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In this work we study the two-body problem in general relativity for the extreme-mass-ratio regime,
where the problem is amenable to perturbation theory. The orbital dynamics in this configuration
is driven by a back-reaction or self-force, caused by the interaction of a particle with its own
gravitational field. In this thesis we develop and implement a new approach for self-force calculations
in Kerr spacetime.

We choose to move from the original Lorenz-gauge formulation of the self-force to work in a
radiation gauge. In the Lorenz gauge the perturbation is obtained by solving a set of ten coupled
differential equations, and in Kerr the equations are not separable. In the radiation gauges the
computational cost is reduced by solving the fully separable Teukolsky equation to obtain curvature
scalars, and applying certain differential operators to recover the metric perturbations. There are
two main challenges in calculating the self-force in these radiations gauges: understanding how
to include the “completion” piece that is not recovered in the reconstruction procedure (but it’s
necessary to satisfy the linearised Einstein field equations); and having a rigorous and well-justified
self-force formalism to use these radiation-gauge perturbation.

We identify three types of radiation gauges according to their singular structure: half-, full- and
no-string gauges. We obtain modifications to the standard Lorenz-gauge mode-sum formula for
the half- and no-string gauges, and explain why the full-string gauges are too pathological to be
considered in a numerical implementation. Our method is based on a local analysis of the gauge
transformation relating the Lorenz and radiation gauges. This analysis provides the framework to
modify the Lorenz-gauge self-force formulation and obtain modifications to the traditional Lorenz-
gauge mode-sum formula.

We propose a new method to address the inclusion of the completion piece of the perturbation in
Kerr. It is based on imposing smoothness of certain auxiliary gauge-invariant-quantities away from
the particle to determine the amplitudes of the mass and angular momentum perturbations that
are not accessible through the metric-reconstruction procedure. We obtain the completion piece for
Schwarzschild, and for equatorial orbits in Kerr. We discuss how our method could be extended for
geodesic non-equatorial orbits around Kerr.

As a first implementation of our formalism, we compute the gravitational self-force in the fre-
quency domain for a particle moving on a circular orbit around a Schwarzschild black-hole. This
calculation is carried out using our new version of the mode-sum formula. We obtained numerical
solutions to the spin-+2 Teukolsky equation and apply the reconstruction procedure. We compare
our numerical integration with the analytical method of Mano, Susuki and Takasugi. We test the
numerical efficiency of our method compared with Lorenz-gauge implementations available in the
literature. We find numerical agreement between the results obtained in the outgoing and ingoing
radiation-gauges for our particular setup. We show that our results for the self-force agree with the
Lorenz-gauge ones at large orbital-radii, and provide an explanation of why this is expected. We

discuss the extension of this implementation to more general orbits around Kerr.
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Chapter 1

Introduction

1.1 2-body problem in general relativity and the self-force
approach

The gravitational two-body problem in physics consists of an isolated system of two objects in
motion due to their gravitational interaction. In the Newtonian limit the motion of a gravitationally
bound system of two point masses has two conserved quantities — the energy and the angular
momentum (AM) — and the motion is precisely periodic. However, when we take into account the
relativistic behaviour of the motion, these quantities will not remain constant due to the emission
of gravitational waves, which causes a reduction of the orbital period of the two bodies. This
phenomenon was first observed in 1974 by Hulse and Taylor for the PSR 1913416 binary-pulsar [3].
The two-body problem in General Relativity (GR) is as old as the theory itself. Lorentz and Droste
[4] obtained the first relativistic correction to the Newtonian interaction. Einstein himself, with
Infeld and Hoffmann [5], formulated a method to approximate the equations of particles moving in
a relativistic field, giving birth to post-Newtonian (PN) theory.

In the relativistic context the concept of point particle is not suitable to approach this problem
directly, since we can not take advantage of the linearity that the equations of motion exhibit in
the Newtonian case: the usual representation of the point-particle as a delta-function becomes
inconsistent with the non-linearity of Einstein’s field equation (EFE) [6]. The simplest problem
we can try to understand in GR is that of a binary black-hole (BH) system, without taking into
account any internal properties that make the problem considerably more complicated.

The description of this problem in GR can be treated in different ways depending on the mass-
ratio and separation of the orbiting objects. We can identify three different regimes, see Fig. [L1l
The first one corresponds to a sufficiently large separation between the two objects, where the
objects are treated as point-like at first approximation, and this regime allows a PN treatment.
In this scheme we incorporate GR corrections to the Newtonian dynamics order by order in the
separation. However, when the two masses are of the same scale and the separation distance is of
the same order of magnitude as the radius of the bodies then the only description possible is given
by Numerical Relativity (NR) simulations.

There is a third scenario possible, the so-called extreme-mass-ratio inspiral (EMRI), see Fig.
In this regime the separation distance is small but the mass-ratio of the bodies is large.
The problem is then amenable to a perturbative treatment in which at zeroth-order the motion is

geodesic in the background geometry of the large BH. At the next order we take into account the
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Figure 1.1: Parameter space of the relativistic two-body problem. The mass ratio of the two bodies
in log scale is on the z-axis, the average separation of the orbiting bodies in log scale is on the
y-axis. The overlap between PN theory and self-force calculations allows to test both frameworks
and obtain high-order PN terms. The dotted lines indicate a blur and smooth transition between
these regimes.

linear perturbation due to the small but finite mass of the particle. This arrangement gives rise to
an effective gravitational-self-force (GSF) which “accelerates” the particle.

We may identify two pieces of the self-force (SF), the conservative and the dissipative. The
dissipative piece of the SF removes energy and AM from the orbiting bodies, and radiates them
away as gravitational waves. The conservative piece of the SF modifies the positional elements of

the orbit; for example, it is responsible for the shift in orbital precession [7, Ig].

Figure 1.2: Artistic representation of the extreme-mass-ratio-inspiral (EMRI) regime, where a com-
pact object of mass m is embedded in the gravitational field of a central BH of mass M > m. The
‘small’ particle experiences a back-reaction effect or self-force. Credit: NASA.

One of the key sources of gravitational waves for low-frequency gravitational-wave detectors is
the inspiral of compact objects into massive BHs in galactic nuclei. Ground and future space-based
detectors require accurate models of the inspiral orbits, which must take into account general-
relativistic radiation-reaction and other gravitational back-reaction effects of the SF. The European
Space Agency plans to launch in the year 2034 the Furopean New Gravitational Wave Observatory
[9] (based on the Laser Interferometer Space Antenna, LISA) which would have its peak sensitivity
around 1 mHz. This sensitivity would enable observation of signals from inspirals into Kerr BHs
with masses in the range of ~ 5 x 10> — 5 x 10"My. Ground-based detectors, such as the Laser

Interferometer Gravitational-Wave Observatory (LIGO), have not been able to detect gravitational
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waves so far, but the ongoing upgrade to advanced LIGO will lead to an improvement in the sensit-
ivity [10] by at least a factor of 10 and it may be able to observe intermediate mass-ratio inspirals
(IMRIs) with mass-ratios in the range of ~ 10:1 to ~ 100 : 1 [11]. Such IMRIs could be modelled
combining GSF results and NR simulations. The planned underground Einstein Telescope |12] (one
of the third generation gravitational-wave detectors), with improved sensitivity at frequencies in the
range ~ 1 — 10 Hz, may be able to see from a few to several hundred IMRIs events per year |13].
To make an accurate parameter-extraction and exploit the full scientific value of EMRI signals it is
required to have accurate theoretical templates of EMRI waveforms, which requires the knowledge

of the SF as prerequisite.

Figure 1.3: Artistic representation of a space-based detector (like the project eLISA) detecting
gravitational waves. Credit: NASA.

The modern history of SF calculations began in 1997 with the formulation of the first-order
equations of motion for the GSF by Mino, Sasaki and Tanaka [14], and independently by Quinn
and Wald [15]. The resulting equation of motion is usually referred to simply as the MiSaTaQuWa
equation [see Eq. [Z4I)]. Shortly after that, in 1998, the inaugural Capra meeting was held in
California and has continuously brought together relativists devoted to the various aspects of SF
calculations and its application to the exciting prospect of detecting gravitational waves emitted by
EMRIs.

1.2 Recent advances in self-force studies

The basic idea behind the MiSaTaQuWa formulation is to identify two length-scales of the problem,
one associated with the small orbiting particle and a second one related to the radius of curvature
of the background in which the particle is moving. The first scale corresponds to a “near” zone
where the geometry is given approximately by the particle’s geometry (in the original derivation
it was considered Schwarzschild but this restriction was removed by Gralla and Wald [16]) with
tidal-type corrections due to the background metric. The “far” zone, where the internal structure
of the moving particle becomes less important, is then given by the background spacetime weakly
perturbed by the now distant “point-particle”. The two asymptotic expansions of the metric are
then matched in a “buffer” zone where the two geometrical descriptions are valid. This constrains
the motion of the particle (from a far-zone point of view) yielding the expression for the SF in terms
of the “tail ” field. This tail can be interpreted physically as the part of the metric perturbations

(MP) arising from the waves being scattered off the background curvature. This is broadly speaking
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the description of the matched asymptotic expansions method (See Appendix [A] for a brief review
of the method). MiSaTaQuWa equation was later formulated more rigorously by Pound [17] and
Gralla-Wald [16]. A full pedagogical derivation can be found in the review by Poisson et al. [18].

The SF is a gauge-dependent notion, as we explain in the next Chapter. The behaviour of the
SF under a gauge transformation was first studied by Barack and Ori in ref. [19]. The MiSaTaQuWa
equation was formulated in the Lorenz gauge (LG), where the field equations become hyperbolic and
the representation of the particle’s singularity is locally isotropic. These two features (hyperbolicity
and local-isotropy) are essential to apply matched asymptotic expansions. This provides a practical
way to solve the field equations numerically.

Several schemes have been proposed in order to implement the LG formalism of the SF in
practical calculations. The basic challenge is how to subtract the singular piece of the MP to obtain
the correct tail field, responsible for the SF [see Eq. (241) and the discussion below for further
details]. Instead of referring to the tail piece of the MP, Detweiler-Whiting |20] proposed that we
could decompose the physical MP into regular and singular pieces [see Eq. (2:47)]. The regular part
corresponds to a solution of the vacuum Einstein equation and it is smooth, unlike the tail field.
The regular field gives rise to the same SF as the one obtained from the tail field and it allows an
interesting interpretation of the SF: the particle moves along a geodesic of an effective spacetime
with a metric given by the sum of the background metric and the regular field, gog + hgﬂ. However,
in practical calculations both interpretations involve subtracting divergent quantities, which is not
easily done numerically.

Let us present a brief description of three techniques proposed to implement MiSaTaQuWa’s
formulation in practice. We focus our attention on the one that has been the most successful in
practical calculations (see Table [[LT]) and it is also the one we will use throughout this work (see
Sec. 24). This method is referred as ‘mode-sum’ method.

Worldline/matched expansions. This method! involves computing the SF as an integral over the
past worldline of the particle. The integrand corresponds to the Green’s function for the appropriate
wave equation, namely the linearised EFE. This integral is calculated directly by matching together
two independent expansions, see Fig. [[4l As suggested by Anderson [21], in the quasi-local regime
the integral is dominated by the recent past, and can be represented using the Hadamard expansion.
The analytical form for the Hadamard expansion was obtained to very high accuracy by Ottewill
and Wardell |22, [23].

The quasi-local expansion is matched to a second one, which takes into account the distant past
along the worldline. It was shown by DeWitt and DeWitt (for the EM case) |24], and by Pfenning
and Poisson [25] (for the gravitational case) that this second expansion is relevant for the SF. The
signal produced by the particle at a certain time in the past will scatter off the centre of mass of
the system and then re-interact with the particle at its current location. The full Green’s function
was obtained by Casals and Dolan for a static scalar-particle in a Nariai spacetime? [26] and for
Schwarzschild [27]. Some progress to evaluate the Green’s function in the Kerr case was recently
reported [28].

Mode-sum method. This method was introduced by Barack and Ori [29431]]. In this approach one
calculates the contributions to the tail-field mode by mode in a multipole expansion by subtracting
finite quantities, “regularization parameters”, for each mode. The values of the regularization para-

meters are obtained analytically by analysing the singular behaviour of the field near the particle.

INot to be confused with the matched asymptotic expansions method described previously in this section and in
Appendix [Al
2A simple toy model of a BH.
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This method is also practical in the sense that it provides a self-testing mechanism: if either the
value of the regularization parameters or the value of one of the numerically computed modes of
the unregularized “force” are wrong, then the mode-sum formula [see Eq. [Z53) below| may not
converge (since at large ¢ the computed modes have to agree with the analytical regularization
parameters).

Implementations using the mode-sum

formula have been successful so far in a vari-
Present location of

the particle ety of calculations [32-35]. There has been

work by Barack and Sago regarding the GSF
;/ Integral using the in a Schwarzschild background for circular
; Hadamard expansion orbits [36] and eccentric orbits [37]. War-

1

1

! burton and Barack have computed the scalar
*A Matching point

1

#(Tmat) SE for a particle orbiting around a Kerr
‘\\_ Boundary of the valid domain BH for circular-equatorial orbits [38, 139],
s, for the Hadamard expansion circular-inclined orbits [40] and for eccentric-
A}
‘\\ Integral outside the equatorial orbits [41]. In the electromag-
v quasi-local region netic case of a charged particle following a

' geodesic around a Schwarzschild BH, the SF
1

! has been calculated by Haas [42] using mode-
sum regularization. Linz et al. [43] and
independently Zimmerman et al. [44] con-
Figure 1.4: Schematic representation of the matched
expansions method. Two independent expansions are o ]
used to obtain the SF at z(7g), the two of them are the gravitational field couples with an elec-
matched at z(7Timat) in the past history of the world- tromagnetic field (the work of Zimmerman
line (7mat < 7o). The past light-cone (shown in pink) 4150 considered separately the coupling of
is bent due to the curvature of the background. The
first expansion (blue), in the recent past, is domin- ) o
ated by the Hadamard expansion. The second expan- Higher-order regularization parameters have
sion accounts for the early past of the history (green), been found in the LG by Heffernan et al.

and it is computed by an integral over the Green’s [47,146], and this now allows for a faster rate
function along the worldline I'(7).

sider the problem of calculating the SF when

the gravitational field with a scalar field).

of convergence of the mode-sum method.

Puncture methods (Effective-Source) [47-52]. This method was proposed for time-domain nu-
merical implementations in 241 or 3+ 1 dimensions. It involves splitting the regular part of the MP
tensor in terms of an auxiliary puncture field and a second residual field. The puncture field is given
analytically, as an approximation to the singular-field near the particle, so that the residual field
will yield the correct SF. Implementations relying on the puncture method have been successful for
the scalar SF both in Schwarzschild [50, 151,153, 54] and Kerr spacetimes [48], with extensions to the
GSF in Schwarzschild geometry in 241 dimensions [49]. And recent progress has been reported for
the Kerr case [55].

1.3 Challenges in self-force calculations and radiation-gauge

approach

Traditional calculations of the SF rely on numerical solutions of the linearised EFE in the LG |77].
With the MP as an input one may obtain the value of the SF at the particle’s location using the

mode-sum method or the puncture method. On Kerr spacetime the tensorial field equations in
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Table 1.1:
inspirals.

Summary of regularization methods developed for self-force calculations of BH binary
The references for the scalar SF include a full computation of the SF value, except

the (quasi-local) entry. The distinction (quasi-local) is made to indicate that the full worldline-
calculation is not included in the references. The entry labelled with (approz) used an approximated
expression, accurate to leading-order in M, for the Green’s function to calculate the SF. For the
EM and gravitational cases, the references for Kerr address only the regularization method and not
the full computation of the SF. Similarly the branch cut entry refers to an unpublished attempt to
evaluate the branch-cut piece required in the early-time expansion of the worldline method. Taken

from [56].
Case || Worldline/matched expansions | Mode-sum Effective Source
< || circular (approx)[21];
% generic (quasi-local) radial[60]; circular
& || [22. 26); circular[61-64]; 33, 39, 47, 50, 53, 67];
<§ generic[27, 57, 58]; eccentric[32, 45, 51, 65, 66]; | eccentric[68];
E | 5 || static[59]; static[59]; evolving[69];
g | @ || accelerated|[23];
@ circular[70];
£ || generic[22]; .equfltor1a1.[38, 46); circular[48];
¥ accelerateci[23]' inclined circular|40) ; eccentric[??;]'
’ accelerated[43]; '
static[71, 72];
= static[59];
% eccentric[42, 45];
S . ) static(Schwarzschild-
= CE static[59); de Sitter)[74]; o
M| g radial (Reissner-
e Nordstrém)[35];
£l _ equatorial[46]; o
o accelerated[43];
=
Z ( s radial[??]; ]
— | & || generic (quasi-local)|75]; circular|2, 34, 77-83]; . )
g <§ circular[54] eccentric[l, 45, 84-90]; circular[49];
= ?} osculating[91];
= .
£ = | circular (quasi-local)[21]; cquatoriall46]; circular[55];
© % || branch cut[28]; accelerated[43] eneric[52][;
' circular[1, 92]; & '
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the LG are not separable and one has to deal with partial differential equations. This has been
a motivation to work in time-domain implementations [48-53] of MiSaTaQuWa formula with a
puncture, but the numerical evolution in this scheme is usually computationally expensive.

The numerical treatment of BH perturbations in Kerr spacetime becomes much simpler in the
radiation gauges. In these gauges it is possible to use Teukolsky’s formalism and the Chrzanowski-
Cohen-Kegeles (CCK) procedure to reconstruct the MP from the Weyl curvature scalars [81,193,194].
This only involves obtaining the solution of scalar-like wave equations, which admit full separation
of variables for each multipole mode. This procedure has been successful calculating gauge-invariant
quantities, such as energy fluxes [95, [96] and the red-shift invariant [83,192] (see Sec. [Z8l for a review
of this invariant). However, in this gauge a SF formulation was still unavailable until the present
thesis [1], which provides two methods that use the reconstructed perturbations in a radiation gauge
(RG).

The perturbation associated with a point-particle in the RGs takes the form of a string-like radial
singularity [19] at any given time (this is a gauge artefact of this class of gauges) as we will show
in Chapter Bl This string singularity can be removed, but only by paying the price of introducing
a discontinuity across a surface intersecting the particle. In short, we can say that while the LG is
regular but not practical for SF calculations in Kerr, the RG is practical but generally not regular.

In this sense the methods developed in this thesis are both regular and practical. The basic
idea is to work in a gauge where it is relatively easy to obtain the MP numerically, such as the
RGs. We will discuss two different classes of gauges that take advantage of the ‘simplicity’ of BH
perturbation theory.

The first of those classes corresponds to a local deformation of the RG to resemble the LG to
leading-order. In this class we can directly apply MiSaTaQuWa equation [19] and use the standard
LG mode-sum formula. Another advantage is that the interpretation of motion follows the same
description as its LG counterpart (see Appendix [Al for a review of the motion of the centre of mass
in the LG). The difficulty of these gauges lies in relating them to the undeformed RG. This idea
had been suggested previously |19, 197] but never fully implemented until the present work.

Our second class of gauges corresponds to full RGs without any deformation. In this class the LG
mode-sum is not valid any more, and a different regularization method is required. Furthermore the
understanding of the LG equation of motion requires modification to accommodate the pathologies
of the RG (see Appendix [A2).

The main practical results of these two approaches are modifications to the standard LG mode-
sum formula. In other words, two new mode-sum formulae: the first one requires the modes of the
unregularised force calculated from either the “inside” or the “outside” limit of the orbit, and certain
corrections to the LG regularization parameters; the second one requires both of those one-sided
values.

The MP in the RG, recovered using the CCK procedure, do not satisfy the linearised EFE. The
full solution — required to obtain the unregularised force — then needs an extra piece, which we
will refer to as the completion piece. Wald [98] showed that this completion part corresponds to
perturbations in the mass and AM parameters, perturbations to other algebraically-special solutions
(C-metric and Kerr-NUT), and gauge perturbations. In Schwarzschild, the completion describes
solutions to the monopole and dipole parts of the EFE. The situation does not follow directly in
the Kerr case where there is an infinite coupling between different harmonic modes. This remained
an open problem of BH perturbation theory until we fully addressed it in this thesis |99] for all
(equatorial) orbits in Kerr.

We accompany our analytical method with a numerical calculation of the GSF of a particle
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orbiting a Schwarzschild BH, which serves as a test case for the more complicated problem of Kerr.
This test case provides a comparison of the computational cost with respect of a similar computation

in the LG. It also serves to anticipate some of the difficulties we will encounter in the Kerr case.

1.4 Layout of this work

In Chapter [2] of this thesis we give a brief review on the general formalism of the SF calculation. In
Sec. 2Tl we give review Teukolsky’s formalism, which will be useful when we attempt to calculate
the MP required to obtain the SF of a particle orbiting a Kerr BH. A practical way to solve the
Teukolsky equation numerically comes in the form of the Sasaki-Nakamura equation included in
Sec. BT 4L The solution of this equation, usually referred as Sasaki-Nakamura field, is related
to solutions of the homogeneous Teukolsky equations by a simple transformation. This will be the
basis of our numerical implementation, in which we will use the metric-reconstruction procedure first
formulated by Chrzanowski [93] and Cohen-Kegeles [94] (CCK reconstruction). This reconstruction
starts at the ¢ = 2 spin-weighted harmonic mode, and it requires the inclusion of the completion
piece mentioned above. The treatment of the completion piece requires special considerations and
it will be reserved for Chapter Bl Together the reconstructed and completion pieces correspond to
what we will refer in Sec. as a completed radiation-gauge. This completed gauge is a solution
of the full linearised-EFE. In Sec. we give MiSaTaQuWa formula, and the equation of motion
in Sec. 23l In Sec. 24 we will summarize the essence of the mode-sum approach, which is the
one we will be using in our implementation. As mentioned above, the SF is not a gauge-invariant
quantity. In Sec. we consider how gauge transformations from the LG to other regular gauges
affect the SF. In Sec. we present a gauge-invariant quantity, which is useful for comparisons of
SF calculations in different gauges.

In Chapter Bl we give a detailed description of the formalism we obtained for SF calculations.
This reformulation will allow us to calculate the SF using the RG reconstructed-perturbation.
In Sec. we will work in a basis of Fermi-like coordinates, which allows for a straightforward
analysis of the Kerr spacetime. We include a detailed calculation of the leading-order term of the
gauge-transformation generator that locally relates the singularity of the RG perturbation with
the singularity of the LG perturbation. We give a classification of the RGs based on their singular
structure. We discuss which of these types of RGs are suitable for numerical implementations, and in
particular useful for SF calculations. We develop the approach (proposed in |97]) of locally deforming
the RGs to fall in the class of gauges that relate to the LG by a regular gauge-transformation [19],
and in which the standard LG mode-sum is still valid. We also discuss the use of the direct (without
deformation) computation of the SF using the CCK-reconstructed modes. In the two approaches
we just described, using deformed and undeformed RGs, we will require modifications to the Lorenz
mode-sum formula. These modifications will be presented in Sec. for the locally-deformed gauge,
where we also find corrections to the standard LG regularization-parameters. In Sec. B4 we find
the modifications for the undeformed gauge. The particular expressions for the ‘new’ regularization
parameters will be given explicitly (for a particular extension) in BL coordinates in Appendix

In Chapter @ we present the numerical results of the first implementation of the method described
in Chapter Bl We specialise to a particle orbiting a Schwarzschild BH in a circular orbit. The
algorithm of our computation appears as Sec. [£Jl This algorithm can be used for the Kerr case
with minor modifications. The details of the implementation are given in Sec. In Sec. E2.7]

we discuss the inclusion of the analytical axially-symmetric modes. In Sec. 2.2] we discuss the
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numerical evolution of the Sasaki-Nakamura field. This implementation uses the RG reconstructed
modes of the MP for obtaining the retarded force, and we work in both the Ingoing and Outgoing
RGs. The final value of the GSF will be obtained using the appropriate mode-sum formula. The
completion, which is not obtained in the reconstruction procedure, is included in the LG as described
in Sec. 2.4l Our numerical implementation will have a cut-off in the number of calculated modes,
and the remaining modes are included by performing a fitting to a power series. In Sec. .27 we
describe the details of this fitting for the force. The numerical results appearing in Sec. [£.3] include
the convergence plots of the radial and temporal components of the SF, the convergence plot of
the gauge-invariant quantity H (see Sec.[2.6]). The sources of numerical errors are discussed in Sec.
3T and in Sec. we show the convergence of the GSF. In Sec. we show results for the
energy-fluxes and H generated with our code, and demonstrate agreement with the literature. In
Sec. 3.4 we make an asymptotic comparison of our GSF values with the corresponding LG values,
and estimate the gain in efficiency of working in the RG against a LG implementation [36].

The homogeneous pieces that complete the reconstructed MP, namely the completion piece
we mentioned before, can be included in the ‘Boyer-Lindquist gauge’ This gauge corresponds to
variations of the Kerr mass and AM in Boyer-Lindquist (BL) coordinates to other solutions with
arbitrary amplitudes. In Chapter Bl we present a rigorous procedure to determine those amplitudes,
based on imposing regularity of some gauge-invariant quantities off the particle. In Sec. 5T we give a
derivation of those auxiliary invariants. We will briefly discuss other approaches to this problem: in
Schwarzschild by Price |100], Keidl et al. |[81] and by Dolan-Barack [49]. We also discuss a numerical
method for a similar configuration, in Schwarzschild and Kerr, that was recently presented by
Sano-Tagoshi [101], [102]. The analytical implementation of our method for circular orbits (around
Schwarzschild and Kerr) will appear in detail in Sec. 5.2 and B3l respectively. In Sec. 54 we perform
the appropriate modifications to our procedure, and consider eccentric-equatorial orbits around Kerr
spacetime. This will be done analytically just like the circular-orbit cases. Our method is consistent
in the case of circular orbits with the results of Dolan-Barack [49]. While logically this should
appear before the formulation of Chapter Bl we address it last to avoid impacting the flow of the
discussion.

Notation: Throughout this work we use geometrized units (with G = ¢ = 1) and the metric
signature —+++. For gauge transformations generated by a vector £, we use the sign convention
z® — % — £%. Greek indices «, 3, 7,... run from 0 to 4. Lowercase Latin indices refer to spatial
coordinates and run from 1 to 3, except briefly in Chapter[5l Uppercase Latin indices refer to the two
angular coordinates {60, ¢}. We denote the metric-compatible covariant derivatives by semicolon,
and partial derivatives with a comma. Bold indices correspond to projections with respect to the
Kinnersley tetrad (¢, n, m,m). We denote complex conjugation of any quantity a by a except for the
metric perturbation h in Chapter 2 where h will denote the trace-reversed perturbation. Metric-
compatible connections are calculated using I';, = % (958,~ + gvs,3 — 9B~,5) and components of
the Riemann tensor are calculated with R 5 =T'%;  — 1'%, s+ 1'%, T'%s — 'Y 51'%,, according to
the notation in [103].
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Introduction




Chapter 2

Self-force Preliminaries

This Chapter will introduce the concepts that are usually the starting point in the description of BH
perturbation theory for EMRI modelling. In Sec. 21 we include a brief review of BH perturbation
theory in the Newman-Penrose formalism, in which Teukolsky equation is formulated. As part
of this review, in Sec. Z.1.4] we give a short discussion of the Sasaki-Nakamura transformation.
This transformation allows a straightforward numerical evolution of Teukolsky equation. This
Sasaki-Nakamura transformation will be relevant in Chapter dl where we will use it to obtain the
homogeneous solutions of Teukolsky equation. We describe in Sec. the analytical method
by Mano-Suzuki-Takasugi [104] which allows to compute highly accurate homogeneous solutions
of Teukolsky equation. Even though we do not use this method in practice, we include it in this
Chapter for completeness.

In Sec. 22 Eq. (Z41]) corresponds to MiSaTaQuWa equation as it was derived using the method
of matched asymptotic expansions of Appendix [Al We will deviate from the original interpretation
of the SF arising from a ‘tail’ field and rather adopt the more intuitive (effective) interpretation by
Detweiler-Whiting [20] where the SF arises from certain regular piece of the MP.

In Sec. 23 we discuss the motion of a particle in the perturbed spacetime. This will be presented
as a correction to the geodesic equation of the background spacetime. This deviation arises from
the curvature of the background where the particle is embedded, and from a SF term.

Still in the context of the LG, we provide in Sec. [Z4] a brief review of the mode-sum formula.
The LG mode-sum is (to date) the most successful regularization method to obtain the SF (see
Table [T in the previous Chapter). The explicit expressions for the regularization parameters in
the LG are given in Appendix

In Sec. we describe how the SF (and the motion driven by it) is a gauge-dependent quantity.
We consider how moving away form the LG requires careful considerations in terms of the equation
of motion. We consider three general classes of gauges: gauges related to the LG by a continuous
gauge transformation; gauges related to LG by a discontinuous (but bounded at the particle’s
limit) transformation; and “parity-regular” gauges where the SF can be obtained using averaging

procedures around the particle.
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2.1 Gravitational perturbations of a Kerr Black-Hole

The study of gravitational perturbations around a Kerr BH can be done using Newman-Penrose
formalism [105]. In particular we are interested in reconstructing the components of the MP in a
RG AR (See Eq. (ZI8) in Sec. below). Full derivations and detailed explanations can be
found in Chandrasekhar’s book [106].

In BL coordinates the line-element for the Kerr geometry is given by [103],

dtd
5 5 14

. [o«? + a?)?

g2 (AaQSiHQH) a2 2asin?0(r? + a? — A)
¢ = — _

%
sin? 0dy? + Zdr2 + Xd6?, (2.1)

— Aa?sin?6
>

where we have used
Y=7r?+a%cos’d, and A=r’+a®—-2Mr. (2.2)

The event-horizon (EH) of the Kerr BH in these coordinates is at r = r,. = M + vVM? — a? and
the inner horizon is at r = r_ = M — vV M? — 2.

The Kerr metric has two Killing-vector fields £3}) = (9/0t)* and {(7,) = (0/0) and correspond-
ing conserved quantities: the specific energy & = —E(Og)ua = —u; and specific azimuthal component
of the AM L = fao)ua = u,. Namely the Kerr BH is stationary and axially symmetric. The
Kerr metric also admits a Killing tensor Q®? with the Carter constant Q = Q*? Uqlg as associated
conserved-quantity. Any orbit described by a test particle around a Kerr BH is fully specified by
these three parameters up to initial phases. The quantity Q is related to £ and £ according to [107]

Q = uj 4 cos® 0 [a®(1 — £ + csc® 0L%)] (2.3)

where 6 is evaluated at the test particle. Eq. (23] vanishes for equatorial orbits where § = 7/2 and
ug = 0.

2.1.1 Geodesic equations

A time-like test body of mass m in any spacetime will follow the geodesic equation mu®V,u® = 0,

see Fig. 2l In BL coordinates the components of the geodesic equation in Kerr are [107]

* (i)

< ) =Q — Lcot? 0 — a’cos? 0(1 — £)* = Vp, (2.4b)
) r’+a® 1) a’l

( A A
2\2 2 2
2<d—) = [MTG)QQSHPQ] +al <1r Z“ > (2.4d)
T

where the roots of V,, = 0 and Vy = 0 give the turning points of the orbit. In Chapter [6l we use a

(2 +a®) —al]’ = A[rP + (L —a&)*+ Q] =V, (2.42)

=Lcsc?0 + a& ( (2.4c)

more practical parametrization for eccentric-equatorial orbits.
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Figure 2.1: Example of an approximated geodesic orbit. A small BH follows the orbit as it falls
into a supermassive BH. Credit: Drasco and Cutler M]

2.1.2 Newman-Penrose formalism

Let us now summarise some useful results from the method developed by Newman and Penrose
]. We will use this method as a starting point for the MP reconstruction.

The principal null-vectors are given in BL coordinates by

2, 2
1
&= (T Za ,1,0,%) , nazﬁ(TQ—i—aQ,—a,O,a), (2.5a)
which are normalized as (“n, = —1 = {4,n® according to Kinnersley’s choice d@] The two
remaining null-vectors of the tetrad are
« ! ( in6,0,1 d ) d (2.6a)
m® =————— [ iasinf,0,1, — an .6a
V2(r + iacos ) sin 0
-1 i
m®* =————— | iasind,0, -1, — | , 2.6b
V2(r —iacos @) ( sm@) ( )

with m®ms, = 1 = mam®. The null-vectors in Eqgs. (Z3) and (Z0]) also satisfy orthogonality
relations: £,m® = £,m* = nom® = nom™ = 0 and (4, = n%n, = m*m, = 0. The corresponding
directional derivatives are D = ¢#9,,, A = n"0,, 6 = m*0, and d = m*0,. The non-vanishing

spin-coefficients are

1 5 _cot 6 i . P T, 0
- - = _—p—— g =——agp%sin T = ——appsin
e r—iacosf’ 02\/5’ V2 ¢ ’ V2 ee ’
1 ,_ 1 _ 5
p=50°08, v=ptzoo(r—M), a=m-4, (2.7)

where ¥ = (pp) .
The ten independent components of the traceless part of the Riemann tensor are encoded in five
complex curvature-scalars or Weyl scalars. These scalars are given in terms of the components of

the Weyl tensor Cogys5 as M]
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Yo = — Cagys LM 0m?, (2.8a)
1 = — Cuprys £0mP 0N, (2.8b)
Yo = — Cagys (OmPmTn’, (2.8¢)
V3 = — Coprys 0P mIn°, (2.8d)
thy = — CapysnmnTm?, (2.8¢)

and asymptotically behave as 1; = O(r=57%) with i = 0, 1, ..., 4 for outgoing waves [105]. For a Kerr
BH the curvature scalars have values 1o = 11 = ¥3 = ¥4 = 0, and )3 = Mp>.

The presence of the orbiting particle will produce a perturbation §1);, for i = 0,1, ..., 4 as before.
In general we write ¥; = 1/)1(0) + d1;. In the full EMRI system g, and 4 correspond to the
perturbations themselves. The two scalars 11 and 13 are gauge dependent, and one can always use
the gauge freedom to also set them to zero. This leaves only 1/150) = Mg? in the background, and
the perturbation is denoted by d1)s.

The first-order perturbations vy and ¥4 can be obtained by solving the inhomogeneous Teukolsky
equation [109] sourced by Ty [explicitly given below in Eq. (2I6])]. For a particular spin-value s the

equation is given by

— a?sin? 6}

0%y AMar 0%, [aQ 1 ] 0%,

(12 + a?)? a
A ot? A Otdyp A sin?0] 9p?

as O (e ¥s\ 1 9 (0 a(r— M) icosf] O,
A or (A 87’) sin 6 00 (s1n9 00 2s A + sin? 6 | 9y

M 2 _ 2
—2s [% — 7 — 1@ cos 9} %4—(82 cot? 0 — s)py = 4n¥Tys, (2.9)

which was shown to be separable (also by Teukolsky [109]), if we write a decomposition of the form

e =Y €D R (1) s Sem (6). (2.10)

m

The relevant gravitational perturbations are given by ¥.—_o(r) = 0 414 (r) and s—a(r) = Yo(r).
In the circular-equatorial orbits case (that will concern us in Chapter [)) we have w = mf), where
corresponds to the angular frequency. This frequency is calculated in terms of components of the

four-velocity by

u? M1/2
u ro’ " +aM?/?
In vacuum (T = 0) Eq. ([2Z9)) separates into
s d [ Nsr1dBs 2., 2\2 2 2, 2 Lo
A p A p +{[(r* + a*)*w® — daMrwm + a®m* + 2ia(r — M)ms
r r
—21’]\4(7‘2 — a2)ws] A7V 4 2irws — Ay — a2w2} R, =0, (2.12a)

1 d /. dS m? 2ms cos 0
nd 20 (sm@—) + <a2w2 cos?h — i 2aws cos i — anZo

—s?cot? 0 + Ay, — s%) S = 0. (2.12b)
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We have omitted the arguments and harmonic indices ¢m of Rs(r) and S(0) in Eq. ZI2) for
simplicity. When a # 0 the eigenvalues of the spheroidal harmonics are given by Agy, = As +
2amw — a*w? + s + 52, with Ay = ({ — s)({ + s+ 1). When a = 0, Ay, reduces to £(¢ + 1) and the
eigenfunctions correspond to the spin-weighted spherical harmonics §Sp,(0)e™? = Yo (6, ) (see
Appendix [E] for further details).

Explicitly for s = 2, —2 we get equations for Rs—2(r) = Ro(r) and Rs—_o(r) = Ry(r):

d d

A72% <A3%> + ‘/Q(T)RO = 47TT2, (213&)
d [ 1dR

A (zd—f) FVR0 = AT (2430

where the potential V(r) is read from Eq. (Z12a):

K?% —2is(r— MK
A
K(r) =(r* + a*)w — ma. (2.14b)

Vs(r) = + diswr — A, with, (2.14a)

The stress-energy tensor for the orbiting particle is modelled as a d-function distribution along

the worldline. It can be explicitly written as

7% =m [ uns e — 4 (1) (~g) M 2dr

Y sinf

= ;n2uau55(r —19)d(cosf — cosby)d(¢ — o), (2.15)
utrd

uuP
:m/ §(r —ro(7))d(cos @ — cos Oy (1)) (p — wo(7))0(t — to(7))dr

where m is located at the point x with coordinates (ro, to, 6o, @0 ), and (—g)*/? = L sin 6. The third
line is obtained by changing the integration variable from 7 to ¢ and integrating in a time-t interval
containing ty. The source T, can be obtained in terms of the components of T%? projected along
the Newman-Penrose tetrad. Explicitly for s = —2,2 (which are the values of s relevant to our
work) we have [106]

T o =20""{(A+3y—F+4p+ i) [(6 — 27 + 2a)T2a — (A + 27y — 27 + i) T44]
+(6 — 7+ B+ 3a+4m) [(A + 2y + 201)Taa — (6 — 7 + 2B + 22)Ta2] } (2.16a)
T2 :2{(6+ﬁ'—6(—3ﬁ—4T)[(D—26—2@)T13— (5+77T—2&—2ﬁ)T11]
+(D —3e+é—40—0)[(6 +27 — 28)T13 — (D — 2e + 26 — 0)T33]}, (2.16Db)
where the projections of the stress-energy tensor are given by:
Tab = €2eb Top, (2.17)

with e& = {£*, n® m* m*}.
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2.1.3 CCK metric reconstruction procedure

The RGs are given by the conditions

EBhL%G =0 = gaﬁhgé(}, for the ingoing radiation-gauge, and (2.18a)
nﬁhgg”G =0= go‘ﬁhgg(}, for the outgoing radiation-gauge, (2.18b)

where g, is the metric of the background spacetime and hqg corresponds to the MP. The second

equality corresponds to the extra requirements of the RGs to be trace-free.

The procedure to obtain the vacuum perturbation in the RG starting from the curvature scalars
1o and 14 was first proposed by Cohen and Kegeles for the electromagnetic case [110], and soon after
generalized to the gravitational case by Chrzanowski [93] and independently by Cohen-Kegeles [111].

The CCK reconstruction (after the names of the authors) can be computed from the expressions

hQFS == 07" {nang (6 —3a— B+ 57) (6 — 4o+ 7) + Mamp (A +5u — 3y +7) (A + i — 4v)
—n@mg) [(6 —3a+ B +57+7) (A +pu—4y)
+(A+5u—ji—3y—7) (0 —da+m)]} TORC 4 cec, (2.19a)

hit = — {lals (5 + a+ 38 —7) (8 + 48 + 37) + mams (D — ) (A + 39)
—Liamp) [(0—a+33—7—7)(D+30)+ (D+0—20) (6 +468+37)]} URC 4 c.c,
(2.19b)

where W is the appropriate ‘Hertz potential. The Hertz potential can be obtained from the Weyl

scalars according to [112]

81hp = LHTORE 4 1253V 9, PORE 3204y = A2D"  A2FORG, (2.20a)
80~ 19ps = LHUIRC — 12573y 9, YIRC, 2 = D'PIRC, (2.20b)
with £ = — [0y — scot @ + icsc00,] — iasin 00, and
- 2A r2 +a? a

In the vacuum region, ¥ satisfies the homogeneous Teukolsky equation with the opposite spin
of that of the Weyl scalar from which it is obtained. This implies that ¥ can be also decomposed

into harmonics as
Vo =" Room(r) sSem(0)e' ™D, (2.22)
m

where ngm(r) and ;Sp,,(0) are solutions of Eq. (ZI2) as before. The function ngm(r) can
be obtained by inverting Eq. (Z20) mode by mode. We also require the Teukolsky—Starobinsky
identity[106]:

24580 = D _2Sum, (2.23)

where D? = A2, (Acr,+2)%+8aw(m—aw)Acn (5Ach +6)+48a2w? [2X ¢y +3(m—aw)?]. The eigenvalue
Ach used by Chandrasekhar in |[106] is related to the one we used in Eq. ZI2) by Acp = As +s+2.
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2.1.4 Sasaki—Nakamura transformation

In principle one should be able to integrate the homogeneous Teukolsky equation from the horizon
(and from infinity). This approach does not work well in numerical implementations. The funda-
mental reason for this difficulty is that the Teukolsky potential is long-ranged, and the asymptotic
form of its homogeneous solutions are ill-behaved. This long-range potential makes it difficult to
properly set the phases of the asymptotic solutions [113]. The outgoing piece of the solution grows
~ r* times the ingoing piece as 7 — oo in BL coordinates. The latter is easily lost in numerical

calculations.

To overcome this difficulty, Sasaki and Nakamura [114] introduced a new variable to obtain
Teukolsky’s radial function R4(r). The so-called Sasaki-Nakamura function X (r) is governed by an
equation with a short-ranged potential. The physical solutions of the Sasaki-Nakamura equation
have desired asymptotic behaviours at horizon and infinity [L06]. The Sasaki-Nakamura equation

in Kerr is

?X dX
2 _F
dr? (r) dr,

—U(r)X =0. (2.24)

The tortoise coordinate is defined as

= 2.25
dr A ( )
and it is explicitly given in Kerr by
2Mry =Tt 2Mr_ T—7r_
«(r) = | — | . 2.2
() T+r+—r,n 2M 7’+—7’,n 2M (2.26)
The functions F(r) and U(r) of Eq. (Z24)) are given [114] by
1dnp A
F(r)y = -4 2.2
)= (2:27)
AU (r) 9 A dG
Ulr)=———"5+CG — —F(n)G 2.27b
()= Gag s + OO + g — FnG), (227h)
with
C1 (6] C3 Cq
T](T):C0+_+_2+ﬁ+r_45 (2.28)
and
2(r— M) rA
G(r)=— 2.29
(r) r2 + a2 + (r2 +a2)?’ (2.29a)
A2 [d 1dg 1dn 1 dg
U =V_ — |— 12 - | == —— 2.29b
1) 2(r) + B {dr(aJrAdr) n dr <Q+Adr>}’ ( )
B dK A
o = *ZKF+3ZW+)\S+6T—2, (229C)
A
8 =2A |:iK+ r—M — 2—] , (2.29d)
r

where the functions K (r) and V_,(r) are taken from the Teukolsky equation ([ZI3a) given above,
and ) is the same as that in Eq. (212H). The coefficients of 7 are

co = —12iwM + As(As + 2) — 12aw(aw — m), (2.30a)
c1 = 8ia[3aw — As(aw — m)], (2.30b)
co = —24iaM (aw — m) + 12a2[1 — 2(aw — m)?], (2.30c)
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c3 = 24ia®(aw — m) — 24Ma?, (2.30d)
cy = 12a*. (2.30e)

The explicit transformation that allows to calculate the radial function R4(r) that satisfies

Teukolsky equation in terms of the Sasaki-Nakamura field X (r) is
1 g B
Ra(r) = X _ 2.31
a(r) UKWFﬁ)X X | (2.31)

where the prime denotes derivative with respect of r, and x = X (r)A/vVr2 + a?.

2.1.5 MST (Mano-Suzuki-Takasugi) method

Analytical solutions to the radial part of the homogeneous Teukolsky equation were given by Mano,

Suzuki and Tagoshi, usually referred simply as MST method |104, 115]. These solutions are written

as an infinite series of known hypergeometric functions: the ingoing solution Ry (which is regular

at the EH) is written as a sum over hypergeometric functions oF; and the outgoing solution R.,

(regular at infinity) is written as a sum over (Tricomi’s) confluent-hypergeometric functions i,
n=oco

Ry =A™ (—x) 27" (1 — x)'- Z ay(s)eFi(n+v+1—ir,—n—v—ir;1 —s—2ie;;x),

n=—o00

Roo :2Uef7reefi7r(u+l+s)eizzu+ie+ (Z - el%)fsfiar >

e L 45— ie)
n:zoo i EZ i : J: i - gn (22)"a%(s)U(n + v + 1+ s — i€, 2n + 2w + 2 —2iz), (2.32)

where the different variables are defined as

w exT
=—“- = oM —en(1 — z) = exd -
x - (r—ry), € w, z=ek(l—x)=¢erE, ex 5
k=+1-a, r="T00 a:%. (2.33)
K

The parameter v (renormalized AM) has the low frequency limit v — ¢ as e — 0. In general v is

determined by solving the condition
R,(v)L,—1(v) =1, (2.34)

where R, (v) and L, (v) are the continued fractions defined by

v) = ay,(s) - _ Tn(s)
fult) ab_y(s)  Bu(s) + oy (s)Rnga(v)
V) = an(s) _ a?(s)
fnl?) a? 1 (s)  Bu(s) +74(s)Ly—1(v) (2.35)

The coefficients o, 87 and 47 are given [116] by

n lek(n+v+l4+s+ie)(n+v+1l+s—ie)(n+v+1+ir)
o =
v n+v+1)2n+2v+3)

)

e(e —ma)(s® + €2)
(n+v)n+v+1)

Br=—X;—s(s+1)+n+v)(n+v+1)+e +ele—ma)+
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73:7’L'Eli(n+l/fS+’L'E)(TL+I/7$7’L.€)(TL+Z/7’L.T) (2.36)
n+v)2n+2v-1)
The normalization coefficients A in Eq. ([2.32]) are
. 2
A—1 A-=0, (i)QS r1+s-— 21'e+) F'v+1-s fz'e) , (2.37)
ex) T(1—s—2iey) | T(v+1—s+ie)
with the relevant Starobinsky constants C (with s = 2):
|Co| =(Q3 + dawm — 4a’w?) [(Q2 — 2)* + 36awm — 36a°w] (2.38)

+ (2Q2 — 1)(96a°w? — 48awm) + 144w*(M? — a?), with Qs = Agy, + a®w? — 2awm.

2.1.6 Completed Radiation Gauges

The CCK-reconstruction procedure described in Sec. Z.1.3] starts at the £ = 2 spin-weighted har-
monic mode, since the spin-weighted spherical harmonics are not defined when ¢ < |s|. The Weyl
scalars (¢ or 14) required in this procedure give the full gauge-invariant information about the
radiative content of the solution. For vacuum perturbations Wald showed [98] that the remaining
contributions correspond to perturbations of the mass and AM, gauge perturbations and perturba-
tions of the Kerr metric to other solutions, namely to C-metric and Kerr-NUT solutions. The mass
and AM perturbations of Schwarzschild were studied (in the LG) by Detweiler and Poisson [117),
who showed the importance of these contributions in the context of BH perturbation theory and
SF calculations.
Thus the full MP in a RG has two pieces: a perturbation constructed using the CCK-reconstruction

procedure together with a ‘completion’ piece. We write this completed radiation-gauge as
Rad (rec) (comp)
Pog” =hos +hes (2.39)

where hg;c) is the CCK-reconstructed piece (given in the IRG or ORG) and hgfgmp) is whatever is
required so that hggd satisfies the linearised EFE. The completion piece in Schwarzschild can be
obtained by solving the £ = 0,1 modes of the EFE [83]. The non-separability of the EFE in Kerr
makes the problem much more difficult, which we address in Chapter

2.2 The MiSaTaQuWa formula and Detweiler-Whiting re-

formulation

Consider a point-like particle of mass m moving on the geometry of a Kerr BH with metric go3. We
recall that in general the concept of point-particle is not suitable in the context of GR. However
through the method of matched asymptotic expansions — as discussed in Appendix [Al— it has been
shown [14, [15] that the particle is described by the usual delta-function distribution within linear
perturbation-theory. The Kerr BH is characterized by its mass M and spin parameter a, and we
consider m < M. Due to the finite mass of the particle, the motion will not be geodesic in g. Let
hg%r represent the MP due to m in the LG. hg%r satisfies the gauge condition

T 1 r
97 e = 597 hS e (2.40)
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In what follows, for simplicity, we will refer to the LG perturbation as just hn,g. The distinction

from other gauges will only be required later in Sec.

Assume that the trajectory of the particle in gog = gag + hags is given by z§(\), where A is an
arbitrary parameter. Given a choice of a coordinate system in g we can project the worldline x§ ()
onto the background g on the basis of “same coordinates values” (we assume that the coordinates
in the two spacetimes would be the same in the limit m — 0 where the motion is geodesic). This
projection defines an accelerated worldline on the background, and we interpret such acceleration
as being caused by a GSF Fg;. We denote by 7 the proper-time along this worldline and the

four-velocity of the particle is given by u® = dx§ /dr.

According to the MiSaTaQuWa formula [14, [15] the GSF at a given point z§ can be calculated
from the tail field ht;él. This tail arises from waves being scattered due to the spacetime-curvature
and interacting with the field in later times. The tail field is continuous and differentiable every-
where, even on the worldline, but it is not a smooth function on the worldline: generally it is
not twice differentiable. The MiSaTaQuWa equation, as derived using the method of matched
asymptotic expansions of Appendix [A] takes the form
Fgye(xo) = lim mV*P R (). (2.41)

S
Zo

Here Bag is the trace-reversed MP ! given by

1

hag = hap — §gagg‘“’hw. (2.42)
The operator VY7 in Eq. Z41)) is the “force” operator [97]. The explicit form of the force operator
arises from considering the difference between the trajectory in a perturbed spacetime and the one
in the background spacetime, where the particle experiences an external force perpendicular to
its velocity. The perturbation can be any smooth external weak gravitational-perturbation, and
produces a fictitious ‘gravitational’ force Fy,,. When the perturbation % is produced by the test
particle, Fgi, o corresponds to the SF. This difference between the accelerations in the two spacetimes
can be expressed according to [19]

Faray = —m(6% + uau,\)AF;\wu”u”, (2.43)
where AFI\W = I‘Z\U - I‘le, is the difference of the connections compatible with the perturbed metric

(") and the background metric (I'). AL}, can be written in terms of & as

1

AI‘ﬁV = 59)\& (hapw + havi = Twsa) - (2.44)

Explicitly, the force operator is given in terms of the metric tensor g,g, the metric-compatible
covariant derivative V., and u® by

1

veby — 1 (290‘5uﬁu7 _ 4go‘ﬁu7u5 — 2uluBuru’ + uagﬁ’yuzi + gazsgﬁ’r) Vs, (2.45)

where u® is a smooth extension of the four velocity in the neighbourhood of the worldline. A useful

way to calculate Fyyay (which we will use in Chapters[Bland ) is to substitute Eqgs. (2.45]) and (2.42))

1Here and for any MP h refers to trace-reversed fields, not to complex conjugation.
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in Eq. (2Z241) to obtain

(o3 m (63 (03 v
Fgan (@) = = (9™ + uu?) [Vyhop (@) + Vihuus (2) = Vshyu ()] uu
1
=—mP* |V, h,s(z) — §v5hlﬂ/($) utu. (2.46)

where P = g% + u*uP. When the h,s in Eq. is replaced by the tail part of the LG
perturbation Fg ., gives the SF.

Let us consider the retarded perturbation hget), which satisfies the inhomogeneous EFE. Det-
weiler and Whiting showed that the same physical SF— as the one obtained from the tail perturbation—
can be obtained in terms of a regular (smooth) field Bgﬁ, which is a solution of the vacuum Einstein

equation [118]. This regular field is related to the retarded perturbation as
RS =S + h ok, (2.47)

where l_ziﬁ is certain locally-defined singular piece of the retarded field near the location of the
particle [the leading-order expression for the S part of the MP in the Lorenz gauge will be given in
Fermi-like coordinates explicitly in Eq. (8:8])]. The Detweiler-Whiting singular field at a point z,
off the worldline, depends only on the points of the worldline that are space- and null-like separated.
The regular field depends an all the points on the worldline up to the advanced time v, as shown
in Fig.

N s N s
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e SC()(U) N e N
I'(7) I(7)
Singular Regular

Figure 2.2: In green we show the region of the worldline which supports the Green’s function of
a point . The worldline I'(7) appears in blue. In curved spacetime the singular field depends on
the history of the particle in the interval u < 7 < v; the regular field depends only on the interval
—00 < T < v. u and v are the retarded and advanced times respectively. The regular field is only
causal at coincidence.

The singular part of the MP does not contribute to the value of the SF [11&]. We can then
calculate the SF as

Fa(zo) = mvamf_lﬁ%(ifo)- (2.48)

S

We comment that the fact that the particle will move along a geodesic of the spacetime g.g =
9as + ha% is not enough to give any physical “substance” to the R-field of the particle, and it should
be understood as an effective field; the physical perturbation is still given by hg;t).



22 Self-force Preliminaries

2.3 Equation of motion in the Lorenz-gauge

Defining the position of the particle requires more than just giving the value of the SF. The SF
is gauge dependent, and any expression of it must be accompanied by the information about the
gauge to which it corresponds.

Let us consider that the point-mass m pro-
duces a perturbation eh,,;, + O(£?), where ¢ = 1 r
is used to count powers of m, in the background
spacetime g,,,. We write the object’s worldline

as the perturbative expansion? 7

2M(1,e) = 2b (1) + ezl (1) + O(?).  (2.49) / 26(1) + ez (1) + O(e?)

The leading term z/'(7) is the coordinate de- /

scription of a geodesic I' of the background () =)

spacetime. The term, z{’, is a vector field Figure 2.3: Perturbative treatment of the world-
defined on T' and describes the first-order de- line I'. The vector field z{(7) describes the first
viation of the object’s centre of mass from the order deviation of the object’s centre of mass. We

. . 2
worldline, where the centre of mass is defined neglect the contributions of terms O(e”).

by the object’s mass dipole moment in a locally

inertial frame centred on I', see Fig. 23] This first-order correction is |16]

2
D Z1Lor

S = —mB st o + P, (2.50)

where F,
addition to the SF, the equation of motion contains the term fRo‘ug,,u“szoru”, which is purely a
background effect. This term describes the fact that if F); forces the small object slightly off T',

the object continues to move relative to I' due to the background curvature.

. o< m? is the SF in the LG produced by the MP of the point-mass moving along I'. In

The SF in the LG can be written in several (equivalent) forms: an alternative form to Egs.
2410 and ([243) is that by Gralla. Gralla, based on the work by Quinn and Wald |15], showed that
the tail formula of Eq. (Z41]) can be written in terms of a spatial average [123], which we shall refer
as the Quinn-Wald-Gralla form

FQy = lim # / FardS. (2.51)
The integral in Eq. (Z5I) is taken over a small two-sphere centred on the worldline I' with a
constant geodesic radius s perpendicular to I', dS = s2d() is the surface element on that sphere and
d€) = sin 0dfd¢ corresponds to the surface element on a unit sphere. The angles (6, ¢) on the unitary
sphere around the particle are defined in the usual way from 2 = (sin 6 cos ¢, sin 6 sin ¢, cos §). The
integration is performed for each component in a local coordinate frame centred on the worldline?.
The choice of local coordinates warranties asymptotic flatness to leading-order [123]. The quantity
F2Lor is the retarded force, calculated from hgeg using Eq. Z46). F2LoT diverges at the particle,

(ret) (ret)
and it is only defined as a field off the particle by taking a smooth extension of the four velocity

2An alternative “self-consistent” description of the motion, used often in the literature and put on a system-
atic basis in Refs. [119-122], instead describes the trajectory in its unexpanded form z*(7,e). We prefer to use a
perturbative expansion of the worldline, as presented by Gralla and Wald |16].

3Gralla showed that Eq. [Z5I) can be expressed alternatively as an average over a circle or over two antipodal
points [123].
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u® off T', which we denote as 4®. This extension is defined in [123] by parallel propagation along

geodesics perpendicular to T'.

2.4 Mode-Sum regularization

A practical way to implement MiSaTaQuWa formula and obtain the SF is given by the mode-sum
regularization procedure. As we mentioned in previous sections, the SF (at the particle’s location

x® = x§) can be obtained by subtracting the singular part of the force from the retarded value

Fiae(wo) = lim [ Fo () = FE(@)] | (2.52)

Tr—rT0o

where the fields F(O‘et)

Let us expand F(ret)

the vectorial nature of the SF and treating each of their components as a scalar function; see [66]

(z) = mVePTRGY (2) and also F§(z) = mV*1hS, (x).

() and F§(z) in spherical harmonics on the surface ¢, = const. (ignoring

for a more sophisticated covariant approach). The SF can be written as a sum over finite ¢-modes

(obtained by summing over the m dependence of the harmonic modes for a given ¢) [124]:

(o) = lggoz:[ (@) — F&'(@)] . (2.53)

The quantities F2 (ret)

perturbations diverge there. However, each of the individual ¢-modes F(ret)( r) and F§*(z) are

() and F§'(x) are divergent at the particle since the retarded and singular

finite, even at the particle.

It is known that F$¢ has the large-¢ expansion F§* = A“L + B* + C*/L + ... [124], with
L = ¢+ 1/2. Since the mode-sum in Eq. (Z53]) converges faster than any power of 1/¢ (recall
Fety(x) — Fs(x) is smooth), we expect that both the retarded and singular pieces share the same
large-¢ power expansion with the same coefficients. We can then express Eq. (Z53)) as a difference

of two convergent sums, in the form

F2(20) Z[F(m) (o) F AL — B® — ca/L} 3 [Fgl (o) F AL - B* — C*/L], (2.54)
=0 =0

where the sign + depends on the side we approach the value of ro, (the quantity F(ret L FAYL

turns out to be direction independent). We expect that both sums converge at least as ~ 1/£. We

arrive at
F2(a0) Z( 4 (20) F AL - B* — C’“/L) —De, (2.55)
=0
with
EZ " (v0) ¥ AL — B* — C*/L). (2.56)

Equation ([Z355) is the mode-sum formula to calculate the SF in the LG. The coefficients A%,
B, C* and D“ are the f-independent regularization parameters for each component of the SF. The
LG regularization parameters appear explicitly for eccentric orbits of Kerr in Appendix [Bl of this

thesis (see [125] for a full derivation). The values of the regularization parameters remain invariant
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under gauge transformations from LG that are sufficiently regular [19]. As in Eq. Z351)), Fyet)(z)
is only defined as a field off the particle by choosing an extension @®. The choice is arbitrary in Eq.

[2358) as long as the regularization parameter A%, B* C%, and D® are calculated accordingly.

2.5 Gauge and motion

Let us now consider the effect on the SF induced by a gauge transformation. First we look at
the class of gauges studied by Barack and Ori [19], namely those related to LG by a continuous
gauge transformation. Calculations of the SF in a different gauge correspond simply to determining
how Eq. ([Z50) transforms under the gauge transformation that relates the new gauge with LG,
% — 2'* = % — €2,

Let us prescribe a foliation of spacetime near I with 3-dimensional spatial hypersurfaces ¥
intersecting I' orthogonally. Let z* be coordinates on each ¥, with 2 = 0 at I'. We can arrange
for z{* to be orthogonal to I' and then focus on the spatial component z{. Due to our foliation of
spacetime, the £* component is tangent to the spatial hypersurfaces, and the parallel component
does not contribute to the SF. We shall require £, to be bounded in the limit to the worldline. The
remaining Y-perpendicular component can diverge as we take the limit to I', but no more strongly
than In s. This divergence must also be spherically symmetric. Furthermore, these statements must
be valid on each X, eliminating pathological changes in the singular structure as we move forward
in time. Among other things, these conditions imply that: (a) the divergence of the first-order MP

or

in the new gauge, hag = hI&ﬁ + 2§(a;p), 18 no stronger than in the LG, behaving as 1/s near the
particle; and (b) the leading-order singularity is constant in time. If &, satisfies these conditions,
which also imply that Eq. (259) together with its proper-time derivatives along I' evaluate to a
finite result, we say the gauge is sufficiently regular to define the SF [1].

The gauge perturbation dhap = 2§(4;3) induces a change in the SF 6 FY . which can be calculated

using Eq. (2480):

1
SFC, = —EmPO‘)‘ (0hapw + 0havyy — Ohpw.a) uHu”. (2.57)
Substituting dh and using the Ricci identity &ny — §un = EPRPMV, we obtain [19]

6F€or = mPaA (6)\#1” + €PRP,LL/\V) utu”

D2
ij + Rawu#@w] , (2.58)

=—-m {PO‘)‘

where D&y /D1 = €y, u* stands for the covariant derivative with respect of the proper-time along
T.

In the Barack-Ori class of gauges £, is continuous, and Eq. ([Z358) has a definite value. The
equality used to get the second line of Eq. (2.58) holds only for geodesics. When u* is not geodesic
we will have an extra term ~ a*§),,, with a being the acceleration with respect to the geodesic.

Let us consider the LG equation of motion, Eq. (Z50). Under a gauge transformation, z{

transforms as 2§ — z¢{ + Az{, with

Az{ = — lim 3 /nanbébdQ, (2.59)

s—0 471'

where n® is the unit vector normal to the two-sphere centred on the worldline and containing the
particle, as before. A derivation of Eq. (2.59) appears in Appendix [A2]
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The vector &, that transform from the LG, can be written as &, (x%) = limga_,¢ o (%) +0(1) for
a gauge within the Barack-Ori class. Considering the identity [ nn®dS) = 47 /3, we can evaluate

Eq. [Z359) to find
Azf = —&r. (2.60)

In words, the gauge contribution to the deviation term from moving away from the LG is just the
transformation % — x* —£® evaluated at the worldline. This means that any gauge transformation

within the Barack-Ori class are just translations of the centre of mass.

Barack and Ori [19] showed that the regularization parameters are gauge-independent under a
continuous gauge-transformation from the LG. This continuity condition can be relaxed as long as

the gauge vector has a well-defined limit at the particle’s location.

We want to extend the class of gauges where Eqs. (Z50) and (2.58) may still be used, in particular
we want to include discontinuous gauges. This requires investigating how 2} ., in Eq. (Z50), is

affected by a discontinuous gauge-transformation.

Gralla and Wald [16, [126] showed how the SF can be obtained in gauges related to LG by a
transformation whose generator may have a direction dependence at the particle (but is bounded
there, and smooth elsewhere). For a subset of the Gralla-Wald class satisfying a certain parity
condition near the particle, Gralla eliminated the preferred role of the LG [123], showing that the
SF in this “parity-regular” class can be obtained by averaging the retarded force over a small sphere
around the particle, using Eq. (Z5]]). Gralla also showed that the LG mode-sum formula applies
within this class. Let us consider a gauge in this class: this gauge is related to the LG by a gauge
vector &, that is smooth off I', but is allowed a certain type of ill-defined limit to I". The vector must
be bounded at I' and its spatial components must have the local form &,(z°) = Z,(0)+ K, (n?)+0(s)
with K, having odd parity, K,(—n’) = —K,(n"), under the parity transformation n® — —n®. We
say that any &, is parity-regular if its spatial components have the leading-order form Z,(0)+ K, (n®)
with odd K,. Note that the integral of n®n®Kj(n®) vanishes because K3 is odd and nn® is even.

For such a gauge vector we can reduce Eq. (2359)) to the simple average

1
Az =——1i edQ 2.61
= gty [ g, (2.61)
which gives Az§ = —Z,(0). This type of transformation of the object’s position are as reasonable as
the result Az¢ = —£%|p: if the shift in position of a point depends on the direction one approaches

it from, then the average over all directions yields the net shift. Gralla also showed that for any
MP in his class, the GSF is given by the same simple spherical average of Eq. (Z51) as in the LG.
This form was originally taken as an axiom by Quinn and Wald in their derivation of the GSF in
the LG [15]. Gralla’s work shows, without assuming it as an axiom, that it holds true in a large
class of gauges; hence the name Quinn-Wald-Gralla we have given it. Additionally, Gralla showed,
based on this result, that in his class of gauges the GSF can be written in the standard mode-sum

form of Eq. (258), with the standard LG parameter values, lending great utility to these gauges.

Last, a gauge in the Gralla-Wald class is related to LG by a gauge vector £*. &% is smooth
off T' but is allowed an arbitrary (bounded) direction-dependent limit to T, as before the spatial
component has the form &,(z%) = Z,(0) + K,(n®) + O(s) but now K,(n’) is allowed any smooth
dependence on n® This means that Eq. [Z5I) does not generically holds true, since any piece
of K,(n®) that is not parity regular will contribute to the integral in a finite amount. K,(n®) is
referred to as a supertranslation. A parity-irregular MP is related to a parity-regular one by a

parity-irregular transformation [1].
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2.6 Conservative effects of the GSF and the red-shift invari-

ant

Retarded Advanced

Figure 2.4: In green we show the region of the worldline where the corresponding fields have
support. The worldline I' appears in blue. In curved spacetime the retarded field depends on the
past history of the particle where —oo < 7 < w; the advanced field depends on the future history
where v < 7 < 0o. u and v are the retarded and advanced times respectively.

To understand the physical consequences of the SF it is useful to distinguish between “conser-

vative” and “dissipative” effects. The physical SF is a sum of two pieces: Fiy = F&o  + Fil.,, where

cons diss?
the conservative and dissipative pieces of the SF are defined in terms of the retarded and advanced
perturbation, see Fig.[2.4l The advanced perturbation has support starting from the intersection of

the future light-cone with I". The conservative and dissipative pieces are defined by [97, [127]

o 1 o o o 1 o o
Fcons(T) = 5 |:Fself(ret) (T) + Fself(adv) (T):| ’ Fdiss (T) = 5 self(ret)(T) - Fself(adv) (T):| ’ (262)

where F alf(ret) is the retarded SF and Fscélf(adv) is the advanced one. Both Fsoélf(ret) (adv) satisfy Eq.

se

D) with htdl(z) — Eggt)’(adv) (x) in turn. In Schwarzschild, the components of the retarded and

advanced SF are related in the simple way [97]

F it (ret/adv) (T) = €(a) Faatt(adv ret) (= 7)), (2.63)

with €y = (—=1,1,1,-1), and choosing 7 = 0 at a radial turning-point of the orbit. For circular
orbits F! = F% = Fr

cons cons diss

component contributes only to the conservative effects.

= 0. Hence the t and ¢ components are just dissipative, and the r

Suppose that we carry out two independent calculations of the SF in two different gauges and
we want to test our results by comparing the two sets of results. As we showed in the previous
section, comparing the value of the SF itself would require knowledge of the gauge-generator that
relates the two gauges. Detweiler showed, for circular orbits in Schwarzschild [118], that there are
two invariant quantities that carry out non-trivial information about the conservative SF dynamics:
the orbital frequency © = u¥/u! and the contravariant ¢ component of the four velocity u® = U.

The gauge invariance of Q and U is restricted to gauge transformations (generated by the vector
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&%) that respect the helical symmetry of the perturbed spacetime. In other words, £* satisfies
(0 + Q0,)E" = 0. (2.64)

The physical interpretation of the gauge invariant U is less obvious than that of the orbital
frequency Q. Two physical interpretations of U were discussed by Detweiler [118]. First, U is a
measure of the gravitational red-shift experienced by photons emitted by the orbiting particle. The
photons are observed at a large distance on the orbital axis in the effective metric go5 + hgﬂ rather
than the true physical metric gog + hag. The second interpretation is related to the helical Killing-
vector k¢ = {1,0,0,Q} of the perturbed spacetime: the gauge independence of U implies that the
constant of motion & — QL = 1/u’ is also gauge-independent, while & = —u; (energy) and £ = uy
(AM) are not.

Explicit expressions for 2 and U, including SF terms, are obtained from the conservative r
component of the equation of motion mu’Vgu® = F< . the dissipative piece of the SF is ignored

cons*

for this analysis. For circular orbits (u” = 0) to linear order in m we get [128]

7o

7“0(7“0 — 3M) To
2m

Q=0 |1—-
2mM

Freons| — and U =0y (1= 2% Freoms), (2.65)
where 7q is the orbital radius (Schwarzschild r coordinate), Qo = (M/r3)Y/? and Uy = (1 —
3M /rg)~'/? are the geodesic values of Q and U, respectively. The expression in Eq. (Z67) tells us
that the effect of the conservative SF is to “shift” the values of 2 and U from their non-perturbed
values Qg and Uy at constant rg.

Despite the formal gauge-invariance of Q and U, the shift AQ(rg) = Q — Qq is in fact gauge-
dependent, because the radius rq is itself gauge dependent. In other words, two calculations of the
SF in different gauges with the same value of ry will correspond to two physically distinct orbits. To
overcome this problem we can express one of the gauge-invariant quantities in terms of the other.

Let 7 be proper time along the geodesic of the effective metric g = g + hR®. For a given event
along the orbit we will have two proper times: 7 along g and 7 along the projection on g. We
choose that 7 = 7 at the initial time, and in general they will be different everywhere else. We
associate each point along the trajectory given by g with a point with the same coordinates along

the trajectory given by g. Then to O(m) at the worldline of the particle it is easy to show that [32]

d 1
d—; =1+ H" with,  HP = Shluta’. (2.66)
In terms of the four-velocity @® = dx®/d7 we have
Q=a%/at =u?/ut = Q, U=a'=U1+ HD). (2.67)

Expressing U in terms of the gauge-invariant radius R = R = (M/Q?)'/3, we obtain the SF-induced
difference
AUR)=U(R) — (1 —3M/R)™Y? = (1 —3M/R)"'/?HE, (2.68)

Comparing the function AU(R) obtained in different gauges provides a non-trivial test of the cal-
culation of hgﬁ, and to some extent of the SF itself.

The equivalence of calculating the SF using different gauges was demonstrated by Sago et al.
[82] with the explicit calculation of AU(R). Two implementations (one in the LG [36] and the other
one in the Regge-Wheeler gauge [118]) showed an agreement for AU(R) within the computational
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error (~ 1075 in fractional terms).
The reqular part of H(et) = %hg;t)uo‘uﬂ (denoted by HR) is obtained using the mode-sum
formula [128]

o0

gt =3 [ngeﬂ(m) — By —Cy /e] — Dy, (2.69)
=0
with -
Dy =Y [H} (o) — Bu — Cu /], (2.70)
£=0

where H éret) are the modes computed from the retarded MP h(argt) and HS is the singular piece of
H(e%) The regularization parameters in Eq. (Z69) are explicitly [128]

By — —2m K( £ ) Cy=Dg =0 (2.71)
TR e \Bee) e |

where K is the complete-integral of first kind as defined in Appendix

The quantity H' is useful for validating different implementations [48, 182, 183, 192] and for the
extraction of PN parameters (coefficients in the large-distance expansion). A generalization for
eccentric orbits around Schwarzschild was recently presented by Akcay et al. [129)].

Other gauge-invariant effects of the GSF can be studied. Among those effect we find the shift
of the innermost stable circular-orbit [130-132] (ISCO shift) and the periastron advance [128, [133].
Moreover, other gauge-invariant quantities have been identified [134]: the spin precession, and four
independent tidal degrees of freedom (which correspond to three eigenvalues —two electric and one
magnetic—, and the angle from a scalar product between the electric and magnetic eigenvectors).
These invariants quantities have been recently studied [78,135] and successfully calculated [79] for
quasi-circular orbits around Schwarzschild. Recently the invariants in the octopolar sector (three de-
rivatives of the metric) have also been computed successfully by Nolan et al. [136]. These invariants

may be useful to compare between perturbation theory and PN theory.



Chapter 3

Gravitational self-force from

curvature scalars

The previous Chapter provided an outline of the ‘traditional’ theory behind SF calculations in the
LG. We focused our review on the mode-sum regularization method. We stressed the importance
of a careful analysis regarding gauge transformations of the SF, in particular those transformations
that are not related to LG by a continuous gauge transformation. We also introduced some of the
main tools required to apply BH perturbation theory in a RG, namely to recover the MP by solving
the separable Teukolsky equation. The formalism to obtain the GSF taking advantage of the RGs
requires careful considerations.

The preliminary analysis of Barack-Ori [19] identified that in general the RGs have a string-
like singularity, namely a singularity that is not confined to the location of the particle (like the
LG singularity), but rather extends from the particle to infinity (or to the EH) along a radial-null
direction. These string-like singularities would render the RGs not suitable to directly implement
the LG mode-sum formula.

In this Chapter we present a detailed explanation of how to derive a mode-sum formula for the
RG. This is a non-trivial task since these gauges fall outside the class of gauges related to the LG
by a regular and continuous gauge transformation, for which the usual description of the motion
in terms of MiSaTaQuWa equation was first derived. However, some of the RGs will fall within
the Quinn-Wald-Gralla class where the net shift in the position is obtained by averaging over the
two-sphere containing the particle, as discussed in Sec.

The structure of this Chapter is as follows. We start in Sec. Bl by defining a set of useful
Fermi-like coordinates around the particle’s worldline. In Sec. we will look at the singular
structure of the RGs near a point-particle; this will be done by obtaining the leading-order gauge
transformation between the LG and RG perturbations. According to the singular structure of this
gauge transformation we will identify three types of RGs: full-, half- and no-string RGs. Our
considerations apply to either the ingoing and outgoing RGs. In Sec. B2.7 we describe how to
change our Fermi-like coordinates results to any other choice of coordinates.

Equipped with the gauge transformation we will allow for slight modifications of the RG to
define a different gauge, as it was proposed originally proposed by Barack in [97]. This class of
‘Locally Lorenz’ (LL) gauges will fall within the class of regular gauges described by Barack-Ori
in [19], where the motion driven by the mode-sum SF has a well understood description using

matched asymptotic expansions. In Sec. we provide the prescription to implement the mode-
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sum formula for these LL gauges, and we derive corrections to the standard LG mode-sum formula.
The expressions for the corrections to the LG regularization parameters in BL coordinates will be
relegated to Appendix

In Sec. B4] we tackle the description in terms of the original undeformed RGs and provide the
relevant modification to the mode-sum formula. All the results presented in this Chapter were
published in [1]. The use of Fermi-like coordinates was proposed by Adam Pound. These coordin-
ates allowed us to independently check our preliminary results obtained in Eddington-Finkelstein

coordinates [137], and the generalization of the formalism to Kerr.

3.1 Fermi-like coordinates

Let ' denote the zeroth-order geodesic orbit of a particle of mass m, in some arbitrary coordinates

:Ca

= x§ (1), where 7 is the proper time as before. The four velocity of the particle u* = dz§/dr
satisfies u®u, = —1. Let us use Fermi-like coordinates (7,2%) centred on I', as shown in Fig. Bl
The usual Fermi normal coordinates are used for convenient calculations near a worldline. We
modify them to accommodate the preferred direction given by the principal null-vector ¢¢ (in our
analysis this null vector will be either £* or n®).

The usual Fermi normal coordinates are con-
structed by first erecting an orthonormal basis
(u™,e2), with a = 1,2, 3, that is parallelly propag-
ated along I'. In a neighbourhood of T", a foliation
of spatial hypersurfaces Y is prescribed to space-
time. Each X, is generated by spatial geodesics
orthogonally intersecting I' at a point zo(7). On
each hypersurface, a Cartesian coordinates system X, da
is established, with coordinates defined as z® =

—e2V%(z,z). The barred indices correspond to
the location of the particle & = xo(7), and o(Z, x)
is Synge’s world function [18], equal to one half the

squared geodesic distance from z to . With this

definition, z* has a magnitude I'(7)
5”8(7') e zA
=/ b
§ =V 0apT"T (3.1) Figure 3.1: Fermi-like coordinates centred

on I'. A set of Cartesian coordinates is es-
equal to the geodesic distance to z, which has a dir- tablished on each spatial hypersurface X..

ection along the triad leg e5. On the worldline, we The orientation of the coordinates is fixed by
choosing the z positive direction to lie along

h @ = (. By labelli h point on 3, with th
aver Y labeting each bowt o W ¢ the spatial projection of the null vector £<.

time 7, one arrives at a 4D coordinate system (7, z%).
In these coordinates the metric g, takes the locally
flat form 7, + O(s?), where n,,, = diag(—1,1,1, 1), with Christoffel symbols g, = 0(s).

Let us now define our choice of Fermi-like coordinates. The RG condition [explicitly given for
the ingoing and outgoing RGs in Eq. (ZI8)], provides a natural choice of singling out the direction
along the principal null vector £% on each ;. Let 2% = (24, 2), with A = 1,2, and keep the spatial

projection of ¢ fixed in the positive z direction at s = 0, such that

A ~

=059+ 0(s), >0 (3.2)
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Since £ is null, we have {™ = 0+ O(s). By keeping the orientation of our coordinates fixed relative
to ¢“ in this way, we cease to parallel propagate the spatial triad ef along I', unlike the usual

Fermi-normal coordinates. Instead, we allow it to rotate along the worldline, according to

De%
d'ra = w,le, (3.3)
where w,? is a time-dependent rotation matrix. More specifically, we have chosen one of our triad
legs to be
e = _ Pt (3.4)
S P
where

Po.g = gap(xo) + uaup (3.5)

is the operator (defined along T') that projects a vector onto X,. This way we have forced an
adaptive rotation of the triad. Despite this rotation, the rest of the coordinate construction is
identical to the Fermi construction, with the exception that due to the non-inertial rotation, we
now have g, =1, + O(s) and I'g. = O(1).

We denote the geodesic distance in the direction orthogonal to both u® and ¢* by

0=V0apriaB, (3.6)

and we also introduce the unit vectors

a

n® =a"/s, and NA =z4/p, (3.7)
which satisfy Saon®n® = 1 and d4gNANE = 1. We also note the useful rules d,s = n, and

da0=1xa/o0.

3.2 Local singularity structure in radiation gauges

3.2.1 Local gauge transformation

Let us consider the LG perturbation hk%r [satisfying Eq. (2:40)]. In our Fermi-like coordinates, h]&%r

has the leading-order singular form [1§]
Lor 2m -1
hozB = ?(Salg + O(S ) (38)

We wish to make a local gauge-transformation to a completed RG perturbation® starting from

hg%r. For the time being we will assume that the completion piece h((;g mP) g given in a gauge regular-

enough so that it has no contribution to the leading-order singular structure of the RG perturbation.
This will be later obtained explicitly for a Kerr spacetime in Chapter Bl The reconstructed piece

hg;c) satisfies the RG and trace-free conditions [here hg;c) stands for either hg}%;G or hg}}G satisfying

Eq. (ZI8)] as before.

1Let us recall Eq. (Z39) in Sec.21.6] where the completed RG perturbation was defined as hggd = hg;c) +hg§mp).
h(arzc) is the piece obtained via the CCK reconstruction procedure, and hggmp) is the extra price required to satisfy
the full linearised EFE.
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Let us consider the O(m) gauge transformation? &, = ¢Rad=Lor which takes hggd to hg%r:
hal = hag" + €ap + Epra + 0(s71). (3.9)

Here the o(s~!) terms account for the contribution from the completion piece. Contracting both

sides with ¢# and using the gauge conditions leads to
(g +€p.0) = R +o(s™), (3.10)

where the covariant derivatives are replaced by partial derivatives, assuming that the singularity
in £, p is stronger than the singularity in ., which makes the connection terms sub-dominant.
We seek a solution for £, that is well behaved as a function of time 7, i.e., whose 7 derivatives
do not change the degree of singularity; more precisely, we assume 9,&, ~ o(s~!), such that time

derivatives can be neglected.

We recall that in our choice of coordinates we have £* = /(6% + 6¢), which allows us to obtain
the four components of Eq. (B.10):

2m

9.6 = ——=+o0(s7"), (3.11a)
92 +22
20,6 + 0.6 = —— 4 o(s7) (3.11b)
2GSz 2T — o(s s .
/92 + 2’2
82514 + 8Aé.'r + 8Aé.z = 0(5_1>; (311C)

where we have divided out the common factor ¢ and used Eq. BI) to replace s. The trace-free

condition constrains &, to satisfy

262, :go‘ﬁhg%r +o(s7!), or
2

0,&° =My o(s™') in Fermi-like coordinates. (3.12)
s

We can now solve Eq. (B.I1)) together with Eq. (B12]).

3.2.2 General solutions

One can see by inspection that €& = +2mln(s 4 2) are both solutions to Eq. (3I1a). The most

general solution can include arbitrary functions of 7 and z4:
€5 = +2min(s + 2) 4+ ¢ (1, 2) + o(1). (3.13)

According to condition [l in Appendix [A:2] we could allow o(In s) sub-leading terms in the gauge
transformation without affecting its regularity. These type of contributions would not correspond

to the required form of a LG solution®, and so we just keep o(1) sub-leading terms. Inspection of

2Logically, we should be considering here the opposite transformation, ¢Lor—~Rad — _¢, = We instead choose to
work with ¢f2d—Lor for Jater convenience.
3Recall that the first-order LG perturbation has the form

has = s~ Rl 4+ nb0 +sn(5Y 4 0(s2), (3.14)

where /7,(1/;,71)7 h&léo), and hfllél) are s-independent [13§].

o
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Eqgs. (311B) and BIId) similarly yields the general solutions

& = (%) +o(1), (3.15a)
+ 2mgx4 " 4 N N N
€=, %0 (G (ra?) + G a™)] + G () + o(1), (3.15b)

where (I are all arbitrary functions of 7 and z4.

The trace-free condition constrains the arbitrary functions, yielding ¢* (7, ) = 0. Substituting
the general solutions (3.13) and (3IF) into the trace-free condition gives 94¢5 = 22 40(s~1), which
becomes 20494 ((F 4+ ¢F) = 04T + o(s~1). Since the right-hand side is independent of z, each

side must vanish independently at leading order, implying

0404 (G + ¢) = o(s72) for z #0, (3.16)
04 = o(s7 ). (3.17)

In words, at leading order the sum ¢ + ¢, must be a harmonic function of x4, and d[ must not
diverge in the 2D flat space charted by z4.

Note that the terms involving (I in the general solutions (B:I3)-(3-I5) represent “homogeneous”
solutions to the gauge transformation Eq. (89) and trace-free condition, namely, solutions to &u.5 +
§p:a = 0 and €%, = 0. They therefore arise from the freedom to perform gauge transformations
within the family of RGs.

The solutions £F in Eqs. (313)-(B.I5) are completely general. We will show that any particular
solution falls into one of three classes, each with its own distinct type of irregularity away from the

particle.

3.2.3 Half-string solutions

Let us set the arbitrary functions (¥ = 0 in Egs. (3.I3) and (3.I5). This corresponds to a particular
choice of gauge. These solutions obviously diverge on I' (where s = 0 = z), but they also diverge

/2 4 2, 50 5+ z vanishes on the (“radial”) half-ray

away from the particle. Recall s + 2z = (0 + 2?)
0=0, z <0, while s — z vanishes on the half-ray o = 0, z > 0. Hence, I is singular on the z < 0
half-ray, and &, is singular on the z > 0 half-ray. Taking the limit ¢ — 0 at fixed z # 0, on the
singular half-ray, gives for the remaining components

4m|z|xA
+ +
& ~ Ao, G~ T

(3.18)
In words, (i) the component of £F tangent to I' diverges logarithmically on a half-ray emanating
radially from the particle either inward (for £) or outward (for £ ), and (ii) the component of £
orthogonal to both " and ¢* diverges like the inverse distance to the corresponding half-rays (with
a directional dependence).

These solutions (diverging either inwards or outwards) have the general structure of what we
shall refer as half-string solutions.

The remaining gauge freedom given by ¢ can be used to switch between the two half-string
solutions by choosing ¢ (7,24) = F2mIn? and (F =0 = Cj. We get

+
¢ = £omIn 5922 +o(1) = F2mIn(s F 2) + o(1), (3.19)
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and

2mz 2mz
£ = me +2mz0s1n 0 +o(1) = me

stz SFz

o(1), (3.20)

where we have used 940 = w4/0, and ¢ = (s + 2)(s — z). One can easily verify that this choice of
(F satisfies the constraints (3.16) and (B.I7).

However, switching between half-string singularities in this way requires (, to diverge along
x4 = 0. If we restrict ¢ (7, 24) to be continuous, then the string singularity is fixed on one side.
Furthermore, restricting ¢ (7, 24) to be C? functions of z# implies (*(7,24) = ¢ (r,0) + O(s),
making the term 294 (¢ + ¢F) in Eq. (3I5D) of order s. The half-string solutions are then given
by

€a =05 () + Z5 (1) + o(1), (3:21)
where
%% = £2min(s + 2), (3.22a)
&* =0, (3.22b)
2mzA
0+
— 3.22

A s+ 2 ) ( C)

and with ZF(7) = (X (,0). For simplicity, we consider Z*(7) to be smooth.

Equation (321) defines a family of half-string solutions where ¢+ diverges like In ¢ when o — 0,
and §j diverges as 1/p in the half of spacetime described above.

We note that the half-string solutions & of Eq. (3:21) have no definite parity, since £5=(—x%) #
+¢0F (). To see this note that under a transformation z* — —x we have (z,2%) — (—z, —z)

and s — s. Hence Eq. (322)) under 2% — —x® reads

0% (—2%) = £2mn(s F 2), (3.23a)

(=2 =0, (3.23b)
2 A

0% (o) = — Sm;z . (3.23¢)

3.2.4 Full-string solutions

The half-string fields £ and £ in Eq. (32]) correspond to independent trace-free solutions to Eq.
(3). Any linear combination n&f + (1 —n)&,, n € R—{0,1}, is also a solution. Such solutions are
singular on the ray o = 0, on both sides of the particle, and we will call them full-string. We write the
gauge vector as &5 = €5 + Z,, (u) +o(1), where Z(7) is arbitrary, and €3 = ng%+ + (1 —n)€0~.
In words: the divergences on each side of the particle has different magnitudes, and is proportional
ton and 1 —n.

Let us consider the case where the divergences are weighted identically, namely by choosing

n = 1/2. This solution is

o = E0 (%) + Za(T) + 0(1), (3.24)
where
O —min 22 (3.25a)
S —Z

=0, (3.25b)

z
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A
0o _ 2msx

§a= s (3.25¢)

and we have defined Z,(1) = 325 (1) + 32, (7). We again assume Z,(7) to be smooth. These
solutions inherit the singular form of the two half-string solutions from which they were constructed.
Explicitly &, diverges along the entire ray o = 0, for both z > 0 and z < 0: in the limit o — 0 at
fixed z # 0 we have

2m|z|z4

7 (3.26)

& ~ —2msign(z) In g, a~

Unlike the half-string solutions, these solutions are parity-regular: &, at leading order is com-
prised of an odd-parity piece £(x%) that is discontinuous at z” = 0, plus a piece Z, that is inde-

pendent of the limit we approach the worldline..

3.2.5 No-string solutions

In a similar construction as the one we just used for the full-string gauges, namely combining two
half-string solutions, we can obtain a no-string solution. Let us consider combining two half-string
solutions by gluing together the regular regions of each. The gluing surface can be chosen almost
arbitrarily, as long as the two half-strings lie on opposite sides of it. As a simple choice, let us
take the gluing surface to be smooth. This way the leading-order term can be approximately a
plane intersecting the particle at each given 7. Each plane can be written as p,(7)z* = 0, for
some p, perpendicular to the plane. In Chapter [l we will take p,x® = 0 to be the leading-order
approximation to a sphere of constant Boyer—Lindquist (¢, r), in the Kerr case.

We define the no-string solution &, = £10(paz®) + £ 0(—pax®) + o(1) as

Eo = E2(x") + Zo(T, 2) 4+ 0(1), (3.27)
where
€2 =2min(s + 2)0(paz®) — 2mIn(s — 2)0(—paz®), (3.28a)
& =0, (3.28b)
2ma” 2maz?
§h = T 0pa®) + T 0(—par®), (3.280)
and
Zo = Z3(1)0(pax®) + Z (T)0(—paz®). (3.29)

We again assume each Z7 is a smooth function of 7, but in general we let Z # Z-. The no-string
solutions, considered as distributions, solve the transformation Eq. (3I1)) together with the trace-
free condition, even on the surface p,z® = 0, at the relevant order: the delta-function terms arising
from differentiating ([3.27) are formally sub-leading, and are contained within the o(s~!) terms in
these equations.

The no-string solutions constructed this way are smooth for both p®z, > 0 and p®*z, < 0, but the
divergences have been removed at the cost of introducing a jump discontinuity at p®z, = 0. Like the
equal-weight full-string solutions and unlike the half-string ones, these solutions are parity-regular
(since they have odd-parity). More accurately, they are very nearly, but not quite parity-regular.
They come in the correct general form &, = £2(n?) 4+ Z, + o(1), where 9,&0 ~ 1/s, 0,Zp ~ 5%, and

€% is odd under n* — —n’. But here Z, is not necessarily continuous at z® = 0, this will have
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e

Discontinuous across a surface

Si lar along £< o+t o
ingular along Regular at ¢ Regular at ¢ through the particle

Figure 3.2: Singular structure of the RGs. From left to right: full-string solutions are singular
along ¢“; half-string solutions are either regular in the exterior or the interior of a closed surface
intersecting the particle; no-string solutions are regular everywhere off-the-particle but discontinuous
at a surface intersecting the particle.

important implications in later sections.

3.2.6 Singular form of the metric perturbation

We can now describe the local singular form of the MP in the completed RGs. As we recall the
singular structure is determined by hg;c) only (since we have assumed that hggmpl) is regular
enough). Each of the above classes of gauge transformations will have a distinct singular MP. By

inverting Eq. (39)) to obtain hggd and substituting Eq. (B3], we have

2m _
ha' = =0ap — Easp — Egia +o(s7"). (3.30)

Where £ is given, in turn, by Eqs. 3210, (324) and (327). This way we obtain expressions for
the leading-order term of the half-string, equal-weight full-string, and no-string RG perturbation,
see Figure

Table 3.1: The leading-order singular form of the RG perturbation near the particle. The half-string
solutions in the left column, hiﬂ, corresponds to &£ of Eq. (B2I)). The full-string and no-string
solutions, middle and right columns, are constructed from the corresponding gauge transformations
€., given in Eqs. (324) and ([327), respectively. We used 6% = 0(£p,z?), and omitted the label
‘Rad’ from the MP for brevity.

50

Half-string solutions Full-string solution No-string solution
+ 2m 2m 2m
hTT:_ hrr = — hrr = —
s s s
+ 2m 2m 2m
hq’z:__ hrz:__ hrz:__
s s s
+ 2m 2m 2m
h, = — hee = — he = —
s s s
2mx A 2mzx A o
+ _ _ —_ pt pt
hZa = $s(s T2 hra = s0? hra=h_,0" +h_,0
2mz 2mzzx
+ _ A _ A —ht ot an o0—
hZAiis(siz) thf—F hza=h,0" +h_,0
+ 2m 5 2m(s? 4 2?) 5 T4 o
hAB:m(QmAIB—Q 6AB) hAB:74(2ZAIB—Q dAB) hAB:hABe +hAB9

The MP inherits the string singularities of the gauge transformation vector from which it was
constructed, see Table [l The divergences on the MP are stronger than they were in the gauge

vector. Near the singular strings we have, as ¢ — 0 with fixed z # 0,

8m|z|(2xaxB — 0%54B)
4 )

4m:cA 4mzA

hoa~F 2 oy~ *

+
hAB ~

: 3.31
22 . (3.31)
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for the half-string solutions, and

4m|z|(2z a5 — 0%64B)
4 )

2msign(z)z 4
0 ’

2msign(z)z 4
ha ~ Woar =3, Mg~ (3.32)
o 0
for the full-string solutions. The leading-order singularity for the three types of RG are summarized

in Table B11

3.2.7 Re-expressing the gauge transformation in a covariant form

So far we have relied on our Fermi-like coordinates to obtain expressions for the gauge transform-
ations and the relevant MP. In the following sections we will use those results to tackle the SF
problem, and we will require the transformation from the local coordinates to an arbitrary coordin-
ate system (like BL coordinates). We will do it in two steps, first writing the gauge transformation
in covariant form, and then expanding that covariant form in arbitrary coordinates.
Starting from the covariant definition of three scalar fields

4 g (3.33)
together with the condition

o.au® =0, (3.34)

which states that the point z off-the-worldline is connected to a point & = z¢(7) on the worldline
by a geodesic that intersects the worldline orthogonally. We will also make use of the fact that the

triad e satisfies

= w,’ep. (3.35)

The quantity o(z, Z) in these expressions is one-half the squared geodesic distance from z to Z.

Now, since the point & depends on the point x, when differentiating a function of the two points,

say f(x,Z), we have

df (z,z(x))  Of of dP of of 5dr

oy Ly e L B 3.36

dx® Oz + 918 dz® 0z | 9%P . dxe (3:36)
In terms of one-forms, this reads

_Of oo, Of 5
By applying the same principle, we can differentiate Eq. (834)) to find
dr = vo.gau®da” (3.38)
where v = f(o;&ﬁ-u&ué)’l. We can differentiate Eq. (833)) in the same manner to find
Ded - 5 & B
dz® = — dj—a o — el (a’o‘ada)ﬁ + U’a,@uﬁdT) . (3.39)

Substituting Egs. 833) and (338) into this equation returns

dz® = —e? [6‘;0?6‘a +v (w“ba;& + 5?0;&5#;) a;aquﬂ dx®. (3.40)
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We can now write any one-form &, = (&,&,) in covariant form using &, = 5752—2 + éaj%i. All of

these expressions are exact.

Since we require only leading-order behaviour in the transformation, we can use the standard

covariant expansions [1§]
a5 =9a5 + O(s*),  0u5=—94055 + O(s), (3.41)

where g2 is the parallel propagator from 2% = z§(7) to z and 0% ~ s. With these expansions, at

leading-order we find

dz® -

T = gach+ O, (3.42)
d _

dx—Ta = —g%us + O(\?). (3.43)

For a covector with components ~ s°, this allows us to write
€o = 9% (=&rua + &e2) + O(s8). (3.44)

Notice that because we work at leading-order, we do not require the rotation w,’. Equation (.44 is

the key result of this section, and it can be used to obtain the gauge vector in any set of coordinates.

Let us now consider the gauge-generator we found for the RGs, substituting the form of &, [Eqgs.

E21), BZ) and B27)] in (3.44) gives
€ = 95(—Elua + E4ed + Za) + o(1), (3.45)

where we have used £ = 0. The triad vector in Eq. (84) can be simplified by noting that P, (*¢* =
(w, 01)?:
Pgs

U, OH

(3.46)

63:

The remaining two legs of the triad can be determined by the orthonormality condition between

the tetrad and the four velocity, gaﬂu%{j =0 and gagege'g = §qp, tO give
ugel =0, loel =0, eqael =0dap. (3.47)

The expression for P,g can be found in terms of the triad legs inverting the completeness relation

—uqug + eaae,‘é = gap, Damely P,z = eaae%. We express the product eaAe’g in terms of e§ as
A _ a 3 _ 48
€aACBg = €aafp — €3afp = Qaﬁv (3' )

where we defined PP g
_ apt Br

af = 4L apf — 349

Qor =100 = e .

The non vanishing spatial components of £2 are proportional to z4 = feéz?*a‘ and can be written

as
&) = —Eefo™, (3.50)
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where according to Egs. (322d), (8:25d) and [3:28d) define

2
&t = m in the half-string case, (3.51a)
stz
2
I3 Eg in the full-string case, (3.51b)
0
E=¢tot 4670 in the no-string case. (3.51c)

Substituting back in Eq. (8:45) and using (3:48) we find
o = —9g0 (E?uca +£Qa50" — Za) + o(1). (3.52)

Which is the covariant form of the gauge transformation relating the LG and RGs.

3.2.8 Coordinate expansion

We now wish to express the covariant expansion of Eq. (.52) in arbitrary coordinates, or rather in
terms of the coordinate differences 6z® = 2 — 2 . This will allows us to move from the coordinate
system centred on the worldline to any other system, for example that where the origin coincides
with the centre of the background BH of the EMRI system. The differences Sz give the distance
from a point of coordinates = relative to a point of nearby coordinates 2 on the worldline. We

will use the coordinate expansions [66]

gg/ (z,2") :(5;‘/ +0(s), (3.53a)
o (z,2') = — 6z + O(s?), (3.53b)
U;a’ﬁ’ (;L', :L'/) :ga/ﬁ’ —+ 0(52) (353C)

To relate our Fermi-like coordinates (7, 2%) with the differences 6300‘,, we replace the dependence
on I with the coordinates of the particle 2 = x§ (7") at some other location on I'. Let us choose
7' to be the proper time on which d¢ = ¢(z) — t(z') = 0, where ¢ is the BL time-coordinate,
which is practical in explicit coordinate calculations. This replacement involves defining z%(7) =

—e2(xo(7))V*0o (2, 29(7)) and expanding z%(7) about 7/ = 7 — é7. We get
2%(1) =2 (7") + uo‘/xfa, (7)1 + O(s?) = —e2, {0;0‘/ (z,2) + uﬂlagf/ (x,2")oT + 0(52)}
=—e% [a;a/ (z,2") +u® o1 + 0(52)} =% 62% +O(s?), (3.54)

where the primes denote the coordinates associated with 2. We have used the expansions in Eq.
B53) and e?,u® = 0. Combining Eq. (354) with Eq. (348) gives z = 2o + O(s?), where

ga/ 5350/
f[gruﬂ/ ’

(3.55)

’
20 = — U 0T —

In the same way we can obtain expressions for the distances s and p?; using Eq. ([@.0)) to get
s = 59 + O(s?), with

st = Pa/ﬂzéxaléacﬂ/. (3.56)

Straightforwardly for o? = s? — 2% we get 0? = s2 — 22 + O(s®). We now can expand &, in terms of
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the coordinate differences by substituting the expansions for s, ¢ and ¢ in Eq. (352)). Expanding

&, about z’ we get
o =g (ﬁfuou +EQup ot — Za/) + o(1). (3.57)
Using Eq. (353) we arrive at
o = —E o + EQup 02" — Zo + o(1). (3.58)

We note that the first term of Eq. (B5]) is parallel to the four-velocity, while the second term
is orthogonal to both u® and ¢, This allows us to split €Y, into a parallel and perpendicular

component:

52/ = §||o/ + gl_a’v (359)

with §|o = —&%%y and &) o = §Qa/ﬁ/5asﬁ,. We use, in turn, the corresponding expressions for &

[Eq. 351)) for each type of gauge transformation] to get

2
€9% = 4 2m1In(so % 20), -1 (half-string), (3.60a)
So + 20
2
¢0 —min 2020 g =0 (full-string), (3.60Db)
S0 — 20 S0 — 20
€0 =¢0+pt 4 ¢0p E=¢tot + 60" (no-string). (3.60c)

We observe that, at leading-order, if all the components ¢ have the same definite-parity under
% — —x°, then all the components of £, have that same parity under the transformation oz —
—dz®", regardless of the choice of coordinates. This can be seen from Eq. B44)) together with the

facts that g%e does not alter the parity, and that each z* is a linear combination of Sz

3.3 Self-force in a Locally deformed radiation gauge

To define what we mean by a locally-Lorenz (LL) gauge, we first recall the form of the globally Lorenz
MP near the particle, given in our Fermi-like coordinates in Eq. (88). In arbitrary coordinates, the

expression reads [1§]
or 2m ~ o~
haf = = (9as + 2iatis) + O(1), (3.61)

where s is the geodesic distance to the worldline, and g corresponds to any smooth extension of
the four velocity u, off I'. The terms O(1) are finite but not necessarily continuous on I". By an
LL gauge, we mean any gauge in which the metric possesses the same leading-order singularity

structure as hg%r; that is,
2m
hIon% = ?(gaﬂ + 2’&/&&’[3) + 0(371)' (362)

The terms o(s~!) may diverge at the particle, but not as strongly as does the leading-order singu-
larity. In particular, we shall need to allow logarithmic divergences, which potentially arise in the

RG at sub-leading order, as our analysis in the previous section suggests.

We wish to start from hggd and locally transform it to some hI&]é The gauge transformation
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&, = ERad2LL myust satisfy

2
£ (asp + €)= = (Lo + 2iatinl”) + o(s ™), (3.63)
and 5
g, = ?m +o(s7h). (3.64)

Finding an LL gauge is now a matter of solving Eqs. (B.63]) and [B.64]) for £, which was done in
the previous section.

Starting from the MP hggd we can obtain the corresponding MP in the LL gauge in any of
the three categories (full-, half-, and no-string gauges) from the corresponding gauge vector &, =
& + Z, + o(1) given in Sec. The sub-leading terms Z, + o(1) correspond to different choices
of LL gauge, and this choice is left arbitrary.

In the context of SF calculations, recalling that the force is gauge dependent, we require to give
its value and to fully specify the MP in which it was calculated. A numerical implementation of the
CCK-reconstruction and completion will give the MP in a particular RG. In our analysis we will
choose a specific LL gauge. We set

gRad—LL _ 0 (3.65)

(e}

where €2 in arbitrary coordinates is obtained from Eqs. (3.58) and (B.60).

3.3.1 Mode-sum formula for the SF in an LL gauge

From the local singularity structures of Eqgs. (3:81) and ([352), it follows that the generator &, =

gLor=LL of the gauge transformation from h]&%r to h]&}; satisfies

éa;ﬁ + éﬁ;a = 0(5_1) (366)

near the worldline. The o(s~!) term in Eq. (3.66]) imply that £, may fall outside of the Barack-Ori
class of gauge; this term could, for example, give jump discontinuities. We shall demand é,l to be
continuous.

With this restriction, these LL gauges fall within the class of gauges studied by Barack and Ori
[19], in which the LG mode-sum of Eq. (Z53]) and the corresponding regularization parameters are

gauge invariant. Namely for the LL gauges we can write directly

FYY =" [(F¥M)L — AXL — By — Co/L] — Da, (3.67)
£=0

where the f-independent parameters A*, B,, Cy, and D, take their Lorenz-gauge values® given
in the Appendix Bl and in Refs. [97, 125]. The quantities (F“)¢ are the multipole modes of the
retarded force in the LL-gauge evaluated at the particle limit © — xq. If hI&]é is known in advance,
(FLLYY are calculated using Eq. (Z46) mode by mode. We have used F,, to denote the retarded
force instead of F"Y (the notation of Chapter 2)) to simplify notation.

Given FYF the £ modes (F LL)¢ are constructed by expanding each coordinate component of this
field (artificially considered as a scalar field) in spherical-harmonic functions on a surface of constant

BL radius r, then adding up all azimuthal numbers m for a given multipole number ¢, and finally

4The LG retarded force (F&L)ft and regularization parameters depend on the off-worldline extension of the
four-velocity and the affine connections.
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evaluating the result at the particle’s limit. This limit will generally be direction-dependent, and
one must ensure that it is taken from the same direction as the one used to derive the regularization
parameters. In the mode-sum formula (B67)) the limit is taken from one of the radial directions,
r— 7’3[, holding ¢, 6, ¢ fixed. (F;L)fh and AZ denote the corresponding one-sided values (the values
of the parameters B,, C, and D, turn out not to depend on the direction).

Let us now rewrite Eq. (3:87) in terms of the modes of the retarded force in the RG, (FRad)¢,
which are the modes we will be calculating in practice. The difference between the two gauges due
to €82d=LL can he obtained according to Eq. (Z58). Let 6 FR24LE he the change in the retarded

F()F({ad—mL)

force induced by transforming to the LL gauge, and denote its {-modes by (¢ ‘£, where

we allow for a directional dependence corresponding to r — rgt. We can rewrite Eq. (867 as

B = 3 (B, + GBS, — ATL = Bo = Cu/L) = Das (369)
£=0

where both (FR2)4 and (6 FR*4=LE)E must be calculated via the same directional limit to the
particle as were the regularization parameters, and all terms must be defined with the same off-
worldline extension of u® and P,”.

We assume, tentatively, that (5§F Rad=LLYE admits a large-¢ asymptotic with a similar form to
that of (FL°")4 | namely

(6 ERad=LINE — SAXL + 6B, + 6C, /L + O(1/L?), (3.69)

where §AEX, §B, and 6C,, are {-independent parameters [we will verify this form with an explicit
calculation in next subsection, showing that the parameter values are in fact zero through O(1/L)].
With this assumption, Eq. (3:68) becomes

b= i [(FF) — (AL = 6AE)L — (B = 6Ba) — (Co = 6Ca) /L] = (Do — 6Da),  (3.70)
=0

where

6Do =Y [(be P47 — §AXL — 6B, — 6Ca /L] . (3.71)
£=0

Since the argument in the last sum is O(L~?2) at large £, the sum should be convergent. And since
we started with a convergent sum in Eq. (868)), the sum in Eq. (870) should therefore also be
convergent.

Eq. (10) is the mode-sum formula for the SF in the LL gauge. It requires three pieces of
input: (i) the modes (F%24)¢  which are constructed from the MP obtained numerically via CCK-
reconstruction and completion; (ii) the standard, LG regularization parameters {AL B, Cy, Dy},
given in Appendix [Bl for generic orbits in Kerr and for a particular choice of extension; and (iii) the
corrections to the LG parameters {§AL, 6B,,0C,,6D,} associated with the particular LL-gauge
chosen. The latter will be obtained analytically in Sec. via a local analysis.

Having three types of RGs (full-, half-, and no-string gauges) leads to considering which of
them are suitable as input for the mode-sum formula [B70). As we argued above, the CCK-
reconstruction probably cannot be used to compute the full-string MP, so this class of solutions is
irrelevant in practice. The retarded-force modes (FX24)4 could be derived from either “halves” of a
no-string MP, by taking the corresponding limits » — rg[. However, the gauge vector éa = ¢Lor=LL

associated with the no-string solution would not have a well defined limit to the particle [due to the
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unmodelled discontinuous term Z, (7, 2) in 824=LE: recall Eq. (827)], which we do not allow here:
a discontinuous LL gauge would fall outside the Barack-Ori class, and there would be no guarantee
that the mode-sum formula F70) applies in that form.

Rather, the retarded-force modes (F Rad)f should be derived from a half-string MP, with the
limit r» — r(jf taken from the regular side of p,z® = 0. Gauge vectors £¥" L associated with half-
string solutions are continuous, because the corresponding vector £X24=LL accounts explicitly for
the full discontinuity in hggd at the relevant order. Hence, an LL gauge derived from a half-string
RG belongs to the Barack-Ori class as required. A CCK recounstruction (and completion) gives only
the “regular half” of a half-string solution (as shown in [1] for the flat case toy model), so fixing
the string’s direction (by fixing the half-string gauge) dictates the direction from which the limit
7 — r& should be taken when computing (F**4)4 and A% in Eq. B20): for a string extending

over r > rg take r — rg’; for a string extending over over r < ry take r — T(J)r.

3.3.2 Regularization parameters

Let us now calculate expressions for §A,, dBg, 6C, and D, appearing in Eq. (370). This will be
done for the general setup of a particle in geodesic motion in Kerr spacetime. We will stress the
importance of the choice of extension and comment on the impact of different choices of LL gauges.

Let us assume we have obtained (numerically) the reconstructed modes (ngad)ﬁ and/or the
modes (FRX24)¢ in a half-string RG and wish to obtain the SF in an LL gauge related to this RG
by the gauge vector & = €9% given in Eq. (32I)). The calculation of 6A4,, §Bg, 6C, and 6D,
follows the method first implemented by Barack-Ori to derived the LG regularization parameters
131,197, [125, 1139].

In BL coordinates the particle is at x§ = (t,ro, 60, o). We introduce new polar coordinates
(é, $), so that the particle is located at the pole (9~0 = 0) of the new system, and ¢ is chosen so that
the particle’s velocity at zo (projected onto the 2-sphere) points along the ¢y = 0 longitudinal line.
This construction simplifies the multipole decomposition required for the mode-sum formula since
the value of each ¢-mode of the retarded force at the particle has a sole contribution from the axially-
symmetric, m = 0 azimuthal mode. We use locally Cartesian coordinates & = pcos @, § = psin @,
where p = p(f) is some smooth function with the property p = 6 +O(s?) near the particle. In terms
of these variables, we have 60 = 0 — 6y = 2 + O(s?) and ¢ = ¢ — Go = §j/sinby + O(s?) [97]. At
leading-order, we can write 55F;t($', ox') as 651:“3[ (o7, &,9; x0). We have chosen §t = 0 as before.

The ¢ modes of 6 F¥ in Eq. (3:68) are calculated by evaluating the Legendre integral [31,, 197]

. L ! - [ .
(0cFp)y = — lim d(cos 0)Py(cos f) / dp de F=(or,2,9), (3.72)
2w sr—0t J_4 0

where Py is the Legendre polynomial. Notice that Eq. (372)) depends on the off-worldline extension
via §¢FF [see Eq. (Z358) in Chapter ). Let us recall that the singularity of F is inherited from
the local behaviour of £X: it ‘starts’ at o and extends into the Fp,x® > 0 part of spacetime. The
analysis by Barack and Ori [139] showed that the only contribution to the integral in Eq. (372)
comes from the immediate neighbourhood of the singularity. Therefore only a regular neighbourhood
around the particle is needed to evaluate (3¢ F,,)%.. Note that the integral in Eq. (3.72) is calculated
in the side of spacetime where the RG is regular, before taking the limit to the particle, to avoid
encountering the string-like singularity.

To simplify the integral in Eq. (3.72) we recall that in general £X contains pieces that are parallel
525” and perpendicular §§L to u®. & in Eq. (3:22)) is bounded, and so is the corresponding d¢, FE
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Using the fact that the integrand is bounded to exchange the order in which we evaluate the integral
and the limit we get

1
) L

27
(eFu) = o [ d(cos DP(cos) / a3 lim_ o, F(or.2,9). (3.73)
T™J-1 0

or—0
where we have also used the fact that d¢, EF does not contribute to d¢ F as was mentioned in Sec.
and Appendix

Equation (B73) is valid for any extension. We will choose the rigid extension 4*(x) = u®(zo)
and f‘g,y (x) = Fg:,y,(xo) expressed in BL coordinates. The effect of the choice of extension in the
force is discussed in Appendix [Cl This way the components of the four velocity and the Christoffel
symbols do not depend on the coordinates of the field point, namely they are constant when taking
derivatives with respect to dz’. This allows us to write (3¢, Fy)! = eyt F, and obtain the £ modes
of 55Fa directly from those of 55_-

These modes are calculated from

mL 1 B B 2
(bar) = TQO"B lim d(cos 0)Py(cos 9)/ dg
0

or—0%t J_ 1

5P
S0 + ZO,

(3.74)

where Qag, so and zo are given in Eqgs. (349), (353) and ([B.56]), respectively. We then note that
at 0t = ér = 0, both the numerator and denominator of the integrand scale linearly with p. The

integral over cos @ therefore reduces to 254, leaving us with

27 ~ o~ .
¢ m .o ~Qap cos @+ Qay sin @/ sin by
al)e=_0 [ d , 3.75
Cas)z @ 0/0 R*(x0, 9) (375)
where R* (29, @) is (so £ 20)/p evaluated at 6t = 0 = 7.

The general form of the integral in Eq. (8.73]) is valid for any orbit. In the example of equatorial
orbits (fg = 7/2), we find

¢
RE = 7o [1+ (Poy/r2 —1)sin2 @] /% £ <uq,+ ; Za> sin @, (3.76)
and 5 )
0 m o c
o =+—4 o — 1 - — , 3.77
(60 = 05002 (1 s ) (3.77)

where b= P,,/rd — 1 and ¢ = T—lo[uw + 0,/ (Lau®)] are the factors appearing in Eq. (B16]), and we
have used the fact that Pyg = 73 for equatorial orbits.

Given (£, )%, calculating (6¢F, )% is a straightforward matter of substituting Eq. (77 into Eq.
Z358). In Appendix [C] we explore the choice of extension in Eq. (Z58), and we write it explicitly
for two different extensions. Since &, is f-independent and only contains the £ = 0 mode, by

comparing with Eq. (8:69) we can read off
§A, = 0B, =6C, = 0. (3.78)

We compare Eq. (37717) with Eq. B71)) to write

0DE = (6cFa)i = (0cFa) 0 = b(c, y=oFu. (3.79)

+
14
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To shorten the discussion of this section we present the relevant expressions for § D,, in Appendix
With the explicit value of § D, we can now calculate the SF in an LL gauge from the reconstructed
modes of a half-string RG. Let us recall that the computation of the retarded force will depend on
the chosen extension, and that in particular the chosen rigid-extension might not be the best choice
for practical schemes. For a different extension (for example a rigid extension of u® leaving I', as
a field) we may get different values of D,. An important fact is that, regardless of its actual value,
we will have D = —6D; in general. This property of D= is proven in Appendix [D and it will

be useful in the next section.

3.3.3 Alternative choices of LL gauge

In our construction of the LL gauges, we made a specific choice: a particular half-, full-, or no-
string RG related to the LL gauge by the gauge vector £, = £2. Adding terms of o(1) to &, has
no impact on the GSF in the LL gauge, meaning such terms are not worth considering for our
purposes. But adding an O(1) term does affect the GSF, and we could have made the alternative
choice &, = €2 + Z,(7), with Z,(7) left arbitrary. Suppose we had done so, and then Eq. (3.70)

would have become

FEF = 3 (R4 — Ao — B, — Co ] + 5D, (3.50)
=0

where the new §D, parameter is
SO = (0cFa) =) [(BeoFo)' + (62Fa)"] . (3.81)
£=0 £=0

The first term is the 6 D, that we have already calculated, and the second term is the change to it
due to the nonzero Z,. From this new term, one can see that the freedom to choose Z, allows us
to almost arbitrarily alter §D,. The question then arises of whether we have made the best choice
in setting Z, to zero. For example, we might try to choose a Z, for which 6D.*Y = 0. To do so,

we note that §F, is smooth at the worldline, allowing us to write Ze(ézﬁa)é simply as

s D27
S,E, = —m (P’\ A

@ 2 +Ra,u/\uuHZ U ); (382)

where here all quantities are evaluated on the worldline. Finding a Z, for which §D5*" = 0 simply

requires solving the ordinary differential equation

D27
(Pg = 2 +Rw,\uu”Z’\u”) = 6D, (3.83)

with 6D, given by 372 (d¢0F)" as before.

Let us stress once more that since the SF is gauge dependent, when we calculate the SF we
must fully specify the LL gauge in which we are working. For that reason, there is no apparent
advantage to knowing that there might exist an LL gauge in which 6 D.°" vanishes; finding such a
gauge would still require us to calculate ) ,(d¢o Fa)e analytically, and it would only add the extra
step of solving an ODE for Z,,.
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3.4 Self-force in an undeformed radiation-gauge

Let us now work in an undeformed RG, namely we now seek to obtain a way to calculate the SF
using directly the CCK-reconstructed modes of the RG. We will begin in the LG, where the first-
order deviation from geodesic motion 2z} is governed by Eq. [250). We will transform to a no-string
gauge and find the corrected equation of motion via Eq. (259). We will need to write the SF using
the Quinn-Wald-Gralla angle-averaged form of Eq. (Z51]) to derive a new mode-sum formula. We
will rely on the results of the half-string analysis—in particular the fact that dDF + 6D, = 0— to
show that this new mode-sum is also applicable in the LL gauge. We refer to Appendix [D.4], where
8D} + 8D, =0 is established as an extension-independent property.

3.4.1 Equation of motion formulated in an undeformed radiation-gauge

The gauge vector that brings a global LG to a no-string gauge is given by &, = —£2 — Z, + o(1),
where €0 and Z, are found in (328) and 2Z9). Substituting &, into Eq. (Z59), we find that the

transformation induces a change in position

a __ 3 s a bre0
Azf = o ;13(1) nn® (& + Zp)dsQ, (3.84)
where the integral is over a sphere of radius s around the particle, and dQ2 = sinfdfd¢. As

before, the angles (6, ¢) on the unit sphere around the particle are defined in the usual way from
2% = (sin 0 cos ¢, sin @sin ¢, cos ). The first term of Eq. (3:84) vanishes, since n®n” has even parity
while £§ has odd parity. We write

Ao = 3 z; / nontd + Z; / nontdQ | (3.85)
471' %52 1lg2

2

where integrals are evaluated in half of the two-sphere %S 2 in which Z bi is regular. Using [ nnldQ =

4?”5’1}’ and the even parity of the integrand, we arrive at

Az{ == [Z9(1) + 2%(7)] . (3.86)

DN =

Because the term £ of the no-string gauge vector has odd parity, it does not produce a change in
position; instead, we have a simple average of the shifts in position induced by the smooth functions
Z;t. The odd parity of €2 also allows us to write our result for Az{ in terms of the full gauge-vector
as

1
Azl = ——

x

[Ei(T, xb) + &% (7, —xb)] , (3.87)

im
b—0

where 2?

is a point chosen so that the two terms are regular in the region £p,x® > 0, where £ are
regular respectively. With this coordinated choice of limit to the particle, the singular pieces of &
and & cancel. If the limit were not coordinated in this way, it would be ill-defined, since £ and
&, do not separately have unique limits at the particle.

For a point x on the worldline, P“ﬁfﬁ(z + dz) has the same parity (at leading-order) under
dx — —o0x as does &, under z* — —z®. The change in position is then

1 _ )
Az = -3 lm [Paﬁgg + Paﬂgg} , (3.88)

dx—0

where we have multiplied Eq. (3:87) by e2 and used e2£% = PP &+ 0(s€) for any smooth extension.
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£- are evaluated at x® + §x® in the corresponding side of the spacetime where they are regular.
From the shift in position, the acceleration can be found simply by taking two derivatives along the

worldline, leading to

2 a
Ddfjl - %m 52%0 [PPurV, (V&) + PYPubV, (u”V,E)]
= — mRa#ﬁuU#Azqu

1 : nle] « v nlel a v —
+5m lim [65+F — PPV ")V, EF + 6 B — PP (ulVu )vygﬁ} . (3.89)

The first line holds for any smooth extensions of u#, P*? and V off the worldline, [see Eqs. (C9)-
(C10)]. In the second line, we have expressed P*#utV,, (u’V,&F) in terms of 6¢+ F'?, where a tilde
denotes the retarded-force off the worldline as before. The contribution from ¢ has odd parity,

which causes the terms involving (u#V ,u") to cancel one another, hence

DAz
m

1 . .
_ a B, v ; a a
5 = MRt Az’ 4 om lim [0+ F™ + 6 F°] . (3.90)

Comparing with the SF Eq. (Z50), we find that
o 1 . nled nled
AP = om lim [6c+ B + 6 F°] (3.91)

and it corresponds to the average of the change in the retarded-force computed on two opposite
sides of the particle. The contributions from &9 cancel [see Eq. (3.28)] and we can write Eq. (3.91))
as

AFO = % (67+F*+64-F,), (3.92)

where we have taken the limit, on the corresponding side where £+ and £~ are regular, so that all
quantities are evaluated at the worldline. The total SF in the no-string gauge can be written in

terms of the SF computed in the LG and an extra term corresponding to the gauge transformation:

F®=F2, + A¢F°. (3.93)

3.4.2 Mode-sum formula

In practice Eq. (3.93) would still require the previously obtained value of the Lorenz SF, which is

exactly what we seek to avoid. We now can express the term Fp? = in terms of the LG mode-sum

Eq. (Z58), namely

Fo=F~ + [6¢+ B + 8- [ (3.94)

1.

— lim

2 5z—0

> [(F ) = ASL - B — C*/L]
¢

1 nled « « « 1 nled nle}
+3 > (B, ) — A*L—B*—C*/L] + 3 > [(er F*) + (6= F*)'] . (3.95)
¢ ¢
To arrive at this, we have made simple manipulations: we wrote F{% as an average of the two one-
sided limit mode-sums ), [(Ff‘ori)l — A2L — B* — C*/L] and decomposed ¢+ F* into f-modes.
It is understood that the same extension must be chosen for the LG mode-sums and the modes of

the extra terms from the gauge transformation. We now can note that the combination (F2, )¢ +
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(Oex Fo)t gives (F¢)¢, the mode of the retarded-force in the no-string gauge. This leads to the

simple mode-sum formula
e’ 1 nleAYA 1 o\l o e’
e = E = (FY) +§(F7) - B*-C%/L|, (3.96)

where B® and C% are the regularization parameters in the LG for the chosen extension, and we
have used the fact that in general AY = —A® [97, [125].

In summary, Eq. (396) can be applied to calculate the SF in an undeformed no-string RG. As
input it requires the modes of the retarded-force calculated from the completed RG perturbations
and the standard LG regularization parameters. We will present a numerical implementation of Eq.
B30) for a particle orbiting a Schwarzschild BH in Chapter [

We could repeat the calculations of Sec. [3.4.]] with the locally deformed no-string gauge. In
other words, we would take the average of the two-sided half-string-mode-sums of Eq. (870). By
virtue of 6DF = —§D,, we would find that the GSF in the LL gauge can be obtained with the same
mode-sum as in the undeformed gauge Eq. ([3.96). The reason for this is that the gauge vector £2,
which relates the no-string gauge to its LL version, has odd parity around the particle. Therefore,
the SF calculated from the mode-sum or Eq. (98] can be interpreted equally well as the SF in the

undeformed no-string gauge or in its LL counterpart.

3.4.3 Summary

Before proceeding to the numerical implementation, let us summarise the main outcomes of the
analysis presented in this Chapter. Using Fermi-like coordinates we solved for the local gauge-
transformation relating the LG and the RG. This led us to identify three types of RGs, according
to the singular structure of the transformation. The first class is the half-string gauges where the
singularity is not confined to the particle, but rather extends radially in half of the spacetime from
the particle to either the EH or infinity. The components of the gauge transformation to the half-
string gauges are given in Eq. (8:222)). The second class corresponds to gauges with a full-string,
where the singularity extends along a null direction from the EH across the particle and reaches
infinity. The gauge transformation to the full-string gauges is Eq. (8.25). The third class is the
no-string gauges, which is constructed by gluing the two halves of spacetime where the half-string
gauges are regular. This construction introduces a discontinuity on a closed surface containing the
particle as seen from Eq. (328). The singular structure of these gauges permeates to the components
of the MP, which are summarised in Fermi-like coordinates in Table 311

We considered two practical methods to compute the SF. The first one involves working in a
deformed RG or LL-gauge. This deformation takes place near the particle so that the RG perturb-
ation agrees to leading order with the LG singularity. In this LL gauge the standard LG mode-sum
formula is still valid and the regularization parameters take their LG values. The MP in the LL
gauge, or directly the modes of the LL retarded-force can be calculated from the corresponding
RG modes. The GSF can be calculated using the mode-sum formula (B70). This new mode-sum
includes corrections to the LG parameters and it is valid on the regular side of spacetime, opposite

to the half-string singularity.
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The second method allows us to calculate the SF directly from the RG perturbation. We used
the angle-average representation of the SF to work in the no-string RG. We related the GSF in
the no-string RG with its LG counterpart expressed in terms of the standard LG mode-sum. We
expanded the extra contribution from the gauge transformation in harmonic modes, and rewrote
everything in terms of the modes of the retarded-force in the undeformed RG. The outcome was
another mode-sum formula, Eq. (8.96]), which uses the values of the LG regularization parameters,
and involves the average of the two-sided retarded-force. This is the method we will numerically

implement. We will consider the test case of a Schwarzschild background in the next Chapter.
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Chapter 4

Numerical implementation for
circular orbits in Schwarzschild

spacetime

In this Chapter we present the numerical implementation of the method described in Chapter [3] to
obtain the GSF. We specialize to circular orbits around a Schwarzschild BH. The main goals of this

implementation are:
1. study the applicability of a GSF calculation based on curvature scalars,
2. correct results in the literature [83],
3. provide an insight into the challenges we may find in the Kerr case,
4. compare the computational efficiency with respect to LG calculations.

The numerical results of this Chapter were previously published in [2]. The results from the MST
method where provided by Abhay G. Shah.

Section [41] describes the frequency-domain algorithm we follow. In Sec. we will give more
details of our specific calculation. Our implementation takes advantage of the formalism presented
in Secs. and B4 We start in Sec. [£.2.7] with a short description of the static modes, which
will be also relevant in Chapter Bl In Sec. we give the explicit form of the Sasaki-Nakamura
transformation in Schwarzschild, namely the a — 0 limit of what we reviewed in Sec. 2.1.4L With
the reconstructed perturbations as an input, we calculate the retarded-force modes using Eq. 2.46]
and finally regularize. This last step will be done using the averaged version of the mode-sum
formula Eq. (396) as derived in Sec.[34l We obtain the SF values in both the ingoing and outgoing
RGs. In Sec. we include the explicit Teukolsky sources and expressions for the retarded force.
In Sec. 2.4 we describe the inclusion of the low multipoles, this will be done in the LG. We will
briefly argue why this can be done in this particular case. The large-¢ modes that are not computed
numerically are included by performing a fitting of the regularised modes to an analytical power
series. In Sec. this tail fitting is described.

As we argued in Chapter[Il the mode-sum formula is a robust method to check the consistency of
the calculated value of the SF; in Sec. we show the convergence plots of the mode-sum for the

radial and temporal components of the GSF. Among other consistency checks we performed to our
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code, in Sec. L33 we show the energy fluxes at the EH and at infinity, and the red-shift invariant H.
We compare the GSF values obtained from two methods: the first one using numerically obtained
values of the Sasaki-Nakamura field; and the second one using the analytical MST method described
in Sec. In Sec. we compare the efficiency of our numerical code with that of Barack-Sago
in the LG |36]. We also present in Sec. .34 a large-r comparison with the LG-gauge values for the

radial component of the SF, again comparing with [36].

4.1 Algorithm

The algorithm to numerically obtain the GSF in a Schwarzschild background for circular orbits
follows the one used by Shah et al. [83], except where stated. Our method requires to numerically
obtain 1y for the ORG and 1, for the IRG. We outline the steps of our numerical implementation

here.

70 fo _

e Choose the orbit at radius ro. Obtain the relevant orbital parameters £ = W, L=

2
T:ﬁlgiw and Q2 = %, with fo = 1 — 2M/ry. We fix the maximum number of modes

to compute, fpax = 80. This choice of £,x comes as a trade-off between controlling the

numerical error of the large-¢ modes and keeping the computational time manageable.

e For each static mode (m = 0) with £ > 2 we analytically calculate the radial function Ry (r)
via Eq. [@2). We obtain R4(r) using Ry(r) = r* f2Ro(r) with f =1—2M/r.

e For each m # 0 we numerically integrate the radial Sasaki-Nakamura equation in 7, with
suitable boundary-conditions [95] (see Sec. EZ2). The numerical value of the boundaries
is set to 7. = —95M for the EH and r., = 6000M for infinity. The integration is done
using a modification from real to complex variables with quadruple precision of the adaptive
stepsize Bulirsch-Stoer routine described in [140]. The integration routine returns the value
of the function and the first derivative with respect to r.. We algebraically relate the Sasaki-
Nakamura field with R4(r) and R} (r) at the particle’s location using Eq. (7)) and an analytical
first derivative of it. To calculate second-order (and higher) derivatives of Ry(r) we use
the Teukolsky equation. The field Rg(r) and its derivatives are obtained using Ro(r) =
r~4f~2R,(r) and the corresponding Teukolsky equation. The homogeneous solutions can also
be found using the MST method described Sec. as shown in [2]. The agreement between
the two methods will be discussed in Sec. .34

e We construct the inhomogeneous solutions using the standard variation of parameters method.
We explicitly impose junction conditions for the homogeneous solutions and their first derivat-
ives at r = rp, using the gravitational source. Shah et al. [83] performed a formal integration of
the Green’s function over the source terms to construct the particular inhomogeneous solution

1. The resulting fields ¢o(r) and 14(r) are discontinuous at the location of the particle.

e With the modes of fields 1o(r) and t4(r) we find the harmonic modes of the Hertz potential
UORG (1) and WIRG (1), respectively. This is done by inverting the frequency-domain version of
Eq. (Z20). Each mode of the Hertz potential is fully constructed by attaching the appropriate

angular and time dependence: (Y, (6, @) e =™t

e The MP can be recovered on each of the regular sides of the no-string RGs using in turn Eq.
(ZI9a)) and Eq. (2.I90), for the ORG and the IRG respectively.
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e We analytically calculate the ¢-modes of the retarded-force F(‘; ot) (for each ¢ > 2) by taking
derivatives of the CCK-reconstructed MP expressed in terms of the Hertz potential. This is a
convenient way of analytically identifying the different angular dependence on Yy, (8, ¢) with
s = £2,41,0. This helps in the posterior re-expansion in terms of the usual scalar spherical

harmonics. The explicit expressions of the f-modes for the retarded force are given in Eq.
(@I5) and Eq. (EI4).
e The remaining modes ¢ = 0,1 are added in the LG as discussed in Sec. [£24 A method for

including the gauge-invariant content of the non-radiative modes in the case of eccentric orbits

around Kerr will be presented in Chapter Bl

e We use the definitions of spin-weighted spherical harmonics in terms of derivatives of scalar
spherical harmonics [see Eq. (E.8) in the Appendix]. This way we can implement the appro-
priate coupling formulas [36] to re-express the r component of the retarded force in the basis
of the scalar spherical harmonics where the mode-sum was derived [125, [139]. In Schwarz-
schild the coupling is finite and it relates a given ¢-mode with its four nearest “neighbours”,
namely, contributions to a given ¢ spherical harmonic mode come from the £+ 2,/ + 1 and ¢
spin-weighted modes. The latter implies that we need to calculate ¢;,,x + 2 modes to have all
the contributions to the /,,x term in the mode-sum. This coupling and the implementation

of the average mode-sum formula were missing in the prescription described in [83].

e After all the contributions to a single /-mode are considered we apply the mode-sum regular-

ization formula given by Eq. ([B.90) to obtain the radial component of the GSF.

o We extrapolate the remaining ¢ > f.x modes doing a fitting of the regularized modes as
described in Sec. [4.2.59]

e We use the mode-sum formula Eq. (Z69) for the red-shift invariant H%.

e We calculate the temporal component of the GSF with

imOm m
Fr=>" —7 ¢ uPhlm, (4.1)

L,m

where hﬁfg are the harmonic modes of the retarded MP in the basis of spin-weighted spherical
harmonics in either the IRG or the ORG. The sum in Eq. [ converges exponentially fast

and does not require regularization.

4.2 Details of the implementation

4.2.1 Static modes

For the static modes (m = 0 = w) we have two linearly-independent solutions of Eq. (Z12al), which

are proportional to associated Legendre polynomials of first (Py) and second (Qg) kind:

_Pi(@) _ T(£+3) . r—2M

RQ_(T) = T2f = _8M4F(€71)2F1 2—[,[—{-3,3,— oM y (423.)
CQ(x)  2'MMIT(L+3)D(L+1) _ 2M

R0+(7’) = TQf = 74€+3f2 2F1 671764“ 1,2£+ 177‘—2M 5 (42b)

where o F} are hypergeometric functions and = = ’”’—MM
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The leading-order term of the asymptotic expansions of Ry (r) are given by

(2M)* (20! , ,
- mre when 7 — oo - (4.3)
=D+ DE+DEFL=6)  orn when 7 2M
ITNVE

Ro_(r) is regular at the EH but it fails to give the expected 7—° behaviour to have purely outgoing
radiation at infinity. The regularity of Ry_ is easily seen by transforming Eq. (ZIZa) to Ry =
r*f2Ro_, and moving to a coordinate system which is regular at the EH [141] (for example Kruskal

coordinates!). The leading-order term for the expansions of Ro (r) are

b3 when r — o0
R 2)! , 4.5
o 72(([;_ 2)),(7“—2]\4)_2 when r — 2M (45)

Ry (1) is not regular at the EH since it includes a sub-leading logarithmic-term [141]. The asymp-
totic behaviour of these solutions was previously discussed by Barack and Ori near the EH [141]
and by Poisson [142] and Keild et al. |143].

4.2.2 Chandrasekhar-Sasaki-Nakamura transformation

In the Schwarzschild case the radial part of Sasaki-Nakamura equation [Eq. (224) of Chapter

with s = —2] reduces to

d—2 +w? = Voo(r)| Xem(r) =0, with Vioo(r)=f (

= (4.6)

r3

7“)\0 — GM)

with As = (£ — s)(£ + s + 1) as before. The relation between the solutions of the homogeneous
Teukolsky equation with s = —2 and the function X (r) was first found in [114]. In Schwarzschild
it reads

X(r)

Ry(r) =2rf(r —3M + ir‘w) + [rfAo = 6M f — 2rw(3iM — ir + r*w)] e (4.7)

X'(r)
7

where ) = A\gA; — 12i Mw, the prime denotes derivatives with respect of r and we have omitted the
harmonic indices (¢m) of Ry(r) and X (r). The field Ry(r) is obtained, by virtue of the symmetries
of the homogeneous Teukolsky equation [109], using

Ry

o= 5

(4.8)

To integrate Eq. ([@6]) we set physical boundary-conditions. These are such as to give outgoing
radiation at the EH and ingoing radiation at infinity [83]:

C Tmax r " © Tmax M\"
XH _ iwr. . (_ - 2) d X — g—iwrs d, [ — , tivel , 4.9
e Z cn {37 an e Z . respectively (4.9)

n=0 n=0

with ¢, =0 = d,, for n < 0. The values of the coefficients ¢,, and d,, are calculated according to the

IKruskal coordinates V, U are defined by
V = elthr)/(4M) U= —elre—t/(aM) (4.4)

and the same angular coordinates {6, ¢}.
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recurrence relations |83]

i(n—3)Mw Ll+1)—(n—2)(n—3+12iMw)

Cn == 57— 7 as5 6n— ; Cn—

on(n+ 4iMw) "0 dn(n + 4iMw) ?

0C+1) — 202+ 5n — 6 — 12i(n — 1) Mw

n—1, 4.1
2n(n + 4iMw) fn-t (4.10a)

—1

dy, ey [(n=3)n+1)dp—o+ L +n)l —n+1)dp_1]. (4.10b)

Eq. (@I0) is obtained by substituting the expressions of Eq. (£9) as ansétze for Eq. [@0]) (with
a = 0). The value of nyax is chosen so that the relative difference between the n + 1 and the

accumulated sum is smaller than a cut-off set to 10~15.

4.2.3 Explicit expressions for the source and the force using IRG and
ORG modes

The source and self-acceleration in the ORG were previously presented in [81,83] while the IRG are
included here for the first time. We have identified and corrected typos in the sources —in particular
we have noticed an incompatibility between the corresponding equations for the source in [81] and
[83]. The authors of |83] chose 8 = /2 for the self-acceleration, which makes it difficult to read
the full angular dependence of their expressions. The knowledge of this dependence is needed to
change the basis from spin-weighted spherical harmonics to the usual spherical harmonics. Let us
recall that the mode-sum scheme guarantees to give the right value of the GSF only on the basis
were the regularization parameters are given. Only recently, these parameters became available in
the basis of tensor harmonics [54]. Therefore, we keep the explicit dependence on 6.

We write the source of Teukolsky equation as a sum of three terms Tyo = T 4+ 71 4 7()
according to the angular dependence on the particle’s location of each term. The explicit form —

in the Schwarzschild case— of the source terms in the IRG is

mut £2 ~ -
7O = - ; 4f0 3(r —10) (o) _aYem (0, ©) Yem (5, Qto) , (4.11a)
mQu! forg |. 4iM
T =y el o= o) = (g2 250 ) ot = )| 1
= ™
—2Yem (0, 9)-1Yem (5,9150) : (4.11b)
2,,t,.4
T(Q) — Z M |:f025//(r _ TO) + <2’Lme0 - 2(T0 +_ 22M)f0) 5/(7" o 7’0)
Im 4 Ul

2imQ(ro + M 2(4M — —
(20 4 2R 220 2T s — )| Yo (8,0)-2Ti (5. 520).

To To
(4.11c)
The corresponding source of the ORG is

t
) — _ N~ s 1/2 5 (T
T %} 00 = 10) (o) 2Yem(0,9)Vem (5, 0) (4.12a)

. )
OO o LT Py M A s ] Al Vi (5. 20)
T —%}2 2 i’ (r —ro) + T +T0 0(r—r0)| A 2Yem (0, ¢)1Yem 2,Qt0 . (4.12Db)
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6 2imQ
73 =3 " mQ%u! [5” r—ro) + <— — —) &(r—r
> =)+ (= 222 5 = o)

3 (m2(22 2imSQ3ro —5M) 10

13 515 g

- ™
) 5(7“ — 7‘0):| 25/[,”(9, (,0)25/57” (5, Qto) . (4.12(3)
The radial component of the retarded force? in the IRG can be computed, from Eq. (Z.46), as
6
Frret = Z Firv (413)
i=1

where the frequency-domain modes of F] are

1 2 M -
FY om :F(Ut)anO\o)\l)l/2 [foar +20; — — <f - —)] (Tom + Yom)Yem (0, @), (4.14a)
TO To To
1 - .
Fyom :W(Ut)2Mm()\o)\1)l/2 (10 fo0r + 100 — 4f0) (Wpm + Vpp,) sin 0 Yy, (6, ), (4.14b)
0
1 . - .
gém :m(ut)Qﬂlm)‘O)‘}/Q(\p@m - lIlém) Slne[lnm(ea 90) + —1Yem(9, 90)] ) (4'14C)
0
1 2 9 £2 9 £2
Ff g = = 5 (u!)?’mQiN? |02 + 200,0, + f30% — — (M + 10 f0)0r — iar + é
2 fo r§ 70 r§
(U — Wpp)sinbd 1Yy (0, ), (4.14d)
1 - .
From :W(ut)QMmAl (rofoOr + 7100t — 2£0) (Vo + Vo) sin® 0 o2, (0, 0), (4.14e)
0
1
F§ om = = s (u')Mm [16f000r + 203 J§0:07 + 15 f507 + 28 J307 + 208 fo(ro — M) .0
0’0
—=2(r§ — 6Mro +4M?)0p — 25 f50r] (Wom + Wem) sin® 0 _oYem (60, ), (4.14f)

where we have omitted to specify that ¥ is the IRG hertz potential. The corresponding terms for
the ORG are

1 3M
Lem =— 1—67”0f§(Ut)Qm()\O)\l)l/2 70 foOr — 2r0; + 2 (fo + ?)] X
(\Illm + \iém)}/lm (97 90), (415&)

1 _
F3 o =— 1—6f0(ut)2Mm()\0)\1)1/2 [r0fo0r — 100 + 2 (1 + fo)] (Wem + Wem)x

sin® 0Ym (0, ¢), (4.15b)
BTy =2 P2 2QimA A2 (W g — o) sin 01 Yo (0 Ve (6 4.15
3@m*167’oou tMAQA (Vo em) sin g [1Yem (0,0) + —1Yem (0, 0)], (4.15¢)
1 _ 3 2
J gfo(utﬁmrgsm}” [af — 2£00,0, + f20% — 7(1 + f0)or + %(37@ — 2M),
0 0
92 _
+ﬁ(1 + 2f0):| (\Ilém - \Ilém) sin 6 1Y€m(97 (P), (415d)
0
1 _
Fy g = — 1—6f0(ut)2Mm/\1 (100t — 10 f00r — 2) (Ve + Vo) sin® 0 2 Y0, (6, ¢), (4.15¢)

2In [2] we showed the formulae to obtain this component from the components of the MP projected along the
Newman-Penrose tetrad. This is just an extra step that we choose not to include here.
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1
L om T fo(u)?Mm [r§070, — 213 f00,07 + 1§ f§ 02 + 61§07 — 2ro(Iro — 13M) 0,0,
2
+1273 fo(ro — M)0? — 6(5rg — 4M)0; + T—(mg —32roM + 8M?)0,
0

—— (M2 —7‘(2)):| (\Ifgm—l—\ilgm) sin292ng(9,cp). (4.15f)

The spin-weighted spherical harmonics Yz, (0, ¢) appearing in Eqs. (£I4) and (£I3) are re-
expanded in terms of scalar spherical harmonics using Eq. (E.8). For a given spherical harmonic

we get

Fop = Yem(0,0) | Faye—2,m + F(—1ye-1,m T Floyem + Fliyer1,m + (T+2)e+2,m} ) (4.16)
where

7@2) - 5@2) 5@2)
T _Im r r r
f(i2)€m _a(i2)f2ém+(f5€m+f6€m) ()\O)\1)1/2 )\1/2 f4€ma

§lm 2mel™
T _ (il) (£1)
f(:ﬁ:l)ém == )\1/2 f4€m (/\ M\ )1/2f6€m7
= oy

m
‘FO)Em flém+f2€ma(0 (2f3€mqu4ém)>\1/2 +(fg€m+fgém) (417)

1/2
. (AoAr)Y

The functions f/,,, are the angle-independent coefficients of Eqs. [I4) or (LIH): for example,
FU o = ITomYem(0,¢). Notice the sign dependence of the coefficient multiplying f1,,, — the
upper sign is for the IRG modes while the lower sign for the ORG modes. The coupling coefficients

afm, gim yfm o §6m and €™ are given explicitly in [36] and included as Eq. (E9) of Appendix [El

4.2.4 Completion of the reconstruction

In Schwarzschild the CCK-reconstruction from Weyl scalars recovers the ¢ > 2 ‘spin-weighted’
sector. Wald showed that the solution needs to be completed by including corrections to the Kerr
mass and AM [9€] (and perturbations to C-metrics and Kerr-NUT metrics, which he proved not to
be physical in vacuum). Friedman et al. showed that the C and Kerr-NUT perturbations can be
ruled out in the vacuum spacetime outside the trajectory of a point particle |83]. In Chapter B we
give a full discussion of the inclusion of the completion piece in Kerr.

In Schwarzschild we know that the remaining part of the solution is the monopole and dipole of
the linearised EFE. We include these low modes in the LG, where gauge discontinuities are avoided.

The shift in the mass parameter across the r = r surface is encoded in the monopole part of the
solution (the £ = 0, m = 0 mode). In the LG the nonvanishing components of these perturbations
are [77]

_AMQ(r)

hiO(r <o) == =—g—— h0(r <o) T (4.18a)
hog(r < o) =sin"?0n0(r < ro) = AfMP(r), (4.18b)

where
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2mé&
= M — (ro — 3M)1 4.19
3MTOf0[ (TO ) Dfo], ( )
P(r) =r*+2Mr+4M?  Q(r) =1° — Mr® —2M?r + 12M°. (4.20)

The external components are

_ 2mé&
hf;o(r >ro) :73T4r0f0 { 37"3(7’0 —7r)+ MQ(T(Q) —12Mro + 8M2)+
(ro — 3M) [rP(r)f Inf — rM(r +4M) + 8M3In (TO )} } , (4.21a)
T
_ 2mé&
W 2 o) = = s {802 (1} = 1207 + 8M?) — 2Mr (v — 6Mro — 10M?)
—r3ro + (ro — 3M) [5Mr2 + 2 Q(r)fInf — 8M2(2r — 3M)In (T—O)] } (4.21D)
M r ’

2mé
=0 — win—2 =0 _
hog (r > 1o) =sin™=0h " (r > o) = “Orrofo

+(ro — 3M) {44M2 + S%P(r)flnf — 3r2 — 12Mr + 24M%In (%0)] } . (4.21c)

{ 3r2M — 80M>rg + 156 M3

Detweiler and Poisson showed [117] that the LG metric given by Eqs. (@I8) and (@21) is unique
and any gauge transformation within the class of LGs would make the metric singular at infinity,
at the EH or in both limits at the same time. Notice that as r — oo the tt component of the
metric tends to a constant value, i.e., the metric is not asymptotically flat. This pathology of the
gauge can be cured by moving away from the LG by performing a shift ¢ — ¢(1 4+ «) with constant
a ~ O(m). It is straightforward to show using Eq. (6) of [19] that this gauge transformation does
not contribute to the values of the radial component of the GSF.

For ¢ = 1, m = 0 there is only one non-vanishing component of the MP, namely [77]

£=1,m=0 . 2 r? 1
hi, " T(r) = —2mLsin” 0 %6(7"0 —r)+ ;@(T —70)| , (4.22)
where O is the usual step function.

We calculate the contribution to the retarded force from the ¢ = 0,1 solutions by directly
substituting (@I8), [@21) and @22) in Eq. (Z40). The resulting contribution to the force agrees
with the values first obtained by Detweiler and Poisson at 6 = 5 [117)].

The £ = 1, m = 1 mode is added numerically using the prescription described in [117]. This
mode is related to the motion around the centre of mass of the BH-particle system. A detailed

physical interpretation and comparison with a PN calculation can be found in [117].

4.2.5 Fitting the large-/ tail

Let us now describe how we include the contribution from remaining ¢ > #,,x modes. We include
the large-¢ tail for each of the one-side limits of the retarded force; instead of taking the average
and only afterwards including the large-¢ tail. This allows for an intermediate comparison with the
values of [83], where only one of the sided values was included. Each of the side-dependent values

is computed according to

(e ¢ s B 1
Fe=Y" [(Fget))i TAYL - B“} DS + Z Z +0 (ekm) (4.23)
£=0 lmax+1 Lk=2 max
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where the + superscripts indicate the limit r — ng from which is calculated, and in general E~,:r #*
~ - ‘
E, . We extract the coefficients Eff by matching {(F(Or‘et))i —AYL — Ba} (from a certain £y, to

lmax) to a power series of the form3

FE E FE E E E
E ZE_2+_4+_5+_6+...+ Fmax (4_24)
L L2 LA L5 L6 LFmax

k=2

The best-fit values of EN’,:CE are extracted using the least-squares fit (implemented in Mathematica),
the errors are estimated by modifying f,i, and kpax using the procedure described in [83]. We find
that the singular part of the SF contains odd, negative powers of L = (£ + 1/2) on either side of ro.
If the tail was fitted using the averaged modes of the retarded force, only even powers of L would
appear. The SF is then calculated using Eq. (896), where the £ > £, tail is included using the
best numerical fit.

An interesting detail to be noted here is that we numerically find F3);, unlike the sided-limits
F¢, to be independent of its mode decomposition: we get the same average if we write the GSF as
a sum over different spin-weighted spherical harmonics, as done in Eqs. (£14) -[#IH), or as a sum
over ordinary spherical harmonics, as done in Eq. ([@I6]). In other words, our numerical experiment
suggests that for this setup the value of the regularization parameters is not affected by the choice

of harmonic basis. We will further comment on this numerical result in Sec. {341

4.3 Numerical results

4.3.1 Sources of numerical error

Let is identify four independent sources of errors in the results we will present: (i) from the integra-
tion of Sasaki-Nakamura equation, (ii) from the MST method, (iii) from the inclusion of the large-£
tail, and (iv) from the numerical dipole-mode. These are further discussed next.

We experimented with the location of the boundaries to test the robustness of this choice and
found that even a more modest choice (r, = —60M for the EH and r, = 1000M for infinity)
gives the same result. The computational difference from moving the boundaries comes only in the
number of calculated terms required for the boundary conditions. We allow a relative error of 1/10%°
on each step of the numerical integration. These errors propagate to give a relative error ~ 1/10'2
in the value of each harmonic of the Sasaki-Nakamura field and its first derivative. However these
systematic errors turn out to be subdominant to those from the large-¢ tail.

The error in calculating solutions for the radial part of the homogeneous Teukolsky equation
using the MST-method can be reduced by, first, numerically calculating v with a very high accuracy
(usually higher than the one mentioned in Table I), and second, by choosing a high enough nax,
the cut-off in n-series of the hypergeometric and confluent hypergeometric series in Eq. (Z32). To
reduce the computation time, one can find relations between the derivatives of the hypergeometric
and confluent hypergeometric functions appearing in Eq. (232) using a combination of various

Gauss’s relations for contiguous functions.

3Tn [45], a series of the form Eo/((2¢ — 1)(2¢ + 3)) + E4/((2¢ — 3)(2¢ — 1)(2¢ 4 3)(2£ + 5))... is used to fit the
singular part of the force and increase the convergence rate [62]. The sum from ¢ = 0 to infinity of each term in
the series is zero and does not contribute to the SF. Analytical expression for E2, E4, Eg were given in [45] and we
verify that they have different values than the parameters we would obtain by fitting the averaged modes to a similar
series. Namely the coefficients Fj, are gauge dependent.
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The total value of the radial component of the SF has two pieces, as it was explained in Sec.
The first one F¢Smax is obtained by the methods described in Sec. The remaining large-¢
tail [¢>%max is extrapolated numerically as described in Sec. using N = lax — lmin + 1 of the
regularized large-f-modes. We varied fpax, min and N to estimate the total error of the large-¢
tail.

Each of the two methods to solve Teukolsky equation (numerical integration and MST) give a
different large-¢ tail, with their corresponding errors. The accuracy with which the coefficients E~,:€'E
in Eq. (£23) can be extracted depends on N and the accuracy of the regularized modes. Due to
its high accuracy, the MST method allows a very accurate extrapolation of the tail. With respect
of the values reported in Table 1] the total tail is responsible for the agreement in the last 4-5
digits between the Sasaki-Nakamura and MST methods. The relative difference of the two methods
is within the error bars reported for the numerical-integration computation. These error bars were
estimated by varying the numerical parameters of the fitting.

The error in the MST method is dominated by the even-dipole mode, which is estimated from
varying the inner boundary of the integration [rmim = (2 + ¢)M] from ¢ = 1072 to ¢ = 107°.
The error of this piece is below that of the large-£ tail for the numerical-integration method. As
explained in Sec. [.22:4] this piece is included in the LG. The difficulty of obtaining this mode with
higher accuracy is related to a numerical matrix-inversion, which is needed to obtain the solution

to a coupled system of ordinary-differential equations [117].

4.3.2 Convergence of the mode sums for F" and F*

A feature of the mode-sum regularization procedure is that it provides an immediate validity test
of the results. If the retarded values of the force and the implementation of the coupling formulae
to express the force as purely spherical harmonics contain a systematic error, then the sum over
f-modes after regularization may not converge, see Fig. 11 We recall that it is also required to
consistently use the off-the-particle extension of the four velocity (we used the same extension as
the LG regularization parameters A% and B® of Appendix [B) and metric when calculating the

retarded-force and the regularization parameters, otherwise the mode-sum will not give the correct

value.
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Figure 4.1: Left Panel shows the large-¢ behaviour for the modes of the r component of the SF
(solid blue line in log-log scale) computed using the average version of the mode-sum formula [Eq.
B98) with fiax = 80, only A"L and B are subtracted]. The 1/¢? reference line (green dashed)
confirms the expected fall-off at large ¢. The right panel shows the convergence of the ¢ component
(solid blue line in semi-log scale) of the SF. In this case the reference line (green dashed) shows
exponential convergence. In both cases the results correspond to an orbital radius of rg = 10M.
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For the radial component (left panel of Fig. L)) we found that the sum over £ modes of the av-
erage 3 [F"(rd) + F"(ry )] converges as 1/¢, with the green (dashed) line as reference, as expected.
In the case of the time component (right panel of Fig. 1), we show the exponential convergence

of the sum, also as expected.

4.3.3 Flux of energy and invariant red-shift

The total flux of emitted energy mé is directly proportional to the ¢ component of the GSF |97, [118]:

. & F;
E=m— = ——. 4.25
m Mt ut ( )
Let us denote the fluxes at infinity by d‘;—f and at the EH by di%. We calculate them following

the procedure given in [95]. We verify numerically that

7m§ 7 mdsEH md5°°
dt  dt dt

(4.26)

is satisfied up to ~ 10~° of relative difference for all radii considered, within the range of 6 M —150M .
The discrepancy comes from the numerical error accumulated during the long integration of the field
in the tortoise coordinate r, from the EH to where we set our numerical infinity.

Our results are consistent with previous works by Barack and Sago [36], and more recently
Gundlach et al. |[144]. Our calculation shows that at the innermost stable circular-orbit (ISCO) the
ratio SEH/SOO has a value of 3.27 x 102 and decreases monotonically with ro up to 2.06 x 10~°
when 79 = 1500, in agreement with [306, 144]

Figure 4.2: Convergence of the regularized ¢ modes of H? = %hgﬂuo‘uﬁ at orbital radius of ro =
200M. We calculate numerically ¢,,x = 80 modes and regularise with the analytical value of By
[given in Eq. ZTI))]. The 1/¢? reference line (green dashed) confirms the expected fall-off at large
L.

We obtain numerical results for the red-shift invariant H? defined in Eq. (Z.60), see Fig. The
tail is included in the same way as that of the force (and described in Sec.[Z2Z5]). For an orbital radius
of ro = 6 M we get H'* = —0.52362x M /m while at 79 = 200M we obtain H* = —0.010076x M /m

which is consistent with the values given by Sago et al. [82] to all significant digits shown.
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T‘O/M FrNum(,r.O) X %22 FTIVIST(TO) x %22 FTLor(T‘o) x %22
6 0.03350126(1) 0.033501265(1) 0.0244661
7 0.026070691(5) 0.0260706936(1) 0.0214989
8 0.020941671(3) 0.02094167456(7) 0.0183577
9 0.017214435(1) 0.01721443676(8) 0.0156369
10 0.0144093850(9) 0.01440938542(6) 0.0133895
12 0.0105299277(5) 0.01052992732(2) 0.0100463
14 0.008031952(1) 0.00803195180(1) 0.00777307
16 0.006328227(1) 0.006328226988(6) -
18 0.005114225(1) 0.005114225196(3) -
20 0.0042187145(9) 0.004218713944(1) 0.00415706
24 0.003011654(1) 0.0030116542558(6) -
28 0.002257118(5) 0.0022571178017(2) —
32 0.001754261(4) 0.0017542618884(1) —
36 0.001402452(3) 0.00140245195919(6) -
40 0.0011467454(5) 0.00114674532583(3) 0.00114288
50 0.0007465337(2) 0.00074653378046(1) 0.000744949
60 0.00052437948(8) 0.000524379436446(3) 0.000523616
70 0.00038842358(5) 0.000388423560775(1) 0.00038801
80 0.00029922175(3) 0.0002992217373675(7) 0.000298979
90 0.00023755802(2) 0.0002375580134958(4) 0.000237406
100 0.00019316231(2) 0.0001931623007419(2) 0.000193063
120 0.00013491660(1) 0.00013491660149634(8) 0.000134868
140 0.000099532396(7) | 0.00009953239215925(3) -
160 0.000076441055(5) | 0.00007644105294526(1) -
180 0.000060543785(4) | 0.00006054378560513(1) -
200 0.000049135297(3) | 0.000049135296208105(1) | —

Table 4.1: Comparison between the radial component of the GSF, for different values of ro/M.
The second column shows the values computed using numerical integration of Sasaki-Nakamura
equation while the values in the third column are calculated in the ORG using the MST method.
The quantities in parenthesis indicate the estimated error on the last quoted decimal shown. The
error in the second column is estimated by changing the numerical parameters of the fitting that
contributes to the large-¢ tail. The error quoted in the third column is estimated from moving the
inner boundary when numerically solving the ¢ = 1, m = 1 multipole. The LG values are taken
from [36] where the corresponding error estimation can be found. Note the asymptotic agreement
for large r between the RG values (first and second column) with the LG values in the third column,
as discussed.

4.3.4 Analysis of results and further consistency checks

We now present a comparison between two calculations of the radial component of the GSF: one
using the MST method, and another one using numerical integration of the Sasaki-Nakamura field.
Fig. 43 shows in blue (solid line) the fractional difference in F"(rg) for a sample of radii. The
values of F" are obtained using Eq. (896]) with £,,.x = 80 calculated modes and a fitted tail of the
form given by Eq. ([@24]) on each side-limit. In Fig. 3] the red (dashed line) shows the fractional
difference between the IRG and the ORG values, before including the large-¢ tail. In this case both
results were obtained by using the Sasaki-Nakamura method. The values used to generate the plot
can be found in Table [£.1]

The method of Shah et al. [83] does not follow a rigorous method to implement the mode-sum.
They used the LG mode-sum for their implementation and guessed (incorrectly) that 6D = 0,
independently of the gauge. The authors of [83] submitted an erratum clarifying the issues we have

raised in |1, [2].
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Figure 4.3: Relative difference for the averaged r component of the SF. The blue (solid) line compares
the values in the ORG computed through numerical integration of the Sasaki-Nakamura field against
the values calculated using the MST analytical method. The estimated error of the numerical
method is dominated by the £ > fy,.x fitted term, while the error of the MST method is dominated
by the inclusion of the even dipole mode as discussed in Sec. 3.1} which is below the difference of
the two methods. These errors are shown explicitly in Table Tl The red (dashed) line compares the
relative difference between the force calculated from the IRG and the ORG modes (using numerical
integration) before including the large-¢ tail. This difference appears consistent with the numerical
error.

In principle the GSF in the ORG and the IRG could have different values. In fact by just looking
at Eqgs. (£14) and (£IH) it is not obvious that the results would agree. The Hertz potential ¥ takes
a different form when calculated in the ORG and IRG. However, for circular orbits of Schwarzschild
it turns out that the MP and the values of the SF in the IRG and ORG give the same value, as
shown in Fig. The equality of the MP in both gauges can be shown analytically using the
symmetries of Teukolsky equation.

Our GSF values agree at large r with those in the LG |36], See Table dIland Fig.[£4l To see this
let us consider the change in the GSF due to the gauge transformation from LG to ORG generated
by £"(r) which is given by Eq. (A25) of [81]:

3Mm

§ FLor%Rad — T
¢ e — 3]\47‘3g

(r0)- (4.27)

Assuming £" falls off at least as r~! then Eq. (E2Z1) would fall off as »=3. In fact, the numerical
data shows that the difference goes as r—4, see Fig. &4l

4.3.5 Comparison of computational cost

A LG code for circular orbits in Schwarzschild calculates the GSF, in the strong-field regime, running
on a standard desktop machine in approximately 2 hours with £,,,x ~ 25 and a fractional accuracy of
< 10~ for the higher modes [36]. Our numerical integration can achieve an accuracy of < 102, for
each mode, running on a single core of a standard desktop machine in about 30 minutes calculating
the same number of modes. To integrate and calculate £,,,x = 85 modes, and achieve the same

accuracy < 10712 for each mode, it takes ~ 14.5 hours running on a single core.
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Figure 4.4: Comparison between the radial component of the SF in the LG and that of in RG
(in log-log scale). The red line (with data points denoted by x) corresponds to the values in the
radiation gauge given in Table Il The blue line (with data points denoted by +) are the values in
the Lorenz gauge from Barack-Sago |36]. The black line (solid line with data points denoted by o)
is the difference between F®2d — Frlor and the green (dashed) line is a reference line ~ ry 4

We expect the savings in computational time to be greater for eccentric orbits around Kerr.
In particular, for eccentric orbits of Schwarzschild the time of frequency-domain calculation is

comparable to that of the corresponding time-domain implementation [145].



Chapter 5

Completion of metric
reconstruction for a particle

orbiting a Kerr black hole

In Chapter Bl we obtained a practical method to calculate the GSF using the reconstructed modes of
the RG perturbation. However, as we stated in Chapter 2] the CCK reconstruction gives only part
of the MP. The remaining part of the solution, namely the completion piece, needs to be included
separately. Wald showed that the completion piece is a pure mass and AM perturbation of Kerr, up
to gauge [98] (and up to C-metric or Kerr-NUT, which are however irregular and thus unphysical).
In the Schwarzschild case, the invariant content of the completion piece is purely in the £ = 0,1
modes. A simple LG completion piece can then be constructed following the works of Detweiler and
Poisson [117], and Barack and Lousto [71], as we discussed in Chapter @l However, in Kerr these
perturbations are not confined to these multipoles only, since the EFE can not be decomposed in
harmonic modes. This has been a longstanding problem of BH perturbation theory.

In this Chapter we address the problem of including the completion piece for orbits around
Kerr. An initial investigation of the problem was carried out by Price |100]. Price constructed the
completion piece as a sum of mass and AM perturbations of the metric, obtained by varying the
Kerr metric (written in BL coordinates) with respect to the mass and spin parameters, respectively.
The problem then reduces to determining the amplitudes of these resulting homogeneous solutions
of the EFEs. He proposed to do so by requiring continuity of the completion piece (plus a gauge
piece) off the particle, however he did not take into account the discontinuity coming from the
reconstructed part of the MP. Moreover, he only went as far as implementing this idea in the
Schwarzschild case. We note that Price’s goal of obtaining a completed metric that is smooth (off
the particle) is rather ambitious; for certain practical purposes it may be sufficient to require only
that invariant quantities are smooth. This is the line that we will take in our analysis.

The problem of determining the amplitudes of the homogeneous mass and AM completion
solutions may be said to be equivalent to the problem of calculating the invariant mass and AM
content of the CCK-reconstructed metric. Dolan and Barack [49] proposed a method, based on
the work of Abbot and Desner |146], to “measure” these quantities for a given MP, in a quasi-local
fashion, by evaluating certain surface integrals. The method relies only on the existence of time-
translation and rotational Killing-symmetries in the background, and it is applicable to the Kerr

case. However, the evaluation of the necessary integrals (and summation over modes) turns out to
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be extremely difficult for the RG perturbations.

Our procedure will take advantage of some auxiliary gauge-invariant quantities. These invariants
will be derived in Sec. Bl The completion pieces with arbitrary amplitudes will be constructed
using BL coordinates and variations of the mass and spin parameters of the Kerr metric, following
Price. We determine these amplitudes by imposing continuity of the full invariants (a sum of the
reconstructed and completion pieces) across a surface intersecting the particle. We will show how
our explicit calculation agrees with the standard picture of the CCK reconstruction for circular
orbits of Schwarzschild [1, 49, 92, 1100], namely that by fixing the total mass and AM of the system
we can determine the amplitudes of the completion piece. In Sec. B.4T] we extend the method
for eccentric equatorial orbits around Kerr. The main results of this Chapter are given in Secs.
B2 B34 and .43, where the completion pieces are respectively given for circular orbits around
Schwarszchild and Kerr and for eccentric equatorial orbits around Kerr. The results of Sec.
fully solve the completion problem for equatorial orbits around Kerr.

A related completion problem was also recently considered by Sano and Tagoshi. They studied
the case of a ring of particles around Schwarzschild [101] and around Kerr [102]. They looked at an
homogeneous part of the Hertz potential in the IRG with certain free parameters. They numerically
obtained those parameters by imposing continuity of certain (gauge-dependent) Weyl scalars and
MP components. In Kerr it is not clear if this homogeneous part of the Hertz potential corresponds
to any physical perturbation.

This chapter is the result of work in collaboration with Amos Ori, Leor Barack, Adam Pound and
Maarten van de Meent. We acknowledge that Amos Ori first derived the auxiliary gauge-invariant

quantities. Maarten van de Meent provided the analytical form for the integrals of Appendix [F.5l

5.1 Auxiliary gauge-invariant quantities

The ten independent components of the Weyl curvature tensor are encapsulated in five complex
scalars [see Eq. ([Z8)]. For the Kerr background v and 4 vanish, therefore they are gauge-
invariant. However 1) is not gauge invariant. Consider a gauge transformation 2% — 1%’ = %+ £<

of O(m). Since 17 is a scalar field, it changes according to
Yy = Y2 + At (5.1)
where Ao can be expressed in terms of the Lie derivative acting on 1)s:
Agpy = =€) = =€) — ol — €'l — €29l + O(m?). (5:2)

In the case of the Kerr background 5 is given by 1/)&0) = 0°M, according to Eq. (Z8d), and
0 = ———-—— is a spin-coefficient in the Newman-Penrose formalism as given in (Z7). Thus

éOT) =3Mp* and wé?g = 3iaM sinfo*, with 1/15?2 = wé?d)) =0, (5.3)

where M and a are the mass and spin parameters of the BH respectively,
Eq. (&1) also implies that the perturbation of 1/150), denoted by d19, transforms as

0hy — 9ba + Aghy. (5.4)

with the same A, appearing in Eq. (52).
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5.1.1 Our preferred gauge

Suppose that we are given the perturbation h,g, in whichever gauge!. We now change the gauge
to a preferred gauge fzag, which we choose to be a gauge where S1bo (namely the gauge-transformed
d1p3) vanishes: Aty = 1y — 1hy = —01)s. We denote the gauge vector which takes us from the
original hqg to ﬁaﬂ by éa. In virtue of Eq. (&3] we have

Ay = — (&) + &L (5.5)
The requirement 81, = 0, or equivalently Aty = —&1bg, thus reads
sy + MUYy = o, (5.6)

which we can solve for é’” and 59, leaving ét and §~¢ arbitrary (this arbitrariness will not concern
us). Eq. (56) is a complex algebraic equation—which actually amounts to a set of two equations,
for the two real unknowns £", £°.

We alternatively write Eq. (5.6]) as

£ + (iasinf)E? = @, (5.7)

by defining ® = g;M451/12 and using Eq. (&.3)).
We shall now consider the general Kerr case a # 0 (the special Schwarzschild case a = 0 is
simpler, but needs be treated separately; this will be done in Sec. [5.T.4]). We obtain the solution
~ - Im(®
£ = Re(®), ) (5.8)

asing’

The covariant components are constructed with contractions of the background metric, ga =
gaggﬁ, explicitly
€7‘ = grrgT ) 69 = 999€Ga (59)

where gog are the unperturbed metric functions in BL coordinates [see Eq. ([Z1))]. The remaining

components & and §~¢ are left arbitrary.

5.1.2 Auxiliary Invariants
The new components of the MP in the preferred gauge, fzag, are given by
hap = hap = (§asp + Epia) = hap — (€as + Ep.a) + 200456, (5.10)

Let us use indices a and b to denote the r and 8 BL coordinates. Since Fflb =0= Fib in the Kerr

background, we can write
hab = hab - (ga,b + €b,a) + 2F§b€ca . (511)

We define, for notation convenience,
{11;127:[3} = {Err,ﬁee,ﬁre}- (512)

We claim that {Z1,75,Z3} are gauge invariant, which we show in the next section.

IWe will later choose hap to be in turn the reconstructed MP, and the completion piece.
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5.1.3 Direct verification of gauge invariance

Suppose that we apply a gauge transformation associated with a certain gauge vector £'“ to the
original perturbation hqs. Then the various gauge-dependent fields (e.g. hag, 012, ...) change. We
will denote these changes by ’ (i.e. hi g, 6¢3, ...). In particular for the perturbation of ¥, we have

ovh = — (67w + v (5.13)
We now seek to find the changes in h/,, and show they vanish. Starting from Eq. (5.IT) we have
Bl = hiy, — [(étlzb + sgzlya) - 21“2,)5;} . (5.14)
The first term A/, is given by the standard gauge-transformation rule:

== (€0 +Eha) = 20E] = — [(Eho +6.0) — 205€L] (5.15)

where we have used again I', = 0 =T'%,. To evaluate the second term of Eq. (5.14) (namely the
term in squared brackets), we need to calculate €. This can be done by combining of Eq. (5.0)
and Eq. (513), which yields

Ey) + 890 = outy = — (€79 + €00 (5.16)
The solution to the equation above is trivial:
£8 = ¢, (5.17)

This solution for £ is unique and naturally follows from the uniqueness of £%, established in
Eq. (58). Even more it has a straightforward interpretation, which actually allows its derivation
without any calculations: let us denote the new quantities £* (after the £’ gauge transformation)
by é‘“ . Recall that by definition é‘“ is the gauge vector %, if only the 7,0 components, required
for transforming from the h'-gauge (namely after the £*' transformation) to the preferred-gauge.
Obviously this gauge transformation can be done in two stages, & =& + & in the first stage we
simply undo the £’ gauge transformation, namely £ = —¢’; the second stage entails the transition
to the preferred gauge from the original h, namely & = £. Overall we obtain £ = £ — ¢, namely
f=-¢=¢

Substituting the trivial result of Eq. (5.I7) in the squared-bracketed term in the right-hand side
of Eq. (5.14), one finds

Ry = — [(€hy + & o) — 205060 + [(Ehy + &ha) — 2T5EL] - (5.18)

yielding the desired gauge-invariance result hl, = 0.

5.1.4 Auxiliary invariants in Schwarzschild

As we mentioned in Sec. BTl the Schwarzschild case has to be consider separately. This is due to
the fact that in Eq. (B.8]), & diverges as a — 0. Instead of considering the Kerr solutions in Eq.
(E3), let us consider the components of the gradient of wéo) when a — 0. Setting a = 0 we have
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0= —21. Eq. (53) then reads
) =3m/rt, @l =0 (5.19)
Therefore Eq. (5.2]) reduces to
3M
Ay = —¢£" 5?3 — _r_4g. (5.20)

Since £" is real, this equation tells us at once (recalling Adws = Athy) that Im(Aee) = 0 — namely
the quantity
(Sch) _
Z5°7 = Im(dv)2) (5.21)

is gauge-invariant.
Unlike the situation in the Kerr case, one of our invariants can be just Im(d12). However Re(dt)2)

is still gauge-dependent. We shall thus choose our preferred gauge BQB to be a gauge in which
Re(d1py) = 0, (5.22)

namely Aty = —Re(tpy). Noting that Ay = —(3M/r*)E", we obtain

4

oo 7’_
¢ = g3 Re(092), (5.23)

which is in full agreement with the more general expression of Eq. (5.8) for £”. Note that in the
Schwarzschild case €7 (just like £ and £9) is left arbitrary.

Again, we define the covariant components £o = gaggﬁ, and in particular

gr = grrgr- (524)

Let us consider again the components of the MP in the new gauge,
hap = hap — (o + €8.0) + 217 555 (5.25)

Where we only require to obtain the A, component. Since in the Schwarzschild case I"),. vanishes

for any 27 # r, we obtain the explicit expression for this component:
I8N = by = hyp — 28, + 27, &, (5.26)

Notice that in Schwarzschild we have labelled the invariants not by the order we have derived them
but rather to make h,, the “first” invariant both in Schwarzschild and Kerr. The gauge invariance

of Eq. (5:26) does follow from the invariance of its Kerr counterpart.

5.2 Circular orbits in Schwarzschild spacetime

Before considering the problem of determining the completion piece for Kerr, let us consider the
more simple Schwarzschild case. Equipped with the invariants obtained in the previous section we
will now obtain the completion pieces. The problem reduces to determining the gauge-invariant
amplitudes of the mass and AM perturbation. This piece is whatever is needed to add to the

reconstructed piece for satisfying the linearised EFE. The amplitudes of the completion piece can be
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determined by imposing continuity off-the-particle of the auxiliary invariants. In Schwarzschild the
expressions for the CCK-reconstructed MP are easier to handle, which makes for a more pedagogical
implementation of our method. Also, in this case we know in advance what the amplitudes of the

completion piece should give, which serves to test our method.

5.2.1 Strategy

We consider a particle of mass m moving in a
circular orbit at r = rg around a Schwarzschild
BH of mass M, where m < M. The reconstruc-
ted part of the MP in a no-string IRG can be
obtained according to the CCK procedure. As
described in Sec.[Z], we start by solving Teukol-
sky equation mode by mode (we choose s = —2
and solve for ;- _o = 9_41/14). We assume that
the completion piece is stationary and axially
symmetric (since it should only include correc-
tions to the mass and AM), and this way we re-

strict ourselves to analytically finding only the

m = 0 = w modes. The appropriate Hertz po-
Figure 5.1: Each of the auxiliary gauge-invariant {antial is then obtained by inverting a fourth-

quantities has a CCK-reconstructed part Z(rec) . . . [E205) .
and a completion part Z(°®P) The reconstructed order differential equation Eq. - With

MP has a gauge discontinuity on the sphere inter- ©0nly the m = 0 of this equation, we perform
secting the particle (red line). The amplitudes M an analytical angular-inversion. We recover the
and 0.J of the completion pieces are determined y_;0des of the reconstructed MP (the ¢ > 2
by imposing continuity of I{fgc) + If;mp) off the o
particle. The full invariant should be continuous
everywhere off the particle.

sector) on each of the two sides of the sphere &
with r = rg, see Fig. 511

The modes of the MP are the required input
to obtain the invariants on each side of S. We
take the limits r — roi to obtain the jump on each mode of the invariants. These jumps are then
summed analytically up to £ — oo in a distributional way. The completion pieces are constructed
as mass and AM perturbations of the Schwarzschild metric (keeping the BL coordinates fixed).
This gives two homogeneous solutions with arbitrary amplitudes §M* and §J*. The jumps on
the amplitudes are determined by imposing continuity of the auxiliary invariants across S off the
particle, namely at 6 # 7/2, to obtain a system of two equations, each of them determines the jump

on one of the missing amplitudes.

5.2.2 Analytic solutions of Teukolsky equation

The radial part of Teukolsky equation that describes the perturbations due to the particle moving
around the BH has the form
?wémw (T) = Tﬂmw (T); (527)

where 7T is the radial Teukolsky operator given explicitly in Eq. EI2a) (with s = —2), ¥pmw is the
radial part of the relevant Weyl scalar (we calculate 14 but it is possible to obtain v instead), and
Time is the frequency-domain source. We have defined T = 47X Ty, with T, as given by Eq. 2I19),



5.2 Clircular orbits in Schwarzschild spacetime 71

to simplify notation. The frequency-domain source has the form
2
Témw Zt tmwlk] TO )(7’ - TO)? (528)
k=0

where fgmwm (o) are three functions determined by Eq. (ZI8), and 6*)(r — ) is the k order
derivative of the delta-function with respect to its argument.

The procedure starts by solving the homogeneous part of Eq. (527) (for m = 0 only) with
retarded boundary-conditions. This can be done analytically to obtain the homogeneous solutions
for 1ps—_o, these solutions are related algebraically to those given in Sec. dZ T according to Ry (r) =
™ f2Ro+ (r), due to the symmetries of Teukolsky equation. For the static modes (m = 0 = w) the

two linearly-independent solutions are explicitly

Ry_(r) =r2fP? (T &M ) , (5.29a)
Ry (r) =2/ Q2 (7“ ;wM ) , (5.20b)

where Py, and Q; are Legendre polynomials as before. The regularity of this solutions follows that
of the solutions in Sec. [£2.11

The inhomogeneous solutions of the radial part of Teukolsky equation )4 goo(r) are constructed
using the variation of parameters method (the expressions for the circular orbit Schwarzschild limit
can be recovered from the general expressions in Appendix [FT]). The total inhomogeneous solution

P4(r, 0) is given by

0) = tau00(r) —2Yeoo(0), (5.30)
=2
where _oYy00(#) is the appropriate angular function (an w = 0 = m and s = —2 spin-weighted

spherical harmonic).

The modes of the Hertz potential Wy (r) are computed from 14 goo(r), using Eq. [220). We use
the algebraic inversion of the angular relation in Eq. (Z200), and work in the IRG. Alternatively
we might have chosen to construct 1y and integrate the radial equation of (2.20D) or use the
corresponding equations to work in the ORG using (Z20al).

5.2.3 Analytical reconstruction: MP and auxiliary-invariants

The reconstructed piece of the MP is obtained via

thC)(T7 0) = HagWeoo(r) —2Yeoo(0), (5.31)

>2

where H is the reconstruction operator [the Schwarzschild limit of Eq. (ZI9)], and we have omitted
the + denoting on which side of S the MP is calculated. Given hg;c), one constructs the two gauge-
invariant quantities Iﬁ;c)(r, 0) = Ilo‘ g h rec (r,0) (where ff 5 are certain differential operators), on

each side of S. We then obtain the Jumps
{I{fgﬂ (6) = lim 17 (hge@(T +6,0) — WO (rg — ¢ 9)) (5.32)

In the m = 0 sector the ¢-modes of I{rec) in terms of the homogeneous solutions of Eq. (5:29)
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and spherical harmonics are

oo

rec 4m
If:l: )(7’, 9) :Z *m {Ril:t(r) [}\17’2 — 2 (AO — 3) MT — 6M2} =+ A1R4i(7’)(3M — 27")}
(=2
X { M Rax(ro) [2M — ro (1500 4+ 1)] — 2Mr§Q° R} (ro) } u"Y2(0)Ye(60) (5.33)

where (2 is the orbital frequency (computed using Eq. 2I1) with a = 0), Ay = (({ —s)({ + s+ 1) as
before, and the prime denotes derivatives with respect to r. We have left indicated the Wronskian
of the homogeneous solutions W = Ry_(r)R}, (1) — Ray(r)R}_(r). It is useful to notice that
I{rfc) “ I{fc) under Ry <> R4y (keeping W fixed). At the limit r — r¢ the terms proportional
to Ryq(ro)Ra—(ro) and Rj_(ro)R}, (r0) are continuous and do not contribute to the jump. The
remaining terms combine to obtain the relevant W(ry) (or derivatives of it). Note that we have
used the definitions of the spin-weighted spherical harmonics Eq. (E8)), to write Eq. (5.33)) in terms

of the usual scalar spherical harmonics. The total jump in the m = 0 sector then works out to be

rec 8mén 4 57T7’ —
Z)0) = 233“@@2 )Y (00) +Z ey o) o), (5.34)

where we have used the identity u? = £/ fo, and A\Yz(6p) = —575”(90) on the equator.

We rewrite Eq. (5.34) as a sum starting from ¢ = 0:

[I(rec)](e) Z 8m57r Ye (0) + Z dmEn(ro — )}/5(9)}7@//(90)

3Mf2 3M7“0f3
8m57r - 8m57r —
- 3ngYO(@’)YO(HO) - Wyl (0)Y1(60),

8m57r AmEn(ro — M) =1 8mémn =
Z SMfQ 0)Ye(6o) +Z SMro )2 Yi(0)Yy'(6o) SMngO(9>YO(90>a (5.35)

where we have added and subtracted the ¢ = 0, 1 terms that are not contained in the first sum of Eq.
(E34), the second sum of Eq. (5:34) is trivially extended since Yy’ (6) = 0 = Y{’(6) on the equator.
To write the second equality we have also used Y3 ()Y (6p) = 0 on the equator. The infinite sums in
Eq. (538) are done analytically in a distributional way (see [99] for a detailed proof of the validity
of the sums). The first term on the right-hand-side of Eq. (B.33]) sums to a delta-function supported
on 0 = 0y, while the second term gives the second 6-derivative of a delta-function:

8mén dméEn(rg — M

) 2mé&
3Mf025(9 6o) M rof0 8"(0 — 6o)

7)) (6) = SR

(5.36)
The reconstructed piece of the first invariant only gives information about the energy of the orbiting

particle.

We look now at the reconstructed piece of the second invariant 7y using Eq. (B.21]), and again

we express it in terms of scalar spherical harmonics using Eq. (ES):

47rmr0f0

r.6 Z Wordrd f ro

£>2

{[r(Ao +4) = 12M] Rys (r) — 2r(r — 3M)Rj.(r) } Ye(0)Y{ (6o), (5.37)

i) (r [roRl (ro) — 2Raz(r0)] %
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and the jump across the sphere with r = rg yields

o0

o= 47;%‘5 Ya(6)Y{(60), (5.38)
(=2

which again can be summed analytically as a distribution adding and subtracting the missing ¢ = 0,1

pieces. The result is

rec 4 E 3 £
[zg )} 0) = — ”7%‘ §(0 — 0o) + 7’% cos b, (5.39)

which has information only about the AM of the particle.

5.2.4 Determination of the completion piece

The “extra” contribution to the jumps in the invariants {Ifcg mp)} is constructed from the completion

piece of the MP. This completion piece has the form

comp)*+ SM 6J
RS (r,0) = sMERCN (r,0) + 87500 (r,0), (5.40)

where §M* and §J* are unknown amplitudes at this stage. In Eq. (5:40) the superscripts + and

— are used to distinguish between the completion solutions for » > ry and r < rg, respectively. The

components of the two MP perturbations thBM ) (r) and h(jﬂj ) (r) are obtained via

agalg(M, J)

B, (69) _ 0gap(M, J)
oM -

h$3 (r) = N ) 7 , (5.41)

J—=0

J—0

where g is the Kerr metric in BL coordinates, s is taken with fixed J = Ma (and fixed BL
coordinates) and 9y is taken with fixed M (and fixed BL coordinates). Given hgfgmp)i, the jumps

[Ifcg mp)} are given by

[If?;mp)} 0) = lgl% fﬁg (hgclgmp)-i—(ro e ) — hggmp)_(m — e, 9)) _ (5.42)
To obtain
(comp) _ 2[6M] (comp) _ 3[0J]cost
[zl } (r0) =Sy ond [12 } (r.6) = -2, (5.43)

where [fM]=06M+ — M~ and [6J] = 6J+ —6J .
5.2.5 Solution for the amplitudes [§M], [§.]]
The jumps [0M] and [§J] are determined from the two regularity conditions
[zfj;ﬂ 0) + [sz;mpq () =0 for 0 # /2. (5.44)

We now impose the regularity conditions of Eqs. (544) at r = ro and 6§ # 7/2, explicitly

o2mE  2[6M)]

110 #7/2) =~ 5375 + 57 =0
[Z5] (0 # 7/2) :3:15 cos ) — 3[64J] cosf = 0. (5.45)

0 To
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Note that in the Schwarzschild case, the amplitudes of the mass and AM perturbations decouple
and we have one unknown amplitude for each regularity condition, as expected from the separability
of the EFE. In general this is not expected in the Kerr case. The solutions of Eq. (5.45) give

[0M]=m&, and [6J] =mL. (5.46)

Namely the jumps of the mass and AM perturbations in the invariants are simply the energy and
AM of the particle, as expected.

The fact that these amplitudes are independent of 6 is a strong test of our result. By virtue of
Wald’s theorem, at infinity the completed MP should read as the metric components for a linear in

da Kerr solution with total mass M + mE and spin-parameter da = mL/M, hence

hgomp)-i- =1+ 2(M + mg)’ hgcomp)_i_ — _M (5473,)
r ® r
1 2M+mé)
pleompy+ _ 1 2UM +me) 5.47b
rr f2 Tf2 ( )
héceomp)-‘r =2, hgac[gmp)Jr = r?sin? 0, (5.47¢)

. . . . (comp)— __
Together Eq. (5.40) and Eq. (5:47) fix the completion in the interior h,g =0.

5.3 Circular equatorial orbits in Kerr spacetime

5.3.1 Strategy

Let us now consider the particle is moving on a circular equatorial-orbit in a Kerr background. The
strategy will be the same as in the Schwarzschild case. We follow the CCK-reconstruction procedure
mode by mode to obtain the MP. The reconstructed sector of the invariants is constructed mode by
mode, and the limit » — rg is taken to read off the jump across S. The sums in the Kerr case are
considerably more complicated. All the sums appearing in the reconstructed part of the invariants
are evaluated analytically as distributions using the formulae in Appendix [F3l The completion
piece is given by Egs. (540) and (B4, without taking J — 0. We impose the same regularity
condition [Eq. (5.44)) in the previous section] to the Kerr auxiliary invariants [Eq. (5.I12]) of Sec.
(12, in the same way as in the Schwarzschild case. Alternatively, [§M] and [§.J] may be obtained
from a single invariant—either Z; or Zo—by evaluating either one of the two conditions in Eq. (5.44])
at two different values of 6 # 7/2. We obtain a system of two linearly-independent equations, which

determines the jumps in the missing amplitudes.

5.3.2 Analytic solutions of Teukolsky equation

The homogeneous solutions to the radial part of the spin s = —2 Teukolsky equation in Kerr (with

m = 0), Eq. (Z9), are hypergeometric functions [147):

Ry (r) =A% F) (—0 42,0+ 3;3;—2,), (5.48a)
Ry (r) =Ags 22T o (0= 1,0+ 1,204 25271 (5.48b)
21(042)! _ r—r4

where Ays = o . We have again used ‘—’ to denote the solution that is regular

TDIR—0 *+ = 7.
at the EH and ‘+’ for the solution that is regular at infinity. The inhomogeneous solutions of the
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radial part of Teukolsky equation 1,—_o = o~ %4 are constructed with the method of variations of

parameters of Appendix [F.1l

5.3.3 Metric reconstruction and auxiliary invariants

We algebraically invert Eq. (220) to find the Hertz potential and obtain the modes of the recon-
structed MP in the IRG. We only require to obtain explicitly the relevant components required to
compute the Kerr invariants, namely the hy, of Eq. (&IT).

Having the Hertz potential we directly compute d¢)o without having to obtain all the components
of the MP, Riemann and Weyl tensors. Let us recall that d1, is required to obtain Z; 5 3, from which
two of them suffice to evaluate the amplitudes of the jumps. dv is calculated?® using:

0y =1—12 (D +20-0)(D+20-0)(6 ++38—7)(3 +45+37)
+(D+20-0) (8 +28 -7 —7)(D+0—0)(§ +45 + 37)
+(D+20-0)(04+28—71—7)(6—a+33—7—7)(D + 3p)
+(@—a+f—21—7)(6 — 20+ 28 — 27 — 7)(D — 3)(D + 30)
+(0—a+pf-2r—7)(D+0-0)(6 —a+33—7m—7)(D+30)
+@-a+f-2r-7)(D+o-0)(D+o-0)(5+43+37)] 7, (5.49)

where we have omitted the vanishing spin-coefficient e.

We leave the Wronskian of the homogeneous solutions unevaluated as we take the limit r — rg
in the inhomogeneous solutions, just like in the Schwarzschild case, and calculate the side-values
of hgrbec) (see Appendix [.4] for the full expressions). The jumps {I{f;c)} are independent of the
explicit form of the homogeneous solutions, since all remaining discontinuous terms are proportional
to W (or derivatives of W which are further expressed in terms of W), just like we found in the
Schwarzschild case.

The jump across the sphere with r = ry is given by a sum of all the £ > 2 modes. We choose to

split the sums according to their £ and 6 dependence, schematically

oo

EZIOES {cgwmwo) + EMYO)2(00) + 35 NoYa(6) + 2ot Y] (6)] Vo(6o)
=2
_ (e} _ (e} _ o\ _
FEYUO)V (60) + SLYAO)Y] (o) + YL (O)Yi(00) + =Y/ (0)Va(bo)
+SLY{(0)Y (60) + S5 Y/(60)¥(60) } , (5.50a)
0 0
rec . o \ do % e} \/
7] o) z{dowmwo>+ S PoYe(0) + 2ot (0)] Yi(0o) + d5Ye(6) V7 (6o)
=2
0 _ s _ D) _ -
F YO (00) + 3 YO0V (o) + =Y (00 (60) + d3Y7 (0)Y (0)
dS _ d2 _
STV O 60) + EVIOT ) . (5.500)
0

2The expression that directly relates ¥ with ¥ in the original Cohen-Kegeles work [94] requires a factor 2. This
is a longstanding error of the CCK formalism as mentioned in previous works by Keidl et al. |[81] and Pound et al. [1]
3This expression is equivalent to the one independently obtained by Sano and Tagoshi [102]
1 = -1 - = = - — = -
sua = [DDQ(J 4 28)2 (5 +4B)T — 4x(D + 0)D(3 + 48)¥ + 6xDx DT | ,
e

which was published after we have implemented our method.
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where the long coefficients ¢f, d? of the sums are ¢-independent and A; = Ao — 2 [these can be

recovered from the coefficients in the eccentric orbits case ¢;, d; given explicitly in Egs. (E4) and
(EH) of Appendix [[]. All the sums in Eq. (550) can be evaluated analytically as distributions at
6 = 6y by including (and subtracting) the £ = 0,1 terms missing in the sums:

|20 (0) =c86(6 — Bo) — 536" (6 — 80) — 2636(8 — 60) — €56'(60 — o) + c§8' (9 0) + <330 — 60)

— c§Y0(0)Yo(00) + 2¢5Y0(0)Yo(0o) — c5Y1(0)Y{ (6o) — 51 Y1(0)-1Y1(6o)

_ .cg / d(cosé’”)/ d(cos 0) [8(8" — bo) — Yo(6") Yo (6o)]

Sln9 -1 1

e / d(cos 0) [5(0 — 04) — Yo(0)V(0)) — Y (0)V4 (6))]

-1

/ d(cos8') [5(6' — 8p) — Yo(6')Yo(60)]

s1n 0

/ / d(cos 6 )d(cos 0y) [06(0" — 0;) — Yo(6')Yo(6) — Y1(6")Y1(65)], (5.51a)

28] (6) =d5o(6 — 6) — d30' (60 — Bo) + 36" (6 — 60) — d38" (6 — o) + dZ5(6 — o)

— d§Yo(0)Yo(60) — d3Y1(0)Y1(60) — dgY{ (0)Y] (60) — d5—1Y1(6)-1Y1(0o)

- dcl) / d(cos@”)/ d(cos ) [6(6" — 6o) — Yo(0')Yo(6o)]

sinf J_; 1

— i [ dlcosth) [5(0 ~ ) ~ Yo(6)Ya(6) ~ Yi(0)Ya (6]

—1
dy - 2d3

sin 6

// d(cos 0')d(cos 0) [5(0' — ) — Yo(6)T(6)) — Y (0')Y:1(6))] , (5.51b)

/ d(cos ") [5(9 —00) — Yo(¢/ )YO(HO)]

sm 0

where we have used Y}/ (0) = )\é/ ® _1Yy(6). The integrals can be evaluated analytically by considering
separately the regions 0 < § < 7/2 and 7/2 < 6 < 7 (see Appendix [[.3] for the details) to give

. 2ul
[If ec)} (0) = — ——L=0 {245 MO + ard (AMro — 6M2 — 3r2)Q — 3a’r(r2fo — 2M>)Q

[Iérec):|

3Mr3A2
—4a°MQ — a® [3M°roQ* + 2r§Q0* + M (r§Q* — 2)] + a’ro [3M*(r§Q* — 1)
+1r2(5 4+ raQ?) + Mro(2r2Q?% — 5)] +ry [SM2 + g +15Q% — 3Mro(1 + 7“8(22)} } ,
(5.52a)

ut o
" 3aMr, 3aMr3

—M + 3M?roQ® + MrgQ?) — arg(rgQ® — 3M? — 3Mro + 3r§ + 3MriQ?)]
+a [a4]\4Q2 —2a3MQ + 2aMro(2rg — 3M)Q + a*(M + 3M?ryQ?* — ]\47“(2)92
—rgQ?) + 1o (B3M? + 1§ + 15Q% — 3Mro(1 + r5Q?))] cos(26) } esc® 0 (5.52b)

{32 2a* MQ + 2r5Q + 2a%ro(r fo — 3M*)Q — a® MO? + a3(r3Q?

where X = %(rg) = 79 + a® cos? 6.
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5.3.4 Determination of the completion piece

The completion pieces are given by Eq. (5:41]), without evaluating J — 0, with arbitrary amplitudes
SM®*, §JF. In Kerr we obtain

picomp) :é {6M [3cos(20)a® + 3a® + 2r°] — 4abJ cos® 0}, (5.53a)
hi;omp) =— é [6M sin?(260)a® 4 26.J (r* — a® cos® 0) sin” 0] , (5.53b)

h{comp) :ﬁ {[2(8M —r) cos® 0a® + 2ra® + 2Mr*| 6 M

Tr

+ [arf cos(20) —2Ma — ra] 6J}, (5.53¢)
m 2 20
by ™" === (6] — asM), (5.53d)
plcome) _ _ 45070 [36Ma® — 35Ja* — MréMa® + (5Ma® — .Ja+ MréM) cos(46)a®
Pp AN Y2
+8r26Ma® — 8r?6.Ja” 4 8r*6Ma + AMr36Ma — 8r*6.J — 8Mr35.J + 4 (6Ma5
—6Ja* 4+ 2r*6Ma® — 2r*6Ja* — Mr®SMa + 2Mr®5.J) cos(20)] (5.53e)

where we omitted the & for brevity.
The completion part of the invariants, namely I{?;Ip) (r,0), is constructed using Eq. (5.53)
according to Eq. (&12). Explicitly we find

2] (1,0) =575 ((5a® + 1) [6M] = 3a[s.) (5.54a)
[Tm2)] (r,0) = — = ((acos(26) — 90) [FM] + 6[5.]) cse . (5.54D)

Notice that [Ifcomp)} depends only on dM as we take the ¢ — 0 limit and we recover Eq. (5.43)).
For circular orbits around Kerr we find that those amplitudes are (just like in the Schwarzschild

case) identically
[OM] = mé€, and [0J] = mL. (5.55)

Notice that our resulting jumps are, just like in the Schwarzschild case, independent of the chosen
point on §. Namely the jumps are independent of 8, which is a strong test of our results.
This result means that by fixing the total mass and AM of the system the amplitudes of the

completion pieces are fully determined as for Schwarzschild.

5.4 Eccentric-equatorial orbits in Kerr

5.4.1 Strategy

We consider a bound geodesic around a Kerr BH, parametrized by the specific energy and AM
{&, L}. The BL radial-position of an orbiting particle of mass mis r = ro (o), with rmin < 70 < rmax-
to denotes the instantaneous BL time of the particle. We denote the radial component of its four-
velocity with respect of the proper time of the particle 7 by 7o = dro/dr.

The CCK procedure is still valid for the setup we just described in the time-domain. Instead
of looking at the full time-domain problem we will decompose the source in partial rings, each

labelled by tg, see Fig. Under this construction the problem will reduce to a sum of circular
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orbits, treated similarly as in Sec. .3l and the reconstructed part of the invariants are recovered
analytically at each ty inside the region rpim < ro < rmax. The completion pieces are constructed
simply by allowing a tg-dependence of the arbitrary amplitudes in their circular-orbits counterparts.
We solve for the ‘partial’ amplitudes of the mass and AM perturbations by imposing the regularity
conditions of the completed invariants at a given time tg. The ‘full’ amplitudes of the completion

pieces are then recovered by integrating over .

5.4.2 Metric reconstruction and auxiliary invariants

The radial part of Teukolsky equation is

7A—me (’I") :Témw (T) (556)

= / Tom (r;70(7), 7o (T))e™ dr,

where 7 is the same as in the circular orbits
case. In the second equality we expressed T in fmax
terms of the original (2d) time-domain source
Tym(r;70(7),70(7)). The integral is an inverse

Fourier transform, which should be taken over a

radial period with a suitable normalization that

is being absorbed in Ty, for the time being, but

it can be recovered from the expressions in Sec.  Figure 5.2: The particle moves in a precessing

211 The time-domain source has the form eccentric orbit, covering all the libration region
(in gray). The idea to determine the completion
T (ry7o(7),70(7)) (5.57) pieces follows from the circular-orbit case. We

) impose continuity for the total invariants (recon-

_ ~ . k) (. structed plus completion) at the level of partial
Z emli) (ro(7), 70 (7))0™ (r — 1o (7)), rings in the libration region. By integrating over
partial amplitudes of the completion piece over tg
we read the total jump of the amplitudes in the

where the coefficients fgm[k], like ro(7) and . ;
completion pieces.

79(7), depend on the chosen parametrization.

The particular solution to Eq. (5.56) satisfying retarded boundary-conditions is given by
’(/ngw(T) = /Gfmw(r;tO)dth (558)

where we have changed the parametrization from 7 to tg using d7 = g—;dto and reabsorbing the gT‘I(—)

in Gyme (r;t0). The retarded Green’s function G (7;to) satisfies
TG (r3t0) = Tom (r;70(t0), 7o (t0) ), (5.59)

with the same boundary conditions as ¢, and Geme, (1;t0) depends on time only parametrically,

not functionally.

We assume that just like in the circular-orbit case the completion piece is stationary and axially

symmetric, and we look at Gygg only. Gy satisfies

T Guoolr;to) = Teo(r;70(t0), 7o (to))- (5.60)
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Note that the source Tyo has the same general form as for a circular orbit, but with different
coefficients fgo[k] (in particular, these coefficients involve 7(tg)). We now think of Goo(r;to) as the
field due to a partial ring of radius r = r¢(¢o) that expands/contracts at momentary radial velocity
70(to). We can then proceed with the completion procedure as in the circular-orbit case (see Sec.
(270, holding to (hence also r¢ and ) fixed.

Given hgec) one then constructs, at each tgy, the two gauge-invariant quantities I{f;c) (r,0;t0) =

fﬁghg;c)(r, 0;19) and obtains their jumps across r = ro(tg):

[2057] (510) = tim 175 (057 (o (o) + €,63t0) — U5 (rolto) — €,63t0)) . (5.61)

The completion pieces at each ty are constructed in the same way as in the circular-orbit case Eq.
(5:53), including the to dependence in the amplitudes of the perturbations, namely SM* — §M*(t)
and §JF — §J%(to).

Given hgcﬂomp), the jumps [IfCQO mp)} are obtained via

{Iicgmp)} (0;t0) = f?g (hﬁfgmp”(r — 1o(to), 05 t0) — hﬁfgmp)*(r — 1o(to), 0; to)) : (5.62)

These to-dependent jumps [0M](tg) = M (tg) — M~ (to) and [6J](tg) = 6J T (tg) — 6 (to) are

now determined instantaneously from the two regularity conditions
[I{fgﬂ (0: 1) + [sz;mpq (0:t0) =0 for 0 # 7/2. (5.63)

Now consider the true, time-domain completion piece h((;g mp)(r, #). Outside the libration domain it

is given by
™) (1> Tinax, 0) = / dto h(S5™ T (r,0;t0) = 681N (r,0) + 6T R (r,0),  (5.64a)

™ (1 < Tanin, 0) = / dto WSS (r, 03t0) = 0 ~hC3 (r,0) + 677 (,0),  (5.64b)
where SM™*, §J*F are constant amplitudes given by
SNTE = / SME(to)dty,  6JF = / 5T (to)dto, (5.65)

and all ¢y integrals are over a full radial-period. Note that, assuming analyticity off the particle, the

time-domain solutions (B.64al) must extend smoothly all the way to the worldline, on either side:

™ (r > ro(t), ) =5M 3" (r,0) + 68 (1,0), (5.66a)
™ (r < ro(t), 0) =8N~y (r,6) + 6T 1Y) (1, 6). (5.66b)

We are interested in the jumps
[537] = 601+ — 6N~ = / 6M)(to)dto,  [67] = 8T+ — 5T = / BJl(t)dto.  (5.67)

The integrals in Eq. (5.67) have to be evaluated over an orbital period, as before.
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5.4.3 Determination of the completion piece

The explicit calculation of the jumps in the reconstructed part of the invariants at a given tg
follows directly from the circular-orbit case [with the same homogeneous solutions as Eq. (.48)].
In particular the ¢-dependence that appears with the spherical harmonics Y(6) remains unchanged
and no additional sums (from the ones used for the circular-orbit case and given in Appendix [F.3))
are needed to analytically evaluate the jumps across the sphere. In other words, the expression
for jumps at each time ¢y have the same structure as Eq. (B.5]) in the previous section, with the
replacement of the circular-orbit coefficients ¢, di by the more general expressions c;, d; given
explicitly in Eqs. (E4) and (E.5) of Appendix [El

The completion pieces also have the same structure as in the circular orbits case Eq. (5.53), with
the appropriate replacement of the amplitudes SM* — §M*(tg) and §J* — §JF(ty). At each time
to we impose the regularity condition Eq. (5.63)) and solve for the arbitrary amplitudes 6 M (¢o) and
§J(to) in terms of [Z(*9)](ty). We perform the integrals Eq. (5.65) by choosing {p, e} as the orbital
parameters [148], which are defined in terms of the two turning-points (rmi, for periastron and rpax

for apastron) as
Mp
1—e

Mp
1+e
This way the specific energy £ and AM L are given by

M 2 Yz —N FAY?
L=zt 5:[1—(—)(1—8){1—%(1—&)” . with 2?= 2% (569)

Tmin = ) and Tmax = (568)

P P 2F

where the upper sign corresponds to prograde orbits, and

1

F :E[p3 —2M (3 + €*)p? + M%(3 + €2)?p — AMa*(1 — ¢%)?], (5.70)
1

N == {-Mp" + [M?*(3 +¢€?) — a’|p — Ma*(1 + 3¢%)}, (5.71)
p

C =(a® — Mp)?, (5.72)

A, =N? —4FC. (5.73)

The position of the particle is given in BL coordinates as

pM
to) = = 5.74
r(to) = 10(x) 1+ecosx ( )
where the parameter x increases monotonically along the orbit. We set to(x = 0) = 0 to be the time
the particle is at periastron and define the radial period (the ¢-time interval between one periastron

and a consecutive one) by T, = to(x = 27) = 2to(x = 7).

We next need to evaluate the integrals in Eqs. (B.67). In practice it is easier to consider the

deviation of the integrals from the value of the specific energy and AM:

[537] — mé :/

—T

T s

mé& dto ~ o
T }Ed% and [6J] —mL 7/

—T

{w] (to) — TFE} ‘fl—i?dx.

(5.75)

{nr1 o) -

The integrands are evaluated analytically in Appendix [E.5
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After evaluating the integrals Eq. (5.67)) gives
[6M]=m&,  and  [6]] =mL. (5.76)

The total jump of the amplitudes in the completion pieces correspond to the energy and the
AM of the orbiting particle. These amplitudes turned out to be functionally independent of 0, just
like in the circular-orbit case. By fixing the total energy and AM of the system we can determine,
using Eq. (B.76)), straightforwardly the contributions on each side of S. This will give a Kerr metric
at infinity parametrized by M + m& and a+mL/M. The amplitudes of the completion piece in the

interior are then fixed to zero, just as we did in the circular-orbit case.

5.5 Summary

The inclusion of the completion piece remained a long-standing open problem in BH-perturbation
theory. This piece together with the CCK-reconstructed perturbation should satisfy the full EFE.

In this Chapter we have addressed the completion problem in Kerr using a new, rigorous and
practical method. We took advantage of the auxiliary invariants (5.12) and continuity conditions
(E44) and (B63]). We tested our method for the simple case of circular orbits around Schwarzschild
where the completion piece was previously known. In Kerr the expression are considerably more
complicated, but still analytical. With the jumps of Eqs. (2.53) and (.70), and by fixing the total
mass and AM of the system, the completion pieces in Eq. (5.53) are fully determined. This fully
solves the completion problem for any equatorial orbit around Kerr.

An extension to perform a similar calculation for non-equatorial (inclined) orbits around Kerr
will follow the same conceptual approach: imposing regularity on the invariants at a given time and
integrating over the libration region to find the amplitudes of the completion. This new calculation
will have to deal with the longitudinal modes that arise due to the fact that the particle is no
longer contained in the equatorial plane, and exhibits an ‘extra’ angular velocity 6. This gives (for
m = 0) a two-dimensional spectrum for the orbital frequencies. This might result in the appearance
of different products of the angular functions (from those we give in Appendix [.3)) with more
complicated mode-dependence. We may be able to evaluate those sums analytically, but if that is
not possible our numerical experiments on circular orbits of Kerr suggest the sums would converge

slowly, giving ‘large’ numerical errors.
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Chapter 6

Concluding remarks

In this thesis we sought to develop a GSF formalism for BH perturbation theory in the RGs. We
expect the method based on the RG-reconstructed modes and completion will become the workhorse
of SF calculations.

We have analysed the local singular-structure of the RGs (either ingoing or outgoing) in a
practical basis of Fermi-like coordinate. The leading-order singularity of the gauge vector relating
the LG and RGs permeates to the singular structure of the RG perturbation. This structure
provided a natural classification of RGs and we identified three categories. Table Bl summarizes
the local form of the singularity (in local Fermi-like coordinates) for each category. The RGs with
a full-string singularity are not suitable for numerical implementations and orbital evolutions.

Based on the singular structure of the RGs, we considered two methods to calculate the GSF for
eccentric orbits around Kerr. The first method considered a local deformation of the RG near the
particle, so that its leading-order term would corresponds to the LG singularity. Such a gauge is
regular in the class of gauges considered by Barack and Ori [19] where the standard LG mode-sum
gives the desired value of the SF. The retarded force in this LL gauge can be obtained from the
corresponding half-string completed RG force (or alternatively from a no-string completed RG),
where the CCK-reconstruction procedure is defined and practical. To regularize this retarded force
using ([B.70), on each side-limit of the particle’s location, the inclusion of a non trivial correction to
the Lorenz D, regularization parameter is required. The calculation of this correction was done in
Fermi-like coordinates in Sec. and expression in BL coordinates appear in Appendix [Dl for a
rigid off-the-particle extension of the four velocity and connections.

In Sec. Bl the second method was formulated, and it considered an undeformed RG. This method
takes advantage of the spatial average form of the SF (Z51I]). The result was the averaged version
of the mode-sum formula ([B:96]) for this type of gauges. This new mode-sum is also applicable in
an LL gauge since the dD,, mentioned above, is antisymmetric with respect of the direction the
limit to the particle is taken. In other words, d D, flips sign across the particle, and by taking the
average 6 D cancel each other.

It should be noted that the final SF value obtained using the ‘4’ half-string solution should by

‘

no means agree with the final SF value obtained using the ‘—’ solution, or with the one obtained
using the no-string solution (the average of the former two): the three values are given in different

gauges.
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Let us recall that a complete gauge-invariant description of the motion involves the SF as well as
the associated MP, given in the same gauge. In the case of the half-string scheme, the prescription
is simple: take the CCK-reconstructed (and completed) half-string RG perturbation, and add to
it the corresponding gauge perturbation 2§, [given according to Eq. (3.60a) with ZEt = 0);
this perturbation can be attenuated in any convenient way to suppress its support away from the
particle. This will produce an LL perturbation in a corresponding LL gauge. In the case of the
no-string scheme, the situation is a bit more subtle: the force is given in the same gauge as the
reconstructed (and completed) MP, but the MP in that gauge has a discontinuity across a surface
through the particle, which might complicate calculations of some gauge-invariant aspects of the
motion.

A detailed numerical implementation to calculate the SF for a massive particle in a circular orbit
around a Schwarzschild BH was presented in Chapter @l We considered the regular sides of the RG
given by the CCK-reconstruction, namely we worked in a no-string gauge. This computation is first
of its kind: the first calculation of the GSF using reconstructed RG-perturbations and regularised
using the average-mode-sum formula. We showed the equivalence (at the level of GSF calculations
in our particular setup) of working in an IRG or an ORG. We made a successful comparison between
the MST method and numerical integration of Teukolsky equation. The numerical code also recovers
well known quantities available in the literature, such as the energy fluxes, the red-shift H® and
the t component of the SF. Even more, the SF calculated this way agrees asymptotically with
the LG values, with the difference between them falling off with =%, as expected from the gauge
transformation equation for the SF, this was shown in Fig. 41

In Chapter Bl we considered the completion part of the solution, namely the piece that is required
to add to the CCK-reconstruction perturbation to satisfy the linearised EFE. Our solution to
the completion problem took advantage of certain gauge-invariant-auxiliary quantities which are
related to the components of the MP and 2. Each invariant was constructed by adding two
contributions: one due to the MP reconstructed with the CCK procedure, and another obtained
from the completion piece. We argued that such invariants must be smooth off the particle across
a sphere intersecting it (even though in practice we only imposed continuity). In this way we
determine the missing amplitudes of the completion piece.

We are working to extend our GSF numerical-implementation to calculate the GSF using the
MST-method, completion of the RG and the average-mode-sum formula for generic orbits around
Kerr [145]. The more general computation will follow the basic algorithm we introduced in Sec.
AT Teukolsky equation remains separable in Kerr —unlike the tensorial equations in the LG—
and the MP-reconstruction procedure is well understood. One of the remaining challenges in SF
calculations for inclined orbits in Kerr is the completion piece of the MP. A second challenge in the
Kerr calculations is the re-expansion of the £-modes into the spin-0 spherical harmonics (where the
regularization parameter are known [125, [139]). This involves a numerical projection of the spin-
weighted spheroidal harmonics (where the harmonics modes of the retarded-force are obtained),
which might not have the finite coupling they exhibited in the Schwarzchild case. The coupling
will be simpler if a suitable off-worldline-extension of the four velocity is chosen. An alternative to
implementing this coupling would be to obtain regularization parameters in the basis of spin-weighed

spheroidal harmonics similarly to [54].
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In order to make comparisons between PN and perturbation theory, a delicate issue must be
addressed. PN calculations are done in coordinates with the origin coinciding with the centre of
mass of the BH-particle system, while the coordinates for SF computations coincide with those of
the background BH. This means that for the comparison between the two methods the SF requires
the dipole moment associated with the displacement from the centre of the BH to the centre of
mass of the full system. In Schwarzschild this contribution was obtained numerically by Detweiler
and Poisson |117], but in Kerr the problem has not been addressed to date to our knowledge.

The full calculation of the GSF for generic orbits around Kerr was not achieved in this work,
however we have provided in this thesis all the tools for it. We developed two practical methods
to calculate the GSF using the reconstructed RG perturbation. In this method the most compu-
tationally expensive task involves obtaining curvature scalars. This is done by solving scalar-wave
equations which are separable even in Kerr. We have numerically implemented one of the meth-
ods in the simple case Schwarzschild, and obtained the GSF in an undeformed no-string RG. This
serves as a test of the applicability and computational cost of the method. Our values for the GSF
also correct those previously computed in [83]. Along the way we have cleared one open problem
of BH-perturbation theory, namely the inclusion of the completion piece for any equatorial orbit

around Kerr.
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Appendix A

Motion as defined in matched

asymptotic expansions

The standard method of deriving an equation of motion in the context of the SF is matched asymp-
totic expansions [14, [16, [119-123, [149]. In this Appendix we present a review of the basic ideas
used in this method, and in particular how to obtain equations of motion in gauges outside the LG

class of gauges, such as the RGs that we addressed in Chapter [Bl

A.1 Centre of mass

In the method of matched asymptotic expansions, see Fig. [A.T] one assumes that the particle is
actually a small, compact object. Let g, (x,¢) be the exact solution to the full, non-linear EFE for
the spacetime including that small object, where € is used to count powers of m but will be set to
1 at the end of the calculation. Also let R denote the other lengthscales of the system, which are
much larger than m.

Suppose we work in the local Fermi-like coordinates (7, 2%) centred on T, introduced in Sec. Bl
We do not begin with any definite association between I' and the bulk motion of the small object,
but we start by assuming that the object is only a small distance from I'. At distances s > m, far
from the object, one can expand the exact metric as g, = g, + sh,(},,) + 52hL2V) + O(e?), which is
the form of the expansion assumed throughout Chapter 2l We call this the outer expansion. In this
expansion the first-order perturbation, hﬁ}} = huu, is that of a point particle moving on I' in the
background gag [16].

At distances s ~ m, near the object, the outer expansion fails because in that region the metric
is dominated not by g,., but by the gravity of the small object. The method of matched asymptotic
expansions overcomes that problem by adopting a second expansion near the object. Rather than
taking the limit of small mass and size by keeping external distances fixed while sending the mass
and size to zero, we take the limit by keeping the mass and size of the object fixed while sending
other distances to infinity. This second limit is achieved by writing the metric components in terms
of scaled variables z* = 2*/m. Holding these scaled variables fixed while expanding for small m,
we have

g#”(fv 5) = g;(g/) (Ta :Z'a) + Eg;(tlu) (7_7 ja) + 0(52)7 (A1>

where gffl) (7,2%) is the metric of the small body if it were isolated. We call this the inner expansion.

The motion of the small object is defined by examining the metric in a buffer region m < s <K R
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buffer
region

Figure A.1: Matched asymptotic expansions: In the outer region, far from m, the metric of the
physical spacetime g is expanded. In the inner region, near m, the metric of the small object g is
dominant. In this region the outer expansion fails and a second expansion is obtained. In the buffer
region the two expansions are valid so they must agree (up to a gauge).

around the body. Because s > m, we can expect the outer expansion to be valid here; because
s < R, we can expect the inner expansion to also be valid here; and because they are both
expansions of the same metric g, the two expansions must agree (up to gauge). This allows us
to infer information about the outer expansion from information about the inner expansion in the
buffer region. The first thing we infer is that the existence of an inner expansion requires the outer

expansion to have the local form |16, [119]
huw ~1/s, b2 ~1/s? (A.2)

near the wordline.

Furthermore, we note that while the buffer region is asymptotically small from the perspective
of the outer expansion, it corresponds to asymptotic infinity from the perspective of the inner
expansion. Using that fact, we can define multipole moments of the inner expansion, and those
multipole moments become the kernels of the outer expansion. As an example, we note that the
Arnowitt-Deser-Misner (ADM) mass of gﬁ? in the inner expansion defines the point-particle mass

m in the outer expansion [16].

For the particular purpose of defining the object’s motion, we will be interested in the mass

dipole moment of the object’s unperturbed metric:

3
M = =2 ~(0) =b\,,a A.
g A [ Gr7 (7, 2°)n%dS, (A.3)
where the integration is over a sphere of radius s around the object, and n® is the unit vector
x%/s = T%/8 normal to the sphere. Using this formula, we can meaningfully define the object’s
motion. Per unit-mass, a mass-dipole moment has the interpretation of the position of the centre of

mass relative to the origin of the coordinates. Since we work in coordinates centred on the worldline
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I', the mass-dipole per unit-mass can be interpreted as the position relative to I'. More explicitly,

imagine the object’s motion is described by a worldline z*(7, &) with the expansion
2(r,e) = 28(7) +e20(7) + O(2), (A4)

where z{j (1) are the coordinates on the geodesic T, and z{(7) is a vector field on I'. Then we define

the leading-order correction z& to the object’s position as!

: (A.5)

where M = ef M*“. This was the method used by Gralla and Wald in the first rigorous derivation
of the first-order GSF, and modifications of it have since been the basis for derivations of the
second-order GSF [121, [149].

We can relate M to the perturbations in the outer expansion by appealing to the assumed

agreement between the two expansions in the buffer region. In that region, we can expand 5502 as

1 1
g\ (r,5,n%) = —g!9"(7) + 9% (1,n) + O(57?). (A.6)
5 5
It is easy to see that only the term 5%9507’2) contributes to Eq. (AZ3). Written in terms of the

. . 2 (0,2
unscaled variable s, this term becomes %5 ggT )

in A% in the outer expansion. Therefore, noting Eq. (A2), we can write

, and we can see it must correspond to a 1/s? term

M = 83 lim h{2nads, (A7)
T s—
or 3
mzj = o lim h2neds, (A.8)

where now the integral is over a sphere of radius s. Eq. (A.8)) gives the first-order correction to the

position in terms of the second-order perturbation in the outer expansion.

A.2 Equation of motion in any sufficiently regular gauge

In the work of Gralla-Wald [16], a first-order self-forced equation of motion was found by solving

the Einstein equation to sufficiently high order to establish a formula for 92M®. The result was

2
D Z1Lor

a2 _mRaHBVu“szoruV + I, (A.9)

The first term, —R® #gyu“szoru” describes the acceleration due to the background curvature. The
second term is the LG force, F% . It can be written in alternative forms, we will require the

Quinn-Wald-Gralla spherical-average form

1 .
Fe. = —lim [ FP.dQ. (A.10)

T s—0

Using the result (AX9) for the motion in the LG, we can find the motion in a different gauge

L An alternative method, called the self-consistent method, instead defines a mass dipole relative to the accelerated
worldline z%(7,¢), deriving an equation of motion for z* by ensuring that that mass dipole vanishes |[119]. That
method is designed to maintain uniform accuracy on long timescales by avoiding an expansion of z%(r,¢). Here, for
simplicity, we work with the expanded worldline.
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by referring to how the mass-dipole moment is altered by a gauge transformation. Under a gauge
transformation generated by a first-order gauge vector &,, the second-order perturbation is altered
according to hfl,) — hfl,) + Ah,(fl,) , where [1]

Ahﬁfy) = hyuw;p€” + th(ugpw) + 5pf(u;l/)p + & o + gp;(ugl/);p’ (A11)
and again we have used h,, to be the first-order perturbation hf}l,) We restrict our attention

to gauge transformations preserving the form (A22)) for all 7, to maintain compatibility with the
existence of an inner expansion. Straightforward analysis of the transformation laws Ahqag = 2§(4;s)
and Eq. (A1) shows that this compatibility requirement imposes the following conditions on &, in
the limit s — 0 [1]:

1. & = fi(m)Ins + o(ln s),
2. &, = fa(r,n*) + o(1),
3. 7 derivatives do not increase the degree of singularity; e. g. , 9:£, = O(&a),

4. spatial derivatives increase the degree of singularity by at most one order of s ; e. g. , 9,6q =

O(&a/s).

The functions f; and fo must be at least twice-differentiable but otherwise are chosen arbitrarily.
Let us note that all the gauge transformations between LG and RG, see Sec. B.2] satisfy the four
conditions given above, but this conditions are not restricted to the RG. Given these conditions, a
simple calculation shows that if we begin in the LG, where h,, = sz(SW + O(1), the change in the

time-time component of the second-order MP due to &, is
AR®) = _2Mac 1 o0 (A.12)
= T30 Gt o . .

Of all the terms in Eq. (AIIl), huw,,E° is the only one that contributes to this result. From Eq.
(A7) we get the change in mass-dipole moment and substituting Az{ = AM*/m Eq. (A.8) reads

3
Az¢ = ——1lim [ n*n&dQ. (A.13)

47 s—0

This is the change in position under a gauge transformation as considered in Sec.

Once the change in position is in hand, the change in the GSF can be calculated in a few short
steps. First, we write the result covariantly using Az® = e§Az{. Next, we calculate the acceleration

of Az{* by taking two covariant derivatives along the worldline, yielding

D2Az¢ w_ 3D*T .. a b
— = Aa® = a2 {ea ilg%/n n «Ebdﬂ] , (A.14)

Finally, we add and subtract R #gyu“Azﬁu”, leading to the evolution equation

D2Az¢
m
dr?

= —mR® g u" AZPuY + AFC, (A.15)
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where we have identified

AF* =mAa® + mRauguu“Azfu”

ey Hn%/n“nbﬁbdQ} + mRo‘Mlgyu“Azfu”, (A.16)
—

as the change in the GSF under the transformation generated by &,. Our reason for adding zero in
the form of Riemann terms is that doing so allows us to write the evolution equation for z{} . + Az{
in terms of a geodesic-deviation term plus a SF term, as in Eq. (A9):

2
m%(zz&or + AZY) = —mR g ut (2] op + A2) U + Py + AF. (A.17)
This provides a method of finding the SF in a broad class of gauges, beginning in the LG and
then transforming to the desired gauge. If the transformation satisfies conditions [[H4l enumerated
above, and it is such that the integral (A.I3) yields a well-defined, C? function of 7 along T', then
we say that the end gauge is sufficiently regular to define the GSF. We calculate the change in force,
AF“, generated by such a transformation, using Eq. (AI6). The total GSF in the end-gauge is
then given by the force in the LG plus the change due to the gauge transformation. This is the
method used for deriving expressions for the SF in the RG in Chapter
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Appendix B

Lorenz-Gauge regularization

parameters

We include the analytical expressions required to regularize the GSF in the LG, for a particle at an
arbitrary point z along its orbit around a Kerr BH. The Kerr values for regularization parameters
were first given in [31] for the scalar field and [97] in the EM and gravitational cases.
Let us assume that z has BL coordinates (tg, 70, 09, ¢0). In the LG the regularization parameters
C® and D® are zero:
Cc*=D"=0. (B.1)

The components of the parameter A% are given by

_ m? ( sinZ 6, )1/2
A= — | ——— V+ uf rr 1/27 B.2a
Vv Grrd069dee ( /g ) ( )
At = (UT/ut)Arv A9 =A% = 07 (B2b)
where
V =1+ug/ges + Ui/gswa (B.3)

and the four-velocity u® and the metric components of the Kerr background g, are evaluated at
z.
The components of the B® parameter are more complicated. In general they can be expressed

as
B = m?(2m) " PO I, (B.4)

where the Roman indices run over angular coordinates 6, ¢ only. The coefficients P%

ed are given by

1
whed = 5 [ P4 (3Pabe + 2PapPe) — P*N2Pxab + Papr) Pea) + (3P5 Poe — PS Pap)Cy, (B.5)

[\]

with
P, = u’\upg)\p_,a, P.g = gap + uatp, Papr = F;\éﬁPM, (B.6)

where I'j. are the background connection-coefficients at the location of the particle. The remaining

non-vanishing coefficients

1
C’Z@ = —sinfycosby, CF =C?

1
5 oo =Con="75 cot . (B.7)
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The quantities 19°¢¢ are
2m
190 = (sin o)~ [ G(x)" (cos x)* Ny, (B.8)
0
where

G(x) = Pyg cos® x + 2Py, sin x cos x/ sinfy + P, sin? x/ sin? 6y, B9
® 0P

and N = N(abced) is the number of times the coordinate ¢ occurs in the combination (a, b, ¢, d):
_ ca b c d
N =65+ 0, + dg + o (B.10)

In terms of standard complete Elliptic-integrals we can write

. 9 -N N .
peved — (S 00)77 ;) QI (w) + 1Y Bw)] | (B.11)

where we introduced the parameters

Q=a+2—(a?+ B2, (B.12a)
d =3P3?(sinbp) ~°(a® + 5%) (4o + 4 — 52)¥2(Q/2)"/?, (B.12b)
a =sin® 0y Pyo/ Ppp — 1, (B.12¢)
B =2sin6yPyy/Ppp. (B.12d)
K(w) = qu/z(l — wsin?z)"Y2dz and E(w) = OW/2(1 — wsin? £)Y/2dz are the complete Elliptic-
integrals of the first and second kinds respectively, with argument
2 2y1/2
o+ 2+ (a2 +ﬁ2)1/2
The ten coefficients II((N), SEN) are given by
119 =4[120® + 02(8 — 382) — 4a32 + B2(B% — 8)),
I = —16[80° + 0*(4 — 7%) + af(8* — 4) — B*(B + 4)], (B.14a)
1) =8p[90% - 2a(8* - 4) + 57,
1) = — 4B[120° — a?(B% — 52) + (32 — 128%) + B*(38% + 4)], (B.14b)
1P = — 4[80% — o (8% — 8) — 8% + B%(36% — 8)],
1) =8[40* + 03(8 + 12) — 20°(8% — 4) + 308%(8? — 4) + 282(38% — 4)], (B.14c)
I$) =8p[a® — 7a® + a(38° - 8) + 57,
1) = — 4B[8a* — 40P + a2(1552 — 44) + 4a(582 — 8) + (352 + 4)], (B.14d)

I = — 4ot — 40® + o?(75% - 8) + 12082 — (6% - 8)],
I3 =16[40° + da* + a?(782 — 4) + a?(1% — 4) + (20 + 1)F*(8* + 4)]. (B.14e)
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The choice of off-worldline

extension

In Chapter Bl we calculated corrections to the LG regularization parameters. These corrections are
required to implement the mode-sum formula in the half-string RGs. We now explore how the
choice of extension may affect our results

From the coordinate expansion of the gauge vector (Sec. BZT), we now consider the expansion
of the change 5£F§ in the retarded-force generated by that vector. For concreteness, let us define
7' to be the position on the worldline at BL time ¢, such that 6t = 0.

Under a gauge transformation generated by §ff, the retarded-force Ff off the worldline trans-

forms according to Eq. (Z58]), which we rewrite here in the slightly different form
beFit = —mPyP [a%, (@V,68) — (@9,8") Voek + Rg7viebar| . (C.1)

Here @, P,?, and 6# are smooth-off-the-worldline extensions of the four-velocity u®, projection
operator P,”, and covariant derivative V uy and Rﬁ 7 is the Riemann tensor corresponding to \Y e
We wish here to allow any smooth extension, and in general the fields will have expansions of the

form

i@ = u® +a® 6z + O(s%), (C.2a)
Ng'}’ - Fg/,yl + f‘gw/#/é‘l‘” + 0(82), (CQb)
B =P, +0(s), (C.2c)

Raﬁvtg — Ra/ﬁ/’wé/ —+ O(S) (02d>

In these expansions, each of the quantities on the left is a function of the field point z = a2’ + d2/,
and the expansion coefficients on the right are functions of the worldline point z’.
To evaluate Eq. (CJ)) for these arbitrary extensions, we first determine the action of @u on a

bivector wq (', §2') that is a function of 2 and dz* .
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Both z® and dz® are implicitly functions of z%: z® = z (t), and oz =z — 2 (t). When

we act with a derivative at %, we must differentiate these quantities as

P (C.30)
@ [e% ’U,t/ ) .

’

ul
ut’’

Dbzt = 1 — 5!, (C.3b)

Now define 0,/ to be a partial derivative with respect to o holding szt fixed, and define O to
be a partial derivative with respect to dz* | holding 2 fixed. Using Eq. (C3), we find

B 5B B , 8
e (@, 62) = 22 pwn + L85y, = o %aﬁ,wa + (55 — ol ) Spwe.  (CA)

OxH Oz m ut’

Combining this with the expansion of the Christoffel symbols, we arrive at

’

. B’ , B /
Vuwa(g;’, 5;5’) = [5;5; Zt, 85/ + (Sg (55 - 5L:it’ ) 65' — Fz/a/ + O(S) Wey . (05)

Notice that in this expression, dg- and Fg:y do not affect wy’s parity or its scaling with s, while
dg both reverses the parity and reduces the order by one power of s.

From these results and the expansion of @* in Eq. (C2al), we immediately find

/

uP

W'V we (2!, 62') = [5guﬁ’aﬁ/ + 67 <aﬁ’,5/ —a' 5 — ) 02 85 — u' T, + O(s)| wy.  (C.6)

Here we see that for any w,, the operator ﬁ”@# does not increase the singular behavior of the
leading-order term, and it preserves the parity at that order; as we would expect, even though we
work off the worldline, there is a sense in which a derivative “along the worldline” changes neither
the parity nor the order. Therefore, in particular, aﬂmgﬂ and @'V, (ﬂ“@ufg) have the same
parity as {g at that order.

Using Eq. (C.6), we can straightforwardly evaluate the first term in the transformation (C.I).

We now move to the second term, (ﬂ“@uﬂ”)@yﬁg. An explicit calculation, using the expansions

(C2a)) and ([C2h) and the differentiation rules (C3)), yields
@Vt = @ g+ 20T, @Y g+ @ g o+ u T, ﬂ,m’} 527 +0(s?).  (C.7)

We note that this expression is the only place in which the choice of extension f%v enters into
our calculation. Defining a* = @'V, ", the above result can be written compactly as a* =
a* 0z 4+ O(s%). Combining this with Eq. (C.5), we find

’

~ v~V 4 ’ u” ’
(a"V, ") V& = (a'y o —at " > ozt 0,€5 + O(s). (C.8)

Notice that this term preserves the parity under and order of &g.

The final expression for the change in retarded force can be found by substituting the expansions
(C.8) and (C3), together with (C2d), (C2d), and (C2al), into Eq. (CI)). We note that, regardless
of extension, the resulting expression for 55F "+ receives no contribution from the parallel component
535” at leading-order. To see this, replace P.? in Eq. (CI) with its leading-order term Pa/ﬁ,, and
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observe that (i) u“/V#/ P =0 (so, at leading-order, the projection operator commutes with the
derivatives along T'); (ii) Pa/ﬂlﬁgn = 0; and (iii) Rﬂfuﬂl l,rﬂ“lfi[”ﬂ”/ = 0 by virtue of the symmetries
of the Riemann tensor.

In the following two subsections, we write 551502} explicitly for two choices of extension. However,
as we have noted along the course of the calculation, regardless of the choice of extension, the change
in the retarded-force has the same parity and scaling with s as does &, itself. Since d¢ F = does not
contribute to 55Fg§, we may focus on ¢, F&t, which we now conclude is of order s and possesses
the same parity as {1 under 6z% — —§z® . Since we have also shown that &, inherits the parity
of &,, we now have the following: if £, has a definite parity under 2 — —z®, then 65}%2[ has that

. ’ ’
same parity under dx® — —dx® .

C.1 Example 1: rigid extension

In the simplest extension, which we call “rigid”, the coordinate components of both @* and f%v are
extended as constant fields, i.e., they are taken to have the same coordinate values at = as at z’.
If we adopt this extension, then the partial derivatives of these quantities in the dz’ direction (i.e.,

da,lﬂ/éxﬁ/ and 1:‘3;57[3,5305/) all vanish. We immediately find
(SgFa:‘t = —mPazﬁlu“/V#/ (UU/Vl,/fg:) — mRa/#/W/Ulu“/flu”/ =+ O(S), (Cg)

where V,, is the covariant derivative that acts on the =’ dependence of its argument while holding
the 0z’ dependence fixed.

The rigid extension might not be the most useful in practice, since it is not an extension for
which the LG parameters A,, By, C, are available |19, 197]. But it affords a simple demonstration
of our main conclusions. It is also useful when comparing with the existing literature, because it
is implicitly the one used by Shah et al. in their calculation of the RG GSF [81,183]. We use Eq.
(C9) in Chapter B to derive corrections to the LG regularization parameters.

C.2 Example 2: rigid extension of u®, natural extension of

metric-related quantities

Another obvious option is to use a rigid extension of the four-velocity while allowing all metric-
related quantities to retain their natural values at the field point x; e.g., f‘g7 = I',. With this

choice, we find

555‘3 = mea/ﬁ/u“/V#/ (’U,V,Vl,lfét) — mRa/#/W/Uluﬂlfluyl

’
w
4 u
M ot
F’Y/é/,’// - ut/ F,ylél,l//

+mP," u'u’ 5x” 8,065 + O(s). (C.10)

This extension is the one used to derive the LG regularization parameters in |19, 97]. It is also used
in our numerical implementation of Chapter[dl If one wants to calculate the GSF in a half-string-LL
gauge, Eq. (CI0) would give the correct § D parameters for the mode-sum formula of Eq. (370).
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The choice of off-worldline extension




Appendix D

Corrections to the Lorenz-Gauge

regularization parameters

We present the corrections to the standard LG regularization parameter D, for specific orbital
setups. These were derived according to the discussion of Sec. B:3.2l and published in [1]. All the

corrections were calculated using the “rigid” extension defined in Eq. (C.9).

D.1 Arbitrary geodesic orbit in Schwarzschild geometry

Specializing first to the Schwarzschild background, let M denote the BH mass, and £ and £ stand
for the particle’s specific energy and AM. Without loss of generality we set the particle to move
on the equatorial plane. The expressions below are understood to be evaluated at r = ry and
7= £[E% — fo(1+ L£2/r)]. The four velocity is u® = (£/f, 7,0, L£/r3), and the principal null-vector
is /¢ = (f~1,1,0,0), namely the MP is given in an IRG as defined by Eq. (ZISal).

Following the procedure described in Sec.[3.3.2] we find, using computer algebra,

m2L2C (&, 7, 7) m2L2C,.(E,r,7)

D=4+ 25227 pr—40 = el
2% TE—iP ST
2m2LC, (€, r,7)

+ _ 4+ s Iy

where

Ci(E,r,7) =2rf[r2(1 — E) + Mr(3E% — 4) + 4AM?] + [3r%(1 — %) + 4Mr(E* — 4) + 20M?|rEr

+ [r2(9€% — 1) + 6Mr(1 — 2E2) — SM*ri? + (3r — 4M) (r*+* — 3r2Er3), (D.2a)
Cr(&,r,7) =r3(E2 + &Y = 2) — 6M1%(E% — 2) — [r*(1 + 3E?) — 8Mr + 12M>|rEr

+r(3r2E% — 2Mr 4 AM?)i? — 3873 4 8M?r(E? — 3) + 16 M3, (D.2b)
Co(E,r,7) =r*(E* — 1) — M7(3E* —4) —4AM?* + [r(E* — 1) + 4M|rE7

— (2r&% 4+ M)ri® 4 r2&73. (D.2c)
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D.2 Circular geodesic orbit in Schwarzschild geometry

From the general expressions we just gave for geodesics of Schwarzschild we consider the special case
of circular motion, for which 7y = 0, & = fo(1 —3M/r¢)~/? and L = (Mr¢)*/?(1 —3M/ro)~ /2. In
this case Eq. (D.1)) simplifies to

3m2M?

+ + + + _
§DF = irg’“(ro mPYyTY and  6DF =6DF = 4DE =0. (D.3)

D.3 Circular equatorial orbits in Kerr geometry

We now generalize to Kerr but immediately specialize to circular equatorial orbits, for simplicity.
We denote by M and aM the mass and spin of the BH, and introduce

Ag =713 —2Mro + a?, v=+/M/rg. (D.4)

The specific energy and angular momentum are given in terms of the BL orbital-radius as

1—2v% + avd/M 1 —2av3 /M + a?v* /M? (D.5)
= , = v . .
V1 =302 + 2av3 /M 0 V1 =302 + 2av3 /M
We find om? )
§DE = +9, M (1 - ) , D.6
“ ro(b — c?) V1i+tb—c? (D-6)
where
26L 4+ ELrE —al? — aA
b=ry° [LPro+a®(2M +10)], c= ey 420 (D.7)
ro (a25 —al + 57‘(2))
and
3M vrg —a(rg — M) — a®v
Qt:QGZszoa Qr:—3 ! (0 ) . (D8)

Ty ro — 3M + 2av

We note that §D, as written is not defined at a = 0, where b — ¢? vanishes. However, the limit

a — 0 of §D,, is well defined, and it agrees (of course) with the Schwarzschild result displayed in

Eq. (D3).

D.4 Parity and §DF

From the expressions in the previous section we see that the corrections to 6D, are in general
nonzero. The second important fact to notice is that the corresponding § D are equal in magnitude
but opposite in sign. We might think this feature is a consequence of the choice of extension, rather
than a general result for §D. We now seek to establish the latter result in full generality, in other
words we want to consider that, for any smooth extension, 6D = —§D .

This result follows from the relationship between the parities of the ‘+’ solutions. Let us recall
that for a no-string gauge, the components of the gauge vector 58 | have odd parity. Naturally the
half-string gauge vectors from which the no-string solutions were constructed relate to one another
according to fgj‘_ (%) = —fgl(—xa), except at pgx® = 0. This relationship is most easily visualized

on a small sphere of constant geodesic-distance from the particle, with half the sphere in the regular
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sphere at (to, 7o)

sphere at (to,70)

Figure D.1: Parity of vector fields around the particle. The particle, indicated by the black ball,
sits at the north pole § = 0 of the BL coordinate sphere defined by (t,7) = (to, 7). It is surrounded
by a much smaller sphere of radius s. The shaded disc is tangent, at 6 = 0, to the large sphere.
Upper panel: a smooth vector field with odd parity is shown on the surface of the smaller sphere.
Its restriction to the shaded disk inherits odd parity under reflection through the centre of the
disk. Lower panel: a discontinuous vector field with odd parity is shown. The field exhibits a jump
continuity across the disk, although it possesses odd parity on the small sphere. Its limit to the disc,
either from above (shown in red) or from below (in blue), does not inherit that parity. Reproduced
from [1I].

half of the ‘+ solution and half in the regular half of the ‘—’ solution, as shown in Fig. [D.Il At
antipodal points, the + gauge vectors point in opposite directions with equal magnitude.

Now return to Eq. [B72)) and consider the parity. From the gauge vectors, we see that dgo+ F (2, 62) =
—6¢o- Fo (2!, —02"), which follows from the results of Appendix [Cl In terms of the variables in Eq.
(372), the relation becomes d¢o+ Fo(0r, &,9) = 7550715&(757", —&,—9). We can see that

lim [ dcos@d@P(cosf)deo+ Fo (67, %, )

Sr—0t

=— lim [ dcos0d@P,(cos0)d¢o- Fo (o7, —2, —1)

or—0—

=— 5}3%7 d cos 0d@P(cos 0)dco- Fo (67, &, 9), (D.9)

where the first equality follows from the odd parity of F,,(0r, #, ) under (67, Z,9) — (—dr, —&, —7),

and the second follows from the invariance of the integral under the change of integration variables
(Z,9) = (=&, —1), (which corresponds to a rotation ¢ — @ + ).

The result of Eq. (D.9) shows that the corrections to the regularization parameters in the ‘4’

solutions are precisely opposite, for generic orbits in Kerr and regardless of the choice of extension.
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Appendix E

Angular functions

In this Appendix we give a short review of the angular functions which are eigenfunctions of the
angular part of Teukolsky Eq. (212h). We start with the solutions for the Schwarzschild (a = 0)
case, or spin-weighted spherical harmonics. For completeness we include a method to calculate the

spin-weighted spheroidal harmonics, even though they were not explicitly used in this thesis.

E.1 Spin-weighted spherical harmonics

The spin-weighted spherical harmonics Yz, (0, ¢) are functions defined on a sphere just like the
ordinary spherical harmonics Yz, (6, ¢). For a given value of the ’spin’ parameter s they satisfy the

orthogonality relation

2T 1
/ d(p/ d(cos0) sYem(0,0) sYorm (0,0) = doeSmm - (E.1)
0 -1
They also satisfy the completeness relation

Z Yo (0,0) $Yem(0',¢") = 5(cos 6 — cos0')5(p — ¢'), (E.2)

l,m

for each integer value of s. This means that for each value of s the functions (Y7, (6, ) form a
complete set of orthonormal functions on the unit sphere. The complex conjugated Yz, (6, ) can
be calculated using

Tem0,0) = (~1)" Ve n(6,0). (E:3)

We define & and its complex conjugated operator  in terms of how they raise (or lower) the

spin of the function Yz, (6, ©):

65 S}/Zm( 7SD) :(AS)l/Q S+1}/lm(97 SO), (E4a’)

0
By s Yem (0, 0) = — (A=9)Y? s_1Yem (0, 9), (E.4b)

where A = (¢ — s)(£ + s + 1) as before. This can be defined in terms of angular derivatives acting

on a quantity n, of spin s, as

0sn = — (sin®)® [0 + i csc 80,] (sin6) ~*n, (E.5a)
dsn = — (3in0) ™[O — i csc 0D, (sin 6)*n. (E.5b)



104 Angular functions

On the equator the spin-weighted spherical harmonics are given by

Vi (5.0) i VO, (Ea)
m Var(l—m(E+m ™ |
. ( 0) e VD= m) ) | =5t (E.6b)
NZUSYS f(e,mfffff}ﬁmq)u
2m27)\ €tm
i (50 =it VB DOl | 5t (B.6c)
m 5 2imep m ’ .
\/W *(zfmfl)l!e(l;ﬂllfl)”
with
1, for £+4+m even

0, for ¢+m odd

In terms of the usual spherical harmonics,

(X)) 1Yem (0, 0) = — (99 — mcsc) Yom (0, ),
()\0)1/2 1Yo (0, ) = (0p + mcsc ) Yo (0, ¢),
()\0)\1 Qng(G, @) = (95 — cot 099 + 2m cot 0 csc — 2m csc 09y + m? csc® 0) Yo (
MoM) Y2 oYem (0, ) =

,p) = (95 — cot 00p — 2m cot O csc O + 2m csc 00p + m? csc® 0) Yo (0, ¢), (E.8d

where we have used 0, Yy (0, p) = imYym (0, ¢).

The coefficients that allow the re-expansion of the spin-weighted spherical harmonics in terms

of the usual scalar spherical harmonics [appearing in Eq. (@I7) and given in [36]] are

a(lyy = =Cor1.mCrizm, o =1=Chp—Cliim (" = =ComCi1m, (E.9)

ﬂffg) = KClJrl,mCEJrQ,mv ﬂ(O) = £C€2+1,m - (6 + 1)Cl%ma B(—Q) = 7(6 + 1)sz04717m, (Egb)

Ve = CPCe1,mCrvzm, Ao} =m” = E+1) + CCF Ly + (E+1)°CFs
7( 5 =(+ 1)?CmCo—1,m, (E.9)
50ty =LCr1m, 0™y = —(L+1)Com, (E.9d)
€ty =0 =0Cr1m, €™y =(L+2)Com, (E.9)
sy == LCos1mCry2mCoism,

C(Zrm :Cé-i-l,m [6(1 - C€2+1,m - C€2+2,m) + (f + 1)062"1} )
C(eTl) =—Com [(6 + 1)(1 - Cg—l,m - C€2m) + gcl?-i-l,m] )
C(e:ng) :(6 + 1)Clmclfl,m0272m; (ng)



E.2 Spin-weighted spheroidal harmonics 105

Efz_ng) :€2C€+1,mcé+2,mcé+3,ma
&y =Coyrm [m® — (L + 1)+ PCFyy ,, + (L+1)2CL, + ECFyy )
&y =Com [m* =Ll +1) + CCFyy p + (L +1)°Ch + (L+1)7 1,0

6{7_”3) :(ﬂ + 1)2C€mcﬂ—1,mcé—2,m; (E9g)
with 12
62 _ m2
Ciom = {7462 — ] (E.10)

E.2 Spin-weighted spheroidal harmonics

The eigenfunctions of the angular part of Teukolsky’s equation (2.121) are the spin-weighted spher-
oidal harmonics, which reduce to the spin-weighted spherical harmonics of the previous section in
the case of Schwarzschild, @ = 0. The spin-weighted spheroidal harmonics can be written as a

spectral sum in terms of the spin-weighted spherical harmonics as

ssémw(e): i bjw SY]m(9)7 (Ell)
e

J=£min

where (i, = max(]s|, |m]), and it is important to note that we have excluded the factor e™¢ in
the definition of the spin-weighted spherical harmonics.

Let us now summarize the method to obtain the coefficients b;,,. We substitute the expansion
of Eq. (E1I) in Eq. (2121). We identify the terms of Eq. (2.12D) that are independent of a,
and combine them to write an equation for the spin-weighted spherical harmonics, with eigenvalue
£(£+1). Hence we obtain

Z bjw[(aw)? cos® O — 2aws cos O — j(j + 1)] [sjm) = —Am Z bjw |sgm) , (E.12)
=

J=Cmin J=Lmin

where we have used ;Y () = |sjm) according to Dirac’s notation and A, is the eigenvalue of the

spin-weighted spheroidal harmonic. The inner product is defined as

(sjmlf(0)|sjm) = /O " T (0)£(8)s Yy (0) sin 646, (E.13)

We now multiply Eq. (E12) by (s¢m|, which corresponds to the complex conjugate of sV, (), and

evaluate the inner products [150]

) 1 2 [20+1 . )
(sfm)|cos® 0 |sjm) :§5jg + 31 / 51 (4,2,m,0[fm) (4,2, —s,0[¢, —s) = cJja, (E.14a)

20 +1
2j + 1

(sfm] cos O |sjm) = (4, 1,m,0[fm) (j,1, —s,0[¢, —s) = cJyy, (E.14Db)

(stm|sjm) =dp. (E.14c¢)
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Since (j1,m1; j2, ma|j, m) are the Clebsch-Gordan coefficients we can simplify the sum in Eq.
(E-I2) in virtue of the fact that Yo # 0 only for j € [6—2,0—1,0,+1,0+2], and 1 # 0 only
for j € [0 —1,¢,£+ 1]. This leads to a finite sum:

be,21w(aw)26£21212 + b1 [(aw)Qc?iLLQ — 2awsc}”ﬁll’1} +bew [(aw)QcZIKQ — 2awscy’y 1 — )\0]

Fbogw [(aw)? ey o — 20wsc)y o] Hboraw(aw)* )y o = —Aumbpo. (E.15)

This last equation can be written as a matrix equation for the by, coefficients, with Ay, eigenvalue.

The matrix is band-diagonal, and it may be solved numerically.



Appendix F

Completion for eccentric orbits

In this Appendix we include explicit analytical-expressions that complement the calculations ap-
pearing in Chapter [{ for Kerr. While all of the content of this Appendix is essential in determining
the amplitudes of the completion piece, the expression are too long. We avoided them in Chapter
in an attempt to keep the discussion of the method clear. We use u® = {f, 7, 0, ©»} to denote the
components of the four velocity, which is different from the notation used in rest of this work.

In Sec. [F1] we describe the method of variation of parameters used to obtain inhomogeneous
solutions of the radial part of Teukolsky Eq. (Z12al), for eccentric orbits. For the axially symmetric
part (with m = 0) we give analytical expressions for the coefficients of the inhomogeneous solutions.
In Sec. [F.2] we give the f-independent coefficients appearing in the mode-sums of Eq. (5.50) which
give the jump of the auxiliary invariants. In Sec. [F.3] we give the summation formulae to go from
Eq. (E50) to Eq. (553), in which the sums are performed as distributions. In Sec. [.4] we give
the explicit expressions for the side-limit of the reconstructed part of the invariants, for the case
of circular orbits of Kerr. The method to evaluate the integrals of Eq. (57H), or the jump in the

amplitudes of the completion across the libration region, appears in Sec. [.5

F.1 Variation of Parameters

Let R4y (r) be the £-modes of the homogeneous solutions to the radial part of the spin s = —2
Teukolsky equation. The regular solutions R44 and R4 satisfy retarded boundary-conditions at
infinity and at the EH respectively, and they are given explicitly in Eq. (5:29]). We use these solutions
to construct inhomogeneous solutions (since they form a basis of linearly independent solutions)
using the standard variation of parameters method. Explicitly, the inhomogeneous solutions (with

the ¢ indices omitted for simplicity) are given by

2T 50— ro(r))dr” + Ra (1) / "L 0 gear, (F)

0~ a(r) = Ray(r) /T W W

Tmin

where W is the Wronskian of the homogeneous solutions as before, and the functions Z4 (r(7)) are
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Zi(r(r)) = Ar3t (R4¢( ) (_2575(90)7“ (A (a4)\0gb2 —2a3 ot + a® ()\0 (2r2gb2 + f2) — 2rp?(2M + r))
—2artp(Nor — AM) + 1 (A\r2@? — AMi* + 2ri%)) — 4072 (ap — ©) + 27"27"4)
— ("r* = Aap — 1)) (r—2Y (60) (7r® — Aap — 1)) — 20 —2Y/(0o) (a*p — a®t
+a’r¢(3r — 2M) + ar(ir + 2Mt — rf) + 2r4f<,b))) — 2R} (r) (a®¢p — ai +1°¢) x
(—2Ye(0o) (a* + a®r(r —3M) — Mr®f) (a*¢ — at + r*p)
+iAr _oY[(60) (7r* — Aap —1)))), (F.2)

where \s = ({ —s)({ +s+ 1), A =12 +a?> —2Mr and f = 1 —2M/r, and M and a are the
mass and spin parameters of the Kerr BH respectively, as before. Eq. (E.2)) should be evaluated at
r =ro(7) and 6y = 7/2. Since we are dealing with only the axially symmetric part of the solution
we used _2Yp(0) = _2Ys0(0, ). The circular-orbit expressions are recovered by setting 7 = 0, and

considering g as a constant along the orbit:

T> Z:t (7,/)
W(r")

O_
1=
T<

(F.3)

where r< is min(rg, '), and 7~ is max(rg,r’).

F.2 Coefficients appearing in the mode-sums in the recon-

structed auxiliary invariants

All the expressions in this section are taken at r = rg and 6 # 7/2. The ¢ independent coefficients

appearing in Eq. (B.50) and (&51) are

45t
~sarra7

+Mf2) a® 4+ 2Mr(5M + Tr)tpa” —r (—8r<,b2M3 +5 (i2 - 4r2gb2) M?

+4 (5% + 2£2r) M + r*) a® + 20% (77 (M? + 3r%) + (—8M® — 24rM? + 137> M
+3r3) £) pa® + 1% (@*r® — 5% — AMAGPr — 27 (M? + 3r%) fr + 4MP (282 — 9r%9?)
+M? (75 4 288%r) — M (369" + 51°r%)) a® + 2r® (71 (3r® — 2M® — 5rM? — 47> M)
+ (4M* + 40rM? — 557> M? + 13r3 M + 2r*) £) ga® + 17 (=i (M? + 3r%) 1 + 27 (2M°
+5rM? + 472 M — 3r ) tr —rf (31527"3 — %S —2M3 (t2 67’2<,b2) — M? (329'027"3 + 23f2r)
+M (270°r* + 48%r%))) @® + (M + Tr)p°a® — 2(M + Tr)ipa” + (239°r° + Té%r
—5M?@°r + M (% — 30r°¢?)) a® + 2r ((5M? + 31rM — 20r°) £ — 471r?) ¢a®

+r (280%r + 1787 + 87ir? + 8M@*r + M? (38r%¢* — 51%) — 2M (35¢p%r°

+166°r)) a* + 2r® (Fr (M? = 7r f) — (8M® + 42rM? — 617 M + 19r°) £) pa®
+r? (47%r% — 20 (M? = 7% f) fr + v f (15°r" + 136%r% 4+ 2M3Q*r + M? (Tr?¢?

—4i%) = BM (4¢°r* +51°r))) a® — 2fr* ((2M® + 9rM? — 177> M + 6r%) i

—ir (M? +6rM — 3r?)) ¢a+r° (=#* (M? + 6rM — 3r®) r* + 27 (2M° + 11rM?
—12r°M + 30%) ir — 2 f2 (=3 (£ + r°¢?) 1> + M?# + M (678 — 1°$?)))) cos(20)a’
+4M fr0 (Fr(r — 3M) + (6M? — 11rM + 4r°) £) pa + 2Mr® (#*(3M — r)r?

o M +r)¢?a'® — 2(M + r)iga® + ($°r® — 6MP°r® + £2r — 5M>@*r
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=27 (6M?* — 5rM +1r?) fr 4+ r* f> (3ME* — r (i 4+ 3r°¢7)))), (F.4a)
_ A2
- 3Mr2A3i
+4(M — r)riga + 7 (°r° + £2rf)) A), (F.4b)
7 16627 sin” @
Mr3AL
=2r (ir? — (BM? +rM — 2r?) £) pa® +r ($°r* + 260 + 27ir® + 8MP %
—5M? (2 + 2r°¢?) + 2M (r*¢* — ri?)) a* + 20% (77 (M? — 1 f) + (6rM* — 8M?
+r2M — %) ) ¢a® +r? (P23 + 27 (P2 f — M?) ér + 1 f (2r@® M3 — (482 + 5r29?) M?
+ (4r3<,b2 — er) M + r2i2)) a? —2M frt ((2M2 —3rM + r2) t— er) pa
—M7r? (P Mr* 4+ 20 M fir? + 2 f2 (M — 1%$?))), (F.4c)
8am cos (
3Mr2A3¢
—r (=3¢%r® + itr + 2M (£ + 4r2¢?)) a® — 2r3 (27 M + (r — 3M)i)pa®
+r3 (=2r7% + (AM = 3r)ti — rf (£ + (4M — r)re?)) a+ (AM — r)r*(Pr + rfi)¢),  (F.4d)
16amy cos 6
3Mr3ALL
+ME2) a” = 2r (ir? + (3r% — 4M? — 4rM) i) gaS + 7 (5% — 13M?r® + 3i%2
HAMP@*r? + 27ir? — BMiPr + AMP@Q*r — AMP#%) a® + 2% ((2M? + 5rM — 4r%) i
—r'r2) pat + 12 (T'Q(r — M)r? + 27(r — 3M)ir? —rf (—5gb2r4 — 322 4 2 M2 (f2 — r2<p2)
+M (11¢%r% + 78%r))) a® — 27° (ir? + (4M? — 8rM + 3r°) £) pa® + r* (F*(M — r)r®
—2¢M fir* —r? f2 (=291 + AM@*r® — ir + 3M{?)) a — 208 f2(ir + 1 f1)9) (F.4e)
B 8a’7Y sin(20)
3Mr3A4t
+2M (£ —15r°¢?)) a® + 2r (2 (5M? 4+ 16rM — 117°) £ — 5¢1%) ¢a® + r (2997
198202 + 107172 + 16M3p%r — 34M (12 + 2r2¢%) r + M (28024 — 10£2)) a*
+4r? (Fr (M? = 4r® f) — (8M® + 18rM? — 317°M + 10r°) £) ¢a® + r* (577
—4r (M? = 47 ) ir 4+ rf (1597 + 148%r® + AMP@°r + M? (2r°° — 8£°)
—2M (8°r® +136°r))) a® + 2fr* (#r (2M? — 3r° f) — 2 (2M° + 3rM*
—8r°M + 3r°) £) pa + r® (©* (=2M> + 3r* ) r* + 27 (AM® 4+ 10rM? — 12r° M + 3¢°) ir
—r? 2 (=3 (B 4+ r*@?) r? + 2M*E* + M (6ri* — 2r°¢%)))) (F.4f)
B 8a’ sin(20)
3Mr2A3t
+4(M — r)riga+r (@°r® + £r — 2M1?)) A), (F.4g)
32amX¥sin 0
3MrA3t
+r (Fr(r — 3M) 4+ (4M? — 3rM + r?) £) pa® — r (P*r® +7(2r — 3M)ir
+rf (=M +rt® + Mr*¢?)) a+ Mr®(ir + rfi)¢) (F.4h)
32ma sin 0
3A3Mrt
+a’ro (r'r(r —3M)+1t (4]\42 —3Mr + r2)) —ar (r'2r2 + 7rt(2r — 3M)
+rf (Mr?¢® — ME? +ri?)) + MrP¢(ir 4+ irf)), (F.4i)

¢ (72r* — 27 (ap — ) Ar? + (2¢%a* — 4ipa® + (26% + r(3r — 2M)¢?)

c2 = (M +r)@%a® = 2(M +r)ia’ + (20 +2r — 5M>@r + M%) af

c3 = o2a” — 2ipa’ + (i2 +r(3r — 2M)<,b2) a® + r(rr — 3tr + 4Mf)gba4

04 =— (M +r)@*a® — 2(M + r)ipa® + (34°r° — BM@°r® + Pr — AM>@*r

cs = (2(M + 4r)p%a® — 4(M + 4r)ipa” + (259°r% + 8£%r — 10M?°r

“© (72" = 2i(ap — 1) Ar? + (29%a" — 4ipa® + (26 + r(3r — 2M)¢?) a®

T (M@*a® + (ir + rfh)pa’ — (=M 4 rf? +iri + 2M%r3?) a®

cg = — (a®M@? + a*@(ir +irf) — a® (¢Fri + 2M3rd? — ME* + rf?)
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for [Z"*“)] and

47t¥ esc? 0 , , :
do = T SMIZA% (72 (r — M)r® + 2¢(M — r)(ap — £)Ar® + ($?a* — 2ipa’
+ (B +r(Br— M)@?) a® +2(M = 2r)rt¢a + 1 ($°r® + £r — Mi?)) A
— (5¢%a® — 10f¢a” + (5% + r(13r — 25M)?) a® — 2r(4ir + 12¢r — 25M#)pa®
+r (12¢%r% — 42M @*r® + 118%r 4+ 40M>$°r + 8¢r — 25M %) a*
+2r? (F(13M — 5r)r + (38rM — 40M? — 9r°) ) ¢a® + r* (47°r* 4 27 (5r — 13M)ir
+rf (50°r° — 1IM@*r® + T + 10M%@*r — 20M+%)) a® — 2fr* (ir(r — 5M)
+ (10M? = 9rM + 2r%) i) pa + r° (#(r — 5M)r* + 27 (10M> — 7rM +r*) ir
r? 2 (M —r (£ +r*¢?)))) cos(20)) , (F.5a)
1673 . . ) .
dy =— AT (M +r)¢?a® —2(M + r)tpa’ + (20°r° + £2r — 5M>*r + Mt%) a°
—2r (7*7"2 - (5M2 +rM — 27’2) f) pa’® +r (c,b27"4 + 26202 4 27ir? + SM3 %
—5M? (2 + 2r°¢?) + 2M (r*¢* — ri?)) a* + 2% (7r (M? — 1 f) + (6rM>
—8M3 + 12 M — r?’) f) pa® +r? (r'2r3 + 27 (—M2 + r2f) tr+rf (2r<,b2M3
— (4152 + 5r2<p2) M? + (4r3<,b2 — rf2) M + 7“2152)) a® —2M fr? ((2M2 —3rM + r2) t
—itMr) pa — Mr® (P Mr® + 20 M2 fi 4+ 72 f2 (Mi* — r3$?))), (F.5b)
8mX cotfcsch , . . . . )
2= A (¢a® — ta +1r°¢) [(ap — ) A = i1?] [a® cos(20) — r?] (F.5¢)
167 cot O csc O . . . . . .
ds = T T aMAT [Fr? = (ap — O)A] (r (fa* — ¢a® + (5BM — r)ra® + r(2ir + 2tr — 5Mt)a®
+3M1? fpa — (3M — r)r®(ir + tr — 2M1)) + a (Mta® — M@a® +r (2M?* — 3rM +r*) pa®
+r(ir(r — M) + Mrft)a+1° f>¢) cos(26)) , (F.5d)
167X cotf , . . . . . . .
dy = — M CAT (6p%a® — 12ipa” + 3 (2% + 5r° f?) a® — 2r(57r + 14ér — 30M¥)pa®
+r (48M3rd? + 1077t + 137 (£ + r*¢®) — 6M (56 + 8r%¢?)) a* + 4r* (#(8M — 3r)r
+ (22rM — 24M? — 5¢°) £) pa® + r* (5¢°r® — 47(8M — 3r)ir + rf (5¢%r° + 86%r
+12M%@%r — 12M (28 + r*¢?))) a® = 2fr* (Fr(r — 6M) + 2 (6M* — 5rM +1°) ) ¢a
+r (P2 (r — 6M)r? + 27 (12M7 — 8rM + r?) tr — r? f* (6M1* — r (£ +1°¢%)))),  (F.5e)
167% cot 0 2
d5 = — m ( MT) [7’7’ — (GJQO — t)A} 5 (F5f)
7747T2CSC9 L2 5 . C A a2 9 2 o2
dg SaM2A7 P (pa® —ta+r*¢) [(ap — £)A — ir?] [cos(20)a® + a® — 2r7] (F.5g)
81X csc o . . )
dr = A AZ [ir? = (ap — £)A] ((r — M)¢a® + (M — r)ia® +r (2M? + rM + 5r%) pa’
+r (ir(5r — M) + (r* —2M? — 3rM) ) a® + 4r® (r* — 2M? — r M) <pa+ r) (—pat
+ta® + (2M — 3r)roa® + r?(Ef —i)a — 2r' f) acos(20) — 2(3M — r)r® (ir 4+ rft)), (F.5h)
ds :16”‘12((703(29) + 3) csc(6) (a7 M@? — 2a5Mip + a® (M (423 +12) — AM2rg? — 13¢?)

3A2Mr3t
+a're (8M?t — 6Mri+r*(t — i) + a®r (r® (/f — 12M%¢%) + 2Mr (2M>¢* + i%) — AM>F?
+OMr3p? — 2r4gb2) — 2a2f2r2r2igb(M — ) 4 ar? (4M3 (2r2<,b2 + i2) — 4M?r (3r2<,b2 + 152)
+Mr? (6r°¢% — 2 — 2L + £%) + 1% (i — Q7 +#t)) + f2rPrio(r(r + £) — 2M{E)),  (F.5i)
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for [IQ(reC)]. The circular orbits coefficients are recovered from Egs. (E£4) and (EE5) by taking 7 = 0.
F.3 Summation formulae
The sums in Eq. (B.50) are analytically obtained. They are

> [MoYe(0) + 2 cot 0 (0)]

>2

Yo (6o) _ _2Y(0)Y4(60)
Aot =2~ (AoAp)1/2

>2

- chczﬁ/d(cosﬁ”)/d(cos@’)Yg(@’)Yg(Go)

>2
1 1 2 .
T2 0[1 — cosOsign(m — 20)] ¢, (F.6a)
T
ZM Z/ (cos 0) Yo (0)Ye ()
> >2
= L sign(r — 20) + 2 coso (F.6b)
= - [sien(r 5 cost] :
R M ~ Y esed / cos 0')Y2(0') Ve 60)
> >2
1
— - [sign(r — 20) csc — cot ], (F.6e)
7r
Z Yy( Ye (%) chc@// (cos 0" )d(cos 0" )Y,(6")Y,(0o)
> >2
1 ' 3 .
= {[1 — sign(m — 20) cos 0] csc O — 7 5in 9} ) (F.6d)
7r

where we have exchanged the order of summation and integration, and the distributions are omitted
since the sums are to be evaluated at 6 # 6. In Eq. (.6) we used

Z Ye(0)Ye(6o) = 6(6 — o) — Yo(6)¥o(6o) — Y1 (0)Y: (60). (F.7)
>2

F.4 Sided expressions for the auxiliary invariants:
circular-equatorial orbits of Kerr

We include the general form of the sided values of the two invariants we use in the Kerr case:

(rec) 0 ZAk L Y(J)(G), with k = {17 2} (F8>

These expressions are required to prove that the sums converge as distributions on the sphere (see
[99] for the explicit proof, which we have left out of this work). For circular orbits the coefficients
A;-tj are



112 Completion for eccentric orbits

Yesc? 0_2Y,(0o)

AT oo = VAT [Arao1(ro) Rag(ro) + ao2(ro) Ry (ro)] {16ar — 40a°M + 72Mr* — 48r°
0
+(a®M + 3a®r — 12M1? + 8r*)X\g + 4 [(BM — 2r)r*(2 4+ Xo) + a* (2M — r(4 4+ Ao))] cos(26)
Y cot O csch oY/ (0
—a?(M — )Xo cos(49)} + WA3)\0)2\1;( 0) [a03(r0)R4¢(r0) + a04(r0)Rqu(r0)} X
{a®(324+ 10X — AJ) — 7 [4M(6 4+ 11Xg — AJ) + 7(8 — 34X + 3)7)]
+A1 [—4Mr(Ao — 1) + a®Xo 4+ 73 (3Xo — 4)] cos(260) } (F.9a)
Yesc? 0_oY (0
Ali;lo :CS;\}A—;)\?(O) [a11(ro) Rz (ro) + alg(ro)Rﬁg(ro)] {48a* — 80a*M? + 16a*Mr — 32a*r*
0

+144M?r? — 144M 13 4 48r* + (32a* + 20> M? — 60a>Mr + 10a*r? — 24M?r? + 72Mr?
—32r") Ao + (2a°Mr — a* + 3a®r® — 8Mr® + 4r")A§ + 4 (4a* + r? [6M* + 2Mr(N\o — 3)
= A1) (24 Xo) + a® [4AM? — 2M7r(10 + Xg) — r*(A§ — 8+ 2X0)] ) cos(26)
+a*Xo(r® A1 — 2M? — 2MrA; + a® o) cos(40) }
Y cot O csc 9_2576'(90)
WA N
{a® M —r(1+ Xo)] + 7% [r — 1o + M(—=1+2X0)]} [10 — Ao + Ay cos(26)] (F.9b)

+ _ECOt 9_2}7@(90)
B0 WWAS N

[a13(r0) Raz (r0) + a1a(ro) Riz(r0)] x

[Mag1 (o) Rax(ro) 4 aga(ro) Ry (r0)] [2(3M — 2r)r? + a*(r — 3M)

Y cot 9,2}78/(90)

+a®(M —r) cos(20)] + [a23(ro) Raz(r0) + aga(ro) Ry (ro)] x

WA3 N\t
[P(4M +2r + 10M X — TrAg) — 3a®(2 4+ Ao) + A cos(20)], (F.9¢)
Yot 0_5Ye(0
A1i;11 :—WA3)\20)€E£O) [A1as1(ro) Razx (o) + asz(ro) Ry (r0)] {2r® [r?A1 — 6M> — 2Mr ()Xo — 3)]

—a'(443Xo) + a*(6M? — r® Xy + 6Mrg) + a®(a®Xg — 2M? — 2MrAy + 17 \;) cos(20) }

Yesch oY/ (0o)
WASN\
+r2[r—ro + M(2X — 1)}, (F.9d)

[a33(TO)R4q:(TQ) + a34(7‘0)R2$(T0)] {a2 [M — r(l + )\O)]

and the coefficients ij[- are

Yesct 0 oY, (o)

A;OO = WA)\Ot [)\1b01(7‘0)R4:F (To) + bgo (TO)RZ:F (7‘0)} {447“ — 18 M + 5rXp
3 !
FA[6M — (Mg — 4)] c0s(20) — [6M + r(Ao — 4)] cos(40)} 4+ = QM‘;SAC Afgf? (6)
[bo3(r0) Rz (r0) + boa(ro) Ry (ro)] {a®(Xo — 8) —r[r(4 + o) — 12M]} x
[A1cos(20) — 6 — Ag], (F.10a)
Y esct 6_,Y,
Az10 _Zosc B-a¥i(fo) [b11(ro) Rax (r0) + bi2(ro) R+ (ro)] {38a® — 18 M? — 14Mr — 6r*

WAt
+8a*Xo — 11MrAg + 3r°Ag — 4 [Mr(14 — 3Xg) — 6M> + 24 (Ao — 3) + r*A1] cos(26)
Yot cse 05V, (0o)

WANA
[blg(TO)R4;F(7’O) + b14(T0)R2$(7’0)] [T2(7’ —3M) —a*(M — 37")} [A1 cos(20) — 6 — Ao,
(F.10b)

+ [2a® = 6M> — Mr(Xo — 6) + r°A1] cos(40) } +
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Y cot O csc? 0_5Yy(6y)

A;Ol = WA)\Ot [)\1b21(7‘0)R4:F (TQ) + bQQ(TO)Rﬁl:F (TQ)] [()\0 — 1) COS(29) -3 - )\0]
Yescd0_5Y/ (0
Wf(o) [b23 (ro)Rax(ro) + b24(T0)Rﬁl¢(7’0)] {76(12 — 96Mr + 32r? 4 (12a°
—48Mr + 241°)Xg + (4% — a®)A§ — 4X1 (6a® + 7 [r(4 + Xo) — 12M]) cos(26)
+a®Af cos(46)}, (F.10c¢)
Y cot fesc? 0_5Y (6,
311 = WATAGN T (o) [A1b31(ro) Raz(ro) + bsa(ro) Ry (ro)] (M7 — a®)x

Yese 0_5Y] (0o)

[(Ao — 1) cos(20) — 3 — N\o| + [b33(70) Raz(ro) + baa(r0) Ry (r0)] X

WANA;
{30a®r — 14a*M — 24Mr® + 8r° + (9a®r — a® M — 12M71? + 4r°) g
—4r [2a® 4+ r(r — 3M)] Ay cos(20) + a®(M — r)A; cos(46) } . (F.104d)

The eccentric orbits expressions are not included here due to their complexity. Furthermore the
proof of the distributional convergence of the sums in the eccentric orbits case follows directly from

the circular orbits results.

F.5 Evaluation of integrals for the case of eccentric orbits

around Kerr

To obtain the result of Eq. (576), namely the jump in the amplitudes of the completion pieces, we
need to evaluate the integrals of Eq. (B70). First, we observe that only the part of the integrands
that is even under x — —x will contribute to the final integral. After symmetrizing and setting

m = 1, we find that the integrals take the following form,

[oM] - € = 7 / Clav CA% y” + CMy™ + B + G5 + CyP + O3y

Y
By/1 - = ky?(1 = hay®)?(1 = hay?)*(1 — hsy?)? (F.11)
(6] — £ _/ Cay™ + C, y” + Cwym + OsJyS +Cdy° + Oy’ + Cyy? '
-1

T, By/1—y%/1—ky?(1 — h1y?)%(1 — hoy?)?(1 — h3y?)?

with common factors

Yy =sin (%) , (F.12)

B =p(1+¢)? (a®(1 +¢) +p(p—2(1 +¢)))

20, _ £2 2(p — % —

x\/a [p — (2 +p+6)] +dale + 3)EL + L2(p ~ 2 —6) (F.13)

4p

_ _ey2
k= de(L — af) , (F.14)

a?p—E2(12e+p+6)]+4ale+3)EL+ L2(p—2e—6)
2e
= F.1
hl 1 I 6, ( 5)
2a’%e
hy = , F.16
2 a?(14+e) —p(1+v1—a?) ( )
2

hs = 207 . (F.17)

a?(1+e)—p(l—+v1—a?)
(F.18)
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where the correct units are recovered by replacing p — p/M. The coefficients in the mass integrand
are given by

CM = — 2560 (L — a&)?, (F.19)
Cily =128a%¢° (Ta*(e + 1) — 9p) (£ — a&)?, (F.20)
CM — _ 64¢? (a4 (21(e + 1)%(L — a€)? + 4p?) — 6p°(L — af)?

+a?p(L — a€)(3(p — 18(e + 1)) (L — a&) + 10£p)), (F.21)
CM =32¢* (a4 (35(e + 1)*(L£ — a&)? + p*(20e — 3p + 12)) + p*(7Tp — 30(e + 1)) (L — a&)?

+ an[ (—127¢2 + 15e(p — 18) + p(3p + 23) — 111) (£ — af)?

+2Lp(25e — 3p + 17)(L — a€) — (L2 + 3) pﬂ ) (F.22)
CM —16¢3 (a4 (6p>(2¢(—3¢ +p —4) + p — 2) — 35(c + 1)*(L — a€)?)

+a%p [2p2 ((12¢ + 6)L(L — a&) + (—6e — 3)(L — a&)? + 2(e + 1)L + 6¢ + 3)

+ (e+1)(23e +11)L) — 4p(L — a€)((e(Te 4 23) 4+ 10)(L£ — af)

+4(e + 1)(e(3Te + 86) + 25)(L — af)? — 3p3} +2p2 ((33¢2 + e(60 — 14p)

+(p— 1)p+39) (£ — a€)?* — Lp(p + 6)(L — a&) + L2%) ), (F.23)
OM —g¢? (a4(e +1) (21(e + DML — a&)? — 3(5e + 1)p® + 4(7e + 1)(e + 1)p?)

+ a2p[ —3(e+ 1)p? ((10e + 2)L(L — aE) + (=5 — 1)(L — a€)? + 2(e + 1)L2 + e + 1)

+4(e+1)p(L — a&)(6(e(e +4) +1)(L — a&) + (e +1)(19e + 7)L)

—3(e+1)%(e(29¢ + 74) + 13)(L£ — a&)* + (9e + 3)p* — pﬂ + p? [p (45¢* — 6e(p — 11)

+p? +45) (L — a&)? + 2Lp (3¢® + 3e(p + 6) — p(p + 3) + 15) (£ — af)

—6(e + 1)(e(13e + 22) + 17)(L — a€)? + L2p*(—6e +p — 6) + 352p3} ) (F.24)
OM —4e (2(e + 1)L Be — p+ 3)) ~7a%(e + 1)%(L — a€)? — 2a’e(e + 1)2p?(de — 3p + 4)

+a’(e+1)°p (e (22¢* + (82 — 9p) — 2p(3p + 19) + 66) — 5p + 6) (L — a&)?

—2a*(e + 1)°Lp*(e(13e — 6p + 18) + 5)(L — a€) + 2a’ep® (p* — 3(e + 1)p + 3(e + 1)?)

+ % ((5e2 +3) p* — 2ep® — 2(e + 1)(e(17e + 25) + 20)p

+12(e 4+ 1)*(e(4e + 7) 4+ 5)) (£ — a&)* + 4Lp® (ep* + 3(e + 1)p

—3(e+2)(e+ 1)) (£ — a&) + E*P°(p — 6e — 6) + 4a®(e + 1)°L7p". (F.25)

The coefficients for the angular momentum integrand are

Cy, = — 256a°¢" (L — a&)?, (F.26)
Cy, =128a%¢°® (7a’(e + 1) — 12p) (L — a€)?, (F.27)
Ciy = — 64ae® (7a* (3(e + 1)%(L — a€)* + p?)

—8a’p(L — a&)(9(e + 1)(L — a€) — 2Lp) — 12p*(L — a€)?), (F.28)

CJ =32ae* (a4 (35(e + 1)*(£ — a&)? + p*(35e — 3p + 21)) + 4p*(4p — 15(e + 1)) (L — a5)2)

+a?p ((—2e(83e + 180) + p(3p + 14) — 138)(L — a&)?
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+2Lp(40e — 3p + 26)(L — a€) — (L +6) p*), (F.29)
0 =16ae® (a4 (=35(c + )X (L — a&)? + 6(2e + 1)p® — 21(3e + 1)(e + 1)p?)
+a2p [2p2 (126 + 6)L(L — a&) — (6¢ + 3)(L — a€)® + 2(e + 1)L2 + 12¢ + 6)
+2(e +1)(73e + 31)L) — p(L£ — a&)((e(e + 56) + 31)(L£ — a&) + 4(e + 1)(e(46e + 113)
+25)(L — al)? — 3p3} +p? (2 (66 + 8e(15 — 4p) + (p — 26)p + 78) (£ — af)?
72EpQr+12X£—7a5)475£%f)), (F.30)
0 =8¢? (a5(e +1) (21(e + DML — a&)? — 3(5e + 1)p? + T(Te + 1)(e + 1)p?) + 6a52p5)
+a%{@e+@f44ff3@+lm2«me+m£@4wﬁ)f®e+lﬂﬁfa&2
+2(e +1)L? + 10e + 2) + (e + 1)p(L — a&)(3(e(e + 24) + T)(L — a€)
+2(e+1)(59 + 17)L) — 12(e + 1)%(e(8¢ + 23) + 1)(£ — a5)2]
+mﬁPQﬂﬂe—Dp+ﬂe+U@+5%ﬂﬂ(C—Mﬁ+£%%p—ﬁ@+1»
+ (—6ep® + 12(e(8e + 13) + T)p — 12(e + 1) (e(13e + 22) + 17) + p?) (L — a&)? (F.31)
a{:@Qﬁ@+¢ﬁ(fue+nﬂcfaa2fzw%n%xm+7»+ﬂ52% —12(e+1))
+ a3p[(e +1)% (=6ep® — (e(3e + 32) + 5)p + 4(e + 1) (e(4e + 15) — 3)) (£ — af)?
+4(e+1)2L%p?* — 2(e + 1)*Lp(e(19e — 6p + 24) + 5)(L — a€) + 12e>p* — 6e2p®
+ 24e%p? + 2ep* — 6ep® + 126])2} + ap® { ((5€* +3) p* — 2ep® — 8(e + 1) (e(8e + 13) + 8)p
+24(e 4+ 1)*(e(4e + 7) +5)) (L — a&€)® + ALp (ep® + 3(e + 1)p
—6(e+2)(e + 1)%) (£ — a&) + (e + 1)L2p*(15e — 2p + 15)} ) (F.32)
The integrals (FIL) can be recognized as elliptic integrals. Consequently, they can be evaluated

using standard techniques for elliptic integrals (see for example Sec. 17 of |151]). The first step is

to expand the integrands in partial fractions. The result is a sum of integrals of the form

2n
L (b, hi) / . F.33
V1—y 1—I<:y (1= h;y?) Y ( )
The integrals I, ,,, satisfy the following recurrence relations
L—1,m(k; hi n—1,m(k, b

Lk, hy) = 2= ( )h, Lk ha) g (F.34)

E+1)2n—2)Ih—1,0(k) — (2n —3)An—_2,0(k
Lo, ) = To(k) = FEDE = DInr0(k) = (20 = $)An-20(k) (F.35)

2n—1

Using these relations, the integrals (E.1I)) can be further reduced to a linear combination of five

basic integrals

Ino(k) = K(k), (F.36)
Lio(k) = K(k) ;E(k), and (F.37)
Ipa(k,h;) =1I(h, k) (once for each h;), (F.38)
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where K, E, and II are the elliptic integrals of the first, second and third kind, respectively. The
coefficient of each integral is a complicated expression involving a, p, e, £ and L. Substituting the
expressions (0.69) for £ and £ in terms of a, p, and e, these vanish after some straightforward, but

tedious algebra. This establishes the result given in Eq. (5.76).
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