectively. This is done by inverting the frequency-domain version of

Eq. (2.20). Each mode of the Hertz potential is fully constructed by attaching the appropriate

angular and time dependence: sYℓm(θ, ϕ) e−iωt.

• The MP can be recovered on each of the regular sides of the no-string RGs using in turn Eq.

(2.19a) and Eq. (2.19b), for the ORG and the IRG respectively.
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• We analytically calculate the ℓ-modes of the retarded-force F ℓ
(ret) (for each ℓ ≥ 2) by taking

derivatives of the CCK-reconstructed MP expressed in terms of the Hertz potential. This is a

convenient way of analytically identifying the different angular dependence on sYℓm(θ, ϕ) with

s = ±2,±1, 0. This helps in the posterior re-expansion in terms of the usual scalar spherical

harmonics. The explicit expressions of the ℓ-modes for the retarded force are given in Eq.

(4.15) and Eq. (4.14).

• The remaining modes ℓ = 0, 1 are added in the LG as discussed in Sec. 4.2.4. A method for

including the gauge-invariant content of the non-radiative modes in the case of eccentric orbits

around Kerr will be presented in Chapter 5.

• We use the definitions of spin-weighted spherical harmonics in terms of derivatives of scalar

spherical harmonics [see Eq. (E.8) in the Appendix]. This way we can implement the appro-

priate coupling formulas [36] to re-express the r component of the retarded force in the basis

of the scalar spherical harmonics where the mode-sum was derived [125, 139]. In Schwarz-

schild the coupling is finite and it relates a given ℓ-mode with its four nearest “neighbours”,

namely, contributions to a given ℓ spherical harmonic mode come from the ℓ± 2, ℓ± 1 and ℓ

spin-weighted modes. The latter implies that we need to calculate ℓmax + 2 modes to have all

the contributions to the ℓmax term in the mode-sum. This coupling and the implementation

of the average mode-sum formula were missing in the prescription described in [83].

• After all the contributions to a single ℓ-mode are considered we apply the mode-sum regular-

ization formula given by Eq. (3.96) to obtain the radial component of the GSF.

• We extrapolate the remaining ℓ > ℓmax modes doing a fitting of the regularized modes as

described in Sec. 4.2.5.

• We use the mode-sum formula Eq. (2.69) for the red-shift invariant HR.

• We calculate the temporal component of the GSF with

F t =
∑

ℓ,m

imΩm

2f
uαuβhℓm

αβ , (4.1)

where hℓm
αβ are the harmonic modes of the retarded MP in the basis of spin-weighted spherical

harmonics in either the IRG or the ORG. The sum in Eq. (4.1) converges exponentially fast

and does not require regularization.

4.2 Details of the implementation

4.2.1 Static modes

For the static modes (m = 0 = ω) we have two linearly-independent solutions of Eq. (2.12a), which

are proportional to associated Legendre polynomials of first (Pℓ) and second (Qℓ) kind:

R0−(r) ≡P2
ℓ (x)

r2f
= − Γ(ℓ+ 3)

8M4Γ(ℓ− 1)
2F1

[

2 − ℓ, ℓ+ 3; 3,−r − 2M

2M

]

, (4.2a)

R0+(r) ≡Q2
ℓ (x)

r2f
=

2ℓM ℓ+1Γ(ℓ+ 3)Γ(ℓ+ 1)

rℓ+3f2 2F1

[

ℓ− 1, ℓ+ 1; 2ℓ+ 1,
2M

r − 2M

]

, (4.2b)

where 2F1 are hypergeometric functions and x ≡ r−M
M .
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The leading-order term of the asymptotic expansions of R0−(r) are given by

R0− ∝











(2M)ℓ (2ℓ)!

(ℓ− 2)!ℓ!
rℓ−2 when r → ∞

(ℓ − 1)ℓ(ℓ+ 1)(ℓ+ 2)(ℓ2 + ℓ− 6)

48M3
(r − 2M) when r → 2M

. (4.3)

R0−(r) is regular at the EH but it fails to give the expected r−5 behaviour to have purely outgoing

radiation at infinity. The regularity of R0− is easily seen by transforming Eq. (2.12a) to R̃0− ≡
r4f2R0−, and moving to a coordinate system which is regular at the EH [141] (for example Kruskal

coordinates1). The leading-order term for the expansions of R0+(r) are

R0+ ∝







r−ℓ−3 when r → ∞
(ℓ+ 2)!

2(ℓ− 2)!
(r − 2M)−2 when r → 2M

, (4.5)

R0+(r) is not regular at the EH since it includes a sub-leading logarithmic-term [141]. The asymp-

totic behaviour of these solutions was previously discussed by Barack and Ori near the EH [141]

and by Poisson [142] and Keild et al. [143].

4.2.2 Chandrasekhar-Sasaki-Nakamura transformation

In the Schwarzschild case the radial part of Sasaki-Nakamura equation [Eq. (2.24) of Chapter 2

with s = −2] reduces to

[

d2

dr2
∗

+ ω2 − V−2(r)

]

Xℓm(r) = 0, with V−2(r) ≡ f

(

rλ0 − 6M

r3

)

, (4.6)

with λs = (ℓ − s)(ℓ + s + 1) as before. The relation between the solutions of the homogeneous

Teukolsky equation with s = −2 and the function X(r) was first found in [114]. In Schwarzschild

it reads

R 4(r) = 2rf(r − 3M + ir2ω)
X ′(r)

η
+
[

rfλ0 − 6Mf − 2rω(3iM − ir + r2ω)
] X(r)

η
, (4.7)

where η = λ0λ1 − 12iMω, the prime denotes derivatives with respect of r and we have omitted the

harmonic indices (ℓm) of R4(r) and X(r). The field R0(r) is obtained, by virtue of the symmetries

of the homogeneous Teukolsky equation [109], using

R0 =
R̄4

r4f2
. (4.8)

To integrate Eq. (4.6) we set physical boundary-conditions. These are such as to give outgoing

radiation at the EH and ingoing radiation at infinity [83]:

XH = eiωr∗

nmax
∑

n=0

cn

( r

M
− 2
)n

and X∞ = e−iωr∗

nmax
∑

n=0

dn

(

M

r

)n

, respectively, (4.9)

with cn = 0 = dn for n < 0. The values of the coefficients cn and dn are calculated according to the

1Kruskal coordinates V, U are defined by

V ≡ e(t+r∗)/(4M), U ≡ −e(r∗−t)/(4M), (4.4)

and the same angular coordinates {θ, ϕ}.
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recurrence relations [83]

cn = − i(n− 3)Mω

2n(n+ 4iMω)
cn−3 +

ℓ(ℓ+ 1) − (n− 2)(n− 3 + 12iMω)

4n(n+ 4iMω)
cn−2

+
ℓ(ℓ+ 1) − 2n2 + 5n− 6 − 12i(n− 1)Mω

2n(n+ 4iMω)
cn−1, (4.10a)

dn =
−i

2nMω
[(n− 3)(n+ 1)dn−2 + (ℓ + n)(ℓ− n+ 1)dn−1] . (4.10b)

Eq. (4.10) is obtained by substituting the expressions of Eq. (4.9) as ansätze for Eq. (4.6) (with

a = 0). The value of nmax is chosen so that the relative difference between the n + 1 and the

accumulated sum is smaller than a cut-off set to 10−15.

4.2.3 Explicit expressions for the source and the force using IRG and

ORG modes

The source and self-acceleration in the ORG were previously presented in [81, 83] while the IRG are

included here for the first time. We have identified and corrected typos in the sources —in particular

we have noticed an incompatibility between the corresponding equations for the source in [81] and

[83]. The authors of [83] chose θ = π/2 for the self-acceleration, which makes it difficult to read

the full angular dependence of their expressions. The knowledge of this dependence is needed to

change the basis from spin-weighted spherical harmonics to the usual spherical harmonics. Let us

recall that the mode-sum scheme guarantees to give the right value of the GSF only on the basis

were the regularization parameters are given. Only recently, these parameters became available in

the basis of tensor harmonics [54]. Therefore, we keep the explicit dependence on θ.

We write the source of Teukolsky equation as a sum of three terms T±2 = T (0) + T (1) + T (2),

according to the angular dependence on the particle’s location of each term. The explicit form —

in the Schwarzschild case— of the source terms in the IRG is

T (0) = −
∑

ℓm

mutf2
0

4
δ(r − r0) (λ0λ1)

1/2
−2Yℓm(θ, ϕ) Ȳℓm

(π

2
,Ωt0

)

, (4.11a)

T (1) =
∑

ℓm

mΩutf0r
2
0

2

[

if0δ
′(r − r0) −

(

mΩ +
4iM

r2
0

)

δ(r − r0)

]

λ
1/2
1

−2Yℓm(θ, ϕ)−1Ȳℓm

(π

2
,Ωt0

)

, (4.11b)

T (2) =
∑

ℓm

mΩ2utr4
0

4

[

f2
0 δ

′′(r − r0) +

(

2imΩf0 − 2(r0 + 2M)f0

r2
0

)

δ′(r − r0)

−
(

m2Ω2 +
2imΩ(r0 +M)

r2
0

− 2(4M − r0)

r3
0

)

δ(r − r0)

]

−2Yℓm(θ, ϕ)−2Ȳℓm

(π

2
,Ωt0

)

.

(4.11c)

The corresponding source of the ORG is

T (0) = −
∑

ℓm

mut

r4
0

δ(r − r0) (λ0λ1)
1/2

2Yℓm(θ, ϕ)Ȳℓm

(π

2
,Ωt0

)

, (4.12a)

T (1) =
∑

ℓm

2
mΩut

r2
0

[

iδ′(r − r0) +

(

mΩ

f0
+

4i

r0

)

δ(r − r0)

]

λ
1/2
1 2Yℓm(θ, ϕ)1Ȳℓm

(π

2
,Ωt0

)

, (4.12b)
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T (2) =
∑

ℓm

mΩ2ut

[

δ′′(r − r0) +

(

6

r0
− 2imΩ

f0

)

δ′(r − r0)

−
(

m2Ω2

f2
0

+
2imΩ(3r0 − 5M)

r2
0f

2
0

− 10

r2
0

)

δ(r − r0)

]

2Yℓm(θ, ϕ)2Ȳℓm

(π

2
,Ωt0

)

. (4.12c)

The radial component of the retarded force2 in the IRG can be computed, from Eq. (2.46), as

F r
ret =

6
∑

i=1

F r
i , (4.13)

where the frequency-domain modes of F r
i are

F r
1 ℓm =

1

4r2
0

(ut)2m(λ0λ1)1/2

[

f0∂r + 2∂t − 2

r0

(

f0 − M

r0

)]

(Ψℓm + Ψ̄ℓm)Yℓm(θ, ϕ), (4.14a)

F r
2 ℓm =

1

4f0r4
0

(ut)2Mm(λ0λ1)1/2 (r0f0∂r + r0∂t − 4f0) (Ψℓm + Ψ̄ℓm) sin2 θ Yℓm(θ, ϕ), (4.14b)

F r
3 ℓm =

1

4r2
0

(ut)2Ωimλ0λ
1/2
1 (Ψℓm − Ψ̄ℓm) sin θ [ 1Yℓm(θ, ϕ) + −1Yℓm(θ, ϕ)] , (4.14c)

F r
4 ℓm = − 1

2f0
(ut)2mΩiλ

1/2
1

[

∂2
t + 2f0∂t∂r + f2

0∂
2
r − 2

r2
0

(M + r0f0)∂t − 2f2
0

r0
∂r +

2f2
0

r2
0

]

×

(Ψℓm − Ψ̄ℓm) sin θ −1Yℓm(θ, ϕ), (4.14d)

F r
5 ℓm =

1

4f0r4
0

(ut)2Mmλ1 (r0f0∂r + r0∂t − 2f0) (Ψℓm + Ψ̄ℓm) sin2 θ −2Yℓm(θ, ϕ), (4.14e)

F r
6 ℓm = − 1

4f2
0 r

5
0

(ut)2Mm
[

r4
0f0∂

2
t ∂r + 2r4

0f
2
0∂t∂

2
r + r4

0f
3
0∂

3
r + 2r3

0f
2
0∂

2
t + 2r2

0f0(r0 − 5M)∂t∂r

−2(r2
0 − 6Mr0 + 4M2)∂t − 2r2

0f
3
0∂r

]

(Ψℓm + Ψ̄ℓm) sin2 θ −2Yℓm(θ, ϕ), (4.14f)

where we have omitted to specify that Ψ is the IRG hertz potential. The corresponding terms for

the ORG are

F r
1 ℓm = − 1

16
r0f

2
0 (ut)2m(λ0λ1)1/2

[

r0f0∂r − 2r0∂t + 2

(

f0 +
3M

r0

)]

×

(Ψℓm + Ψ̄ℓm)Yℓm(θ, ϕ), (4.15a)

F r
2 ℓm = − 1

16
f0(ut)2Mm(λ0λ1)1/2 [r0f0∂r − r0∂t + 2 (1 + f0)] (Ψℓm + Ψ̄ℓm)×

sin2 θYℓm(θ, ϕ), (4.15b)

F r
3 ℓm =

1

16
r2

0f
2
0 (ut)2Ωimλ0λ

1/2
1 (Ψℓm − Ψ̄ℓm) sin θ [1Yℓm(θ, ϕ) + −1Yℓm(θ, ϕ)] , (4.15c)

F r
4 ℓm = − 1

8
f0(ut)2mr4

0Ωiλ
1/2
1

[

∂2
t − 2f0∂t∂r + f2

0∂
2
r − 3

r0
(1 + f0)∂t +

2f0

r2
0

(3r0 − 2M)∂r

+
2

r2
0

(1 + 2f0)

]

(Ψℓm − Ψ̄ℓm) sin θ 1Yℓm(θ, ϕ), (4.15d)

F r
5 ℓm = − 1

16
f0(ut)2Mmλ1 (r0∂t − r0f0∂r − 2) (Ψℓm + Ψ̄ℓm) sin2 θ 2Yℓm(θ, ϕ), (4.15e)

2In [2] we showed the formulae to obtain this component from the components of the MP projected along the
Newman-Penrose tetrad. This is just an extra step that we choose not to include here.
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F r
6 ℓm =

1

16
f0(ut)2Mm

[

r3
0∂

2
t ∂r − 2r3

0f0∂t∂
2
r + r3

0f
2
0∂

3
r + 6r2

0∂
2
t − 2r0(9r0 − 13M)∂t∂r

+12r2
0f0(r0 −M)∂2

r − 6(5r0 − 4M)∂t +
2

r0
(17r2

0 − 32r0M + 8M2)∂r

−16

r2
0

(

M2 − r2
0

)

]

(Ψℓm + Ψ̄ℓm) sin2 θ 2Yℓm(θ, ϕ). (4.15f)

The spin-weighted spherical harmonics sYℓm(θ, ϕ) appearing in Eqs. (4.14) and (4.15) are re-

expanded in terms of scalar spherical harmonics using Eq. (E.8). For a given spherical harmonic

we get

F r
ℓm = Yℓm(θ, ϕ)

[

Fr
(−2)ℓ−2,m + Fr

(−1)ℓ−1,m + Fr
(0)ℓm + Fr

(+1)ℓ+1,m + Fr
(+2)ℓ+2,m

]

, (4.16)

where

Fr
(±2)ℓm =αℓm

(±2)f
r
2 ℓm + (f r

5 ℓm + f r
6 ℓm)

γℓm
(±2) − βℓm

(±2)

(λ0λ1)1/2
±
βℓm

(±2)

λ
1/2
0

f r
4 ℓm,

Fr
(±1)ℓm = ±

δℓm
(±1)

λ
1/2
0

f r
4 ℓm +

2mǫℓm
(±1)

(λ0λ1)1/2
f r

6 ℓm,

Fr
(0)ℓm =f r

1 ℓm + f r
2 ℓmα

ℓm
(0) + (2f r

3 ℓm ∓ f r
4 ℓm)

m

λ
1/2
0

+ (f r
5 ℓm + f r

6 ℓm)
m2 − βℓm

0 + γℓm
(0)

(λ0λ1)1/2
. (4.17)

The functions f r
i ℓm are the angle-independent coefficients of Eqs. (4.14) or (4.15): for example,

F r
1 ℓm = f r

1 ℓmYℓm(θ, ϕ). Notice the sign dependence of the coefficient multiplying f r
4 ℓm — the

upper sign is for the IRG modes while the lower sign for the ORG modes. The coupling coefficients

αℓm, βℓm, γℓm, δℓm and ǫℓm are given explicitly in [36] and included as Eq. (E.9) of Appendix E.

4.2.4 Completion of the reconstruction

In Schwarzschild the CCK-reconstruction from Weyl scalars recovers the ℓ ≥ 2 ‘spin-weighted’

sector. Wald showed that the solution needs to be completed by including corrections to the Kerr

mass and AM [98] (and perturbations to C-metrics and Kerr-NUT metrics, which he proved not to

be physical in vacuum). Friedman et al. showed that the C and Kerr-NUT perturbations can be

ruled out in the vacuum spacetime outside the trajectory of a point particle [83]. In Chapter 5, we

give a full discussion of the inclusion of the completion piece in Kerr.

In Schwarzschild we know that the remaining part of the solution is the monopole and dipole of

the linearised EFE. We include these low modes in the LG, where gauge discontinuities are avoided.

The shift in the mass parameter across the r = r0 surface is encoded in the monopole part of the

solution (the ℓ = 0, m = 0 mode). In the LG the nonvanishing components of these perturbations

are [77]

hℓ=0
tt (r ≤ r0) = − AfMP (r)

r3
, hℓ=0

rr (r ≤ r0) =
AMQ(r)

r3f
, (4.18a)

hℓ=0
θθ (r ≤ r0) = sin−2 θhℓ=0

ϕϕ (r ≤ r0) = AfMP (r), (4.18b)

where
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A =
2mE

3Mr0f0
[M − (r0 − 3M) ln f0] , (4.19)

P (r) = r2 + 2Mr + 4M2, Q(r) = r3 −Mr2 − 2M2r + 12M3. (4.20)

The external components are

hℓ=0
tt (r ≥ r0) =

2mE
3r4r0f0

{

3r3(r0 − r) +M2(r2
0 − 12Mr0 + 8M2)+

(r0 − 3M)
[

rP (r)f ln f − rM(r + 4M) + 8M3 ln
(r0

r

)]}

, (4.21a)

hℓ=0
rr (r ≥ r0) = − 2mE

3Mr4r0f0f2

{

3M2
(

r2
0 − 12Mr0 + 8M2

)

− 2Mr
(

r2
0 − 6Mr0 − 10M2

)

−r3r0 + (r0 − 3M)
[

5Mr2 +
r

M
Q(r)f ln f − 8M2(2r − 3M) ln

(r0

r

)]}

, (4.21b)

hℓ=0
θθ (r ≥ r0) = sin−2 θhℓ=0

ϕϕ (r ≥ r0) = − 2mE
9rr0f0

{

3r2
0M − 80M2r0 + 156M3

+(r0 − 3M)
[

44M2 + 3
r

M
P (r)f ln f − 3r2 − 12Mr + 24M2 ln

(r0

r

)]}

. (4.21c)

Detweiler and Poisson showed [117] that the LG metric given by Eqs. (4.18) and (4.21) is unique

and any gauge transformation within the class of LGs would make the metric singular at infinity,

at the EH or in both limits at the same time. Notice that as r → ∞ the tt component of the

metric tends to a constant value, i.e., the metric is not asymptotically flat. This pathology of the

gauge can be cured by moving away from the LG by performing a shift t → t(1 + α) with constant

α ∼ O(m). It is straightforward to show using Eq. (6) of [19] that this gauge transformation does

not contribute to the values of the radial component of the GSF.

For ℓ = 1, m = 0 there is only one non-vanishing component of the MP, namely [77]

hℓ=1,m=0
tϕ (r) = −2mL sin2 θ

[

r2

r3
0

Θ(r0 − r) +
1

r
Θ(r − r0)

]

, (4.22)

where Θ is the usual step function.

We calculate the contribution to the retarded force from the ℓ = 0, 1 solutions by directly

substituting (4.18), (4.21) and (4.22) in Eq. (2.46). The resulting contribution to the force agrees

with the values first obtained by Detweiler and Poisson at θ = π
2 [117].

The ℓ = 1, m = 1 mode is added numerically using the prescription described in [117]. This

mode is related to the motion around the centre of mass of the BH-particle system. A detailed

physical interpretation and comparison with a PN calculation can be found in [117].

4.2.5 Fitting the large-ℓ tail

Let us now describe how we include the contribution from remaining ℓ > ℓmax modes. We include

the large-ℓ tail for each of the one-side limits of the retarded force; instead of taking the average

and only afterwards including the large-ℓ tail. This allows for an intermediate comparison with the

values of [83], where only one of the sided values was included. Each of the side-dependent values

is computed according to

Fα
± =

ℓmax
∑

ℓ=0

[

(

Fα
(ret)

)ℓ

±
∓AαL−Bα

]

−Dα
± +

∞
∑

ℓmax+1

[

kmax
∑

k=2

Ẽ±
k

Lk

]

+O

(

1

ℓkmax
max

)

, (4.23)
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where the ± superscripts indicate the limit r → r±
0 from which is calculated, and in general Ẽ+

k 6=
Ẽ−

k . We extract the coefficients Ẽ±
k by matching

[

(

Fα
(ret)

)ℓ

±
−Aα

±L−Bα

]

(from a certain ℓmin to

ℓmax) to a power series of the form3

kmax
∑

k=2

Ẽ±
k

Lk
≡ Ẽ±

2

L2
+
Ẽ±

4

L4
+
Ẽ±

5

L5
+
Ẽ±

6

L6
+ · · · +

Ẽ±
kmax

Lkmax
. (4.24)

The best-fit values of Ẽ±
k are extracted using the least-squares fit (implemented in Mathematica),

the errors are estimated by modifying ℓmin and kmax using the procedure described in [83]. We find

that the singular part of the SF contains odd, negative powers of L = (ℓ+ 1/2) on either side of r0.

If the tail was fitted using the averaged modes of the retarded force, only even powers of L would

appear. The SF is then calculated using Eq. (3.96), where the ℓ > ℓmax tail is included using the

best numerical fit.

An interesting detail to be noted here is that we numerically find Fα
self , unlike the sided-limits

Fα
± , to be independent of its mode decomposition: we get the same average if we write the GSF as

a sum over different spin-weighted spherical harmonics, as done in Eqs. (4.14) -(4.15), or as a sum

over ordinary spherical harmonics, as done in Eq. (4.16). In other words, our numerical experiment

suggests that for this setup the value of the regularization parameters is not affected by the choice

of harmonic basis. We will further comment on this numerical result in Sec. 4.3.4.

4.3 Numerical results

4.3.1 Sources of numerical error

Let is identify four independent sources of errors in the results we will present: (i) from the integra-

tion of Sasaki-Nakamura equation, (ii) from the MST method, (iii) from the inclusion of the large-ℓ

tail, and (iv) from the numerical dipole-mode. These are further discussed next.

We experimented with the location of the boundaries to test the robustness of this choice and

found that even a more modest choice (r∗ = −60M for the EH and r∗ = 1000M for infinity)

gives the same result. The computational difference from moving the boundaries comes only in the

number of calculated terms required for the boundary conditions. We allow a relative error of 1/1015

on each step of the numerical integration. These errors propagate to give a relative error ∼ 1/1012

in the value of each harmonic of the Sasaki-Nakamura field and its first derivative. However these

systematic errors turn out to be subdominant to those from the large-ℓ tail.

The error in calculating solutions for the radial part of the homogeneous Teukolsky equation

using the MST-method can be reduced by, first, numerically calculating ν with a very high accuracy

(usually higher than the one mentioned in Table I), and second, by choosing a high enough nmax,

the cut-off in n-series of the hypergeometric and confluent hypergeometric series in Eq. (2.32). To

reduce the computation time, one can find relations between the derivatives of the hypergeometric

and confluent hypergeometric functions appearing in Eq. (2.32) using a combination of various

Gauss’s relations for contiguous functions.

3In [45], a series of the form E2/((2ℓ − 1)(2ℓ + 3)) + E4/((2ℓ − 3)(2ℓ − 1)(2ℓ + 3)(2ℓ + 5))... is used to fit the
singular part of the force and increase the convergence rate [62]. The sum from ℓ = 0 to infinity of each term in
the series is zero and does not contribute to the SF. Analytical expression for E2, E4, E6 were given in [45] and we
verify that they have different values than the parameters we would obtain by fitting the averaged modes to a similar
series. Namely the coefficients Ek are gauge dependent.
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The total value of the radial component of the SF has two pieces, as it was explained in Sec.

4.2.5. The first one F ℓ≤ℓmax
r is obtained by the methods described in Sec. 4.2. The remaining large-ℓ

tail F ℓ>ℓmax
r is extrapolated numerically as described in Sec. 4.2.5 using Ñ = ℓmax − ℓmin + 1 of the

regularized large-ℓ-modes. We varied ℓmax, ℓmin and Ñ to estimate the total error of the large-ℓ

tail.

Each of the two methods to solve Teukolsky equation (numerical integration and MST) give a

different large-ℓ tail, with their corresponding errors. The accuracy with which the coefficients Ẽ±
k

in Eq. (4.23) can be extracted depends on Ñ and the accuracy of the regularized modes. Due to

its high accuracy, the MST method allows a very accurate extrapolation of the tail. With respect

of the values reported in Table 4.1, the total tail is responsible for the agreement in the last 4-5

digits between the Sasaki-Nakamura and MST methods. The relative difference of the two methods

is within the error bars reported for the numerical-integration computation. These error bars were

estimated by varying the numerical parameters of the fitting.

The error in the MST method is dominated by the even-dipole mode, which is estimated from

varying the inner boundary of the integration [rmin = (2 + ǫ)M ] from ǫ = 10−9 to ǫ = 10−6.

The error of this piece is below that of the large-ℓ tail for the numerical-integration method. As

explained in Sec. 4.2.4, this piece is included in the LG. The difficulty of obtaining this mode with

higher accuracy is related to a numerical matrix-inversion, which is needed to obtain the solution

to a coupled system of ordinary-differential equations [117].

4.3.2 Convergence of the mode sums for F r and F t

A feature of the mode-sum regularization procedure is that it provides an immediate validity test

of the results. If the retarded values of the force and the implementation of the coupling formulae

to express the force as purely spherical harmonics contain a systematic error, then the sum over

ℓ-modes after regularization may not converge, see Fig. 4.1. We recall that it is also required to

consistently use the off-the-particle extension of the four velocity (we used the same extension as

the LG regularization parameters Aα and Bα of Appendix B) and metric when calculating the

retarded-force and the regularization parameters, otherwise the mode-sum will not give the correct

value.
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Figure 4.1: Left Panel shows the large-ℓ behaviour for the modes of the r component of the SF
(solid blue line in log-log scale) computed using the average version of the mode-sum formula [Eq.
(3.96) with ℓmax = 80, only ArL and Br are subtracted]. The 1/ℓ2 reference line (green dashed)
confirms the expected fall-off at large ℓ. The right panel shows the convergence of the t component
(solid blue line in semi-log scale) of the SF. In this case the reference line (green dashed) shows
exponential convergence. In both cases the results correspond to an orbital radius of r0 = 10M .
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For the radial component (left panel of Fig. 4.1) we found that the sum over ℓ modes of the av-

erage 1
2

[

F r(r+
0 ) + F r(r−

0 )
]

converges as 1/ℓ, with the green (dashed) line as reference, as expected.

In the case of the time component (right panel of Fig. 4.1), we show the exponential convergence

of the sum, also as expected.

4.3.3 Flux of energy and invariant red-shift

The total flux of emitted energy mĖ is directly proportional to the t component of the GSF [97, 118]:

mĖ ≡ m
dE
dt

= −Ft

ut
. (4.25)

Let us denote the fluxes at infinity by dE∞

dt and at the EH by dEEH

dt . We calculate them following

the procedure given in [95]. We verify numerically that

−m
dE
dt

= m
dEEH

dt
+ m

dE∞

dt
(4.26)

is satisfied up to ∼ 10−5 of relative difference for all radii considered, within the range of 6M−150M .

The discrepancy comes from the numerical error accumulated during the long integration of the field

in the tortoise coordinate r∗ from the EH to where we set our numerical infinity.

Our results are consistent with previous works by Barack and Sago [36], and more recently

Gundlach et al. [144]. Our calculation shows that at the innermost stable circular-orbit (ISCO) the

ratio ĖEH/Ė∞ has a value of 3.27 × 10−3 and decreases monotonically with r0 up to 2.06 × 10−9

when r0 = 150M , in agreement with [36, 144]
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Figure 4.2: Convergence of the regularized ℓ modes of HR = 1
2h

R
αβu

αuβ at orbital radius of r0 =
200M . We calculate numerically ℓmax = 80 modes and regularise with the analytical value of BH

[given in Eq. (2.71)]. The 1/ℓ2 reference line (green dashed) confirms the expected fall-off at large
ℓ.

We obtain numerical results for the red-shift invariantHR defined in Eq. (2.66), see Fig. 4.2. The

tail is included in the same way as that of the force (and described in Sec. 4.2.5). For an orbital radius

of r0 = 6M we getHR± = −0.52362×M/m while at r0 = 200M we obtainHR± = −0.010076×M/m

which is consistent with the values given by Sago et al. [82] to all significant digits shown.
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r0/M F r Num(r0) × M2

m
2 F r MST(r0) × M2

m
2 F r Lor(r0) × M2

m
2

6 0.03350126(1) 0.033501265(1) 0.0244661
7 0.026070691(5) 0.0260706936(1) 0.0214989
8 0.020941671(3) 0.02094167456(7) 0.0183577
9 0.017214435(1) 0.01721443676(8) 0.0156369
10 0.0144093850(9) 0.01440938542(6) 0.0133895
12 0.0105299277(5) 0.01052992732(2) 0.0100463
14 0.008031952(1) 0.00803195180(1) 0.00777307
16 0.006328227(1) 0.006328226988(6) –
18 0.005114225(1) 0.005114225196(3) –
20 0.0042187145(9) 0.004218713944(1) 0.00415706
24 0.003011654(1) 0.0030116542558(6) –
28 0.002257118(5) 0.0022571178017(2) –
32 0.001754261(4) 0.0017542618884(1) –
36 0.001402452(3) 0.00140245195919(6) –
40 0.0011467454(5) 0.00114674532583(3) 0.00114288
50 0.0007465337(2) 0.00074653378046(1) 0.000744949
60 0.00052437948(8) 0.000524379436446(3) 0.000523616
70 0.00038842358(5) 0.000388423560775(1) 0.00038801
80 0.00029922175(3) 0.0002992217373675(7) 0.000298979
90 0.00023755802(2) 0.0002375580134958(4) 0.000237406
100 0.00019316231(2) 0.0001931623007419(2) 0.000193063
120 0.00013491660(1) 0.00013491660149634(8) 0.000134868
140 0.000099532396(7) 0.00009953239215925(3) –
160 0.000076441055(5) 0.00007644105294526(1) –
180 0.000060543785(4) 0.00006054378560513(1) –
200 0.000049135297(3) 0.000049135296208105(1) –

Table 4.1: Comparison between the radial component of the GSF, for different values of r0/M .
The second column shows the values computed using numerical integration of Sasaki-Nakamura
equation while the values in the third column are calculated in the ORG using the MST method.
The quantities in parenthesis indicate the estimated error on the last quoted decimal shown. The
error in the second column is estimated by changing the numerical parameters of the fitting that
contributes to the large-ℓ tail. The error quoted in the third column is estimated from moving the
inner boundary when numerically solving the ℓ = 1, m = 1 multipole. The LG values are taken
from [36] where the corresponding error estimation can be found. Note the asymptotic agreement
for large r between the RG values (first and second column) with the LG values in the third column,
as discussed.

4.3.4 Analysis of results and further consistency checks

We now present a comparison between two calculations of the radial component of the GSF: one

using the MST method, and another one using numerical integration of the Sasaki-Nakamura field.

Fig. 4.3 shows in blue (solid line) the fractional difference in F r(r0) for a sample of radii. The

values of F r are obtained using Eq. (3.96) with ℓmax = 80 calculated modes and a fitted tail of the

form given by Eq. (4.24) on each side-limit. In Fig. 4.3 the red (dashed line) shows the fractional

difference between the IRG and the ORG values, before including the large-ℓ tail. In this case both

results were obtained by using the Sasaki-Nakamura method. The values used to generate the plot

can be found in Table 4.1.

The method of Shah et al. [83] does not follow a rigorous method to implement the mode-sum.

They used the LG mode-sum for their implementation and guessed (incorrectly) that δDα
± = 0,

independently of the gauge. The authors of [83] submitted an erratum clarifying the issues we have

raised in [1, 2].
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Figure 4.3: Relative difference for the averaged r component of the SF. The blue (solid) line compares
the values in the ORG computed through numerical integration of the Sasaki-Nakamura field against
the values calculated using the MST analytical method. The estimated error of the numerical
method is dominated by the ℓ > ℓmax fitted term, while the error of the MST method is dominated
by the inclusion of the even dipole mode as discussed in Sec. 4.3.1, which is below the difference of
the two methods. These errors are shown explicitly in Table 4.1. The red (dashed) line compares the
relative difference between the force calculated from the IRG and the ORG modes (using numerical
integration) before including the large-ℓ tail. This difference appears consistent with the numerical
error.

In principle the GSF in the ORG and the IRG could have different values. In fact by just looking

at Eqs. (4.14) and (4.15) it is not obvious that the results would agree. The Hertz potential Ψ takes

a different form when calculated in the ORG and IRG. However, for circular orbits of Schwarzschild

it turns out that the MP and the values of the SF in the IRG and ORG give the same value, as

shown in Fig. 4.3. The equality of the MP in both gauges can be shown analytically using the

symmetries of Teukolsky equation.

Our GSF values agree at large r with those in the LG [36], See Table 4.1 and Fig. 4.4. To see this

let us consider the change in the GSF due to the gauge transformation from LG to ORG generated

by ξr(r) which is given by Eq. (A25) of [81]:

δξF
Lor→Rad
r =

3Mm

r3
0 − 3Mr2

0

ξr(r0). (4.27)

Assuming ξr falls off at least as r−1 then Eq. (4.27) would fall off as r−3. In fact, the numerical

data shows that the difference goes as r−4, see Fig. 4.4.

4.3.5 Comparison of computational cost

A LG code for circular orbits in Schwarzschild calculates the GSF, in the strong-field regime, running

on a standard desktop machine in approximately 2 hours with ℓmax ∼ 25 and a fractional accuracy of

. 10−4 for the higher modes [36]. Our numerical integration can achieve an accuracy of . 10−12, for

each mode, running on a single core of a standard desktop machine in about 30 minutes calculating

the same number of modes. To integrate and calculate ℓmax = 85 modes, and achieve the same

accuracy . 10−12 for each mode, it takes ∼ 14.5 hours running on a single core.
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Figure 4.4: Comparison between the radial component of the SF in the LG and that of in RG
(in log-log scale). The red line (with data points denoted by ×) corresponds to the values in the
radiation gauge given in Table 4.1. The blue line (with data points denoted by +) are the values in
the Lorenz gauge from Barack-Sago [36]. The black line (solid line with data points denoted by ◦)
is the difference between F rRad − F rLor and the green (dashed) line is a reference line ∼ r−4

0 .

We expect the savings in computational time to be greater for eccentric orbits around Kerr.

In particular, for eccentric orbits of Schwarzschild the time of frequency-domain calculation is

comparable to that of the corresponding time-domain implementation [145].



Chapter 5

Completion of metric

reconstruction for a particle

orbiting a Kerr black hole

In Chapter 3 we obtained a practical method to calculate the GSF using the reconstructed modes of

the RG perturbation. However, as we stated in Chapter 2, the CCK reconstruction gives only part

of the MP. The remaining part of the solution, namely the completion piece, needs to be included

separately. Wald showed that the completion piece is a pure mass and AM perturbation of Kerr, up

to gauge [98] (and up to C-metric or Kerr-NUT, which are however irregular and thus unphysical).

In the Schwarzschild case, the invariant content of the completion piece is purely in the ℓ = 0, 1

modes. A simple LG completion piece can then be constructed following the works of Detweiler and

Poisson [117], and Barack and Lousto [77], as we discussed in Chapter 4. However, in Kerr these

perturbations are not confined to these multipoles only, since the EFE can not be decomposed in

harmonic modes. This has been a longstanding problem of BH perturbation theory.

In this Chapter we address the problem of including the completion piece for orbits around

Kerr. An initial investigation of the problem was carried out by Price [100]. Price constructed the

completion piece as a sum of mass and AM perturbations of the metric, obtained by varying the

Kerr metric (written in BL coordinates) with respect to the mass and spin parameters, respectively.

The problem then reduces to determining the amplitudes of these resulting homogeneous solutions

of the EFEs. He proposed to do so by requiring continuity of the completion piece (plus a gauge

piece) off the particle, however he did not take into account the discontinuity coming from the

reconstructed part of the MP. Moreover, he only went as far as implementing this idea in the

Schwarzschild case. We note that Price’s goal of obtaining a completed metric that is smooth (off

the particle) is rather ambitious; for certain practical purposes it may be sufficient to require only

that invariant quantities are smooth. This is the line that we will take in our analysis.

The problem of determining the amplitudes of the homogeneous mass and AM completion

solutions may be said to be equivalent to the problem of calculating the invariant mass and AM

content of the CCK-reconstructed metric. Dolan and Barack [49] proposed a method, based on

the work of Abbot and Desner [146], to “measure” these quantities for a given MP, in a quasi-local

fashion, by evaluating certain surface integrals. The method relies only on the existence of time-

translation and rotational Killing-symmetries in the background, and it is applicable to the Kerr

case. However, the evaluation of the necessary integrals (and summation over modes) turns out to
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be extremely difficult for the RG perturbations.

Our procedure will take advantage of some auxiliary gauge-invariant quantities. These invariants

will be derived in Sec. 5.1. The completion pieces with arbitrary amplitudes will be constructed

using BL coordinates and variations of the mass and spin parameters of the Kerr metric, following

Price. We determine these amplitudes by imposing continuity of the full invariants (a sum of the

reconstructed and completion pieces) across a surface intersecting the particle. We will show how

our explicit calculation agrees with the standard picture of the CCK reconstruction for circular

orbits of Schwarzschild [1, 49, 92, 100], namely that by fixing the total mass and AM of the system

we can determine the amplitudes of the completion piece. In Sec. 5.4.1 we extend the method

for eccentric equatorial orbits around Kerr. The main results of this Chapter are given in Secs.

5.2.4, 5.3.4 and 5.4.3, where the completion pieces are respectively given for circular orbits around

Schwarszchild and Kerr and for eccentric equatorial orbits around Kerr. The results of Sec. 5.4.3

fully solve the completion problem for equatorial orbits around Kerr.

A related completion problem was also recently considered by Sano and Tagoshi. They studied

the case of a ring of particles around Schwarzschild [101] and around Kerr [102]. They looked at an

homogeneous part of the Hertz potential in the IRG with certain free parameters. They numerically

obtained those parameters by imposing continuity of certain (gauge-dependent) Weyl scalars and

MP components. In Kerr it is not clear if this homogeneous part of the Hertz potential corresponds

to any physical perturbation.

This chapter is the result of work in collaboration with Amos Ori, Leor Barack, Adam Pound and

Maarten van de Meent. We acknowledge that Amos Ori first derived the auxiliary gauge-invariant

quantities. Maarten van de Meent provided the analytical form for the integrals of Appendix F.5.

5.1 Auxiliary gauge-invariant quantities

The ten independent components of the Weyl curvature tensor are encapsulated in five complex

scalars [see Eq. (2.8)]. For the Kerr background ψ0 and ψ4 vanish, therefore they are gauge-

invariant. However ψ2 is not gauge invariant. Consider a gauge transformation xα → xα′ = xα + ξα

of O(m). Since ψ2 is a scalar field, it changes according to

ψ′
2 → ψ2 + ∆ψ2, (5.1)

where ∆ψ2 can be expressed in terms of the Lie derivative acting on ψ2:

∆ψ2 = −ξαψ
(0)
2,α = −ξtψ

(0)
2,t − ξrψ

(0)
2,r − ξθψ

(0)
2,θ − ξϕψ

(0)
2,ϕ +O(m2). (5.2)

In the case of the Kerr background ψ2 is given by ψ
(0)
2 = ̺3M , according to Eq. (2.8c), and

̺ = − 1
r−ia cos θ is a spin-coefficient in the Newman-Penrose formalism as given in (2.7). Thus

ψ
(0)
2,r = 3M̺4 and ψ

(0)
2,θ = 3iaM sin θ̺4, with ψ

(0)
2,t = ψ

(0)
2,φ = 0, (5.3)

where M and a are the mass and spin parameters of the BH respectively,

Eq. (5.1) also implies that the perturbation of ψ
(0)
2 , denoted by δψ2, transforms as

δψ′
2 → δψ2 + ∆ψ2. (5.4)

with the same ∆ψ2 appearing in Eq. (5.2).
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5.1.1 Our preferred gauge

Suppose that we are given the perturbation hαβ, in whichever gauge1. We now change the gauge

to a preferred gauge h̃αβ , which we choose to be a gauge where δψ̃2 (namely the gauge-transformed

δψ2) vanishes: ∆ψ̃2 ≡ ψ̃2 − ψ2 = −δψ2. We denote the gauge vector which takes us from the

original hαβ to h̃αβ by ξ̃α. In virtue of Eq. (5.3) we have

∆ψ̃2 = −
(

ξ̃rψ
(0)
2,r + ξ̃θψ

(0)
2,θ

)

. (5.5)

The requirement δψ̃2 = 0, or equivalently ∆ψ̃2 = −δψ2, thus reads

ξ̃rψ
(0)
2,r + ξ̃θψ

(0)
2,θ = δψ2, (5.6)

which we can solve for ξ̃r and ξ̃θ, leaving ξ̃t and ξ̃φ arbitrary (this arbitrariness will not concern

us). Eq. (5.6) is a complex algebraic equation—which actually amounts to a set of two equations,

for the two real unknowns ξ̃r, ξ̃θ.

We alternatively write Eq. (5.6) as

ξ̃r + (ia sin θ)ξ̃θ = Φ, (5.7)

by defining Φ ≡ ̺−4

3M δψ2 and using Eq. (5.3).

We shall now consider the general Kerr case a 6= 0 (the special Schwarzschild case a = 0 is

simpler, but needs be treated separately; this will be done in Sec. 5.1.4). We obtain the solution

ξ̃r = Re(Φ), ξ̃θ =
Im(Φ)

a sin θ
. (5.8)

The covariant components are constructed with contractions of the background metric, ξ̃α =

gαβ ξ̃
β, explicitly

ξ̃r = grrξ̃
r , ξ̃θ = gθθξ̃

θ, (5.9)

where gαβ are the unperturbed metric functions in BL coordinates [see Eq. (2.1)]. The remaining

components ξ̃t and ξ̃φ are left arbitrary.

5.1.2 Auxiliary Invariants

The new components of the MP in the preferred gauge, h̃αβ , are given by

h̃αβ = hαβ −
(

ξ̃α;β + ξ̃β;α

)

= hαβ −
(

ξ̃α,β + ξ̃β,α

)

+ 2Γγ
αβ ξ̃γ . (5.10)

Let us use indices a and b to denote the r and θ BL coordinates. Since Γt
ab = 0 = Γφ

ab in the Kerr

background, we can write

h̃ab = hab −
(

ξ̃a,b + ξ̃b,a

)

+ 2Γc
abξ̃c, . (5.11)

We define, for notation convenience,

{I1, I2, I3} ≡ {h̃rr, h̃θθ, h̃rθ}. (5.12)

We claim that {I1, I2, I3} are gauge invariant, which we show in the next section.

1We will later choose hαβ to be in turn the reconstructed MP, and the completion piece.
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5.1.3 Direct verification of gauge invariance

Suppose that we apply a gauge transformation associated with a certain gauge vector ξ′α to the

original perturbation hαβ . Then the various gauge-dependent fields (e.g. hαβ , δψ2, ...) change. We

will denote these changes by ′ (i.e. h′
αβ, δψ′

2, ...). In particular for the perturbation of ψ2 we have

δψ′
2 = −

(

ξr′ψ
(0)
2,r + ξθ ′

ψ
(0)
2,θ

)

. (5.13)

We now seek to find the changes in h̃′
ab and show they vanish. Starting from Eq. (5.11) we have

h̃′
ab = h′

ab −
[(

ξ̃′
a,b + ξ̃′

b,a

)

− 2Γc
abξ̃

′
c

]

. (5.14)

The first term h′
ab is given by the standard gauge-transformation rule:

h′
ab = −

[(

ξ′
a,b + ξ′

b,a

)

− 2Γµ
abξ

′
µ

]

= −
[(

ξ′
a,b + ξ′

b,a

)

− 2Γc
abξ

′
c

]

, (5.15)

where we have used again Γt
ab = 0 = Γϕ

ab. To evaluate the second term of Eq. (5.14) (namely the

term in squared brackets), we need to calculate ξ̃a′. This can be done by combining of Eq. (5.6)

and Eq. (5.13), which yields

ξ̃rψ
(0)
2,r + ξ̃θψ

(0)
2,θ = δψ′

2 = −
(

ξr ′ψ
(0)
2,r + ξθ ′ψ

(0)
2,θ

)

. (5.16)

The solution to the equation above is trivial:

ξ̃a = −ξa′. (5.17)

This solution for ξ̃a′ is unique and naturally follows from the uniqueness of ξ̃a, established in

Eq. (5.8). Even more it has a straightforward interpretation, which actually allows its derivation

without any calculations: let us denote the new quantities ξ̃a (after the ξα′ gauge transformation)

by ξ̃a′. Recall that by definition ξ̃a′ is the gauge vector ξa, if only the r, θ components, required

for transforming from the h′-gauge (namely after the ξα′ transformation) to the preferred-gauge.

Obviously this gauge transformation can be done in two stages, ξ̃′ = ξ1 + ξ2: in the first stage we

simply undo the ξ′ gauge transformation, namely ξ1 = −ξ′; the second stage entails the transition

to the preferred gauge from the original h, namely ξ2 = ξ̃. Overall we obtain ξ̃′ = ξ̃ − ξ′, namely

ξ̃′ ≡ ξ̃′ − ξ̃ = −ξ′.

Substituting the trivial result of Eq. (5.17) in the squared-bracketed term in the right-hand side

of Eq. (5.14), one finds

h̃′
ab = −

[(

ξ′
a,b + ξ′

b,a

)

− 2Γc
abξ

′
c

]

+
[(

ξ′
a,b + ξ′

b,a

)

− 2Γc
abξ

′
c

]

. (5.18)

yielding the desired gauge-invariance result h̃′
ab = 0.

5.1.4 Auxiliary invariants in Schwarzschild

As we mentioned in Sec. 5.1.1 the Schwarzschild case has to be consider separately. This is due to

the fact that in Eq. (5.8), ξθ diverges as a → 0. Instead of considering the Kerr solutions in Eq.

(5.8), let us consider the components of the gradient of ψ
(0)
2 when a → 0. Setting a = 0 we have
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̺ = − 1
r . Eq. (5.3) then reads

ψ
(0)
2,r = 3M/r4, ψ

(0)
2,θ = 0. (5.19)

Therefore Eq. (5.2) reduces to

∆ψ2 = −ξrψ
(0)
2,r = −3M

r4
ξr. (5.20)

Since ξr is real, this equation tells us at once (recalling ∆δψ2 = ∆ψ2) that Im(∆ψ2) = 0 — namely

the quantity

I(Sch)
2 ≡ Im(δψ2) (5.21)

is gauge-invariant.

Unlike the situation in the Kerr case, one of our invariants can be just Im(δψ2). However Re(δψ2)

is still gauge-dependent. We shall thus choose our preferred gauge h̃αβ to be a gauge in which

Re(δψ̃2) = 0, (5.22)

namely ∆ψ̃2 = −Re(δψ2). Noting that ∆ψ̃2 = −(3M/r4)ξ̃r , we obtain

ξ̃r =
r4

3M
Re(δψ2), (5.23)

which is in full agreement with the more general expression of Eq. (5.8) for ξ̃r. Note that in the

Schwarzschild case ξ̃θ (just like ξ̃t and ξ̃φ) is left arbitrary.

Again, we define the covariant components ξ̃α = gαβ ξ̃
β , and in particular

ξ̃r = grrξ̃
r. (5.24)

Let us consider again the components of the MP in the new gauge,

h̃αβ = hαβ −
(

ξ̃α,β + ξ̃β,α

)

+ 2Γγ
αβ ξ̃γ . (5.25)

Where we only require to obtain the h̃rr component. Since in the Schwarzschild case Γγ
rr vanishes

for any xγ 6= r, we obtain the explicit expression for this component:

I(Sch)
1 ≡ h̃rr = hrr − 2ξ̃r,r + 2Γr

rrξ̃r. (5.26)

Notice that in Schwarzschild we have labelled the invariants not by the order we have derived them

but rather to make h̃rr the “first” invariant both in Schwarzschild and Kerr. The gauge invariance

of Eq. (5.26) does follow from the invariance of its Kerr counterpart.

5.2 Circular orbits in Schwarzschild spacetime

Before considering the problem of determining the completion piece for Kerr, let us consider the

more simple Schwarzschild case. Equipped with the invariants obtained in the previous section we

will now obtain the completion pieces. The problem reduces to determining the gauge-invariant

amplitudes of the mass and AM perturbation. This piece is whatever is needed to add to the

reconstructed piece for satisfying the linearised EFE. The amplitudes of the completion piece can be
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determined by imposing continuity off-the-particle of the auxiliary invariants. In Schwarzschild the

expressions for the CCK-reconstructed MP are easier to handle, which makes for a more pedagogical

implementation of our method. Also, in this case we know in advance what the amplitudes of the

completion piece should give, which serves to test our method.

5.2.1 Strategy

r0

I−

1,2

I+
1,2

Figure 5.1: Each of the auxiliary gauge-invariant
quantities has a CCK-reconstructed part I(rec)

and a completion part I(comp). The reconstructed
MP has a gauge discontinuity on the sphere inter-
secting the particle (red line). The amplitudes δM
and δJ of the completion pieces are determined

by imposing continuity of I(rec)
1,2 + I(comp)

1,2 off the
particle. The full invariant should be continuous
everywhere off the particle.

We consider a particle of mass m moving in a

circular orbit at r = r0 around a Schwarzschild

BH of mass M , where m ≪ M . The reconstruc-

ted part of the MP in a no-string IRG can be

obtained according to the CCK procedure. As

described in Sec. 2.1, we start by solving Teukol-

sky equation mode by mode (we choose s = −2

and solve for ψs=−2 ≡ ̺−4ψ4). We assume that

the completion piece is stationary and axially

symmetric (since it should only include correc-

tions to the mass and AM), and this way we re-

strict ourselves to analytically finding only the

m = 0 = ω modes. The appropriate Hertz po-

tential is then obtained by inverting a fourth-

order differential equation Eq. (2.20b). With

only the m = 0 of this equation, we perform

an analytical angular-inversion. We recover the

ℓ-modes of the reconstructed MP (the ℓ ≥ 2

sector) on each of the two sides of the sphere S
with r = r0, see Fig. 5.1.

The modes of the MP are the required input

to obtain the invariants on each side of S. We

take the limits r → r±
0 to obtain the jump on each mode of the invariants. These jumps are then

summed analytically up to ℓ → ∞ in a distributional way. The completion pieces are constructed

as mass and AM perturbations of the Schwarzschild metric (keeping the BL coordinates fixed).

This gives two homogeneous solutions with arbitrary amplitudes δM± and δJ±. The jumps on

the amplitudes are determined by imposing continuity of the auxiliary invariants across S off the

particle, namely at θ 6= π/2, to obtain a system of two equations, each of them determines the jump

on one of the missing amplitudes.

5.2.2 Analytic solutions of Teukolsky equation

The radial part of Teukolsky equation that describes the perturbations due to the particle moving

around the BH has the form

T̂ ψℓmω(r) = T̃ℓmω(r), (5.27)

where T̂ is the radial Teukolsky operator given explicitly in Eq. (2.12a) (with s = −2), ψℓmω is the

radial part of the relevant Weyl scalar (we calculate ψ4 but it is possible to obtain ψ0 instead), and

T̃ℓmω is the frequency-domain source. We have defined T̃ ≡ 4πΣTs, with Ts as given by Eq. (2.16),
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to simplify notation. The frequency-domain source has the form

T̃ℓmω(r) =

2
∑

k=0

t̃ℓmω[k](r0)δ(k)(r − r0), (5.28)

where t̃ℓmω[k](r0) are three functions determined by Eq. (2.16), and δ(k)(r − r0) is the k order

derivative of the delta-function with respect to its argument.

The procedure starts by solving the homogeneous part of Eq. (5.27) (for m = 0 only) with

retarded boundary-conditions. This can be done analytically to obtain the homogeneous solutions

for ψs=−2, these solutions are related algebraically to those given in Sec. 4.2.1 according to R4±(r) =

r4f2R̄0±(r), due to the symmetries of Teukolsky equation. For the static modes (m = 0 = ω) the

two linearly-independent solutions are explicitly

R4−(r) ≡r2fP2
ℓ

(

r −M

M

)

, (5.29a)

R4+(r) ≡r2fQ2
ℓ

(

r −M

M

)

, (5.29b)

where Pℓ and Qℓ are Legendre polynomials as before. The regularity of this solutions follows that

of the solutions in Sec. 4.2.1.

The inhomogeneous solutions of the radial part of Teukolsky equation ψ4,ℓ00(r) are constructed

using the variation of parameters method (the expressions for the circular orbit Schwarzschild limit

can be recovered from the general expressions in Appendix F.1). The total inhomogeneous solution

ψ4(r, θ) is given by

ψ4(r, θ) =

∞
∑

ℓ=2

ψ4,ℓ00(r) −2Yℓ00(θ), (5.30)

where −2Yℓ00(θ) is the appropriate angular function (an ω = 0 = m and s = −2 spin-weighted

spherical harmonic).

The modes of the Hertz potential Ψℓ00(r) are computed from ψ4,ℓ00(r), using Eq. (2.20). We use

the algebraic inversion of the angular relation in Eq. (2.20b), and work in the IRG. Alternatively

we might have chosen to construct ψ0 and integrate the radial equation of (2.20b) or use the

corresponding equations to work in the ORG using (2.20a).

5.2.3 Analytical reconstruction: MP and auxiliary-invariants

The reconstructed piece of the MP is obtained via

h
(rec)
αβ (r, θ) =

∑

ℓ≥2

ĤαβΨℓ00(r) −2Yℓ00(θ), (5.31)

where Ĥ is the reconstruction operator [the Schwarzschild limit of Eq. (2.19)], and we have omitted

the ± denoting on which side of S the MP is calculated. Given h
(rec)
αβ , one constructs the two gauge-

invariant quantities I(rec)
1,2 (r, θ) = Îαβ

1,2h
(rec)
αβ (r, θ) (where Îαβ

1,2 are certain differential operators), on

each side of S. We then obtain the jumps

[

I(rec)
1,2

]

(θ) ≡ lim
ǫ→0

Îαβ
1,2

(

h
(rec)
αβ (r0 + ǫ, θ) − h

(rec)
αβ (r0 − ǫ, θ)

)

. (5.32)

In the m = 0 sector the ℓ-modes of I(rec)
1 in terms of the homogeneous solutions of Eq. (5.29)
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and spherical harmonics are

I(rec)
1± (r, θ) =

∞
∑

ℓ=2

− 4π

3f3λ1Mr2r0W
{

R′
4±(r)

[

λ1r
2 − 2 (λ0 − 3)Mr − 6M2

]

+ λ1R4±(r)(3M − 2r)
}

×
{

λ1R4∓(r0)
[

2M − r0

(

r2
0Ω2 + 1

)]

− 2Mr3
0Ω2R′

4∓(r0)
}

utYℓ(θ)Ȳℓ(θ0) (5.33)

where Ω is the orbital frequency (computed using Eq. (2.11) with a = 0), λs = (ℓ− s)(ℓ+ s+ 1) as

before, and the prime denotes derivatives with respect to r. We have left indicated the Wronskian

of the homogeneous solutions W ≡ R4−(r)R′
4+(r) − R4+(r)R′

4−(r). It is useful to notice that

I(rec)
1− ↔ I(rec)

1+ under R4− ↔ R4+ (keeping W fixed). At the limit r → r0 the terms proportional

to R4+(r0)R4−(r0) and R′
4−(r0)R′

4+(r0) are continuous and do not contribute to the jump. The

remaining terms combine to obtain the relevant W(r0) (or derivatives of it). Note that we have

used the definitions of the spin-weighted spherical harmonics Eq. (E.8), to write Eq. (5.33) in terms

of the usual scalar spherical harmonics. The total jump in the m = 0 sector then works out to be

[I(rec)
1 ](θ) =

∞
∑

ℓ=2

8mEπ
3Mf2

0

Yℓ(θ)Ȳℓ(θ0) +

∞
∑

ℓ=2

4mEπ(r0 −M)

3Mr0f3
0

Yℓ(θ)Ȳ
′′

ℓ (θ0), (5.34)

where we have used the identity ut = E/f0, and λ0Ȳℓ(θ0) = −Ȳ ′′
ℓ (θ0) on the equator.

We rewrite Eq. (5.34) as a sum starting from ℓ = 0:

[I(rec)
1 ](θ) =

∞
∑

ℓ=0

8mEπ
3Mf2

0

Yℓ(θ)Ȳℓ(θ0) +
∞
∑

ℓ=0

4mEπ(r0 −M)

3Mr0f3
0

Yℓ(θ)Ȳ
′′

ℓ (θ0)

− 8mEπ
3Mf2

0

Y0(θ)Ȳ0(θ0) − 8mEπ
3Mf2

0

Y1(θ)Ȳ1(θ0),

=

∞
∑

ℓ=0

8mEπ
3Mf2

0

Yℓ(θ)Ȳℓ(θ0) +

∞
∑

ℓ=0

4mEπ(r0 −M)

3Mr0f3
0

Yℓ(θ)Ȳ
′′

ℓ (θ0) − 8mEπ
3Mf2

0

Y0(θ)Ȳ0(θ0), (5.35)

where we have added and subtracted the ℓ = 0, 1 terms that are not contained in the first sum of Eq.

(5.34), the second sum of Eq. (5.34) is trivially extended since Y ′′
0 (θ) = 0 = Y ′′

1 (θ) on the equator.

To write the second equality we have also used Y1(θ)Ȳ1(θ0) = 0 on the equator. The infinite sums in

Eq. (5.35) are done analytically in a distributional way (see [99] for a detailed proof of the validity

of the sums). The first term on the right-hand-side of Eq. (5.35) sums to a delta-function supported

on θ = θ0, while the second term gives the second θ-derivative of a delta-function:

[I(rec)
1 ](θ) =

8mEπ
3Mf2

0

δ(θ − θ0) − 4mEπ(r0 −M)

3Mr0f3
0

δ′′(θ − θ0) − 2mE
3Mf2

0

. (5.36)

The reconstructed piece of the first invariant only gives information about the energy of the orbiting

particle.

We look now at the reconstructed piece of the second invariant I2 using Eq. (5.21), and again

we express it in terms of scalar spherical harmonics using Eq. (E.8):

I(rec)
2± (r, θ) =

∑

ℓ≥2

4πmr0f0L
Wλ0r2

0r
5f

[

r0R
′
4∓(r0) − 2R4∓(r0)

]

×

{

[r(λ0 + 4) − 12M ]R4±(r) − 2r(r − 3M)R′
4±(r)

}

Yℓ(θ)Ȳ
′

ℓ (θ0), (5.37)
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and the jump across the sphere with r = r0 yields

[

I(rec)
2

]

(θ) =

∞
∑

ℓ=2

4πmL
r4

0

Yℓ(θ)Ȳ
′

ℓ (θ0), (5.38)

which again can be summed analytically as a distribution adding and subtracting the missing ℓ = 0, 1

pieces. The result is
[

I(rec)
2

]

(θ) = −4πmL
r4

0

δ′(θ − θ0) +
3mL
r4

0

cos θ, (5.39)

which has information only about the AM of the particle.

5.2.4 Determination of the completion piece

The “extra” contribution to the jumps in the invariants
[

I(comp)
1,2

]

is constructed from the completion

piece of the MP. This completion piece has the form

h
(comp)±
αβ (r, θ) = δM±h

(δM)
αβ (r, θ) + δJ±h

(δJ)
αβ (r, θ), (5.40)

where δM± and δJ± are unknown amplitudes at this stage. In Eq. (5.40) the superscripts + and

− are used to distinguish between the completion solutions for r > r0 and r < r0, respectively. The

components of the two MP perturbations h
(δM)
αβ (r) and h

(δJ)
αβ (r) are obtained via

h
(δM)
αβ (r) ≡ ∂gαβ(M,J)

∂M

∣

∣

∣

∣

J→0

, h
(δJ)
αβ (r, θ) ≡ ∂gαβ(M,J)

∂J

∣

∣

∣

∣

J→0

, (5.41)

where gαβ is the Kerr metric in BL coordinates, ∂M is taken with fixed J = Ma (and fixed BL

coordinates) and ∂J is taken with fixed M (and fixed BL coordinates). Given h
(comp)±
αβ , the jumps

[

I(comp)
1,2

]

are given by

[

I(comp)
1,2

]

(θ) ≡ lim
ǫ→0

Îαβ
1,2

(

h
(comp)+
αβ (r0 + ǫ, θ) − h

(comp)−
αβ (r0 − ǫ, θ)

)

. (5.42)

To obtain

[

I(comp)
1

]

(r, θ) =
2[δM ]

3Mf2
, and

[

I(comp)
2

]

(r, θ) = −3[δJ ] cos θ

r4
, (5.43)

where [δM ] ≡ δM+ − δM− and [δJ ] ≡ δJ+ − δJ−.

5.2.5 Solution for the amplitudes [δM ], [δJ ]

The jumps [δM ] and [δJ ] are determined from the two regularity conditions

[

I(rec)
1,2

]

(θ) +
[

I(comp)
1,2

]

(θ) = 0 for θ 6= π/2. (5.44)

We now impose the regularity conditions of Eqs. (5.44) at r = r0 and θ 6= π/2, explicitly

[I1] (θ 6= π/2) = − 2mE
3Mf2

0

+
2[δM ]

3Mf2
0

= 0,

[I2] (θ 6= π/2) =
3mL
r4

0

cos θ − 3[δJ ]

r4
0

cos θ = 0. (5.45)
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Note that in the Schwarzschild case, the amplitudes of the mass and AM perturbations decouple

and we have one unknown amplitude for each regularity condition, as expected from the separability

of the EFE. In general this is not expected in the Kerr case. The solutions of Eq. (5.45) give

[δM ] = mE , and [δJ ] = mL. (5.46)

Namely the jumps of the mass and AM perturbations in the invariants are simply the energy and

AM of the particle, as expected.

The fact that these amplitudes are independent of θ is a strong test of our result. By virtue of

Wald’s theorem, at infinity the completed MP should read as the metric components for a linear in

δa Kerr solution with total mass M + mE and spin-parameter δa = mL/M , hence

h
(comp)+
tt =1 +

2(M + mE)

r
, h

(comp)+
tϕ = −mL sin2 θ

r
(5.47a)

h(comp)+
rr =

1

f2
− 2(M + mE)

rf2
(5.47b)

h
(comp)+
θθ =r2, h(comp)+

ϕϕ = r2 sin2 θ, (5.47c)

Together Eq. (5.46) and Eq. (5.47) fix the completion in the interior h
(comp)−
αβ = 0.

5.3 Circular equatorial orbits in Kerr spacetime

5.3.1 Strategy

Let us now consider the particle is moving on a circular equatorial-orbit in a Kerr background. The

strategy will be the same as in the Schwarzschild case. We follow the CCK-reconstruction procedure

mode by mode to obtain the MP. The reconstructed sector of the invariants is constructed mode by

mode, and the limit r → r0 is taken to read off the jump across S. The sums in the Kerr case are

considerably more complicated. All the sums appearing in the reconstructed part of the invariants

are evaluated analytically as distributions using the formulae in Appendix F.3. The completion

piece is given by Eqs. (5.40) and (5.41), without taking J → 0. We impose the same regularity

condition [Eq. (5.44) in the previous section] to the Kerr auxiliary invariants [Eq. (5.12) of Sec.

5.1.2], in the same way as in the Schwarzschild case. Alternatively, [δM ] and [δJ ] may be obtained

from a single invariant—either I1 or I2—by evaluating either one of the two conditions in Eq. (5.44)

at two different values of θ 6= π/2. We obtain a system of two linearly-independent equations, which

determines the jumps in the missing amplitudes.

5.3.2 Analytic solutions of Teukolsky equation

The homogeneous solutions to the radial part of the spin s = −2 Teukolsky equation in Kerr (with

m = 0), Eq. (2.9), are hypergeometric functions [147]:

R4−(r) =∆2
2F1 (−ℓ+ 2, ℓ+ 3; 3; −z+) , (5.48a)

R4+(r) =Aℓs z
−ℓ+1
− 2F1

(

ℓ− 1, ℓ+ 1; 2ℓ+ 2; z−1
−

)

, (5.48b)

where Aℓs ≡ ℓ!(ℓ+2)!
(2ℓ+1)!(2−ℓ)! , z± ≡ r−r±

r+−r−
. We have again used ‘−’ to denote the solution that is regular

at the EH and ‘+’ for the solution that is regular at infinity. The inhomogeneous solutions of the
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radial part of Teukolsky equation ψs=−2 = ̺−4ψ4 are constructed with the method of variations of

parameters of Appendix F.1.

5.3.3 Metric reconstruction and auxiliary invariants

We algebraically invert Eq. (2.20) to find the Hertz potential and obtain the modes of the recon-

structed MP in the IRG. We only require to obtain explicitly the relevant components required to

compute the Kerr invariants, namely the hab of Eq. (5.11).

Having the Hertz potential we directly compute δψ2 without having to obtain all the components

of the MP, Riemann and Weyl tensors. Let us recall that δψ2 is required to obtain I1,2,3, from which

two of them suffice to evaluate the amplitudes of the jumps. δψ2 is calculated2,3 using:

δψ2 =
1

12

[

(D + 2̺− ¯̺)(D + 2̺− ¯̺)(δ̄ + α+ 3β̄ − τ̄)(δ̄ + 4β̄ + 3τ̄)

+(D + 2̺− ¯̺)(δ̄ + 2β̄ − π − τ̄ )(D + ̺− ¯̺)(δ̄ + 4β̄ + 3τ̄)

+(D + 2̺− ¯̺)(δ̄ + 2β̄ − π − τ̄ )(δ̄ − α+ 3β̄ − π − τ̄ )(D + 3¯̺)

+(δ̄ − α+ β̄ − 2π − τ̄)(δ̄ − 2α+ 2β̄ − 2π − τ̄ )(D − ¯̺)(D + 3¯̺)

+(δ̄ − α+ β̄ − 2π − τ̄)(D + ̺− ¯̺)(δ̄ − α+ 3β̄ − π − τ̄)(D + 3¯̺)

+(δ̄ − α+ β̄ − 2π − τ̄)(D + ̺− ¯̺)(D + ̺− ¯̺)(δ̄ + 4β̄ + 3τ̄)
]

Ψ̄, (5.49)

where we have omitted the vanishing spin-coefficient ǫ.

We leave the Wronskian of the homogeneous solutions unevaluated as we take the limit r → r0

in the inhomogeneous solutions, just like in the Schwarzschild case, and calculate the side-values

of h
(rec)
ab (see Appendix F.4 for the full expressions). The jumps

[

I(rec)
1,2

]

are independent of the

explicit form of the homogeneous solutions, since all remaining discontinuous terms are proportional

to W (or derivatives of W which are further expressed in terms of W), just like we found in the

Schwarzschild case.

The jump across the sphere with r = r0 is given by a sum of all the ℓ ≥ 2 modes. We choose to

split the sums according to their ℓ and θ dependence, schematically

[

I(rec)
1

]

(θ) =

∞
∑

ℓ=2

{

c◦
0Yℓ(θ)Ȳℓ(θ0) + c◦

1λ1Yℓ(θ)Ȳℓ(θ0) +
c◦

2

λ0λ1
[λ0Yℓ(θ) + 2 cot θY ′

ℓ (θ)] Ȳℓ(θ0)

+c◦
3Yℓ(θ)Ȳ

′
ℓ (θ0) +

c◦
4

λ0
Yℓ(θ)Ȳ

′
ℓ (θ0) +

c◦
5

λ0
Y ′

ℓ (θ)Ȳℓ(θ0) +
c◦

6λ1

λ0
Y ′

ℓ (θ)Ȳℓ(θ0)

+
c◦

7

λ0
Y ′

ℓ (θ)Ȳ ′
ℓ (θ0) +

c◦
8

λ2
0

Y ′
ℓ (θ)Ȳ ′

ℓ (θ0)

}

, (5.50a)

[

I(rec)
2

]

(θ) =

∞
∑

ℓ=2

{

d◦
0Yℓ(θ)Ȳℓ(θ0) +

d◦
1

λ0λ1
[λ0Yℓ(θ) + 2 cot θY ′

ℓ (θ)] Ȳℓ(θ0) + d◦
2Yℓ(θ)Ȳ

′
ℓ (θ0)

+
d◦

3

λ0
Yℓ(θ)Ȳ

′
ℓ (θ0) +

d◦
4

λ0
Yℓ(θ)Ȳℓ(θ0) +

d◦
5λ1

λ0
Y ′

ℓ (θ)Ȳℓ(θ0) + d◦
6Y

′
ℓ (θ)Ȳ ′

ℓ (θ0)

+
d◦

7

λ0
Y ′

ℓ (θ)Ȳ ′
ℓ (θ0) +

d◦
8

λ2
0

Y ′
ℓ (θ)Ȳ ′

ℓ (θ0)

}

, (5.50b)

2The expression that directly relates ψ2 with Ψ in the original Cohen-Kegeles work [94] requires a factor 2. This
is a longstanding error of the CCK formalism as mentioned in previous works by Keidl et al. [81] and Pound et al. [1]

3This expression is equivalent to the one independently obtained by Sano and Tagoshi [102]

δψ2 =
1

2

[

DD̺(δ̄ + 2β̄)
1

̺
(δ̄ + 4β̄)Ψ̄ − 4π(D + ̺)D(δ̄ + 4β̄)Ψ̄ + 6πDπDΨ̄

]

,

which was published after we have implemented our method.
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where the long coefficients c◦
i , d

◦
i of the sums are ℓ-independent and λ1 = λ0 − 2 [these can be

recovered from the coefficients in the eccentric orbits case ci, di given explicitly in Eqs. (F.4) and

(F.5) of Appendix F]. All the sums in Eq. (5.50) can be evaluated analytically as distributions at

θ = θ0 by including (and subtracting) the ℓ = 0, 1 terms missing in the sums:

[

I(rec)
1

]

(θ) =c◦
0δ(θ − θ0) − c◦

1δ
′′(θ − θ0) − 2c◦

1δ(θ − θ0) − c◦
3δ

′(θ − θ0) + c◦
6δ

′(θ − θ0) + c◦
7δ(θ − θ0)

− c◦
0Y0(θ)Ȳ0(θ0) + 2c◦

1Y0(θ)Ȳ0(θ0) − c◦
3Y1(θ)Ȳ ′

1 (θ0) − c◦
7−1Y1(θ)−1Ȳ1(θ0)

− c◦
2

sin θ

∫ 1

−1

d(cos θ′′)

∫ 1

−1

d(cos θ′)
[

δ(θ′ − θ0) − Y0(θ′)Ȳ0(θ0)
]

− c◦
4

∫ 1

−1

d(cos θ′
0)
[

δ(θ − θ′
0) − Y0(θ)Ȳ0(θ′

0) − Y1(θ)Ȳ1(θ′
0)
]

− c◦
5 − 2c◦

6

sin θ

∫ 1

−1

d(cos θ′)
[

δ(θ′ − θ0) − Y0(θ′)Ȳ0(θ0)
]

+
c◦

8

sin θ

∫ 1

−1

∫ 1

−1

d(cos θ′)d(cos θ′
0)
[

δ(θ′ − θ′
0) − Y0(θ′)Ȳ0(θ′

0) − Y1(θ′)Ȳ1(θ′
0)
]

, (5.51a)

[

I(rec)
2

]

(θ) =d◦
0δ(θ − θ0) − d◦

2δ
′(θ − θ0) + d◦

5δ
′(θ − θ0) − d◦

6δ
′′(θ − θ0) + d◦

7δ(θ − θ0)

− d◦
0Y0(θ)Ȳ0(θ0) − d◦

2Y1(θ)Ȳ1(θ0) − d◦
6Y

′
1(θ)Ȳ ′

1 (θ0) − d◦
7−1Y1(θ)−1Ȳ1(θ0)

− d◦
1

sin θ

∫ 1

−1

d(cos θ′′)

∫ 1

−1

d(cos θ′)
[

δ(θ′ − θ0) − Y0(θ′)Ȳ0(θ0)
]

− d◦
3

∫ 1

−1

d(cos θ′
0)
[

δ(θ − θ′
0) − Y0(θ)Ȳ0(θ′

0) − Y1(θ)Ȳ1(θ′
0)
]

− d◦
4 − 2d◦

5

sin θ

∫ 1

−1

d(cos θ′)
[

δ(θ′ − θ0) − Y0(θ′)Ȳ0(θ0)
]

+
d◦

8

sin θ

∫ 1

−1

∫ 1

−1

d(cos θ′)d(cos θ′
0)
[

δ(θ′ − θ′
0) − Y0(θ′)Ȳ0(θ′

0) − Y1(θ′)Ȳ1(θ′
0)
]

, (5.51b)

where we have used Y ′
ℓ (θ) = λ

1/2
0 −1Yℓ(θ). The integrals can be evaluated analytically by considering

separately the regions 0 < θ < π/2 and π/2 < θ < π (see Appendix F.3 for the details) to give

[

I(rec)
1

]

(θ) = − 2utµΣ0

3Mr3
0∆2

0

{

2a6MΩ2 + ar3
0(4Mr0 − 6M2 − 3r2

0)Ω − 3a3r0(r2
0f0 − 2M2)Ω

−4a5MΩ − a4
[

3M2r0Ω2 + 2r3
0Ω2 +M(r2

0Ω2 − 2)
]

+ a2r0

[

3M2(r2
0Ω2 − 1)

+r2
0(5 + r2

0Ω2) +Mr0(2r2
0Ω2 − 5)

]

+ r3
0

[

3M2 + r2
0 + r4

0Ω2 − 3Mr0(1 + r2
0Ω2)

]}

,

(5.52a)
[

I(rec)
2

]

(θ) =
utµΣ0

3aMr3
0

{

3
[

2a4MΩ + 2r5
0Ω + 2a2r0(r2

0f0 − 3M2)Ω − a5MΩ2 + a3(r3
0Ω2

−M + 3M2r0Ω2 +Mr2
0Ω2) − ar0(r4

0Ω2 − 3M2 − 3Mr0 + 3r2
0 + 3Mr3

0Ω2)
]

+a
[

a4MΩ2 − 2a3MΩ + 2aMr0(2r0 − 3M)Ω + a2(M + 3M2r0Ω2 −Mr2
0Ω2

−r3
0Ω2) + r0

(

3M2 + r2
0 + r4

0Ω2 − 3Mr0(1 + r2
0Ω2)

)]

cos(2θ)
}

csc2 θ (5.52b)

where Σ0 ≡ Σ(r0) = r0 + a2 cos2 θ.
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5.3.4 Determination of the completion piece

The completion pieces are given by Eq. (5.41), without evaluating J → 0, with arbitrary amplitudes

δM±, δJ±. In Kerr we obtain

h
(comp)
tt =

r

Σ2

{

δM
[

3 cos(2θ)a2 + 3a2 + 2r2
]

− 4aδJ cos2 θ
}

, (5.53a)

h
(comp)
tϕ = − r

Σ2

[

δM sin2(2θ)a3 + 2δJ
(

r2 − a2 cos2 θ
)

sin2 θ
]

, (5.53b)

h(comp)
rr =

r

M∆2

{[

2(3M − r) cos2 θa2 + 2ra2 + 2Mr2
]

δM

+ [arf cos(2θ) − 2Ma− ra] δJ} , (5.53c)

h
(comp)
θθ =

2a cos2 θ

M
(δJ − aδM), (5.53d)

h(comp)
ϕϕ = − a sin2 θ

4MΣ2

[

3δMa5 − 3δJa4 −MrδMa3 +
(

δMa2 − δJa+MrδM
)

cos(4θ)a3

+8r2δMa3 − 8r2δJa2 + 8r4δMa+ 4Mr3δMa− 8r4δJ − 8Mr3δJ + 4
(

δMa5

−δJa4 + 2r2δMa3 − 2r2δJa2 −Mr3δMa+ 2Mr3δJ
)

cos(2θ)
]

, (5.53e)

where we omitted the ± for brevity.

The completion part of the invariants, namely I(comp)
1,2± (r, θ), is constructed using Eq. (5.53)

according to Eq. (5.12). Explicitly we find

[

I(comp)
1

]

(r, θ) =
Σ

3M∆2

(

(5a2 + r2)[δM ] − 3a[δJ ]
)

, (5.54a)

[

I(comp)
2±

]

(r, θ) = − Σ

6aM
{(a cos(2θ) − 9a) [δM ] + 6[δJ ]} csc2 θ. (5.54b)

Notice that
[

I(comp)
1

]

depends only on δM as we take the a → 0 limit and we recover Eq. (5.43).

For circular orbits around Kerr we find that those amplitudes are (just like in the Schwarzschild

case) identically

[δM ] = mE , and [δJ ] = mL. (5.55)

Notice that our resulting jumps are, just like in the Schwarzschild case, independent of the chosen

point on S. Namely the jumps are independent of θ, which is a strong test of our results.

This result means that by fixing the total mass and AM of the system the amplitudes of the

completion pieces are fully determined as for Schwarzschild.

5.4 Eccentric-equatorial orbits in Kerr

5.4.1 Strategy

We consider a bound geodesic around a Kerr BH, parametrized by the specific energy and AM

{E ,L}. The BL radial-position of an orbiting particle of mass m is r = r0(t0), with rmin ≤ r0 ≤ rmax.

t0 denotes the instantaneous BL time of the particle. We denote the radial component of its four-

velocity with respect of the proper time of the particle τ by ṙ0 ≡ dr0/dτ .

The CCK procedure is still valid for the setup we just described in the time-domain. Instead

of looking at the full time-domain problem we will decompose the source in partial rings, each

labelled by t0, see Fig. 5.2. Under this construction the problem will reduce to a sum of circular
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orbits, treated similarly as in Sec. 5.3.1, and the reconstructed part of the invariants are recovered

analytically at each t0 inside the region rmin ≤ r0 ≤ rmax. The completion pieces are constructed

simply by allowing a t0-dependence of the arbitrary amplitudes in their circular-orbits counterparts.

We solve for the ‘partial’ amplitudes of the mass and AM perturbations by imposing the regularity

conditions of the completed invariants at a given time t0. The ‘full’ amplitudes of the completion

pieces are then recovered by integrating over t0.

5.4.2 Metric reconstruction and auxiliary invariants

I−

1,2(t0)

I+
1,2(t0)

rminrmax

Figure 5.2: The particle moves in a precessing
eccentric orbit, covering all the libration region
(in gray). The idea to determine the completion
pieces follows from the circular-orbit case. We
impose continuity for the total invariants (recon-
structed plus completion) at the level of partial
rings in the libration region. By integrating over
partial amplitudes of the completion piece over t0
we read the total jump of the amplitudes in the
completion pieces.

The radial part of Teukolsky equation is

T̂ ψℓmω(r) =T̃ℓmω(r) (5.56)

=

∫

T̃ℓm(r; r0(τ), ṙ0(τ))eiωtdτ,

where T̂ is the same as in the circular orbits

case. In the second equality we expressed T̃ in

terms of the original (2d) time-domain source

T̃ℓm(r; r0(τ), ṙ0(τ)). The integral is an inverse

Fourier transform, which should be taken over a

radial period with a suitable normalization that

is being absorbed in T̃ℓm for the time being, but

it can be recovered from the expressions in Sec.

2.1. The time-domain source has the form

T̃ℓm(r; r0(τ), ṙ0(τ)) (5.57)

=

2
∑

k=0

t̃ℓm[k](r0(τ), ṙ0(τ))δ(k)(r − r0(τ)),

where the coefficients t̃ℓm[k], like r0(τ) and

ṙ0(τ), depend on the chosen parametrization.

The particular solution to Eq. (5.56) satisfying retarded boundary-conditions is given by

ψℓmω(r) =

∫

Gℓmω(r; t0)dt0, (5.58)

where we have changed the parametrization from τ to t0 using dτ = dτ
dt0
dt0 and reabsorbing the dτ

dt0

in Gℓmω(r; t0). The retarded Green’s function Gℓmω(r; t0) satisfies

T̂ Gℓmω(r; t0) = T̃ℓm(r; r0(t0), ṙ0(t0))eiωt0 , (5.59)

with the same boundary conditions as ψℓmω, and Gℓmω(r; t0) depends on time only parametrically,

not functionally.

We assume that just like in the circular-orbit case the completion piece is stationary and axially

symmetric, and we look at Gℓ00 only. Gℓ00 satisfies

T̂ Gℓ00(r; t0) = T̃ℓ0(r; r0(t0), ṙ0(t0)). (5.60)



5.4 Eccentric-equatorial orbits in Kerr 79

Note that the source T̃ℓ0 has the same general form as for a circular orbit, but with different

coefficients t̃ℓ0[k] (in particular, these coefficients involve ṙ0(t0)). We now think of Gℓ00(r; t0) as the

field due to a partial ring of radius r = r0(t0) that expands/contracts at momentary radial velocity

ṙ0(t0). We can then proceed with the completion procedure as in the circular-orbit case (see Sec.

5.2.1), holding t0 (hence also r0 and ṙ0) fixed.

Given h
(rec)
αβ one then constructs, at each t0, the two gauge-invariant quantities I(rec)

1,2 (r, θ; t0) =

Îαβ
1,2h

(rec)
αβ (r, θ; t0) and obtains their jumps across r = r0(t0):

[

I(rec)
1,2

]

(θ; t0) ≡ lim
ǫ→0

Îαβ
1,2

(

h
(rec)
αβ (r0(t0) + ǫ, θ; t0) − h

(rec)
αβ (r0(t0) − ǫ, θ; t0)

)

. (5.61)

The completion pieces at each t0 are constructed in the same way as in the circular-orbit case Eq.

(5.53), including the t0 dependence in the amplitudes of the perturbations, namely δM± → δM±(t0)

and δJ± → δJ±(t0).

Given h
(comp)
αβ , the jumps

[

I(comp)
1,2

]

are obtained via

[

I(comp)
1,2

]

(θ; t0) ≡ Îαβ
1,2

(

h
(comp)+
αβ (r → r0(t0), θ; t0) − h

(comp)−
αβ (r → r0(t0), θ; t0)

)

. (5.62)

These t0-dependent jumps [δM ](t0) ≡ δM+(t0) − δM−(t0) and [δJ ](t0) ≡ δJ+(t0) − δJ−(t0) are

now determined instantaneously from the two regularity conditions

[

I(rec)
1,2

]

(θ; t0) +
[

I(comp)
1,2

]

(θ; t0) = 0 for θ 6= π/2. (5.63)

Now consider the true, time-domain completion piece h
(comp)
αβ (r, θ). Outside the libration domain it

is given by

h
(comp)
αβ (r > rmax, θ) =

∫

dt0 h
(comp)+
αβ (r, θ; t0) = δM̃+h

(δM)
αβ (r, θ) + δJ̃+h

(δJ)
αβ (r, θ), (5.64a)

h
(comp)
αβ (r < rmin, θ) =

∫

dt0 h
(comp)−
αβ (r, θ; t0) = δM̃−h

(δM)
αβ (r, θ) + δJ̃−h

(δJ)
αβ (r, θ), (5.64b)

where δM̃±, δJ̃± are constant amplitudes given by

δM̃± =

∫

δM±(t0)dt0, δJ̃± =

∫

δJ±(t0)dt0, (5.65)

and all t0 integrals are over a full radial-period. Note that, assuming analyticity off the particle, the

time-domain solutions (5.64a) must extend smoothly all the way to the worldline, on either side:

h
(comp)
αβ (r > r0(t), θ) =δM̃+h

(δM)
αβ (r, θ) + δJ̃+h

(δJ)
αβ (r, θ), (5.66a)

h
(comp)
αβ (r < r0(t), θ) =δM̃−h

(δM)
αβ (r, θ) + δJ̃−h

(δJ)
αβ (r, θ). (5.66b)

We are interested in the jumps

[

δM̃
]

≡ δM̃+ − δM̃− =

∫

[δM ](t0)dt0,
[

δJ̃
]

≡ δJ̃+ − δJ̃− =

∫

[δJ ](t0)dt0. (5.67)

The integrals in Eq. (5.67) have to be evaluated over an orbital period, as before.
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5.4.3 Determination of the completion piece

The explicit calculation of the jumps in the reconstructed part of the invariants at a given t0

follows directly from the circular-orbit case [with the same homogeneous solutions as Eq. (5.48)].

In particular the ℓ-dependence that appears with the spherical harmonics Yℓ(θ) remains unchanged

and no additional sums (from the ones used for the circular-orbit case and given in Appendix F.3)

are needed to analytically evaluate the jumps across the sphere. In other words, the expression

for jumps at each time t0 have the same structure as Eq. (5.51) in the previous section, with the

replacement of the circular-orbit coefficients c◦
i , d

◦
i by the more general expressions ci, di given

explicitly in Eqs. (F.4) and (F.5) of Appendix F.

The completion pieces also have the same structure as in the circular orbits case Eq. (5.53), with

the appropriate replacement of the amplitudes δM± → δM±(t0) and δJ± → δJ±(t0). At each time

t0 we impose the regularity condition Eq. (5.63) and solve for the arbitrary amplitudes δM(t0) and

δJ(t0) in terms of [I(rec)](t0). We perform the integrals Eq. (5.65) by choosing {p, e} as the orbital

parameters [148], which are defined in terms of the two turning-points (rmin for periastron and rmax

for apastron) as

rmin =
Mp

1 + e
, and rmax =

Mp

1 − e
. (5.68)

This way the specific energy E and AM L are given by

L = x− aE , E =

[

1 −
(

M

p

)

(1 − e2)

{

1 − x2

p2
(1 − e2)

}]1/2

, with x2 =
−N ∓ ∆

1/2
x

2F
, (5.69)

where the upper sign corresponds to prograde orbits, and

F =
1

p3
[p3 − 2M(3 + e2)p2 +M2(3 + e2)2p− 4Ma2(1 − e2)2], (5.70)

N =
1

p

{

−Mp2 + [M2(3 + e2) − a2]p−Ma2(1 + 3e2)
}

, (5.71)

C =(a2 −Mp)2, (5.72)

∆x =N2 − 4FC. (5.73)

The position of the particle is given in BL coordinates as

r(t0) = r0(χ) =
pM

1 + e cosχ
, (5.74)

where the parameter χ increases monotonically along the orbit. We set t0(χ = 0) = 0 to be the time

the particle is at periastron and define the radial period (the t-time interval between one periastron

and a consecutive one) by Tr ≡ t0(χ = 2π) = 2t0(χ = π).

We next need to evaluate the integrals in Eqs. (5.67). In practice it is easier to consider the

deviation of the integrals from the value of the specific energy and AM:

[

δM̃
]

− mE =

∫ π

−π

{

[δM ] (t0) − mE
Tr

}

dt0
dχ

dχ, and
[

δJ̃
]

− mL =

∫ π

−π

{

[δJ ] (t0) − mL
Tr

}

dt0
dχ

dχ.

(5.75)

The integrands are evaluated analytically in Appendix F.5.
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After evaluating the integrals Eq. (5.67) gives

[

δM̃
]

= mE , and
[

δJ̃
]

= mL. (5.76)

The total jump of the amplitudes in the completion pieces correspond to the energy and the

AM of the orbiting particle. These amplitudes turned out to be functionally independent of θ, just

like in the circular-orbit case. By fixing the total energy and AM of the system we can determine,

using Eq. (5.76), straightforwardly the contributions on each side of S. This will give a Kerr metric

at infinity parametrized by M + mE and a+ mL/M . The amplitudes of the completion piece in the

interior are then fixed to zero, just as we did in the circular-orbit case.

5.5 Summary

The inclusion of the completion piece remained a long-standing open problem in BH-perturbation

theory. This piece together with the CCK-reconstructed perturbation should satisfy the full EFE.

In this Chapter we have addressed the completion problem in Kerr using a new, rigorous and

practical method. We took advantage of the auxiliary invariants (5.12) and continuity conditions

(5.44) and (5.63). We tested our method for the simple case of circular orbits around Schwarzschild

where the completion piece was previously known. In Kerr the expression are considerably more

complicated, but still analytical. With the jumps of Eqs. (5.55) and (5.76), and by fixing the total

mass and AM of the system, the completion pieces in Eq. (5.53) are fully determined. This fully

solves the completion problem for any equatorial orbit around Kerr.

An extension to perform a similar calculation for non-equatorial (inclined) orbits around Kerr

will follow the same conceptual approach: imposing regularity on the invariants at a given time and

integrating over the libration region to find the amplitudes of the completion. This new calculation

will have to deal with the longitudinal modes that arise due to the fact that the particle is no

longer contained in the equatorial plane, and exhibits an ‘extra’ angular velocity θ̇0. This gives (for

m = 0) a two-dimensional spectrum for the orbital frequencies. This might result in the appearance

of different products of the angular functions (from those we give in Appendix F.3) with more

complicated mode-dependence. We may be able to evaluate those sums analytically, but if that is

not possible our numerical experiments on circular orbits of Kerr suggest the sums would converge

slowly, giving ‘large’ numerical errors.
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Chapter 6

Concluding remarks

In this thesis we sought to develop a GSF formalism for BH perturbation theory in the RGs. We

expect the method based on the RG-reconstructed modes and completion will become the workhorse

of SF calculations.

We have analysed the local singular-structure of the RGs (either ingoing or outgoing) in a

practical basis of Fermi-like coordinate. The leading-order singularity of the gauge vector relating

the LG and RGs permeates to the singular structure of the RG perturbation. This structure

provided a natural classification of RGs and we identified three categories. Table 3.1 summarizes

the local form of the singularity (in local Fermi-like coordinates) for each category. The RGs with

a full-string singularity are not suitable for numerical implementations and orbital evolutions.

Based on the singular structure of the RGs, we considered two methods to calculate the GSF for

eccentric orbits around Kerr. The first method considered a local deformation of the RG near the

particle, so that its leading-order term would corresponds to the LG singularity. Such a gauge is

regular in the class of gauges considered by Barack and Ori [19] where the standard LG mode-sum

gives the desired value of the SF. The retarded force in this LL gauge can be obtained from the

corresponding half-string completed RG force (or alternatively from a no-string completed RG),

where the CCK-reconstruction procedure is defined and practical. To regularize this retarded force

using (3.70), on each side-limit of the particle’s location, the inclusion of a non trivial correction to

the Lorenz Dα regularization parameter is required. The calculation of this correction was done in

Fermi-like coordinates in Sec. 3.3.2 and expression in BL coordinates appear in Appendix D for a

rigid off-the-particle extension of the four velocity and connections.

In Sec. 3.4 the second method was formulated, and it considered an undeformed RG. This method

takes advantage of the spatial average form of the SF (2.51). The result was the averaged version

of the mode-sum formula (3.96) for this type of gauges. This new mode-sum is also applicable in

an LL gauge since the δDα, mentioned above, is antisymmetric with respect of the direction the

limit to the particle is taken. In other words, δDα flips sign across the particle, and by taking the

average δD±
α cancel each other.

It should be noted that the final SF value obtained using the ‘+’ half-string solution should by

no means agree with the final SF value obtained using the ‘−’ solution, or with the one obtained

using the no-string solution (the average of the former two): the three values are given in different

gauges.



84 Concluding remarks

Let us recall that a complete gauge-invariant description of the motion involves the SF as well as

the associated MP, given in the same gauge. In the case of the half-string scheme, the prescription

is simple: take the CCK-reconstructed (and completed) half-string RG perturbation, and add to

it the corresponding gauge perturbation 2ξ(α;β), [given according to Eq. (3.60a) with Z±
α = 0];

this perturbation can be attenuated in any convenient way to suppress its support away from the

particle. This will produce an LL perturbation in a corresponding LL gauge. In the case of the

no-string scheme, the situation is a bit more subtle: the force is given in the same gauge as the

reconstructed (and completed) MP, but the MP in that gauge has a discontinuity across a surface

through the particle, which might complicate calculations of some gauge-invariant aspects of the

motion.

A detailed numerical implementation to calculate the SF for a massive particle in a circular orbit

around a Schwarzschild BH was presented in Chapter 4. We considered the regular sides of the RG

given by the CCK-reconstruction, namely we worked in a no-string gauge. This computation is first

of its kind: the first calculation of the GSF using reconstructed RG-perturbations and regularised

using the average-mode-sum formula. We showed the equivalence (at the level of GSF calculations

in our particular setup) of working in an IRG or an ORG. We made a successful comparison between

the MST method and numerical integration of Teukolsky equation. The numerical code also recovers

well known quantities available in the literature, such as the energy fluxes, the red-shift HR and

the t component of the SF. Even more, the SF calculated this way agrees asymptotically with

the LG values, with the difference between them falling off with r−4, as expected from the gauge

transformation equation for the SF, this was shown in Fig. 4.4.

In Chapter 5 we considered the completion part of the solution, namely the piece that is required

to add to the CCK-reconstruction perturbation to satisfy the linearised EFE. Our solution to

the completion problem took advantage of certain gauge-invariant-auxiliary quantities which are

related to the components of the MP and ψ2. Each invariant was constructed by adding two

contributions: one due to the MP reconstructed with the CCK procedure, and another obtained

from the completion piece. We argued that such invariants must be smooth off the particle across

a sphere intersecting it (even though in practice we only imposed continuity). In this way we

determine the missing amplitudes of the completion piece.

We are working to extend our GSF numerical-implementation to calculate the GSF using the

MST-method, completion of the RG and the average-mode-sum formula for generic orbits around

Kerr [145]. The more general computation will follow the basic algorithm we introduced in Sec.

4.1. Teukolsky equation remains separable in Kerr —unlike the tensorial equations in the LG—

and the MP-reconstruction procedure is well understood. One of the remaining challenges in SF

calculations for inclined orbits in Kerr is the completion piece of the MP. A second challenge in the

Kerr calculations is the re-expansion of the ℓ-modes into the spin-0 spherical harmonics (where the

regularization parameter are known [125, 139]). This involves a numerical projection of the spin-

weighted spheroidal harmonics (where the harmonics modes of the retarded-force are obtained),

which might not have the finite coupling they exhibited in the Schwarzchild case. The coupling

will be simpler if a suitable off-worldline-extension of the four velocity is chosen. An alternative to

implementing this coupling would be to obtain regularization parameters in the basis of spin-weighed

spheroidal harmonics similarly to [54].
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In order to make comparisons between PN and perturbation theory, a delicate issue must be

addressed. PN calculations are done in coordinates with the origin coinciding with the centre of

mass of the BH-particle system, while the coordinates for SF computations coincide with those of

the background BH. This means that for the comparison between the two methods the SF requires

the dipole moment associated with the displacement from the centre of the BH to the centre of

mass of the full system. In Schwarzschild this contribution was obtained numerically by Detweiler

and Poisson [117], but in Kerr the problem has not been addressed to date to our knowledge.

The full calculation of the GSF for generic orbits around Kerr was not achieved in this work,

however we have provided in this thesis all the tools for it. We developed two practical methods

to calculate the GSF using the reconstructed RG perturbation. In this method the most compu-

tationally expensive task involves obtaining curvature scalars. This is done by solving scalar-wave

equations which are separable even in Kerr. We have numerically implemented one of the meth-

ods in the simple case Schwarzschild, and obtained the GSF in an undeformed no-string RG. This

serves as a test of the applicability and computational cost of the method. Our values for the GSF

also correct those previously computed in [83]. Along the way we have cleared one open problem

of BH-perturbation theory, namely the inclusion of the completion piece for any equatorial orbit

around Kerr.
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Appendix A

Motion as defined in matched

asymptotic expansions

The standard method of deriving an equation of motion in the context of the SF is matched asymp-

totic expansions [14, 16, 119–123, 149]. In this Appendix we present a review of the basic ideas

used in this method, and in particular how to obtain equations of motion in gauges outside the LG

class of gauges, such as the RGs that we addressed in Chapter 3.

A.1 Centre of mass

In the method of matched asymptotic expansions, see Fig. A.1, one assumes that the particle is

actually a small, compact object. Let gµν(x, ε) be the exact solution to the full, non-linear EFE for

the spacetime including that small object, where ε is used to count powers of m but will be set to

1 at the end of the calculation. Also let R denote the other lengthscales of the system, which are

much larger than m.

Suppose we work in the local Fermi-like coordinates (τ, xa) centred on Γ, introduced in Sec. 3.1.

We do not begin with any definite association between Γ and the bulk motion of the small object,

but we start by assuming that the object is only a small distance from Γ. At distances s ≫ m, far

from the object, one can expand the exact metric as gµν = gµν + εh
(1)
µν + ε2h

(2)
µν + O(ε3), which is

the form of the expansion assumed throughout Chapter 2. We call this the outer expansion. In this

expansion the first-order perturbation, h
(1)
µν ≡ hµν , is that of a point particle moving on Γ in the

background gαβ [16].

At distances s ∼ m, near the object, the outer expansion fails because in that region the metric

is dominated not by gµν , but by the gravity of the small object. The method of matched asymptotic

expansions overcomes that problem by adopting a second expansion near the object. Rather than

taking the limit of small mass and size by keeping external distances fixed while sending the mass

and size to zero, we take the limit by keeping the mass and size of the object fixed while sending

other distances to infinity. This second limit is achieved by writing the metric components in terms

of scaled variables x̄a = xa/m. Holding these scaled variables fixed while expanding for small m,

we have

gµν(x̄, ε) = g(0)
µν (τ, x̄a) + εg(1)

µν (τ, x̄a) +O(ε2), (A.1)

where g
(0)
µν (τ, x̄a) is the metric of the small body if it were isolated. We call this the inner expansion.

The motion of the small object is defined by examining the metric in a buffer region m ≪ s ≪ R
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M

m

outer region (s ∼ R)

buffer
region

inner region
(s ∼ m)

s

Figure A.1: Matched asymptotic expansions: In the outer region, far from m, the metric of the
physical spacetime g is expanded. In the inner region, near m, the metric of the small object g is
dominant. In this region the outer expansion fails and a second expansion is obtained. In the buffer
region the two expansions are valid so they must agree (up to a gauge).

around the body. Because s ≫ m, we can expect the outer expansion to be valid here; because

s ≪ R, we can expect the inner expansion to also be valid here; and because they are both

expansions of the same metric gµν , the two expansions must agree (up to gauge). This allows us

to infer information about the outer expansion from information about the inner expansion in the

buffer region. The first thing we infer is that the existence of an inner expansion requires the outer

expansion to have the local form [16, 119]

hµν ∼ 1/s, h(2)
µν ∼ 1/s2, (A.2)

near the wordline.

Furthermore, we note that while the buffer region is asymptotically small from the perspective

of the outer expansion, it corresponds to asymptotic infinity from the perspective of the inner

expansion. Using that fact, we can define multipole moments of the inner expansion, and those

multipole moments become the kernels of the outer expansion. As an example, we note that the

Arnowitt-Deser-Misner (ADM) mass of ḡ
(0)
ττ in the inner expansion defines the point-particle mass

m in the outer expansion [16].

For the particular purpose of defining the object’s motion, we will be interested in the mass

dipole moment of the object’s unperturbed metric:

Ma =
3

8π
lim

s̄→∞

∫

ḡ(0)
ττ (τ, x̄b)nadS, (A.3)

where the integration is over a sphere of radius s̄ around the object, and na is the unit vector

xa/s = x̄a/s̄ normal to the sphere. Using this formula, we can meaningfully define the object’s

motion. Per unit-mass, a mass-dipole moment has the interpretation of the position of the centre of

mass relative to the origin of the coordinates. Since we work in coordinates centred on the worldline
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Γ, the mass-dipole per unit-mass can be interpreted as the position relative to Γ. More explicitly,

imagine the object’s motion is described by a worldline zα(τ, ε) with the expansion

zα(τ, ε) = zα
0 (τ) + εzα

1 (τ) +O(ε2), (A.4)

where zµ
0 (τ) are the coordinates on the geodesic Γ, and zα

1 (τ) is a vector field on Γ. Then we define

the leading-order correction zα
1 to the object’s position as1

zα
1 ≡ Mα

m
, (A.5)

where Mα ≡ eα
aM

a. This was the method used by Gralla and Wald in the first rigorous derivation

of the first-order GSF, and modifications of it have since been the basis for derivations of the

second-order GSF [121, 149].

We can relate Mα to the perturbations in the outer expansion by appealing to the assumed

agreement between the two expansions in the buffer region. In that region, we can expand ḡ
(0)
ττ as

ḡ(0)
ττ (τ, s̄, na) =

1

s̄
g(0,1)

ττ (τ) +
1

s̄2
g(0,2)

ττ (τ, na) +O(s̄−3). (A.6)

It is easy to see that only the term 1
s̄2 g

(0,2)
ττ contributes to Eq. (A.3). Written in terms of the

unscaled variable s, this term becomes m
2

s2 g
(0,2)
ττ , and we can see it must correspond to a 1/s2 term

in h
(2)
ττ in the outer expansion. Therefore, noting Eq. (A.2), we can write

Ma =
3

8π
lim
s→0

∫

h(2)
ττ n

adS, (A.7)

or

mza
1 =

3

8π
lim
s→0

∫

h(2)
ττ n

adS, (A.8)

where now the integral is over a sphere of radius s. Eq. (A.8) gives the first-order correction to the

position in terms of the second-order perturbation in the outer expansion.

A.2 Equation of motion in any sufficiently regular gauge

In the work of Gralla-Wald [16], a first-order self-forced equation of motion was found by solving

the Einstein equation to sufficiently high order to establish a formula for ∂2
τM

a. The result was

m
D2zα

1Lor

dτ2
= −mRα

µβνu
µzβ

1Loru
ν + Fα

Lor. (A.9)

The first term, −Rα
µβνu

µzβ
1Loru

ν describes the acceleration due to the background curvature. The

second term is the LG force, Fα
Lor. It can be written in alternative forms, we will require the

Quinn-Wald-Gralla spherical-average form

Fα
Lor =

1

4π
lim
s→0

∫

F̃α
LordΩ. (A.10)

Using the result (A.9) for the motion in the LG, we can find the motion in a different gauge

1An alternative method, called the self-consistent method, instead defines a mass dipole relative to the accelerated
worldline zα(τ, ε), deriving an equation of motion for zα by ensuring that that mass dipole vanishes [119]. That
method is designed to maintain uniform accuracy on long timescales by avoiding an expansion of zα(τ, ε). Here, for
simplicity, we work with the expanded worldline.
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by referring to how the mass-dipole moment is altered by a gauge transformation. Under a gauge

transformation generated by a first-order gauge vector ξα, the second-order perturbation is altered

according to h
(2)
µν → h

(2)
µν + ∆h

(2)
µν , where [1]

∆h(2)
µν = hµν;ρξ

ρ + 2hρ(µξ
ρ

;ν) + ξρξ(µ;ν)ρ + ξρ
;µξρ;ν + ξρ

;(µξν);ρ, (A.11)

and again we have used hµν to be the first-order perturbation h
(1)
µν . We restrict our attention

to gauge transformations preserving the form (A.2) for all τ , to maintain compatibility with the

existence of an inner expansion. Straightforward analysis of the transformation laws ∆hαβ = 2ξ(α;β)

and Eq. (A.11) shows that this compatibility requirement imposes the following conditions on ξα in

the limit s → 0 [1]:

1. ξτ = f1(τ) ln s+ o(ln s),

2. ξa = f2(τ, na) + o(1),

3. τ derivatives do not increase the degree of singularity; e. g. , ∂τξα = O(ξα),

4. spatial derivatives increase the degree of singularity by at most one order of s ; e. g. , ∂aξα =

O(ξα/s).

The functions f1 and f2 must be at least twice-differentiable but otherwise are chosen arbitrarily.

Let us note that all the gauge transformations between LG and RG, see Sec. 3.2, satisfy the four

conditions given above, but this conditions are not restricted to the RG. Given these conditions, a

simple calculation shows that if we begin in the LG, where hµν = 2m

s δµν +O(1), the change in the

time-time component of the second-order MP due to ξα is

∆h(2)
ττ = −2m

s3
xaξa + o(λ−2). (A.12)

Of all the terms in Eq. (A.11), hµν;ρξ
ρ is the only one that contributes to this result. From Eq.

(A.7) we get the change in mass-dipole moment and substituting ∆za
1 = ∆Ma/m Eq. (A.8) reads

∆za
1 = − 3

4π
lim
s→0

∫

nanbξbdΩ. (A.13)

This is the change in position under a gauge transformation as considered in Sec. 2.5.

Once the change in position is in hand, the change in the GSF can be calculated in a few short

steps. First, we write the result covariantly using ∆zα = eα
a ∆za

1 . Next, we calculate the acceleration

of ∆zα
1 by taking two covariant derivatives along the worldline, yielding

D2∆zα
1

dτ2
= ∆aα ≡ − 3

4π

D2

dτ2

[

eα
a lim

s→0

∫

nanbξbdΩ

]

, (A.14)

Finally, we add and subtract Rα
µβνu

µ∆zβuν , leading to the evolution equation

m
D2∆zα

1

dτ2
= −mRα

µβνu
µ∆zβ

1 u
ν + ∆Fα, (A.15)
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where we have identified

∆Fα ≡ m∆aα + mRα
µβνu

µ∆zβ
1 u

ν

= − 3

4π

D2

dτ2

[

eα
a lim

s→0

∫

nanbξbdΩ

]

+ mRα
µβνu

µ∆zβ
1 u

ν , (A.16)

as the change in the GSF under the transformation generated by ξα. Our reason for adding zero in

the form of Riemann terms is that doing so allows us to write the evolution equation for zα
1Lor +∆zα

1

in terms of a geodesic-deviation term plus a SF term, as in Eq. (A.9):

m
D2

dτ2
(zα

1Lor + ∆zα
1 ) = −mRα

µβνu
µ(zβ

1Lor + ∆zβ
1 )uν + Fα

Lor + ∆Fα. (A.17)

This provides a method of finding the SF in a broad class of gauges, beginning in the LG and

then transforming to the desired gauge. If the transformation satisfies conditions 1–4 enumerated

above, and it is such that the integral (A.13) yields a well-defined, C2 function of τ along Γ, then

we say that the end gauge is sufficiently regular to define the GSF. We calculate the change in force,

∆Fα, generated by such a transformation, using Eq. (A.16). The total GSF in the end-gauge is

then given by the force in the LG plus the change due to the gauge transformation. This is the

method used for deriving expressions for the SF in the RG in Chapter 3.
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Appendix B

Lorenz-Gauge regularization

parameters

We include the analytical expressions required to regularize the GSF in the LG, for a particle at an

arbitrary point z along its orbit around a Kerr BH. The Kerr values for regularization parameters

were first given in [31] for the scalar field and [97] in the EM and gravitational cases.

Let us assume that z has BL coordinates (t0, r0, θ0, ϕ0). In the LG the regularization parameters

Cα and Dα are zero:

Cα = Dα = 0. (B.1)

The components of the parameter Aα are given by

Ar = − m2

V

(

sin2 θ0

grrgθθgϕϕ

)1/2

(V + u2
r/grr)1/2, (B.2a)

At = − (ur/ut)A
r , Aθ = Aϕ = 0, (B.2b)

where

V ≡ 1 + u2
θ/gθθ + u2

ϕ/gϕϕ, (B.3)

and the four-velocity uα and the metric components of the Kerr background gαβ are evaluated at

z.

The components of the Bα parameter are more complicated. In general they can be expressed

as

Bα = m2(2π)−1Pα
abcdI

abcd, (B.4)

where the Roman indices run over angular coordinates θ, ϕ only. The coefficients Pα
abcd are given by

Pα
abcd =

1

2

[

Pα
d (3Pabc + 2PabPc) − Pαλ(2Pλab + Pabλ)Pcd

]

+ (3Pα
a Pbe − Pα

e Pab)Ce
cd, (B.5)

with

Pα ≡ uλuρgλρ,α, Pαβ ≡ gαβ + uαuβ, Pαβλ ≡ Γλ
αβPλγ , (B.6)

where Γα
βγ are the background connection-coefficients at the location of the particle. The remaining

non-vanishing coefficients

Cθ
ϕϕ =

1

2
sin θ0 cos θ0, Cϕ

θϕ = Cϕ
ϕθ = −1

2
cot θ0. (B.7)
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The quantities Iabcd are

Iabcd = (sin θ0)−N

∫ 2π

0

G(χ)N (cosχ)4−Ndχ, (B.8)

where

G(χ) = Pθθ cos2 χ+ 2Pθϕ sinχ cosχ/ sin θ0 + Pϕϕ sin2 χ/ sin2 θ0, (B.9)

and N = N(abcd) is the number of times the coordinate ϕ occurs in the combination (a, b, c, d):

N = δa
ϕ + δb

ϕ + δc
ϕ + δd

ϕ. (B.10)

In terms of standard complete Elliptic-integrals we can write

Iabcd =
(sin θ0)−N

d

[

QI
(N)
k K̂(w) + I

(N)
E Ê(w)

]

, (B.11)

where we introduced the parameters

Q =α+ 2 − (α2 + β2)1/2, (B.12a)

d =3P 5/2
ϕϕ (sin θ0)−5(α2 + β2)(4α+ 4 − β2)3/2(Q/2)1/2, (B.12b)

α ≡ sin2 θ0Pθθ/Pϕϕ − 1, (B.12c)

β ≡2 sin θ0Pθϕ/Pϕϕ. (B.12d)

K̂(w) ≡
∫ π/2

0
(1 − w sin2 x)−1/2dx and Ê(w) ≡

∫ π/2

0
(1 − w sin2 x)1/2dx are the complete Elliptic-

integrals of the first and second kinds respectively, with argument

w =
2(α2 + β2)1/2

α+ 2 + (α2 + β2)1/2
. (B.13)

The ten coefficients I
(N)
K , I

(N)
E are given by

I
(0)
K =4[12α3 + α2(8 − 3β2) − 4αβ2 + β2(β2 − 8)],

I
(0)
E = − 16[8α3 + α2(4 − 7β2) + αβ2(β2 − 4) − β2(β2 + 4)], (B.14a)

I
(1)
K =8β[9α2 − 2α(β2 − 4) + β2],

I
(1)
E = − 4β[12α3 − α2(β2 − 52) + α(32 − 12β2) + β2(3β2 + 4)], (B.14b)

I
(2)
K = − 4[8α3 − α2(β2 − 8) − 8αβ2 + β2(3β2 − 8)],

I
(2)
E =8[4α4 + α3(β2 + 12) − 2α2(β2 − 4) + 3αβ2(β2 − 4) + 2β2(3β2 − 4)], (B.14c)

I
(3)
K =8β[α3 − 7α2 + α(3β2 − 8) + β2],

I
(3)
E = − 4β[8α4 − 4α3 + α2(15β2 − 44) + 4α(5β2 − 8) + β2(3β2 + 4)], (B.14d)

I
(4)
K = − 4[4α4 − 4α3 + α2(7β2 − 8) + 12αβ2 − β2(β2 − 8)],

I
(4)
E =16[4α5 + 4α4 + α2(7β2 − 4) + α2(11β2 − 4) + (2α+ 1)β2(β2 + 4)]. (B.14e)



Appendix C

The choice of off-worldline

extension

In Chapter 3 we calculated corrections to the LG regularization parameters. These corrections are

required to implement the mode-sum formula in the half-string RGs. We now explore how the

choice of extension may affect our results

From the coordinate expansion of the gauge vector (Sec. 3.2.7), we now consider the expansion

of the change δξF̃
±
α in the retarded-force generated by that vector. For concreteness, let us define

x′ to be the position on the worldline at BL time t, such that δt = 0.

Under a gauge transformation generated by ξ±
µ , the retarded-force F̃±

µ off the worldline trans-

forms according to Eq. (2.58), which we rewrite here in the slightly different form

δξF̃
±
α = −mP̃α

β
[

ũµ∇̃µ

(

ũν∇̃νξ
±
β

)

−
(

ũµ∇̃µũ
ν
)

∇̃νξ
±
β + R̃βµ

γ
ν ũ

µξ±
γ ũ

ν
]

. (C.1)

Here ũα, P̃α
β , and ∇̃µ are smooth-off-the-worldline extensions of the four-velocity uα, projection

operator Pα
β , and covariant derivative ∇µ, and R̃βµ

γ
ν is the Riemann tensor corresponding to ∇̃µ.

We wish here to allow any smooth extension, and in general the fields will have expansions of the

form

ũα = uα′

+ ũα′

,µ′δxµ′

+O(s2), (C.2a)

Γ̃α
βγ = Γα′

β′γ′ + Γ̃α′

β′γ′,µ′δxµ′

+O(s2), (C.2b)

P̃α
β = Pα′

β′

+O(s), (C.2c)

R̃αβ
γ

δ = Rα′β′
γ′

δ′ +O(s). (C.2d)

In these expansions, each of the quantities on the left is a function of the field point x = x′ + δx′,

and the expansion coefficients on the right are functions of the worldline point x′.

To evaluate Eq. (C.1) for these arbitrary extensions, we first determine the action of ∇̃µ on a

bivector wα(x′, δx′) that is a function of xα′

and δxα′

.
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Both xα′

and δxα′

are implicitly functions of xα: xα′

= xα′

(t), and δxα′

= xα − xα′

(t). When

we act with a derivative at xα, we must differentiate these quantities as

∂αx
µ′

= δt
α

uµ′

ut′ , (C.3a)

∂αδx
µ′

= δµ′

α − δt
α

uµ′

ut′ . (C.3b)

Now define ∂µ′ to be a partial derivative with respect to xµ′

, holding δxµ′

fixed, and define δµ′ to

be a partial derivative with respect to δxµ′

, holding xµ′

fixed. Using Eq. (C.3), we find

∂µwα(x′, δx′) =
∂xβ′

∂xµ
∂β′wα +

∂δxβ′

∂xµ
δβ′wα = δt

µ

uβ′

ut′ ∂β′wα +

(

δβ′

µ − δt
µ

uβ′

ut′

)

δβ′wα. (C.4)

Combining this with the expansion of the Christoffel symbols, we arrive at

∇̃µwα(x′, δx′) =

[

δγ
αδ

t
µ

uβ′

ut′ ∂β′ + δγ
α

(

δβ′

µ − δt
µ

uβ′

ut′

)

δβ′ − Γγ′

µ′α′ +O(s)

]

wγ . (C.5)

Notice that in this expression, ∂β′ and Γα′

β′γ′ do not affect wα’s parity or its scaling with s, while

δβ′ both reverses the parity and reduces the order by one power of s.

From these results and the expansion of ũµ in Eq. (C.2a), we immediately find

ũµ∇̃µwα(x′, δx′) =

[

δγ
αu

β′

∂β′ + δγ
α

(

ũβ′

,δ′ − ũt′

,δ′
uβ′

ut′

)

δxδ′

δβ′ − uµ′

Γγ′

µ′α′ +O(s)

]

wγ . (C.6)

Here we see that for any wα, the operator ũµ∇̃µ does not increase the singular behavior of the

leading-order term, and it preserves the parity at that order; as we would expect, even though we

work off the worldline, there is a sense in which a derivative “along the worldline” changes neither

the parity nor the order. Therefore, in particular, ũµ∇̃µξβ and ũν∇̃ν

(

ũµ∇̃µξβ

)

have the same

parity as ξβ at that order.

Using Eq. (C.6), we can straightforwardly evaluate the first term in the transformation (C.1).

We now move to the second term, (ũµ∇̃µũ
ν)∇̃νξβ . An explicit calculation, using the expansions

(C.2a) and (C.2b) and the differentiation rules (C.3), yields

ũν∇̃ν ũ
µ =

[

uα′

ũµ′

,β′α′ + 2uα′

Γµ′

α′γ′ ũ
γ′

,β′ + ũα′

,β′ ũµ′

,α′ + uα′

Γ̃µ′

α′γ′,β′u
γ′

]

δxβ′

+O(s2). (C.7)

We note that this expression is the only place in which the choice of extension Γ̃α
βγ enters into

our calculation. Defining ãµ ≡ ũν∇̃ν ũ
µ, the above result can be written compactly as ãµ =

aµ′

,ν′δxν′

+O(s2). Combining this with Eq. (C.5), we find

(

ũµ∇̃µũ
ν
)

∇̃νξβ =

(

aγ′

,µ′ − at′

,µ′
uγ′

ut′

)

δxµ′

δγ′ξβ +O(s). (C.8)

Notice that this term preserves the parity under and order of ξβ .

The final expression for the change in retarded force can be found by substituting the expansions

(C.6) and (C.8), together with (C.2c), (C.2d), and (C.2a), into Eq. (C.1). We note that, regardless

of extension, the resulting expression for δξF̃
±
α receives no contribution from the parallel component

ξ±
α‖ at leading-order. To see this, replace P̃α

β in Eq. (C.1) with its leading-order term Pα′
β′

, and
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observe that (i) uµ′∇µ′Pα′
β′

= 0 (so, at leading-order, the projection operator commutes with the

derivatives along Γ); (ii) Pα′
β′

ξ±
β‖ = 0; and (iii) Rβ′µ′

γ′

ν′ ũµ′

ξ±
γ‖ũ

ν′

= 0 by virtue of the symmetries

of the Riemann tensor.

In the following two subsections, we write δξF̃
±
α explicitly for two choices of extension. However,

as we have noted along the course of the calculation, regardless of the choice of extension, the change

in the retarded-force has the same parity and scaling with s as does ξα itself. Since δξ‖
F̃±

α does not

contribute to δξF̃
±
α , we may focus on δξ⊥ F̃

±
α , which we now conclude is of order s0 and possesses

the same parity as ξα⊥ under δxα′ → −δxα′

. Since we have also shown that ξα⊥ inherits the parity

of ξa, we now have the following: if ξa has a definite parity under xa → −xa, then δξF̃
±
α has that

same parity under δxα′ → −δxα′

.

C.1 Example 1: rigid extension

In the simplest extension, which we call “rigid”, the coordinate components of both ũα and Γ̃α
βγ are

extended as constant fields, i.e., they are taken to have the same coordinate values at x as at x′.

If we adopt this extension, then the partial derivatives of these quantities in the δx′ direction (i.e.,

ũα′

,β′δxβ′

and Γ̃α′

γ′δ,β′δxβ′

) all vanish. We immediately find

δξF̃
±
α = −mPα′

β′

uµ′∇µ′(uν′∇ν′ξ±
β ) − mRα′µ′γ′ν′uµ′

ξγ
±u

ν′

+O(s), (C.9)

where ∇µ′ is the covariant derivative that acts on the x′ dependence of its argument while holding

the δx′ dependence fixed.

The rigid extension might not be the most useful in practice, since it is not an extension for

which the LG parameters Aα, Bα, Cα are available [19, 97]. But it affords a simple demonstration

of our main conclusions. It is also useful when comparing with the existing literature, because it

is implicitly the one used by Shah et al. in their calculation of the RG GSF [81, 83]. We use Eq.

(C.9) in Chapter 3 to derive corrections to the LG regularization parameters.

C.2 Example 2: rigid extension of uα, natural extension of

metric-related quantities

Another obvious option is to use a rigid extension of the four-velocity while allowing all metric-

related quantities to retain their natural values at the field point x; e.g., Γ̃α
βγ = Γα

βγ . With this

choice, we find

δξF̃
±
α = −mPα′

β′

uµ′∇µ′(uν′∇ν′ξ±
β ) − mRα′µ′γ′ν′uµ′

ξγ
±u

ν′

+ mPα′
β′

[

Γµ′

γ′δ′,ν′ − uµ′

ut′ Γt
γ′δ′,ν′

]

uγ′

uδ′

δxν′

δµ′ξ±
β +O(s). (C.10)

This extension is the one used to derive the LG regularization parameters in [19, 97]. It is also used

in our numerical implementation of Chapter 4. If one wants to calculate the GSF in a half-string-LL

gauge, Eq. (C.10) would give the correct δDα parameters for the mode-sum formula of Eq. (3.70).
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Appendix D

Corrections to the Lorenz-Gauge

regularization parameters

We present the corrections to the standard LG regularization parameter Dα for specific orbital

setups. These were derived according to the discussion of Sec. 3.3.2 and published in [1]. All the

corrections were calculated using the “rigid” extension defined in Eq. (C.9).

D.1 Arbitrary geodesic orbit in Schwarzschild geometry

Specializing first to the Schwarzschild background, let M denote the BH mass, and E and L stand

for the particle’s specific energy and AM. Without loss of generality we set the particle to move

on the equatorial plane. The expressions below are understood to be evaluated at r = r0 and

ṙ = ±[E2 − f0(1 + L2/r2
0)]. The four velocity is uα = (E/f, ṙ, 0,L/r2

0), and the principal null-vector

is ℓα = (f−1, 1, 0, 0), namely the MP is given in an IRG as defined by Eq. (2.18a).

Following the procedure described in Sec. 3.3.2 we find, using computer algebra,

δD±
t = ± m2L2Ct(E , r, ṙ)

r7(E − ṙ)3
, δD±

r = ±m2L2Cr(E , r, ṙ)
r7(E − ṙ)3f

,

δD±
θ =0, δD±

ϕ = ±2m2LCϕ(E , r, ṙ)
r4(E − ṙ)2

, (D.1)

where

Ct(E , r, ṙ) =2rf [r2(1 − E2) +Mr(3E2 − 4) + 4M2] + [3r2(1 − E2) + 4Mr(E2 − 4) + 20M2]rE ṙ
+ [r2(9E2 − 1) + 6Mr(1 − 2E2) − 8M2]rṙ2 + (3r − 4M)(r2ṙ4 − 3r2E ṙ3), (D.2a)

Cr(E , r, ṙ) =r3(E2 + E4 − 2) − 6Mr2(E2 − 2) − [r2(1 + 3E2) − 8Mr + 12M2]rE ṙ
+ r(3r2E2 − 2Mr + 4M2)ṙ2 − r3E ṙ3 + 8M2r(E2 − 3) + 16M3, (D.2b)

Cϕ(E , r, ṙ) =r2(E2 − 1) −Mr(3E2 − 4) − 4M2 + [r(E2 − 1) + 4M ]rEṙ

− (2rE2 +M)rṙ2 + r2E ṙ3. (D.2c)
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D.2 Circular geodesic orbit in Schwarzschild geometry

From the general expressions we just gave for geodesics of Schwarzschild we consider the special case

of circular motion, for which ṙ0 = 0, E = f0(1 − 3M/r0)−1/2 and L = (Mr0)1/2(1 − 3M/r0)−1/2. In

this case Eq. (D.1) simplifies to

δD±
r = ± 3m2M2

r
5/2
0 (r0 − 3M)3/2

, and δD±
t = δD±

θ = δD±
ϕ = 0. (D.3)

D.3 Circular equatorial orbits in Kerr geometry

We now generalize to Kerr but immediately specialize to circular equatorial orbits, for simplicity.

We denote by M and aM the mass and spin of the BH, and introduce

∆0 ≡ r2
0 − 2Mr0 + a2, v ≡

√

M/r0. (D.4)

The specific energy and angular momentum are given in terms of the BL orbital-radius as

E =
1 − 2v2 + av3/M
√

1 − 3v2 + 2av3/M
, L = r0v

1 − 2av3/M + a2v4/M2

√

1 − 3v2 + 2av3/M
. (D.5)

We find

δD±
α = ±Qα

2m2c

r0(b− c2)

(

1 − 1√
1 + b− c2

)

, (D.6)

where

b = r−3
0

[

L2r0 + a2(2M + r0)
]

, c =
a2EL + ELr2

0 − aL2 − a∆0

r0

(

a2E − aL + Er2
0

) , (D.7)

and

Qt = Qθ = Qϕ = 0, Qr =
3M

r3
0

vr2
0 − a(r0 −M) − a2v

r0 − 3M + 2av
. (D.8)

We note that δDα as written is not defined at a = 0, where b− c2 vanishes. However, the limit

a → 0 of δDα is well defined, and it agrees (of course) with the Schwarzschild result displayed in

Eq. (D.3).

D.4 Parity and δD
±
α

From the expressions in the previous section we see that the corrections to δDα are in general

nonzero. The second important fact to notice is that the corresponding δD±
α are equal in magnitude

but opposite in sign. We might think this feature is a consequence of the choice of extension, rather

than a general result for δD. We now seek to establish the latter result in full generality, in other

words we want to consider that, for any smooth extension, δD+
α = −δD−

α .

This result follows from the relationship between the parities of the ‘±’ solutions. Let us recall

that for a no-string gauge, the components of the gauge vector ξ0
α⊥ have odd parity. Naturally the

half-string gauge vectors from which the no-string solutions were constructed relate to one another

according to ξ0+
α⊥(xa) = −ξ0−

α⊥(−xa), except at pax
a = 0. This relationship is most easily visualized

on a small sphere of constant geodesic-distance from the particle, with half the sphere in the regular
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sphere at (t0, r0)

ϕ̃
θ̃

sphere at (t0, r0)

ϕ̃
θ̃

Figure D.1: Parity of vector fields around the particle. The particle, indicated by the black ball,
sits at the north pole θ̃ = 0 of the BL coordinate sphere defined by (t, r) = (t0, r0). It is surrounded
by a much smaller sphere of radius s. The shaded disc is tangent, at θ̃ = 0, to the large sphere.
Upper panel: a smooth vector field with odd parity is shown on the surface of the smaller sphere.
Its restriction to the shaded disk inherits odd parity under reflection through the centre of the
disk. Lower panel: a discontinuous vector field with odd parity is shown. The field exhibits a jump
continuity across the disk, although it possesses odd parity on the small sphere. Its limit to the disc,
either from above (shown in red) or from below (in blue), does not inherit that parity. Reproduced
from [1].

half of the ‘+’ solution and half in the regular half of the ‘−’ solution, as shown in Fig. D.1. At

antipodal points, the ± gauge vectors point in opposite directions with equal magnitude.

Now return to Eq. (3.72) and consider the parity. From the gauge vectors, we see that δξ0+ F̃α(x′, δx′) =

−δξ0− F̃α(x′,−δx′), which follows from the results of Appendix C. In terms of the variables in Eq.

(3.72), the relation becomes δξ0+ F̃α(δr, x̂, ŷ) = −δξ0− F̃α(−δr,−x̂,−ŷ). We can see that

lim
δr→0+

∫

d cos θ̃dϕ̃Pℓ(cos θ̃)δξ0+ F̃α(δr, x̂, ŷ)

= − lim
δr→0−

∫

d cos θ̃dϕ̃Pℓ(cos θ̃)δξ0− F̃α(δr,−x̂,−ŷ)

= − lim
δr→0−

∫

d cos θ̃dϕ̃Pℓ(cos θ̃)δξ0− F̃α(δr, x̂, ŷ), (D.9)

where the first equality follows from the odd parity of F̃α(δr, x̂, ŷ) under (δr, x̂, ŷ) → (−δr,−x̂,−ŷ),

and the second follows from the invariance of the integral under the change of integration variables

(x̂, ŷ) → (−x̂,−ŷ), (which corresponds to a rotation ϕ̃ → ϕ̃+ π).

The result of Eq. (D.9) shows that the corrections to the regularization parameters in the ‘±’

solutions are precisely opposite, for generic orbits in Kerr and regardless of the choice of extension.
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Appendix E

Angular functions

In this Appendix we give a short review of the angular functions which are eigenfunctions of the

angular part of Teukolsky Eq. (2.12b). We start with the solutions for the Schwarzschild (a = 0)

case, or spin-weighted spherical harmonics. For completeness we include a method to calculate the

spin-weighted spheroidal harmonics, even though they were not explicitly used in this thesis.

E.1 Spin-weighted spherical harmonics

The spin-weighted spherical harmonics sYℓm(θ, ϕ) are functions defined on a sphere just like the

ordinary spherical harmonics Yℓm(θ, ϕ). For a given value of the ’spin’ parameter s they satisfy the

orthogonality relation

∫ 2π

0

dϕ

∫ 1

−1

d(cos θ) sȲℓm(θ, ϕ) sYℓ′m′(θ, ϕ) = δℓℓ′δmm′ . (E.1)

They also satisfy the completeness relation

∑

ℓ,m

sȲℓm(θ, ϕ) sYℓm(θ′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′), (E.2)

for each integer value of s. This means that for each value of s the functions sYℓm(θ, ϕ) form a

complete set of orthonormal functions on the unit sphere. The complex conjugated sȲℓm(θ, ϕ) can

be calculated using

sȲℓm(θ, ϕ) = (−1)s+m
−sYℓ,−m(θ, ϕ). (E.3)

We define ð and its complex conjugated operator ð̄ in terms of how they raise (or lower) the

spin of the function sYℓm(θ, ϕ):

ðs sYℓm(θ, ϕ) =(λs)1/2
s+1Yℓm(θ, ϕ), (E.4a)

ð̄s sYℓm(θ, ϕ) = − (λ−s)1/2
s−1Yℓm(θ, ϕ), (E.4b)

where λs = (ℓ − s)(ℓ + s+ 1) as before. This can be defined in terms of angular derivatives acting

on a quantity η, of spin s, as

ðsη = − (sin θ)s [∂θ + i csc θ∂ϕ] (sin θ)−sη, (E.5a)

ð̄sη = − (sin θ)−s [∂θ − i csc θ∂ϕ] (sin θ)sη. (E.5b)
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On the equator the spin-weighted spherical harmonics are given by

Yℓm

(π

2
, 0
)

=iℓ+m

√

(2ℓ+ 1)(ℓ−m)!(ℓ+m)!√
4π(ℓ−m)!!(ℓ +m)!!

eℓm, (E.6a)

1Yℓm

(π

2
, 0
)

=iℓ+m

√

(2ℓ+ 1)(ℓ−m)!(ℓ+m)!√
4πλ0







meℓm

(ℓ−m)!!(ℓ+m)!! ,

− ieℓ,m+1

(ℓ−m−1)!!(ℓ+m−1)!!

, (E.6b)

2Yℓm

(π

2
, 0
)

=iℓ+m

√

(2ℓ+ 1)(ℓ−m)!(ℓ+m)!√
4πλ0λ1







(2m2−λ0)eℓm

(ℓ−m)!!(ℓ+m)!! ,

− 2imeℓ,m+1

(ℓ−m−1)!!(ℓ+m−1)!!

, (E.6c)

with

eℓm ≡







1, for ℓ+m even

0, for ℓ+m odd
. (E.7)

In terms of the usual spherical harmonics,

(λ0)1/2
1Yℓm(θ, ϕ) = − (∂θ −m csc θ) Yℓm(θ, ϕ), (E.8a)

(λ0)1/2
−1Yℓm(θ, ϕ) = (∂θ +m csc θ)Yℓm(θ, ϕ), (E.8b)

(λ0λ1)1/2
2Yℓm(θ, ϕ) =

(

∂2
θ − cot θ∂θ + 2m cot θ csc θ − 2m csc θ∂θ +m2 csc2 θ

)

Yℓm(θ, ϕ), (E.8c)

(λ0λ1)1/2
−2Yℓm(θ, ϕ) =

(

∂2
θ − cot θ∂θ − 2m cot θ csc θ + 2m csc θ∂θ +m2 csc2 θ

)

Yℓm(θ, ϕ), (E.8d)

where we have used ∂ϕYℓm(θ, ϕ) ≡ imYℓm(θ, ϕ).

The coefficients that allow the re-expansion of the spin-weighted spherical harmonics in terms

of the usual scalar spherical harmonics [appearing in Eq. (4.17) and given in [36]] are

αℓm
(+2) = −Cℓ+1,mCℓ+2,m, αℓm

(0) = 1 − C2
ℓm − C2

ℓ+1,m, αℓm
(−2) = −CℓmCℓ−1,m, (E.9a)

βℓm
(+2) = ℓCℓ+1,mCℓ+2,m, β(0) = ℓC2

ℓ+1,m − (ℓ+ 1)C2
ℓm, β(−2) = −(ℓ+ 1)CℓmCℓ−1,m, (E.9b)

γℓm
(+2) = ℓ2Cℓ+1,mCℓ+2,m, γℓm

(0) =m2 − ℓ(ℓ+ 1) + ℓ2C2
ℓ+1,m + (ℓ + 1)2C2

ℓm,

γℓm
(−2) =(ℓ + 1)2CℓmCℓ−1,m, (E.9c)

δℓm
(+1) = ℓCℓ+1,m, δℓm

(−1) = −(ℓ+ 1)Cℓm, (E.9d)

ǫℓm
(+1) = (1 − ℓ)Cℓ+1,m, ǫℓm

(−1) = (ℓ + 2)Cℓm, (E.9e)

ζℓm
(+3) = − ℓCℓ+1,mCℓ+2,mCℓ+3,m,

ζℓm
(+1) =Cℓ+1,m

[

ℓ(1 − C2
ℓ+1,m − C2

ℓ+2,m) + (ℓ+ 1)C2
ℓm

]

,

ζℓm
(−1) = − Cℓm

[

(ℓ + 1)(1 − C2
ℓ−1,m − C2

ℓm) + ℓC2
ℓ+1,m

]

,

ζℓm
(−3) =(ℓ + 1)CℓmCℓ−1,mCℓ−2m, (E.9f)
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ξℓm
(+3) =ℓ2Cℓ+1,mCℓ+2,mCℓ+3,m,

ξℓm
(+1) =Cℓ+1,m

[

m2 − ℓ(ℓ+ 1) + ℓ2C2
ℓ+1,m + (ℓ + 1)2C2

ℓm + ℓ2C2
ℓ+2,m

]

,

ξℓm
(−1) =Cℓm

[

m2 − ℓ(ℓ+ 1) + ℓ2C2
ℓ+1,m + (ℓ+ 1)2C2

ℓm + (ℓ+ 1)2
ℓ−1,m

]

,

ξℓm
(−3) =(ℓ+ 1)2CℓmCℓ−1,mCℓ−2,m, (E.9g)

with

Cℓm =

[

ℓ2 −m2

4ℓ2 − 1

]1/2

. (E.10)

E.2 Spin-weighted spheroidal harmonics

The eigenfunctions of the angular part of Teukolsky’s equation (2.12b) are the spin-weighted spher-

oidal harmonics, which reduce to the spin-weighted spherical harmonics of the previous section in

the case of Schwarzschild, a = 0. The spin-weighted spheroidal harmonics can be written as a

spectral sum in terms of the spin-weighted spherical harmonics as

sSℓmω(θ) =

∞
∑

j=ℓmin

bjω sYjm(θ), (E.11)

where ℓmin = max(|s|, |m|), and it is important to note that we have excluded the factor eimϕ in

the definition of the spin-weighted spherical harmonics.

Let us now summarize the method to obtain the coefficients bjω. We substitute the expansion

of Eq. (E.11) in Eq. (2.12b). We identify the terms of Eq. (2.12b) that are independent of a,

and combine them to write an equation for the spin-weighted spherical harmonics, with eigenvalue

ℓ(ℓ+ 1). Hence we obtain

∞
∑

j=ℓmin

bjω [(aω)2 cos2 θ − 2aωs cos θ − j(j + 1)] |sjm〉 = −Λℓm

∞
∑

j=ℓmin

bjω |sjm〉 , (E.12)

where we have used sYjm(θ) = |sjm〉 according to Dirac’s notation and Λℓm is the eigenvalue of the

spin-weighted spheroidal harmonic. The inner product is defined as

〈sjm|f(θ)|sjm〉 ≡
∫ π

0
sȲjm(θ)f(θ)sYjm(θ) sin θdθ. (E.13)

We now multiply Eq. (E.12) by 〈sℓm|, which corresponds to the complex conjugate of sYℓm(θ), and

evaluate the inner products [150]

〈sℓm| cos2 θ |sjm〉 =
1

3
δjℓ +

2

3

√

2ℓ+ 1

2j + 1
〈j, 2,m, 0|ℓm〉 〈j, 2,−s, 0|ℓ,−s〉 ≡ cm

jℓ2, (E.14a)

〈sℓm| cos θ |sjm〉 =

√

2ℓ+ 1

2j + 1
〈j, 1,m, 0|ℓm〉 〈j, 1,−s, 0|ℓ,−s〉 ≡ cm

jℓ1, (E.14b)

〈sℓm|sjm〉 =δjℓ. (E.14c)
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Since 〈j1,m1; j2,m2|j,m〉 are the Clebsch-Gordan coefficients we can simplify the sum in Eq.

(E.12) in virtue of the fact that cm
j,ℓ,2 6= 0 only for j ∈ [ℓ− 2, ℓ− 1, ℓ, ℓ+ 1, ℓ+ 2], and cm

j,ℓ,1 6= 0 only

for j ∈ [ℓ − 1, ℓ, ℓ+ 1]. This leads to a finite sum:

bℓ−2,ω(aω)2cm
ℓ−2,ℓ,2 + bℓ−1,ω

[

(aω)2cm
ℓ−1,ℓ,2 − 2aωscm

ℓ−1,ℓ,1

]

+bℓ,ω

[

(aω)2cm
ℓ,ℓ,2 − 2aωscm

ℓ,ℓ,1 − λ0

]

+bℓ+1,ω

[

(aω)2cm
ℓ+1,ℓ,2 − 2aωscm

ℓ+1,ℓ,1

]

+bℓ+2,ω(aω)2cm
ℓ+2,ℓ,2 = −Λℓmbℓω. (E.15)

This last equation can be written as a matrix equation for the bℓω coefficients, with Λℓm eigenvalue.

The matrix is band-diagonal, and it may be solved numerically.



Appendix F

Completion for eccentric orbits

In this Appendix we include explicit analytical-expressions that complement the calculations ap-

pearing in Chapter 5 for Kerr. While all of the content of this Appendix is essential in determining

the amplitudes of the completion piece, the expression are too long. We avoided them in Chapter

5 in an attempt to keep the discussion of the method clear. We use uα ≡ {ṫ, ṙ, θ̇, ϕ̇} to denote the

components of the four velocity, which is different from the notation used in rest of this work.

In Sec. F.1 we describe the method of variation of parameters used to obtain inhomogeneous

solutions of the radial part of Teukolsky Eq. (2.12a), for eccentric orbits. For the axially symmetric

part (with m = 0) we give analytical expressions for the coefficients of the inhomogeneous solutions.

In Sec. F.2 we give the ℓ-independent coefficients appearing in the mode-sums of Eq. (5.50) which

give the jump of the auxiliary invariants. In Sec. F.3 we give the summation formulae to go from

Eq. (5.50) to Eq. (5.53), in which the sums are performed as distributions. In Sec. F.4 we give

the explicit expressions for the side-limit of the reconstructed part of the invariants, for the case

of circular orbits of Kerr. The method to evaluate the integrals of Eq. (5.75), or the jump in the

amplitudes of the completion across the libration region, appears in Sec. F.5.

F.1 Variation of Parameters

Let R4±(r) be the ℓ-modes of the homogeneous solutions to the radial part of the spin s = −2

Teukolsky equation. The regular solutions R4+ and R4− satisfy retarded boundary-conditions at

infinity and at the EH respectively, and they are given explicitly in Eq. (5.29). We use these solutions

to construct inhomogeneous solutions (since they form a basis of linearly independent solutions)

using the standard variation of parameters method. Explicitly, the inhomogeneous solutions (with

the ℓ indices omitted for simplicity) are given by

̺−4ψ4(r) = R4+(r)

∫ r

rmin

Z−(r′)

W δ(r′ − r0(τ))dr′ +R4−(r)

∫ rmax

r

Z+(r′)

W δ(r′ − r0(τ))dr′, (F.1)

where W is the Wronskian of the homogeneous solutions as before, and the functions Z±(r(τ)) are
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Z±(r(τ)) =
π

∆r3 ṫ

(

R4∓(r)
(

−2Ȳℓ(θ0)r
(

∆
(

a4λ0ϕ̇
2 − 2a3λ0ṫϕ̇+ a2

(

λ0

(

2r2ϕ̇2 + ṫ2
)

− 2rϕ̇2(2M + r)
)

−2arṫϕ̇(λ0r − 4M) + r
(

λ1r
3ϕ̇2 − 4Mṫ2 + 2rṫ2

))

− 4∆ṙr2(aϕ̇− ṫ) + 2ṙ2r4
)

−
(

ṙr2 − ∆(aϕ̇ − ṫ)
) (

r−2Y
′′

ℓ (θ0)
(

ṙr2 − ∆(aϕ̇− ṫ)
)

− 2i−2Ȳ
′

ℓ (θ0)
(

a4ϕ̇− a3ṫ

+a2rϕ̇(3r − 2M) + ar(ṙr + 2Mṫ− rṫ) + 2r4fϕ̇
)))

− 2R′
4∓(r)

(

a2ϕ̇− aṫ+ r2ϕ̇
)

×
(

−2Ȳℓ(θ0)
(

a4 + a2r(r − 3M) −Mr3f
) (

a2ϕ̇− aṫ+ r2ϕ̇
)

+i∆r−2Ȳ
′

ℓ (θ0)
(

ṙr2 − ∆(aϕ̇− ṫ)
)))

, (F.2)

where λs = (ℓ − s)(ℓ + s + 1), ∆ = r2 + a2 − 2Mr and f = 1 − 2M/r, and M and a are the

mass and spin parameters of the Kerr BH respectively, as before. Eq. (F.2) should be evaluated at

r = r0(τ) and θ0 = π/2. Since we are dealing with only the axially symmetric part of the solution

we used −2Yℓ(θ) ≡ −2Yℓ0(θ, ϕ). The circular-orbit expressions are recovered by setting ṙ = 0, and

considering r0 as a constant along the orbit:

Z◦
± =

∫ r>

r<

Z±(r′)

W(r′)
δ(r′ − r0)dr′ =

Z±(r0)

W(r0)
. (F.3)

where r< is min(r0, r
′), and r> is max(r0, r

′).

F.2 Coefficients appearing in the mode-sums in the recon-

structed auxiliary invariants

All the expressions in this section are taken at r = r0 and θ 6= π/2. The ℓ independent coefficients

appearing in Eq. (5.50) and (5.51) are

c0 =
4πΣṫ

3Mr3∆4

(

(M + r)ϕ̇2a10 − 2(M + r)ṫϕ̇a9 +
(

ϕ̇2r3 − 6Mϕ̇2r2 + ṫ2r − 5M2ϕ̇2r

+Mṫ2
)

a8 + 2Mr(5M + 7r)ṫϕ̇a7 − r
(

−8rϕ̇2M3 + 5
(

ṫ2 − 4r2ϕ̇2
)

M2

+4
(

5ϕ̇2r3 + 2ṫ2r
)

M + r2 ṫ2
)

a6 + 2r2
(

ṙr
(

M2 + 3r2
)

+
(

−8M3 − 24rM2 + 13r2M

+3r3
)

ṫ
)

ϕ̇a5 + r2
(

ϕ̇2r5 − 5ṫ2r3 − 4M4ϕ̇2r − 2ṙ
(

M2 + 3r2
)

ṫr + 4M3
(

2ṫ2 − 9r2ϕ̇2
)

+M2
(

75ϕ̇2r3 + 28ṫ2r
)

−M
(

36ϕ̇2r4 + 5ṫ2r2
))

a4 + 2r3
(

ṙr
(

3r3 − 2M3 − 5rM2 − 4r2M
)

+
(

4M4 + 40rM3 − 55r2M2 + 13r3M + 2r4
)

ṫ
)

ϕ̇a3 + r3
(

−ṙ2
(

M2 + 3r2
)

r2 + 2ṙ
(

2M3

+5rM2 + 4r2M − 3r3
)

ṫr − rf
(

3ṫ2r3 − ϕ̇2r5 − 2M3
(

ṫ2 − 6r2ϕ̇2
)

−M2
(

32ϕ̇2r3 + 23ṫ2r
)

+M
(

27ϕ̇2r4 + 4ṫ2r2
)))

a2 +
(

(M + 7r)ϕ̇2a8 − 2(M + 7r)ṫϕ̇a7 +
(

23ϕ̇2r3 + 7ṫ2r

−5M2ϕ̇2r +M
(

ṫ2 − 30r2ϕ̇2
))

a6 + 2r
((

5M2 + 31rM − 20r2
)

ṫ− 4ṙr2
)

ϕ̇a5

+r
(

28ϕ̇2r4 + 17ṫ2r2 + 8ṙṫr2 + 8M3ϕ̇2r +M2
(

38r2ϕ̇2 − 5ṫ2
)

− 2M
(

35ϕ̇2r3

+16ṫ2r
))

a4 + 2r2
(

ṙr
(

M2 − 7r2f
)

−
(

8M3 + 42rM2 − 61r2M + 19r3
)

ṫ
)

ϕ̇a3

+r2
(

4ṙ2r3 − 2ṙ
(

M2 − 7r2f
)

ṫr + rf
(

15ϕ̇2r4 + 13ṫ2r2 + 2M3ϕ̇2r +M2
(

7r2ϕ̇2

−4ṫ2
)

− 5M
(

4ϕ̇2r3 + 5ṫ2r
)))

a2 − 2fr4
((

2M3 + 9rM2 − 17r2M + 6r3
)

ṫ

−ṙr
(

M2 + 6rM − 3r2
))

ϕ̇a+ r3
(

−ṙ2
(

M2 + 6rM − 3r2
)

r2 + 2ṙ
(

2M3 + 11rM2

−12r2M + 3r3
)

ṫr − r2f2
(

−3
(

ṫ2 + r2ϕ̇2
)

r2 +M2ṫ2 +M
(

6rṫ2 − r3ϕ̇2
))))

cos(2θ)a2

+4Mfr6
(

ṙr(r − 3M) +
(

6M2 − 11rM + 4r2
)

ṫ
)

ϕ̇a+ 2Mr5
(

ṙ2(3M − r)r2
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−2ṙ
(

6M2 − 5rM + r2
)

ṫr + r2f2
(

3Mṫ2 − r
(

ṫ2 + 3r2ϕ̇2
))))

, (F.4a)

c1 =
4πΣ2

3Mr2∆3ṫ

(

ṙ2r4 − 2ṙ(aϕ̇− ṫ)∆r2 +
(

2ϕ̇2a4 − 4ṫϕ̇a3 +
(

2ṫ2 + r(3r − 2M)ϕ̇2
)

a2

+4(M − r)rṫϕ̇a+ r
(

ϕ̇2r3 + ṫ2rf
))

∆
)

, (F.4b)

c2 = − 16a2πΣ sin2 θ

Mr3∆4ṫ

(

(M + r)ϕ̇2a8 − 2(M + r)ṫϕ̇a7 +
(

2ϕ̇2r3 + ṫ2r − 5M2ϕ̇2r +Mṫ2
)

a6

−2r
(

ṙr2 −
(

5M2 + rM − 2r2
)

ṫ
)

ϕ̇a5 + r
(

ϕ̇2r4 + 2ṫ2r2 + 2ṙṫr2 + 8M3ϕ̇2r

−5M2
(

ṫ2 + 2r2ϕ̇2
)

+ 2M
(

r3ϕ̇2 − rṫ2
))

a4 + 2r2
(

ṙr
(

M2 − r2f
)

+
(

6rM2 − 8M3

+r2M − r3
)

ṫ
)

ϕ̇a3 + r2
(

ṙ2r3 + 2ṙ
(

r2f −M2
)

ṫr + rf
(

2rϕ̇2M3 −
(

4ṫ2 + 5r2ϕ̇2
)

M2

+
(

4r3ϕ̇2 − rṫ2
)

M + r2 ṫ2
))

a2 − 2Mfr4
((

2M2 − 3rM + r2
)

ṫ− ṙMr
)

ϕ̇a

−Mr3
(

ṙ2Mr2 + 2ṙMf ṫr2 + r2f2
(

Mṫ2 − r3ϕ̇2
)))

, (F.4c)

c3 =
8aπΣ cos θ

3Mr2∆3ṫ

(

ϕ̇2a7 − 2ṫϕ̇a6 +
(

ṫ2 + r(3r − 2M)ϕ̇2
)

a5 + r(ṙr − 3ṫr + 4Mṫ)ϕ̇a4

−r
(

−3ϕ̇2r3 + ṙṫr + 2M
(

ṫ2 + 4r2ϕ̇2
))

a3 − 2r3(2ṙM + (r − 3M)ṫ)ϕ̇a2

+r3
(

−2rṙ2 + (4M − 3r)ṫṙ − rf
(

ṫ2 + (4M − r)rϕ̇2
))

a+ (4M − r)r4(ṙr + rf ṫ)ϕ̇
)

, (F.4d)

c4 = − 16aπΣ cos θ

3Mr3∆4ṫ

(

(M + r)ϕ̇2a9 − 2(M + r)ṫϕ̇a8 +
(

3ϕ̇2r3 − 3Mϕ̇2r2 + ṫ2r − 4M2ϕ̇2r

+Mṫ2
)

a7 − 2r
(

ṙr2 +
(

3r2 − 4M2 − 4rM
)

ṫ
)

ϕ̇a6 + r
(

5ϕ̇2r4 − 13Mϕ̇2r3 + 3ṫ2r2

+4M2ϕ̇2r2 + 2ṙṫr2 − 5Mṫ2r + 4M3ϕ̇2r − 4M2ṫ2
)

a5 + 2fr3
((

2M2 + 5rM − 4r2
)

ṫ

−ṙr2
)

ϕ̇a4 + r2
(

ṙ2(r −M)r2 + 2ṙ(r − 3M)ṫr2 − rf
(

−5ϕ̇2r4 − 3ṫ2r2 + 2M2
(

ṫ2 − r2ϕ̇2
)

+M
(

11ϕ̇2r3 + 7ṫ2r
)))

a3 − 2fr5
(

ṙr2 +
(

4M2 − 8rM + 3r2
)

ṫ
)

ϕ̇a2 + r4
(

ṙ2(M − r)r2

−2ṙMf ṫr2 − r2f2
(

−2ϕ̇2r3 + 4Mϕ̇2r2 − ṫ2r + 3Mṫ2
))

a− 2r8f2(ṙr + rf ṫ)ϕ̇
)

, (F.4e)

c5 = − 8a2πΣ sin(2θ)

3Mr3∆4 ṫ

(

2(M + 4r)ϕ̇2a8 − 4(M + 4r)ṫϕ̇a7 +
(

25ϕ̇2r3 + 8ṫ2r − 10M2ϕ̇2r

+2M
(

ṫ2 − 15r2ϕ̇2
))

a6 + 2r
(

2
(

5M2 + 16rM − 11r2
)

ṫ− 5ṙr2
)

ϕ̇a5 + r
(

29ϕ̇2r4

+19ṫ2r2 + 10ṙṫr2 + 16M3ϕ̇2r − 34M
(

ṫ2 + 2r2ϕ̇2
)

r +M2
(

28r2ϕ̇2 − 10ṫ2
))

a4

+4r2
(

ṙr
(

M2 − 4r2f
)

−
(

8M3 + 18rM2 − 31r2M + 10r3
)

ṫ
)

ϕ̇a3 + r2
(

5ṙ2r3

−4ṙ
(

M2 − 4r2f
)

ṫr + rf
(

15ϕ̇2r4 + 14ṫ2r2 + 4M3ϕ̇2r +M2
(

2r2ϕ̇2 − 8ṫ2
)

−2M
(

8ϕ̇2r3 + 13ṫ2r
)))

a2 + 2fr4
(

ṙr
(

2M2 − 3r2f
)

− 2
(

2M3 + 3rM2

−8r2M + 3r3
)

ṫ
)

ϕ̇a+ r3
(

ṙ2
(

−2M2 + 3r2f
)

r2 + 2ṙ
(

4M3 + 10rM2 − 12r2M + 3r3
)

ṫr

−r2f2
(

−3
(

ṫ2 + r2ϕ̇2
)

r2 + 2M2ṫ2 + M
(

6rṫ2 − 2r3ϕ̇2
))))

, (F.4f)

c6 = − 8a2πΣ sin(2θ)

3Mr2∆3 ṫ

(

ṙ2r4 − 2ṙ(aϕ̇− ṫ)∆r2 +
(

2ϕ̇2a4 − 4ṫϕ̇a3 +
(

2ṫ2 + r(3r − 2M)ϕ̇2
)

a2

+4(M − r)rṫϕ̇a+ r
(

ϕ̇2r3 + ṫ2r − 2Mṫ2
))

∆
)

, (F.4g)

c7 = − 32aπΣ sin θ

3Mr∆3ṫ

(

Mϕ̇2a5 + (ṙr + rf ṫ)ϕ̇a4 −
(

−Mṫ2 + rṫ2 + ṙrṫ + 2M2rϕ̇2
)

a3

+r
(

ṙr(r − 3M) +
(

4M2 − 3rM + r2
)

ṫ
)

ϕ̇a2 − r
(

ṙ2r2 + ṙ(2r − 3M)ṫr

+rf
(

−Mṫ2 + rṫ2 +Mr2ϕ̇2
))

a+Mr3(ṙr + rf ṫ)ϕ̇
)

, (F.4h)

c8 = − 32πaΣ sin θ

3∆3Mrṫ

(

a5Mϕ̇2 + a4ϕ̇(ṙr + ṫrf) − a3
(

ṙrṫ+ 2M2rϕ̇2 −Mṫ2 + rṫ2
)

+a2rϕ̇
(

ṙr(r − 3M) + ṫ
(

4M2 − 3Mr + r2
))

− ar
(

ṙ2r2 + ṙrṫ(2r − 3M)

+rf
(

Mr2ϕ̇2 −Mṫ2 + rṫ2
))

+Mr3ϕ̇(ṙr + ṫrf)
)

, (F.4i)
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for [I(rec)
1 ] and

d0 = − 4πΣ csc2 θ

3Mr2∆2 ṫ

(

ṙ2(r −M)r5 + 2ṙ(M − r)(aϕ̇ − ṫ)∆r3 +
(

ϕ̇2a4 − 2ṫϕ̇a3

+
(

ṫ2 + r(3r −M)ϕ̇2
)

a2 + 2(M − 2r)rṫϕ̇a+ r
(

ϕ̇2r3 + ṫ2r −Mṫ2
))

∆2

−
(

5ϕ̇2a8 − 10ṫϕ̇a7 +
(

5ṫ2 + r(13r − 25M)ϕ̇2
)

a6 − 2r(4ṙr + 12ṫr − 25Mṫ)ϕ̇a5

+r
(

12ϕ̇2r3 − 42Mϕ̇2r2 + 11ṫ2r + 40M2ϕ̇2r + 8ṙṫr − 25Mṫ2
)

a4

+2r2
(

ṙ(13M − 5r)r +
(

38rM − 40M2 − 9r2
)

ṫ
)

ϕ̇a3 + r2
(

4ṙ2r2 + 2ṙ(5r − 13M)ṫr

+rf
(

5ϕ̇2r3 − 11Mϕ̇2r2 + 7ṫ2r + 10M2ϕ̇2r − 20Mṫ2
))

a2 − 2fr4 (ṙr(r − 5M)

+
(

10M2 − 9rM + 2r2
)

ṫ
)

ϕ̇a+ r3
(

ṙ2(r − 5M)r2 + 2ṙ
(

10M2 − 7rM + r2
)

ṫr

−r2f2
(

5Mṫ2 − r
(

ṫ2 + r2ϕ̇2
))))

cos(2θ)
)

, (F.5a)

d1 = − 16πΣ

Mr3∆2ṫ

(

(M + r)ϕ̇2a8 − 2(M + r)ṫϕ̇a7 +
(

2ϕ̇2r3 + ṫ2r − 5M2ϕ̇2r +Mṫ2
)

a6

−2r
(

ṙr2 −
(

5M2 + rM − 2r2
)

ṫ
)

ϕ̇a5 + r
(

ϕ̇2r4 + 2ṫ2r2 + 2ṙṫr2 + 8M3ϕ̇2r

−5M2
(

ṫ2 + 2r2ϕ̇2
)

+ 2M
(

r3ϕ̇2 − rṫ2
))

a4 + 2r2
(

ṙr
(

M2 − r2f
)

+
(

6rM2

−8M3 + r2M − r3
)

ṫ
)

ϕ̇a3 + r2
(

ṙ2r3 + 2ṙ
(

−M2 + r2f
)

ṫr + rf
(

2rϕ̇2M3

−
(

4ṫ2 + 5r2ϕ̇2
)

M2 +
(

4r3ϕ̇2 − rṫ2
)

M + r2 ṫ2
))

a2 − 2Mfr4
((

2M2 − 3rM + r2
)

ṫ

−ṙMr) ϕ̇a−Mr3
(

ṙ2Mr2 + 2ṙMr2f ṫ+ r2f2
(

Mṫ2 − r3ϕ̇2
)))

, (F.5b)

d2 =
8πΣ cot θ csc θ

3aMr2∆ṫ

(

ϕ̇a2 − ṫa+ r2ϕ̇
) [

(aϕ̇− ṫ)∆ − ṙr2
] [

a2 cos(2θ) − r2
]

, (F.5c)

d3 = − 16πΣ cot θ csc θ

3Mr3∆2 ṫ

[

ṙr2 − (aϕ̇− ṫ)∆
] (

r
(

ṫa4 − ϕ̇a5 + (5M − r)rϕ̇a3 + r(2ṙr + 2ṫr − 5Mṫ)a2

+3Mr3fϕ̇a− (3M − r)r2(ṙr + ṫr − 2Mṫ)
)

+ a
(

Mṫa3 −Mϕ̇a4 + r
(

2M2 − 3rM + r2
)

ϕ̇a2

+r(ṙr(r −M) +Mrfṫ)a+ r5f2ϕ̇
)

cos(2θ)
)

, (F.5d)

d4 = − 16πΣ cot θ

3Mr2∆2ṫ

(

6ϕ̇2a8 − 12ṫϕ̇a7 + 3
(

2ṫ2 + 5r2fϕ̇2
)

a6 − 2r(5ṙr + 14ṫr − 30Mṫ)ϕ̇a5

+r
(

48M2rϕ̇2 + 10ṙrṫ+ 13r
(

ṫ2 + r2ϕ̇2
)

− 6M
(

5ṫ2 + 8r2ϕ̇2
))

a4 + 4r2 (ṙ(8M − 3r)r

+
(

22rM − 24M2 − 5r2
)

ṫ
)

ϕ̇a3 + r2
(

5ṙ2r2 − 4ṙ(8M − 3r)ṫr + rf
(

5ϕ̇2r3 + 8ṫ2r

+12M2ϕ̇2r − 12M
(

2ṫ2 + r2ϕ̇2
)))

a2 − 2fr4
(

ṙr(r − 6M) + 2
(

6M2 − 5rM + r2
)

ṫ
)

ϕ̇a

+r3
(

ṙ2(r − 6M)r2 + 2ṙ
(

12M2 − 8rM + r2
)

ṫr − r2f2
(

6Mṫ2 − r
(

ṫ2 + r2ϕ̇2
))))

, (F.5e)

d5 = − 16πΣ cot θ

3Mr2∆2ṫ

(

a2 −Mr
) [

ṙr2 − (aϕ̇− ṫ)∆
]2
, (F.5f)

d6 = − 4πΣ csc θ

3aMr2∆ṫ

(

ϕ̇a2 − ṫa+ r2ϕ̇
) [

(aϕ̇− ṫ)∆ − ṙr2
] [

cos(2θ)a2 + a2 − 2r2
]

, (F.5g)

d7 =
8πΣ csc θ

3Mr3∆2ṫ

[

ṙr2 − (aϕ̇− ṫ)∆
] (

(r −M)ϕ̇a5 + (M − r)ṫa4 + r
(

2M2 + rM + 5r2
)

ϕ̇a3

+r
(

ṙr(5r −M) +
(

r2 − 2M2 − 3rM
)

ṫ
)

a2 + 4r3
(

r2 − 2M2 − rM
)

ϕ̇a+ (M − r)
(

−ϕ̇a4

+ṫa3 + (2M − 3r)rϕ̇a2 + r2(ṫf − ṙ)a− 2r4fϕ̇
)

a cos(2θ) − 2(3M − r)r3(ṙr + rf ṫ)
)

, (F.5h)

d8 =
16πaΣ(cos(2θ) + 3) csc(θ)

3∆2Mr3 ṫ

(

a7Mϕ̇2 − 2a6Mṫϕ̇+ a5
(

M
(

4r2ϕ̇2 + ṫ2
)

− 4M2rϕ̇2 − r3ϕ̇2
)

+a4rϕ̇
(

8M2ṫ− 6Mrṫ+ r2(ṫ− ṙ)
)

+ a3r
(

r2
(

ṙṫ− 12M2ϕ̇2
)

+ 2Mr
(

2M2ϕ̇2 + ṫ2
)

− 4M2ṫ2

+9Mr3ϕ̇2 − 2r4ϕ̇2
)

− 2a2f2r2r2 ṫϕ̇(M − r) + ar2
(

4M3
(

2r2ϕ̇2 + ṫ2
)

− 4M2r
(

3r2ϕ̇2 + ṫ2
)

+Mr2
(

6r2ϕ̇2 − ṙ2 − 2ṙṫ+ ṫ2
)

+ r3
(

ṙ2 − r2ϕ̇2 + ṙṫ
))

+ f2r2r4ϕ̇(r(ṙ + ṫ) − 2Mṫ)
)

, (F.5i)
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for [I(rec)
2 ]. The circular orbits coefficients are recovered from Eqs. (F.4) and (F.5) by taking ṙ = 0.

F.3 Summation formulae

The sums in Eq. (5.50) are analytically obtained. They are

∑

ℓ≥2

[λ0Yℓ(θ) + 2 cot θY ′
ℓ (θ)]

Ȳℓ(θ0)

λ0λ1
=
∑

ℓ≥2

− −2Yℓ(θ)Ȳℓ(θ0)

(λ0λ1)1/2

=
∑

ℓ≥2

csc2 θ

∫

d(cos θ′′)

∫

d(cos θ′)Yℓ(θ
′)Ȳℓ(θ0)

= − 1

4π

{

1

2
− csc2 θ [1 − cos θsign(π − 2θ)]

}

, (F.6a)

∑

ℓ≥2

Yℓ(θ)Ȳ
′

ℓ (θ0)

λ0
= −

∑

ℓ≥2

∫

d(cos θ′
0)Yℓ(θ)Ȳℓ(θ

′
0)

=
1

4π

[

sign(π − 2θ) +
3

2
cos θ

]

, (F.6b)

∑

ℓ≥2

Y ′
ℓ (θ)Ȳℓ(θ0)

λ0
= −

∑

ℓ≥2

csc θ

∫

d(cos θ′)Yℓ(θ
′)Ȳℓ(θ0)

=
1

4π
[sign(π − 2θ) csc θ − cot θ] , (F.6c)

∑

ℓ≥2

Y ′
ℓ (θ)Ȳℓ(θ0)

λ2
0

=
∑

ℓ≥2

csc θ

∫∫

d(cos θ′)d(cos θ′′)Yℓ(θ
′′)Ȳℓ(θ0)

=
1

4π

{

[1 − sign(π − 2θ) cos θ] csc θ − 3

4
sin θ

}

, (F.6d)

where we have exchanged the order of summation and integration, and the distributions are omitted

since the sums are to be evaluated at θ 6= θ0. In Eq. (F.6) we used

∑

ℓ≥2

Yℓ(θ)Ȳℓ(θ0) ≡ δ(θ − θ0) − Y0(θ)Ȳ0(θ0) − Y1(θ)Ȳ1(θ0). (F.7)

F.4 Sided expressions for the auxiliary invariants:

circular-equatorial orbits of Kerr

We include the general form of the sided values of the two invariants we use in the Kerr case:

I(rec)
k± (r, θ) =

∑

i,j

A±
k;ijR

(i)
4±(r)−2Y

(j)
ℓ (θ), with k = {1, 2}. (F.8)

These expressions are required to prove that the sums converge as distributions on the sphere (see

[99] for the explicit proof, which we have left out of this work). For circular orbits the coefficients

A±
ij are
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A±
1;00 =

Σ csc2 θ−2Ȳℓ(θ0)

W∆3λ0 ṫ

[

λ1a01(r0)R4∓(r0) + a02(r0)R′
4∓(r0)

] {

16a2r − 40a2M + 72Mr2 − 48r3

+(a2M + 3a2r − 12Mr2 + 8r3)λ0 + 4
[

(3M − 2r)r2(2 + λ0) + a2 〈2M − r(4 + λ0)〉
]

cos(2θ)

−a2(M − r)λ0 cos(4θ)
}

+
Σ cot θ csc θ−2Ȳ

′
ℓ (θ0)

W∆3λ0λ1 ṫ

[

a03(r0)R4∓(r0) + a04(r0)R′
4∓(r0)

]

×
{

a2(32 + 10λ0 − λ2
0) − r

[

4M(6 + 11λ0 − λ2
0) + r(8 − 34λ0 + 3λ2

0)
]

+λ1

[

−4Mr(λ0 − 1) + a2λ0 + r2(3λ0 − 4)
]

cos(2θ)
}

, (F.9a)

A±
1;10 =

Σ csc2 θ−2Ȳℓ(θ0)

W∆3λ0 ṫ

[

a11(r0)R4∓(r0) + a12(r0)R′
4∓(r0)

] {

48a4 − 80a2M2 + 16a2Mr − 32a2r2

+144M2r2 − 144Mr3 + 48r4 + (32a4 + 2a2M2 − 60a2Mr + 10a2r2 − 24M2r2 + 72Mr3

−32r4)λ0 + (2a2Mr − a4 + 3a2r2 − 8Mr3 + 4r4)λ2
0 + 4

〈

4a4 + r2
[

6M2 + 2Mr(λ0 − 3)

−r2λ1

]

(2 + λ0) + a2
[

4M2 − 2Mr(10 + λ0) − r2(λ2
0 − 8 + 2λ0)

]〉

cos(2θ)

+a2λ0(r2λ1 − 2M2 − 2Mrλ1 + a2λ0) cos(4θ)
}

+
Σ cot θ csc θ−2Ȳ

′
ℓ (θ0)

W∆3λ0λ1ṫ

[

a13(r0)R4∓(r0) + a14(r0)R′
4∓(r0)

]

×
{

a2 [M − r(1 + λ0)] + r2 [r − rλ0 +M(−1 + 2λ0)]
}

[10 − λ0 + λ1 cos(2θ)] , (F.9b)

A±
1;10 =

Σ cot θ−2Ȳℓ(θ0)

W∆3λ0ṫ

[

λ1a21(r0)R4∓(r0) + a22(r0)R′
4∓(r0)

] [

2(3M − 2r)r2 + a2(r − 3M)

+a2(M − r) cos(2θ)
]

+
Σ cot θ−2Ȳ

′
ℓ (θ0)

W∆3λ0 ṫ

[

a23(r0)R4∓(r0) + a24(r0)R′
4∓(r0)

]

×
[

r(4M + 2r + 10Mλ0 − 7rλ0) − 3a2(2 + λ0) + ∆ cos(2θ)
]

, (F.9c)

A±
1;11 =

Σ cot θ−2Ȳℓ(θ0)

W∆3λ0λ1ṫ

[

λ1a31(r0)R4∓(r0) + a32(r0)R′
4∓(r0)

] {

2r2
[

r2λ1 − 6M2 − 2Mr(λ0 − 3)
]

−a4(4 + 3λ0) + a2(6M2 − r2λ1 + 6Mrλ0) + a2(a2λ0 − 2M2 − 2Mrλ1 + r2λ1) cos(2θ)
}

+
Σ csc θ−2Ȳ

′
ℓ (θ0)

W∆3λ0λ1 ṫ

[

a33(r0)R4∓(r0) + a34(r0)R′
4∓(r0)

] {

a2 [M − r(1 + λ0)]

+r2 [r − rλ0 +M(2λ0 − 1)]
}

, (F.9d)

and the coefficients B±
ij are

A±
2;00 =

Σ csc4 θ−2Ȳℓ(θ0)

W∆λ0 ṫ

[

λ1b01(r0)R4∓(r0) + b02(r0)R′
4∓(r0)

]

{44r − 18M + 5rλ0

+4 [6M − r(λ0 − 4)] cos(2θ) − [6M + r(λ0 − 4)] cos(4θ)} +
Σ cot θ csc3 θ−2Ȳ

′
ℓ (θ0)

W∆λ0λ1ṫ
×

[

b03(r0)R4∓(r0) + b04(r0)R′
4∓(r0)

] {

a2(λ0 − 8) − r [r(4 + λ0) − 12M ]
}

×
[λ1 cos(2θ) − 6 − λ0] , (F.10a)

A±
2;10 =

Σ csc4 θ−2Ȳℓ(θ0)

W∆λ0 ṫ

[

b11(r0)R4∓(r0) + b12(r0)R′
4∓(r0)

] {

38a2 − 18M2 − 14Mr − 6r2

+8a2λ0 − 11Mrλ0 + 3r2λ0 − 4
[

Mr(14 − 3λ0) − 6M2 + 2a2(λ0 − 3) + r2λ1

]

cos(2θ)

+
[

2a2 − 6M2 −Mr(λ0 − 6) + r2λ1

]

cos(4θ)
}

+
Σ cot θ csc3 θ−2Ȳ

′
ℓ (θ0)

W∆λ0λ1ṫ
×

[

b13(r0)R4∓(r0) + b14(r0)R′
4∓(r0)

] [

r2(r − 3M) − a2(M − 3r)
]

[λ1 cos(2θ) − 6 − λ0] ,

(F.10b)
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A±
2;01 =

Σ cot θ csc2 θ−2Ȳℓ(θ0)

W∆λ0ṫ

[

λ1b21(r0)R4∓(r0) + b22(r0)R′
4∓(r0)

]

[(λ0 − 1) cos(2θ) − 3 − λ0]

+
Σ csc3 θ−2Ȳ

′
ℓ (θ0)

W∆λ0 ṫ

[

b23(r0)R4∓(r0) + b24(r0)R′
4∓(r0)

] {

76a2 − 96Mr + 32r2 + (12a2

−48Mr + 24r2)λ0 + (4r2 − a2)λ2
0 − 4λ1

〈

6a2 + r [r(4 + λ0) − 12M ]
〉

cos(2θ)

+a2λ2
1 cos(4θ)

}

, (F.10c)

A±
2;11 =

Σ cot θ csc2 θ−2Ȳℓ(θ0)

W∆3λ0λ1 ṫ

[

λ1b31(r0)R4∓(r0) + b32(r0)R′
4∓(r0)

]

(Mr − a2)×

[(λ0 − 1) cos(2θ) − 3 − λ0] +
Σ csc3 θ−2Ȳ

′
ℓ (θ0)

W∆λ0λ1 ṫ

[

b33(r0)R4∓(r0) + b34(r0)R′
4∓(r0)

]

×
{

30a2r − 14a2M − 24Mr2 + 8r3 + (9a2r − a2M − 12Mr2 + 4r3)λ0

−4r
[

2a2 + r(r − 3M)
]

λ1 cos(2θ) + a2(M − r)λ1 cos(4θ)
}

. (F.10d)

The eccentric orbits expressions are not included here due to their complexity. Furthermore the

proof of the distributional convergence of the sums in the eccentric orbits case follows directly from

the circular orbits results.

F.5 Evaluation of integrals for the case of eccentric orbits

around Kerr

To obtain the result of Eq. (5.76), namely the jump in the amplitudes of the completion pieces, we

need to evaluate the integrals of Eq. (5.75). First, we observe that only the part of the integrands

that is even under χ 7→ −χ will contribute to the final integral. After symmetrizing and setting

m = 1, we find that the integrals take the following form,

[

δM̃
]

− E =
1

Tr

∫ 1

−1

CM
14 y

14 + CM
12 y

12 + CM
10 y

10 + CM
8 y8 + CM

6 y6 + CM
4 y3 + CM

2 y2

B
√

1 − y2
√

1 − ky2(1 − h1y2)2(1 − h2y2)2(1 − h3y2)2
dy

[

δJ̃
]

− L =
1

Tr

∫ 1

−1

CJ
14y

14 + CJ
12y

12 + CJ
10y

10 + CJ
8 y

8 + CJ
6 y

6 + CJ
4 y

3 + CJ
2 y

2

B
√

1 − y2
√

1 − ky2(1 − h1y2)2(1 − h2y2)2(1 − h3y2)2
dy

(F.11)

with common factors

y ≡ sin
(χ

2

)

, (F.12)

B ≡p(1 + e)2
(

a2(1 + e)2 + p(p− 2(1 + e))
)2

×
√

a2 [p− E2(2e+ p+ 6)] + 4a(e+ 3)EL + L2(p− 2e− 6)

4p
, (F.13)

k ≡ −4e(L − aE)2

a2 [p− E2(2e+ p+ 6)] + 4a(e+ 3)EL + L2(p− 2e− 6)
, (F.14)

h1 ≡ 2e

1 + e
, (F.15)

h2 ≡ 2a2e

a2(1 + e) − p(1 +
√

1 − a2)
, (F.16)

h3 ≡ 2a2e

a2(1 + e) − p(1 −
√

1 − a2)
. (F.17)

(F.18)
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where the correct units are recovered by replacing p → p/M . The coefficients in the mass integrand

are given by

CM
14 = − 256a4e7(L − aE)2, (F.19)

CM
12 =128a2e6

(

7a2(e+ 1) − 9p
)

(L − aE)2, (F.20)

CM
10 = − 64e5

(

a4
(

21(e+ 1)2(L − aE)2 + 4p2
)

− 6p2(L − aE)2

+ a2p(L − aE)(3(p− 18(e+ 1))(L − aE) + 10Lp)
)

, (F.21)

CM
8 =32e4

(

a4
(

35(e+ 1)3(L − aE)2 + p2(20e− 3p+ 12)
)

+ p2(7p− 30(e+ 1))(L − aE)2

+ a2p
[

(

−127e2 + 15e(p− 18) + p(3p+ 23) − 111
)

(L − aE)2

+ 2Lp(25e− 3p+ 17)(L − aE) −
(

L2 + 3
)

p2
])

, (F.22)

CM
6 =16e3

(

a4
(

6p2(2e(−3e+ p− 4) + p− 2) − 35(e+ 1)4(L − aE)2
)

+ a2p
[

2p2
(

(12e+ 6)L(L − aE) + (−6e− 3)(L − aE)2 + 2(e+ 1)L2 + 6e+ 3
)

+ (e+ 1)(23e+ 11)L) − 4p(L − aE)((e(7e+ 23) + 10)(L − aE)

+ 4(e+ 1)(e(37e+ 86) + 25)(L − aE)2 − 3p3
]

+ 2p2
((

33e2 + e(60 − 14p)

+(p− 11)p+ 39) (L − aE)2 − Lp(p+ 6)(L − aE) + L2p2
)

)

, (F.23)

CM
4 =8e2

(

a4(e+ 1)
(

21(e+ 1)4(L − aE)2 − 3(5e+ 1)p3 + 4(7e+ 1)(e+ 1)p2
)

+ a2p
[

− 3(e+ 1)p2
(

(10e+ 2)L(L − aE) + (−5e− 1)(L − aE)2 + 2(e+ 1)L2 + 5e+ 1
)

+ 4(e+ 1)p(L − aE)(6(e(e+ 4) + 1)(L − aE) + (e+ 1)(19e+ 7)L)

− 3(e+ 1)2(e(29e+ 74) + 13)(L − aE)2 + (9e+ 3)p3 − p4
]

+ p2
[

p
(

45e2 − 6e(p− 11)

+p2 + 45
)

(L − aE)2 + 2Lp
(

3e2 + 3e(p+ 6) − p(p+ 3) + 15
)

(L − aE)

− 6(e+ 1)(e(13e+ 22) + 17)(L − aE)2 + L2p2(−6e+ p− 6) + 3E2p3
])

, (F.24)

CM
2 =4e

(

2(e+ 1)L2p4(3e− p+ 3)
)

− 7a4(e+ 1)6(L − aE)2 − 2a4e(e+ 1)2p2(4e− 3p+ 4)

+ a2(e+ 1)2p
(

e
(

22e2 + e(82 − 9p) − 2p(3p+ 19) + 66
)

− 5p+ 6
)

(L − aE)2

− 2a2(e+ 1)2Lp2(e(13e− 6p+ 18) + 5)(L − aE) + 2a2ep3
(

p2 − 3(e+ 1)p+ 3(e+ 1)2
)

+ p2
((

5e2 + 3
)

p2 − 2ep3 − 2(e+ 1)(e(17e+ 25) + 20)p

+12(e+ 1)2(e(4e+ 7) + 5)
)

(L − aE)2 + 4Lp3
(

ep2 + 3(e+ 1)p

−3(e+ 2)(e+ 1)2
)

(L − aE) + E2p5(p− 6e− 6) + 4a2(e+ 1)3L2p3. (F.25)

The coefficients for the angular momentum integrand are

CJ
14 = − 256a5e7(L − aE)2, (F.26)

CJ
12 =128a3e6

(

7a2(e+ 1) − 12p
)

(L − aE)2, (F.27)

CJ
10 = − 64ae5

(

7a4
(

3(e+ 1)2(L − aE)2 + p2
)

−8a2p(L − aE)(9(e+ 1)(L − aE) − 2Lp) − 12p2(L − aE)2
)

, (F.28)

CJ
8 =32ae4

(

a4
(

35(e+ 1)3(L − aE)2 + p2(35e− 3p+ 21)
)

+ 4p2(4p− 15(e+ 1))(L − aE)2
)

+ a2p
(

(−2e(83e+ 180) + p(3p+ 14) − 138)(L − aE)2
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+2Lp(40e− 3p+ 26)(L − aE) −
(

L2 + 6
)

p2
)

, (F.29)

CJ
6 =16ae3

(

a4
(

−35(e+ 1)4(L − aE)2 + 6(2e+ 1)p3 − 21(3e+ 1)(e+ 1)p2
)

+ a2p
[

2p2
(

(12e+ 6)L(L − aE) − (6e+ 3)(L − aE)2 + 2(e+ 1)L2 + 12e+ 6
)

+ 2(e+ 1)(73e+ 31)L) − p(L − aE)((e(e+ 56) + 31)(L − aE) + 4(e+ 1)(e(46e+ 113)

+ 25)(L − aE)2 − 3p3
]

+ p2
(

2
(

66e2 + 8e(15 − 4p) + (p− 26)p+ 78
)

(L − aE)2

−2Lp(p+ 12)(L − aE) + 5L2p2
)

)

, (F.30)

CJ
4 =8e2

(

a5(e+ 1)
(

21(e+ 1)4(L − aE)2 − 3(5e+ 1)p3 + 7(7e+ 1)(e+ 1)p2
)

+ 6aE2p5
)

+ a3p
[

(9e+ 3)p3 − p4 − 3(e+ 1)p2
(

(10e+ 2)L(L − aE) − (5e+ 1)(L − aE)2

+2(e+ 1)L2 + 10e+ 2
)

+ (e+ 1)p(L − aE)(3(e(e+ 24) + 7)(L − aE)

+ 2(e+ 1)(59e+ 17)L) − 12(e+ 1)2(e(8e+ 23) + 1)(L − aE)2
]

+ ap2
[

2Lp
(

3(e− 1)p+ 6(e+ 1)(e+ 5) − p2
)

(L − aE) + L2p2(p− 15(e+ 1))

+
(

−6ep2 + 12(e(8e+ 13) + 7)p− 12(e+ 1)(e(13e+ 22) + 17) + p3
)

(L − aE)2
]

, (F.31)

CJ
2 =4e

(

a5(e+ 1)2
(

−7(e+ 1)4(L − aE)2 − 2ep2(7e− 3p+ 7)
)

+ aE2p5(p− 12(e+ 1))

+ a3p
[

(e+ 1)2
(

−6ep2 − (e(3e+ 32) + 5)p+ 4(e+ 1)(e(4e+ 15) − 3)
)
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]
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[
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5e2 + 3
)

p2 − 2ep3 − 8(e+ 1)(e(8e+ 13) + 8)p
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ep2 + 3(e+ 1)p

−6(e+ 2)(e+ 1)2
)

(L − aE) + (e+ 1)L2p2(15e− 2p+ 15)
])

. (F.32)

The integrals (F.11) can be recognized as elliptic integrals. Consequently, they can be evaluated

using standard techniques for elliptic integrals (see for example Sec. 17 of [151]). The first step is

to expand the integrands in partial fractions. The result is a sum of integrals of the form

In,m(k, hi) =

∫ 1

0

y2n

√

1 − y2
√

1 − ky2(1 − hiy2)
dy. (F.33)

The integrals In,m satisfy the following recurrence relations

In,m(k, hi) =
In−1,m(k, hi) − In−1,m(k, hi)

hi
, and (F.34)

In,0(k, hi) = In,0(k) =
(k + 1)(2n− 2)In−1,0(k) − (2n− 3)An−2,0(k)

2n− 1
. (F.35)

Using these relations, the integrals (F.11) can be further reduced to a linear combination of five

basic integrals

I0,0(k) = K(k), (F.36)

I1,0(k) =
K(k) − E(k)

k
, and (F.37)

I0,1(k, hi) = Π(h, k) (once for each hi), (F.38)
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where K, E, and Π are the elliptic integrals of the first, second and third kind, respectively. The

coefficient of each integral is a complicated expression involving a, p, e, E and L. Substituting the

expressions (5.69) for E and L in terms of a, p, and e, these vanish after some straightforward, but

tedious algebra. This establishes the result given in Eq. (5.76).
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