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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy
DESIGN OF FACTORIAL EXPERIMENTS IN BLOCKS AND STAGES

by Emily Sarah Matthews

Factorial experiments are increasingly important in science and industry. In this thesis,
we consider two types of factorial experiments; block designs with autocorrelated errors

and multi-stage designs.

The design of D-optimal blocked experiments with autocorrelated errors, motivated by
the manufacture of microstructured optical fibres, is discussed in Chapter 2. Autocor-
related errors extend the standard error assumptions for block designs to account for

temporal or spatial ordering of the experimental units.

We found that D-optimal blocks designs with autocorrelated errors are, under specific
model assumptions, robust to the misspecification of two unknown parameters, the
autocorrelation parameter and the ratio of variance components. We also noted that

these robust designs do not require specific treatment allocation or ordering.

In multi-stage experiments, treatments are applied to the same experimental unit at
different stages, and responses are measured at the end of each stage. In Chapter
3, a compound Bayesian D-optimality objective function is used within a coordinate
exchange algorithm to construct multi-stage factorial designs with different levels of
restrictions on randomisation. In a multi-stage design, treatments are applied to the
same experimental unit at different stages and responses are measured at the end of
each stage. Comparison of efficiencies and the size and number of correlated columns

demonstrated the limitations of a one number optimisation approach.

Chapter 4 demonstrates that frequentist variable selection methods for multi-stage
split-plot designs rely on unreliable parameter estimates and highlights the benefits
of Bayesian variable selection, which accounts for the uncertainty associated with un-
known parameters. A Metropolis-Hastings within Gibbs sampling algorithm for the
analysis of multivariate responses from supersaturated split-plot designs is presented
in Chapter 4. The methodology in Chapters 3 and 4 is applied to the formulation and

dissolution testing of a pharmaceutical product in Chapter 5.
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Chapter 1

Introduction

Factorial designed experiments where runs can be grouped with respect to some ex-
perimental feature or where treatments are applied in stages to the same experimental
units are ubiquitous in industry. This thesis develops methodology for the design and
analysis of factorial experiments with blocks and stages, and discusses the application

of this methodology to two motivating examples from optoelectronics and chemistry.

This chapter defines factorial experiments with restricted randomisation and multiple
stages (Section 1.1), discusses the motivating examples (Section 1.2), introduces the
models used to analyse results from factorial experiments with restricted randomisation
(Section 1.3), introduces the methods used to find optimal designs for these factorial
experiments (Section 1.4), and gives a brief summary of the contents of the thesis
(Section 1.5).

1.1 Introduction to Designed Factorial Experiments

Experimentation is widespread and not just limited to the areas where the term ex-
periment is widely used, such as science and engineering. An experiment is defined
as the process from which data are collected to answer a question of interest, where
variables are controlled or changed in order to introduce variability in the response.
The variables in an experiment that can be controlled or changed by the experimenter
are referred to as factors, and factors can have different settings, or levels, such as high
or low. Factor levels are often coded, with —1 used to denote the low level, 0 used to

denote a middle level, and 1 used to denote the high level.

In experiments, a treatment, which is a combination of factor levels, is applied to an
experimental unit, which is the subject or subdivision of material used in the experi-
ment. The application of a treatment to an experimental unit is an experimental run.
For example, if an experiment has six two-level factors, then one particular factorial
treatment is (1,1,—1,1,—1,1).



Experiments can be used to gain understanding or improve a product or process through
the comparison of treatments and the assessment of the impact of treatments on the
experimental outcome, which is referred to as the response. The individual effect of
a factor on the response, known as the main effect, is the difference in the average
response when the level of that factor is changed. The estimated main effect of a

two-level factor is

Yyu — YL, (1.1)

where gy is the average response when the factor level is 1 and gy is the average

response when the factor level is —1.

The level of a more than one factor can be altered in consecutive treatments in a factorial
design. A factorial experiment allows the joint effects of two (or more) factors on the
response, known as interactions, to be compared. Estimation of interactions is unique
to factorial experiments as they require outputs from experimental runs where more
than one factor level is changed between each treatment. The estimated two-factor

interaction is defined as

(Yrm —Yue) — Goa — yo)] (1.2)

(NN

where i is the average response when the level of both factors is 1, ygr and yrg
is the average response when the factor levels are —1 and 1, and gz is the average
response when the level of both factors is —1. Higher order factorial effects can be

defined similarly.

As most processes depend on several factors, the assessment of the joint effect of fac-
tors is important, hence factorial experiments are often used to gain understanding of,
and improve, scientific and technological processes.The work in this thesis is motivated
by two such processes: the manufacture of micro-structure optical fibres, and the for-
mulation and dissolution testing of a pharmaceutical product, which are discussed in

Sections 1.2.1 and 1.2.2, respectively.

An experiment can be designed to meet quantitative and qualitative objectives based
on experimental resources and restrictions. Cox (1958) sets out five features of a good
designed experiment; the absence of the systematic errors, intrinsic stability of the
experimental material or process, suitable factor levels, the ability to be run without
excessive difficulty or cost, and the ability to assess the uncertainty associated with the
experiment. We have considered these five features when designing experiments in this
thesis. Restrictions on the randomisation of the treatments affects both the difficulty
or cost of running the experiment and the assessment of uncertainty. These points are

discussed further in Sections 1.1.1 and 1.3.1, respectively.



The design matrix for a factorial experiment with f factors is the n x f matrix of
treatments applied to experimental units in the n runs of the experiment. Throughout
this thesis, we use Dy ,, to define the set of all possible n run designs for f I-level factors,
where the order of the rows is unimportant and there can be replicated treatments in

the design.

A full factorial design Dy ,, contains all ¥ unique treatments for f I-level factors and

is an element of Dy ,,. For example,

1 1
-1

Dooy4 = B € Doy
-1 -1

The parameters in the model, such as the linear mixed effects model discussed in
Section 1.3, assumed for the responses from a full factorial experiment can be estimated
independently. However, in this thesis we also consider fractional factorial designs,

which can be regular or non-regular.

A fractional factorial design contains a subset of the I/ unique treatments in the full
factorial design D ,,. The definition of regular and non-regular fractional factorial de-
signs given by Wu and Hamada (2009) is dependent on the aliasing between parameter
estimates in the model assumed for responses from the designed experiment. If two

parameters are:

e not aliased, their influence on the response from the experiment can be estimated

independently,

o fully aliased, their influence on the response from the experiment cannot be sep-

arated,

e partially aliased, their influence on the response is related, but some information

regarding the influence of both parameters on the response can be estimated.
A fractional factorial design is:

e regular if each pair of factorial effects can either be estimated independently of

each other or are fully aliased,
e non-reqular if one or more pairs of factorial effects are partially aliased.

A number of the experiments in this work are non-regular fractional factorial designs

with restricted randomisation.



1.1.1 Restricted Randomisation and Blocking

An important principle of the statistical design of experiments is randomisation of
the order in which treatments are applied in the experiment. Randomisation is used
to reduce the impact of uncontrolled differences between experimental units on the
analysis of the experiment. However, complete randomisation of the runs is not possible
for some experiments, for example due to physical constraints, and hence a restricted

randomisation must be applied.

Designs with restricted randomisation are particularly common in industry, as there
are often constraints on the run order due to restrictions on experimentation, such as
how often a factor level can be changed, or the number of runs that can be performed
each day. The aim of an optimal design with restricted randomisation is to minimise

the impact of the restrictions on the precision and accuracy of the experimental output.

Block designs, which are common in industry and the focus of Chapter 2, have restricted
randomisation. In a block design, experimental units that are anticipated to give similar
responses if the same treatment is applied are grouped together into a set called a block.
For example, the experimental units from the same batch of raw material or the units

whose treatments are applied by the same technician could be grouped together.

Treatments in a block design are allocated within blocks and cannot be swapped be-
tween blocks without changing the properties of the design. However the order of these
blocks and the allocation of treatments to units within a block can be randomised.
Further information regarding block designs can be found in Section 2.2 of Chapter 2
and in literature such as Goos and Vandebroek (2001) and Goos (2002).

Another example of designs with restricted randomisation are split-plot designs, which
group runs based on the levels of particular factor and are studied in Chapters 3 to
5 of this thesis. Split-plot experiments have two types of factors, whole- and sub-plot
factors. The experimental runs are organised into whole-plots according to the levels
of whole-plot factors, which are difficult or costly to change in the experiment. A
common example of a whole-plot factor is temperature, as it is often difficult to quickly
adjust the temperature of experimental equipment such as furnaces. The other factors
in the experiment are referred to as sub-plot factors, and these can be varied as often

as required in the experiment.

Treatments in split-plot designs are allocated to whole-plots based on the levels of the
whole-plot factors and therefore cannot be swapped between whole-plots. However the
order of the whole-plots and the allocation of levels of sub-plot factors within whole-
plots can be randomised. Further information on split-plot designs can be found in
Section 3.2.2 of Chapter 3 and in literature such as Box and Jones (1992), Miller
(1997) and Goos and Gilmour (2012).

The presence of groups or blocks in an experiment needs to be considered when design-

ing and analysing experiments, even though their influence is not usually of interest, as



ignoring them can bias the analysis obtained from the experiment and reduce the pre-
cision of conclusions made from the experiment (for example through loss of power in
hypothesis tests). The example in Section 3.2.4 in Chapter 3 demonstrates the impact

of restrictions on randomisation on the estimation of model parameters.

1.1.2 Multi-stage Designs

In literature such as Freeman (1959), Trinca and Gilmour (2001) and Brien et al. (2011),
multi-stage experiments are described as experiments that are conducted in distinct
time intervals. In this thesis, we define a multi-stage experiment as an experiment that
uses the same experimental unit in multiple stages; with different sets of treatments
applied, and a different response recorded, at each stage. Stages in our definition can

refer to time intervals or distinct manufacturing processes.

While each stage has a separate response, the experiment is designed for factors from
all stages as it is assumed that the responses observed at Stage s+ 1 is affected by the
factors in all the previous stages, Stages 1,...,s, as well as the factors in Stage s + 1.
This is similar to the definition of partition designs given by Perry et al. (2001, 2002)
and Perry et al. (2007), which is discussed in Section 3.3 of Chapter 3.

1.2 Motivating Examples

In this section we discuss the two examples motivating the work in this thesis: the
manufacture of microstructured optical fibres, and the formulation and dissolution test-
ing of a pharmaceutical product. These examples result from collaborations with the
Optoelectronics Research Centre (ORC) at the University of Southampton and Glax-
oSmithKline (GSK), respectively.

1.2.1 Manufacture of Microstructured Optical Fibres

Microstructured optical fibres are popular in current optoelectronics research. Mi-
crostructured optical fibres have a hollow core. Light can be transmitted through a
hollow core faster than it can through a core of glass capillaries, which is used in tradi-
tional optical fibres. Hence microstructured optical fibres outperform traditional fibres
with respect to data transmission, and the hollow core in microstructured optical fibres
also makes them useful for other applications such as gas sensing. The manufacture

and properties of microstructured fibres is discussed by Poletti et al. (2013).

The manufacture of microstructured optical fibres requires two processes. These pro-

cesses are performed in distinct, but ordered, time intervals.



e Process 1 - cane manufacture: A stack of thin glass capillaries with a hollow
core encased in a larger jacket of glass, called a preform, is drawn (heated in a
furnace and then stretched) into a cane. A one metre preform becomes a cane of
approximately ten metres. The cane is cleaned to remove any impurities in the

glass that may cause problems in Process 2.

e Process 2 - fibre manufacture: The cane from Process 1 is drawn into a fibre.
One metre of cane can be drawn into 3 to 20 kilometres of fibre, depending on
the stability of the process and the thickness of the fibre.

Figure 1.1: Cross section of a microstructured optical fibre, showing the hollow core
and the surrounding glass capillaries.

Figure 1.1 is a cross section of a microstructured fibre. The large black circle in the
centre of this cross section is the hollow core. The smaller circles, which are arranged
around the hollow core, are the glass capillaries which have been stretched during
Process 1 and 2. The grey background is the glass jacket, which has been drawn in

Process 1 and 2 (not fully pictured).

The temperature at which the cane and the preform are drawn, the speed at which the
preform and cane is fed into the machine which draws the cane and fibre (respectively),
the speed at which the cane and preform are drawn, and the pressure in the core of the
cane and preform can be varied. If certain factor ranges are chosen for the feed rate,
draw speed and pressure, then the temperature will not be varied in order to ensure

the experiment is stable.

Pressure in the hollow core is the key factor when manufacturing microstructured opti-
cal fibres. The pressure ensures the hollow core of the cane is expanded in the preform
without causing the external structure to collapse, and also maintains the hollow core

as the preform is drawn into a fibre.

The quality of the cane can be assessed after Process 1 by examining the structure of a
section of the cane under a microscope. The quality of the cane can also be assessed by
taking an X-ray of the cane, which is a non-destructive method suggested by Sandoghci
et al. (2014). The transmission of light through the fibre is the output from Process 2.

As the manufacture of microstructured fibres relies on two processes, and distinct re-



sponses are measured at the end of each process, this experiment could be described as
a two-stage split-plot design, as discussed in Chapter 3, where the cane manufacture

factors are whole-plot factors.

If the factors used for manufacturing the cane are not thought to have a significant
impact on the response, the cane used in fibre manufacture could be a blocking fac-
tor. This initial simplification of the process motivates the work in Chapter 2. It is
appropriate to assume that lengths of fibres which are drawn after each other are more
similar than those drawn further apart, where the relationship between responses for
two lengths of fibres diminishes as the distance between them increases. Block designs

suitable for this relationship between lengths of fibres are considered in Chapter 2.

1.2.2 Formulation and Dissolution Testing of a Pharmaceutical Prod-
uct

The active pharmaceutical ingredient (API) is the chemical compound in a pharma-
ceutical product which treats a specific ailment or disease. The formulation of a phar-
maceutical product containing a specific API is the focus of the work in Chapters 3 to
5. This formulation requires the application of six two-level factors to an experimental
unit across two-stages; five factors in Stage 1 and one factor in Stage 2, with a response

at the end of each stage.

The factors applied in Stage 1 are assumed to have an impact on the response from
Stage 2. If the first two Stage 1 factors are varied too often, the cost of the experiment
will be unacceptable. However the output from Stage 1 may be able to be re-batched,
and hence two-stage split- and strip-plot designs (see Arnouts et al., 2010 and Section

3.2.3 in Chapter 3 for further detail on strip-plot designs) are discussed in Chapter 3.

Dissolution testing is used by pharmaceutical companies researching in drug develop-
ment to assess the performance of a pharmaceutical product. The measurement of the
rate of dissolution of a pharmaceutical product in different pH media is representa-
tive of the dissolution of the product in different parts of the human body. Different
pharmaceutical products have different dissolution testing requirements, depending on
where the product is supposed to dissolve and enter the bloodstream. Dissolution test-
ing is therefore destructive, as the product cannot be reformed once it is subjected to

the different media.

The second stage response, which is measured once all six factors are applied, is the
results from dissolution testing of the pharmaceutical product. The analysis of the
responses from dissolution testing is a regulatory requirement and is therefore an area

of particular interest for pharmaceutical companies.

The identification of factors that influence dissolution testing, and settings of these
factors that have a high probability of meeting specification required for responses from

dissolution testing are also important as they help optimise the formulation process and



identify new areas of the design space for experimentation. Therefore the analysis of
this example motivates the work in Chapter 4, and the design and analysis of this

specific experiment is discussed in Chapter 5.

1.3 Introduction to Linear Mixed Effect Models

1.3.1 Linear Mixed Effect Models

Once an output is measured from a factorial experiment with restricted randomisation,
a linear mixed model can be used to approximate the relationship between the factors
and the response. Linear mixed effect models are commonplace in literature for exper-
iments with restricted randomisation, see for example Morris (2011, Chapter 10), as
they allow for the correlation between the responses from units in the same block or
whole-plot. Responses from treatments in the same block or grouping are assumed to
be more similar than those in different groups, and this relationship is modelled in the

correlation structure for the response.

Linear mixed effect models allow relationships between the response and the factors
involving main effects, interactions and polynomial terms to be fitted. These models
are suitable for the motivating examples considered in this thesis. However other more
complex, non-linear, relationships, as discussed in Davidian and Giltinan (1995), may

be more suitable for other experiments, dependent on the nature of the responses.

A linear mixed model for responses from a designed factorial experiment with restric-

tions on randomisation with n runs organised into b groups is given by

Y = X3+ Zv + ¢, (1.3)

where Y is the n x 1 vector of responses, X is the n x p model matrix, p is the number
of parameters in the model, 8 is the p x 1 vector of unknown parameters, Z is an X b
matrix showing the assignment of runs to particular groups, « is a b x 1 vector of
random group effects and € is the n x 1 vector of random errors with mean 0 and

variance-covariance matrix X.

Let the ith, i = 1,...,n, design point in the design matrix, D, be x;. Then the ith row
of the model matrix, X, is f(x;) where f is the function that gives the model expansion
of a treatment x;. Assume, for example, that an experiment has two factors and a model
containing the intercept, the linear effects for the two factors and the product of the
two factors is fitted, then B=(8y, 81, B2, f12) and f(x;)=(1,x1,x2, z12)=(1, 1,—1, —1)
when x;=(1,—1). When the factor levels in D are coded as —1,1, then the main effect

(1.1) of factor ¢ is given by 2; and the interaction (1.2) between factors i and j is 23;;.

The (4, j)thentry, i =1,...,n,j=1,...,b, of Z, z;;, indicates which group the ith run



of the experiment belongs to. If the ith run of the experiment is in the jth group then
z;j = 1, otherwise z;; = 0. We assume the groups in the experiment are representative
of a wider population of groups, which implies that « is a random effect and enables

predictions to be made using the results from this experiment.

It is usually assumed that both « and € are independently normally distributed with
mean 0 and variance-covariance matrices O’,QYIb and oI, respectively. It is also usually
assumed that there is more variability in responses from different groups than between
responses in the same groups, as units within the same group are assumed to be more

similar than those in different groups. This implies that the inter (between) group

2
~y

normally distributed, Y is a normally distributed random variable with mean

variance o2 is larger than the intra (within) group variance o2. As both ~ and € are

E(Y) = EXB+Zvy+e)
= E(XB)+ E(Zv)+ E(e)
= Xg, (1.4)

and variance-covariance matrix

V = var(Y) =var(XB+ v +¢€)
= var(Zvy) + var(e)
= Zvar(y)ZT + 021,
= Z(c2)Z" + o1,
= a%ZZT + 021,. (1.5)

Note that even though the random terms in the model (1.3), v and € have no correla-
tion structure, the responses from the same group have a correlation structure defined
through ZZ” in (1.5). In Chapter 2 we adjust the assumption that var(e)= oI, to al-
low for a dependency between experimental units in the same group, which also affects
the structure of (1.5); see Section 2.3 for further detail.

The vector of group effects, =, is often not of interest to the experimenter, but is
included in the model to account for the presence of the groups. Ignoring this grouping
factor could introduce bias into the experiment. Therefore, as v does not have to be
estimated independently, we could marginalise (1.3) and include the group terms in a

new error term €*, to get the linear model

Y = X8+ €, (1.6)



where €* is the n x 1 vector of normally distributed random errors with mean 0 and
variance-covariance matrix (1.5). If there are no restrictions on randomisation then
the n runs could be described as coming from n individual groups, hence Z = 1,,
and responses from these designed experiments, which are referred to as completely

randomised experiments, can be modelled using (1.6) where (1.5) is (03Y +oH)I,.

The number of rows, n, and columns, p, of the model matrix X, influences our ability
to estimate components of the variance-covariance matrix (1.5), as n — p is the degrees
of freedom with which we can estimate the variance of the responses Y. If p = n,
the designed experiment from which the responses are measured, D, is saturated and
there are no degrees of freedom with which to estimate the variance components of the
responses. If p > n then the design is supersaturated, and the variance components
cannot be reliably estimated. We discuss the properties of non-saturated and saturated
designs in Chapter 2 and design and analyse supersaturated designs in Chapters 3
through 5.

1.3.2 Generalised Least Squares and Maximum Likelihood

The estimate of the fixed model parameter 3 in (1.6) is often of interest to experi-
menters, as these parameters indicate the individual and joint effects of the factors in

the experiment. To find the estimator B of B for (1.6) we minimise the function

(y-XB)'V iy -Xp8) =y'Vly - 28" X"Vly + gTXTV7IX3,  (17)
which is equivalent to finding EI such that

~X"vly + (XTVX)3 = 0. (1.8)
Hence the generalised least squares (GLS) estimator of 3 is given by

B=X"V1X)"'X"v-ly. (1.9)

The variance of this estimator is

oy

) = var(XIVIX)"IXTvly)
= XITvIxX)"IXTv-lvar(Y)[(XT Vv IX)"IXTv-T
(XTvIx) " IxXTv-lvvix(xtv-1x)-!

= (XITvIx)"IxXTv-ix(xT'v-1x)!
(XTv=1x)~1, (1.10)

var(

10



The generalised least square estimator of 3 is unbiased, that is E(8) = 3, and is
equivalent to the maximum likelihood estimator. The likelihood is the joint probability
density function for the responses considered as a function of the model parameters.
Therefore the likelihood for Y in (1.6)

L(BIY) = (2m) |V exp —% (Y-XB)" V(Y -X3)|, (1.11)

as Y ~ N(X3,V). The maximum likelihood estimator (MLE) is the estimator that

maximises the likelihood, which is equivalent to finding the B such that

9 .
%L(B!Y) =0, (1.12)
which is equivalent to
9 InL(B]Y) =0 (1.13)
19)6} - '

where In L(B|Y) is referred to as the log likelihood. As (1.7) is proportional to the log
of (1.11), the GLS estimator (1.9) is therefore the solution to (1.12) and (1.13).

The variance of the MLE for the linear model is the inverse of the Fisher information

matrix,

82
1(8) = | (52 F81Y) ) 18] (1.14)
op
evaluated at 3 = ,B The second derivative with respect to B of the log of (1.11) is
(XTV~1X) and therefore (1.10) is the inverse of Z(3).

The parameter estimators and the variance of the estimators depend on the model
matrix X and the variance-covariance matrix V, which is assumed to be known. Usu-
ally, when designing experiments, prior knowledge about the variance components is
assumed. Once responses have been observed, V can be estimated by either maximis-
ing the likelihood (1.11) with respect to V or by using restricted maximum likelihood
(REML, Patterson and Thompson, 1971; Harville, 1977). REML requires the transfor-
mation of the response to remove the influence of the other model parameters followed

by the maximisation of the likelihood for these transformed responses.

Ordinary least squares (OLS) is a special case of GLS, where the responses Y are
assumed to have equal variances and zero covariances. Hence, as discussed in Section
1.3.1, V= (J,Qy + o$)I,,. The OLS estimator of 3,

~

B=(o2+0o)) '(XTX)"'X"Y, (1.15)

11



is also unbiased and identical to the MLE. The variance of the OLS estimator is

var(B) = (02 + o2) 1 (XTX) ™. (1.16)

1.4 Design Optimality and Selection

The dependence of the variance-covariance matrix of B on the model matrix X moti-
vates a number of the design selection criteria. The variance of this estimator is the

inverse of the Fisher information matrix,

7(8) = XTVX. (1.17)

The aim of many experiments is to minimise the variability of the estimators. Opti-
mality criteria and associated objective functions are discussed in Sections 1.4.1 and
1.4.2.

We aim to find designs which optimise an objective function over the set of possible
designs Dy ;,. However, it can be computationally difficult or impossible to consider
all designs as [Dy;,| can be large even when f and [ are relatively small; for example
| D3 2,6|= 262144. Therefore, the design selection algorithms discussed in Sections 1.4.3
and 1.4.4 do not consider every possible design, and hence can find designs which do

not necessarily maximise the objective function over the whole of Dy ,,.

We present two different algorithms for design selection in this section, the coordinate
exchange algorithm (Meyer and Nachtsheim (1995), Section 1.4.3) and interchange al-
gorithm (Atkinson et al. (2007, Chapter 12), Section 1.4.4). The coordinate exchange
algorithm swaps each factor level for each treatment in the design iteratively and the
interchange algorithm swaps the position of treatments in a design. Both methods
calculate improvements in a specific objective function. The coordinate exchange al-
gorithm is used to find optimal designs in Chapters 2, 3 and 5, and the interchange
algorithm is used to find optimal designs in Chapter 2.

These algorithms are referred to as ‘greedy’ algorithms, as they only accept moves
which improve the value of the objective function. This could potentially lead to
finding local, rather than, global maxima, although running the coordinate exchange
algorithm for multiple random starts and running the interchange algorithm for multiple
starting row swaps attempts to combat this problem. Stochastic algorithms such as
simulated annealing (Aarts and van Laarhoven, 1989; Brooks and Morgan, 1995) accept
suggested regressive changes to a design with a certain probability, and therefore allow

sub-optimal moves to be made to escape local optima.

12



1.4.1 Design Optimality Criteria

A D-optimal design minimises the volume of the confidence ellipsoid for 3, where a
confidence ellipsoid is an p dimensional extension of a confidence interval. This volume
is inversely proportional to the determinant of the information matrix (1.17), and hence

the objective function for D-optimality is

¢p = [Z(B)]- (1.18)
A design D* such that
D* = argmax ¢p (1.19)
DEDfJ,n

is a D-optimal design.

In Chapters 2 and 3 we compare designs using relative D-efficiency. Let Dy € Dy p,

and Dy € Dy, be the two design matrices we wish to compare, then

(Zi) X <z2§g;§>; x 100. (1.20)

is the relative D-efficiency of these two designs.

D-optimality is particularly appropriate when the aim of the experiment is to gain
scientific understanding through estimation of 3. This is the aim in both the motivating
examples discussed in Section 1.2, hence this thesis focuses on D-optimal designs. D-
optimality is also popular in the literature for a variety of other reasons: it is known
to perform well with respect to other criteria, it is invariant to the scale or coding of
the factor levels, and has powerful update formulae that speed up the code for design

selection algorithms (Goos, 2002).
Other optimal designs discussed in the literature include:

e D, -optimal designs, which are optimal for estimating a particular subset of the

model parameters, referred to as the parameters of interest.

e A-optimal designs, which minimise the sum or average variance of the estimators

of the fixed effect parameters.
e G-optimal designs, which minimise the maximum variance of predicted responses.

o V- (Q-, I-, or IV-) optimal designs, which minimise the average variances of

predicted responses.

13



1.4.2 Bayesian Design Optimality Criteria

Bayesian methods allow the assimilation of prior knowledge, which is often specific to
the application at hand. Using Bayes theorem (see Section 4.2.1 of Chapter 4 for more
detail), the distribution of an unknown parameter 8 after data y has been observed is

given by

p(8ly) o< L(8ly)p(0), (1.21)

where L(@0|y) is the likelihood of y given @ and p(@) is the prior distribution which

represents our beliefs regarding 6 prior to y being observed.

Assuming that (1.3) models the responses, the variance covariance matrix for the re-
sponses is (03 + o3I, and p(B, (02{ + 02)) has a normal inverse gamma distribution,
then the posterior variance covariance matrix for 3 is proportional to (X7X + R)™!
(O’Hagan and Forster, 2004, Chapter 11), where R~! is proportional to the prior

variance-covariance matrix for 8. Therefore, maximising

¢pp = | XTX +R| (1.22)

is one way of obtaining a design to provide the most information regarding 3. The
inclusion of R in (1.22) represents the prior knowledge assumed regarding the unknown

parameters 3.

A Bayesian D-optimal design maximises (1.22) over Dy;,. The objective function
(1.22) can also be derived using the approach from Spezzaferri (1988) or by maximis-
ing the expected gain in Shannon information, see Chaloner and Verdinelli (1995) for
further information. Chaloner and Verdinelli (1995) also presented utility functions
for the derivation of objective functions for other Bayesian optimality criteria, such as

Bayesian A-optimality.

We use a criterion based on (1.22) to find supersaturated designs in Chapters 3 and
5. The use of Bayesian optimality for supersaturated designs is advocated by authors
such as Jones et al. (2008) because the inclusion of the prior precision matrix, R, in
the criterion regularises the information matrix and overcomes the problem of singular

information matrices for supersaturated designs.

1.4.3 Design Selection: The Coordinate Exchange Algorithm

The coordinate exchange algorithm (Meyer and Nachtsheim, 1995) has been modified
to find designs for experiments with restricted randomisation by authors such as Jones
and Goos (2007) and Arnouts et al. (2010). Let x; ; be the jth element of x;, with x;

being the ith row of a design matrix, and let Dy € Dy, ,, be a starting design. Assume
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the aim is to maximise the objective function ¢(D), then the coordinate exchange

algorithm for two-level factors has the following general steps:
1. Set Do = Dg and calculate ¢5 = ¢(Dy ).
2. Fori=1,...,n,and j=1,..., f:
(a) Calculate ¢1 = ¢(Dj j—1).
(b) Let &; ; be the (i, j)th element of D; j_;.
(c) Let D; ; be equivalent to D; j_1, but with (i, j)th element z; ; = —; ;.
(d) Calculate ¢o = ¢(D; ;).

(e) If 1 > ¢, let D; j = D; j_1, otherwise, keep the swap and leave D; ; and

x; ; unchanged from (c).
3. Calculate ¢ = ¢(Dy, 5).

4. If 5 < ¢, repeat from step 2 with Do = D,, y. Otherwise, stop the algorithm

and return D1 o as the design which maximises ¢.

The coordinate exchange algorithm finds the design which maximises ¢ from a given
starting design by swapping each factor level for each treatment in the design until no

further improvement can be made.

To attempt to escape local optima, a subset of ¢ starting designs from Dy ,, are selected
at random and the coordinate exchange algorithm is run for each of these designs. We
define the design or designs found using the coordinate exchange algorithm for ¢ starting
designs with the largest value of ¢ as optimal for the optimality criterion relating to ¢.

We use a modified form of this algorithm in to find designs in Chapters 2 and 3.

1.4.4 Design Selection: The Interchange Algorithm

When the correlation structure is dependent on the order of treatments, the order of
treatments in D is important and hence needs to be considered when finding optimal
designs. The interchange algorithm (Atkinson et al., 2007, Chapter 12) searches for
improvements for a optimal completely randomised design with respect to an objective

function ¢ by swapping the order in which the treatments are applied.

Let Dg € Dy, be an n-run starting completely randomised design with design points
xi,i=1,...,n,let P ={(1,2),(1,3),...,(n— 1,n)} be the set of row indexes for all
pairs of treatments in a design, with Qth element Py = (Pg1, Pg2), and assume the
aim is to maximise the objective function ¢ = ¢(D). Then, the interchange algorithm

has the following general steps:

1. Set Dy = D, and calculate ¢pg = ¢(Dy).
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2. ForQ=1,...,|P]:
(a) Calculate ¢1 = ¢(Dg_1).

(b) Let Dg be the design matrix where treatments XPg and X Py, N Dg_1 are

swapped.
(c) Calculate ¢2 = ¢(Dg).

(d) If ¢1 > ¢2 let Do = Dg_1. Otherwise keep the swap and leave Dg un-
changed from (b).

3. Calculate ¢ = ¢(Djp)).

4. If ¢s < ¢p, repeat from step 2 with Do = Djp|. Otherwise stop the algorithm

and return Dg as the design which maximises ¢.

Therefore, the interchange algorithm finds the ordering of a given design which max-

imises ¢ by swapping pairs of design points until no further improvement can be made.

The interchange algorithm is run for ¢ random permutations of the elements in P, and
the designs which maximise ¢ from the set of ¢ final designs is chosen as the best design.
We use this algorithm to allocate treatments for block designs with autoregressive
intrablock errors in Chapter 2. This algorithm finds the run order that maximises ¢

and hence the run order in the resulting experiment should not be randomised.

1.5 Overview of Thesis

The main results in this thesis are given in Chapters 2 through 5. The aim of this
thesis is to develop and assess methods to find and analyse designs with restricted

randomisation in both blocks and stages.

In Chapter 2, we present results for block designs for linear mixed effect models where
the intrablock errors are assumed to follow an autoregressive process of order one
(AR(1) process). A block experiment with AR(1) intrablock errors is a special type
of block experiment with a natural ordering of the runs within groups. Investigation
into these designs is motivated by the manufacture of microstructured optical fibres

discussed in Section 1.2.

The properties of saturated and non-saturated block designs with autocorrelated errors
which maximise the D-optimality objective function found using two computer algo-
rithms are compared. The robustness of these designs to misspecification of both the
autoregressive parameter and the relative magnitude of the interblock and intrablock
variances is assessed using D-efficiency. Finally, the treatment selection and allocation

of designs with the same objective function value is discussed.
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In Chapter 3 we discuss the theory of multi-tiered and multi-stage designs and provide
our definition of multi-stage designs, which is extended from the partition design lit-
erature (Perry et al., 2001, 2002, 2007). We then present computer algorithms to find
optimal multi-stage designs for compound Bayesian D-optimality with different restric-
tions on randomisation. The results presented in this chapter focus on the two-stage
optimal designs suitable for the formulation of a pharmaceutical product discussed in
Section 1.2. A model for the response from each stage, as well as cumulative models
for the responses, which may be supersaturated, are considered, hence a compound

Bayesian D-optimality objective function is used.

The correlation between the columns of the model matrix for two-stage optimal designs
with different restrictions on randomisation is assessed to evaluate what information
can be retrieved from the experiment about individual factors. Designs with good pro-
jectivity properties are discussed, and a comparison is made between designs based on
known designs with good projectivity properties and the optimal two-stage completely

randomised designs.

In Chapter 4, we discuss Bayesian variable selection and motivate our use of a com-
putationally intensive Bayesian methods for selecting influential factors for split-plot
designs through the analysis of simulated data using all subsets regression and the

global and local search algorithm presented by Tan and Wu (2013).

We then present our method, which employs the Markov chain Monte Carlo sampling
methods of Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) and
Metropolis-Hastings rejection sampling (Metropolis et al., 1953; Hastings, 1970). We
assess the effectiveness of this method via simulations, using the posterior probability
of parameters being active and the sampled parameter distributions for multivariate

responses from the optimal two-stage split-plot experiment found in Chapter 3.

In Chapter 5, we show how the methodology in Chapters 3 and 4 can be applied to the
pre-clinical formulation and dissolution testing of a pharmaceutical product discussed
in Section 1.2. We also discuss how both a grid search and the efficient global optimisa-
tion (EGO) algorithm from Jones et al. (1998) can be used to optimise the probability
of dissolution testing responses being meeting specification. Using these methods, we
identify and analyse treatments with high predicted probabilities of meeting specifica-

tion.

Finally, in Chapter 6, we present some brief conclusions and possibilities for future

work.

17



18



Chapter 2

Block Designs for Mixed Effect
Models and Autoregressive

Intrablock Errors

Block designs organise the runs of an experiment into homogeneous groups based on
some feature of experimentation, such as the batch of experimental material used or the
technician running the experiment. Block designs are common in many areas of science
and industry, as they provide more accurate and precise conclusions for experiments

where restrictions on randomisation are induced through features of the experiment.

Mixed models, as introduced in Section 1.3.1 of Chapter 1, can be used to analyse the
responses from block experiments, and they allow the response from unobserved blocks
to be inferred. Here it is assumed that the blocks constitute a random sample from a
population of blocks. The linear mixed effects model for the analysis of block designs

is introduced in Section 2.2.

We consider an alternative to the usual exchangeable correlation structure and as-
sume that the ordering of units within a block may have an influence on the response.
Experimental units can be ordered in time and space. For example, the yields from
neighbouring plots could be ordered based on the location of the plots, or the responses
from a sequence of manufacturing processes could be ordered based on the order of the
processes in time. The correlation between ordered responses is usually assumed to
be positive as positive correlation is more widely applicable. The effect of ordering is
modelled by assuming an autoregressive process of order 1 (an AR(1) process) for the

intrablock (within-block) errors, as discussed in Section 2.3.

The order of runs in a block design can only be randomised within blocks; swapping two
treatments from blocks will change the properties of the design. Therefore, there are
two key choices for block designs, the choice of treatments and the allocation of these

treatments to blocks. The coordinate exchange algorithm (Section 1.4.3) chooses and
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allocates treatments, and the interchange algorithm (Section 1.4.4) allocates treatments
from an optimal design to blocks. In this chapter, we use both of these algorithms to find
block designs with autoregressive intrablock errors which maximise the D-optimality

objective function, (1.18) in Section 1.4.1.

When finding block designs for autoregressive intrablock errors, the autocorrelation pa-
rameter and the ratio of interblock (between-block) and intrablock (within-block) errors
are unknown. However, both of these parameters are required in the D-optimality ob-
jective function used to find designs in this work. Therefore, we consider the robustness
of the block designs found to the values of these parameters in Section 2.4.2. We also
discuss the structure of D-efficient designs in Section 2.4.3, and use relative efficiencies
to consider the performance of the coordinate exchange and interchange algorithms in
Section 2.5.

2.1 Motivation and Aim of Work

The motivation for the work in this chapter arises from a collaboration with the Op-
toelectronics Research Centre (ORC) at the University of Southampton, as discussed
in Section 1.2.1. The ORC aim to use experimentation to find which factor settings
produce a microstructured optical fibre with the best light transmission properties. As
discussed in Section 1.2.1, the manufacture of microstructured optical fibres requires

two processes, and the second process is the motivation for the work in this chapter.

Fibre manufacture could be described as a block design, where the blocking factor is
the cane which is drawn into fibre, and the experimental unit is the section of fibre to
which a factorial treatment is applied in each run of experimentation. For example,
four sections of fibre from four different canes could be used to create 16 experimental
units. The effect of the cane on the response is not of interest, hence random block
effects (as discussed in Section 2.2) are used to enable prediction of the properties of

new canes.

Either three or four factor settings can be varied during the fibre manufacture process.
The speed at which the cane is fed into the machine which draws it into a fibre, the
speed at which the fibre is drawn within this machine, and the pressure at the core
of the fibre are always varied in fibre manufacture. The temperature of the furnace
used to heat the cane so it can be drawn into a fibre may or may not be varied in the

experiment, depending on the range of the other factors.

If the same treatment was used to draw two fibres from the same cane, then we would
assume that the light transmission properties of these fibres would be more similar
than those measured for two fibres drawn using the same treatment from different
canes. This supports the use of a block design for fibre manufacture, as an underlying
assumption of block designs is that the responses from repeated treatments in the same

block are more similar than responses from repeated treatments in different blocks.
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The responses for the lengths of fibres that are drawn after each other are assumed to
be positively correlated. The responses for all the fibres drawn from the same cane are
assumed to have a correlation which decays as the distance between the lengths of fibre
increases. Therefore, it seems appropriate to assume that the intrablock errors follow

an autoregressive process, as discussed in Section 2.3.

The aim of the work in this chapter is to find designs which maximise the D-optimality
objective function (1.18) which are appropriate for the manufacture of microstructured
optical fibres. We use (1.18) as we want to gain scientific information about the fixed
effect parameters, which model the impact of the factors on the response. As exper-
imentation is costly and time consuming, 12 or 16 runs designs with three or four

two-level factors would be practically feasible.

We use the coordinate exchange (Section 1.4.3) and interchange (Section 1.4.4) al-
gorithms to find block designs with autoregressive intrablock errors which maximise
(1.18). In Section 2.4.2 we discuss the robustness of these designs to misspecification
of the ratio of the inter- and intrablock variance and the autocorrelation parameter,
which are unknown prior to experimentation. In Section 2.4.3 we consider the structure
of efficient designs. In Section 2.5 we use D-efficiency to compare the designs found
using these two algorithms and discuss the importance of using algorithms to allocate

treatments to blocks.

2.2 A Mixed Model with Random Block Effects for
Analysing Block Designs

As introduced in Section 1.3.1 of Chapter 1, a linear mixed model for the analysis of
responses from a block design with n = bk runs arranged in b blocks of size k is given by
(1.3), where Z is the n x b matrix which represents the allocation of the runs to blocks,
~ is the b x 1 vector of block effects and € is the n x 1 vector of random within-block
errors. If the ith run of an experiment, i = 1,...,n, is in the jth block, j = 1,...,b,
then the (7, j)th element of Z will be 1, otherwise it is 0.

Block effects can be fixed, with v as a b x 1 vector of fixed values, or random, with ~
as a b x 1 vector of values drawn from some distribution. We use random block effects
in this work as we assume that the blocks used in an experiment are a random sample
from a hypothetical population of “all possible” blocks. This allows the results from
the experiment to be generalised to future blocks and therefore enables inferences to

be made.

Fixed block effects provide no basis for comparing the blocks within the experiment to
a larger population of blocks. Hence, when the block effects are assumed to be fixed,
the data from the experiment cannot be used to make predictions, and inferences more

generally, about blocks other than those in the experiment. The use of fixed or random
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block effects is discussed in further detail by a range of authors such as Goos (2002,
Section 2.3.2), Morris (2011, Chapter 8) and Goos and Jones (2011, Section 8.3.1).

The two random variables in (1.3), v and €, are assumed to be independently normally
distributed, where v ~N(0p,02I;) and € ~ N(0,,,02P;,) when 0y and 0,, are the b x 1

and n X 1 vectors, respectively, with each element as 0. The variation between blocks

2
)

blocks have the same variability. The n xn correlation matrix P,, describes the assumed

effects, o7, is identical for all the blocks as we assume that the responses from different

relationship between the responses within blocks.

When ~« ~N(0y, U,Qbe) and € ~ N(0,,0%P,,), the variance-covariance matrix, V, of Y
in (1.3) is

V = var(XB+Zvy+e€)
= var(Z~y) + var(e)
= ZolLZ" +olP,
o2
= o2 (gzzT + Pn>
o

€

= o2 (nZZ" +P,)
= 0 (Ml @ T + P, (2.1)

where 1) = 02 /0?2 is the relative magnitude of the interblock (between-block) and in-
trablock (within-block) variance components, Jy is the k x k matrix with one as every

element and ® is the Kronecker product.

When it is assumed that the order in which treatments within a block are applied can
be randomised, then P,, = I, and the responses are said to have an exchangeable error

structure. The V matrix for this error structure is

O',%Jk + O'?Ik 01 e Ok
Orr O‘ka —|—0'211g Orr
Tt : (2.2)
Or O ... O',?,Jk + U?Ik

where Oy is the k x k matrix with each element as 0. The off-diagonal submatrices
of (2.2) are Ok as two observations from different blocks are independent. However,

as two observations from the same block are correlated, the diagonal sub-matrices in
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(2.2) are

0,27 + 062 0,27 O',QY
angk + U?Ik = 03 03 + Jz .' 03 , (2.3)
0'3 a% o? —l— o?
or, on substitution of n = 03/03,
n+1l o ..
0’,2YJ]€ + 021y, = o? 77 ’I’}J'r b 77 (2.4)
n n .oon+1

2.3 Autoregressive Errors

Assume that there is a one dimensional structure, for example arising from a spatial or
temporal dependency between the experimental units within blocks, which provides an
implicit ordering of the units within the block. Then, the structure of the correlation
matrix P, in (2.2) will need to be adapted to ensure that the experiment is designed,
and responses from the experiment are analysed, to account for this intrablock corre-

lation.

Autoregressive processes, as discussed by Box et al. (2008, Chapter 2) and Fuller (1996,
Chapter 2), can be used to describe a linear relationship between two ordered obser-
vations, such as the yields for two adjacent sections of a field or the responses for two
experimental units that have treatments applied to them consecutively. An autoregres-

sive process of order ¢, an AR(c) process, is defined as

dy = Z¢jdt—j + ay, (2.5)

j=1

where d; is the current observation, d;_1,...,d;—. are the past observations, ¢1, ..., ¢
are the autoregressive parameters, a; YN (0,02) is a noise variable with constant
variance, which is assumed to be independent of previous observations, t — ¢ > 1, and
t=2,...,n.

We use autoregressive processes to extend the standard error structure for block designs.
In this chapter, we assume that the responses for experimental units which are “closest”
together in space or time have the strongest relationship, and that this relationship
decays as the distance between experimental units increases. Therefore, we assume

that intrablock errors follow an AR(1) process, which is (2.5) for ¢ = 1.
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Let €; 5 be the error for run h (h = 1,...,k) in the jth (j = 1,...,b) block. If the
intrablock errors are assumed to follow a stationary AR(1) process then, following
Pantula and Pollock (1985), for h =2,...k

€jh = PE€jh—1 + €jh, (2.6)

where [p| < 1, €4 d N(0,02). It is assumed that €;; YN (0,02/(1 — p*)), which is
derived from the limit of the variance of €, ;, as h — —o00, and relies on the assumption
that €;; is bounded and |p| < 1.

When the intrablock errors are assumed to follow (2.6), then the correlation matrix P,

in (2.1) is given by

P, = I , 2.
o Ley) (27)
where 1 is the £ x k matrix
1 p pk—l
p 1 pk72
¥ = : (2.8)
pkfl pk:fZ 1

Therefore, the variance-covariance matrix when the intrablock errors follow an AR(1)

process is

2

V=1L (ang +1 f€p2 ¢> . (2.9)

As in equation (2.2), the off-diagonal sub-matrices for (2.9) are O, as the runs from
different blocks are assumed to be independent. We note that equations (2.2) and (2.9)
are equivalent for p =0 (and ¥ = I).

Other error structures, such as nearest neighbour correlation, also account for an im-
plicit one dimensional relationship between the responses within blocks. Nearest neigh-
bour designs assume that treatments applied to one experimental unit have some con-
stant residual effect on neighbouring units, where units can be neighbours in space or
time. Nearest neighbour block designs therefore assume that responses in the same

block have the same constant correlation, which implies that P, = I; ® ¢ and
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Autocorrelated errors assume that treatments applied to one experimental unit have a
residual effect that decays as the spatial or temporal distance between the neighbouring
units increases. It is more appropriate to assume autocorrelated, and not nearest

neighbour, intrablock correlation for the motivating example described in Section 2.1.

2.4 Study of Robustness of Block Designs to Misspecifi-

cation of Correlation Structure

In this section, we perform a study to assess:

e The importance of the allocation of runs in saturated and unsaturated block
designs with AR(1) intrablock errors (Section 2.4.1).

e The robustness of block designs with AR(1) intrablock errors which maximise
(1.18) to misspecification of p and n using D-efficiency, (1.20) in Section 1.4.1
(Section 2.4.1).

e The structure of robust designs (Section 2.4.3).

The designs in this study which maximise (1.18) were found using either the coordinate
exchange algorithm (Section 1.4.3) or the interchange algorithm (Section 1.4.4), where
V is as given by (2.9), and all combinations of p € p*, p* = {0,0.25,0.5,0.75} and
n € n*, n* = {0,2.5,5,7.5,10} were considered. We used random starting designs
for the coordinate exchange algorithm. The D-optimal completely randomised design,
which is found using the coordinate exchange algorithm for p = 1 = 0, was used as the

starting design for the interchange algorithm.

We considered four experiments in this study, whose responses are all assumed to be
modelled using (1.3), with variance-covariance matrix (2.9). Table 2.1 gives Dy, b, k,
and the elements of 3 in (1.3) for these four experiments. In Section 2.4.1, we compare
designs for Experiment 1 and 2 to assess the importance of run order on saturated
(Experiment 1) and unsaturated designs (Experiment 2). We use Experiments 2 to
4 to assess the robustness of 16 (Experiment 2) and 12 run (Experiment 3 and 4)
unsaturated designs to the misspecification of p and n in Section 2.4.2. The number
of factors, factor levels and runs considered in these experiments reflect the potential

number of two-level factors in the experiment discussed in Section 2.1.
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Experiment
1 2 3 4
Ditin D32 D316 D412 Dy2.12
b 2 4 3 3
k 4 4 4 4
Bo
B1
Bo Bo
B2
B1 b1
Bo B3
B2 B2
B1 Ba
B3 B3
B B2 B12
B12 B2
B3 B13
B13 B13
Ba Bia
Bo3 B23
Ba3
B123 Bi23
Ba4
B34

Table 2.1: Dy, b, k, and elements of 3 for experiments compared in Section 2.4 whose
responses are modelled using (1.3) and variance covariance matrices are given by (2.9).

2.4.1 A Comparison of Run Allocation for Saturated and Unsaturated

Designs

In this section, we will compare the allocation of runs in saturated and unsaturated
block designs with AR(1) correlated intrablock errors. We do this using two experiments
which are suitable for the motivation of this chapter, Experiment 1, which is a saturated
eight run design with two blocks of size four, and Experiment 2, which is an unsaturated
sixteen run design with four blocks of size four. Both these experiments are for three

two-level factors, and can only include treatments from Table 2.2.

Treatment | x1 x99 x3
1 1 1 1
2 1 1 -1
3 1 -1 1
4 1 -1 -1
5 ;1011
6 -1 1 -1
7 -1-1 1
8 -1 -1 -1

Table 2.2: Treatments for Experiments 1 and 2.
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The correlation structure and treatment allocation for the design is enforced through
V. The D-optimality objective function, (1.18), for saturated designs can be written

as

¢p = [V XTX] (2.10)

because the model matrix X is a pxp matrix. The efficiency (1.20) for saturated designs
is independent of V, hence saturated designs are not dependent on the correlation
structure assumed for the errors in the design or the allocation of treatments to blocks
(Goos, 2002, pg. 110-111). Therefore, (1.20) is 100% when any two saturated designs
with the same treatments are compared, as every allocation of the same treatments to

blocks is equally efficient.

The designs for Experiment 1 found using the coordinate exchange and interchange
algorithm Vp € p* and Vn € n* are saturated, as n = p = 8, and they all have
the eight treatments given in Table 2.2 without replication. As expected, all pairs of
the saturated designs for Experiment 1 have 100% D-efficiency, and the completely
randomised design, found using n = p = 0, is optimal for Vp € p*, and Vn € n*, where
po=p*/0={0.25,05,0.75} and n*, =n*/0 = {2.5,5,7.5,10}.

The optimality criterion for unsaturated designs cannot be written as (2.10), hence we
expect the allocation of treatments and, when AR(1) correlated errors are assumed, the
order of treatments within blocks to impact on the optimality and efficiency of these
designs. The designs which maximise (1.18) for Experiment 1 and 2 both contain all the
treatments given in Table 2.2. The designs for Experiment 1 have one replicate of these

treatments, and the designs for Experiment 2 have two replicates of these treatments.

Table 2.3 gives the per-run relative D-efficiencies for the saturated designs for Ex-
periment 1 and unsaturated designs for Experiment 2 found using both the coordinate
exchange and interchange algorithm when p € p* and n € n*. The relative D-efficiencies
in Table 2.3 are calculated using (1.20), where (1.18) for the saturated designs is the
numerator of (1.20) and (1.18) for the unsaturated designs is the denominator of (1.20).

The results for both algorithms are reported in Table 2.3 as they were identical, hence
the designs for Experiment 2 found using the coordinate exchange and interchange
algorithm will have 100% relative D-efficiency. This is discussed in further detail in
Section 2.5.
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P10 025 05 075
7
0 100.00 97.66 90.68 78.79
2.5 85.26 82.08 77.81 71.09
5 79.31 7640 7271 67.20
7.5 7578 73.01 69.39 64.65
10 73.30  70.63 67.18 62.77

Table 2.3: Relative per-run D-efficiencies, (1.20), of D-optimal eight and sixteen run
designs for Experiment 1 and Experiment 2, respectively, found using the coordinate
exchange and interchange algorithm for p given by the column heading and 7 given by
the row heading (%, 2dp).

The relative efficiencies in Table 2.3 decrease as n and p increase, therefore, for the
specific examples considered in this study, the allocation and ordering of treatments to
blocks in unsaturated designs becomes more important as 17 and p increase, as expected.
It would be interesting to see if this result holds for the comparison of other saturated

and unsaturated designs with different numbers of runs.

2.4.2 Robustness to Misspecification of p and 7

The autocorrelation parameter, p, and the ratio n of inter- and intrablock variance are
unknown prior to experimentation. However, both of these parameters are required
to calculate the objective function (1.18). Identifying whether the designs found are
robust to misspecification of these parameters is important, as the p and 7 assumed

when designing the experiment may differ from the true p and 7.

The D-efficiency for all pairs of designs found using both the coordinate exchange
and interchange algorithm for Experiments 2, 3 and 4 when p € p* and n € 7, is
approximately 100%. Therefore, when the design is found assuming it is blocked and
has some autocorrelated errors, the design is robust to misspecification of p and 7 for

the values considered in this study.

The assessment of the robustness of the D-optimal completely randomised design, which
is found using the coordinate exchange algorithm for p = n = 0, to blocking and
correlation is a common theme in the literature discussed in Section 2.6. We use the
relative D-efficiency of the design found using the coordinate exchange algorithm for
p =1 = 0 to consider the robustness of the completely randomised design to blocking

and correlation.

Tables 2.4 and 2.7 give the D-efficiencies of a single random ordering of the treatments
in the D-optimal completely randomised design relative to the blocked and correlated
designs found using the coordinate exchange and interchange algorithms for Exper-

iments 2 and 4, respectively. Tables 2.5 and 2.6 give the D-efficiencies of a single
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random ordering of the treatments in the D-optimal completely randomised design rel-
ative to the blocked and correlated designs found using the coordinate exchange and

interchange algorithms, respectively, for Experiment 3.

0 0.25 0.5 0.75
n
0 100.00 99.00 94.86 87.05
2.5 79.88 81.44 82.41 81.87
5 77.38 79.04 80.22 80.33
7.5 76.37 78.07 79.29 79.59
10 75.83 7754 78.79 79.16

Table 2.4: D-efficiencies, (1.20), for the D-optimal completely randomised design for
Experiment 2 relative to the design for Experiment 2 found using the coordinate ex-
change and interchange algorithms which maximises (1.18) for p given by the column
heading and 7 given by the row heading (%, 2dp).

0 0.25 0.5 0.75
Ui
0 100.00 82.48 67.77 55.68
2.5 76.17 66.13 58.46 51.96
) 72.18 63.07 56.25 50.68
7.5 70.44 61.72 55.24 50.03
10 69.47 60.97 54.66 49.23

Table 2.5: D-efficiencies, (1.20), for the D-optimal completely randomised design for
Experiment 3 relative to the design for Experiment 3 found using the coordinate ex-
change algorithm which maximises (1.18) for p given by the column heading and 7
given by the row heading (%, 2dp).

0 0.25 0.5 0.75
Ui
0 100.00 87.45 7596 64.83
2.5 76.17 70.50 65.42 60.38
) 72.26  67.27 62.93 58.85
7.5 70.57 65.85 61.79 58.08
10 69.62 65.00 61.14 57.61

Table 2.6: D-efficiencies, (1.20), for the D-optimal completely randomised design for
Experiment 3 relative to the design for Experiment 3 found using the interchange
algorithm which maximises (1.18) for p given by the column heading and 7 given by
the row heading (%, 2dp).
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P10 025 05 075
7
0 100.00 97.91 96.21 94.89
2.5 95.00 94.75 94.55 94.33
5 0451 9437 9427 94.17
7.5 9432 9423 9416 94.10
10 9422 9415 9410 94.06

Table 2.7: D-efficiencies, (1.20), for the D-optimal completely randomised design for
Experiment 4 relative to the design for Experiment 4 found using the coordinate ex-
change and interchange algorithms which maximises (1.18) for p given by the column
heading and 7 given by the row heading (%, 2dp).

The efficiencies in Tables 2.4 to 2.7 are calculated using (1.18) for the D-optimal com-
pletely randomised design in the numerator, and (1.18) for the design found using the
specified algorithm for the p given by the column heading and the 5 given by the row
heading. The single random ordering of the completely randomised design used to cal-
culate these efficiencies is the ordering returned by the coordinate exchange algorithm.
The variance-covariance matrix (2.9) for the p given by the column heading and the 7

given by the row heading is used in both the numerator and denominator.

Firstly, we note that the efficiencies for both algorithms are identical for Experiments
2 (Table 2.4) and 4 (Table 2.7). Also, we note that the efficiencies in Tables 2.4 to 2.7
decreases as p and 7 increase. Finally, the efficiencies in Table 2.5 and 2.6 are lower
than those in Table 2.7, hence the efficiencies increase as n — p decreases. All of these

results are discussed in further detail in Section 2.5.

The robustness of designs may depend on the value of the intrablock correlation,

_ 2 |r—s|
_A=pIn+p 7 (2.11)

(I=p*n+1

Trs

where r, s€ {1, ..., k} represent the positions of the two runs within a block. Figure 2.1
shows 7,5 as a function 7 for p € {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} when two runs
are nearest neighbours (Figure 2.1a, |r — s| = 1) or are separated by another treatment
(Figure 2.1b, |r — s| = 2). The value of 7, increases as 7 increases and the difference

between 7,5 for different p decreases as 7 increases.

It may be difficult to identify the differences in the designs when the intrablock cor-
relations are high and do not have large difference, therefore we expect the designs to
increase in robustness with respect to p as 1 increases and the correlation between the
different values becomes more similar. For our designs, when p € p* varies and n € n* is
fixed, 7,5 > 0.78 (2dp), for |r —s| = 1,2, 3, and the maximum difference between 7, for
different p € p* was 17%. Therefore, the similarities in efficiency seen for Experiments

2, 3 and 4 when p,n > 0 are unsurprising. Increasing the size of the blocks would
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reduce the intrablock correlation and may therefore produce designs which have lower

relative efficiencies.
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Figure 2.1: Intra-block correlation, 7., as a function of n for p = 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, when (a) |r — s| =1 and (b) |r — s| =2.

2.4.3 Structure of Robust Designs

As mentioned in Section 2.4.2, the relative efficiencies of any two designs found using
both the coordinate exchange and interchange algorithm when p € p*, and n € n* is
approximately 100%. There are some designs for Experiments 2, 3 and 4 which have
an efficiency of exactly 100 %, and hence identical values for (1.18). In this section,
we investigate whether two designs with the same value of (1.18) also have structural

equivalences, such as treatment allocation to blocks and ordering within blocks.
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Figure 2.2: Allocation of treatments in Table 2.2 to blocks for the D-optimal 16 run
design for Experiment 2 found using the coordinate exchange algorithm for n = 10, p =
0.25.

Block 1 X

e = |
Block 2

B © e

Block 3 .

. o el

Figure 2.3: Allocation of treatments in Table 2.2 to blocks for the D-optimal 16 run
design for Experiment 2 found using the coordinate exchange algorithm for n = 10, p =
0.75.
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Figure 2.4: Allocation of treatments in Table 2.2 to blocks for the D-optimal 16 run
design for Experiment 2 found using the interchange algorithm for n = 10, p = 0.25.

Figure 2.5: Allocation of treatments in Table 2.2 to blocks for the D-optimal 16 run
design for Experiment 2 found using the interchange algorithm for n = 10, p = 0.75.
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The designs for Experiment 2 all contain two replicates of the treatments in Table
2.2, regardless of their (1.18) value. However, designs with equal (1.18) values found
using both the coordinate exchange and interchange algorithm for Experiment 2 do not

necessarily have the same treatment allocation to blocks or ordering within blocks.

For example, the designs found using the coordinate exchange algorithm for n = 10
and p = 0.25,0.75 have 100% relative D-efficiency, however, as seen in Figures 2.2 and
2.3, they do not have the same treatment allocation or ordering. Similarly, as seen by
comparing Figures 2.4 and 2.5, the designs found using the interchange algorithm for
n = 10 and p = 0.25,0.75 have 100% relative D-efficiency but do not have the share

treatment allocation or ordering.

The designs for Experiment 3 found using the coordinate exchange algorithm have an
interesting structure. All the designs for p € p*, and n € n*, have eight distinct
treatments from Table 2.8, four of which are repeated at the start and end of each
block, as exemplified by Figures 2.6 and 2.7. This is an unusual structure, and it would
be interesting to see if block designs with AR(1) intrablock errors found using the
coordinate exchange algorithm which maximise (1.18) for different n, when the model

containing the main effects is assumed for the response, all have this structure.

Treatment | ©1 2 x3 x4
1 1 1 1 1
2 1 1 1 -1
3 1 1 -1 1
4 1 1 -1 -1
5 1 -1 1 1
6 1 -1 1 -1
7 1 -1 -1 1
8 1 -1 -1 -1
9 -1 1 1 1
10 -1 1 1 -1
11 -1 1 -1 1
12 -1 1 -1 -1
13 -1 -1 1 1
14 -1 -1 1 -1
15 -1 -1 -1 1
16 -1 -1 -1 -1

Table 2.8: Treatments for 12 run designs.

Even though all the designs for Experiment 3 found using the coordinate exchange
algorithm have this structure, we notice that they do not necessarily share the same
treatment allocation or ordering. There are some designs which have 100% relative

efficiency, identical treatments, treatment allocation and ordering. For example, Fig-
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ure 2.13 shows the treatment allocation and ordering for two designs, the designs for
Experiment 3 found using the coordinate exchange algorithm for n = 5, p = 0.5,0.75,
which have the same value of (1.18).

.................................

.................................

Figure 2.6: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 3 found using the coordinate exchange algorithm for n =5,p =
0.25.

aAla

Figure 2.7: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 3 found using the coordinate exchange algorithm for n = 5,p =
0.5,0.75.
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Figure 2.8: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 3 found using the coordinate exchange algorithm for n = 7.5, p =
0.25.

Figure 2.9: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 3 found using the coordinate exchange algorithm for n = 7.5, p =
0.75.

Other designs for Experiment 3 found using the coordinate exchange algorithm which
have the same value of (1.18) do not have identical treatments, treatment ordering
or allocation. For example, as shown in Figures 2.6 and 2.7, the designs for n = 5,
p = 0.25,0.5,0.75, which have 100% relative efficiency, have identical treatments but
different allocations and ordering of these treatments, and, as shown in Figures 2.8 and
2.9, the designs for n = 7.5, p = 0.25,0.75, which have the same value of (1.18), have
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completely different subsets of the full factorial, treatment allocation and ordering.

Figure 2.10: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12
run design for Experiment 3 found using the interchange algorithm for n = 10,p =
0.25,0.5,0.75.

Figure 2.11: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 3 found using the interchange algorithm for n = 7.5, p = 0.5.
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The designs with 100% relative D-efficiency found using the interchange algorithm for
Experiment 3 will have the same treatments, as the interchange algorithm allocates the
D-optimal design (found using the coordinate exchange algorithm for p = n = 0) to
blocks. However, these designs do not have the same pattern as the designs found using
the coordinate exchange algorithm, and do not necessarily have the same treatment
ordering or allocation to blocks. Figure 2.10 shows the allocation of the treatments in
Table 2.8 for the design for Experiment 3 found using n = 10 and p = 0.25,0.5,0.75,
which all have the same value of (1.18). However, through comparison of Figures 2.10
and 2.11, we note that the designs for n = 10 and p = 0.25,0.5,0.75 and n = 7.5 and
p = 0.5, which also have the same value of (1.18), do not have the same allocation or

ordering of treatments.

Designs for Experiment 4 found using the coordinate exchange algorithm with identical
(1.18) values do not use the same subset of the treatments in the full factorial, or have
the same treatment allocation and ordering within blocks. For example, the D-optimal
designs found using the coordinate exchange algorithm for n = 10, p = 0.25,0.75 have
identical (1.18) values but, as can be seen from comparing Figures 2.12 and 2.13, they

do not have identical treatments, treatment allocation or treatment order.

Designs for Experiment 4 found using the interchange exchange algorithm with identical
(1.18) values do not have the same treatment allocation and ordering within blocks. For
example, the design found using the interchange exchange algorithm for n = 5, p = 0.25
has the same value of (1.18), but not the same treatment allocation and ordering, as
the design found using the interchange algorithm for n = 5, p = 0.5. This can be seen
by comparing Figures 2.14 and 2.15.

Figure 2.12: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 4 found using the coordinate exchange algorithm for n = 10, p =
0.25.
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Figure 2.13: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 4 found using the coordinate exchange algorithm for n = 10, p =
0.75.

Figure 2.14: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 4 found using the interchange algorithm for n = 5, p = 0.25.
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Figure 2.15: Allocation of treatments in Table 2.8 to blocks for the D-optimal 12 run
design for Experiment 4 found using the interchange algorithm for n =5, p = 0.5.

Therefore, we note that designs with 100% relative D-efficiency, and hence the same
value of (1.18), do not necessarily have the same structure. The designs for Experiment
2 found using both the coordinate exchange and interchange algorithm have the same
set of treatments. However designs for Experiment 2 with the same value of (1.18)
did not have the same treatment allocation or ordering of treatments within blocks.
The designs for Experiment 3 found using the coordinate exchange algorithm all had
blocks with repeated treatments, however designs with 100% relative efficiency did not
necessarily share treatments or have the same treatment allocation or ordering. The
designs for Experiment 3 found using the interchange algorithm and the designs for
Experiment 4 found using both algorithms which are 100% efficient with respect to

each other also do not necessarily have the same treatment allocation or ordering.

2.5 Performance of the Coordinate Exchange and Inter-

change Algorithm

In this work, we used the coordinate exchange algorithm to find designs which maximise
(1.18), and the interchange algorithm to allocate the D-optimal completely randomised
design to blocks assuming AR(1) correlated errors. In this section, we want to compare
the designs found using these two algorithms, as the interchange algorithm is more
computationally efficient when finding designs for multiple p and 1 than the coordinate
exchange algorithm. We also consider the performance of these algorithms by compar-
ing the designs found using the algorithm to random re-orderings of the treatments in

the D-optimal completely randomised design.
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The relative efficiencies of designs for Experiments 2, 3 and 4 when p € p*, and € n*,
found using the coordinate exchange and interchange algorithm, where (1.18) for the
design found using the interchange algorithm is the numerator of (1.20) and (1.18) for
the design found using the coordinate exchange algorithm is the denominator of (1.20),
are in the interval [85, 100]%, where only certain designs for Experiment 2 had 100%
efficiency. There is therefore a gain in efficiency for using the coordinate exchange and
not the interchange algorithm, despite the additional computational expense. This also
suggests selecting the treatments and allocating them to blocks, instead of assigning a

D-optimal completely randomised design to blocks, has some benefit.

Figure 2.3 in Section 2.4.3 shows the allocation to blocks and order of treatments within
blocks for the design for Experiment 2 found using the coordinate exchange algorithm
when 1 = 10, p = 0.75, and Figure 2.5 in Section 2.4.3 shows the allocation to blocks
and order of treatments within blocks for the design for Experiment 2 found using the
interchange algorithm when 7 = 10, p = 0.75. These two designs have 100% relative D-
efficiency however they do not have the same treatments allocated to blocks or order of
treatments within blocks. This is a representative example, as patterns in the treatment
allocation or ordering could not be identified for the other designs found using different

algorithms which have the same value of (1.18).

We assess the performance of both the coordinate exchange and interchange algorithm
using the D-efficiency of random re-orderings of the treatments in the D-optimal com-
pletely randomised design relative to the designs found using the algorithm, which
maximise (1.18). If these relative D-efficiencies are high, then the benefit gained by

using an algorithm to allocate treatments to blocks is low.

Tables 2.9 and 2.12 give the interquartile ranges of the D-efficiencies for 1,000 random
re-orderings of the D-optimal completely randomised design relative to the designs
found using the coordinate exchange and interchange algorithms for Experiments 2 and
4, respectively. Tables 2.10 and 2.11 give the interquartile ranges of the D-efficiencies
for 1,000 random re-orderings of the D-optimal completely randomised design relative
to the designs found using the coordinate exchange and interchange algorithms, respec-
tively, for Experiment 3. Note that (1.18) for the random re-ordering of treatments
in the completely randomised designs is the numerator in (1.20) and (1.18) for the D-
optimal design for the p and n value given by the column and row heading, respectively,

is the denominator in (1.20).

We report the efficiencies for both algorithms in Tables 2.9 and 2.12 as they are identical.
We also notice that the efficiencies in Tables 2.10 and 2.11 are very similar. Hence,
the improvement which can be made by using an algorithm to allocate treatments are

identical for Experiments 2 and 4, and very similar for Experiment 3.
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0 0.25 0.5 0.75

U

0 [100.00, 100.00] [95.89,99.48] [89.70,97.59] [82.07,94.53]
2.5 [86.90,94.26]  [84.10,94.29] [82.50,94.24] [79.60,93.16]
5 85.19,93.66]  [82.84,93.72] [81.62,93.69] [78.85,92.73]
7.5 [84.50,93.43]  [82.29,93.51] [80.87,93.20] [78.46,92.55]
10 [84.12,93.31]  [82.00,93.39] [80.57,93.05] [78.32,92.45]

Table 2.9: Interquartile range of D-efficiencies for random re-orderings of treatments
in the D-optimal completely randomised design for Experiment 2 relative to the design
found using the coordinate exchange and interchange algorithms which maximise (1.18)

for the n and p given by the row and column headings, respectively (%, 2dp).

0 0.25 0.5 0.75

U

0 [100.00, 100.00] [80.26,84.53] [65.34, 72.66] [54.72,64.54]
2.5 [76.17,87.67]  [66.05,77.32] [58.67,69.66] [52.56,63.79)]
5 [72.90,86.28]  [64.09,76.36]  [57.42,69.04] [51.99,63.57]
7.5 [71.82,85.72]  [63.36,76.04] [56.90,68.86] [51.67,63.46]
10 [71.24,85.43]  [62.87,75.85] [56.60,68.72] [51.50,63.37]

Table 2.10: Interquartile range of D-efficiencies for random re-orderings of treatments
in the D-optimal completely randomised design for Experiment 3 relative to the design
found using the coordinate exchange algorithm which maximise (1.18) for the n and p

given by the row and column headings, respectively (%, 2dp).

0 0.25 0.5 0.75
U
0 [100.00, 100.00] [85.11,89.63] [73.23,81.43] [63.71,75.14]
2.5 [76.17,87.67]  [70.42,82.43] [65.65,77.96] [61.07,74.11]
5 [72.99,86.38]  [68.36,81.45] [64.24,77.24] [60.38,74.11]
7.5 [71.95,85.88]  [67.60,81.13] [63.66,77.03] [59.99,73.67]
10 [71.39,85.62]  [67.08,80.93] [63.31,76.87] [59.78,73.56]

Table 2.11: Interquartile range of D-efficiencies for random re-orderings of treatments
in the D-optimal completely randomised design for Experiment 3 relative to the design
found using the interchange algorithm which maximise (1.18) for the n and p given by
the row and column headings, respectively (%, 2dp).
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0 0.25 0.5 0.75
U

0 [100.00, 100.00] [96.75,98.05] [93.21,96.21] [88.52,94.53]
2.5 [87.29,95.00]  [86.73,94.65] [86.11,94.39] [85.07,94.17]
5 [84.97,94.51]  [84.65,94.31] [84.33,94.18] [83.83,94.07]
7.5 [83.93,94.32]  [83.70,94.19] [83.49,94.09] [83.19,94.02]
10 83.33,904.22]  [83.16,94.12] [83.00,94.05] [82.79,94.00]

Table 2.12: Interquartile range of D-efficiencies for random re-orderings of treatments
in the D-optimal completely randomised design for Experiment 4 relative to the design
found using the coordinate exchange and interchange algorithms which maximise (1.18)
for the  and p given by the row and column headings, respectively (%, 2dp).

We notice that for all three experiments and both algorithms, the efficiencies in Tables
2.9 to 2.12 decrease as 1 and p increase, hence the importance of using an algorithm
to allocate treatments to blocks and order treatments within blocks increases as p and

7 increases.

The efficiencies in Table 2.12 are higher than those in Tables 2.10 and 2.11, which
suggests that as the design approaches saturation (as p approaches n), the benefit,
with respect to D-efficiency, of using an algorithm to allocate treatments to blocks and

order treatments to blocks for designs with autocorrelated intrablock errors decreases.

Therefore, we note that there is some benefit, with respect to D-efficiency, in using the
more computationally expensive coordinate exchange algorithm over the interchange
algorithm, and that designs with the same value of (1.18) for these two algorithms do
not have the same treatment allocation or ordering. Also, we note that there is a benefit
from using an algorithm to allocate and order treatments, and this benefit increases as

p,n and n — p increase.

2.6 Further Reading: Design and Analysis of Experiments

with Correlated Errors

In this section we present some of the key literature regarding the design and anal-
ysis of experiments for a variety of different correlation structures with and without
blocking factors. We also discuss some of the algorithms used to find designs with
correlated errors, a number of which depend on classical, rather than optimal, design
ideas. Classical designs have standard structures which can be defined without the use
of a computer, and include fractional factorials. Optimal designs select, allocate and

order treatments so a particular objective function is optimised.

The literature in this section considers nearest neighbour (NN), moving average (MA)

and autoregressive integrated moving average (ARIMA) correlation structures for ex-
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periments with and without blocks. Autoregressive correlation structures, such as the
AR(1) intrablock error structure we have assumed in this chapter, are also considered

in certain literature.

The literature in this section includes first order NN designs (NN1) and second order
nearest neighbour designs (NN2). The order of a NN design indicates the number of
neighbours effected by the residual effect from applying a treatment to a particular
experimental unit. The correlation between neighbours is assumed to be constant, and
does not decay as the distance between the experimental units increases for all NN

designs with order greater than or equal to two.

The majority of the work on designs for NN correlation has focused on experiments
where the experimental units are arranged in rows and columns, such as an experiment
where the experimental units are sections of a field, which is subdivided into rows from
north to south and columns from east to west. An important consideration in designs
where the experimental units are arranged into rows and columns is row-column bal-
ancing. A design is said to be row-balanced if each treatment is applied to neighbouring
experimental units in rows an equal number of times and is column-balanced if each
treatment is applied to neighbouring experimental units in columns an equal number
of times. A design is nearest neighbour balanced if it is balanced in both rows and

columns.

MA processes can be seen as extensions of NN processes, as they assume that the
responses for a certain number of experimental units close to the unit to which the
current treatment is being applied are correlated. However, unlike NN correlation, MA
processes do not assume this correlation is constant. The most common MA process
discussed in the literature for experiments with correlated errors is the moving average

process of order 1 (MA(1) process),

€ = a; + 0oy, (2.12)

where ¢; is the error for the ith run, o; and «;_1 are random error terms from a given
(usually normal) distribution and 6 denotes the relationship between the error from the

experimental unit the treatment is currently being applied to and its closest neighbour.

AR processes differ to MA processes as they assume that the correlation between the
response for all experimental units is non-zero, and decays as the spatial or temporal
distance between experimental units increases. ARIMA processes combine AR and
MA processes, and assume that the response from the experimental units which are
close together have a stronger, fixed, correlation than those further away, but also

allows the correlation for those further away to decay. The ARIMA process of order 1
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(ARIMA(0,1,1)) is

€ = €_1+a; + 0a;_q, (213)

where «o;, a;—1 and 6 are as defined in (2.12) and €, is the error for the response from
the closest experimental unit. ARIMA(0,1,1) is a combination of an AR(1) and MA(1)

process.

Optimal or Efficient Designs for Experiments with Correlated Errors

Williams (1952) was the first author to suggest methods other than randomisation to
neutralise correlation between observations in an experiment and provided combina-
torial methods, based on neighbour balance and the maximum likelihood equations,
for the design and analysis of experiments with AR(1) and AR(2) correlated errors.
Williams (1952) also showed that variances can be underestimated if the autoregressive
nature of the errors is ignored. There is a wealth of literature for experiments with
correlated errors, with and without blocking, that can be linked back to the work of
Williams (1952).

NN correlation is the simplest correlation structure that allows for some spatial or
temporal dependency, and the design of NN experiments and the analysis of responses
when NN correlation is assumed is popular in literature such as Freeman (1979), Kiefer
and Wynn (1981) and Morgan and Chakravarti (1988). Freeman (1979) discussed the
use of complete Latin squares as balanced two-dimensional nearest neighbour designs,
using the specific example of plant breeding as motivation. Complete Latin squares
are Latin squares where all pairs of treatments are only adjacent once in all rows and
columns. For further detail regarding the use Latin squares for experimental design
see, for example, Bailey (2008, Chapters 6 and 9) and Montgomery (2012, Section 4.2).

The often cited paper by Kiefer and Wynn (1981) also advocated the use of Latin
squares to construct NN1 designs, and defined conditions for weak universal optimality.
The weak universal optimality criterion presented in Kiefer and Wynn (1981) includes
A- and F-optimality, but does not include D-optimality, and has then been used by
other authors such as Morgan and Chakravarti (1988).

Kiefer and Wynn (1981) found designs with and without fixed block effects, which were
robust to misspecifying a process with NN correlation structure as uncorrelated, using
classical design ideas. They identified classical combinatorial designs (such as Latin
squares) which are optimal with respect to their universal optimality criteria assuming
the errors are uncorrelated, and then selected designs from this set which are optimal

for NN1 correlation.

Morgan and Chakravarti (1988) extended the work of Kiefer and Wynn (1981) and
found robust block designs for both NN1 and NN2 correlation. Morgan and Chakravarti
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(1988) also provided conditions for balanced incomplete block designs (BIBDs) to be
universally optimum for NN1 and NN2 correlation structures using type II optimality
defined by Takeuchi (1961). BIBDs are block designs where all treatments do not
appear in each block, but each pair of treatment occurs in blocks A times, when A > 1.
A catalogue of BIBDs was given by Fisher and Yates (1963). The objective function for

type II optimality minimises the maximum variance of estimated treatment contrasts.

Morgan and Chakravarti (1988) assumed that the nearest neighbour correlation would
be small, and hence their primary aim was to find designs which protect against unex-
pected correlation rather than assume this type of correlation exists in the experiment.
They used this aim to justify their use of ordinary rather than generalised least squares

when estimating pairwise treatments contrasts.

Other correlation structures such as AR(1), MA(1) and ARIMA(0,1,1), have also been
considered by a number of authors. Kiefer (1961) proved optimality results for designs
without blocks given in the paper by Williams (1952) for multiple criteria, including
D-optimality. The work of both Williams (1952) and Kiefer (1961) was extended in
the often cited paper by Kiefer and Wynn (1984), who found designs without blocks
for AR(1) correlated errors for treatment comparisons with respect to a criteria based

on A-optimality.

Berenblut and Webb (1974) used a similar approach to that given in the paper by
Kiefer and Wynn (1981), as they found designs without blocks which maximise the
D-optimality objective function without correlation (for V.= (cr% +02)1,,) and then se-
lected the designs from this set which minimise the D-optimality objective function for
AR(1) correlated errors. They compared the efficiency of their designs to those found
by Williams (1952), and stated that a design is robust if information regarding the
parameters can be extracted efficiently from the results irrespective of the error struc-
ture. In Section 2.4.2, we considered the robustness of block designs which maximise
the D-optimality objective function for errors which follow an AR(1) process assuming
two non-zero p, and did not use the two-step approach to identify designs discussed by
Berenblut and Webb (1974).

Martin et al. (1998a,b) discussed the properties of optimal designs for factors without
blocks for three different types of correlated errors; AR(1), MA(1) and ARIMA(0,1,1).
Martin et al. (1998a) showed that designs for two-level factors without blocks found
using the algorithm in Cheng and Steinberg (1991) , which are D-optimal for AR(1)
correlation, are also often almost A- and E-optimal for MA(1) and ARIMA(0,1,1)
correlation. Cheng and Steinberg (1991) suggested that their designs were optimal due
to the number of level changes between factors, however this was shown to be false by
Martin et al. (1998a).

Martin et al. (1998b) extended the theoretical results presented in Martin et al. (1998a).
Martin et al. (1998b) found designs for multi-level factors without blocks for AR(1),
MA(1) and ARIMA(0,1,1) correlated errors. Multi-level factors are any factors with
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more than two levels. Martin et al. (1998b) presented the properties required for a
multi-level design to be D- and A-optimal, which include good neighbour balance and
a small number of self adjacencies for all lags. The number of self adjacencies at lag g is
the number of times two levels occur in two treatments which are applied g runs apart.
Both Martin et al. (1998a) and Martin et al. (1998b) considered main effects models
for responses from designs without blocks, whereas we also considered interactions in

our models, as discussed in Section 2.4.

Kunert (1987) showed that balanced NN designs from Gill and Shuka (1985) are uni-
versally optimal block designs when the responses are assumed to have AR(1) errors
with positive p. The universal optimality criteria presented in Kunert (1987) includes
D-optimality as a special case. Kunert (1987) also showed that neighbour balanced
BIBDs have promising optimality results for positive p and AR(1) correlated errors. In
this chapter, we focused on using coordinate exchange and interchange algorithms to
find designs which maximise (1.18), instead of using classical designs such as BIBDs

and Latin squares.

Jin and Morgan (2008) proved properties required for saturated block designs with
AR(1) correlated errors to be optimal for a range of optimality criteria, including D-
optimality, by extending the work of Chakrabarti (1963); Bapat and Dey (1991) and
Bagchi and Bagchi (2001). While we also considered a saturated block design with
AR(1) correlated errors in Section 2.4, we used factorial effects in the model assumed
for the responses whereas Jin and Morgan (2008) considered pairwise treatment com-
parisons. Therefore, the properties defined in Jin and Morgan (2008) are not necessarily

appropriate for the work in this chapter.

More general correlation structure results are given by Bischoff (1992), who derived the
conditions required for a design without blocks to be D-optimal-invariant with respect
to two general and unknown correlation structures. Bischoff (1992) stated that a design
is D-optimal-invariant when it has the same D-optimality objective function value for
two different correlation structures and the best linear unbiased estimates (BLUE) of
the fixed effect parameter 3 in the linear model fitted to responses from the design
is invariant to the change in the correlation structure. The BLUE of 3, B, can be
expressed as a linear function of Y, E(B):ﬂ, and it has the smallest variance among
all unbiased linear estimators of 3. Whilst we considered invariance with respect to the
D-optimality objective function in Section 2.4.2 and 2.5, we did not assess the impact

of adjusting p on the specific estimates of 3.

Algorithms for Finding Optimal Designs for Experiments with Correlated

Errors

Algorithms for identifying optimal designs for correlated observations either rely on
reordering the runs in classical designs or point exchange algorithms. A point ex-

change algorithm selects treatments from a set of candidate treatments, and orders

47



these treatments using an interchange procedure. The algorithms presented in the pa-
pers by Constantine (1989) and Garroi et al. (2009) select the run order of classical
designs such as Latin squires and BIBDs. The algorithms by authors such as Jones and
Eccleston (1980) and Chan and Eccleston (2003) find optimal designs using exchange

and interchange procedures.

In this work we found block designs with AR(1) intrablock errors which maximise
(1.18) using both a coordinate exchange algorithm (Section 1.4.3 in Chapter 1) and in-
terchange algorithm (Section 1.4.4 in Chapter 1). The coordinate exchange algorithm,
which is based on the algorithm by Meyer and Nachtsheim (1995), chooses the treat-
ments and, due to the structure of the variance-covariance matrix for responses with
autoregressive intrablock errors, also implicitly chooses the order of the runs within
blocks. The interchange algorithm, based on the algorithm described by Atkinson
et al. (2007), does not choose treatments but allocates and orders the treatments in a

completely randomised designs using the assumption of AR(1) intrablock errors.

Constantine (1989) presented a method of identifying D-efficient designs without blocks
for nearest neighbour correlation. The designs found using this method are D-efficient
when compared to the design for experimental units with no correlation. The method
uses Hadamard matrices as the starting design and relies on reordering the columns of
the Hadamard matrices and multiplying rows of the matrices formed by this reordering
to identify designs with a high D-efficiency. Hadamard matrices are discussed and
tabulated by Hedayat and Wallis (1978). Constantine (1989) concluded that, based on
the designs found from their algorithm, designs with multiple level changes are efficient

when the NN correlation is assumed to be positive.

The results discussed by Cheng and Steinberg (1991) complimented the results found
by Constantine (1989). Cheng and Steinberg (1991) began by demonstrating that re-
ordering full and fractional factorials so the maximal number of level changes occur
between each run produces the most efficient designs without blocks for errors which
follow AR(1) processes and time series trend models. Time series trend models (Spez-
zaferri, 1988) replace the intercept in the model assumed for the response with a vector

whose elements give the level of time trend expected for each observation.

Both Constantine (1989) and Cheng and Steinberg (1991) computed the D-efficiency
of all their designs in comparison to the design with no correlation. In Section 2.4.2,
we compared the D-efficiency for designs for different, non-zero, values of p, as well as
considering the D-efficiency of designs for p = 0 relative to designs for p > 0. Cheng and
Steinberg (1991) presented a reverse fold-over algorithm based on the work of Cheng
(1985) and Coster and Cheng (1988), which finds the run order with the maximum

number of level changes for two-level fractional factorial and full factorial designs.

Garroi et al. (2009) presented a variable-neighbourhood search algorithm to identify
D-optimal run orders of central composite designs without blocks for experiments with

AR(1) correlated errors. Central composite designs are a combination of a full or
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fractional factorial (depending on the number of runs in the experiment), centre points
and axial points. For an experiment with f factors, there will be 2 f axial points, where
the rth pair of axial points have the levels +a for factor r and 0 for all other factors
and « is chosen by the experimenter. For example, the 1st pair of axial points for an
experiment with 4 factors will be («, 0,0,0) and (-a, 0, 0, 0). Common choices for «
include 1 and +/f. Garroi et al. (2009) used three-level factors as they included second
order (polynomial) terms in their model for the responses, whereas our designs have

two-level factors as we only considered first order and interaction terms in our models.

The variable-neighbourhood search algorithm in the paper by Garroi et al. (2009) con-
siders six different types of perturbations that can be made by the design, which in-
cludes swaps, moves and relabelling of factors. The algorithm uses a steepest-ascent
move strategy; that is, all solutions for that neighbourhood are generated and then the

D-optimal perturbation is selected before moving to the next neighbourhood.

Garroi et al. (2009) used their algorithm to find designs which they showed to be
robust to misspecification of the autocorrelation parameter p. They also demonstrated
the loss in D-efficiency which occurs when it is assumed that 8 should be estimated
using ordinary, and not generalised, least squares. The factorial part of the D-optimal
designs for AR(1) correlation found by Garroi et al. (2009) exhibited features similar to
those obtained by Constantine (1989), Cheng and Steinberg (1991) and Martin et al.
(1998a), as the number of level changes between runs in the designs found by Garroi

et al. (2009) is large, but not necessarily maximised.

Jones and Eccleston (1980) presented an algorithm to find optimal block designs for
exchangeable correlation structure, with the aim of estimating comparative treatment
effects. Unlike the algorithms of Constantine (1989), Cheng and Steinberg (1991) and
Garroi et al. (2009), which rely on classical designs, Jones and Eccleston (1980) used

random starting designs and candidate sets of potential treatments.

The algorithm given by Jones and Eccleston (1980) has an exchange and an interchange
procedure. The exchange procedure deletes the weakest observation in the current
design and replaces it with the strongest observation from the candidate set. The
weakest and strongest observations are chosen based on their impact on a modified form
of A-optimality. The exchange procedure is repeated until no further improvements can
be made. The interchange procedure swaps treatments in the design until the sum of
the weighted variance of the treatment contrasts is maximised. In this work, using the
coordinate exchange algorithm allows us to identify the treatments and assign them to

blocks using one procedure instead of two.

Satpati et al. (2007) extended the work of Jones and Eccleston (1980) and Zergaw
(1989) by presenting an exchange-interchange algorithm to find efficient block designs
with NN1 and AR(1) correlation for the estimation of comparative treatment effects.
The exchange procedure used by Satpati et al. (2007) is the same as Jones and Eccleston
(1980). However, the interchange procedure in the paper by Satpati et al. (2007) calcu-
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lates the criterion value for all pairwise swaps and then maintains the swap that gives
the most significant improvement in the objective function, and repeats this process

until no further improvement is possible.

Satpati et al. (2007) found A- and D-optimal designs for pairwise treatment contrasts,
not factorial effects, and assessed the robustness of their designs using A- and D-
efficiency. They found designs which are robust to misspecification of the fixed values
of the correlation parameters that they consider, [-0.5, 0.5] in steps of 0.05 for NN1 and
[-0.95, 0.95] in steps of 0.05 for AR(1), and produced a catalogue of these designs.

Tack and Vandebroek (2002) presented an exchange algorithm for block designs with
time dependent observations. However, rather than considering the time trend in the
error structure, Tack and Vandebroek (2002) included time as an additional fixed effect
in the model fitted to the responses from the experiment. They also included a fixed
effect to represent the cost associated with running each treatment and the cost of

changing the level of each factor in a treatment.

The exchange algorithm in the paper by Tack and Vandebroek (2002), finds D-optimal
designs for the model with fixed time and cost effect and extends the point exchange
algorithms of Atkinson and Donev (1989, 1996). The algorithm iteratively selects,
with replacement, treatments from a course grid of candidate points until no further
improvement can be made with respect to the D-optimality objective function. This
differs from the algorithms in Jones and Eccleston (1980) and Satpati et al. (2007),
as it has a single exchange procedure rather than a two-step exchange-interchange

procedure.

Elliot et al. (1999) and Chan and Eccleston (2003) presented stochastic search algo-
rithms based on simulated annealing. Algorithms based on simulated annealing (Aarts
and van Laarhoven, 1989) accept or reject proposed changes to the current optimal
design with some probability. The potential for accepting sub-optimal moves, where
the objective function value has not improved, means that the algorithm can move

away from local optima.

The algorithm in the paper by Elliot et al. (1999) is very general and can be used to find
factorial designs with or without blocks for a range of optimality criteria and correlation
structures. This algorithm optimises random initial designs using an annealing routine
followed by a steepest descent routine. The simulated annealing routine swaps two
randomly chosen runs in the current design with some probability. The steepest descent
routine considers all possible pairwise exchanges of treatments in the design found from
the annealing routine, and keeps any exchanges that improve the value of the objective

function.

Chan and Eccleston (2003) provided algorithms to find NN balanced designs based on
simulated annealing and tabu search (Glover, 1989; Gill, 1990). These algorithms enable

designs with NN balance, which cannot be found using the combinatorial methods
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discussed in Chan and Eccleston (1998), to be identified. The algorithms rely on the
minimisation of two objective functions proposed by Chan and Eccleston (2003), which
are dependent on the number of times treatments are repeated in rows and columns,
and the square of the number of times a treatments are neighbours. For NN balance,
the first objective function should be zero, however as this is not possible for all designs

and so partial neighbour balance can be achieved by minimising this objective function.

Analysis of Experiments with AR(1) Errors

Pantula and Pollock (1985) focused on the analysis of longitudinal studies, where the
responses from n individuals are recorded at t;, ¢ = 1,...,n consecutive time points.
Pantula and Pollock (1985) assumed that the results for each individual have errors
which follow a stationary AR(1) process. If we use the individual as a blocking factor,
and times points as units within blocks, the linear model considered by Pantula and
Pollock (1985) is identical to (1.3) with errors given by (2.6), which is used in this
chapter.

Pantula and Pollock (1985) presented methods for estimating the fixed effect parameter
3, the between block variation ag, the within-block variation 02, and the autoregressive
parameter p. They extended the approach discussed in the paper by Fuller and Battese
(1973), and applied a transformation to the correlated errors to obtain generalised least
3 and o2 in (2.4), and p in (2.6).
An estimator 6 is consistent if it converges in probability to the true parameter 0 as

square estimates of 3 and consistent estimators for o

the number of experimental runs tends to infinity.

Pantula and Pollock (1985) followed the approach of Andersen et al. (1981) to obtain
a method of moments estimator for p. In earlier work, Azzalini (1984) established the
method of moments estimators for the case where t; is constant for all n individuals,
which is more closely related to the experiment described in Section 2.1. The results
in the paper by Pantula and Pollock (1985) were extended by Schaalje et al. (1991) to

more complex mixed models with several random effects that vary over time.

2.7 Discussion

To meet the aims of our collaboration with the ORC (Sections 1.2.1 and 2.1), we used
the coordinate exchange and interchange algorithms (Section 1.4.3 and 1.4.4 in Chapter
1) to find block designs which maximise the D-optimality objective function (1.18) for
autoregressive intrablock errors. We assessed how saturated and unsaturated designs
compare in terms of relative D-efficiency (1.20), investigated how robust designs are
to misspecification of the autoregressive parameter p and the ratio of variances n with
respect to D-efficiency, and compared the treatment selection, allocation to blocks and

order within blocks for designs with the same value of (1.18). We also compared the
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design found using the coordinate exchange and interchange algorithm, and assessed

the performance of these algorithms.

We use random block effects in the models for the responses and the D-optimality
objective function. D-optimality is used when the aim of the experiment is to gain
scientific understanding about @. This is important for the application of the work
in this chapter, as the ORC wish to find out which factors are most significant in the
manufacture of fibres. Random block effects allow us to make predictions for unobserved
blocks using the results from the experiment. Also, due to the time and cost involved
in producing fibres, the ability to extend the results found and predict for future fibres

would be beneficial for identifying new factor settings for future experiments.

There are two parameters, p and n, which are unknown prior to experimentation and
may affect design performance. It would be beneficial if the D-optimal designs found
are not reliant on these parameters. We found designs which maximise (1.18) for
p*=1{0,0.25,0.5,0.75} and n* = {0,2.5,5,7.5,10}. In Section 2.4.1, we found that the
importance of allocation and ordering of treatments increased as p € p* and n € n*

increased.

In Section 2.4.2, we found that designs found using both algorithms for p € p*, and
n € n*y, where p* ; = {0.25,0.5,0.75} and n*, = {2.5,5,7.5,10}, are robust to misspec-
ification. We noted, however, that there may be a relationship between the intrablock
correlation and robustness. Therefore, a potential future work is to find designs with
larger blocks and see if, as assumed, these designs are less robust to misspecification of

p and 7.

In Section 2.4.3, we used examples to prompt our discussion on the structure of designs
with 100% D-efficiency, and concluded that designs with the same value of (1.18) do
not necessarily have the same treatments, allocation of treatments to blocks or ordering
of treatments within blocks. We did note, however, that the designs for Experiment 3
found using the coordinate exchange algorithm all had treatments which were repeated
at the start and end of each block. Therefore, the work in Section 2.4.3 could be
extended by finding designs with different run sizes which maximise (1.18) when the
main effects model is assumed for the response and identifying whether block designs
with autoregressive errors have repeated treatments at the start and end of blocks when

main effects models are assumed for the response.

Finally, in Section 2.5, we found that the coordinate exchange algorithm finds designs
with higher value of (1.18) than the interchange algorithm. We also noted that there is a
benefit with respect to efficiency from allocating treatments using an algorithm instead
of considering random allocations of the D-optimal completely randomised design, and

this benefit increases as p,n and n — p increase.

The work in this chapter could be extended by considering other objective functions,

a different range of p and n, and different algorithms for finding designs. D-optimality
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is an estimation based criterion that is popular in literature. However, as noted from
Section 2.6, A-optimality is also popular in the literature for designs with correlated
errors. In future work, we could find designs for these two estimation based criteria

and compare them with respect to efficiency, and treatment allocation and ordering.

The current range of p and n values is wide, and the number of values considered is
quite small. The number and range of p and n values considered could be increased, for
example we could consider n* = {0,0.5,1,...,10} and p* = {0,0.05,0.1,...,0.95}, so
the robustness of these designs could be considered with more generality. Alternatively,
the experimental evidence from the ORC could be used to estimate n and p, and a
range based on the confidence intervals for the estimates of these parameters could be
considered, to make the designs more suitable for the manufacture of microstructured
fibres.

A stochastic search algorithm, such as the simulated annealing algorithm (Aarts and
van Laarhoven, 1989), could be used to find optimal block designs. Stochastic search
algorithms accept moves based on a certain probability, and therefore can accept moves
which do not maximise the objective function in order to escape local optima. The
designs found using this algorithm could be compared to the designs found using the

coordinate exchange algorithm.
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Chapter 3

Optimal Designs for Multi-Stage

Experiments

Multi-stage experiments are prevalent in industry and science. They use the same
experimental units in multiple stages of experimentation, with distinct responses mea-
sured at each stage. Two models are fitted to each distinct response; a model which
relates the response from the sth stage to the sth stage factors, and a “cumula-
tive” model which relates the response from the sth stage to the factors from stages
s,(s—1),(s—2),...,2,1. The use of cumulative models means that the different stages

of experimentation have to be designed in conjunction with each other.

In this chapter we use a compound Bayesian D-optimality objective function within
a coordinate exchange algorithm to find multi-stage designs tailored to estimation of
the parameters in all the models considered. The motivation for this work is the
manufacture of optical fibres and the formulation of a pharmaceutical product, as
discussed in Section 1.2 of Chapter 1, and the methodology presented in this chapter
is used to find a multi-stage design for the experiment discussed in the case study in
Chapter 5.

3.1 Definitions and Motivation

3.1.1 Definition of Multi-Stage Experiments

A multi-stage experiment is an experiment that uses the same experimental unit in
multiple stages. A sub-treatment is applied to the experimental unit at each run in
each stage, and a distinct response is recorded at the end of each stage. A sub-treatment
is the combination of factor levels that is applied to the experimental unit at a partic-
ular stage, and a treatment is the combination of factor levels that is applied to the

experimental unit across all stages of experimentation.
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This definition of a stage is the same as the definition of a partition given by Perry
et al. (2001, 2002) and discussed in Section 3.3. However, our multi-stage experiments
are not partition experiments as we measure a response for each stage at the end of
each stage and not at the end of the experiment as a whole. Multi-stage designs are

the set of treatments and replications applied in a multi-stage experiment.

While each stage may have separate responses and sub-treatments, the stages are de-
signed in unison as it is assumed that the responses observed at stage s are influenced
by the factors varied at stages 1,2,...,(s — 1), s, and not just by the factors varied in
the sub-treatments applied in stage s. However, it is important to note that the impact
of varying the factors in stage s on the stage s response may still be of interest. There-
fore, two models should be considered for the response from stage s; a model which
describes the impact of the stage s factors on the stage s response and a “cumulative”
model which describes the impact of the stage 1,2,..., s factors on the stage s response.
The consideration of multiple models naturally leads to the use of the compound op-
timality criterion, as compound criterion allow multiple experimental objectives to be
considered when designing experiments. Compound criterion are discussed further in
Section 3.4.

3.1.2 Comparison of Multi-Stage and Multi-Tiered Experiments

Multi-tiered experiments are prevalent in literature, and sometimes multi-tiered exper-
iments are defined as multi-stage experiments. However, this definition of multi-stage
differs to that presented in Section 3.1.1, and the designs for multi-stage experiments
presented in Section 3.6 are not necessarily also multi-tiered. Multi-tiered experiments,
which involve multiple randomisations of treatments, were discussed and defined by
Brien (1983), Brien and Payne (1999) and Brien and Bailey (2006). Treatments are
randomised with limitations, based on the properties of certain factors, and tiers are
defined as the sets into which the treatments can be organised, based on their randomi-
sations. For example, split-plot experiments are two-tiered experiments, with one tier
relating to the randomisation of whole-plots and the other relating to the randomisation
of runs within whole-plots. Strip-plot experiments could also be described as two-tiered
experiments, with one tier relating to the allocation of batches to rows and the other
relating to the allocation of batches to columns. Split- and strip-plot experiments are

discussed in Section 3.2.

We note that, as long as multiple randomisations are used in the experiment, multi-
phase and multi-stratum experiments can also be classed as multi-tiered experiments.
Multi-phase designs (as discussed by Brien et al., 2011) are used in the literature
for experiments when a field phase is performed after a laboratory phase. A field
phase is where initial results are collected, for example by applying treatments to
wheat in an agricultural setting. A laboratory phase relates to any stage where further

processing, measurement or testing is performed, for example measuring the quality
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of wheat sampled from the field trial in a controlled laboratory environment. Multi-
stratum designs (as discussed by authors such as Bailey, 1991 and Trinca and Gilmour,
2001) are multi-tiered designs as each stratum is a tier, where a stratum is a group
of treatments based on their randomisation. All multi-tiered designs have a single

response measured after all the factors across all tiers have been applied.

Certain literature provides an alternative definition for multi-stage experiments. In
Freeman (1959), Trinca and Gilmour (2001) and Brien et al. (2011), multi-stage exper-
iments are defined as experiments that are conducted in distinct time intervals and are
described as multi-tiered by Brien and Bailey (2006) if they involve multiple randomi-
sations across these distinct time intervals. The key difference between this definition
of multi-stage and the definition that we present in Section 3.1.1 is that we assume a

response is measured at the end of each stage.

The treatments in a multi-stage experiment which adheres to the definition in Section
3.1.1 can be randomised with one randomisation if the experiment has no limitations
on resource or complicated features. We refer to these multi-stage single-tiered ex-
periments without restrictions on randomisation as completely randomised multi-stage
experiments. Multi-stage multi-tiered experiments occur when there are restrictions
on the randomisation of the treatments in a multi-stage experiments. Restrictions can
occur due to; (i) hard to change factors, (ii) batching of experimental units and (iii)
nesting. In Section 3.4 we discuss three different types of optimal designs for multi-stage
experiments; (i) multi-stage completely randomised, (ii) multi-stage split-plot and (iii)

multi-stage strip-plot designs.

3.1.3 Motivation and Aim of Work

The manufacture of optical fibres and the formulation of a pharmaceutical product, as
discussed in Sections 1.2.1 and 1.2.2, respectively, of Chapter 1, motivates the work
in this chapter. For both examples, the factors in the experiment are applied in two
stages and a response is measured at the end of each stage. Randomisation of some
of the factors in each experiment is restricted, as they are either the factors used to
manufacture the cane (for optical fibre manufacture) or will increase the cost of the
experiment if varied too often (for the formulation of a pharmaceutical product). When
formulating the pharmaceutical product, the experimental units may be able to be re-
batched after the certain factors have been applied, however this is not possible for the
manufacture of optical fibres. Therefore, a two-stage split-plot design is applicable for
both examples and a two-stage strip-plot design may be applicable for the formulation

of a pharmaceutical product.

We assume that a response is measured at the end of each stage of the experiment
and that three models are of interest; the model which relates the factors from Stage
1 to the Stage 1 response, the model which relates the factors from Stage 2 to the

Stage 2 response and the model which relates the factors from Stages 1 and 2 to
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the Stage 2 response (the cumulative model). The aim of the experiment is gain as
much information about the parameters which relate the factor to the responses by
minimising the volume of the confidence ellipsoid for 3 for a weighted combination of
these models, where the weights indicate the relative importance of each of these models
to the experimenters. We therefore use the compound Bayesian D-optimality objective
function from Section 3.4.2 to find optimal two-stage designs. We use Bayesian D-
optimality as it enables us to include our level of prior belief for 3, and also allows us
to consider unsaturated, saturated and supersaturated designs, which may occur due

to the number of terms in the different models considered.

In this chapter we introduce a coordinate exchange algorithm (Meyer and Nachtsheim,
1995), to find optimal two-stage designs which are appropriate for the formulation of
a pharmaceutical product, as this work will also be applied to a case study in Chapter

5. Three types of 12 and 16 run designs for six two-level factors will be considered:
1. two-stage completely randomised designs.

2. two-stage split-plot designs (Section 3.2.2). Factors 1 and 2 in Stage 1 are hard-

to-change, and Factors 3, 4, 5 and 6 in Stage 2 are easy-to-change.

3. two-stage strip-plot designs (Section 3.2.3). Factors 1 and 2 in Stage 1 are row

factors, and Factors 3, 4, 5 and 6 in Stage 2 are column factors.

In Section 3.6, we use the correlation between columns in the model matrices for these
designs, as discussed in Section 3.5.2, to assess these designs. Correlation between
columns in the model matrix will impact the estimated model parameters through
variance inflation and bias, and the higher the correlation, the more inflated the variance
and bias is. Parameters which relate to columns which are correlated will not be able

to estimated independently, and will therefore be aliased.

In Section 3.6.1 we compare designs found using the coordinate exchange algorithm with
random starting designs to designs found using the coordinate exchange algorithm with
starting designs chosen to have good projection properties. The projectivity of a design
measures how the design performs when only a subset of factors from the design are
considered in a model for a particular response, which is appropriate for multi-stage

designs as models are fitted to the responses at the end of each stage.

3.2 Introduction to Multi-Tiered Designs: Split-Plot and
Strip-Plot Designs

In this section, we define the single-stage versions of the multi-stage experiments we
consider in Section 3.6, and use an example to indicate the impact of restrictions on

randomisation.
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3.2.1 A Simple Example: Washing and Drying Cloths

Suppose a manufacturer of household appliances wants to find methods to reduce the
wrinkling of laundry (Miller, 1997). They have 16 cloths (which are the experimental
units) and wish to investigate the impact of four two-level factors: two which apply
to washing machine (washer) settings and two which apply to tumble dryer (dryer)

settings. The response from this experiment is the wrinkling of a cloth sample.

The 2* = 16 possible treatments which can be applied in the process are listed in Table
3.1. The washer factors, or washer settings, are labelled W1 and W2 and the dryer
factors, or dryer settings, are labelled D1 and D2. For example, W1 and W2 could
be (washer) temperature and spin speed and D1 and D2 could be (dryer) temperature
and time. The application of the treatments in Table 3.1 to cloths is dependent on the

amount of experimental resource.

w1 W2 D1 D2

1 -1 -1 -1
1 -1 -1 1
1 -1 1 -1
1 -1 1 1
1 1 -1 -1
1 1 -1 1
1 1 1 -1
1 1 1 1

Table 3.1: The 16 treatments for the washing and drying cloths example.

washer W1 | -1| -1| -1| 1| -1| -1| 1| -1 1 1 1 1 1 1 1 1
Settings W2

Dryer D1|-1|-1| 1| 1|-1} -1} 1, 1| -1}|-1| 1| 1| -1(-1| 1| 1

Settings D2| -1| 1| -1, 1| -1 11| 1/ -1} 1| -1 1]-1] 1] -1] 1

Figure 3.1: Allocation of cloths to washers and dryers for a completely randomised
design.




A completely randomised design can be used to test the effect of W1, W2, D1 and
D2 on the wrinkling of each of the 16 cloths if the experimenters can use 16 washers
and 16 dryers. The cloths, labelled 1 to 16 in Figure 3.1, can be randomly allocated to
the individual washers and dryers in any order. The linear model, (1.6) where (1.5) is
(03 + 02)I,, in Section 1.3.1 of Chapter 1 would be used to analyse the data collected

from this design.

The experiment described in Figure 3.1 could also be performed by resetting the same
washer and dryer 16 times. However, there could be restrictions on the number of
machines or the amount of time available, and therefore other types of designs with
restricted randomisation, such as split-plot and strip-plot designs, which are discussed

in Sections 3.2.2 and 3.2.3 respectively, would need to be considered for this experiment.

3.2.2 Split-Plot Designs

Split-plot designs, as discussed in Section 1.3.1 in Chapter 1, have restricted randomi-
sation based on the levels of hard-to-change factors, which are factors that are either
complex or expensive to adjust. Groups of experimental runs based on the level of
the hard-to-change factors are referred to as whole-plots. The individual runs within

whole-plots are referred to as sub-plots.

Example

Washer W1 -1 -1 1 1
Settings W2 -1 1 -1 1

1|12 5|69 |10 13|14

3 | 4|7 |8 |11 12|15|16

Dryer D1| -1, -1} 1| 11} -1} 1| 1| -1, -1} 1| 1| -1} -1| 1| 1
Settings D2| -1} 1,-1, 1, -1} 1] -1} 1]-1] 1] -1 1| -1] 1]-1] 1

12|34 |5|6 |7 8|9 1011|1213 |14 |15 16

Figure 3.2: Allocation of cloths to washer and dryers for a split-plot design.

Assume that there is resource for four washing machines and 16 dryers in the experiment
described in Section 3.2.1, and the experimenters wish to apply all 16 treatments in
Table 3.1 to cloths in the experiment. This restriction on experimental resource would
require four cloths to be washed in each washing machine, however all 16 cloths could

be dried separately.

The split-plot design illustrated in Figure 3.2 would allow the experiment with these
restrictions to be performed, where the four different colours represent the washing

machine used. The cloths are randomly allocated to four washing machines, one for
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each pairwise combination of the two levels of W1 and W2, as long as there are four
cloths in each. The four cloths from each washer are randomly allocated to four dryers
with settings (D1, D2)=(-1,-1), (=1,1), (1,—1) and (1,1).

A Mixed Model for Analysing Split-Plot Designs

The model used to analyse a n run split-plot design with n,, whole-plots and ng sub-
plots in each whole-plot (n = n,, X ns) has the same form as (1.3) in Section 1.3.1, with
b = ny. The columns in X relating to the whole-plot factors are perfectly correlated
with the columns of Z, as the levels of the whole-plot factors are constant within each
whole-plot. The variance-covariance matrix V for Y is given by (1.5) in Section 1.3.1.
We note that the variance and covariances of terms within B, (1.9) in Section 1.3.2,
relating to the whole-plot factors will be larger than in the completely randomised case,
as demonstrated in Section 3.2.4. It is common when finding optimal split-plot designs
to assume there is more variability between whole-plots than between sub-plots, hence

2 2 2/ 2
05 >o; and n =o05/oZ > 1.

3.2.3 Strip-Plot Designs

Strip-plot designs are another type of two-tiered design with restricted randomisation.
Strip-plot designs arise naturally when there are two steps to a process where exper-
imental units are batched in the first step and re-batched or regrouped at the second
step. Factors applied to the original batches of experimental units are referred to as
row factors, and treatments for the re-batched experimental units are referred to as

column factors. Strip-plot designs are also known as row-column designs.

Re-batching means that the factor levels are reset less often in strip-plot designs than in
split-plot designs with an equivalent number of hard-to-change and row factors. How-
ever, this reduction in experimental cost has the disadvantage of a more complicated

mixed model for analysing strip-plot designs.

Example

Assume that only four washer and four dryers are available but the experimenters want
to apply all 16 treatments in Table 3.1 to the experiment. The strip-plot design in
Figure 3.3 would allow all 16 treatments to be applied as each cloth is washed in one
of four washing machines which is set at one of four washer settings, and dried in one
of four dryers which is set at one of four dryer settings. The colours in Figure 3.3

represent which washing machine is used to wash the cloth.

At the first step, washing, the 16 cloths are split into four batches of four and these

four batches are assigned to one of the four washing machines at random. The row
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factors in this split-plot design are therefore the washing factors, W1 and W2. At the
second step, drying, the cloths are re-batched so that each batch contains a cloth which
was washed in each washer in step 1. These batches of cloths are then randomised to
dryers, so a cloth from each washer is dried in each dryer and the column factors for

this strip-plot design are D1 and D?2.

Washer W1 -1 -1 1 1
Settings W2 -1 1 -1 1

314 |7 |8 11|12 |15 |16

Dryer D1 -1 -1 1
Settings D2 -1 1 -1 1

1|52 |6|3|7|4]|8

-

9 113 (10| 14 |11 | 15| 12 | 16

Figure 3.3: Allocation of cloths to washers and dryers for a strip-plot design.

A Mixed Model for Analysing Strip-Plot Designs

The mixed model for analysing responses from a strip-plot design in n runs with n,

rows and n,. columns (n = n, X n.) is given by

Y =XB+Z,y+Zsd + €, (3.1)

where Z, is the n x n, matrix representing the allocation of treatments to rows,
is the n, x 1 vector of random row effects, Zs is the n X n. matrix representing the
allocation of treatments to columns, d is the n. x 1 vector of random column effects
and € is the n x 1 vector of random errors for the runs within the rows and columns of
the experiment. If the i¢th run, ¢ = 1,...,n, is in the jth row, j = 1,...,n,, and kth
column, k = 1,...,n., of an experiment, then the (i, j)th element of Z, is 1 and the
(i, k)th element of Zs is 1. The row and column factor columns of X will be confounded
with columns in Z, and Zs, as the levels of the row factors are constant within rows

and the levels of the column factors are constant within columns.

In this work, we assume that 3 contains the p parameters of interest and the three
random effects v ~ N(0,021,.), & ~ N(0,02I,,) and € ~ N(0,021,,) are independently

distributed where o2

2. 02 and o2 are the constant between row, between column and

within row and column covariances, respectively. The variance-covariance matrix for
Y in (3.1) is given by

62



VvV = var(Y)
= var(XB+Zyy + Zs0 +¢€)
= var(Z,y+Zs6 + €)
= 072,27 + 0l ZsZ] + 0’1,

= 02 (MZyZL + 2525 +1,,) (3.2)

where 11 = 02/0? and 1y = 02/0? are the relative magnitudes of the row and column
variance components, respectively, compared to the within row-column variance. As
shown for the example in Section 3.2.4, the restrictions on randomisation within strip-
plot experiment affect the parameters for the main effect and pairwise product of the

row and column factors.

3.2.4 Impact of Restrictions on Randomisations Example: Washing
and Drying Cloths

In this section, we use the example designs discussed in Sections 3.2.1, 3.2.2 and 3.2.3
to demonstrate the impact of restrictions on randomisation on the variance of the
generalised least square estimator of B, (1.10) in Section 1.3.2. Table 3.2 gives the
variances for the parameters for By 1 , Bw2, Bp1, Bp2, Bwi,w2 and Bp1,p2, which are
the diagonal elements of (1.10) for the model for these parameters, for varying 7 for

the split-plot design and 77, 12 for the strip-plot design.

Estimator B B B Bp2 Bwiwe Bpipe
Completely Randomised 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625
Split-Plot, n = 2 0.5625 0.5625 0.0625 0.0625 0.5625 0.0625
Split-Plot, n =5 1.3125 1.3125 0.0625 0.0625 1.3125 0.0625
Split-Plot, n = 10 2.5625 2.5625 0.0625 0.0625 2.5625 0.0625

Strip-Plot,; = 2,m =2 | 0.5625 0.5625 0.5625 0.5625 0.5625 0.5625
Strip-Plot,1 = 2,m0 =5 | 0.5625 0.5625 1.3125 1.3125 0.5625 1.3125
Strip-Plot, 71 = 2,72 = 10 | 0.5625 0.5625 2.5625 2.5625  0.5625 2.5625
Strip-Plot,y = 5,m0 =2 | 1.3125 1.3125 0.5625 0.5625 1.3125 0.5625
Strip-Plot,n = 5,70 = 5 1.3125 1.3125 1.3125 1.3125 1.3125 1.3125
Strip-Plot, ;1 = 5,72 = 10 | 1.3125 1.3125 2.5625 2.5625 1.3125 2.5625
Strip-Plot,y = 10,70 = 2 | 2.5625 2.5625 0.5625 0.5625  2.5625 0.5625
Strip-Plot,y = 10,70 =5 | 2.5625 2.5625 1.3125 1.3125 2.5625 1.3125
Strip-Plot, 11 = 10,72 = 10 | 2.5625 2.5625 2.5625 2.5625  2.5625 2.5625

Table 3.2: Variance, from (1.10), of fixed effect estimators, (1.9), in Section 1.3.2 of
Chapter 1, for the example designs in Section 3.2.1, 3.2.2 and 3.2.3.
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Firstly, we note that the variances for BWl , BWQ and BWLWQ, the main effects and
product of the washing factors, in Table 3.2 are higher for the split-plot design and
the strip-plot design than for the completely randomised design. This shows how the
variances for parameters relating to whole-plot (split-plot) or row (strip-plot) factors
are inflated by the restrictions on randomisation in split-plot and strip-plot designs.
Also, we note that the variances for B D1, 3 Do and B D1,D2, the main effects and product
of the drying, or column, factors, are higher for the strip-plot design than for the
split-plot and completely randomised design. This shows the impact of the additional

restrictions on randomisation for strip-plot designs.

It is also interesting to note from Table 3.2 that the variance for BWl , BWQ and BWLWQ
increases as the ratio between the whole-plot and sub-plot variance, 7, increases for
split-plot designs and as the ratio of the row and within row-column variance, 7,
increases for strip-plot designs. The variance of B D1, ff Do and ff D1,p2 increases as the

ratio of the column and within-row-column variance, 72 increases for strip-plot designs.

3.2.5 Further Reading

There is a range of literature on multi-tier designs. Brien and Bailey (2006) defined
and discussed six types of treatment randomisation in multi-tier designs and provided
numerous examples, including the wine tasting example seen in the papers by Brien
(1983) and Brien and Payne (1999). Brien (1983) discussed the construction of ANOVA
tables for multi-tiered experiments and Brien and Payne (1999) discussed how the algo-
rithm in Genstat, based on algorithms by Wilkinson (1970) and Payne and Wilkinson
(1977), can be used to determine the randomisation structure of multi-tier experiments.
Brien and Bailey (2006) gave an indication of how to formulate a randomisation-based
mixed model for data analysis and discussed the notion of inter-tier interactions, which

are the interactions between factors in different tiers of the experiment.

Bingham et al. (2008) built on the work by Brien and Bailey (2006) and developed a
general method for constructing fractional factorial designs by considering first the ran-
domisation and then the treatment structure of a design. The construction of response
surface designs for multi-stratum experiments was discussed by Trinca and Gilmour
(2001). Strata for randomised experiments were defined and discussed by Bailey (1991)
using results from group theory. Trinca and Gilmour (2001) constructed multi-stratum
designs stratum by stratum, so that the factors in the current stratum are nearly or-
thogonal to factors in the higher strata and hence parameters relating to these factors

can be estimated independently.

Two-tier designs were first described by Mclntyre (1955), who was also the first to
incorporate randomisation in each phase of a design. This idea was extended by Brien
et al. (2011), who considered analysis based on both tiers, when a response is measured
at the end of experimentation. There is a significant amount of literature on split-plot

and strip-plot designs, which are two-tiered designs. Box and Jones (1992) provided an
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overview of split- and strip- plot designs, and variations, as well discussing analysis of
such designs. Miller (1997) and Stein (1999) discussed the design of fractional factorial
strip- and split- plot designs (respectively). Milliken et al. (1998) discussed strip-plot
designs for two-step processes and demonstrated the analysis of such designs using a
response surface model, hence linking to Trinca and Gilmour (2001). Other examples
of strip-plot designs can be seen in the papers by Vivacqua and Bisgaard (2004, 2009).
Goos and Gilmour (2012) discussed the analysis of split-plot and other multi-stratum
designs and used Hasse diagrams to visualise the structure, randomisation, stratum

and degrees of freedom for main effects, interactions and variance components.

3.3 Multi-Stage Experiments - Partition Designs

Partition experiments, whose construction and analysis were discussed by Perry et al.
(2001, 2002, 2007) and Pieracci et al. (2010), are similar to the multi-stage experiments
defined in Section 3.1.1. In a partition design, the same experimental unit is used
across multiple stages of experimentation, which are referred to as partitions, and sub-
treatments are applied to experimental units at each run in each partition. A response
is assumed to exist for each partition, however these responses are not measured until

the end of the experiment, after the all the partitions of experimentation are completed.

An experiment with ) partitions will have @) responses for these () partitions mea-
sured after the sub-treatments in partition () have been applied. This differs from our
definition of multi-stage experiments, as we assume that the response for each stage
is measured after all the sub-treatments for that stage are applied. Therefore, if an
experiment has S stages, the response for the sth stage, s = 1,2,...,.5, is measured

after the sub-treatments at stage s are applied.

The authors of the partition design literature assume that the response from partition
q—1 is still affected by the factors applied in partitions 1,2, ...,¢—2 and is not affected
by the factors applied in partition ¢, however they expect the factors from partition

q — 1 to be more influential than those in partitions 1,2,...,q — 2.

3.3.1 Design and Analysis of Partition Experiments for First Order
Models

Perry et al. (2001) and Pieracci et al. (2010) considered the design and analysis of
partition experiments when first order models of the responses are assumed, whereas
Perry et al. (2002) and Perry et al. (2007) considered the design and analysis of partition
experiments when second order models of the responses are assumed. Throughout this
thesis we assume that first order models are appropriate for the response, and hence
we only consider two-level factors in our designs. Therefore, we will only discuss the

design and analysis methods for first order models in this section.
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Assume that there are k, factors in partition ¢, ¢ = 1,...,@Q, then a first order model
for the ith response, i = 1,...,n in the gth partition in terms of the factors in partition

q is given by

kq
Yqi = ﬁOq + Z /Bqlqui =+ Z 6qlqulixqmi + €qis (33)
=1

l<m

where o1 is the intercept for the gth partition, 8y and By, [,m =1,...,kgand [ < m,
are the fixed effect parameters for the gth partition, zy; is the level of the /th factor
applied in the ith run for the gth partition and €4 is the random error for the 7th run

of the gth partition. The model (3.3) can be written in matrix form as

Y, = Bogln + B,X, + €, (3.4)

where Y, = (Yy1,...,Yyn)T, 1, is the n x 1 vector of ones, By = (Bg1, -+ Bakys Ba11,
. ﬁqquq)T is the vector of fixed effects parameters, X, is the model matrix for the

sub-treatments in partition q, and €; = (€1, - ., €qn)? -

When it is assumed that a model of the form (3.3) describes the responses from the
experiment, Perry et al. (2001) found the design with n = k + 1 runs, where k =
Zqul kq, using the following steps:

1. Let ¢f,...,q; be the partitions ordered with respect to the number of factors,
where ¢j is the partition with the largest number of factors and qé is the partition

with the smallest number of factors.

2. For partition ¢, find the largest possible regular fractional factorial design avail-
able such that the number of runs is less than k + 1. For more detail regarding

fractional factorial designs see, for example, Box and Hunter (1961a,b).

3. Select the sub-treatments for partition g5 using defining relations between factors
in partition ¢5 and the factors in partition ¢j. These defining relations should be

selected so that effects of interest can be estimated.
4. Repeat 3 for g3, .. .,qa
5. Additional runs are added so the design has n = k + 1 runs by maximising

XTX|
n

(3.5)

when X is the model matrix for the design considering all @) partitions (which
the authors refer to as D-efficiency), and ensuring the design has near equal

occurrences of the levels for each factor.
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We believe the authors set n = k + 1 so that a model containing the main effects from
all ) partitions can be fitted to the response from partition ). Therefore we assume
that this cumulative model is considered in step 5 of the algorithm, as otherwise p > n
and hence |X7X| = 0.

The projectivity of partition designs, that is the optimality or efficiency of designs
produced using subsets of the columns of the original design, could be an important
consideration. Partition designs consider models fitted to a subset of the factors in
the design, however projectivity is not discussed by Perry et al. (2001, 2002, 2007) and
Pieracci et al. (2010).

Perry et al. (2001) used the following steps to analyse the responses from partition

experiments:

1. Find the fitted parameters for observed responses y; = (Y41, - - - Ygn)

S’q = BOqln + Bqua (3-6)

where Boq be the fitted intercept for the gth partition, Bq is the vector of fitted
fixed effect parameters for the gth partition and X, is the model matrix for the

sub-treatments in the gth partition.

2. Select the significant fitted fixed effects based on model selection criteria such
as R?, adjR?, C, (see Kutner et al., 2004, Chapter 3) and the PRESS statistics
(Allen, 1974).

3. Find the partition intercept response

yPIq =Yq— y(p (37)

where y, is the fitted response from (3.6) in step 1.
4. For t # j fit

yprig = wotlp + wi Xy, (3.8)

where ypy, is calculated in (3.7), @o; is the fitted intercept for partition ¢, w; is
the matrix of fitted effects for partition ¢, and X; is the model matrix for the

sub-treatments in partition ¢.

5. Select the significant effects from (3.8) using the model selection criteria used in

step 2.

6. Fit the final model for the union of significant terms selected in steps 2 and 5 to

yq- There may be terms from all () partitions in this final model.

This method of analysis reduces the model selection problem by only ever considering
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subsets of the factors. The partition intercept response is the residuals found after
fitting the model to the factors in partition ¢. Hence fitting a model to the partition
intercept response attempts to assess whether these residuals are influenced by the
factors in other partitions, and includes these known sources of variation in the final

model.

Although not explicitly mentioned by Perry et al. (2001), Pieracci et al. (2010) noted
that the defining relations used when selecting the design will have an impact on the
analysis of response from partition design. The defining relations used in Pieracci et al.
(2010), for example, create a complex aliasing structure between the parameters in the
model assumed for the responses from the design, and hence the analysis of the results

described in this paper would require some thought.

Hamada and Wu (1992) discussed the analysis of designs with complex aliasing struc-
tures and used a procedure that depends on the assumption that only lower order
interactions will be non-negligible and the principle of effect heredity, where an inter-
action is only included in a model if the main effects of the factors in that interaction
are also in the model. In Chapter 4, we present a method which can be used to analyse

split-plot designs with complex aliasing.

3.3.2 Partition Design Example

We now use the washing and drying example (Miller, 1997) to illustrate the construction
and analysis of a partition design for first order models. Assume there are two, two-
level, washing factors, W1 and W2, two, two-level, drying factors, D1 and D2, and
the experiment has two partitions; washing and drying. There are n = k+1 = 5
washing machines and dryers that can be used in this experiment, and there are no
restrictions on randomisation, unlike the examples discussed in Sections 3.2.2 and 3.2.3.
The wrinkling of the cloth due to washing and the dryness of the cloth due to drying
is tested at the end of the experiment. A schematic for this experiment is shown in

Figure 3.4.

w1 w2 D1 D2
+—» Partition 1 Response:
Experimental Partition 1: Partition 2: Wrinkling from Washing
Unit: Cloths Washing Drying

\Partition 2 Response:

Dryness from Drying

Figure 3.4: A partition design for the washing and drying cloths experiment.
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Assume the following models for the factors in the two partitions:

Y1 = Bo1ls + B X1 + €1, and (3.9)

Yo = Bo2ly, + By Xa + €2, (3.10)

where Y1 = (Y11,...,Y1,)T and Yo = (Ya,...,Ya,)T, respectively, are the wrinkling
from washing (partition 1) and dryness from drying (partition 2), Bo; and By are
the intercepts for washing and drying (respectively), B; = (Bw1,.--,Bwiwz2)’ and
Bs = (Bp1,...,Pp1p2)T are the fixed effects from washing and drying (respectively),
X; and Xy are the model matrices for washing and drying (respectively), and €; and
€9 are the random errors associated with wrinkling from washing and dryness from

drying, which are independently distributed with common variance.

When the responses can be analysed using (3.9) and (3.10), the experiment is designed

using the following steps:
1. The treatments in the 22 factorial are used for the washing partition.

2. D1 is aliased with W1 x W2, and hence Sp; and By1w2 cannot be estimated
simultaneously. We assumed that Sy1m2 is not considered to be a key effect, and

therefore this aliasing is acceptable.

3. D2 is chosen so that all four combinations of D1 and D2, (D1, D2)=(—1, 1),
(1,-1), (=1,1), (1,1), are present in the design.

4. An extra row is added so that the design has n = k+1 runs, maximises (3.5) and

ensures near equal occurrence of the factor levels for each factor.

W1 W2 | D1 D2

Table 3.3: Partition design for washing and drying cloths when first order models are
assumed for the responses.

The design for first order models is given in Table 3.3. The aliasing relationships for
this design are D1 = W1 x W2 and W1 = W2 x D1, which mean that 8p; and Bwiwa,
and By1 and Byepi cannot be estimated independently. This aliasing will need to be

considered when analysing the responses from this experiment.
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The analysis of the responses from the partition design in Table 3.3 is performed using

the following steps:

1. Find the fitted parameters for observed responses,

1 = Borln + B X1, (3.11)

Y2 = Bozln + ByXo, (3.12)

where g = 1 relates to washing, ¢ = 2 relates to drying, y, is the observed response
for partition g, BOq be the fitted intercept for partition ¢, Bq is the matrix of fitted
fixed effect parameters for the gth partition and X, is the model matrix for the

sub-treatments in the gth partition.
2. Select the significant fitted fixed effects based on certain model selection criteria.
3. Find the partition intercept responses

ypPri =yi1—yi, (3.13)

ypPr2 =Yy2 — ¥2, (3.14)

where y,, ¢ = 1,2, are the fitted responses from (3.11) and (3.12) in step 1.

4. Fit
yprri = wo2ly + waXo, (3.15)

ypr2 = woly, +w1Xy, (3.16)

where ypr1 and ypre are calculated in (3.13) and (3.14), respectively, @, is the
fitted intercept for partition t = 1, 2, w; is the matrix of fitted effects for partition

t, and X; is the model matrix for the sub-treatments in partition ¢.

5. Select the significant effects from (3.15) and (3.16) based on the model selection

criteria used in step 2.

6. Fit the final model for the union of significant terms selected in steps 2 and 5 to

¥q¢: ¢ = 1,2. There may be terms from both partitions in this final model.
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3.4 Cumulative Models and Compound Bayesian

D-optimality for Multi-Stage Experiments

Recall from our definition of multi-stage experiments from Section 3.1.1, that we assume
two models are fitted to the response from each stage of the experiment; a model which
relates the response from the current stage to the factors applied in the current stage,
and a cumulative model which relates the response from the current stage and all the
factors applied in previous stages. In Section 3.4.1 we discuss cumulative models in
greater detail and describe the models required for multi-stage completely randomised,

split-plot and strip-plot designs.

Compound criterion enable multiple experimental objectives to be considered when
designing experiments. As we want to find designs which provide as much information
about the parameters in each model considered, we require a compound criterion which
calculates the volume of the confidence ellipsoid for the parameter vector for each
model. The objective function for the compound criterion which meets the aims of our

experiment is presented in Section 3.4.2.

3.4.1 Cumulative Models

Two models are considered for the response at stage s = 2,...,5; the model for the
factors in stage s and the cumulative model for the factors in stages 1,2,...,(s—1),s.
Note that for the first stage, s = 1, there is only one model as there are no previous
stages to consider in a cumulative model. Therefore, m = 25 — 1 models will be

considered for a S-stage design.

These m models can take on various forms, depending on the restrictions on randomi-
sation assumed for the experiment. We note that the sub-treatments for each stage
are not randomised individually, hence the restrictions are applied to the randomisa-
tion of the treatments as a whole. A multi-stage completely randomised design has no
restrictions on randomisation, and (1.6) with V = (O‘,%, + 02)1,, is used to analyse the

responses for all m = 25 — 1 models.

A multi-stage split-plot design has some hard-to-change factors, and therefore (1.3)
with variance given by (1.5) is used to analyse the responses in the m* < m models
that include the parameters which relate to just whole-plot and or whole-plot and
sub-plot factors, as the correlation for responses from different whole plots has to be
accounted for. Any models that only include parameters relating to sub-plot factors can
be analysed using (1.6) with V = (03 + 02)I,,, as the sub-plots are allocated to whole-
plots using a single randomisation. For an example of the three models considered
for the two responses from a two-stage split-plot design with two whole-plot and three
sub-plot factors in the first stage and one sub-plot factor in the second stage, see Table
3.6 in Section 3.6.
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A multi-stage strip-plot design has experimental units that can be re-batched after a
certain number of factors have been applied. Strip-plot designs have a more complicated
randomisation structure than split-plot designs, and the analysis of the S responses
from multi-stage strip-plot designs is also more complicated. Only the final cumulative
model, which relates the response from stage S to the factors in stages 1,2,...,5,
contains all the row and column factors, hence this is the only model that will be
analysed using (3.1) with variance given by (3.2). The other models used to analyse

the responses depend on what factors are considered in these models.

Any models which include parameters relating to a subset of the row factors and column
factors can be analysed using (1.3) with variance given by (1.5), as the row factors can
be thought of as hard-to-change factors and the column factors can be thought of as
sub-plot factors. Any models which only include parameters relating to row or column
factors can also be analysed using (1.3) with (1.5), as the correlation between responses
in rows or columns has to be accounted for. Table 3.6 in Section 3.6 gives details of
the three models considered for a two-stage strip-plot design with two row factors and

three column factors in the first stage and one column factor in the second stage.

3.4.2 Bayesian D-Optimality for Multi-Stage Experiments

As discussed in Section 3.4.1, m = 2S5 — 1 models are fitted to the S responses from
a S-stage design. It is important that we consider the performance of the design with
respect to each of these m models, as a design which is optimal for one of these models
may be very poor for another model. Compound optimality criteria, as discussed by
authors such as Atkinson and Cox (1974), Lauter (1974), Atkinson and Bogacka (1997)
and Atkinson et al. (2007, Chapter 21), allow a set of models to be considered when
optimising the design, where the importance of each of the models is determined by a

weight.

As the number of parameters, p;, in model [ = 1,...,m can be greater than n, and
one aim of this experiment is to gain scientific knowledge about these parameters, we
consider the Bayesian D-optimality of the multi-stage design with respect to each of

these | models. The objective function for Bayesian D-optimality is

XV X, + Ryl (3.17)

where X; is the model matrix for model I, V; is the variance-covariance matrix for
model [ and R; is the prior precision matrix of an appropriate prior distribution of 3,

for model [, so B; is distributed with mean p; and variance R;l.

In this work, we place an informative prior on all parameters in 3 apart from the
intercept, hence R; = I, — (ephle;‘fl’l), where e, ; is the jth column of I, in Table

3.6. The robustness of the designs found to different R; matrices could be considered
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in future work. Also, the impact of increasing the elements of R; relating to factors

which are assumed to be more influential on the response could be assessed.

Assume that the Bayesian D-optimum design for model [, that is the design which
maximises (3.17) for all D € Dy, is Dy, and that the model matrix and variance-
covariance matrix relating to Dy, for model [ are X, and Vi, respectively. Then using
the definition of a compound criterion given by Atkinson et al. (2007, Chapter 21), we

want to find a design which maximises

wy

1
i XTVIX + Ry \ ™
o =TT |100 |Tl, L d : (3.18)
. IXEVIX,, + Ryl

*

where w;, 0 < w; <1, > /" w; =1 is the weight which demonstrates the importance of

model [. Maximising (3.18) is equivalent to maximising

1

m Ty —1 Py
(XP VX +Ryf |\
log(®) = E wy log 100 o
=1 |Xl7>;vl*1Xl* + Rl‘

= > wilog(100) + ¥ % log (|X7V; X, + Ry)
1
=1 =1

m
3" Mo (IXL VX + Ry))
= P

m m w B
= Z wy log(100) + ¢p — Z p—ll log (XLVL' X +Ry).  (3.19)
=1 =1

We note that the maximisation of (3.19) with respect to X; is only dependent on ¢p as
>, wilog(100) and H )" ot log (IXEV,' X, + Ry|) are fixed. Therefore, our optimal

S-stage designs maximise

m

wy —
bp = Zﬁlog|XlVl X, + Ry|. (3.20)
=1

3.5 Methods for Finding and Assessing Designs

The designs discussed in Section 3.6 are found using coordinate exchange algorithms
which are extensions of the algorithm presented in Section 1.4.3 of Chapter 1. We assess
the designs in Section 3.6 using the correlation between columns of the model matrices
for the m models considered for the responses from the experiment, as high column

correlations will affect our ability to accurately and precisely estimate the parameters in
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the models due to inflation of variance and bias. The matrix of the correlation between
columns of a model matrix X, C, is presented and discussed in Section 3.5.2. We also
use the relative efficiency to compare designs in Section 3.6.2, and this is defined in
Section 3.5.3.

3.5.1 Coordinate Exchange Algorithm for Multi-Stage Designs

The coordinate exchange algorithm given in Section 1.4.3 where ¢ is the compound
Bayesian D-optimality objective function (3.20), can be used when there are no restric-
tions on randomisation to find multi-stage completely randomised designs. However,

adjustments are required when there are restrictions on randomisation.

Consider split-plot designs from Dy , with n,, whole plots, ng sub-plots (so n = nyns),
f columns which are ordered so that the first f,, columns give the levels of the whole
plot factors and the remaining fs = f — f,, columns give the levels of the sub-plot
factors and (i,j)th element z;; for i = 1,...,n and j = 1,...,f. Let N* be the
set of indices for the ng treatments in whole-plot £k = 1,...,n, and N;f be the hth,
h=1,...,ns element of N*. Then we use the following coordinate exchange algorithm
to find multi-stage split-plot designs, where the aim is to maximise to the compound
Bayesian D-optimality objective function (3.20) and Dy € Dy, is a starting split-plot

design with n,, whole plots, ns sub-plots, f,, whole plot factors and fs sub-plot factors:
1. Set D; g = D; and calculate ¢5 = ¢p(Dy).
2. For k=1,...,ny:
(a) For j=1,..., fu:
i. Calculate ¢1 = ¢p(Dy j—1).
ii. Let z7; be the (4, j)th element of Dy ;1 Vi € NE.

ili. Let Dy, ; be equivalent to Dy, ;1 but with (4, j)th elements z; ; = —y
Vi € NF,

iv. Calculate ¢o = ¢p(Dy ;).

v. If @1 > ¢o, let w;j = o}, Vi € NF*, otherwise keep the swap and leave

x; ; unchanged from (iii).
(b) Rename Dy, 5, as Dy ¢, .
(¢c) Forj=fu+1,...,f,and h=1,... ,ng
i. Calculate ¢1 = ¢p(Dp, j—1).

ii. Let 27 ; be the (4, j)th element of Dy ;_y for i = NF.
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iii. Let Dy, ; be equivalent to Dy ;1 but with (i, j)th element z; ; = —a7 ;
for i = N,’f.

iv. Calculate ¢o = ¢p(Dy, ;).

v. If ¢1 > @9, let @ j = a7 ; for i = N,’f, otherwise keep the swap and leave

x; j unchanged from (iii).

(d) If k < ny — 1, restart from (a) with D, r as Dyy10. If & = ny, stop and
let DnS,f be an,f'

3. Calculate ¢y = ¢p(Dny, f).

4. If 5 < ¢, repeat from 2 with Dy g = D, r. Otherwise, stop the algorithm and

return D1 o as the design which maximises ¢p.

Consider strip-plot designs from Dy, with n, rows, n. columns (so n = n,n.), f, row

factors and f. = f — fu column factors, and (7,7)th element x;; for i = 1,...,n and
j=1,...,f. Let N* be the set of indices for the n, treatments in row k = 1,..., n, and
N be the set of indices for the n, treatments in column h = 1,. .., n.. Then we use the

following coordinate exchange algorithm to find multi-stage strip-plot designs, where
the aim is to maximise to the compound Bayesian D-optimality objective function
(3.20) and Dy € Dy, is a starting strip-plot design with n, rows, n. columns, f, row

factors and f. column factors:
1. Set Do = D; and calculate ¢5 = ¢p(Dy).
2. Fork=1,...,n,and j=1,..., f
(a) Calculate ¢1 = ¢p(Dy j—1)-
(b) Let z7; be the (i, j)th element of Dy, ;1 Vi € N*.

(c) Let Dy ; be equivalent to Dy ;1 but with (,j)th elements z;; = —a
Vi € Nk,

(d) Calculate ¢2 = ¢p(Dy ;).

(e) If g1 > ¢po, let @;; = xi; Vi€ N* otherwise keep the swap and leave x;

unchanged from (c).
3. Rename D, . as Dy, .
4. Forh=1,...,ncand j = f. +1,..., fe:
(a) Calculate ¢1 = ¢p(Dp j—1).
(b) Let z7; be the (i, j)th elements of Dy, ;1 Vi € N*.
(c) Let Dy ; be equivalent to Dy j_; but with (i,j)th elements z;; = —a

,J
Vi e N".
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(d) Calculate ¢o = ¢pp(Dyp, ;).

(e) If ¢1 > ¢o, let w;j = a7, Vi € N, otherwise keep the swap and leave x;

unchanged from (c).
5. Calculate ¢p = ¢p(Dne, f).

6. If 5 < ¢, repeat from 2 with Dy g = D,,_ s. Otherwise, stop the algorithm and

return D1 o as the design which maximises ¢p.
There are two different types of starting designs used in this work:

1. Random starting designs: For an optimal multi-stage completely randomised
design, any selection of n treatments from the 17 possible treatments for a i-level f
factor full factorial experiment which ensure X7 X +R is non-singular can be used
as a starting design. The starting designs for a coordinate exchange algorithm
used to find an optimal multi-stage split-plot design are also combinations of these
17 possible treatments with non-singular X7 V~'X 4R, where V is (1.5), however
they have the added restriction that the levels of the f,, whole-plot factors must
be constant in groups of size ng. Similarly, the treatments in the starting designs
for an optimal multi-stage strip-plot design must have constant levels of the f,
rows in blocks of size n. and XTV~1X + R, where V is (3.2), must be non-
singular, but with the added restriction that the n. column treatments must be

the same in each of the n, rows.

2. Plackett-Burman and Hall based starting designs: These starting designs
are all possible subsets of f columns from the 12 run Plackett-Burman design
(Plackett and Burman, 1946, Table 3.4) and 16 run Hall III design (Hall, 1961,
Table 3.5). The 12 run Plackett-Burman and 16 run Hall III design are considered
as they have been shown to have good projection properties, see Cheng (2006),
Loeppky et al. (2007) and Section 3.6 for further discussion. In this work, we use

these starting designs to find designs with no restrictions on randomisation.

Factor |9 sy 5 6 7 8 9 10 11
Run
1 1 1 -1 1 1 1 -1 -1 -1 1 -1
2 1 -1 1 1 1 -1 -1 -1 1 -1 1
3 4 1 1 1 -1 -1 -1 1 -1 1 1
4 1 1 1 -1 -1 -1 1 -1 1 1 -1
5 1 1 -1 -1 -1 1 -1 1 1 -1 1
6 1 -1 -1 -1 1 -1 1 1 -1 1 1
7 1 -1 -1 1 -1 1 1 -1 1 1 1
8 4 -1 1 -1 1 1 -1 1 1 1 =1
9 4 1 -1 1 1 -1 1 1 1 -1 -1
10 1 -1 1 1 -1 1 1 1 -1 -1 -1
11 4 1 1 -1 1 1 1 -1 -1 -1 1
12 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 3.4: The 12 run Plackett-Burman design for 11 factors.
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3.5.2 Between Column Correlation for a Model Matrix

One method we use to assess and compare S-stage designs is the level of correlation
between the columns in the model matrices for the m = 25 — 1 models considered,
because the correlation between the columns will impact on the variance and bias of
the parameter estimates related to these columns. The matrix of column correlations

for the model matrix X;, [ =1,...,m, is

1
C = E(XlTxl), (3.21)

and the (7, j)th element of C; is ¢;;;. If:
e ¢;;; = 0 the ith and jth column of X; are not correlated.

e ¢ € [-1,0) or (0,1] (so =1 > ¢;; < 0 or 0 < ¢;; < 1) the ith and j column of

X are correlated.

We prefer smaller to larger correlation between columns in X; as the variance and
bias of parameter estimators related to correlated columns of X will be inflated, and
the higher the correlation the more inflated the variance and higher the bias. If two
columns are correlated, then the parameters relating to these two columns cannot be

estimated independently, and are therefore aliased.

In general, when comparing two designs, if one design has fewer non-zero entries in
C,; for model [ than another, this design is preferred as fewer parameters will have
inflated variances and biases. However, if the range of ¢;;; in C; for two designs is
significantly different, then the design with smaller ¢j;; values may be preferred even if
C,; has more non-zero entries. This is because the inflation of the variances and biases
for the parameters relating to the columns will be less severe, and it is easier to identify

the effect of parameters with smaller variances and bias.

Hence, a model matrix with more columns which have a small correlation may enable
some information regarding the parameters which relate to the correlated columns to
recovered, whereas a model matrix with fewer columns with larger correlation may
mean that very little or no information regarding the parameters which relate to the
columns can be recovered. The balance between the amount of correlated columns and

the level of correlation needs to be carefully considered when comparing designs.

3.5.3 Relative Efficiencies

We can assess the relative performance of two designs using their relative efficiency.

The relative efficiency of two S-stage designs found using the compound Bayesian D-
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optimality criterion (3.20) is

1 wj
1 o
Eff;, — ﬁ 100 [ Vi Xuet Ral) (3.22)
=1 |Xg,zvl_1X2,l + Ry ’

where X ; and Xy ; are the model matrices for the two optimal designs, D and D»,
for models I = 1,...,m, when m = 25 — 1. An efficiency of close to 100% suggests that

D, performs well with respect Ds.

3.6 Study of the Impact of Restricted Randomisation and
Benefits of Projectivity on Optimal Multi-Stage De-

signs

In this section we use the methods discussed in Section 3.5 to find and assess different
multi-stage designs. There are two comparative studies performed in this section.
In Section 3.6.1, we assess optimal two-stage completely randomised, split-plot and
strip-plot designs found using the coordinate exchange algorithms in Section 3.5.1 with
random starting designs. Each design has six factors, five of which are applied in the
first stage and one of which is applied in the second stage, hence they are appropriate
for the formulation of pharmaceutical products discussed in Sections 1.2.2 and 3.1.3.
When finding two-stage split-plot designs, it is assumed that the first two factors are
hard-to-change, therefore the design has f, = 2 and f; = 4. When finding two-stage
strip-plot designs, the first two factors are assumed to be row factors and the other four

factors are assumed to be column factors, so f. =2 and f. = 4.

We consider two different run sizes, n = 12,16, as the scientists formulating the phar-
maceutical products have resource for between 12 and 16 runs. For both the 12 and
16 run two-stage split-plot designs, we assume that n,, = 4 and n = 10 and, for the
12 and 16 run two-stage strip-plot designs we assumed that n, = 4 and n; = 12 = 10.
The number of whole-plots and rows were set based on the amount of times the exper-
imenters were willing to reset the first two factors in the experiments, and the ratios
of variances, 1,171,792, were chosen to represent our belief that the variation between
whole-plots, rows and columns, will much larger than variation within whole-plots, rows

and columns.

We assume that all these two-stage designs have two responses which are measured
after all the sub-treatments for each stage are applied. Three models are then fitted to
these responses; (i) the model relating the response from stage one to the five factors
in Stage 1, (ii) the model relating the response from Stage 2 to the single factor in
Stage 2, and (iii) the cumulative model relating the response from Stage 2 to all six

factors in Stages 1 and 2. Each model includes the intercept, the main effect and the
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pairwise products for all the factors in the sub-treatments or treatments considered.
This means that m = 3 and (p1, p2, p3)=(16,2,22). Following a discussion with the
scientists formulating the pharmaceutical product regarding the relative importance

they placed on the three models, we use the weights w = (w1, ws, w3)=(0.7, 0.1, 0.2).

As discussed in Section 3.4.1, the form of these models depends on the assumed restric-
tions on the randomisation. Table 3.6 details the models, variance-covariance matrices
and R matrices considered when using (3.20) in the coordinate exchange algorithms in

Section 3.5.1 to find optimal two-stage designs.

Completely Split-Plot Strip-Plot
Randomised
Model 1 | (1.6) (1.3) (1.3)
for Factors 1 to 5 and Stage 1 response
Model 2 | (1.6) (1.6) (1.3)
for Factor 6 and Stage 2 response
Model 3 | (1.6) (1.3) (3.1)
for Factors 1 to 6 and Stage 2 response
Vi (02 + 02)I, (1.5) (1.5)
Vs (02 + 02)1, (02 + 02)1, (1.5)
V3 (02 + o2)I, (1.5) (3.2)
Ry L, - (em,leﬁ,l)
ifn=12
Opl
if n=16
R 0p,
R3 Ips - (eps,legg,l)

Table 3.6: Table of models, variance-covariance matrices, V; and prior precision ma-
trices, R; (I = 1,2, 3), for the two-stage designs found using the coordinate exchange
algorithms in Section 3.5.1 and the objective function (3.20). Note that e, ; is the jth
column of I,,.

The three multi-stage designs for n = 12 and the three multi-stage designs for n = 16
found for the models in Table 3.6 are compared using the column correlation matrix
discussed in Section 3.5.2. This comparison is made to establish what impact the
number of runs and the restrictions have on the correlation between columns of model
matrices, and hence the variance and bias related to the fixed effect parameters for

these models.

We can also use correlation between columns of model matrices as a method of assessing
the projectivity of these designs. A design is said to have good projection properties
when sub-designs created from subsets of the columns of the design have desirable
properties, hence we consider projectivity in Section 3.6.1 as we assess the performance

for these two-stage designs for three models which are based on subsets of the factors
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in the final design.

We consider projectivity in further detail in Section 3.6.2, as we compare designs with
good projection properties to the optimal two-stage completely randomised designs.
The designs with good projection properties considered are the 12 run Plackett-Burman
design, given in Table 3.4, and the 16 run Hall III design, given in Table 3.5, which
were identified as having good projection properties by Cheng (2006) and Loeppky
et al. (2007), respectively.

In Section 3.6.2, we begin by using relative efficiency, as defined in Section 3.5.3, to
compare the optimal combination of six columns of the Plackett-Burman design and the
16 run Hall IIT design to the optimal two-stage completely randomised designs found
using random starting designs. This comparison is made to assess how well designs
with good projection properties perform with respect to optimal designs found using a
coordinate exchange algorithm. If these designs have high efficiencies, then it may be
that tables of optimal multi-stage could be produced using the columns of these designs

and hence could be identified without computation.

We also use both the column correlation matrices and relative efficiency to compare
the optimal two-stage completely randomised designs found and analysed in Section
3.6.1 to designs found using the coordinate exchange algorithm with randomly selected
subsets of the columns in the Plackett-Burman and Hall IIT designs as starting designs,
to asses whether designs with good projectivity properties make good starting designs.
Using subsets of the columns from designs with good projectivity properties as starting
designs would reduce the number of possible starting designs, and could therefore have

computational benefits.

Loeppky et al. (2007) used projection estimation capacity (PEC) to assess the projec-
tivity of designs, where the design with the highest PEC over arange of k, k =1,..., f,
has good projectivity properties. The PEC is py = pi(D)/ti, where p;(D) is the num-
ber of models containing the main effects and two factor interactions of k factors that
can be estimated from D and ¢; is the number of possible models with the main effects
and two factor interactions of k factors that could be considered for a design with f
columns. In Section 3.6.2, we use relative D-efficiency to assess the projectivity of the
designs found using the coordinate exchange algorithm with the Plackett-Burman and

Hall III designs as starting designs.

The column correlation matrices for the three models considered for the two responses
are presented as heat maps in both Sections 3.6.1 and 3.6.2. Figure 3.5 is a schematic
showing the arrangement of these column correlation matrices, and Table 3.7 gives
the relationship between the axis labels in the correlation matrix heat maps and the

columns of the model matrix.
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Model 1 Model 2

Model 3 Histogram

Figure 3.5: Schematic for the arrangement of the figures containing the column correla-
tion matrix heat maps and histogram of the correlation for the three models considered
for the two responses from the two-stage designs.

Axis Label | Model 1 Model 2 Model 3
1 1 1 1
2 f fs f
3 f> fo
4 f3 f3
5 £y 4
6 fy f5
7 fify fs
8 fifs fifs
9 fif, f1f3
10 fifs 11y
11 fof3 fif5
12 fofy fifs
13 fofs fofs
14 f3f4 fofy
15 f3f5 fofs
16 415 fofs
17 3ty
18 31
19 f3fs
20 fafs
21 115
22 f5fs

Table 3.7: Relationship between axis labels and columns of the model matrix for the
correlation matrix heat maps. Any missing values represent where the axis labels end
in the heat maps.
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In Figure 3.5, Table 3.7, and throughout the rest of this section; (i) Model 1 is the
model which relates the Stage 1 responses to the Stage 1 factors, (ii) Model 2 is the
model which relates the Stage 2 responses to the Stage 2 factors and (iii) Model 3 is the

cumulative model which relates the Stage 2 responses to all six factors in both stages.

As seen in Figure 3.5 and throughout Sections 3.6.1 and 3.6.2, there is a histogram
in all figures containing the correlation matrix heat maps. This histogram shows the
frequency of correlations between columns in Cg, the column correlation matrix for

model 3.

In Table 3.7, 1 is a n x 1 column of ones, f; is the ith column, i = 1..., f, of the design
matrix D € Dy, and f;f; is the column of the model matrix X created by element

wise multiplication of f; and f; (the ¢ and jth column of the design matrix D).

3.6.1 Study of the Impact of Run Size and Restrictions on Randomi-
sation on Optimal Multi-Stage Designs

In this section, we are going to compare the column correlation matrices, (3.21) in
Section 3.5.2, for optimal two-stage designs with different restrictions on randomisation,
which are found using the coordinate exchange algorithms in Section 3.5.1 with ¢p
from Section 3.4.2 and random starting designs. Throughout this section we refer
to the optimal two-stage completely randomised design with 12 runs as Dogpi2, the
optimal two-stage completely randomised designs with 16 runs as Do rpig, the optimal
two-stage split-plot design with 12 runs as Dgypp12, the optimal two-stage split-plot
design with 16 runs as Dgrpp1g, the optimal two-stage strip-plot design with 12 runs as
Dsrppi2 and the optimal two-stage strip-plot design with 16 runs as Dgrppi1g. Note
that there is a diagonal line of dark red squires going from the bottom left to the top
right corners of every column correlation matrix heat map in Figures 3.6, 3.7 and 3.8,

as every column has a correlation of 1 with itself.

We note from comparison of Figures 3.6a, 3.7a and 3.8a to Figures 3.6b, 3.7b and 3.8b
that there are more correlated columns in the model matrices for 12 run designs than in
the model matrices for 16 run designs. When a model is fitted to an n run design, and
we assume that estimating the variance components is not of interest, we can estimate
at most n parameters. This result was expected, as the number of correlated columns
in a model matrix with p columns must increase as n decreases, and the rank of the

model matrix decreases.

As seen in Figure 3.6b and 3.7b, the columns in the matrices for Model 1 for Dogrpig
and Dgrppig all have a correlation of zero. Therefore all the parameters in this model
can be estimated independently, and only the columns involving Factor 6 (fs, fi¢, fos,
f36, f16 and f56) are correlated in Model 3. This means that the bias and variance of
the parameters relating to the single second stage factor, Factor 6, in Model 3 will be

inflated, hence estimating these parameters will be more difficult.
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Figure 3.6: Heat maps depicting the column correlation matrices for the three models
fitted to responses and histogram of correlations between columns of the model matrix
for Model 3 for (a) Dogrpi2 and (b) Dogrpis.
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We note from comparison of the heat maps for the column correlations and histograms
in Figures 3.6a and 3.7a, that the number of correlated terms and the correlations
for Dorpie and Dgrppio are the same. There are 63 pairs of columns in the model
matrix for Model 3 for both Dogrpi2 and Dgyppi12 that are correlated, and for both
designs this correlation is between -0.67 and 0.67. The restrictions on randomisation
in Dgrpp12 have affected which columns are correlated in the model matrices for these
designs, as a number of the correlated columns involve the whole-plot factors. The
relative efficiency (3.22) of Dspp12 and Dogrpia when V; = (02 —I—(LQY)Im 1=1,2,3,is
99.95%. Therefore, the aliasing structure and the value of (3.20) when V; = (o2 +0'2y)1"
is very similar for Dg;pp12 and Dogrpie, even though these designs are found for two

different randomisation assumptions.

The contrast between Figures 3.6b and 3.7b is interesting to note, as there are more
correlated columns for Model 3 in Figure 3.7b than in Figure 3.6b, however the columns
in the matrix for Model 3 in Figure 3.6b are fully correlated. Therefore, some of the
parameters in Model 3 for the Stage 2 response from Dorp1g cannot be independently
estimated. The relative efficiency (3.22) of Dsrppis and Dorpig when V; = (02 +
a?/)In, [ =1,2,3,is 100%. Therefore, Dsrppi¢ maximises (3.20) when V; = (Ungag)In
and information from all the parameters in (1.6) for the Stage 2 responses can be
recovered. Hence, we may choose to run Dgyppig, which is the optimal design found
assuming two of the factors are hard-to-change, as a completely randomised design

experiment over Dorpis.

Figures 3.7b and 3.8b also have an interesting comparison, as there are fewer correlated
columns in the model matrices for Dgrppig than in Dgrppig, even though there are
two restrictions on randomisation in strip-plot designs and one in split-plot designs.
However, it is important to note from Figure 3.7b that none of the columns in the
model matrices for Dgrppig are fully correlated, whereas we can see from Figure 3.8b

that all the columns in the model matrices for Dgrppig are fully correlated.

As stated in Section 3.5.2, the larger the correlation between columns, the more inflated
and biased the parameter estimates relating to those columns will be in the model. We
note, therefore, that the impact of increasing the number of restrictions on randomisa-
tion from one to two is not to increase the amount of correlated columns, but increase
the severity of the correlation between columns and hence inflate the variances and

biases related to these parameters.

The results of the comparisons of Figures 3.6a and 3.7a, Figures 3.6b and 3.7b and Fig-
ures 3.7b and 3.8b were unexpected, as we assumed that the number of correlated terms
would increase as the restrictions on randomisation increase. These results demonstrate
the limitations of a “one number” optimisation approach, as all of these designs were
found to maximise the compound Bayesian D-optimality criterion (3.20), which does
not consider the correlation between the columns in the model matrix. Therefore, the

designs found could be improved by including a check of the correlation in the coordi-
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nate exchange algorithm. For example, each swap could be assessed to see if it improves
(3.20) and also reduces either the level of correlation between the columns in the model

matrices, or the number of columns which are correlated.

3.6.2 Comparison of D-optimal Designs to Designs with Desirable
Projection Properties

In this Section we use relative efficiency (3.22) to compare Dogrpi2 and Dogpig, the
two-stage 12 and 16 optimal completely randomised designs, respectively, found using

the coordinate exchange algorithm with random starts, to:

e randomly selected subsets of six columns from the 12 run Plackett-Burman (Table
3.4) and the subset of six columns from the 16 run Hall IIT (Table 3.5) design
which was identified by Loeppky et al. (2007) as having maximum PEC for k = 6,

and

e Dpp, the 12 run optimal two-stage completely randomised design found using the
coordinate exchange algorithm with (3.20) and all possible subsets of six columns
from the 12 run Plackett-Burman Design as starting designs (Table 3.4), and
Dy, the 16 run optimal two-stage completely randomised design found using the
coordinate exchange algorithm with (3.20) and all possible subsets of six columns
from the 16 run Hall IIT design as starting designs (Table 3.5).
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Figure 3.9: Heat maps depicting the column correlation matrices for the three models
fitted to responses and histogram of correlations between columns of the model for
Model 3 for Dppg.
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The efficiency of 396 of the 462 possible combinations of six columns of the Plackett-
Burman design (Table 3.4) compared to Dogpi2 is 95.58% (2dp), and the remaining
66 possible combinations of six columns of the Plackett-Burman design have a relative
efficiency with respect Dogpi2 of 91.43%. These efficiencies are quite high, hence these
randomly selected columns of the Plackett-Burman design do perform relatively well
when compared to Dorpi2. However, these efficiencies are not high enough to suggest

optimal designs can be found from this design without computation.

The relative efficiency of Dppg compared to Dogpi2 is 99.98%. The relative efficiencies
of the projections of Dpg and Dggrpio for the three models considered for the two
responses assumed for this design, which can be calculated using (3.22) with w;- =
1 for the appropriate model, are (100%, 100%, 99.93%). Therefore, Dpp has good
projectivity properties, when projectivity is measured using relative efficiency, when

compared to Dogrpio.

Comparison of Figures 3.6a and 3.9 shows the difference in which columns are correlated
in the model matrices for Dorpio and Dpp, respectively, and the level of correlation
for the correlated columns. We also note from comparison of Figures 3.6a and 3.9
that there are significantly more correlated columns in the model matrices for Dpp
(153 of the columns are correlated in the model matrix for Model 3) than there are for
Dcrpi2 (63 of the columns are correlated in the model matrix for Model 3), however
the range of the correlation for the columns in the model matrices for Dpp is smaller
(the correlations are all between -0.5 and 0.5) than the correlation for the columns in

the model matrices for Dogpi2 (the correlations are all between -0.67 and 0.67).

Deciding between Dcogrpi2 and D pp is difficult. However, we would recommend Dcgrpi2
over Dpp, as the difference in the maximum and minimum correlation is only 0.17 and
number of correlated columns is much higher (there are 90 more correlated columns in
the model matrix for Dpp than in Dogrpi2), and hence the number of parameters with
inflated variances and bias of the parameter estimates in the models fitted to responses
will be higher. Also, the value of (3.20) for Dogrpig is slighter higher than the value of
(3.20) for Dpp.

Columns 1, 2, 3, 4, 8, 10 and 12 of the Hall III design (Table 3.5) are identified
as forming the best design with respect to PEC for a projection onto six factors by
Loeppky et al. (2007), and this design had a relative D-efficiency (3.22) of 85.73%
(2dp) when compared to Deogrpig. This is quite low, and suggests that finding an
multi-stage optimal design for this example has significant benefits over selecting a

design with good projection properties.

The relative D-efficiency of Dy compared to Dogpig is 100%. The relative efficiencies
of the projections of Dy and Dggrpig for the three models are (100%, 100%, 100%).
Therefore, Dy also has excellent projectivity properties, with respect to relative ef-
ficiency, when compared to Dorpig. However, comparison of Figures 3.6b and 3.10

shows that, even though the values of (3.20) for Dorpis and Dy when w in (3.20)
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is (0.7, 0.1, 0.2), (1,0,0), (0,1,0) and (0,0,1) are the same, the pattern of correlation

between columns in the model matrices for these designs are not the same.
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Figure 3.10: Heat maps depicting the column correlation matrices for the three models
fitted to responses and histogram of correlations between columns of the model for
Model 3 for Dy.

Notice that the columns in the model matrices for Models 1 and 2 are independent for
both Deorpig and Dy, but the correlations between the columns in the model matrix
for Model 3 for Dy are either -0.5 or 0.5, whereas the correlations between columns in
the model matrix for Model 3 for Dogrpig are either 0 or 1. We also note that Dy has
24 correlated columns whereas Dorpig has only 6. However, the significant difference
in the range of the correlated columns is important, as it means that the parameters
which are correlated in Dogrpig will have variances and biases that are significantly
more inflated than the parameters which are correlated in Dg. Therefore, Dy may
be preferable when compared to Dogrpig even though the model matrices for Model 3
for Dy has more correlated columns, however further assessment of this variance and
bias inflation would need to be considered. Once again, this shows the importance of

considering both efficiency and correlation when assessing models.

These results demonstrate the limitations of using only (3.20) to optimise designs when
the correlation between columns in the model matrices, and hence the aliasing between
parameters in the models assumed for the responses from the experiment, is also im-
portant. Designs which are equivalent under (3.20) are not necessarily equivalent with

respect to (3.21). Therefore, as we have seen through our comparison of Dpp and
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Dc¢rpi2, and Dy and Dogpig, comparisons between designs which have 100% relative

efficiency can be complicated.

3.7 Discussion

The main focus of this chapter is the design and assessment of multi-stage designs
with restricted randomisation, as defined in Section 3.1.1, which are appropriate for
the motivation given in Section 3.1.3. Optimal multi-stage designs for (3.20), the
compound Bayesian D-optimality objective function derived in Section 3.4.2, are found
using coordinate exchange algorithms presented in Section 3.5.1. Our definition of
multi-stage designs is most similar to the definition of partition designs provided by
Perry et al. (2001, 2002, 2007) and Pieracci et al. (2010).

The correlation between columns in the model matrices for the various models consid-
ered for multi-stage designs is introduced as a method of assessing the optimal multi-
stage designs in Section 3.5.2, and we noted that correlation between columns of the
model matrix inflates the bias and variance of the parameter estimates related to those
columns. Also, parameters relating to the columns which are correlated can not be

estimated independently, and will therefore be aliased.

In Section 3.6.1, we used the column correlation matrices to compare two-stage designs
with different restrictions on randomisation which are appropriate for our motivating
example. We noted that, as expected, the 16 run designs have fewer correlated columns
than the 12 run designs. We also noted that only columns relating to factor 6 are
correlated in the matrix for Model 3 for Dogrpig and Dgrppie (the optimal 16 run

two-stage completely randomised and split-plot design, respectively).

The results from Section 3.6.1 highlighted the limitations of using a “one number”
approach to optimisation, as the relative efficiencies and the comparison of correlation
matrices for Dgrpp1g and Dogrpig suggested that using Dgyppig, the optimal design
found assuming two of the factors are hard-to-change, as a completely randomised
design is preferable to using Dogrpig. We also found that the number of correlated

columns does not necessarily increase as more restrictions on randomisation are applied.

In Section 3.6.2, we compare our optimal completely randomised designs to designs
identified by Loeppky et al. (2007) as having good projectivity properties using relative
efficiency, as defined in Section 3.5.3, and column correlation matrices. Projectivity is
important in this work, as we fit models to different subsets of the model space and
our compound criterion ensures the designs perform well, with respect to Bayesian

D-optimality, in each of these subsets.

In Section 3.6.2 we found that there is some benefit, with respect to the compound
Bayesian D-optimality objective function, in finding optimal designs using the coordi-

nate exchange algorithm over selecting columns from a design with good projectivity
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properties. We also found that Dpp and Dy (the optimal designs found using the
coordinate exchange algorithm with all possible combinations of six columns from the
Plackett-Burman and Hall I1T designs, respectively, as starting designs) have good pro-
jectivity over the three models considered in this chapter, when projectivity is assessed
using the relative efficiency of these design compared to Dorpie and Dogrpig, respec-

tively.

The limitations of a one number approach to optimisation were also seen in Section
3.6.2, as designs which had 100% efficiency with respect to the compound criterion, and
over each projection, did not necessarily have the same correlated columns. The number
of correlated columns is important, as we want to be able to gain as much information
about as many parameters as possible, and the correlation between columns indicates

the amount of information that can be gained about each parameter.

The work in this chapter could be extended in a number of different ways. The number
of factors and the number of whole-plot and row factors considered in the designs in
this chapter are specific to the formulation of a pharmaceutical product. However we
could look at what affect grouping factors into different stages or increasing the number

of stages has on the correlation matrices.

Also, we have only considered set values of the tuning parameters in (3.20), and hence
an assessment the robustness of designs with respect to w and Ry, [ =1,...,m, would
extend the current results. We assess the robustness of specific designs with respect to
w in Section 5.2.1 of Chapter 5, but we have not performed a more general assessment

of robustness.

We could also consider a different optimality criteria, such as a compound pseudo-
Bayesian version of A-optimality, and compare the correlation matrices for the optimal
designs found using compound Bayesian D- and A-optimality. We could also assess
whether the optimal designs found using compound Bayesian D-optimality perform

well with respect to compound Bayesian A-optimality.

In Sections 3.6.1 and 3.6.2, we suggested that considering the correlation matrix as well
as the compound Bayesian D-optimality objective function in the coordinate exchange
algorithm could help make the comparison between designs easier. We could implement
this extension by optimising the number of correlated terms and some summary of the

correlated terms, such as the mode, as well as (3.20).

Another possible extension is to consider alternative algorithms for finding optimal
designs, as the coordinate exchange algorithm is a “greedy algorithm” which can stuck
at local optima. Stochastic algorithms, such as simulated annealing algorithm where
moves are accepted or rejected with some probability (Brooks and Morgan, 1995), could
be considered as they accept sub-optimal moves and hence allow us to escape from local

optima, and the designs found using these two algorithms could be compared.
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Chapter 4

Bayesian Variable Selection for
Supersaturated Split-Plot

Experiments

The identification of influential factors is often important, particularly in supersatu-
rated experiments where there are more terms in the model fitted to the response than
runs in the experiment. We refer to substantially non-zero terms in the model as active.
There are a variety of different variable selection methods for identifying these active
terms for different types of experiments. In this chapter, we focus on variable selection
methods when mixed models for multivariate responses are used to model data from

split-plot experiments, which are appropriate for our motivating example (Section 4.1).

Bayesian variable selection is the focus of this chapter. Bayesian methodology allows
the use of prior knowledge, and ensures that the uncertainty associated with parameters
and models before experimentation is propagated through to estimated parameters and
predicted responses. In Section 4.2, we describe the Bayesian framework, introduce

Markov chain Monte Carlo (MCMC) sampling and Bayesian variable selection.

In Section 4.3, we provide motivation for our Bayesian variable selection method by
assessing the performance of example frequentist (Section 4.3.2) and Bayesian (Section
4.3.3) variable selection methods for simulated data. In Section 4.3.2, we find that the
frequentist method for analysing split-plot experiments is limited for supersaturated
split-plot designs, as frequentist analysis relies on estimates of the variance compo-
nents, and these cannot be accurately calculated due to a lack of degrees of freedom.
These limitations were also identified by Gilmour and Goos (2009). Placing a prior dis-
tribution on the variance components in the mixed model supplements the data with

available prior information, mitigating the estimation problems.

Advances in computing have made Bayesian methods easier to implement. Hence,

Bayesian methodology has become more popular. MCMC methods can be used to ad-
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dress the complexity and multi-dimensionality of the likelihoods, posterior and condi-
tional distributions associated with Bayesian modelling of responses. MCMC sampling
methods produce a dependent sample from a given distribution via a Markov chain

with the correct stationary distribution.

Our algorithm, as discussed in Section 4.4, combines two MCMC methods; Gibbs
sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) and Metropolis-Hastings
rejection sampling (Metropolis et al., 1953; Hastings, 1970). The Gibbs sampler uses
samples drawn from lower dimensional conditional distributions to create dependent
samples from non-normalised high dimensional posterior distributions. Metropolis-
Hastings sampling is a form of rejection sampling, where a proposed new parameter

value is either accepted or rejected with some probability.

The algorithm presented in Section 4.4.4 relies on the extension of the linear mixed
model and prior distributions from Tan and Wu (2013) to multivariate responses. The
linear mixed model for multivariate responses is presented in Section 4.4.1. The prior

distributions suitable for variable selection are specified in 4.4.2.

In Section 4.4.3 and Appendix E we show how the conditional distributions for the pa-
rameters in the model assuming multivariate responses, which depend on the extended
prior distributions, are calculated. The Metropolis-Hastings within Gibbs Sampling
algorithm also relies on an extension of the joint sampling approach by Geweke (1996)
to multivariate responses from a split-plot designed experiment, as discussed in Section
4.4.3 and Appendix F.

In Section 4.5, we demonstrate how samples from our Metropolis-Hastings within Gibbs
sampling algorithm can be used to perform variable selection, and establish how well
the Metropolis-Hastings within Gibbs sampling algorithm performs for simulated data
when the variability in the data is large compared to the size of the active terms, and
vice versa. The methodology in this chapter is applied to the responses from dissolution

testing of a pharmaceutical product formulated by GSK in Chapter 5.

4.1 Motivation and Aim of Work

The motivation for this work is the dissolution testing of a pharmaceutical product
formulated using designs discussed in Chapter 3, which was introduced in Section 1.2.2
in Chapter 1. After further discussions with the scientists regarding the experimental
process, we confirmed that a sixteen run two-stage split-plot design would be appro-
priate for this experiment. It was anticipated that two responses will be measured;
one after the sub-treatments involving Factors 1 to 5 have been applied (Stage 1) and
another after the sub-treatments involving Factor 6 have been applied (Stage 2). The
response from Stage 1 is assumed to be some quality control measure and the response
from Stage 2 is the result of dissolution testing of the pharmaceutical product (which

is discussed in further detail Section 5.1).
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As this experiment is an initial screening experiment, the scientists wish to identify
which factors should be used in future experimentation. Therefore, the main aim of
this chapter is to motivate and introduce an appropriate method of variable selection for
the responses from this experiment, where the variable selection method also allows for
estimation of the terms in the model. For an experiment with n runs, a n x 2 response
matrix is measured for dissolution testing, therefore we require a variable selection
method for multivariate responses from linear mixed models which are appropriate for

split-plot designs.

4.2 Introduction to Bayesian Methodology

In this section we overview the Bayesian methodology applied in this chapter. In Section
4.2.1 we define the prior and posterior distribution and introduce Bayes theorem. In
Section 4.2.2 we discuss MCMC methods and introduce Metropolis-Hastings and Gibbs
sampling. Finally, in Section 4.2.3 we introduce the key focus of this chapter, Bayesian

variable selection.

4.2.1 Bayesian Framework

The basis of Bayesian inference is updating a prior distribution for an uncertain quantity
to a posterior distribution via Bayes theorem. The prior distribution encapsulates our
uncertainty prior to observing the data, and the posterior distribution summarises our
uncertainty after observing the data. Let f(y|@) be the likelihood function given the
parameter 6 = (01,0s,...,0,)7 € © for the data 'y = (y1,2,...,Yn), and let p(0) be

a prior distribution for 8. Using Bayes theorem, the posterior density of 8 given y is

f(y16)p(6)
Jo F(y16)p(6)d6

p(Oly) = (4.1)

The denominator of (4.1) is the marginal likelihood of y and is independent of 8, hence

it can be treated as a constant with respect to @ and

p(Oly) o« f(y|0)p(6). (4.2)

Equation (4.2) gives the unnormalised posterior density. For further detail on Bayes

theorem and Bayesian inference in general, see O’'Hagan and Forster (2004).

The choice of prior distribution is subjective, and is not always obvious. Prior distri-
butions can be informative or noninformative, proper or improper. Informative prior
distributions rely on some knowledge about the parameter, and are often chosen to have

a particular mean, mode or variance based on the experimenters’ knowledge or past
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data (for more discussion regarding informative prior distributions, see Section 2.4 of
Gelman et al., 2004). Noninformative prior distributions are used when the information

regarding a parameter available prior to experimentation is weak.

The prior distribution can have an impact on the posterior, and noninformative priors
are often favoured as they have minimal impact on the posterior distribution. However,
the choice of noninformative prior has to be carefully considered (see Sections 3.27 to
3.33 of O’Hagan and Forster, 2004 and Section 2.9 of Gelman et al., 2004). Two types of
noninformative prior distributions are often discussed, proper and improper. A proper
distribution has a density that either integrates to 1, or can be normalised to integrate

to 1. The integral of the density for an improper distribution is not finite.

Improper prior distributions are often described as being indicative of no knowledge
of the parameter prior to experimentation. However O’Hagan and Forster (2004) ex-
plained that improper prior distributions actually indicate that the knowledge regarding
a particular parameter prior to experimentation is weak, but not non-existent. Both
O’Hagan and Forster (2004) and Gelman et al. (2004) encouraged caution when using
improper prior distributions, as they can lead to improper posterior distributions which

can create computational difficulties.

Many prior distributions which are improper and noninformative in one parametrisation
are not so under another, and this can lead to misleading results. Jeffreys (1946)
introduced a type of improper and noninformative prior distribution which is invariant
under transformation. Jeffreys prior distribution is popular in literature due to this
property of invariance, which holds for a number of transformations, but even these

priors are inconsistent for some examples.

When the prior and posterior distributions have the same distributional form, for ex-
ample, both the prior and posterior have a beta or gamma distribution with different
hyperparameters, then the prior distribution is referred to as a conjugate prior distri-
bution. Conjugate prior distributions, where they exist, make the calculation of the

posterior distribution more straightforward.

4.2.2 Markov chain Monte Carlo Methods

The complex models and high dimensional posterior distributions considered in prac-
tical Bayesian modelling often makes analytic derivation of the posterior density im-
possible. For example, if p(8|y) in (4.2) is not a known density, direct sampling from
the distribution will not be possible. Markov chain Monte Carlo (MCMC) methods
aid Bayesian analysis as they allow generation of dependent samples from arbitrary
joint probability distributions. They also allow the approximation of the posterior

distribution and calculation of integrals such as the expectation.

MCMC methods sample from Markov chains, where the conditional distribution of

a parameter sampled at iteration ¢ is only dependent on the parameter sampled at
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iteration ¢ — 1 and not on the parameter sampled at iterations 1,...,q — 2. The
stationary distribution of a Markov chain is the distribution which the Markov chain
converges to after a certain number of iterations. MCMC methods rely on Markov
chains which have the required posterior distribution as their stationary distribution,
and it is important that enough samples are drawn so that the distribution of the

sampled parameters is similar enough to the required stationary distribution.

Metropolis-Hastings Sampling

Metropolis-Hastings sampling (Metropolis et al., 1953; Hastings, 1970) is a MCMC
method based on rejection sampling that is commonly used for sampling from con-
ditional distributions of unknown distributional form. Rejection sampling methods

accepted or reject a proposed move in the parameter space with some probability.

Let f(f]y) be the conditional distribution from which we wish to sample, (@ be the
current parameter value and 7(6) be the proposal density. A Metropolis-Hastings

algorithm for sampling (9 has the following steps:

05(‘1""1)

1. Sample a candidate value, , from a proposal distribution with density 7(6).

2. Calculate the acceptance probability

f <9£q+1)\y> 7 (@)

« 0<q>,«9§f’“) =min ¢ 1, (4.3)
( ) f(0@Dly) (giqﬂ))
3. Sample u from U(0, 1).
4. Ifu < « (9(q), 95:1“)) then 9la+1) = 9£q+1) otherwise (a1 = g(a),
Note that the acceptance probability, (4.3) in step 2, is equal to
I (yloey
a(0@, 9y = min { 1, u , (4.4)
7 109)

when the proposal distribution is the prior distribution, 7(6) = p(6), and the likelihood
is f(y10).

Gibbs Sampling

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) is a special case
of Metropolis-Hastings rejection sampling which draws dependent samples from the
posterior distribution of parameters using the lower dimension conditional distributions,

which have known form. The proposal density in Gibbs sampling is the conditional
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distribution of the current parameter, 9]@, hence W(OJ(Q)) =f (Hj(q) |0(:];,y), where 9@; is

the current value for the other elements of @ = (0y,...,6,)T and j=1,...,p

The acceptance probability in step 2 of Metropolis-Hastings sampling when the proposal

density is the conditional distribution is

(@) pla+D)) _ . f( ot le J’y> ( |9—J’y> _
a(ejq’9j3+1>_mm 1 f(ej |6Lj,y)f( oy \97]73’) =1  (45)

Therefore, every proposed sample from the conditional distribution is accepted and at

each iteration of the Gibbs sampling algorithm 9§q) is sampled from f ( \9 ],y)

0§Q) ~ f (91’05‘1—1)’ ei())q—l)’ o ’HI(Jq_l)’y>

o0 ~ £ (010", 087Y,. 00V, y)

o0~ 1 (0,000,686 y).

Diagnostics

The performance of MCMC algorithms can be assessed in many ways, as discussed
by, for example, Schafer (1997). The main focus of MCMC algorithm diagnostics is
an assessment of whether the Markov chains in MCMC algorithms have converged to
their stationary distribution. In Appendix C we use trace plots and autocorrelation
function (ACF) plots to assess the performance of our Metropolis-Hastings within Gibbs

sampling algorithm.

Trace plots plot the values of the parameters sampled using Markov chains against
the iteration number, and use a line to join the values for successive samples. Long
term trends in this plot for a given parameter, such as an upward or downward drift
or shifts in the mean of the sample, suggest that successive sampled parameters are
highly correlated and indicate that the Markov chain has not converged to the correct

stationery distribution.

The correlation between iterative samples is assessed using ACF plots, which show the
correlation against the lag, or distance, between sampled parameters. If the Markov
chain for a give parameter converges to the required stationary distribution, then the
correlations in the ACF plot will be low. The larger the correlation in the ACF plots,
the fewer independent samples from the posterior the chain represents. Further detail

on both trace and ACF plots are given in Appendix C.1.
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4.2.3 Bayesian Variable Selection

Assume that models with up to ppq: parameters are fitted to responses from a design
with [-level factors. Then n,, = [Pme= possible models of size 1, ..., pmaqz could be fitted
to these responses. Each of these models, M = 1,...,n,,, will have a prior probability,
p(M), of being correct, and the responses y will have a marginal likelihood conditional
on the model, p(y|M). Therefore, using (4.2),

p(M|y) o< p(y|M)p(M), (4.6)

is the posterior probability of model M being appropriate given the responses y.

Hence, in principal, the posterior probability for each of the n,, models could be calcu-
lated. The model which maximises p(M|y) could then be selected as the model which
best describes the relationship between the response and the factors in the experiment.

The parameters in this model would then be used to identify which terms are active.

However, the likelihood p(y|M) is often not available in closed form and calculating
(4.6) for n,, models, even when p,q, is relatively small, is computationally expensive.
Hence, MCMC methods are used to sample p(M|y) and perform Bayesian variable

selection.

The stochastic search variable selection (SSVS) algorithm discussed by George and Mec-
Culloch (1993, 1997) is a popular method of Bayesian variable selection. An indicator
vector defining the activity of each model term is used in the SSVS algorithm. Gibbs
samples from the posterior distribution of this indicator vector are used for variable
selection. Variable selection for supersaturated designs and models with multivariate
responses using the SSVS algorithm has been considered by authors such as Chipman
et al. (2001) and Brown et al. (1998). However, we consider a different MCMC algo-
rithm in Section 4.4 as our prior distribution for the fixed effects in the mixed model
for multivariate responses from split-plot designs differs to that considered in the SSVS

algorithm.

Other approaches for modelling multivariate responses are presented in the papers by
Ng (2010) and Overstall and Woods (2015). Ng (2010) considered a Bayesian decision
theoretic approach (Berger, 1985) to model multivariate responses and find optimal
variable settings from completely randomised designs. Overstall and Woods (2015)
used both parametric and non-parametric models to predict outputs for multivariate

responses from computer models.
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4.3 Motivation for Bayesian Variable Selection

In this section, we use the results of a frequentist and Bayesian variable selection method
for simulated univariate data to motivate our derivation of a Metropolis-Hastings within
Gibbs sampling algorithm (Section 4.4.4) to perform variable selection for multivariate

responses from split-plot experiments, applied in Section 4.5 and Chapter 5.

4.3.1 Simulated Responses

We assess the performance of the two methods presented in Section 4.3.2 and 4.3.3
using univariate simulated responses for Dgr p1g, the sixteen run two-stage split-plot
experiment from Chapter 3, which, as discussed in Section 4.1, is appropriate for the
experiment motivating this work. This sixteen run experiment has six factors, two
whole-plot and four sub-plot factors, which are applied in two-stages. The two whole-
plot factors and three of the sub-plot factors are applied in Stage 1, and a single sub-plot
factor is applied in Stage 2.

We note that we use univariate (n x 1) instead of multivariate (n x r) responses, as both
the methods discussed in this section are for univariate data, and we want to consider a
simple motivating example at this stage to motivate our use of the Metropolis-Hastings
within Gibbs sampling algorithm (which can be used for univariate or multivariate

responses).

Let f;, j = 1,...,6, be the jth column of the design matrix Dgzpp16, then the models

for the two simulated responses are:

e The model where the terms for fi, fo, f3, £y, f3f,, f3f5 are active for the response
from Stage 1. These simulated responses are generated using (1.3) where 8 =
(4.80,4.77,-3.73, —4.93, —4.83,6.73)7, X is the model matrix corresponding to
these terms, - is a single sample from N(04, 1014) and € is a single sample from
N(016, I16).

e The model where the terms for fs, fy, fg are active for the response from Stage 2.
These simulated responses are generated using (1.3) where 8 = (5.04, 5.48, —4.93)T
X is the model matrix corresponding to these terms, ~ is a single sample from

N(04,1014) and € is a single sample from N(0y¢, I1g).

4.3.2 Frequentist Variable Selection via All Subsets Regression
All Subsets Regression

All subsets regression is a simple, but computationally expensive, method of variable
selection. In all subsets regression, all models up to a certain size are fitted and the

best model is selected with respect to some model selection criterion.
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For an experiment with n runs and a model for the responses with v variance compo-

nents, all subsets regression has the following steps:
1. Forj=1,...,n—w:
(a) Fit all models including j parameters to the response, y.

(b) Select the fitted model with j parameters which optimises the model selection

criterion.

2. Select the fitted model from the n — v models identified in Step 1(b) which opti-

mises the model selection criterion Vj =1,...,n —v.

The active variables correspond to the parameters included in the model selected in
Step 2. The model selection criteria used in Step 1(b) rely on the estimates of the

variance components, therefore only models with p < n — v terms can be fitted.

Penalised Model Selection Criteria

Penalised model selection criteria for linear mixed models, such as (1.3), are functions
of the log likelihood, evaluated at the maximum likelihood estimates, with terms which
penalise over fitting. The penalties in these criteria are required to adjust for the fact
that models with more terms will always maximise the likelihood, even if the additional

terms in the model are just describing the noise in the response.

The maximised log likelihood for the model fitted to a split-plot design with n runs
(discussed in Section 1.3 of Chapter 1 and Section 3.2.2 of Chapter 3) is

A

k=2 in(2r) ~ (V) ~ Sy~ 0TV (y @) (4.7)

where y is the n x 1 vector of observed responses, fi = XB is the maximum likelihood
estimate of the mean, [5’ is the p x 1 maximum likelihood estimate of the vector of fixed
effect parameters 3 for y, V= &3ZZT+&EIH is the maximum likelihood estimate of the
variance-covariance matrix, [7% is the maximum likelihood estimate of the whole-plot
variance for y and 62 is the maximum likelihood estimate of the sub-plot variance for

y.

Using the maximised log likelihood, (4.7), the following penalised model selection cri-

terion can be defined:

1. Akaike information criterion (AIC): The AIC,

—2InL + 2p, (4.8)
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was derived by Akaike (1973) using an extension of the maximum likelihood

approach.

. Bayesian information criterion (BIC): The BIC,

—2In L + pln(n), (4.9)

was derived from the large sample limits of Bayes estimators by Schwarz (1978),
which differs from the method used by Akaike (1973) to derive the AIC.

. Penalised Akaike information criterion (pAIC): The pAIC,

. n
—2InL+2p ——— 4.10
nl+ p(ﬂ_p_1>, (4.10)

was proposed by Hurvich and Tsai (1989), as they noted that the AIC selects
more parameters than necessary when p and n are similar in size. The penalty
for this criterion is maximised when p = n and decreases as n > p. Hence for
small n, the pAIC tends to select smaller subsets of predictors than the AIC, but

it performs in a similar way to the AIC for large n.

. Modified Akaike information criterion (mAIC): The mAIC,

—21In L + 2p?, (4.11)

was proposed by Pan (2001) as a way of selecting models for correlated responses,
however, it can be used for models for uncorrelated observations. The penalty
for mAIC, 2p?, is more severe than the penalty for BIC, pln(n), and pAIC,
2pn/(n —p — 1) when n is small. The mAIC may therefore under-fit the models,

that is, select models with fewer active terms than the true model.

The model which minimises AIC, BIC, pAIC or mAIC is preferred. When analysing

the simulated data using all subsets regression, we compare the results for BIC, pAIC

and mAIC to assess the sensitivity of results to choice of penalty.

Results for Simulated Responses

We performed all subsets regression on the simulated responses for Stage 1 and Stage 2
using the BIC (4.9), pAIC (4.10) and mAIC (4.11). The penalty for overfitting in mAIC
is the most severe, and the penalty for pAIC is more severe than the penalty for BIC.

Therefore, we may expect there to be more overfitting when all subsets regression with

BIC is used when compared to the other two criteria. We considered two maximum

numbers of parameters in this method, 10 and 12, both of which are larger than the
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number of terms in the true model but still allow some degrees of freedom for estimation

of the variance components.

Recall from the discussion of Figure 3.7b in Chapter 3 that the model matrix for the
model fitted to the Stage 1 responses, which is referred to as Model 1 in Section 3.6.1,
does not have any correlated columns. The model matrix for the cumulative model
fitted to the Stage 2 responses, which is referred to as Model 3 in Section 3.6.1, does
have correlated columns. Hence, it is more complicated to select the correct model for

the Stage 2 responses than the Stage 1 responses.

The all subsets regression results for the simulated responses from Stage 1 and 2 are
given in Tables 4.1 and 4.2, respectively. Firstly, we note that the model found in Step
1(b) of all subsets regression when p = 6 and p = 3 for the simulated responses from
Stage 1 and Stage 2, respectively, is the correct model. Hence, all subsets regression
identifies the correct model when p is known. However, as p is unknown prior to

experimentation, we need to assess the final model found using all subsets regression.

Criterion p* | Correct model Correct Terms in Additional Terms
when p = 67 Final Model in Final Model
BIC 10 | Yes 6 of 6 5
pAIC 10 | Yes 6 of 6 3
mAIC 10 | Yes 1of6 0
BIC 12 | Yes 6 of 6 7
pAIC 12 | Yes 6 of 6 3
mAIC 12 | Yes 1of6 0

Table 4.1: Models selected using all subsets regression for various model selection cri-
teria and maximum model size when (1.3) with v ~ N(0,,,10I,,) is fitted to the
simulated responses from Stage 1 of the optimal sixteen run two-stage split-plot exper-
iment from Chapter 3.

Criterion p* | Correct model Correct Terms in Additional Terms
when p = 37 Final Model in Final Model

BIC 10 | Yes 2 of 3 9

pAIC 10 | Yes 3of 3 5

mAIC 10 | Yes 3of 3 1

BIC 12 | Yes 3of 3 10

pAIC 12 | Yes 3 of 3 9

mAIC 12 | Yes 3of 3 1

Table 4.2: Models selected using all subsets regression for various model selection cri-
teria and maximum model size when (1.3) with v ~ N(0,,,10I,,) is fitted to the
simulated responses from Stage 2 of the optimal sixteen run two-stage split-plot exper-
iment from Chapter 3.
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We note from Tables 4.1 and 4.2 that the number of additional terms in the final model,
that is the model which minimises the criteria, decreases from BIC to pAIC to mAIC
and increases from p* = 10 to p* = 12 for both stages. This shows the impact of having
a more severe penalty. It also suggests that as we introduce more possible active terms

into all subsets regression there is more over-fitting.

The contrast between the results for Stage 1 and Stage 2 for mAIC in Tables 4.1 and
4.2 is interesting. We note from these tables that all subsets regression fails to select
the correct model for the response from Stage 1, but performs extremely well for the
response from Stage 2. This was unexpected, as none the columns in the model matrix
for Model 1 are correlated and some of the columns in the model matrix for Model 3

are correlated.

The penalty for the true model for Stage 1 is 72, whereas the penalty for the true
model for Stage 2 is 18. This large difference in penalties could be the reason for these
results. Also, there are fewer active effects in the true model for Stage 2 compared to
the true model for Stage 1, but the same number of experimental runs for both models.

A future area of research could be to assess the impact of the penalty function further.

Tables 4.3 and 4.4 give the maximum likelihood estimates of J?/ and o2 for the best
models of each size found in all subsets regression. These estimates are calculated using
the function lme in the lmer package in R, which relies on REML and GLS estimation
(as discussed in Section 1.3.2 of Chapter 1).

D 52 5’3
1 112.69  7.8942x1078
2 71.377  5.1745x1078
3 24.003 45.146
4 0.51354 51.019
5 0.51354 1.4035
6 0.27559 1.4630
7 0.10814 1.5049
8 0.055581 1.5180
9 0.081108 2.2018x107!2
10 0.041686 2.1471x10~'2
11 0.026367 2.5714x10712
12 1.4741x10730 4.3389

Table 4.3: Estimates of the variance components for the models of size p which minimise
BIC, pAIC and mAIC for the simulated Stage 1 response from the optimal 16-run two-
stage split-plot experiment from Chapter 3. The estimates of the variance components
for the true model are highlighted in bold.
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D 52 [73
1 23.780 2.7516
2 1.6750 8.2780
3 0.77283 8.5035
4 0.11080 8.6690
5 0.021064 8.6915
6 0.010751 8.6940
7 0.0047456 8.6955
8 0.015798 2.9142x10~'2
9 0.00046304 8.5530
10 0.00012549 8.5531
11 4.9809x107 8.5258
12 1.1405x10739 1.5536

Table 4.4: Estimates of the variance components for the models of size p which minimise
BIC, pAIC and mAIC for simulated Stage 2 response from the optimal 16-run two-stage
split-plot experiment from Chapter 3. The estimates of the variance components for
the true model are highlighted in bold.

We notice that a number of the estimates for o2 in Tables 4.3 and 4.4 are close to zero

and not approximately equal to one, which is the fixed value of o2 which was used

2
y

small. The results in Tables 4.3 and 4.4 suggest that the functions in R cannot find

when generating the data. We also note that some of the estimates for o2 are very
accurate estimates the variance(s) due to the lack of degrees of freedom in the model,

and supports the findings of Gilmour and Goos (2009).

We do note, however that the estimates of the variance components for the true model
for the simulated Stage 2 response, which are highlighted in bold in Table 4.4, are not
too different to true values of 02 = 1 and O’,2y = 10. These estimates are closer to the
true values than those for the simulated Stage 1 response, which are highlighted in bold
in Table 4.3. This result may be because the true model for Stage 2 has 13 degrees of
freedom with which to estimate the variance components, whereas the true model for

Stage 1 has 10 degrees of freedom.

4.3.3 Bayesian Variable Selection via Global and Local Search Algo-

rithm
Global and Local Search Algorithm

Tan and Wu (2013) presented two Bayesian approaches for variable selection for split-
plot experiments: the forward selection algorithm, which can be used when the columns
of the model matrix considered are not correlated, and the global and local search algo-

rithm, which can be used for designs when the columns of the model matrix considered
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are either correlated or uncorrelated.

In this chapter we focus on the global and local search algorithm, as it can be used to
identify the models for responses from both unsaturated and supersaturated split-plot
designs. The global and local search algorithm performs a global search on a diverse
set of starting points, followed by a local search on models with posterior probability of
being the true model above a certain threshold. This algorithm identifies a final model

with high posterior probability of being the true model.

Tan and Wu (2013) extended the conjugate hierarchical model for SSVS given by George
and McCulloch (1997) to account for the hierarchical error structure. The linear mixed
model fitted to data from a split-plot experiment with n = n,ns responses, n,, whole

plots and ns subplots presented by Tan and Wu (2013) is

y ~ N(Bol +XB,0*V (1)) (4.12)

where y is the n x 1 vector of random responses, Sy is the intercept, 1 is a n x 1 vector

of ones, X is the n x p design matrix, 3 is the p x 1 vector of fixed effect parameters,

— 0’,2y + 02 is the sum of the whole-plot and subplot variance components and

Ly oy
1 ...
V() =1, © w o w , (4.13)
oo 1

where ¢ = 02 /0?,

As the focus of the algorithm is variable selection, Tan and Wu (2013) follow the work
of George and McCulloch (1993) and introduce an indicator vector § = (1,...,0p),

where

1 ifB;,#40
6f{ AN R (4.14)

0 ifB;=0

When ¢; = 1 the term is assumed to be active and is included in the model and when

0; = 0 the term is assumed to be non-active and is not included in the model.

Following George and McCulloch (1997), Tan and Wu (2013) assumed that 8|02, 8, ¢ ~
N(Op,a2S570), where S, is a diagonal matrix with jth diagonal element of cI(d; =
1) +dI(6; = 0), j = 1,...,p. Note that c¢ is given a prior distribution and d is
assumed to be a fixed small non-negative number. Tan and Wu (2013) also followed
the approach of George and McCulloch (1997) with their assumption that p(8p) o 1,
p(0?) is IG(v/2,v\/2) and p(d;) is Bernoulli(pg).
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The objective of variable selection can be achieved by finding the indicator vector that

has the highest posterior probability,

o o C o0
polo .ot cny) = [ [ TS0 [T phso 6. uly)dsaBao e

C
= > /0 p(8, ¢, y)dedip, (4.15)

where S, 3,02 can be integrated out analytically because of the choice of prior used,
C= {i, %, 1, 4,9, 16, 25} and B is set of all possible 3 vectors.

Using the calculations from Tan and Wu (2013), we note that

n—

7 X 585, X5 + V()72 ATV () 711) "2 p(8)p(¢)p(c),
(4.16)

p(d, ¢, ¢ly) oc [vA + RSSg]™

where RSS5 = (y — 9)7(V(¥) + X585, X5) (v = ¥), ¥ = 17, § = X1 wi/n, Xy is
the model matrix for the model including the terms which are indicated as active by
5, 1TV ()1 = n/[1 + {(ns — 1)v}]. The prior distribution for § is

P 6; ,
p8) = i (L= pa) R

where p, is the prior probability that jth term is active. The prior distribution for ¢
is p(v) ~ B(v, \), and the prior distribution for ¢ is

1 c
p(C)Z{S °c

otherwise

As we assume that 1 has a beta prior and ¢ has a uniform prior, we can use Gauss-

Jacobi quadrature (see Appendix A for further detail) to approximate (4.15) as

C ng

1
w(y) _n=liv a()g+1\| 2
3 — A+ RSSs) X585 X5+ V (29
c g
L\
1\ P4 .

x <1TV (“(w)g ha ) 1) o (L puyr T, (4.17)
where a(1), and w(t), are the g = 1,...,n, abscissa and corresponding weights for

107



the Gauss-Jacobi quadrature.

As the normalisation constant for (4.17) is unknown, it cannot be directly computed.

To avoid this issue, Tan and Wu (2013) use the log-posterior odds ratio

(20
0(8) = o ( FEP) —10g(031y) ~ 0s(0(0,). (4.18)

as maximising this ratio is equivalent to maximising p(d|y), and does not require the

normalising constant. Substituting (4.17) into (4.18) gives

C ng

0(d) o log [; ; w(;[})g[yk + RSS(S]_n_;W
1\ ! : P s s
X <1TV <a(¢)25, + ) 1) pa ’ (1= pa)? 2 5=19;

~log [i nZ M[M + RSSOP}—"_%” ‘V <a(w)g+1> “%

¢ g

X <1TV <“(w)29+1) - 1) h (1—pa)?|, (4.19)

N

X §585..X5 +V (“w}g + 1> ‘

2

where RSSg = (y -9 (V((a(y)g+1)/2)) "y — ¥). We find n, by evaluating (4.19)
for a fixed § for a range of n, values, and selecting the n, where the difference between
successive (4.19) values as n, increases is small. We say that (4.19) stabilises for this

n, value.

The global and local search algorithm requires a starting set of indicator vectors, Agsqrt,
and Tan and Wu (2013) recommended using the rows of a maximin design with ngsq,¢
rows and Ppgr column, where pp,q. is the largest number of terms that we wish to
consider in the model for y and is therefore the dimension of §. Tan and Wu (2013)
recommended maximin designs as they found that the global and local search does not

consistently give good models for randomly selected starting indicator vectors.

For a suitable its (such as its = 1000), we can use the following algorithm to find a

maximin design with ngy¢ rows (for further detail see Santner et al., 2003, Chapter
5):

1. Forg=1,...,1ts:

(a) Randomly sample D, from D, where the ith row of Dy is d; 4 =

ma1727nsta'rt7

(.176171',1, ey xqﬂ-’pmw), 7= 1, vy Nstart and (S(m"j S {0, 1} V] = 1, .oy Pmazx-

(b) Find df = minyi—1,._n.0rej=1,...pmes 4(Dyg), Where d(Dg) = (44, j — Tq,iz,5)

for 21 75 iz,il,’ig € {1, .. .,nsta,»t}
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2. Find Dy = argmaxy,—; s dy, the maximin design.

The rows of Dipym, 8;, @ = 1,...,ngart, are used as the starting values for § in the

global and local search algorithm.

Global Search

The global search swaps the levels of each element in the initial § to identify the
indicator vector that maximises (4.19), which is the indicator vector for the highest

posterior probability (HPP) model.
1. Let A* =10
2. Forit=1,..., nstart-
(a) Set d =x; and ( = —o0.

(b) i. Obtain 67, Vj € {1,...,Ppmac} by switching the jth element of § from 0
to 1, or 1 to 0.

ii. Find j* = arg maxy; 0o(6?), where o(4) is (4.19).

iii. If 0(67") < ¢ stop and let §* = §. Otherwise set § = 6’ and ¢ = 0(67")

and repeat from i.
iv. Add 8" to A*.

3. Find the indicator vector for the HPP model, 8777 = arg max, g« 0(0).

Local Search

The local search performs swaps on the (HPP) model indicator vector and identifies
the 6 which maximises the posterior density of 4.

1. For t = 1,2,3,4

(a) Let 6 € AMACV if and only if § € A* and o(8) > MACV, where MACV =
o(61PF) — In(50t).

(b) Let T = J = AMACV e ordered sets. If a new item is added to Z orJ, it

is the last element of the set.
(c) For k=1,...,|AMACY]
i. Let 8 be the kth element of AMACV,
ii. For 5 =1,...,pmax

A. Obtain ¢’ by switching the jth element of § from 0 to 1, or 1 to 0.
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B. If 8 ¢ 7 and 0(8’) > MACV, add &’ to Z and J.

C. Remove the first element of J. If | 7| = 0 or |Z| > 10* then stop and
let A*J = 7. Otherwise let § be the first element of J and repeat
from A.

9. For t=1, 2, 3, 4
(a) Forj=1,....p

i. Let 6 € A if and only if § € A% and § = max ¢(d), where

B exp o(9)
Q((S) - Z(SeAt,j exp 0(5) )

(4.20)

is an estimate of the posterior density of 4.
(b) Find &' = arg maxygenae 4(6).

3. If 6 = 62 Wity to € {1,2,3,4} Nty # to then the algorithm has worked correctly,
and any &%, t = 1,2, 3,4, is the indicator vector for the final model. If 8% # §%
for some t1 # ty for some t1 # to, t1,t2 € {1,2,3,4}, then the algorithm has not

worked and should be re-run for a D,,,, with larger ngsq,t.

Results for Simulated Data

We used the global and local search algorithm from Tan and Wu (2013) to perform
Bayesian variable selection for the simulated responses from Stage 1 and Stage 2 dis-
cussed in Section 4.3.1. The global and local search algorithm requires us to specify
d, v, \, pa, the number of abscissa for Gauss-Jacobi quadrature, n,, the size of the max-
imin design ngqrt, the maximum model size pnq,. For this simulated data, we found
that n, = 7 is the smallest value for which (4.19) stabilises, and set ppq: = 21 as this
is the total number of main effects and pairwise product terms for the columns of the
design matrix for our experiment. We consider ngq+ = 100, 200, 300, where Tan and
Wu (2013) suggested that ngg+ = 100 should be sufficient, and set d = v = A = 0 and
pa = 0.25, as suggested by Tan and Wu (2013).

Two models are found in the global and local search algorithm; the highest posterior
probability (HPP) model, which is found after the global search, and the final model
which is found after a local searches around the HPP model. Both of these models for

three different maximin starting designs are presented in Tables 4.5 and 4.6.

The results in Tables 4.5 and 4.6 are very promising, as the final model for Stage 1 is
the correct model with no over-fitting when a 100, 200 and 300 run maximin design

is used and the final model for Stage 2 when a 300 run maximin design is used is
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the correct model with no overfitting, which is better than the model found using all

subsets regression and the mAIC criterion in Tables 4.1 to 4.2.

HPP Model Final Model
Nstart Correct Terms  Additional Correct Terms  Additional
Terms Terms
100 6 of 6 3 6 0
200 50f 6 2 6 0
300 6 of 6 1 6 0

Table 4.5: Model selection results for the global and local search algorithm when (1.3)
with v ~ N(0y,,,10I,,) is fitted to simulated data for Stage 1 of the optimal 16-run
two-stage split-plot experiment found in Chapter 3.

HPP Model Final Model
Nstart Correct Terms  Additional Correct Terms  Additional
Terms Terms
100 3of 3 7 3of3 3
200 3of3 5 3of3 1
300 3of 3 3 3of3 0

Table 4.6: Model selection results for the global and local search algorithm when (1.3)
with v ~ N(0y,,,10I,,) is fitted to simulated data for Stage 2 of the optimal 16-run
two-stage split-plot experiment found in Chapter 3.

Notice the difference between the overfitting in the HPP model and the final model,
and hence the importance of performing the local search as well as the global search.
Also, note that the algorithm finds the correct final model for Stage 1 with a smaller
maximin design than for Stage 2. This is expected, as the model matrix for Stage 1
has no correlated columns, whereas the model matrix for Stage 2 has some correlated

columns, and therefore the correct model should be more difficult to find.

4.3.4 Conclusions

The simulation results in Sections 4.3.2 and 4.3.3 demonstrate some of the issues associ-
ated with frequentist variable selection for models fitted to responses from saturated and
supersaturated split-plot experiments. Frequentist variable selection methods struggle
to find the correct model as the model selection criterion rely on estimates of the

variance components, which are difficult to estimate.

Gilmour and Goos (2009) advocated the use of Bayesian variable selection methods as
the use of prior information can help overcome the problem of estimating the variance

components. The results for our simulated data support this conclusion as the global
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and local search algorithm found the correct model with less overfitting than all subsets

regression.

Therefore, in Section 4.4, we present a method of performing Bayesian variable selection
using samples from the Metropolis Hastings within Gibbs sampling algorithm. We
use this method as we can use the samples from this algorithm for variable selection,
parameter estimation and prediction, whereas the global and local search can only
be used for variable selection and parameter estimation would have to be performed
separately. Also, as mentioned in Section 4.3.1, the responses from the experiment
motivating this work are multivariate and the methodology presented in Tan and Wu

(2013) is for univariate data.

We note that the main focus of the criterion used to find the design, (3.20) from Section
3.4.2 of Chapter 3, is the estimation of the fixed effects and not the variance components.
The criterion introduced in the recent work by Mylona et al. (2014) considered both
fixed effect and variance component estimation. In Chapter 6, we extend the criterion
presented by Mylona et al. (2014) to supersaturated multi-stage designs, find an optimal
design for this extended criterion using the coordinate exchange algorithm from Section
3.5.1 and assess whether using designs for this criterion improves the estimates of the

variance components found and enables frequentist analysis methods to be used.

4.4 Bayesian Variable Selection for Multivariate Linear
Mixed Models

Following the discussion in Section 4.3.4, we introduce the Metropolis-Hastings within
Gibbs sampling algorithm (Section 4.4.4). We will use the samples from this algorithm
to perform variable selection for responses analysed using linear mixed models for su-
persaturated split-plot experiments. The conditional distributions (Section 4.4.3) used
in the algorithm rely on the multivariate linear mixed model (Section 4.4.1) and ex-
tensions of the prior distributions from Tan and Wu (2013) (Section 4.4.2). Our choice
of prior distribution for the fixed effect parameters also requires the joint sampling ap-
proach from Geweke (1996) to be extended to multivariate responses from linear mixed

models.

The extensions of the prior distributions presented in Section 4.4.2 could also be used to
extend the global and local search algorithm presented in Section 4.3.3 to multivariate
responses from linear mixed models. However we chose to use a Metropolis-Hastings
within Gibbs sampling algorithm as it allows us to perform variable selection, estimation
and prediction, whereas additional calculations are required to perform estimation and

prediction using the results from the global and local search algorithm.
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4.4.1 Linear Mixed Model for Multivariate Responses

The extension of (1.3) in Section 1.3.1 of Chapter 1, the linear mixed effects model for
a n x 1 vector of responses from a split-plot experiment with n,, whole-plots and ng
sub-plots per whole-plot, to a split plot experiment with a (n,ns) X r response matrix
of Y is

Y =1, +XB+ZI +E, (4.21)

where 1, is the n x 1 vector of ones, n = nyng, ,BOT = (Bo1,Bo2; - - -, Bor) is the 1 x 1
vector of intercepts, X is the n X p model matrix with each column corresponding to a

main effect or interaction parameter,

B Pz ... Pir
B_ 5?1 ﬁ‘22 e 5.27»
Bpl IBpZ cee ﬁpr

is the p x r vector of fixed effect parameters, Z is the n X n, indicator matrix with
(i, 7)th element equal to 1 if the ith run of the experiment is in whole-plot j, I is the

ny X r random effect matrix and E is the n X r random error matrix.

In this work we assume that I' ~ MN(0,,,,, ¢I,,, %) and E ~ MN(0,,, (1 — ¢)I,,,X)
are independent and matrix normally distributed, where 0, , and 0., are the n, x r
and n X r zero mean matrices, ¢I,,, and (1 — ¢)I,, are n,, X n, and n x n between-row
scale matrices, and X is a r X r between-column scale matrix. Note that 0 < ¢ <1
controls the relative scale of I' and E. Also, the between column scale matrix is the
same for both I' and E, hence we are assuming that the responses have similar impacts

on both the random effect I' and the random errors E.

Using the results in Section D.1 of Appendix D, the following marginal distribution can
be derived:

Y|3y,B,%,6,¢,¢ ~ MN(1,8] + XB,V(¢), %) (4.22)

where

V(¢) = In, @ (¢Jn, + (1 = 9)In,) (4.23)

is the symmetric n x n scale matrix for the rows of Y and J,, is the ng X ng matrix of

ones.
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Let vec(Y) be the nr x 1 vector of column-stacked entries of Y. Then, using the results

from Section D.1,

vec(Y)|Bg, B, 2,8, ¢, ¢ ~ N(vec(1,8% + XB), X @ V(¢)). (4.24)

We note that (4.22) when 7 = 1 is equivalent to Y ~ N(1,80 + XB, ¢V (1)) which is
the distribution for the responses assumed by Tan and Wu (2013).

4.4.2 Prior Distributions

We now specify the prior distributions suitable for variable selection. We follow the
prior distributions used by Tan and Wu (2013), extending them where necessary to the
multivariate case. Following the assumptions given in Tan and Wu (2013), the prior

distribution for the intercept is

p(Bo) o 1. (4.25)

The prior distribution for the elements of the indicator vector é is

0 ifd; =1

p(6;) = “ Y , (4.26)
1—pg ifd;=0

where p, is the prior probability that the parameter 8, = (Bj1,- -, Bjr), which is the

jth row or B, is non-zero (active). In this work, we use the same prior probability as

Tan and Wu (2013), and set p, = 0.25.

Note that for the motivating example in this chapter it is appropriate to assume that
if the term g~ is active for the R*th response, then it is active for all r responses.
Similarly, if 8+ is not active for the R*th response, then it is not active for all r
responses. It is non-trivial to extend this assumption, and assume that every B;g,
j=1,....,p, R=1,...,r can be active or non-active independently, and this is an area

of potential future work.

This definition of active requires the use of a “spike-and-slab” type prior distribution
for the fixed effects, where (3,|X,c,0 = 1) ~ N(0,,cX) and (3,|X,¢,0 = 1) = 0, when

not active. Using the calculations in Appendix E, the prior density for 3; is

p(B;) o [c=[7% exp <—;tr ((cz)—lBTB)> : (4.27)

where p, =} ; is the number of active terms and d; is the jth element of the indicator
vector 4. If B, = 0,, §; =0, and if B; # 0,, ; = 1.
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The prior distribution for the column covariance, as used by Overstall and Woods
(2015), is

> ~ IW(0,,, —1 + 1), (4.28)

where IW(S, d) is the inverse Wishart distribution with scale matrix S and degrees of
freedom d, as discussed in Section D.2 of Appendix D.

The prior distribution for ¢, which controls the relative scale of the two random terms

in (4.21), is

¢ ~ B(a,d) (4.29)

where ((a,b) is a beta distribution with shape parameters a,b > 0. We consider two
a,b values; a = b = 2 as given by Tan and Wu (2013), and a = 11,b = 2, where
¢ ~ (B(2,2) is referred to as Prior 1 and ¢ ~ ((11,2) is referred to as Prior 2. The
mode of a B(a,b) distribution for ¢ is

a—1

_— 4.
a+b—2’ (4.30)

hence the mode for Prior 1 is 0.5 (equal variance-covariance matrices for vec(I') and
vec(E)) and the mode for Prior 2 is 0.91 (2dp, so the variance-covariance matrix for

vec(T') equals 11 times the variance-covariance matrix for vec(E)).

Finally, the prior distribution for c is

p(c) = {

For a large fixed ¢ the elements of ¢3 are large relative to the non-zero elements of

if c € {§,7%,1,4,9,16,25}

) (4.31)
otherwise

S =

B, hence small active terms will be missed and the amount of active terms would be
small. Similarly, for a small fixed ¢ the elements of ¢3 are small relative to non-zero
elements of B, hence there would be a large number of active terms. Therefore, the
support for ¢ in (4.31) was recommended by Tan and Wu (2013), as it covers both
small (¢ = (1/2)2,(3/4)%,1) and large (c = 22,32,42,5?) values of ¢ and enables results
from the MCMC algorithm to be averaged over models with a small and large number
of active terms. Note that when r = 1, (4.25) to (4.31) are equivalent to the prior
distributions presented by Tan and Wu (2013).
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4.4.3 Full Conditional Distributions

We use the prior distributions presented in Section 4.4.2 to derive the full conditional
distributions, from which we will sample in the Metropolis-Hastings within Gibbs sam-
pling algorithm discussed in Section 4.4.4. The full conditional distributions for 3y, %

and ¢, as calculated in Appendix E, can be sampled from directly. The conditional

distributions for these parameters are as follows:

BoY.B,X,8,¢,6 ~N(By, 1IV(p)11,)71%), (4.32)

where B = (Y — XB)"V(6) ' 1,(11V(¢)~'1,) 7",

3Y, By, B,d,¢c,0 ~IW(S*, —m + 1+ p, + n), (4.33)

where $* = {(Y — 1,88 — XB)'V(¢) (Y — 1,8 — XB)} + {(B'B)/c}, and

1,—ka 1 —1RpT .
¢ 2 expyi—qo:tr (X B'B ifceC
p(cY,8,B,%,6,0) = {=aetr ( )} T, (434
0 otherwise
where ¢* =} .~ '3 exp {—%tr(EilBTB)} and C = {i, 1%, 1,4,9,16,25}.
The full conditional distribution for ¢ is
(@Y. B0, B, %, 8,¢) o< [V(9)] " F ¢ (1 - )"
1
X exp | —otr {=7NY - 18] —XB)'V(¢) (Y - 1,8] —XB)}|, (4.35)

which is a non-standard distribution that cannot be sampled from directly. Therefore,
Metropolis-Hastings sampling (Section 4.2.2) is used to sample from distribution (4.35).
In this work, we use Prior 1, §(2,2), and Prior 2, 5(11,2), as proposal distributions.

An MCMC chain for p(B;]Y, By, %, 4, ¢, ¢) is reducible and does not converge to the
required stationery distribution, hence we cannot sample from the conditional distri-
bution for 3; (George and McCulloch, 1997). This problem is created by the use of the
spike-and-slab prior, and can be solved by either extending the approach of Geweke
(1996), and sampling from the joint conditional distribution of §; and 3;, or using a
different prior distribution such as the mixture of normal priors suggested by Box and
Meyer (1986) and applied by Gilmour and Goos (2009).

We use a spike-and-slab prior distribution in this work, as the mixture of normal prior

distribution require the relative weight of the variance component of the distribution for
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active and non-active effects to be known or estimated, which would be difficult to elicit
for our motivating example. Also, spike-and-slab prior distributions give clearer con-
clusions about whether an effect is active or not, which is important for our motivating

example.

Therefore, we extend the joint sampling approach of Geweke (1996) and sample from
the joint conditional distribution of 8; = (Bj1, Bj2,---,Bjr) and &5, j = 1,...,p. Note
that, as discussed before, we assume that the term is active for all r responses, so all
elements of 3, are non-zero if jth term is active, and that ,8]T = 0, if the j term is not

active.
As shown in Appendix F, the joint sampling of 3; and J; uses the conditional posterior

probability that 8; = 0,

pj = 1_pa
7 (1= pa) + (paBE))’

(4.36)

where p, is the prior probability that parameter j is active (which is assumed to be
constant for all j in this work, but relaxing this assumption could be an area for future

work) and

1
'Ya ,2,5‘:1, ) * 2
s, _ POIY.B0 50 c¢>_<\z\>zexp<1

-
= 0B, By %0, = 0,c0)  \ |3 2% ﬁj)' (4.37)

To jointly sample 3; and d;:
1. Sample u from U(0,1).
2. If p; > u then 87 = 0, and §; = 0. If p, < u then §; = 1 and 87 ~ N(3], =.).

To calculate (4.37), and hence sample 3, and dj,
B; =bjw '3,

R XEV() Yy

b; = — ,
’ 71:;21 X;;FjV(QS)lekj

o= (w4 )
and

b
e XV (0) Xy
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are required, where Xj; is the ng x 1 vector of entries in the model matrix X relating

to whole plot £ =1,...,n, and parameter j,

V(¢)k = ¢Jns + (1 - ¢)Ins

is the between row scale matrix for whole plot k and

Y =Ye— Y Xub,
i

for l =1,...,p. These calculations are shown in Appendix F.

Note that when r = 1, the conditional distributions given in this section can be used to
perform variable selection via MCMC algorithms for univariate responses from a mixed

model likelihood for split-plot designs.

4.4.4 Metropolis-Hastings within Gibbs Sampling Algorithm

Our Metropolis-Hastings within Gibbs algorithm produces dependent samples from the
posterior distributions of 3, B, X, d, c and ¢. A set of initial values for the parameters,
,8(()0), B »©) 5(0), ® and ¢ are required.

The steps at the gth iteration, ¢ = 1,...,its of our Metropolis-Hastings within Gibbs

sampling algorithm are:
1. Sample ,68” from (4.32) with Y, B(4=1), 32(4=1) and ¢la-1),
2. Forj=1,...,p:

(a) Calculate p§.Q), (4.36), using (4.37) for Y, ,Bé»q_l), 2@ ela=1) and ¢la—1),

(b) Sample ug-q) from U(0,1).

(c) If pg-q) > ugq), let (B;-F)(Q) =0, and 5](.(]) = 0. Otherwise, sample (ﬁ;f)(q) from

N((B?)(q),2£q)) using Y, ng_l), 2D @D and ¢~ and let 5](-[1) =1.
3. Sample 2@ from (4.33) with Y, 8\, B@, c(==) and ¢(a-D.

4. (a) Sample ¢\ from B(a,b).

(@) @ §@ (q—1) ()
Y B@ > ’5 ela=1) gl
(b) Calculate o(? = min {1 p( 1By c ¢ ) }

7p(Y|/@éq)7B(q)’2(4)75(4)7c(q—1)7¢(q71)>
(c) Sample u(@ from U(0,1).

(d) If o!? > 4(@ then set ¢(@ = gb@, otherwise set ¢(@ = ¢la—1),
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5. Sample ¢(@ from the set C' with probability mass function given by (4.34) with
a1 329 and B@,

In Section 4.5 we use its = 10,000, /360) = 0,, BO =0, 20 =1, 60 =1,
#) = 0.2 and ¢© = 0.25.

4.5 Analysis of Simulated Data

In this Section, we use simulated data to assess the performance of the Metropolis-
Hastings within Gibbs sampling algorithm presented in Section 4.4.4. The simulated
data used is appropriate for the motivating example discussed in Section 4.1, as we
consider multivariate data for both stages of the split-plot experiment designed in
Chapter 3. We discuss how we generated the simulated data in Section 4.5.1. In
Section 4.5.2, we assess whether the samples from the Metropolis-Hastings within Gibbs
sampling algorithm select the correct active terms for the saturated model for the
experiment for Factors 1 to 5 and for the supersaturated model for responses from the

experiment for Factors 1 to 6.

4.5.1 Simulated Responses

In this chapter, we use the same models used in Section 4.3.1, hence the active terms:

o for the Stage 1 model are 3, 3,, 83,84, B34 and B35, which relate to columns
f1, £y, f5, £y, f3f, and f3f5 of X, respectively. This model is for the response mea-
sured after Factors 1 to 5 are applied, and consists of both main effects and

interactions.

The model matrix for the model containing all the main effects and pairwise
column combinations for Stage 1 has no correlated columns (see Figure 3.7b
in Section 3.6.1), so f1, fy, f3, £y, f3f4 and f3f5 are not correlated with any other

columns for Stage 1.

e for the Stage 2 model are 3,, 3, and B4, which relate to columns f5, s, and fg
of X, respectively. This model is for the response measured after Factors 1 to 6

are applied, and consists of main effects from both Stages of the experiment.

The model matrix for the model containing all the main effects and pairwise
column combinations for Stage 2 has correlated columns. Using Figure 3.7b
in Section 3.6.1, we note that fs = —0.5fofy = 0.5f5f; and f5 = —0.5f;f3 =
—0.5f1f5 = —0.5fof5 = 0.5f>f5. The parameters related to these columns will be
biased and have inflated variance, therefore the true model will be more difficult

to identify for this stage.
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Notice that the active parameters are now vectors, as we are considering multivariate

responses with 18 runs and 2 correlated columns for each stage, which are appropriate

for the motivating example discussed in Section 4.1 and Section 5.1 of Chapter 5. For

this study, we use the 16 run two-stage optimal split-plot design from Section 3.6.1 of

Chapter 3, with two additional centre points. Let

Xs, s = 1,2, be the 18 x p, s model matrix for the response from stage s = 1, 2,
where p, s is the number of active terms in the model for Stage s (pg,1 = 6,pa2 =
3).

Py ={1,...,15} and P» = {1,...,21} be the set of indexes for the parameters in
the models (without intercept) for Stage 1 and Stage 2, respectively.

Py =1{1,2,3,4,13,14} and Piy = P;/P14 be the set of indexes for the active

and non-active parameters in the models for stage 1, respectively.

Pyy ={2,4,6} and P,y = P5/P54 be the set of indexes for the active and non-
active parameters in the models for Stage 2, respectively.
)T

wy = (pa1, ,u12)T and po = (uo1, pe2)” where p11 and pqo are set to —5 or 5 with

probability 0.5 and po; and pes are set to —20 or 20 with probability 0.5.

¢1 =1/2 and ¢ = 10/11 be the modes of Prior 1 and Prior 2.

Yis Yos
Generated from: | MN(XB*, V(¢1),31) MN(XB*, V(¢2), X2)
B; for j € Psa generated from: N(pq,31) N(pq,21)
B}k for j € Py is: 0, 0,
Y3, Yy
Generated from: | MN(XB*, V(¢1),31) MN(XB*, V(¢2), X2)
B for j € Py generated from: N(pg, 1) N(pa, 31)
B; for j € Py is: 0, 0,

Table 4.7: The four 18 x 2 multivariate responses generated for models from Stage s,
s=1,2.

There are four combinations of gy, po, ¢1 and @2, therefore there are four responses

generated for each stage, and details of these four responses are given in Table 4.7,

where
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and

11 99
9.9 11

4.5.2 Analysis of Multivariate Simulated Responses from a Split-Plot
Design

In this section, we will use the simulated data from Section 4.5.1 to assess the per-
formance of the Metropolis-Hastings within Gibbs sampling algorithm as a method of
variable selection and parameter estimation. Figures 4.1 and 4.2 give the approximate
posterior probability of the terms in models for the simulated Stage 1 and 2 responses,
respectively, being active for the four simulated responses. The posterior probability

of parameter 8, j = 1,...,p, being active is approximated by

its 5(q)
2 (4.38)
its

q=1

where (5J(-Q) is 0; sampled at iteration ¢, ¢ = 1, ..., its, of the Metropolis-Hastings within

Gibbs sampling algorithm.

These figures show that, in general, the algorithm performs well as the parameters
which were active when generating the responses have the highest posterior probability
of being active. However, we note that when we use p; and ¢ (Figures 4.1(b) and
4.2(b)) the algorithm has difficultly correctly identifying the active terms because the

active parameters, 3;, j € P24, are small compared to .

Through comparison of Figures 4.1(b) and 4.2(b), we also note that the active pa-
rameters still have high (greater than 0.8) approximated probabilities of being active
for Yq; whereas one of the active parameters, 3,, has a very small (less than 0.05)
approximated probability of being active for Yoo. This therefore shows not only the
impact of large ¥ in comparison to B;, j € P24, but also the additional difficulties
in identifying the active terms in the model for the response from the supersaturated
experiment for Factors 1 to 6 when compared to identifying the active terms in the

model for the response from the saturated experiment for Factors 1 to 5.
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Figure 4.1: Approximate posterior probability of the terms in models fitted to (a) Y1,
(b) Y21, (c) Y31 and (d) Y43 from Table 4.7 being active. Terms which are assumed
to be active when generating the responses are denoted by .
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Figure 4.2: Approximate posterior probability of the terms in models fitted to (a) Y12,
(b) Y22, (c) Y32 and (d) Y42 from Table 4.7 being active. Terms which are assumed
to be active when generating the responses are denoted by .
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Figures 4.3 and 4.4 give the estimated marginal posterior densities for the active terms
in the models used to simulate the responses from Stages 1 and 2, respectively. These
marginal posterior densities, which are estimated using the samples of 3;, j € Psa,
s = 1,2, from the sampling algorithm, all have substantial densities for non-zero values.
When 8;, j € Psa, s = 1,2, is large compared to X, the modes of these marginal
densities are close to the true values, even with the more complex sampling required

due to the spike-and-slab prior distribution.

o 0z 4 & & 1 o 2z 4 & & 1w

o 2 4 s 8w o 2 4« & & 1 0 2 4 & 8 1 0o 2z 4 & &

o a6 4 o2 o
®
R
5
] /\ L pr—
= 8
® [
5

(c) (d)

Figure 4.3: Marginal posterior density plots estimated from the samples of the terms
in the model for the response which were active when simulating (a) Y11, (b) Yo, (¢)
Y31 and (d) Y41 in Table 4.7.
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Figure 4.4: Marginal posterior density plots estimated from the samples of the terms
in the model for the response which were active when simulating (a) Y12, (b) Yao, (c)
Y32 and (d) Y42 in Table 4.7.
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Comparing Figures 4.1 and 4.2 and Figures 4.3 and 4.4, respectively, shows the relation-
ship between d; and 3;, which are jointly sampled in the Metropolis-Hastings within
Gibbs sampling algorithm. Notice that when the approximated probability of the pa-
rameter being active, (4.38), which relies on the samples of ¢;, is low, then there is a
spike in the marginal posterior densities for ,BJT at 02, as (5](9) =0 = (ﬂgq))T = 0,.
This can be clearly seen when comparing the approximated probabilities of 3; and
By being active in Figure 4.1(b) and the estimated posterior densities for 3, and 3,
in Figure 4.3(b). The estimated posterior density for By in Figure 4.4(b) is concen-

trated around zero, as over 95% of the sampled do are 0 and hence over 95% of the

(5?) = 02.

The convergence properties of the samples from the Metropolis-Hastings within Gibbs

sampling algorithm are assessed in Section C.2 of Appendix C using the trace and ACF
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plots discussed in Section 4.2.2 and Appendix C.1. We notice from this assessment that
a number of the sampling chains have good convergence properties. However, there is
some evidence to suggest that considering an alternative proposal distribution for ¢

would be beneficial.

4.6 Discussion

The focus of this chapter was Bayesian variable selection for multivariate responses from
split-plot designs using samples from a Metropolis-Hastings within Gibbs sampling al-
gorithm. In Section 4.3 we provided a comparison of a frequentist and Bayesian variable
selection method. This provided evidence for our use of Bayesian variable selection,
which is also supported by Gilmour and Goos (2009). However, instead of using the
variable selection presented in Section 4.3.3, we used the Metropolis-Hastings within
Gibbs sampling algorithm presented in Section 4.4.4, as samples from this algorithm

can be used for parameter estimation as well as Bayesian variable selection.

The Metropolis-Hastings within Gibbs sampling algorithm given in Section 4.4.4 draws
dependent samples from the full conditional distributions presented in Section 4.4.3,
which rely on the linear mixed effects model for multivariate responses presented in
Section 4.4.1, and the multivariate extensions of the prior distributions from Tan and
Wu (2013) presented in 4.4.2. As we assumed that a spike-and-slab prior distribution
is appropriate for the fixed effect terms in the linear mixed effects model, we jointly
sampled the indicator vector and the fixed effect parameters within our sampler. This
required the extension of the joint sampling approach of Geweke (1996) to multivariate

responses from split-plot experiments (see Appendix F for further detail).

We then assessed the performance of the algorithm for simulated multivariate responses
generated from a single model with fixed active parameters. We noted in Section 4.5.2
that there is an impact on the model selection and parameter estimation when the
active terms are small relative to the column scale matrix. However, the posterior
probabilities for the true active terms were still larger than the other terms for the
majority of the simulated data. Also, the samples of the terms which were assumed to
be active when generating the data could be used to estimate the correct distribution

for these terms in the majority of cases.

The work in this chapter could be extended in a number of ways. A full simulation
study, where simulated responses for a large number of randomly generated models,
could be undertaken to further assess the performance of the Metropolis-Hastings within
Gibbs sampling algorithm. Such an assessment would also enable us to gain insight
into the performance of the Metropolis-Hastings within Gibbs sampling algorithm for
a range of different models. For example, we could look at whether the performance
is impacted when the number of terms in the model is close to the number or runs, or

when there between stage interactions in the cumulative model for Stage 2.
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We could see what impact the use of a mixture of normal prior distributions, as seen
in the paper by Box and Meyer (1986) and Gilmour and Goos (2009), has on the
effectiveness of the Metropolis-Hastings within Gibbs sampling algorithm. If mixture
of normal prior distributions were used, algorithm in Section 4.4.4 could be modified

and compared to an extended version of the SSVS algorithm by Brown et al. (1998).

We could relax the assumption that the random effect I' and the random error E in
(4.21) have the same between column scale matrix ¥. For example, assume instead that
I' ~ MN(0,,,,¢1,,,%1) and E ~ MN(0,, (1 — ¢)I,,,X¥2). However, this assumption
would mean that the variance of the vectorised response matrix, vec(Y), is equal to
¢%1 ® ZZT + (1 — ¢)X3y ® I,. This variance of vec(Y) does not, in general, imply a

matrix normal distribution for Y (see Appendix D.1 for more detail).

We could also relax our assumption that all r elements of 3; are active or non-active,
as, whilst this assumption is suitable for the motivating example for this work, it may
not be suitable for multivariate responses from all experiments. This would require the
extension of the indicator vector to a matrix, and would require further, non-trivial,

extension of the joint sampling approach in Section 4.4.3 and Appendix F.
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Chapter 5

Industrial Case Study:
Formulation and Dissolution

Testing of a Pharmaceutical
Product at GlaxoSmithKline

5.1 Introduction

In this Chapter, we apply the design and modelling methodology presented in Chap-
ters 3 and 4 to an experiment to investigate formulation and dissolution testing of a
pharmaceutical product performed by GlaxoSmithKline (GSK) (introduced in Section
1.2.2 in Chapter 1). This experiment has six controllable factors. The first two factors
are hard-to-change, leading to restrictions on randomisation and the experiment being

run as a split-plot.

The aim of this experiment is to study formulation of an active pharmaceutical in-
gredient (API) in a capsule. The API is a chemical compound that is used to treat
a specific ailment or disease. The API is coated onto a core bead, and this bead is
then coated with two further sustainable release layers. These beads are then placed
in a capsule. The API is released once the capsule containing it has opened and the
sustainable release layers have broken down. The rate of dissolution is measured by

the amount of API dissolved over time.

The pharmaceutical product will be formulated in two stages, where the first stage has
five controllable factors and the second stage has a single factor, see Figure 5.1. The
five factors in Stage 1 are of more scientific interest than the single Stage 2 factor,
Factor 6.

It is assumed that a measure of the quality of the API formed will be measured after

Factors 1 to 5 are applied in the first stage of experimentation, and that the outcome
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of dissolution testing will be measured after Factor 6 is applied in the second stage of
experimentation. The results from dissolution testing of the pharmaceutical product,

are considered to be more important than the quality of the API.

Stage 2 Factor
6
Stage 1 Factors
1(HTC)2(HTC) 3 4 5

2%

Test 1
Response

Test 2
Response

Stage 1

Input: API Response

Test 3
Response

Test 4
Response

Figure 5.1: Schematic for the GSK experiment showing the two stages, six factors and
four responses. Two of the Stage 1 factors are hard to change (HTC).

Three models will be fitted to these two responses; (i) the model for the first stage
response with respect to the factors in the first stage, (ii) the model for the second
stage response with respect to the factor in the second stage, and (iii) the cumulative
model (as defined in Section 3.4.1) for the second stage response with respect to the
factors in the first and second stage. This experiment therefore matches the definition

of a multi-stage experiment given in Section 3.1.1 of Chapter 3.

The two-stage design for the formulation of this pharmaceutical product is found using
the coordinate exchange algorithm given in Section 3.5.1 in Chapter 3, and is discussed
in Section 5.2.2. There are resources for sixteen factorial points and three centre points.
We use the compound Bayesian D-optimality objective function, (3.20) from Section 3.4
in the coordinate exchange algorithm. We use the same models and variance-covariance
matrix structures for this design as given for the two-stage split-plot design in Table
3.6 in Chapter 3.

The dissolution of a pharmaceutical product in media is assessed via a dissolution test.
The response for a dissolution test is a measure of the average difference between the
dissolution of the pharmaceutical product and a reference product over time, referred

to as the fy statistic:

N

100 &
o *\ 2
fo = 501log - § (Dy — D)?* 4+ 1 , (5.1)

t=1

where Dy is the dissolution of the pharmaceutical product in the media at time ¢ and

Dy is the dissolution of the reference product in the media at time ¢, t =1,...,¢4.

The f5 is a value between 0 and 100, and a product is said to meet specification if
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fo is greater than some threshold determined by regulators. If multiple references are
considered, the fy values for different references from the same test will be correlated,
as the same dissolution data is used to calculate the fo for each reference. Further

detail regarding dissolution testing is given in Chow (2007, Chapter 11).

In this experiment, two reference profiles are considered for dissolution tests in four
different media, and the fo statistic is calculated for each of these two references for
each test for all 19 experimental runs. Therefore, this experiment has a bivariate
response for each of the four tests, which are the four responses for Stage 2 given in

Figure 5.1.

After initial analysis, which is discussed in Section 5.3.1, the posterior distribution of the
multivariate (bivariate) response for each test are approximated using samples from the
Metropolis-Hastings within Gibbs Sampling algorithm given in Section 4.4.4 of Chapter
4. In Section 5.3.2, we aim to identify the factors with a high posterior probability of
being active. In Section 5.4.4, the parameters sampled using the Metropolis-Hastings
within Gibbs Sampling algorithm are used in a grid search (Section 5.4.2) and with the
efficient global optimisation (EGO, Section 5.4.3) algorithm (Jones et al., 1998) to find
new treatments with a high posterior probability of passing specification for single and

multiple dissolution tests.

5.2 Design of the Experiment

5.2.1 Robustness of the Compound Bayesian D-optimal Two-stage
Split-plot Designs to the Model Weights

When designing the experiments in Chapter 3, we assumed that the vector of model
weights, w = (w1, w2, ws) in (3.20) in Section 3.5.1, was (0.7, 0.1, 0.2). This assumption
was made using the information available at the time, and it produced a correlation
structure that was suitable for this experiment. Only the column in the model matrix
for Factor 6 and pairwise products of columns involving Factor 6, which is not of
primary interest in the formulation but needs to be included in the experiment, were

correlated.

However, after the experiment was run, we found out that the result of the dissolution
testing, which is the performed after Stage 2, is of greater importance than the measure
of quality taken after Stage 1. Therefore, it seems appropriate to place more weight on
the cumulative model for the dissolution testing, or Stage 2, response. Hence, we wish

to assess the robustness of the designs for this experiment to different values of w.

To do this, we find compound Bayesian D-optimal designs for different values of w
and compare the correlation of the columns in the model matrices, (3.21), for the three
models assumed for the two responses from this experiment. These three models are;

(1) the model for the Stage 1 response with respect to the Stage 1 factors, (ii) the model
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for the Stage 2 response with respect to the Stage 2 factors, and (iii) the cumulative
model for the Stage 2 response with respect to the Stage 1 and Stage 2 factors. The
form of these models is given in Table 3.6 and the columns in the model matrices for

these models are given in Table 3.7 in Section 3.6 of Chapter 3.

We used 30 different weights in total, which are labelled (1) to (30) in Table 5.1; 10
with a weight of 0 on Model 2 (w2 = 0, weights (1) to (10)), 10 with a weight of 0.01
on Model 2 (wy = 0.01, weights (11) to (20)), and 10 with a weight of 0.1 on Model
2 (wy=0.1, weights (21) to (30)). We chose to have the smallest weight on Model 2
as this is the model which relates the responses from dissolution testing to Factor 6,

which is of less interest than the cumulative model.

w1 w3 w3 w3
0.01 | 0.99 (1) 0.98 (11) 0.89 (21)
0.05 | 0.95 (2) 0.94 (12) 0.85 (22)
0.1] 09(3) 0.89(13) 0.8(23)
02| 0.8(4) 0.79(14) 0.7 (24)
03] 0.7(5) 0.69(15) 0.6 (25)
04| 0.6(6) 0.59(16) 0.5 (26)
05| 0.5(7) 049 (17) 0.4 (27)
0.6 | 0.4(8) 0.39(18) 0.3 (28)
0.7 03(9) 0.29(19) 0.2 (29)
0.8 [ 0.2 (10) 0.19 (20) 0.1 (30)

Table 5.1: Table giving the weights, w = (w1,ws = 1 — w; — w3, ws3) used in the
assessment of the robustness of compound Bayesian D-optimal two-stage split-plot
designs to w.

"

(a) (b) (c)

Figure 5.2: Heat map of column correlation matrices for the compound Bayesian D-
optimal design for: (a) (5), (b) (15), and (c) (25) in Table 5.1.

When examining the column correlations for the 30 optimal designs, we note that they
only differ with respect to which of the columns involving Factor 6 are correlated for
Model 3. An example can be seen in Figure 5.2. All 30 optimal designs have the same

value of the Bayesian D-optimality objective function, (3.17), for Model 3. Therefore,
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even though these designs have different correlated columns under Model 3, they all
have the same number of correlated columns for Model 3, which all involve Factor 6.
These designs also all have no correlated columns for Models 1 and 2, and have the

same values of the compound Bayesian D-optimality objective function.

5.2.2 Compound Bayesian D-Optimal Two-Stage Split-Plot Design

for Formulation

The sixteen run compound Bayesian D-optimal two-stage split-plot design used for this
experiment is given in Table 5.2. The structure of the design reflects the restrictions
on randomisation. The order of the whole plot-plots, and the order of runs within

whole-plots, can be randomised in this design.

Factor 1 Factor 2 | Factor 3 Factor 4 Factor 5 Factor 6
1 -1 -1 -1 1 -1
1 -1 -1 1 -1 1
1 -1 1 -1 -1 1
1 -1 1 1 1 -1

-1 1 -1 1 -1 -1
-1 1 1 1 1 -1
-1 1 1 -1 -1 1
-1 1 -1 -1 1 1
-1 -1 1 -1 1 -1
-1 -1 -1 -1 -1 -1
-1 -1 1 1 -1 1
-1 -1 -1 1 1 1
1 1 -1 -1 -1 -1
1 1 1 1 -1 -1
1 1 -1 1 1 1
1 1 1 -1 1 1

Table 5.2: The compound Bayesian D-optimal two-stage split-plot design, found using
the coordinate exchange algorithm in Section 3.5.1, for the pharmaceutical formulation
experiment.

Figure 5.3 provides a heat map for the column correlation matrix ((3.21) in Section
3.6.1) for the three model matrices considered for this design. Notice that, as with
the compound Bayesian D-optimal two-stage split-plot designs given in Section 3.6.1
and the designs discussed in Section 5.2.1, the columns in the matrix for Model 1 not

correlated and the columns in the matrix for Model 3 have correlations in the range
(_17 1)

The terms relating to the correlated columns will be aliased and their bias and variance

133



will be inflated. As no columns in the matrix for Model 1 are correlated, and the
columns in the matrix for Model 3 have correlation in (—1,1), only columns involving
the Stage 2 factor (Factor 6) are correlated with other columns in the matrix for Model
3. This is not concerning for this particular application, as the effect of Factor 6 is not

of key importance.

Model 1 Model 2

Figure 5.3: Heat map of column correlation matrices for the design in Table 5.2.

5.2.3 D-optimal Split-Plot Design for Formulation

When the experiment was performed, only the dissolution testing fo values were mea-
sured (the four responses from Stage 2 in Figure 5.1). Therefore, the experiment could
have been designed as a single-stage split-plot design. To assess the impact of using
a design for a two-stage experiment rather than a single-stage design, we find a D-
optimal split-plot design and compare the column correlation matrix for Model 3 for

the two-stage and single-stage design.

The single-stage D-optimal split-plot design was found using coordinate exchange al-
gorithm in Section 3.5.1 with the Bayesian D-optimality objective function given by
(3.17) when X; is the model matrix for Model 3, V; is (1.5) and R; = I — (e22,1e5271),
where ey, ; is the jth column of I,,. This objective function is equivalent to using (3.20)
with w = (0,0, 1).

The column correlation matrices for Model 3 for the single-stage and two-stage split-plot
designs are shown in Figure 5.4. Unlike the two-stage design, the single-stage design
displays correlation between columns involving Factors 1 to 5, which were viewed by
the scientist as a priori more important than Factor 6. Therefore, the two-stage design
has some advantages over the single-stage design for this experiment, and was used to

formulation pharmaceutical products which were then dissolution tested.
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Figure 5.4: Heat map of column correlation matrices for Model 3 for the optimal (a)
single-stage and (b) two-stage split-plot designs.

5.3 Modelling of f; from Dissolution Testing

The pharmaceutical products which were formulated using the compound Bayesian D-
optimal two-stage spit-plot design in Table 5.2 were then dissolution tested with respect
to two reference products. In this section, we discuss the modelling of the output from

dissolution testing, fo (5.1), for these pharmaceutical products.

In Section 5.3.1 we discuss the results of our initial analysis and the transformation
applied to the fo values. In Section 5.3.2 we discuss the results of Bayesian variable
selection using the samples from the Metropolis-Hastings within Gibbs sampling al-
gorithm, and the assumption of correlation between the responses for the two tests is

discussed in Section 5.3.3.

5.3.1 Initial Analysis and Transformation

In our initial analysis of the dissolution testing data, we assessed the validity of our
assumption that the residuals from our experiment are normally distributed using di-
agnostic plots, such as those discussed and presented in Appendix B.1. We noted from
this initial analysis that a logit transformation of the data was required in order for the

assumption of normality to be appropriate.

The logit transformation is particularly relevant in this case. The fo5 statistic has the
range of 0 to 100, and the logit transformation preserves this range. There is still some
evidence of lack of normality in the model assessment plots given in Appendix B.2,

however the transformed data was considered suitable to continue the analysis.

For an observed response, y;gr, ¢ = 1,...,n, R = 1,...,r, the logit-transformed re-

sponse, yiLR7 for a response with the range 0 to 100 is

L YiR
n=In{-—"7"— 5.2

Hence, before analysing the data we use (5.2) to transform the observed fs values in

the n x r matrix of responses Y.
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During this initial analysis, we also noted that one of the centre points had unusual
results for all four tests. After discussing these unusual results with the formulation
team, we discovered there was an issue with this product during formulation. We
therefore decided to discount it from our analysis. Hence, we had a 18 x 2 matrix of

responses for each of the four tests.

We used two prior distributions for the within whole-plot correlation parameter ¢,
as discussed in Section 4.4.2. Prior 1 assumes the variance covariance matrix of the
vectorised random effect and random error from the linear mixed model described in
Section 4.4.1 are equal, whereas Prior 2 assumes the variance covariance matrix of the
vectorised random effect is larger than the variance covariance matrix of the vectorised

random error.

The experiment in Table 5.2 in Section 5.2.2 is a screening experiment, and further
experimentation should be performed based on the results of this experiment. A model
for the responses from the experiment in Table 5.2 containing the main effects and
two factor interactions for all six factors is supersaturated with respect to a 18 run
experiment. Therefore, the aim of this experiment is to find the terms that are likely
to be active and the factors of most importance (variable selection), and then perform

further experiments with these factors.

5.3.2 Variable Selection

This experiment is an initial, screening, experiment. Therefore, the identification of
active terms in the models fitted to the dissolution testing data is particularly impor-
tant, as the factors relating to active terms will be used in future experimentation. The
active terms are identified using Bayesian variable selection, which we perform using
samples of the indicator vector § from the Metropolis-Hastings within Gibbs sampling

algorithm described in Section 4.4.4.

Recall that 0 is a p x 1 vector, and the elements of §, d;, j = 1,...,p, are either 0,
if the corresponding term 3, is not active (3; = 0,), or 1, if B, is active (8; # 0;).
The posterior probability of 3; being non-zero (or “active”) can be approximated by
(4.38) from Section 4.5.2. We note that we assume that the parameter is active for
both correlated responses. An area of future work, as discussed in Section 4.6, is to

assume that the parameter can be active for either correlated response independently.

Figure 5.5 shows the approximate posterior probabilities, calculated using (4.38), of the
six main effects and fifteen two-way products (interactions) being active. The terms
which have the highest posterior probabilities of being active when the responses are
assumed to be uncorrelated are indicated by * in this figure. We notice from Figures
5.5(a) and 5.5(b) that the main effect for Factor 4, B4, has a very high estimated
posterior probability of being active for both Tests 1 and 2. The main effects for

Factors 3 and 6, 33 and B¢, and the interaction between Factors 1 and 2 and Factors
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2 and 4, 3,4 and B,,, also have a high estimated probability of being active for Test 2
(Figure 5.5(b)). All of the terms in Tests 3 and 4 have low estimated probabilities of

being active, as seen in Figures 5.5(c) and 5.5(d).
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Figure 5.5: Approximate posterior probability of the six main effects and the fifteen two-
way products (interactions) of the six factors in the model fitted to the logit transformed
dissolution testing data from the design in Table 5.2 for Test (a) 1, (b) 2, (¢) 3, and (d) 4
when both Prior 1 and Prior 2 are used. The parameters with the highest probability of
being active when the fy values from the two references are assumed to be uncorrelated
are indicated by x.

The approximate probabilities for the sampler with Prior 1 and Prior 2 are given in
Figure 5.5. Note that the approximate posterior probabilities for both Prior 1 and Prior
2 are similar for Tests 1, 3 and 4, as shown in Figures 5.5(a), 5.5(c) and 5.5(d). However,
there is some difference between the probabilities for the two prior distributions for Test

2, as shown in Figure 5.5(b).

For Test 2, the estimated posterior probabilities for Prior 2 are higher than the es-
timated posterior probabilities for Prior 1. These differences may be caused by the
difference in the performance of the sampling algorithm for these two priors, which is

discussed in detail in Appendix C.3.

We note from Figure 5.5 that, in general, the terms with the highest posterior proba-

bility of being active when the response is assumed to be uncorrelated also have prob-
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abilities greater than the other parameters when the correlation between responses is
considered. However when the correlation is accounted for, B35, which was active for
uncorrelated responses, has a low probability of being active for Test 2, and other in-
teraction terms such as (3, and (3,4 have higher probabilities (Figure 5.5(b)). We also
note that By, which was not active for uncorrelated responses has a slightly higher
probability of being active in Test 4 (Figure 5.5(d)).

Figure 5.6: Posterior density plots of the goodness-of-fit statistic R? for Test 3 for the
sampler with (a) Prior 1 and (b) Prior 2.

It is very difficult to assess which terms are active for Test 3 (Figure 5.5(c)), as the
estimated posterior probability of being active for the majority of the parameters is
close to zero. Figure 5.6 shows the posterior density of the goodness-of-fit statistic R?
for Test 3 for both prior distributions. The mode of the posterior density for R? is very
small for both prior distributions. Hence, the models fitted to the responses at each
stage of the sampling algorithm are poor, and the variability in the model is not well

explained by the terms in the models fitted to the responses.

Figure 5.7: Marginal posterior density plots for 3, for Test 1 for (a) Prior 1 and (b)
Prior 2.

Figures 5.7 and 5.8 are the posterior densities for parameters in Test 1 and 2, respec-
tively, for which (4.38) is greater than 0.5 for both Prior 1 and 2. We note that only
the marginal posterior density for f4z, R = 1,2, is unimodal in Test 1 (Figure 5.7),

and has non-zero modes which dominate the zero mode for Test 2 (Figure 5.8). Hence,
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Factor 4 is a significant factor and should play a key role in future experimentation.
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Figure 5.8: Marginal conditional posterior density plots for B3, B4, Bg, B14, Boa for
Test 2 for (a) Prior 1 and (b) Prior 2.

Comparing Figure 5.8(a) and 5.8(b) explains why the probabilities for the sampler with
Prior 2 are higher in Figure 5.5(b), as a high proportion of these densities are non-zero.
We note that the difference in the performance of the sampling algorithm is the largest
for the two prior distributions for ¢ for Test 2. This large difference appears to have
affected the results. See Appendix C.3 for further detail.

As the variable selection results are impacted by the choice of prior distribution for ¢ for
Test 2, we would need to consider how to select active terms for future experimentation.
We could, for example, include all the terms that are selected using the sampler with
Prior 1 and all the terms that are selected using the sampler with Prior 2 in future
experimentation. Alternatively, we could consider the active terms which are common

for both prior distributions.

Figure 5.9 shows the bivariate densities for 3, for Tests 1 and 2 for the sampler with
Prior 1. We note that 3, has opposing signs for Test 1 and Test 2. Therefore, with all
other factors held constant, the predicted response for Test 1 is maximised if Factor 4
is set to its low level, whereas the predicted response from Test 2 is maximised if Factor
4 is set to its high level. These results also hold for Prior 2 (not shown). This difference
in signs creates a tension if the aim is to maximise fo for each test, as discussed in
Section 5.4.
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Figure 5.9: Bivariate density for 3, for Tests 1 and 2, for the sampler with Prior 1.

Samples from the posterior distribution of 3, are less variable for Test 1 than they are
for Test 2. This is shown in Figures 5.7, 5.8 and 5.9 as all the densities for Test 1 have
a smaller area than the densities for Test 2. We also note from these figures that 3, is
never sampled as 0y for Test 1 (as the plots in Figure 5.7 for 3, have no peak at 0, and
there is no mass at (0,0) in Figure 5.9 for Test 1), whereas 81 = 0, for some samples
for Test 2 (as the plots in Figure 5.8 for 3, has a peak at 0, and there is some mass at
(0,0) in Figure 5.9 for Test 2).

The diagnostic plots presented in Appendix B.2 show that the fit of the posterior median
of the predicted responses would need to be assessed in more detail in future exper-
imentation. We note, however, that this experiment is meant as an initial screening
study, and hence the aim is to identify the important factors and not find an accurate

and precise predictive model.

5.3.3 Correlation

It is natural to assume that the two responses from each test are correlated, as the fo
values for the two references are found using the same observed dissolution data, Dy,
see (5.1).

The correlation between the two random variables, Y7 and Ys, sampled from the bi-

variate matrix normal distribution is

. COV(Yl, YQ)
Corr(¥2,2) = \/Var(Y7)Var(Ya) (5:3)
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where Cov(Y1,Y>) is the covariance between the two random variables and Var(Y;),

i = 1,2, is the variance. Note that

5 _ ( Var(Y:)  Cov(Yy, Ya) > . (5.4)

COV(Y;[, }/2) Var(Yg)

We can estimate (5.3) using the samples of 3. Figure 5.10 is the approximate posterior
distribution between the fo for the two references found using the samples of 3 for all

four dissolution tests, and Prior 1 and 2.
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Figure 5.10: Posterior density for the correlation (5.3) between the columns of Y for
Test: (a) 1, (b) 2, (¢) 3, and (d) 4, for the sampler with Prior 1 and Prior 2. The
shaded area is the 95% highest posterior density interval.

These densities all have very small 95% highest probability density intervals (shaded
areas in the plots), centred on high correlation values, and modes which are close to 1.
The appqg% highest posterior density interval is the area where app% of the sampled

values lie. The results for the two ¢ prior distributions are very similar. Therefore,
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there is strong evidence that the responses from the two references for the same test are
highly correlated, and this supports our modelling assumption that the active terms

will be common to both references.

5.4 Predicted Probability of Meeting Specification

In this section, we discuss how we use the samples from the Metropolis-Hastings within
Gibbs sampling algorithm to optimise the dissolution process, and identify new for-
mulations from inside and outside the current experimental region that have a high
probability of meeting specification for all tests. The probability of meeting specifi-
cation is important, as the specification is set by the regulators. Therefore, the main
aim of the experiment is to identify points which meet specification. The probability
of meeting specification is a univariate summary of multivariate modelling, which is

easier to optimise and visualise.

Let 74, be the fixed threshold for Test d, d = 1,...,4, that is required by drug develop-
ment regulators, and ygr(x), be the response for point x = (z1, z2, T3, T4, T5, Tg) Where
xy, f=1,...,6 is the level of factor f used in x, for Test d and reference R, R = 1, 2.

Then x meets specification for Test d and reference R if y r(x) > 74.

Let

1 if ydR(X) Z Td
Iip(x) = 5.5
ar(x) { 0 otherwise (5:5)

be the random variable which indicates whether the point x meets specification for Test
d for reference R. The probability of meeting specification for Test d for reference R
can be defined as pyr(x) = P(Izr(x) = 1).

If tests are independent, the probability of x meeting specification for Tests di,...,d;

is pa,..d,r(x) = p(1g,..a,r(x) = 1), where

1 if X)> 719, NN X) > T
Tay o ar(%) = T r(x) ... Id;R(x) = bnp(x) 2 T OV N yar(x) 2 7,
0 otherwise

(5.6)

We can approximate pgr(x) and pj. 4,z(x) for a new treatment x* using predicted
responses. The (1x7) logit-transformed predicted response for x* for References 1, ..., r
and Test d for the gth, ¢ = 1,...,its, set of parameters sampled in the Metropolis-
Hastings within Gibbs sampling algorithm is given by

Falx )= = (G ()4, (x)E0) = FBO 40, (5.7)
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where B(@ is the gth sample of the p x r fixed effects matrix B from the algorithm and
€9 ~ N(0,, 2(‘1)), when 0, is the 7 X 7 matrix with zero as every element and 3@ is

the gth sample of the r X r scale matrix 3 from the algorithm.

The posterior predicted response for Reference R, Test d and x* for the ¢th MCMC
sample Jqr(x*)(@ is found by transforming fjgr(x*)%(@ using

‘L, .
(@) _ 100exp(ydR(q)(x )

Jar(x") - . (5.8)
1+ exp(g5" (x*))
Let
1 ifyg (@) >
pan(er)@ = § L H9aROOT 2T (5.9)
0 otherwise
and
1 if 4 *\(q) > N7 *\(q) >
Yay..arr (X)) = i gy () 2 7y , Jar(X*)0 2 T, : (5.10)
0 otherwise

then the approximate probability of treatment x* meeting specification for Test d for

reference R is

S i (x*) (@)

1ts

Par(x") = ; (5.11)
and, more generally, the approximate probability of treatment x* meeting specification

Tests d,...,d; for reference R is

Zf}til wdl --~dtR(X* ) (@)

Py, r(X7) = . . (5.12)

In Section 5.4.1 we calculate pg, q4,1x(x*) for two additional points added to the split
plot experiment in Table 5.2 by the scientists during experimentation; (i) the modified
centre point, xrp; = (0,0,—1,0,0,0), which we refer to as Test Point 1, and (ii)
modified x19, x7p2 = (—1,—1,—1,—0.5,—1,—1), which we refer to as Test Point 2.

We also assess the performance of our model using these points.

We have noted in Section 5.3.2 that all terms have a low posterior probability of being
active for Test 3. Therefore, we cannot identify influential factors for Test 3 and we do
not have a convincing statistical model. Even though Test 3 is the least important test
in the scientists’ opinion, the pharmaceutical product still needs to meet specification

for this test in order to meet regulatory requirements, therefore for completeness, we

143



want find the point which is the solution to

arg max p1234R(X), (5.13)
xeX

where X = [~1,1]% € Rf is the set of all possible points for f factors with levels which

lie in the range [—1, 1], and

arg max pi24g(X), (5.14)
xeX

when R =1,2.

We also consider optimisation of the probability for an extrapolated design region, and

therefore we find the point which is the solution to

arg max p1234r(x), (5.15)
XEX*

where X C X* = [-2,2]® € Rf is the set of all possible points for f factors with levels
which lie in the range [—2,2], and

arg max p124r(x). (5.16)

xeX*
In Sections 5.4.2 and 5.4.3 we discuss how we use a grid search and the Efficient Global
Optimisation (EGO) algorithm (Jones et al., 1998), respectively, to optimise pq, .4, r(X)
and solve (5.13) and (5.14). The results of these two methods of optimisation are

discussed and compared in Section 5.4.4.

The calculations made in this section rely heavily on the assumptions used in the model,
which need some further investigation based on the evidence in Appendix B.2. Expect-
ing a supersaturated screening design to produce an accurate and precise predictive
model is unrealistic, as estimating the scale matrix X is difficult. Also, screening de-
signs are more suited for variable selection rather than prediction. However, there were
significant time and resource constraints on this project, and our collaborators wanted
to understand how the probability of meeting specification was influenced by the factor

settings based on current knowledge.

5.4.1 Probability of Test Point 1 and Test Point 2 Meeting Specifica-
tion

In addition to running the points in the split-plot design in Table 5.2, the experi-

menters also formulated pharmaceutical products for two additional test points. These
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test points were formed by adjusting points from the original design that had promis-
ing dissolution results. Test Point 1, xpp;=(0,0,—1,0,0,0), is an adjustment of the
centre point xcp=(0,0,0,0,0,0). Test Point 2, xppo=(—1,—1,—1,—0.5,—1,—1), is an
adjustment of run 10, x;0=(—1,—-1,-1,—1,—1,—1).

The results of our modelling of the dissolution testing data in Section 5.3.2 suggests
that these adjustments are reasonable. Recall from the analysis of Figures 5.5, 5.7, 5.8
and 5.9 that Factor 4 is influential for Test 1 and Test 2, and we recall from Figure
5.5(b) and 5.8 that the main effect Factor 3 has a high approximate posterior predicted
probability of being active for Test 2.

Table 5.3 gives the approximate posterior probabilities, which are calculated using
(5.12), of x¢cp and xrp; meeting specification for both references and the two prior
distributions for ¢. Similarly, Table 5.4 gives the approximate posterior probabilities
of x19 and x7po meeting specification for both references for the samplers with Prior
1 and Prior 2.

Firstly, we note that the probabilities for the sampler with Prior 1 and Prior 2 in Tables
5.3 and 5.4 are very similar. Therefore, for the probability of meeting specification for
these points appears to be robust to choice of these two prior distributions. A potential
area for future work is consider the robustness of the probability to different prior

distributions.

In Table 5.3 we see that piagar(xrp1) > Pr23ar(Xcp) and praar(X7p1) > Pr2ar(xcp) for
R = 1,2 and Prior 1 and 2. These approximate posterior probabilities have increased
because pogp(xrp1) > por(xcp) for R = 1,2 and Prior 1 and 2. This increase in
pok(x*) was expected, as our analysis in Section 5.3.2 showed that the main effect for
Factor 3, which is the only factor adjusted between xcp and x7p1, has a high posterior
predicted probability of being active for Test 2. As the main effect for Factor 3 has
low posterior predicted probability of being active for Tests 1, 3 and 4, we expected
Par(x*), d=1,3,4 and R = 1,2 to not be effected by changing the level of Factor 3.

Both centre points met specification for Tests 1, 3 and 4 but failed to meet specification
Test 2 for both references. As can be seen from Table 5.3, our model predicts that xcop
has a low probability of passing Test 2 if it was repeated. When dissolution testing
was performed on the pharmaceutical product formulated using x7p1, it only failed to
meet specification for Test 1, Reference 2. The predicted probabilities from Table 5.3
suggest that repeat formulations of xpp; would have a high probability of not meeting

specification all four tests, Tests 1, 3, 4, or Test 2, for both references.
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X" =xcp X' =Xrpi

P12341(x*) 0.16 0.18
P12342(x) 0.17 0.19

D241 (x*) 0.24 0.27
P1242(x") 0.26 0.29
pr1(x*) 0.77 0.77

) Pr2(x*) 0.83 0.83

Prior 1

P21 (x*) 0.38 0.42
P22(x*) 0.39 0.44
Pa1(x*) 0.68 0.67
P32(x*) 0.68 0.67
Par(x) 0.81 0.82
Pa2(x*) 0.77 0.79
P12341(x) 0.12 0.17
D12342(x*) 0.13 0.19
P1241(X") 0.19 0.28
D1242(x") 0.21 0.30
p11(x*) 0.74 0.73

Prior 2 Pr2(x*) 0.78 0.78
P21(x*) 0.33 0.50
P22(x*) 0.35 0.52
P31(x) 0.63 0.63
P32(x") 0.64 0.63
Pa1(x*) 0.78 0.78
Paz(x*) 0.75 0.75

Table 5.3:  Approximate posterior probabilities (5.12) of the centre point,
xcp=(0,0,0,0,0,0), and Test Point 1, x7p1=(0,0,—1,0,0,0), meeting specification for
the sampler with Prior 1 and Prior 2.
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x*=x190 X' =Xrp2
P12341 (X*) 0.06 0.11
P12342(x) 0.07 0.11
Pr241(x¥) 0.10 0.16
P1242(x) 0.10 0.16
p11(x*) 0.97 0.91
. Pr2(x*) 0.99 0.96
Prior 1
Po1(x*) 0.13 0.23
Pa2(x*) 0.14 0.24
P31(x*) 0.67 0.67
Pa2(x*) 0.67 0.68
Pa1(x*) 0.78 0.79
Paz(x") 0.73 0.74
P12341(x") 0.05 0.07
P12342(x) 0.05 0.08
P1241(x) 0.08 0.11
P1242(x") 0.09 0.12
pr1(x*) 0.94 0.85
Prior 2 P12(x*) 0.97 0.91
P21(x") 0.12 0.18
Paz(x*) 0.13 0.19
P31(x) 0.63 0.63
P32(x*) 0.63 0.63
Par(x¥) 0.75 0.76
Paz(x*) 0.71 0.72
Table 5.4 Approximate  posterior  probabilities (5.12) of run 10,

x10=(—-1,-1,—-1,—-1,—-1,—1), and Test Point 2, xppo=(—1,—1,—1,—0.5,—1,—1),
meeting specification for the sampler with Prior 1 and Prior 2.

Comparison of the columns in Table 5.4 suggests that increasing Factor 4 in x;¢ from
—1 to —0.5 leads to increased posterior probability of meeting specification for all the
tests. It is unsurprising that Factor 4 should have such an impact on the probabilities,
as (3, has a high posterior probability of being active for Test 1 and Test 2 (see Figures
5.5 (a),(b), 5.7 and 5.8).

We also note from Table 5.13 that p1r(x10) > P1r(X7P2), Wwhereas par(x10) < por(XTP2).
This is expected, as 3, is negative for Test 1, hence g1 r(x*) and p1r(x*) will decrease
when the level of Factor 4 is increased and all other factors are held constant. Similarly,
B3, is positive for Test 2, so gor(x*) and por(x*) will increase when the level of Factor

4 increases, when all other factors are held constant.

The pharmaceutical products which were formulated for x1¢9 and x7po both failed to

meet specification for Test 2 for both references. The predicted probabilities in Table
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5.4 suggest that these points have a high probability of not meeting specification for

Test 2, and all four tests, again if they were repeated.

Figures 5.11 and 5.12 are the approximate posterior densities for ggr(xrp1), when
d=1,2,3,4 and R = 1,2, for Prior 1 and 2, respectively. Similarly, Figures 5.13
and 5.14 are the approximate posterior predictive densities for ggr(x7p2), when d =
1,2,3,4 and R = 1,2, for Prior 1 and 2, respectively. The predicted responses, §qr(x*),
x* = xrp1,X7p2, are calculated using (5.7) and (5.8). We use these figures to assess
the performance of our model by comparing the mode and spread of the densities in
these figures to the observed fo values, which are plotted as a solid black (for Reference
1) and red (for Reference 2) points. The threshold value, which the observed fs has to

be greater than in order for the point to meet specification, is given as a dotted line.

The posterior predictive densities in Figures 5.11 to 5.14 support the probabilities in
Tables 5.11 and 5.13, as part of the 95% highest posterior density interval for all the
densities is on the left of threshold. Therefore, a number of the predicted responses
for xpp1 and xppo will not meet specification. The variability of the approximate
predictive densities in Figures 5.11 to 5.14 also demonstrates the underlying uncertainty

regarding the fo value for Test Points 1 and 2 in our model.

We note in Figures 5.11(b) and 5.12(b) that the modes of the approximate posterior
predictive densities for gor(x7p1) when R = 1,2 are close to the threshold for the
sampler for both Prior 1 and 2, which explains why par(x7p1) in Table 5.3 for Prior 1
and 2 is in the range [0.42, 0.52].

The mode and a large proportion of the 95% posterior density intervals for the approx-
imate posterior densities of §aor(x7p2) are to the left of the threshold in Figures 5.13(b)
and 5.14(b), which explains the low por(x7p2) seen in Table 5.4.

We note that the observed f, values for xpp; for Test 2 in Figures 5.11(b) and 5.12(b),
and Test 4 in Figures 5.11(d) and 5.12(d), are greater than the mode of the approximate
posterior predictive density. Therefore, the model is likely to underestimate yor(x7p1)
and ysr(x7p1) for R = 1,2. The observed fs values for xpp; for Test 1 in Figures
5.11(a) and 5.12(a), and Test 3 in Figures 5.11(c) and 5.12(c), are greater than the
mode of the approximate posterior predictive density. Hence, the model is likely to

overestimate y1r(x7p1) and ysg(xrpr) for R =1, 2.

The observed fy values for x7py for all tests, both references and the sampler with
Prior 1 and 2 are close to the modes of the approximate posterior predictive densities,
and therefore the estimates for ysr(xrp2), R = 1,2, d = 1,2,3,4 are centred around
more appropriate values than the estimates for ysr(x7rp1). However, it is important
to note that the observed values for both x7p; and x7py lie within the 95% highest

posterior density intervals, hence providing some validity for the model.
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Figure 5.11: Approximate posterior predictive density for (a) g11(x7p1) and g12(x7p1),
(b) @21(x7p1) and g32(x7p1), (¢) ¥31(x7p1) and g3o(xrp1), and (d) g41(x7p1) and
Ja2(x7p1), when x7rp1=(0,0,—1,0,0,0), for the sampler with Prior 1. The shaded area is
the 95% posterior density interval. The dotted line is the threshold which the predicted
response needs to be greater than to meet specification. The black and red solid points
indicate the observed fs values for xpp; for Reference 1 and 2, respectively.

149



0.030
I

— Reference 1 — Reference 1
—— Reference 2 —— Reference 2

0.025
I

0.020
I

0.005 0.010 0.015
1 1 1
1

0.000 0.005 0.010 0.015 0.020 0.025 0.030
I

0.000

0 20 40 60 80 100 0 20 40 60 80 100

0.025
I

— Reference 1 — Reference 1
- — Reference 2 — Reference 2

0.020

0.015
0.015 0.020
I I

0.010

0.010
I

0.005
0.005
I

0.000
0.000
I

0 20 40 60 80 100 0 20 40 60 80 100

Figure 5.12: Approximate posterior predictive density for (a) 911(x7p1) and g12(X7p1),
(b) go1(x7p1) and gz2(xrp1), () ¥31(x7rp1) and g3a2(x7p1), and (d) ga1(x7p1) and
Ja2(x7p1), when x7p1=(0,0,—1,0,0,0) for the sampler with Prior 2. The shaded area is
the 95% posterior density interval. The dotted line is the threshold which the predicted
response needs to be greater than to meet specification. The black and red solid points
indicate the observed f> values for xpp; for Reference 1 and 2, respectively.
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Figure 5.13: Approximate posterior predictive density for (a) g11(x7p2) and g12(x7p2),
(b) go1(x7p2) and g32(xTp2), () ¥31(xTP2) and g32(x7p2), and (d) g1 (x7p2) and
Ja2(x7p2), when xppo=(—1,-1,—1,—-0.5,—1,—1) for the sampler with Prior 1. The
shaded area is the 95% posterior density interval. The dotted line is the threshold
which the predicted response needs to be greater than to meet specification. The black
and red solid points indicate the observed fo values for xpps for Reference 1 and 2,
respectively.
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Figure 5.14: Approximate posterior predictive density for (a) 911(x7p2) and g12(X7p2),
(b) g21(x7p2) and gz2(xTp2), () ¥31(XxTp2) and g32(x7p2), and (d) ga1(x7p2) and
Ja2(x7p2), when xppo=(—1,-1,—1,—0.5,—1,—1) for the sampler with Prior 2. The
shaded area is the 95% posterior density interval. The dotted line is the threshold
which the predicted response needs to be greater than to meet specification. The black
and red solid points indicate the observed fo values for xpps for Reference 1 and 2,
respectively.
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5.4.2 Grid Search

The point, x*, which maximises (5.12) for Reference R, R = 1,...,r and Tests dy, ..., d,
can be found using a grid search and subsequent Nelder-Mead optimisation (Nelder and
Mead, 1965). This procedure has the following steps, where D € D 71,50 1s the full fac-

torial design with f I-level factors and n = f* runs, and x; is the ith row of D:

1. Fori=1,...,nand ¢ =1,...,its

(a) Calculate @((i?)k(xi), . ,Qc(g)k(xi) using (5.7) and the transformation (5.8).

(b) Calculate (5.10).

2. Calculate pg,. a,x(x;) using (5.12).

3. Find pgs = maxv; Pa; ..d,k(Xi)-
4. Find xgs = arg maxy v; Pa;...d.k (Xi)-

5. Use xgg as the starting value for a local optimisation using the Nelder-Mead
algorithm (Nelder and Mead, 1965, the default optimisation method for optim in
R), which optimises (5.12) for treatments over a continuous range of factor levels.
Call the treatment and probability found using the Nelder-Mead algorithm x s

and py s, respectively.

6. If pgs = pnar, then xgg and xxps may be identical. If they are not, then either
both xgg and x s should be run, or one could be chosen based on some other
feature of experimentation. Otherwise, xyas is the treatment which optimises
(5.12).

This method is very slow as it requires ¢ calculations of (5.7) for each of the n treatments
in D. The samples used in (5.7) can be thinned to make computation faster. In this

chapter, we thinned our ¢ts = 10,000 samples to 500 by selecting every 20th sample.

An alternative method of speeding up computation would be to reduce [ in order to
reduce n. Our experiment had six factors, so f = 6, and we let [ = 9, where the levels
were (-1, -0.75, -0.5, -0.25, 0, 025, 0.5, 0.75, 1), as this was computationally feasible.

5.4.3 Efficient Global Optimisation (EGO) Algorithm

As discussed in Section 5.4.2, it is computationally expensive to calculate (5.12), as it
requires ¢ predicted responses, (5.7), to be sampled for each treatment. One method of
speeding up the optimisation of (5.12) is to reduce the number of points it is calculated
for. Computer experiments provide a suitable, more computationally efficient, method

of optimising (5.12).

Computer experiments assume that the form of a computationally expensive function,

such as (5.12), is unknown, and this unknown function is sometimes referred to as a
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black-box function. Computer experiments also assume that we only have a certain
number of observed outputs from this black-box function. These observed outputs are
used to build a surrogate model for the unknown black-box function. The function
can then be maximised using this surrogate model. Further discussion on computer

experiments is given by Fang et al. (2006).

In this section, we introduce the efficient global optimisation (EGO) algorithm (Jones
et al., 1998), which builds a surrogate model for (5.12) using a computer experiment,
and uses this surrogate model to identify the point which optimises (5.12). The EGO

algorithm requires:

1. Space-filling Designs: A space-filling design optimises the location of the points
within the boundaries of the current design region (which are the maximum and
minimum factor levels) using certain criterion. The criterion used to determine
the location of the points can be stochastic, so the points are randomly generated,
or deterministic, such as a distance metric. Further detail on space filling designs
are given in Fang et al. (2006, Part II). In this work we use a randomly sampled
Latin-hypercube design, which is a generalisation of a Latin square to more than
two dimensions. Latin-hypercube designs are discussed in McKay et al. (1979),
Stein (1987) and Fang et al. (2006).

Jones et al. (1998) suggested having at least 10f points in the initial randomly
sampled Latin-hypercube, with adjustments such that the inter-point spacing
1/(n — 1) is a finite-decimal. For f = 6 Jones et al. (1998) suggested using 65
points as then the inter-point spacing is 1/64=0.015625.

2. Kriging Modelling: Kriging is a method of point interpolation, or smooth-
ing, that uses Gaussian processes. A Gaussian process is a correlated stochastic
process which can be defined using a mean function and correlation function.
Any realisation from a Gaussian process has a multivariate normal distribution.

Gaussian processes are discussed in detail in Rasmussen and Williams (2006).

In this section, we assume that

pgll...dtR(Xi) = p+ €(x;) (5.17)

where pc?ll...dtR(Xi) is reciprocal of pg,. 4,r(X:), i is the average of pgllmdtR(xi),
and e(x;) ~ N(0,07). If we assume that e ~ GP(0,02r(x,%X;+)), then two
realisations from ¢, €(x;) and e(x;+), i,7* € {1,...,n}, are dependent. In this

chapter, we assume that

corr{e(x;), €(x;+)} = K(xi, X)), (5.18)
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where

K (X, Xi+) = exp 2913‘$zf_37z*f , (5.19)

when z;7 is the fth element of x;, 61; >0, j=1,..., f, and 03 € {1,2}. We use
the km function in the package DiceKriging in R to fit the Kriging model, which
optimises 015, j = 1,..., f, and sets 0 = 2.

The Kriging model can also be used to predict the response for new, unobserved,
points. Let f)gllmdtR(X) = (ﬁ;llmdtR(xl), . ,ﬁ;l%..dtR(xn))T be a vector of the in-
verse probabilities predicted using (5.17) for X = (x1,...,x,), and ﬁgl%..dtR(X*)
be the probability we want to predict. Following the results in Fang et al. (2006)
and Rasmussen and Williams (2006),

~—1 * 2
X o: o
Part) ) (B (% o)) )
Pa,..q,r(X) ply o2 02
where p and 03 are the scalar mean and variance, respectively, of the distribution
for ﬁ;llmdtR(x*), 11, and o9y are the n x 1 mean vector and n X n variance-
covariance matrix, respectively, of the distribution for f)gll d r(X), o12isthe 1xn

vector of covariances between the response at the new point and the response at

the existing points, and o2 = oJ;.

The mean and variance of the predicted inverse probability for the new treatment

x* given f)gllmdtR(X) are
E(ﬁ(}ll._,dtg( )’f’gll dtR( ) =+ 0'120'2_21 (f’;ll._,dtR(X) — ply) (5.21)

Var(ﬁ;f_,_dtg( )‘13;11 dtR( ) = 03 - 0'120'2_210'21 (5.22)

respectively. In order to estimate (5.21) and (5.22), u1, py, 031, 012 and o2
will need to be estimated. Note that (5.21) is the best linear unbiased predictor
of 13(;11._. 4,r(x7) and (5.22) is the mean squared error for the best linear unbiased
predictor of ﬁ;ll_._dtR(x*) (Fang et al., 2006, Section 5.4.1).

. Sequential Design via Expected Improvement: The EGO algorithm uses
expected improvement to add points to the initial space-filling design, and hence
converge to the point which maximises the response from the unknown function
using the surrogate model. Expected improvement balances the objectives of ex-

ploration, which is achieved by evaluating the computationally expensive function
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for new points, and exploitation, or using the samples from the computationally

expensive function that we already have to reduce computation time.

In the EGO algorithm, we wish to add the x* which maximises the expected

improvement,

. ~—1 ~—1 *
Minyi—1,..n P (xi) =D (x*)
. ~—1 N ~—1 * 30y dldtR dldtR
(i )~ 5Lt o 1)

Fsd(x*)® ( (5.23)

miny;=1,__n ﬁ;ﬁ,,dtR(Xi) - ﬁ;ﬁ..dtR(X*)
sd(x*) ’

where ® and ¢ are the standard normal cumulative density and probability density
functions, respectively, ﬁgllm dy r(x;) is the reciprocal of (5.12) found using the
surrogate Gaussian process model (5.17), ﬁ;ﬁndtR(x*) is (5.21) and sd(x*) is the
square root of (5.22).

The EGO algorithm has the following steps:

1. Let Dg be a randomly sampled Latin-hypercube with n runs, where n > 10f and
1/(n —1) is a finite decimal.

2. Let v =0.
3. Let n be the number of rows in D,,.

4. Calculate (5.7) for ¢ = 1,...,its and use these predicted responses to calculate

?5;11...dtR(xi) Vi=1,...,n using (5.12).
5. Fit (5.17) to the predicted responses from step 4 to estimate (5.21) and (5.22).
6. Find a new treatment x* that maximises (5.23).
7. Add x* to D, call the new design D, 1.

8. If (5.23) is greater than 0.01 miny;—; nﬁgllmdtR(xi), let v = v+ 1 and repeat

-----

from step 3. Otherwise, stop the algorithm.

The final point in this algorithm is the point which minimises the inverse of (5.12), and
therefore maximises (5.12). This algorithm is significantly faster than the grid search

method, but relies heavily on interpolation between observed points using Kriging.
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5.4.4 Maximising the Posterior Predicted Probability of Meeting Spec-
ification

In this section, we use a grid search and the EGO algorithm to find points from inside
and outside the current experimental region which maximise the posterior predicted
probability of meeting specification, and therefore solve the maximisation problems
given in (5.13) through (5.16).

Recall that when solving (5.13) and (5.14), we are maximising pio4r(x) and pia3ar(x),
R = 1,2, in the region X', which is our current experimental region where factor levels
have the range [—1,1]. When solving (5.15) and (5.16), we are maximising p124r(X)
and progar(x) in A*, which is the expanded experimental region where factor levels

have the range [—2, 2|.

Optimal Point 1, x7=(0.27, 0.5, —1.01, 0.25, 0.84, 1) is the point inside the current
region of experimentation which solves (5.13) for the grid search. Although this point
was found using the grid search for Tests 1 to 4, we noticed that p1a4r(x]) was close
to the maximum for Tests 1, 2 and 4, for R = 1,2. We also note that an equivalent
optimal point, xj;, was found using the EGO, where piosr(x}) ~ proar(xj ) and
P1234r(X]) =~ Pr2sar(x] 1), R = 1,2. We consider Optimal Point 1, and not xj ;, as a

pharmaceutical product was formulated for this point.

The level of Factor 3 in xJ is less than —1, therefore x] is in X* and not X'. However,
as all other factor levels are in the set [—1, 1], x] is close to the boundary of X', and we
are not concerned about the extrapolation of the model required for this point. The
results from Section 5.3.2 and 5.4.1 suggest that increasing the level of Factor 3 in xj

from —1.01 to —1 will cause a small decrease in g2r(x7), R = 1,2, and hence a small

decrease in ﬁQR(X?E); ﬁ124R<X>{>, and ]51234R(X>{).

Optimal Point 1 was found during the Nelder-Mead optimisation within the grid search.
Nelder-Mead optimisation is an unconstrained optimisation method that can lead to
factor levels being found outside boundaries. The constrained optimisation algorithm
given by Byrd et al. (1995) could be used to avoid this potential problem, as upper and
lower limits on the levels of the factors can be set when optimising using the algorithm
of Byrd et al. (1995). However, in this work we use Nelder-Mead optimisation as it is
faster than Byrd et al. (1995).

Table 5.5 gives pq, . 4,r(X}) and par(x}), when dy ...dy = 123,1234, d = 1,2,3,4 and
R = 1,2, for the sampler with Prior 1 and Prior 2. We notice that pio4r(x]) and
Pr23ar(x}) for R = 1,2 and both Prior 1 and Prior 2 in Table 5.5 are low. This is
because pr(xi), d =1,2,3,4, R =1,2 are low for both Prior 1 and 2.

The pharmaceutical product formulated for treatment xj failed to meet specification
for all four tests, which was expected following the low predicted probabilities in Table

5.5. Although no repeats of the dissolution testing for this treatment were made to
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enable further assessment, our model suggests that repeated formulations of x] would

not meet specification for all four tests.

x* =x]
P12341(x¥) 0.24
Prazaz(x*) | 0.25
D241 (x*) 0.36
D1242(x*) 0.37
Pi(x7) 0.67
Prior 1 Pr2(x") 071
Po1(x*) 0.64
Paa(x*) 0.66
Pan(x7) 0.67
Paa(x*) 0.67
Par (%) 0.83
Paa(x*) 0.80
Pr2zar(x*) | 0.25
P12342(x%) 0.25
D241 (x*) 0.39
Pr242(x¥) 0.40
i (x) 0.64
Prior 2 Piz2(x7) 0.06
Por (x*) 0.77
Poa(x7) 0.79
Par (x*) 0.63
Pa2(x*) 0.64
P (x*) 0.79
Pas(x) 0.77

Table 5.5:  Approximate posterior probabilities (5.12) of Optimal Point 1,
x;=(0.27,0.50,—1.01,0.25,0.84,1.00), meeting specification for the sampler with Prior
1 and Prior 2.

Figure 5.15 shows two-dimensional projections of piosr(x7) in the locality of x}, which
is estimated using Kriging, where, for each plot, the four factor not being varied are held
fixed at their values in x}. The plots in Figure 5.15 show the low posterior probability

of passing these three tests in the locality of x7.

158



o3 0 3 | s 3 w 3 e 3
B L B b B
¢ FP = ¢ b 3
- ® - @ T @
4 0 02 02 08 1 08 0z 02 06 1 4 0 02 02 06 1 05 02 02 06 1 405 02 02 06 1
Factr s Facor1 Factor s Facor1 Factor s
IS Fs g i S
g o £ o E iy
s i | i
s 0z 02 06 1 05 0z 0z 06 1 s 0z 02 06 1 05 0z 0z 06 1
Facor2 Fctor2 Facor2 Fctor2
‘ ‘ '
05 02 02 08 1 408 < o
3
Factors Facors Factors
@
3
H A o
H 3
| 3
i ]
105 0z 0z 06 1
3
Facors s
S
5
&
105 02 02 08 3
Factors
3 2 3 3
g o L) g o £ o
i g e £ s iy
i § sme i i
4 06 02 02 05 1 s 0z 02 06 1 05 0z 0z 06 1
Facor 1 Facar 1 Facort
H H
0802 02 06 1 0602 02 08 1 08 02 02 06 1
Factor2 Facor2 Factor2
s 0z 02 06 1 o
Facors
@
3
H o
’ ’ ' i
06 02 02 08 1 0 02 02 06 1
3
Facord Factor s S
- o
| 3
= =
g -
N | o
i - 3

-1 06 02 02 08 1

Factors

Figure 5.15: Contour plots for the approximate posterior probability (5.12) of meeting
specification for Tests 1, 2 and 4 in the locality of x7=(0.27,0.50,—1.01,0.25,0.84,1)
using Kriging and the results of the EGO algorithm (Section 5.4.3) for: (a) Reference 1
and (b) Reference 2. The black circles are the levels for the treatments which maximise
the expected improvement in the EGO algorithm. In each plot, the four factors not
varied are set to their values in xJ.
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The posterior predicted probability surfaces around the point x] using the grid search
and Kriging are very similar. However, the surface using the results from the grid
search is less smooth as the EGO algorithm uses a smoother to predict (not shown).
The plots for piagar(x7) for both the grid search and the EGO algorithm (not shown)
have a similar shape but lower probabilities.

The key role played by Factor 4 can be seen in Figure 5.15. Recall that 3,, the main
effect for Factor 4, has a high posterior probability of being non-zero for both Tests
1 and 2 (Figures 5.5(a) and 5.5(b)), and B3, has a high posterior probability of being
negative for Test 1 and positive for Test 2 (Figure 5.9). This creates a conflict when
it is required to maximise §1r(x) and gor(x), R = 1,2. This dichotomy leads to a
narrow ridge of higher probability around x7,, which is clearly seen in the third column
of Figure 5.15.
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Figure 5.16: Approximate posterior predictive density for (a) ¢11(x}) and g12(x7),
(b) 921(x7) and gs2(x7), () gs1(x7) and Ps2(x7), and (d) ga1(x}) and gao(x7]), when
x3=(0.27,0.50,—1.01, 0.25, 0.84, 1.00), for sampler with Prior 1. The shaded area is the
95% posterior density interval. The dotted line is the threshold which the predicted
response needs to be greater than to meet specification.
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Figure 5.17: Approximate posterior predictive density for (a) ¢11(x]) and gi2(x7),
(b) g21(x7) and g32(x7), (¢) g31(x]) and Fs2(x]), and (d) §a1(x]) and gaa(x7), when
x;=(0.27,0.50,—1.01, 0.25, 0.84, 1.00), for the sampler with Prior 2. The shaded area is
the 95% posterior density interval. The dotted line is the threshold which the predicted
response needs to be greater than to meet specification.

Figures 5.16 and 5.17 give the approximate posterior predictive density of gir(x}),
d=1,2,3,4, R = 1,2 for the sampler with Prior 1 and Prior 2, respectively. The
threshold for meeting specification for each test is given in these figures as dotted black
line. The shaded areas in these figures are the 95% highest posterior density intervals

for each reference.

We note that a significant proportion of the densities in Figures 5.16 and 5.17 are to
the left of the threshold. This explains why the posterior predicted probabilities of
meeting specification for various tests are low. We also note that there is a significant
amount of uncertainty in the predicted responses, demonstrated by the width of the

highest posterior density intervals.
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Figure 5.18: Approximate bivariate posterior predictive density for (a) y1(x}), (b)
ya(x7), (c) ¥3(x7), and (d) y4(x7), when x7=(0.27,0.50,—1.01, 0.25, 0.84, 1.00) for the
sampler with Prior 1. Any predicted fo values greater than the blue dotted lines pass

the dissolution test.
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Figure 5.19: Approximate bivariate posterior predictive density for (a) y1(x}), (b)
yva(x7), (c) ¥y3(x7), and (d) ya(x7), when x=(0.27,0.50,—1.01, 0.25, 0.84, 1.00) for the
sampler with Prior 2. Any predicted f» values greater than the blue dotted lines pass
the dissolution test.

Figures 5.18 and 5.19 are contour plots for the approximate bivariate posterior predic-
tive densities for y4(x7) = (Ya1(x7), 9a2(x7)) d = 1,2, 3,4, for the sampler with Prior 1
and 2, respectively. The blue point is the threshold, and the dotted blue lines are the
thresholds for the two references. We note that there is a significant proportion of the
density that lies in the bottom left hand corner of these plots which is enclosed by the
blue dotted lines. This provides further explanation for the low probabilities of passing

various tests.

The experimenters were keen to explore outside the current region of experimentation,
as the probabilities in Figure 5.15 increase to the maximum at the boundaries of X', and
therefore the model suggests that the probabilities of passing tests may be maximised
outside the current experimental region. Ideally, further experimentation would be used

to choose this point, for example a form of hill climbing or steepest ascent (Mee and
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Xiao, 2008; Edwards and Fuerte, 2011). However, due to time and resource constraints

the current model was used to indicate which points outside the experimental region

may be promising.

The point found by grid search which maximises (5.15) and (5.16) is x5 ;=(0.72, 1.36,
-2.16, -0.32, 2.40, 1.41). However, we were then informed by the experimenters that

Factor 6 could not be set to 1.41. A more preferable level for Factor 6, when considering

the levels of the other factors in x5 ;, would be 0.5. We therefore compare the posterior
predicted probabilities of x5 ;=(0.72, 1.36, -2.16, -0.32, 2.40, 1.41) and x4 ,=(0.72, 1.36,
-2.16, -0.32, 2.40, 0.5).

Table
2.1,

5.6:

X"=x5; X' =Xj,

P12341(X") 0.29 0.27
P12342(x") 0.31 0.29
P1241(xX) 0.44 0.42
P1242(x") 0.46 0.44

p11(x*) 0.87 0.87

: P12(x") 0.93 0.93

Prior 1

P21(x") 0.60 0.58

P22(x") 0.62 0.60

P31(x*) 0.67 0.66

P32(x*) 0.67 0.67

Par(x7) 0.84 0.84

Paz(x*) 0.81 0.81
P12341(x") 0.32 0.31
D12342(x*) 0.33 0.32
P1241(x") 0.50 0.48
D1242(x") 0.53 0.51

p11(x") 0.83 0.82

Prior 2 P12(x”) 0.88 0.87
Pa1(x*) 0.76 0.74

P22(x") 0.77 0.75

Pa1(x*) 0.62 0.62

P32(x*) 0.63 0.62

Par(x*) 0.80 0.80

Paz(x”) 0.77 0.77

Approximate posterior probabilities (5.12) of Optimal
x5 1=(0.72,1.36,—2.16,—0.32,2.40,1.41), and Optimal Point

Point
2.2,

x2.9=(0.72,1.36,—2.16,—0.32,2.40,0.50), meeting specification for the sampler with
Prior 1 and Prior 2.

Table 5.6 gives pg,..q,r(x*) and pgr(x*) when x = x5 ,,x5,, di...d; = 124,1234,
d=1,2,3,4 and R = 1,2 for the sampler with Prior 1 and Prior 2. We note from
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Table 5.6 that changing the level of Factor 6 does not have a significant impact on
the probabilities of meeting specification. This is to be expected, as Factor 6 was not

identified as an important factor in the analysis in Section 5.3.2.

A pharmaceutical product for x5, was formulated and dissolution tested, but did not
meet specification for all four tests. This was not surprising, as the probability of x99
meeting specification for each test individually and all four tests was low. Our model
also suggests that x5, would fail to meet specification if it was repeated, however as

repeated measures were not taken, further assessment cannot be made.
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Figure 5.20: Approximate posterior predictive density for (a) 911(x5,5) and 712(x55),
(b) da1(x3.5) amd Gaa(x3 ), (€) 1 (x2) and sa(x5 ), and (d) G (x35) and Guo(x} ),
when x%,=(0.72,1.36,—2.16, —0.32, 2.40, 0.50), for the sampler with Prior 1. The
shaded area is the 95% posterior density interval. The dotted line is the threshold
which the prior needs to be greater than to meet specification.
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Figure 5.21: Approximate posterior predictive density for (a) §11(x% ) and 12(x5 ),
(b) da1(x3 ) and Gua(xs ), (€) 1(x5 ) and (x5 ), and (d) Gar(x35) and Gua(x3.),
when x3,=(0.72,1.36,—2.16, —0.32, 2.40, 0.50), for the sampler with Prior 2. The
shaded area is the 95% posterior density interval. The dotted line is the threshold
which the predicted response needs to be greater than to meet specification.

Figures 5.20 and 5.21 give the approximate posterior predictive density of gqr(x3,),

=1,2,3,4, R = 1,2 for the sampler with Prior 1 and 2, respectively. These figures
provide additional evidence for the low probabilities in Table 5.6, as a large proportion
of both the density and highest posterior density intervals are less than the threshold.

There is also large variability in the predictions.

5.5 Discussion

In this chapter, we discussed the design of an experiment for the formulation of a
pharmaceutical product, the modelling of the fs values from dissolution testing and

the prediction of points which maximise the probability of passing specification. Using
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initial information, we described the experiment as a two-stage split-plot design with
five factors in the first stage, two of which were hard to change, and one factor in the
second stage. Due to experimental constraints, our experiment could only have sixteen

factorial runs.

We used the coordinate exchange algorithm and compound Bayesian D-optimality cri-
terion to find the sixteen run two-stage split-plot design given in Table 5.2, which is
suitable for the formulation of this pharmaceutical product. We noted in Section 5.2.1
that the number of correlated columns in the matrices for the models fitted to two-
stage split-plot designs is not affected by the weight matrix in the compound Bayesian
D-optimality objective function. We chose the design in Table 5.2, as the terms which

were correlated were preferable.

The final experiment was not two-stage, however, as a response was not measured after
the first stage. We therefore also found a sixteen run single-stage split-plot design, and
compared this design to the optimal two-stage design using the correlation matrix for
the columns in the matrix for the cumulative model in Section 5.2.3. The single-stage
split-plot design had correlation between the columns involving Factors 1 to 5, whereas
the two-stage split-plot design only had correlation between columns involving Factor
6. As the scientists’ prior assumption was that Factors 1 to 5 are more important than
Factor 6, the two-stage split-plot design was preferred to the single-stage split-plot
design. Therefore, the two-stage split-plot design in Table 5.2 was used to formulate

pharmaceutical products.

Dissolution testing was performed after the pharmaceutical products were formulated.
The pharmaceutical products were dissolved in four different media, and fs values were
calculated for two references. We therefore had bivariate data for each of the four
dissolution tests for the sixteen points in the optimal two-stage split-plot design (Table

5.2) and two centre points.

In Section 5.3.2, Bayesian variable selection was used to identify the influential terms in
the models fitted to the fo values for these four dissolution tests. During this analysis,
we noted that the bivariate responses for Tests 1 and 2 are easier to model than the
responses for Tests 3 and 4. Also, we noted that the main effect of Factor 4 has a high
posterior probability of being active for Tests 1 and 2. However, the main effect for
Factor 4 has opposing effect on these two tests, as it is negative for Test 1 and positive
for Test 2.

The diagnostic plots in Appendix B.2 suggest that there are some problems with the
fit of the models considered in this chapter. However, this was expected as this exper-
iment is a screening experiment and is supersaturated, and the aim of this experiment
was to identify the influential terms and not produce an accurate and precise model.
Future experimentation, using the influential factors identified using Bayesian variable

selection, would enable more detailed models to be made.
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The posterior predicted responses can be used to approximate the probability of meet-
ing specification, where a point x meets the specification for dissolution Test d and
Reference R if gqr(x) > 74. We used both a grid search (Section 5.4.2) and the EGO
algorithm (5.4.3) to find the point which optimises the probability of meeting specifi-

cation for Tests 1,2,3 and 4 both inside and outside of the current experimental region.

The optimal points inside and outside of the current experimental region discussed
in Section 5.4.4 had a low probability of meeting specification for Tests 1, 2, 3 and 4.
Single formulations of these optimal points failed to meet specification for all four tests.
The predicted probability surface showed a ridge for Factor 4, due to the conflict in

signs for the main effect of this factor in Tests 1 and 2.

We could use the results from this chapter to perform further experimentation. Fu-
ture work could therefore focus on extending and adapting existing methodology to
exploring outside the current experimental region. Both Mee and Xiao (2008) and
Edwards and Fuerte (2011) discuss methods of optimisation using steepest ascent or
compromise ascent after screening for multiple response experiments. Mee and Xiao
(2008) use Pareto optimality, and prove that only search directions that are convex
combinations of paths of steepest ascent should be used to optimise multiple responses
from screening experiments. Edwards and Fuerte (2011) use Bayesian reliabilities to
identify compromise directions for exploration of design spaces for multiple responses.

The approaches in these papers could be adapted and extended for our experiment.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The focus of this thesis is the design and analysis of factorial experiments in blocks and

stages, using motivating examples from optoelectronic engineering and chemistry.

In Chapter 2 we found D-optimal block designs for linear mixed models with random
block effects and autocorrelated errors appropriate for our motivating example of the
manufacture of microstructured optical fibres. The designs were found using coordinate

exchange and interchange algorithms

The designs found in Chapter 2 using both algorithms were robust to misspecification of
the autocorrelation parameter, p, and the ratio of variances, n, which are unknown prior
to experimentation. However, completely ignoring the correlation structure or blocks
leads to a loss in efficiency. We also noted that designs found using the coordinate
exchange algorithm had a higher D-optimality objective function value than designs
found using the interchange algorithm, which assigns treatments from the D-optimal
unblocked design to blocks. We also found a number of equivalent D-optimal designs,
that is designs with the same value of the D-optimality objective function. These
equivalent designs did not necessarily have the same treatments, allocation or ordering

of treatments.

An example from chemistry, the formulation and dissolution testing of a pharmaceu-
tical product, was the motivation for the work in Chapters 3 to 5. In Chapter 3 we
discussed the design of optimal multi-stage designs with potentially restricted randomi-
sation suitable for the formulation of a pharmaceutical product. We define a multi-stage
experiment as an experiment which applies sub-treatments to the same experimental
unit at multiple stages, and measures a distinct response after the sub-treatments
are applied in each stage. We found optimal multi-stage designs for a compound
Bayesian D-optimality criterion using the coordinate exchange algorithm with both

random starting designs and designs with good projection properties (Cheng, 2006;
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Loeppky et al., 2007).

In general, the model matrices for the three models fitted to the two responses for the
optimal two-stage split- and strip-plot designs found in Chapter 3 had more correlated
columns than two-stage completely randomised designs. Therefore, the variance and
bias of more parameters are inflated in two-stage split- and strip-plot designs than
in two-stage completely randomised designs. We also found that using the coordinate
exchange algorithm and designs with good projection properties as starting designs can
find two-stage completely randomised designs with efficiencies of approximately 100%,

but can have significantly more correlated model matrix columns.

In Chapter 4, we presented a method of Bayesian variable selection for multivariate
responses from supersaturated split-plot experiments, which was motivated by the
dissolution testing of a pharmaceutical product. We motivate our Bayesian variable
selection method through an initial comparison of frequentist and Bayesian analysis
methods for simulated responses from the two-stage split-plot design found in Chapter
3. We found that the frequentist approach is affected by the difficulty of estimating
variance components. Therefore, we concluded that Bayesian methodology should be
used to analyse the supersaturated multi-stage split-plot experiment with multivariate

responses, agreeing with the conclusions of Gilmour and Goos (2009).

In Chapter 4 we introduce a Metropolis-Hastings within Gibbs sampling algorithm,
which generates dependent samples from the posterior distribution of the parameters
in the linear mixed effects model for multivariate responses. Samples from the algorithm
can be used to perform variable selection, estimate model parameters and predict re-
sponses. We demonstrated the performance of this algorithm, which extends the work
of Geweke (1996) and Tan and Wu (2013), for data simulated for a supersaturated
multi-stage split-plot design.

In Chapter 5, we presented a case study from our collaboration with GlaxoSmithK-
line, and applied the methodology developed in Chapters 3 and 4 to the formulation
and dissolution testing of a pharmaceutical product. We also detailed how we located
a formulation that maximised the estimated probability of passing particular speci-
fications using both a grid search and the EGO algorithm (Jones et al., 1998). Both
approaches use samples from the Metropolis-Hastings within Gibbs sampling algorithm
introduced in Chapter 4. The work in Chapter 5 demonstrates the impact of using our

methodology in industry.

6.2 Future Work

Possible extensions to the work in this thesis are discussed in Sections 2.7, 3.7, 4.6
and 5.5. In Section 6.2.1, we present a summary of some general extensions that could
be considered. In Section 6.2.2, we consider a more specific extension which develops

methodology from the recent literature.
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6.2.1 General Extensions

Optimality Criteria

D-optimality is particularly appropriate when the aim of the experiment is to gain
scientific understanding through estimation of the fixed effect parameters (Goos, 2002).
As this is the aim of the collaborative research presented in this thesis, we have used the
D-optimality objective function, (1.18), to find optimal block designs for autocorrelated
errors in Chapter 2. We have also used a compound Bayesian D-optimality objective

function, (3.20), to find optimal multi-stage designs in Chapter 3.

Alternative optimality criteria can be used to find designs for estimation of the fixed
effect parameters. For example, A-optimality, which minimizes the average variance of
the parameters estimates, is advocated by a number of authors. Gilmour and Trinca
(2012) recommended using a new criterion based on A-, and not D-, optimality for the
estimation of fixed effect parameters. The A-optimality objective function allows the
terms in the model to be weighted according to their perceived importance prior to

experimentation, whereas the D-optimality objective function does not.

Considering A-optimality would allow us to ascertain whether our D-optimal block
and multi-stage designs perform well with respect to alternative criteria. It would
also allow us to asses whether the objective function used in the coordinate exchange
algorithm influences the treatment allocations and robustness to p and 7 seen for the
block designs in Chapter 2, or alters the correlation between columns in the model

matrices considered for the multi-stage designs in Chapter 3.

In Chapter 4 we found that frequentist variable selection methods are dependent on
the estimates of the variance components. We considered that this may be because
the compound criteria we used to find designs is based on D-optimality, and therefore
the primary aim of these designs is the estimation of the fixed effects and not the
variance components. We could find compound V-optimal designs, which minimise
the predicted variance over the design region, and compare the designs found for fixed
effect and variance component estimation. A new criterion for split-plot designs which
balances the objectives of fixed effect and variance component estimation has been

presented by Mylona et al. (2014). This criterion is discussed in detail in Section 6.2.2.

Range of Parameters

The range of p and n values considered when assessing the robustness of the block
designs found in Chapter 2 to misspecification of p and n was quite wide, but the
number of specific values considered was not very large. Also, only a small number
of w vectors were considered when assessing the robustness of the two-stage split-plot

designs to misspecification of w in (3.20) in Chapter 5.
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These values and vectors were chosen in order to obtain general results within our
computational boundaries. However, if we were able to obtain past experimental data
for the block designs in Chapter 2, and used the results from the experiment in Chapter
5, we could use this prior information to estimate p and 7, and select an appropriate

w vector.

Algorithms for Design and Analysis

In Chapters 2, 3 and 5 we used a coordinate exchange algorithm to find optimal de-
signs, as it can be easily adapted to different design structures and objective functions.
However, the coordinate exchange algorithm is a ‘greedy’ algorithm, which only accepts
moves which increase the objective function value and can therefore get stuck at local

optima.

Alternative stochastic algorithms, such as simulated annealing (Aarts and van Laarhoven,
1989; Brooks and Morgan, 1995), accept or reject moves based on a certain probability.
This use of an acceptance probability allows these algorithms to escape local optima.
Hence, stochastic algorithms may find designs with higher objective function values.
Using two (or more) algorithms to find optimal designs would allow the comparison of
these designs based on properties such as objective function values, treatment allocation

and correlation between columns in the model matrix.

In Chapters 4 and 5 we use samples from a Metropolis-Hastings with Gibbs sam-
pling algorithm to perform variable selection, estimate model parameters and predict
multivariate responses. We used this algorithm as both Gibbs and Metropolis-Hastings
sampling are well known Bayesian methodologies which are popular in literature. How-
ever, there are alternative methods of variable selection using MCMC algorithms, such

as the reversible jump MCMC algorithm proposed by Green (1995).

The reversible jump MCMC algorithm provides a method of sampling from the joint
posterior of a model indicator and model parameters, without knowledge of the dimen-
sion of these vectors. Variable selection can therefore be performed using samples from
this algorithm without having to know the maximum number of parameters, p, in the
model, which required in our Metropolis-Hastings within Gibbs sampling algorithm.
The reversible jump MCMC algorithm searches spaces for models with different num-
bers of parameters. However, the rules which define when jumps are made have to be

determined, which adds extra complexity when initialising the algorithm.

Prior and Proposal Distributions

The prior distributions presented in Chapter 4 were multivariate extensions of those
given by Tan and Wu (2013). However, other prior distributions may be more appro-

priate for other motivating examples. If alternative prior distributions were considered,
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the robustness of the variables selected, parameters estimated and responses predicted

to these different prior distributions could be assessed.

A starting point for this future work could be to consider the mixture of normal prior
distribution for fixed effect parameters discussed in Box and Meyer (1986) and Gilmour
and Goos (2009). Using this prior would allow us to extend the stochastic search vari-
able selection (SSVS) algorithm discussed by George and McCulloch (1993, 1997);
Brown et al. (1998) and Chipman et al. (2001). We could then compare the vari-
ables selected, parameters estimated and responses predicted using samples from our
Metropolis-Hastings within Gibbs sampling algorithm and the extended SSVS algo-

rithm.

In Appendix C, we note that the effective sample size of the samples of correlation pa-
rameter ¢, which is sampled using Metropolis-Hastings rejection sampling, is small and
hence the current Metropolis-Hastings within Gibbs sampling algorithm is not very
efficient. Therefore, considering a different proposal distribution for the Metropolis-
Hastings step in the algorithm presented in Chapter 4 would be beneficial. Any al-
ternative proposal distributions considered need to have the support [0,1], therefore
possible alternatives include beta distributions with different shape and scale parame-
ters and the uniform distribution. Proposal distributions which adapt as ¢ is sampled

could also be considered.

6.2.2 Designs for Estimating Both Fixed Effects and Variance Com-
ponents

In Chapter 4, the reliance of the frequentist variable selection method on the difficult to
estimate variance components was given as the main reason for pursuing Bayesian vari-
able selection methods. Estimating the variance components is important to frequentist
variable selection, as the model selection criteria given in Section 4.3.2 of Chapter 4

depend on these estimates through the calculation of the maximised log likelihood (4.7).

The compound Bayesian D-optimality criterion used to find the two-stage split-plot
design analysed in Chapter 4 only considers the estimation of the fixed effects and not
the variance components. Therefore, it may be possible that the performance of these
frequentist analysis methods could be improved by considering designs found using an
optimality criterion which accounts for estimation of both the fixed effects and the

variance components.

Mylona et al. (2014) introduced an objective function for finding split-plot designs with
the aims of fixed effect and variance component estimation. In this section, we will use
a compound version of this objective function to find a two-stage split-plot design. We
will compare this design to the two-stage design found using compound Bayesian D-
optimality objective function in Chapter 3. We will also assess the performance of the

frequentist analysis method considered in Chapter 4, all subsets regression, for data
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simulated from this new design.

The objective function maximised by Mylona et al. (2014) is

l1—«

2

(6%
dmcs = » log |¢p| + log |N| (6.1)

where 0 < a < 1, ¢p is the D-optimality criteria, (1.18), and

1 (e ((PZ2")?) tr(P?ZZT)
N= 2( tr(P2ZZ7) tr(P?) ) (6.2)

is a general expression for the information matrix for estimating the variance com-
ponents using REML (Section 1.3.2, Patterson and Thompson, 1971; Harville, 1977).
In (6.2), P =V ! -V IX(XTV-IX)"IXTV~L when V is the variance covariance

matrix for responses modelled using the linear mixed effects model (1.3).

Mylona et al. (2014) recommended using a Bayesian approach, and placed a prior on

p= 3 /(o2 + O',QY). The Bayesian composite objective function is

1
(I)MGJ:/O oraa(p)p(p)dp, (6.3)

where p(p) is the prior distribution for p. Mylona et al. (2014) assumed that p ~
B(1,1) =U(0,1). Hence p(p) < 1 and

1
(I)MGJOC/O dmar(p)dp. (6.4)

Evaluation of (6.4) requires numerical approximation. Mylona et al. (2014) used Gauss-

Jacobi quadrature (Appendix A) to approximate (6.4) as

1 Na aGJ + 1
Py~ 5 > w§bma (‘(]2 (6.5)
g=1
where the n, abscissas afj , and corresponding weights fwf‘] ,g=1,...,n,, are obtained

from the Jacobi polynomial. An appropriate n, is chosen by evaluating (6.5) for a
representative, fixed, design for multiple n, values and selecting the smallest n, at
which (6.5) stabilises. The value at which n, stabilises is the n, where, as n, increases,

the difference in (6.5) is small.

The design considered in Section 4.3 of Chapter 4 is a two-stage split-plot design. The
objective function (6.5) is for single-stage split-plot designs and therefore needs to be

extended for multi-stage designs. The compound optimality objective function we use
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to find multi-stage split-plot designs with the objectives of fixed effect and variance

component estimation is

m
w *
Dugs =Y —®f, (6.6)
- D
where
* 1 S GJ x agj +1
P & 52“’9 b (2 (6.7)
g=1
and

1l -«
2

1 (p) = - log [XyV, X1 + Rl + =5 log NG (6.8)
The objective function (6.6) is an extension of the compound Bayesian D-optimality
objective function, (3.20), presented in Section 3.4.2 of Chapter 3. Recall that X; is
the model matrix for design D for model [ = 1,...,m, V, is the variance covariance
matrix for the responses from the experiment, which is dependent on p, R; is the prior
precision matrix for model [, p; is the number of parameters in model [ and N is (6.2)
calculated using X; and V,. We use the Bayesian D-optimality objective function in
(6.6) as it allows us to consider our prior uncertainty about 3 and find supersaturated

designs.

Note that (6.6) requires the choice of n, and a. We found the smallest value of n, for
which (6.6) is stable is 12 for a two-stage split-plot design. In their paper, Mylona et al.
(2014) suggested « € [0.5,0.75], and we set o« = 0.75 in order to give more weight to the
estimation of the fixed effect parameters, which has been the primary aim throughout
this thesis.

We used (6.6) with n, = 12 and a = 0.75 as the objective function, ¢, in the coordinate
exchange algorithm given in Section 3.5.1 of Chapter 3 to find a sixteen-run two-stage

split-plot design, given in Table 6.1.

We note that the level of Factor 2 is constant in the design in Table 6.1, and the design
also has two repeated whole plot treatments. The constant level of Factor 2 means
the main effect for this factor is aliased with the interaction. The repeated whole-
plot treatments will improve the estimation of the variance components, however they
restrict the number of combination of the levels of Factors 1 and 2 considered and hence

impact on our ability to estimate the parameters related to these factors.
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

1 1 -1 1 -1 1
1 1 -1 -1 1 1
1 1 1 1 1 -1
1 1 1 -1 -1 -1
-1 1 -1 -1 1 -1
-1 1 1 -1 -1 1
-1 1 1 1 1 1
-1 1 -1 1 -1 -1
1 1 -1 1 1 1
1 1 1 1 -1 -1
1 1 -1 -1 -1 1
1 1 1 -1 1 -1
-1 1 1 1 -1 1
-1 1 -1 -1 -1 -1
-1 1 1 -1 1 1
-1 1 -1 1 1 -1

Table 6.1: 16 run two-stage split-plot design found using the coordinate exchange
algorithm in Section 3.5.1 of Chapter 3 with (6.6).

Figure 6.1 is the heat map for the correlations between columns in the matrix for the
model including the intercept, main effects and pairwise products of all six factors.
The column correlation matrix, (3.21), is discussed in further detail in Section 3.5.2 of
Chapter 3, and the axes labels in Figure 6.1 relate to the columns for Model 3 given in
Table 3.7, Section 3.6 of Chapter 3.

We note from Figure 6.1 that all of the columns which are correlated in the model
matrix for the design in Table 6.1 are fully correlated with each other. This means
that the parameters estimates related to the correlated columns cannot be estimated
independently. The defining relation, which is the relationship between the columns in
the model matrix for the full 26 factorial design that can be used to select the sixteen

rows in Table 6.1, is 1,, = fo = —f1f3fg=—11f5f4f5, where 1,, is the n x 1 vector of ones.

The columns correlated with 1,, are referred to as words, and the number of columns
included in these words is referred to as the length of the word. For example, f5 is a
word of length one and —f;f3fgs is a word of length 3. The resolution of a design is one
greater than the length of the shortest word in the defining relation. The design in

Table 6.1 is therefore a resolution II design.

The design in Table 6.1 is therefore severely limited, as it is a resolution II design
and has a main effect fully aliased with the intercept. We would not recommend this
design for use in practise. However, we will investigate whether, as expected, the

repeated whole-plots improve the estimates of the variance components, and therefore
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the results for the frequentist analysis method of all subsets regression, when compared
to the results in Section 4.3.2 in Chapter 4.

1.0

0.5

-1.0

Figure 6.1: Heat map of column correlation matrix for Model 3 from Table 3.7 for the
design in Table 6.1.

We used the same models as used in 4.3.2 to simulate responses, hence we assume that:

e The responses from Stage 1 are generated using (1.3) with 3=(4.80, 4.77, -3.73,
-4.93, 0, 0,0,0,0,0,0,0,-4.83,6.73,0)”, where X is the model matrix including the
columns for the main effects and all pairwise products of the five factors in stage
one, v ~ N(04,1014) and € ~ N(01¢, I1g).

e The responses from Stage 2 are generated using (1.3) with 8=(0, 5.04, 0, 5.48,
0, -4.25, 0,0,0,O,O,O,O,O,O,O,O,O,O,O,O)T7 where X is the model matrix including the
columns for the main effects and all pairwise products of the six factors in stage
one and two, v ~ N(04, 10I4) and € ~ N(0y¢, Iig).

We note from Figure 6.1 that f; = fify, = —f3fs, f3 = —f1fy = fofy, £y = fo.f) and
fs = —fifs = fofs. The terms relating to these columns cannot be independently
estimated when performing all subsets regression. Aliased terms cannot be considered
in the same model when fitting the linear mixed model (1.3) to the simulated data.
This therefore reduces p* used in the all subsets regression for the design in Table 6.1, as
the maximum number of columns in the model which can be selected without including

correlated columns is eight.

Also, the complete aliasing means that if the term relating to fy, for example, is selected
in all subsets regression, then this is identical to selecting the term relating to fifs or

—f3fs. Therefore, in the results given in Tables 6.2 and 6.3, we state we have found
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the correct model if the term used to simulate the data or any of the aliased terms are

identified as active.

We also indicate the number of additional aliased terms are in the final model, for
example if the full true model for the simulated response from Stage 2, there are three
additional aliased terms which cannot be distinguished from those in this model; one

for £f4 and two for fg.

Criterion | Correct model Correct Terms Additional Additional
for p = 67 in Final Model Terms in Final Aliased Terms
Model in Final Model
BIC Yes 6 of 6 0 5
pAIC Yes 5 of 6 0 3
mAIC Yes 5 of 6 0 3

Table 6.2: Models selected using all subsets regression for various model selection
criteria when (1.3) is assumed to model simulated responses from Stage 1 of the 16 run
two-stage split-plot experiment in Table 6.1.

Criterion | Correct model Correct Terms Additional Additional
for p = 37 in Final Model Terms in Final Aliased Terms
Model in Final Model
BIC Yes 3 of 3 4 3
pAIC Yes 3of 3 2 2
mAIC Yes 3of 3 1 2

Table 6.3: Models selected using all subsets regression for various model selection
criteria when (1.3) is assumed to model simulated responses from Stage 2 of the 16 run
two-stage split-plot experiment in Table 6.1.

The final models in Table 6.2 (Stage 1) and Table 6.3 (Stage 2) have fewer additional
terms than the models in Tables 4.1 and 4.2 in Section 4.3.2 of Chapter 4. Also, more
of the correct terms are identified for mAIC for the simulated response from Stage 1,
and the correct model is identified for simulated responses from Stage 2 for all three

model selection criteria.

However, these results are impacted by the additional aliased parameters in the final
model, as the aliasing between these terms means these will not be able to be distin-
guished from other terms. The correlation between columns for the model matrix for
Model 3 for the two-stage optimal split-plot design, Figure 3.7b in Section 4.3.2, is in
(—=1,0) or (0,1), hence there is the potential to gain information about all the effects

of interest for this design.
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D 62 63
11]56.88 14.11
212076 22.34
3| 0.75 27.39
41 075 9.04
5| 0.65 9.07
6| 0.61 9.08
71 059  9.09
8| 0.58 9.09

Table 6.4: Estimates of the variance components (2dp) when the models of size p
which maximise BIC, pAIC and mAIC for simulated responses for Stage 1 of the 16-
run two-stage split-plot experiment given in Table 6.1. The estimates of the variance
components for the true model are highlighted in bold.

D 62 &3
1| 045 9.26
21026 931
3014 9.34
41 0.09 9.35
51| 0.07 9.36
6| 0.06 9.36
71 0.06 5098
81 0.05 5.98

Table 6.5: Estimates of the variance components (2dp) when the models of size p
which maximise BIC, pAIC and mAIC for simulated responses for Stage 2 of the 16-
run two-stage split-plot experiment given in Table 6.1. The estimates of the variance
components for the true model are highlighted in bold.

Tables 6.4 and 6.5 give the estimates of o2 and 03 from the models fitted to the
simulated responses from Stage 1 and 2, respectively, for the experiment in Table 6.1.
The majority of these estimates are an improvement on the estimates for the optimal
two-stage split-plot design for (3.20), which were presented in Tables 4.3 and 4.4 in
Section 4.3.2 of Chapter 4.

Notice that the estimates of o2 in both Tables 6.4 and 6.5 are larger than those in
Tables 4.3 and 4.4, however they still underestimate the true value of 02 = 1. The
estimates of 0'3/ in Tables 6.4 and 6.5 are closer than those in Tables 4.3 and 4.4 to the

true value of ag = 10.

The variance components for the model used to simulate the data are highlighted in
bold in Tables 6.4 and 6.5. We notice that the estimates of the two variance components
in Table 6.4 are larger, and closer to the true value, than the estimates of the variance

components for the true model given in Table 4.3. Also, the estimate for 03 in Table
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6.5 is larger, and closer to the true value that the estimate of 03 in Table 4.4. However,
the estimate for o2 for the true model for Stage 2 is smaller in Table 6.5 than in Table
4.4.

Therefore, based on the results discussed in this section, a two-stage design found using
(6.6) appears to have the potential to overcome the problems with frequentist analysis
discussed in Section 4.3. However, the correlation of £1 between columns in the model
matrix for the resolution II design in Table 6.1, as shown in Figure 6.1, makes this
design unusable in practise. Hence, further research would be required to identify a
criterion which finds supersaturated designs which balance the objectives of estimating

fixed effects and variance components.

Although not shown here, we also found 16 run two-stage split-plot designs for (6.6)
with o = 0.5,0.55,0.6,0.65,0.7 using the coordinate exchange algorithm in Section
3.5.1. These were also all resolution II designs, and therefore had full aliasing between

the mean, a main effect, and two-factor interactions.

We are currently researching supersaturated split-plot designs found using (6.6) with
[ =1, and investigating the impact of o and Ry on the number, and size, of correlated
columns. We are also considering whether using a criterion such as F(s?) optimality
(Booth and Cox, 1962) instead of Bayesian D-optimality in (6.6) will help avoid highly

correlated columns.
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Appendix

A Gaussian Quadrature

Numerical quadrature is a method of numerically approximating definite integrals when
there is no analytical solution. In quadrature, the integral is approximated by a
weighted sum of the integrand evaluated at selected values in the domain of the in-

tegral, where the n, values at which the integrand is evaluated are called the abscissas.

Gaussian quadrature is a class of quadrature techniques that are suited to certain types
of integrals. An n,-point Gaussian quadrature rule gives an exact result for polynomials
of degree 2n, — 1 or less when certain, non-equally spaced, abscissas and weights are
chosen. Other quadrature methods are suitable for different forms of integrands. For

further detail regarding quadrature methods, see Ralston and Rabinowitz (2001).

Gauss-Jacobi quadrature approximates and integral of the form

1
/ F@)(1+2)%(1 — 2)%da (A1)
-1

as

> wyf(ag), (A.2)

g=1
where the abscissas a4, g = 1,...,n,4, are the roots of the Jacobi polynomial of degree
n, and

y _ “2ngt+a+B+2T(ng+a+1)(ng+ B+ 1) 20+
g ng+a+pB+1 I'(ng+a+p+1)(n.+1)! P, (a;)Py,11(a;)

(A.3)
are the weights when P, is the Jacobi polynomial of degree n,. For more details
regarding Jacobi polynomials, see Szegd (1975).

In Sections 4.3.3 and 6.2.2, we use Gauss-Jacobi quadrature to approximate analyti-

cally intractable integrals for a function involving a correlation parameter, p, which is
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assumed to have a B(k, A) prior,

p(p) = Ww—lu e (A.4)

where k, A > 0 are the two shape parameters. Assuming we have some likelihood

function involving p, for example f(y|p), the marginal density of y has the form

(k4 A

1 1
/0 £ (y1p)p(p)dp = /0 f<y|p>mp“—1<1—p>*ldp. (A.5)

Let p = (¢ + 1)/2, then (A.5) is proportional to

K+A—1 1
5 [ (0P et o, (4.6)

which has the same form as (A.1) and can therefore be approximated by

lli—l-/\—l Na a7 agGJ +1
; Wi f (v ), (A7)
g=1
where a?‘] ,g=1,...,n,, are the n, abscissas and ngJ are the n, weights obtained from

Gauss-Jacobi polynomials. These abscissas and weights can be found using statistical

software, for example the function gauss.quad in the package statmod in R.

B Assessment of Models from Chapter 5

We have assumed that the errors are normally distributed with constant variance when
fitting the linear mixed effect model, (4.21) from Section 4.4.1 of Chapter 4, to the
responses from the GlaxoSmithKline (GSK) experiment in Chapter 5. In this appendix,
we present model assessment plots for the models in Chapter 5 (Section B.2), which
use the posterior median of each column of the sampled logit-transformed predicted
responses, (5.7) from Section 5.4 of Chapter 5, as the fitted response, and therefore

ignore the correlation between the columns.

Samples from the Metropolis-Hastings within Gibbs sampling algorithm (Section 4.4.4)
are used to calculate (5.7). Both 3(2,2) and (11, 2) are used as prior distributions for
¢ = O',QY /(% + ag) in the sampling algorithm, and throughout this appendix we refer to
B(2,2) as Prior 1 and §(11,2) as Prior 2. The plots in Section B.2 are representative
examples of the plots from Matthews (2015).
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B.1 Model Assessment Plots

We use three plots to assess the models fitted to the responses in Chapter 5; the
quantile-quantile (QQ) plots, plots of the posterior medians against the standardised

residuals and plots of the factor levels against the standardised residuals.

The vector of residuals is rqp = (rqr(X1),...,7ar(xn))T, where r4r(x;) is the residual
for treatment x;, ¢ = 1,...,n, for Test d and Reference R. Let §4r(x;) be the posterior
median of the its samples of the logit-transformed predicted response for x;, (5.7) from

Section 5.4, and y4r(x;) be the logit-transformed observed response for x;, then

~T, L 2
Jur(Xi) — Yar(xi
rdR(Xi) — ( dR( l) - dR( l)) ) (AS)
Similarly, the vector of standardised residuals is rgg = (fqr(X1),. .., 7ar(Xx))T, where
7qr(X;) is the standardised residual for treatment x;, i = 1,...,n, for Test d and

Reference R. Let 52 r be the posterior median of the Rth diagonal element of the its

sampled scale matrices for Test d, 34, then

(G (%:) = yar(x:))* (A.9)

~2
nadR

Tar(X;) =

QQ-plots are used to assess whether the residuals are approximately normally dis-
tributed. In a QQ-plot, the quantiles from the vector of residuals are plotted against
the quantiles of an appropriate normal distribution. Hence, if the residuals are approx-
imately normally distributed, the plotted points form a straight line. An example QQ
plot is given in Figure A.1. Significant departures from a straight line suggest that a

different distributional assumption should be considered for the residuals.

Sample Quantiles

T T T T T
-2 -1 0 1 2

Theoretical Quantiles

Figure A.1: An example QQ-plot, which plots the theoretical quantiles of the normal
distribution which the errors are assumed to follow against the quantiles of the residuals
(A.8) for all treatments, x;, ¢ = 1,...,n. These residuals are calculated using samples
from the Metropolis-Hastings within Gibbs Sampling algorithm (Section 4.4.4) and the
logit-transformed observed responses for Test 2, Reference 1 and Prior 2 from Chapter
5.
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The plots of the posterior median against the standardised residuals are used to deter-
mine whether the assumption of a constant variance for the errors is appropriate. If
the residuals have equal variances then the points on this plot will be a random scatter,
however any sort of trend or fan suggests that there are unequal variances (heteroscedas-
ticity), and hence alternative distributions for the error should be considered. Figure

A.2 is an example posterior median against standardised residual plot.

T T T T T T
0.60 0.65 0.70 075 0.80 0.85

Posterior Median Predicted Response

Figure A.2: An example plot of the posterior median of the predicted responses against
the standardised residuals (A.9) for all treatments, x;, i = 1,...,n. These standard-
ised residuals are calculated using samples from the Metropolis-Hastings within Gibbs
Sampling algorithm (Section 4.4.4) and the logit-transformed observed responses for
Test 3, Reference 1 and Prior 2 from Chapter 5.

Residual
L1

Residual
L1

-1.0 0.0 1.0 20
-1.0 0.0 1.0 20

1 .
T T T T T T T T T T
-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10

Factor 1 Factor 2

Residual

T R R
Residual

T R R

-1.0 0.0 1.0 20
-1.0 0.0 1.0 20

T T T T T T T T T T
-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10

Factor 3 Factor 4

Residual

T R R
Residual

T R R

-1.0 0.0 1.0 20
-1.0 0.0 1.0 20

T T T T T T T T T ;
-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 10

Factor 5 Factor 6

Figure A.3: An example plot of the factor levels against the standardised residuals,
(A.9) for all treatments, x;, ¢ = 1,...,n. These standardised residuals are calculated
using samples from the Metropolis-Hastings within Gibbs Sampling algorithm (Section
4.4.4) and the logit-transformed observed responses for Test 3, Reference 1 and Prior
2 from Chapter 5.
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Plots of the standardised residuals against the factor levels are also used to determine
whether the assumption of a constant variance for the errors is appropriate. If there
is evidence of some relationship between the variability of the residuals and the factor
levels, such as a difference in the spread of the points at different factor levels or a
trend in the residuals as the factor levels change, the assumption of constant variance
does not hold. An example plot of the factor levels against the standardised residuals

is given in Figure A.3.

B.2 Assessment of Models from Chapter 5

The model assessment plots for models fitted to the experimental data from Chapter
5 are given in Matthews (2015). In this section we discuss certain plots which were
selected to be representative examples. As the supersaturated split-plot design for
the experiment in Chapter 5 is a screening design, future experimentation will be
undertaken for the influential factors identified in the analysis in Section 5.3 and we do

not expect these initial results to show a model with a perfect fit.

Figure A.4 provides two example QQ-plots with plotted points which are close to a
straight line. This suggests the assumption of normally distributed errors holds, how-
ever the effect of outliers, such as the outlier seen in Figure A.4(a), may need to be

considered.

1.0 15
0.2 0.4 0.6
I

0.5
I

Sample Quantiles
Sample Quantiles
0.0
1

-0.4
I

-0.6
I

Theoretical Quantiles Theoretical Quantiles

(a) (b)

Figure A.4: Example QQ-plots for models fitted to logit-transformed fo values for the
two-stage supersaturated split-plot experiment in Chapter 5. These residuals are cal-
culated using samples from the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) and the logit-transformed observed responses for (a) Test 1, Reference
1 and Prior 2, and (b) Test 2, Reference 1 and Prior 2.
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(a) (b)

Figure A.5: Example plots of the posterior median response against the standardised
residuals (A.9) for models fitted to logit-transformed fo values for the two-stage su-
persaturated split-plot experiment in Chapter 5. These standardised residuals are cal-
culated using samples from the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) and the logit-transformed observed responses for (a) Test 2, Reference
1 and Prior 2, and (b) Test 4, Reference 2 and Prior 2.
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Figure A.6: Example plots of the factor levels against the standardised residuals (A.9)
for models fitted to logit-transformed fo values for the two-stage supersaturated split-
plot experiment in Chapter 5. These standardised residuals are calculated using samples
from the Metropolis-Hastings within Gibbs sampling algorithm (Section 4.4.4) and the
logit-transformed observed responses for (a) Test 2, Reference 1 and Prior 2, and (b)
Test 4, Reference 2 and Prior 2.

Figures A.5 and A.6 provide two example model assessment plots for models with a
poor fit. The other plots for the models considered in Chapter 5 are similar to Figures
A2 and A.3 in Section B.1. Figure A.5(a) shows a plot with some fanning, hence

the assumption of constant variances may not hold, as the variability of the residuals
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increases as the response increases. Therefore, a stronger transformation may need to
be applied to the responses from the experiment to ensure the assumption of constant

variances holds.

The residuals in Figure A.5(b) have an upward trend, hence we are underfitting for
some responses and overfitting for others. There is therefore some bias in the results,

which will affect any modelling or prediction performed using these models.

Figure A.6 gives the factor level against standardised residual plots for the standardised
residuals which were plotted against the posterior median in Figure A.5. There is some
increase in variability of the residuals as the level of Factors 4 and 6 increases in Figure
A.6(a), which matches the fanning seen in Figure A.5(a). The residuals are negative
when Factor 2 is -1 and positive when Factor 2 is +1 in Figure A.6(b), hence this figure

also gives evidence of bias.

C Assessment of MCMC Samples from Chapters 4 and 5

In this appendix, we use two plots; the trace plot and the autocorrelation function
(ACF) plot, which are introduced in Section C.1, to investigate the convergence prop-
erties of the Markov chains formed by the samples in the Metropolis-Hastings within
Gibbs sampling algorithm from Section 4.4.4 of Chapter 4 for the responses in Chapters
4 and 5. These plots are by no means the only methods for analysing the convergence
of Markov Chain Monte Carlo (MCMC) sample, and alternatives are discussed and
presented by a number of authors including Schafer (1997) and O’Hagan and Forster
(2004, Chapter 8).

The plots in Section C.2 and C.3 are chosen to be representative examples of the plots
in Matthews (2015). Recall that 3(2,2) and (11, 2) are both used as prior distributions
for ¢ = 02 /(024 02) in Chapter 4 and 5 (see Section 4.4 for further detail). Throughout
this appendix we refer to 5(2,2) as Prior 1 and (11, 2) as Prior 2.

C.1 MCMC Assessment Plots

We use the trace and autocorrelation function (ACF) plot to assess whether the Markov
chains from the Metropolis-Hastings within Gibbs sampling algorithm in Section 4.4.4
of Chapter 4 appear to have converged to their known conditional distributions. The
trace plot is a line plot of the iterative samples from the conditional distribution, and
a Markov chain which converges to the required uni-modal posterior distribution will

not have any shifts in mode.

However, some of the conditional distributions we sample from are unusual, for example
the conditional distribution for the fixed effect vector 8;, j = 1,...,p, is sampled from

different distributions with a certain probability. These conditional distributions will
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affect the Markov chains formed by sampling from them, therefore the trace plots for

these parameters will be unusual.

Figure A.7(a) is an example trace plot for a fixed effect parameter B,, which is the jth
row of B in (4.21) from Section 4.4.1 of Chapter 4, with a high posterior probability of
being active. Therefore, this 3, is mainly sampled from a normal distribution. Figure
A.7(b) is an example trace plot for a B; which has a low posterior probability of being

active and is therefore mainly sampled as 0,.
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Figure A.7: Example trace plots the fixed effect vector 3;, j = 1,...,p, which is
sampled using the Metropolis-Hastings within Gibbs sampling algorithm, when 3; has
a high posterior probability of being (a) active (3, for Test 2 and Prior 1 from Chapter
5) and (b) non-active (3, for Test 4 and Prior 1 from Chapter 5).

The trace plots for the indicator variable é;, j = 1,...,p, and c are also unusual as these
parameters are sampled from particular sets, 0; € {0,1} and c € {1/4,9/16,1,4,9,16,25}.
Trace plots for these variables are not considered, as they are difficult to gain insight

from.

The ACF plot shows the correlation between iterative samples against the distance,
or lag, between iterative samples. When the Markov chain of sampled parameters
converges to the required posterior distribution, the correlation between samples should
be low throughout. Figure A.8 gives two examples ACF plots for Markov chains with

good convergence properties.
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Figure A.8: Example ACF plots for the fixed effect vector 8;, j = 1,...,p, which is
sampled using the Metropolis-Hastings within Gibbs sampling algorithm, when 3; has
a high posterior probability of being (a) active (3, for Test 2 and Prior 1 from Chapter
5) and (b) non-active (3, for Test 4 and Prior 1 from Chapter 5).

C.2 Assessment of MCMC samples from Chapter 4

In this section we present example trace plots for each of the parameters sampled using
the Metropolis-Hastings within Gibbs sampling algorithm given in Section 4.4.4 for the
simulated responses from Table 4.7 in Section 4.5, which are chosen to be representative

of the plots for all the parameters and simulated responses given in Matthews (2015).

Figure A.9 is the example trace and ACF plot for the intercept parameter, 3;. This
figure suggests the Markov chains formed by sampling 3, from (4.32) (as given in
Section 4.4.3 of Chapter 4) has good convergence properties, as there no shifts in the

mean or trends in Figure A.9(a) and the correlations in Figure A.9(b) are low.

Figure A.10 is an example trace and ACF plots for Markov chains formed by sam-
pling of B;, j = 1,...,p using the extended Geweke (1996) approach, which relies on
(4.36) and is discussed in Section 4.4.3 of Chapter 4, in the Metropolis-Hastings within
Gibbs Sampling algorithm, when 3; has a high posterior probability of being active.
Similarly, Figure A.12 is an example trace and ACF plots for 8; when 3; a high pos-
terior probability of being non-active. Figure A.10(a), is representative of a Markov
chain with good convergence properties. However, even though the correlation between
sampled decreases as the lag increases in Figure A.10(b), some of the correlations are
quite high. Figure A.12(b) shows that the correlation for the non-active parameter
samples are low, however Figure A.12(a) is unusual because of the high proportion of

parameters sampled as zero, as discussed in Section C.1.
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Figure A.9: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling B, from (4.32) in the Metropolis-Hastings within Gibbs sampling algorithm

(Section 4.4.4) from Chapter 4. These plots are for the samples of 3, for Y2 from
Table 4.7.
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Figure A.10: Example (a) trace and (b) ACF plot for the Markov chain formed by sam-
pling 8;, j = 1,...,p, using (4.36) in the Metropolis-Hastings within Gibbs sampling
algorithm (Section 4.4.4) when 3; has a high posterior probability of being active for
the simulated responses from Chapter 4. These plots are for the samples of 3; for Yo
from Table 4.7.

Figure A.11 is an example trace plot for a B; which has a zero predicted posterior
probability of being active, and is consistently sampled as Of. This occurs for three of
the parameters sampled for the simulated data in Chapter 4, and, as the autocorrelation
function cannot be calculated for these constant samples, the ACF plots for these

parameters are not given in Matthews (2015).

190



Response 1

T T T T
[ 2000 4000 6000 8000 10000

Iterations
Response 2
o
2 4
0
9
= 9
S
<
S 4
1 T T T T T T
0 2000 4000 6000 8000 10000

Iterations

Figure A.11: Example trace plot for the Markov chain formed by sampling 3;,
j=1,...,p, using (4.36) in the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) when 3; has a zero posterior probability of being active for the simu-
lated responses from Chapter 4. These plots are for the samples of 3,4 for Y42 from
Table 4.7.
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Figure A.12: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling B;, j = 1,...,p, using (4.36) in the Metropolis-Hastings within Gibbs sam-
pling algorithm (Section 4.4.4) when 3, has a high posterior probability of not being
active for the simulated responses from Chapter 4. These plots are for the samples of
B for Y39 from Table 4.7.

Figure A.13 is an example ACF plot for ¢, the weighting of the scale matrix, 3, for
the active fixed effect parameters, 3;. This ACF plot has low correlations between
samples, which decrease as lag increases, which suggest that the Markov Chain formed
by sampling ¢ from (4.34) (from Section 4.4.3 of Chapter 4) has good convergence

properties.
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Figure A.13: Example ACF plot for the Markov chain formed by sampling ¢ from
(4.34) in the Metropolis-Hastings within Gibbs sampling algorithm (Section 4.4.4) for
the simulated responses from Chapter 4. This plots is for the samples of ¢ for Y41 from
Table 4.7.

Figure A.14 is an example trace and ACF plot for parameter sampled using Metropolis-
Hastings rejection sampling, ¢, the between run correlation parameter. The trace plot
(Figure A.14(a)) shows that the Markov chain formed by the samples of ¢ considers
different ¢ values and does not get stuck at one proposed value of ¢, however the ACF

plot (Figure A.14(b)) shows that the autocorrelation decreases but is high at small lags.
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Figure A.14: Example (a) trace and (b) ACF plot for the Markov chain formed by sam-
pling ¢ using Metropolis-Hastings sampling for (4.35) in the Metropolis-Hastings within
Gibbs sampling algorithm (Section 4.4.4) for the simulated responses from Chapter 4.
These plots are for the samples of ¢ for Yoo from Table 4.7.

We can use the effective sample size, which is an estimate of the number of independent
samples from the posterior the chain represents, to assess the impact of the correlation

on the samples of ¢. The effective sample size is given by

its

— A.10
1 "’221:1 Pl ( )
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where p; is the autocorrelation at lag [, and its is the number of iterations of the
Metropolis-Hastings within Gibbs sampling algorithm. The infinite sum »;°; p; has
to be estimated in order to get an estimate of (A.10), however the larger the autocor-

relation, the smaller the effective sample size is.

The estimated effective sample sizes, found using effectiveSize in the library coda
in R, for the Markov chains for ¢ considered in Chapter 4 are given in Table A.1. These
estimated effective sample sizes are lower than the 10% of its that we would ideally
want, where its = 10000, and show the impact the high autocorrelation is having on
the number of equivalent independent samples we can obtain from the Markov chain
for ¢. To improves these effective samples sizes, we could increase its or consider an

alternative proposal distribution for ¢.

The acceptance rate can also be used to assess parameters which are sampled using
Metropolis-Hastings rejection sampling. The acceptance rate is the ratio of the number
of times the proposal is accepted over the total number of iterations, an an acceptance
rate of between 0.1 and 0.4 is preferred. The acceptance rates of the Markov chains for
¢ considered in Chapter 4 are given in Table A.2, and are all either close to or between

0.1 and 0.4, as required.

The results for the simulated response Y39, which is the simulated response for a
supersaturated designs when the mean of the active responses is assumed to be 420
for Prior 1, are concerning, as the estimated effective sample size is very low (237) and
the acceptance probability (0.09) is also very low. A more extensive simulation study
which considers multiple simulated responses for this mean and prior distribution would
help establish whether these settings always produce Markov chains with low effective
sample sizes and acceptance probability, and try and establish what features of the

experiment are causing these problems.

Response Effective Sample Size

Y1 988
You 419
Y31 579
Yau 979
Y12 778
Yoo 914
Y32 237
Yo 308

Table A.1: Estimated effective sample size, rounded to nearest whole number, of sam-
ples of ¢ for the simulated responses, given in Table 4.7 of Section 4.5.1, from Chapter
4.
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Response Acceptance Rate

Y11 0.38
You 0.36
Y1 0.39
Y 0.35
Yio 0.34
Yoo 0.38
Yso 0.09
Yy 0.25

Table A.2: Acceptance rate, rounded to 2dp, of samples of ¢ for the simulated responses,
given in Table 4.7 of Section 4.5.1, from Chapter 4.

Figure A.15 is an example trace and ACF plot for the four elements of the scale matrix,
¥ when Prior 1 is assumed. Similarly, Figure A.16 is an example trace and ACF plot for
the four elements of the sampled 3 when Prior 2 is assumed. We notice that there are
significant peaks in both trace plots, Figures A.15(a) and A.16(a), where the MCMC
algorithm explores the tails of the distribution, and that the ACF plots, Figures A.15(b)
and A.16(b), have relatively high correlations at low lags that decrease over time. The
peaks in the trace plot do not represent significant shifts in mode, and are expected, as
the sampler will consider models where a small number of fixed effect vectors, 3;, are
active. The elements of 3 will be large when there are a small number of active terms
in the models, as the variability in the responses will be assumed to be random instead

of being explained by the settings of the factors in the experiment.
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Figure A.15: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling 3 from (4.33) in the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) with Prior 1 for the simulated responses from Chapter 4. These plots
are for the samples of 3 for Y5 from Table 4.7.
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Figure A.16: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling ¥ from (4.33) in the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) with Prior 2 for the simulated responses from Chapter 4. These plots
are for the samples of X for Yoo from Table 4.7.

Response  Effective Sample Size

1605 1566

Y1
1566 1557
428 433

Yo
433 433
2394 2991

Y31
2991 2851
1905 1874

Y
1874 1649
833 938

Yo
938 1020
1043 1039

Yoo
1039 1017
1362 1383

Y30
1383 1164
326 318

Yo
318 314

Table A.3: Estimated effective sample size, rounded to nearest whole number, of sam-
ples of the four elements of 3 for the simulated responses, given in Table 4.7 of Section
4.5.1, from Chapter 4 .

As the correlations in Figures A.15(b) and A.16(b) are relatively high, we chose to look
at the estimated effective samples size for these Markov chains. Table A.3 gives the
effective samples sizes for the four elements of the 3 for all the sampled parameters from
Chapter 4. The effective sample sizes for the samples of ¥ found using Y91 and Y49 are

particularly low, however the effective sample sizes for the other simulated responses
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are either close to or greater than 1000, which is 10% of its = 10000. A more extensive
simulation study could be performed to obtain a distribution of the sample sizes for
responses for the specific settings given in Table 4.7, and therefore assess whether
the low sample sizes for Yo; and Y49 are common and caused by our distributional
assumptions or particular features of the experiment, such as the correlation between

columns in the supersaturated design for Stage 2.

C.3 Assessment of MCMC samples from Chapter 5

In this section we present representative example trace and ACF plots for the parame-
ters sampled using the Metropolis-Hastings within Gibbs sampling algorithm in Section
4.4.4 for responses from the experiment described in Section 5.1. The plots for all the

parameters sampled for all four dissolution tests are given in Matthews (2015).

Figure A.17 is an example of the trace and ACF plots for the Markov chain formed by
sampling 3, from (4.32). Figure A.17(a) is an example of a trace plot for a Markov
chain with good convergence properties, as there are no trends or shifts in mean present.
Similarly, Figure A.17(b) indicates that the Markov chain for 3, has good convergence

properties as the correlation is low across all lags.
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Figure A.17: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling 3, using (4.32) in from the Metropolis-Hastings within Gibbs sampling algo-
rithm (Section 4.4.4) from Chapter 5. These plots are for the samples of 3 for Test 1
and Prior 1.

Figure A.18 is the trace and ACF plots for the Markov chain formed by sampling of
Bj, j = 1,...,p, respectively using the extension of the joint sampling method from
Geweke (1996), which is discussed in Section 4.4.3 and relies on (4.36), when 3; has a
high posterior probability of being active. Similarly, Figure A.19 is the trace and ACF
plots for samples of B; when 3; has a high posterior probability of not being active.

Figures A.18(a) and A.19(a) are unusual, as there are sections of the chain where 3, is
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assumed to be active and normally distributed and other sections where 3; is assumed
to not be active and hence sampled as OTT. This is expected, and is discussed in
Section C.1. The high level of correlation in Figure A.18(b) when compared to Figure
A.19(b) is due to the number of indicator variables that are consecutively sampled as 1,
which are jointly sampled with the fixed effect parameters, and will effect the effective
sample size, (A.10), for these parameters. However, as the Metropolis-Hastings within
Gibbs sampling algorithm identifies the correct parameters as having a high posterior
probability of being active we are not too concerned about the effective sample size for

this parameter.
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Figure A.18: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling B;, j = 1,...,p using (4.36) in from the Metropolis-Hastings within Gibbs
sampling algorithm (Section 4.4.4) for a when B; has a high posterior probability of
being active for the experimental responses from Chapter 5. These plots are for the
samples of 3, for Test 2 and Prior 1.
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Figure A.19: Example (a) trace and (b) ACF plot for the Markov chains formed by
sampling B;, j = 1,...,p using (4.36) in the Metropolis-Hastings within Gibbs sampling
algorithm (Section 4.4.4) when 3, has a high posterior probability of not being active
for the experimental responses from Chapter 5. These plots are for the samples of 3,
for Test 4 and Prior 1.
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Figure A.20: Example unusual (a) trace and (b) ACF plot for the Markov chains
formed by sampling 3;, j = 1,...,p using (4.36) in the Metropolis-Hastings within
Gibbs sampling algorithm (Section 4.4.4) for the experimental responses from Test 2
from Chapter 5. These plots are for the samples of B34 for Test 2 and Prior 2.

Figure A.20 is an example of some of the unusual trace and ACF plots seen for 3; for
Test 2 in Matthews (2015). Notice that there is a shift in the mean of Markov chain
for this parameter in Figure A.20(a), which occurs due to a prolonged period where
B; is sampled from the normal distribution and not as 0. The correlations in Figure
A.20(b), the ACF plot for this 3;, are significantly higher than we would like to see

and would impact the effective sample size for these parameter.

ACF

Figure A.21: Example ACF plot for the Markov chain formed by sampling ¢ from
(4.34) in the Metropolis-Hastings within Gibbs sampling algorithm (Section 4.4.4) for
the experimental responses from Chapter 5. This plots is for the samples of ¢ for Test
1 and Prior 1.

Figure A.21 is an example ACF plot for a Markov chain formed by sampling ¢ from
(4.34). As the correlations in this plot are low, and decrease as the lags increase, this

Markov chain can be suggested to have good convergence properties.

Figure A.22 is an example trace and ACF plot for the Markov chain formed by sampling
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the correlation parameter ¢ using Metropolis-Hastings rejection sampling. The trace
plot, Figure A.22(a), shows that the Metropolis-Hastings rejection sampling is finding
values across the range and is not getting stuck at a particular proposed value. However,
as discussed in Section C.2 for Chapter 4, the ACF plot, Figure A.22(b), does display

some high correlations at small lags.
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Figure A.22: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling ¢ using Metropolis-Hastings sampling on (4.35) in the Metropolis-Hastings
within Gibbs sampling algorithm (Section 4.4.4) for the experimental responses from
Chapter 5. These plots are for the samples of ¢ for Test 1 and Prior 1.

As in Section C.2, we can use the estimated effective sample size and the acceptance
rate to further assess the Markov chains for ¢. The estimated effective sample sizes
are given in Table A.4, and we note that they are particularly low for Test 2 and Prior
2, and Test 4 and Prior 1. In future work, an alternative proposal distribution should
be considered, and an assessment of the acceptance rates for this proposal distribution
should be made to see how it compares to the proposal distribution assumed in this

work.

Response Effective Sample Size
Test 1, Prior 1 1410
Test 1, Prior 2 581
Test 2, Prior 1 1342
Test 2, Prior 2 149
Test 3, Prior 1 466
Test 3, Prior 2 683
Test 4, Prior 1 255
Test 4, Prior 2 867

Table A.4: Estimated effective sample size, rounded to nearest whole number, of sam-
ples of ¢ for the responses from the experiment in Chapter 5.
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The acceptance rates in Table A.5 are all acceptable, however we note that the Markov
chains with low estimated effective sample size also have low acceptance rates. Again,
future work could be done to assess the improvements that could be made by considering

an alternative proposal distribution.

Response Acceptance Rate
Test 1, Prior 1 0.48
Test 1, Prior 2 0.30
Test 2, Prior 1 0.38
Test 2, Prior 2 0.15
Test 3, Prior 1 0.30
Test 3, Prior 2 0.39
Test 4, Prior 1 0.15
Test 4, Prior 2 0.38

Table A.5: Acceptance rate, rounded to 2dp, of samples of ¢ for the responses from
the experiment in Chapter 5.

Figure A.23 is the example trace and ACF plot of the Markov chain formed by sampling
the scale matrix ¥ from (4.33) when Prior 1 is assumed, and Figure A.24 is the trace
and ACF plot for ¥ when Prior 2 is assumed. Figures A.23 and A.24 are similar to
Figures A.15 and A.16 in Section C.2, and the spikes in Figures A.23(a) and A.24(a)

are expected as they occur when we consider samples with very few active 3.
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Figure A.23: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling 3 from (4.33) in the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) with Prior 1 for the experimental responses from Chapter 5. These plots
are for the samples of B34 for Test 1 and Prior 1.
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Figure A.24: Example (a) trace and (b) ACF plot for the Markov chain formed by
sampling ¥ from (4.33) in the Metropolis-Hastings within Gibbs sampling algorithm
(Section 4.4.4) with Prior 2 for the experimental responses from Chapter 5. These plots
are for the samples of Bs4 for Test 1 and Prior 2.

Response Effective Sample Size
1 1
Test 1, Prior 1 976 1966
1966 1917
Test 1, Prior 2 938 976
976 958
Test 2, Prior 1 783 780
780 771
1 1
Test, 2, Prior 2 06 106
106 106
4 41
Test 3, Prior 1 p49 5
541 533
1
Test 3, Prior 2 001 598
598 595
2
Test 4, Prior 1 33735
352 406
22
Test 4, Prior 2 05T
722 717

Table A.6: Estimated effective sample size, rounded to nearest whole number, of sam-
ples of the four elements of 3 for the responses from the experiment in Chapter 5.

As in Section C.2, we use the effective sample size to assess the impact of the high
correlation present in Figures A.23(b) and A.24(b). Table A.6 gives the effect sample
sizes of the four elements of ¥ for all the tests and prior distributions for ¢ considered in
Chapter 5. Asin Table A.4, Test 2 and Prior 2, and Test 4 with Prior 1 has low effective

sample sizes, and in future work we should considering a different prior distribution for
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Y to see if we could reduce the correlation in the Markov chains for the elements of X

and hence increase the effective sample sizes.

D Matrix Distributions

In this appendix we introduce two matrix distributions, the matrix normal and inverse
Wishart distribution, which are used in the Metropolis-Hastings within Gibbs sampling
algorithm in Section 4.4.4 of Chapter 4. We also provide proof of (4.22) from Section

4.4.1 of Chapter 4 using the properties of the matrix normal distribution.

D.1 Matrix Normal Distribution

If a n x r matrix Y is matrix normally distributed with mean p, between row scale
matrix 31 and between column scale matrix Xo, then Y has probability density func-

tion

(¥ 21,35) = (2m) Bl 2al exp [ (257(Y = S (Y - )}
(A.11)

Note that

(2m) 72 |Zq| 72 [Ba| 7% exp [~ 3t {Z5 (Y — ) TS (Y — ) }]

— (2m) " |%0] 75|75 exp [~ dtr {(Y — ) TE! =]

= (2m) % |55 S| % exp [—Lvec (Y — )T vec {2;1<Y -3}

= (27)" 7|12 |22 exp [—% {vec(Y) — vec(pu)}r (251 ® Efl) {vec(Y) — vec(u)}}

=21 7|8 ® 21\*% exp [—% {vec(Y) — vec(p)} (B9 @ 1)~ {vec(Y) — VGC(M)}} :
Hence,
vec(Y) ~ N(vec(p), X ® 34), (A.12)

where vec(Y) is the nr x 1 vector of column-stacked entries of Y.

Derivation of (4.22) from Section 4.4.1 of Chapter 4

We want to show that if the n x r matrix of responses Y is assumed to follow the
multivariate linear mixed effects model (4.21), where I' ~ MN(0,,,,,, ¢1,,,, %) and E ~
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MN(0y, (1 — ¢)I,,, ) are independent and matrix normally distributed, then (4.22)
holds.

As E and T are independent, if Y is matrix normally distributed then, using (A.12),

the marginal distribution of vec(Y) will be a normal distribution with

E{vec(Y)} = vec(XB) + E{vec(ZT')} + E{vec(E)},
and
Var{vec(Y)} = Var{vec(ZT')} + Var{vec(E)}.
As T ~ MN(0,,,,, #1,,, %), then

ZT ~ MN(0,,, ¢ZZT %),

hence, by (A.12),

vec(ZT) ~ N(0,,, 3 ® ¢ZZ").
As E ~ MN(0,,, (1 — ¢)1,,, %), then by (A.12)

vec(E) ~ N(0,,, 2 ® (1 — ¢)1,).
Therefore,

E{vec(Y)} = vec(XB)

and

Var{vec(Y)} = (Z®¢ZZ") + (=T (1 - ¢)1,)
= Y@ (¢pZZT + (1 - 9)L,)
= Y@ [{o(In, @JIn)} +{(1 - )Ty, ®1In,)}]
= 20 I, ®{¢dn, + (1 — o)Ly, }]
= X ®V(p).

203



Hence,

vec(Y) ~ N(vec(XB), X @ V(¢)),

and therefore, using (A.12), the marginal distribution of Y is MN(XB, V(¢), X), as

required.

D.2 Inverse Wishart Distribution

If a r x r matrix X is from an inverse Wishart distribution with d degrees of freedom

and scale matrix S, then X has probability density function

d d+r+1
Slz|X|7 =2 1 _
2 r\3

E Conditional Distributions for Metropolis-Hastings within
Gibbs Sampling Algorithm

In this Section we demonstrate how (4.27) is calculated (Section E.1), and show how
(4.22) from Section 4.4.1 and the prior distributions from Section 4.4.2 can be used to
find the full conditional distributions for 3, (Section E.2), ¥ (Section E.3), ¢ (Section
E.4) and ¢ (Section E.5) which are given in Section 4.4.3 and sampled from in the
Metropolis-Hastings within Gibbs sampling algorithm in Section 4.4.4 of Chapter 4.

The majority of the calculations in this appendix use (4.2) from Section 4.2.1.

E.1 Prior Distribution for B

Let the fixed effects matrix, B, from (4.21) be divided into two matrices, B4 and By 4;
where B4 is the p4 X r matrix formed from the p4 rows of B where 3; ,, ja=1,...,pa
is active, and By 4 is the py 4 X r matrix of formed from the py 4 rows of B where ,Bj A
JNa =1,...,pna is not active. Recall that ﬁ;‘g are assumed to be independent with
distribution N(0,, ¢X), hence B4 ~ MN(0,,,,I,,,cX), and that BfNA = 0,, where 0,
is the 1 x r vector with every element as 0, hence p(Bya|X, ¢, d) o 1.

If we assume that B4 and By 4 are independent, then the prior distribution for B is

proportional to

p(B‘Eacaé) - p(BA‘E')C?a)p(BNA’EvCa(s)

r 1
x [eB7F|L,, |2 exp —5tr{(e®) 'BIL,Ba}| . (A14)
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We note that BLI, B4 = BTB and ps = Z?:l d;, hence (A.14) can be written as

_Z§:1‘5j 1 1T
|eX] 2 exp —?cr{(cE) B B}|. (A.15)

E.2 Conditional Distribution for 3,

The prior distribution for the r x 1 intercept vector 3, is p(8y) o 1. To find the
conditional distribution for B, we begin by rearranging the likelihood and then find the
maximum likelihood estimate of B,. We know from (4.22) that

P(Y[By...) o exp [~3tr {57 (Y — XB) — 1,80)TV(6) " (Y — XB) - 1,8])}]
= exp [~3r {B7UY — LBD)TV(6) (Y ~ 1.8]) }]
= exp [~ 3t {Z7 (YIV(0) 1Y + Bo1EV(9) 11,87 — BoLEV(9) 1Y
~YTV(6) 1,80 ) } |
— exp {—tr (%2_1YTV(¢)_1Y> —tr (1371B8,17V (¢)~11,,87)
i (3578 V(0) V) + o (3T TV(9) 1160 )

where Y =Y — XB.

To find the maximum likelihood estimate for 3, we calculate

8‘;0 log(p(Y|Bo, ) = 0 (A.16)

where

log{p(Y |8y, )} o ~tr (3T IYTV(6) 1Y) — tr (3271 Be10V(6) 11,57

r (32718015 V(9) 1Y) + o (7Y T V() 1,87 )

As tr (2_1YTV(¢)*1Y> is a constant with respect to 3,
53 og{p(Y18o, )} o =55~ {tr (3Z 78015 V(9) 1180 }
o {r (327801 TV(0) Y ) |+ 5 (o (52YTV(0) 118F )
Calculating these partial derivatives individually gives,
—a; {tr GZTBITV(0) 1 1BE) } = —55 {tr GZ BT V(9) B T) }
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=)@ BIV(O) L+ TE B LIV(6) 1L}
=3 {71611V (p) 11, + T 'B1IV(¢) 11, }

= 2761 V()
o5 o (32 71801IV(9) 1Y) = H(ETHIYTV(9)) 71, = §27YTV(9)

o (o (3= YTV 1,80} = 1Y TVe)

Therefore,

ﬁ log{p(Y|By,...)} =0 = 271811V (¢) 11, + Z'YTV(¢)~'1, =0
— ! (—BolgV(qﬁ)*lln n YTV(¢)*11,1) —0

= BoliV(¢) 1, = YTV (¢)™!

The conditional distribution for 3 is given by

p(BolY,...) o< p(Y|By, - - )p(Bo)
o exp {—tr (%zleTV(qs)—lY) —tr (32718)1TV(¢)11,,8Y) + tr (%2*1ﬁ01£V(¢)—1Y)
ttr (%2—1YTV(¢)—11n5§>}
— exp {—tr (%2_1YTV(¢)‘1Y> —tr (321 By1TV(¢) 11,8 + tr (%2—1ﬁ01£V(¢)—1Y)
1y-1y 1, ve) 'y ~1 (YIV(e)~'1,
+r (3EYIVO) 1088+ (L ) V(o) 1 (e L)
1 (vt T —1(YIv(e)~'1,
() wivers (e )
_ i (11N 1y oL (L ve)y - -1 (YIV(e) ',
—eXp{ tr (%2 1YTV(¢) 1Y> +; <1ZV(¢)_1]_”> (1£V(¢) 11n)2 ! (1:\/(@—11”)}
X exp [—tr{;u%w)ll b> 1ﬁoﬁ§}+tr{; (1 V(9)'1,) ="' 8, ({? o )}
tr {é(lTw«zs) 5 (YTW’ ) }
1,v(e)~'y YTV(g)'1,
3 <1ZV(¢>>11n> (V@) )= <1 TV(g)! )]
xcexp [—tr {311V (9) 11,)2 71880} + o { 11TV (9) 11,)% 7 ByB; |
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+or {2V (0) )= 718080 | — 18y (11 V(9) 1) 5By

= exp [t {385 (1T V(0) 1105718} + {380 (11 V(9)11,) 5718, }
+ur {360 (1TV(0) L= B | - 180 (11 V(0) 1) 5715

= exp [~ {8111V (9)11,) 5718, - BT (1T V(9) 1)1y
By (11V(6) " 1)= 718y + By (15 V(6)'1,)5 715, } |

—ew |4 { (0~ B0) " @IV 1= (8- ) ]

which is proportional to the normal density function of a normally distributed random

vector with mean 3, and variance-covariance matrix (12V(¢)~11,)X 7!, therefore

A by
BolY,B,X,d0,c,0 ~ N <’80’(1TV(@—11)> ; (A.17)

where

_ Y'V(9) 1,
T WIVO) L) (419

E.3 Conditional Distribution for X

The prior distribution for the between column scale matrix ¥ is IW(0,,, —r + 1). This
is the multivariate extension of the prior distribution given by Tan and Wu (2013) and
is the prior distribution given by Overstall and Woods (2015). The prior distribution

for B is dependent on 3, hence

p(ElY,...) =p(Y[%,...)p(Z)p(B)

P )
j=1%

" >
o[BS exp {4 (A7IBTB) ) ¢

exp [—3tr {Z7HY - 1,8f — XB)TV(¢)" (Y — 1,85 — XB)}]

— ’E|—%(T+1—T‘+1+TL+Z§:1 6])
cexp [ {=7 (Y 1,88 - XB)V(6) (Y 1,81 - XB) + BB) )]
_ ’2|—%{T+1+(—T+1+Z§=1 5J'+”)} exp {—%tr(E_ls*)} s

where

* T T -1 T BTB
S* = (Y = 1,67 - XB)'V(6) /(Y — 1,8} —XB) + =, (A.19)
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which is proportional to the density of a matrix which has an inverse Wishart distri-

bution with scale matrix S* and —r 4+ 1 + Z§:1 0; +n degrees of freedom, therefore

p
XY, B3),B,8,c,p ~IW [ 8", —r+1+) 6, +n
j=1

E.4 Conditional Distribution for ¢

The likelihood (4.22) is also dependent on ¢, hence for general a,b > 0,
p(@lY, B0, B, %, 8,0) o< [V(9)| 726" (1 — )"
x exp [—3tr {E7HY - 1,8] — XB)TV(¢)"1(Y — 1,8] — XB)}].

This distribution cannot be sampled from directly, hence we have to use Metropolis-
Hastings rejection sampling where ¢* is drawn from a ((a,b) distribution and the

probability of accepting or rejecting this proposal, «, is the minimum of 1 and

IV(¢*)| "% exp [~ 1tr {1(Y — 1,87 — XB)TV(¢*) (Y — 1,8} — XB)}]

V()72 exp [—3tr {=71(Y — 1,8] — XB)TV(¢)"1(Y — 1,8] — XB)}]
(A.20)

E.5 Conditional Distribution for ¢

The prior distribution for ¢ is a uniform prior distribution with support C' = {1/4, 9/16,
1,4,9, 16, 25} (Tan and Wu, 2013). The prior distribution for B is also dependent on

¢ hence

p(eY,...) o< p(B)p(c)

P .
=1

¢z exp{—5tr(Z'BTB)}L ifceC

otherwise

P )
Zj=1 g

p(c: %|Y,...) o % (i)_ exp{—ﬁtr(EilBTB)}

9Xi=17% —IRT
=27 exp{—2tr(Z7'B'B)}

Z17'):1 2
9 19\ — 1 —1pT
p(c— E|Y"") X 7(ﬁ) 2 exp{ff(g/m)tr(ﬁ B B)}

(H)=7=1% exp {~St2(S'BTB) }
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R 1 —1RT
ple=1]Y,...)ocz(1)" 2 exp{—mtr(Z B B)}

= Lexp {—3tx( > 'BTB)}

P .
=19

ple=4Y,...)xct4) 3 exp{—mlwtr(zleTB)}

P .
25=19j

ple=9[Y,. . .)oxl(9) 2 exp{—ﬁtr(zleTB)}

P

— L (D)2 exp {— L tr(Z'BTB))}

ple=16]Y,...) x L (16)" 2 exp{—ﬁtr(z—lBTB)}

= ()T exp { -~ ie(37BTB))

{—(2;725)‘51"(2_1BTB)}

— 1 (1)Z=1% exp {— Liz(3'BTB)}

Therefore

5 Zcecc = exp{ —tr(EilBTB>} A
Y,3,,B,3,6,¢) = =P, 6 21
2lelY. By ?) xe =% : exp {——tr (EilBTB)} ifceC ( )

0 otherwise.

F Extension of Joint Sampling Approach by Geweke (1996)

As discussed in George and McCulloch (1997) and Section 4.4.3 of Chapter 4, we can-
not sample directly from the conditional distribution of 8;, j = 1,...,p, which is the
jth row of the fixed effect matrix B in (4.21), as the Markov chain for the conditional
distribution of 8; is reducible and does not converge to the required posterior distri-
bution. Therefore, we extend the approach given by Geweke (1996) to multivariate

responses from split-plot experiments and jointly sample the indicator variable ¢; and

B,

Let Y be the ng x r response matrix for whole-plot k£, £k =1,...,n,. Then

Y, ~ MN(1,,8f +X;B,V(¢)i, %) (A.22)
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where 1,,_ is the ng X 1 vector of ones, 3 is the r x 1 vector of intercepts, Xy, is the

ns X p model matrix for whole-plot k£, B is the p x r matrix of fixed effects,

Lo b
1 ...
vior=| " L Y st a-o, (A.23

is the ng X ng row scale matrix for Y and X is r X r the column scale matrix for Y.

As in the paper by Geweke (1996), we let

Y =Yi - Z X118 (A.24)
1#

be the ns X r response matrix for whole-plot k£ and the jth term 3;, where Xj; is the

ns X 1 column of Xy, relating to the 1 x r vector 3;. Therefore,

ij ~ MN(ijﬁjv V(¢)kzv E)’ (A25)

and the likelihood of Yy;, conditional on 3;, is
p(Yi;|B]) =exp |—= Ztr {71 (Vi — XiiB) " V(8)y ' (Yis — XiB) | - (A.26)

The conditional distribution of 3; is

p(Yi;180)p(8]) (A.27)

where p(,BJT) is the prior for ,BJT. Recall that p(,@? =0,) « 1, hence

p(ﬁ =0,|Yy;) exp{ Ztr (qﬁ),;lYk])} (A.28)

When 3, is assumed to be active, ,BJT ~ N(0,, cX). Therefore,
Nw — — _1

p(BT # 0,]Yy;) o exp [—3tr {31, B (Vi — XiiB,)TV(8)  (Yiy — XiiB5) }] [e2] 2
X exp (—%,Bj(CE)_l,B}F)
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= (eS| Fexp [~ tr {=71 (S YEVO); Yiy + Sy BTXE V(6)7 X8,
S YEV): X8, - iy BTXEV(0): Vi) }]

x exp (—3 j(cZ)_l,BJT)
= || 2 exp { —tr (B S YLV 1Yy ) + tr (B S, YE V() 1 X8,

o (B e, BIXTV(0), 1 Yy ) — o (B ey BTXE V() 1 X08,) b
x exp (—38;(c%)7'87)
= || b exp {—tr (B S YEV(O): 1Yy )+t (B S, YEV(0); 1 X8,

i (B She YL V@) X8, ) — o (B i 81X V(01 X8, ) |
X exp (—%Bj(cﬁ)*lﬁf)
= || 2 exp { —tr (B Sy YL V(0); Vi) + tr (27167 S, XE V() ' Yy )

~tr (B S, BTXEV(0): Xs8;) |

X exp (—%ﬁj(cZ)_l,B]T)
= 1= exp [0 (B S, YEV0); )

o (%ﬁjz* (S XL V() x) 1)

1 7 [ S XE V()Y
{ k1 XV (9); X’“j) B <ZZ”1X V(¢)klxkj>}
re XTIV Yy ) me KT V(1% ) [(ZEa XLV Yy
{ ZZ”IX V() X > ( 21 X V(9 X’”) Sy XEV(9), ' Xy
T n 1
Z’Zwlx V(d)) 1Yk] Nw T —1 . kalx V(d)) Yk]
{ ZZ“’ XT V(@) X > ( k21 X V(0 X’”) (Z}Z%X TV($), 1xk]>}]

x oxp (—38;(c2)7187)
= \CZF% exp [—tr (2771 i ngV(QS)l;lij)
—tr (38,27 (i XL V) X ) 67)
w37 (Si X VR ) 87 (SR ) |
{ Ly YTV (¢>);§1ij<§§: iiviié;ii)}
o () (s ctvor) (B3
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oy (v ) (Bibuane) (Basyere) |
x exp (—36;(c2) 7' 8])
= =] Fexp [t (B2 S, YEV(0); 1Yy ) + tr (571500, YEV(9); Kby )
—tr (2 S BIXTV(6); Kby ) |
xexp (tr (@ Tb;) — tr (3w 'bThy ) — tr (38,07187) - 18,(c%) 167 )
= |2l 2 exp {—tr (B S, YEV0), 1 Yy ) + 0 (B S, YEV(9): Xagby)
+tr (zTi1 Zil(ijbj)TV(@;;lij)
—tr (2771 Zil(ijbj)TV(fb)Elejbj)}
X exp {tr (bjw='87) —tr(%bjw_lbjT) —tr (18;w87) — 18,(c®)" 1/3]}
— |e2] "% exp [tr {—XT*1 m (ngV(gz)),;lij — YL V(¢); ' Xsb;
~(Xpjb))TV(0); Yy + (Xigby)TV(0); ' Xizb;) }]
X exp (ij_lbf — 3bjw bl — 38w 6] — %BJ(CE)_l’B?>
= eS|z exp [tr {—ET_I ey (Yig = Xigby) " V(@) (Vi — ijbj)H
xexp (807 'b] — 18,0 BT — 18,(c3) 787 ) exp (~Sbjw BT
= ||~ 5 exp [or {2 o, (Y — Xagby) T VI6); ! (Vg — Xesby) }]
< exp (BT — 4, (w !+ (¢2)7) BT ) exp (~ 4w 1bT)
= |c=["2 exp {tr {—2771 oy (Yag = Xpgby) T V(@) (Yay — ijbj)H exp (‘%bj""_leT)
xexp |38, (W + (e)7) B] + 8 (w7 + ()7 (0 + (D)) wh]
b @ D)) T @ D)) bt (w0 e )T
5 {bje ™ (@ (@) T (@ (@) {bje ! (w7 (@) T w ] }T}
= ||~ 5 exp [or {2 0, (Y — Xagby) T VI6); ! (Yay — Xisby) }]
< exp {4 (bjw™2.) 57 (bw ' 2.)" — dbjw b7}
xexp{~38,5167 + 8,50 (bjw ')~ (bjw '3) B! (bjw 'z}
= |cZ[77 exp [tf {*ET_I v (Y — Xiby)T V(o) (Y — ijbj)H
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= 15T _ _ 13T = 13T
xexp (48;5,18] — dbjw bl — 18,7167 + 8,;716] - 18,2.'8])

= |cZ["2 exp [tr {— 227 S (Y — Xigby)T V(o) (Y — ijbj)H

<o {5 (8- B) =21 (8, - B) peww (38,5008] - phiw bl ) (a2

B Fexp{ -} (8; - B;) 5 (8; - B))" }

which is proportional to the density for a vector which is normally distributed with
mean B;‘F and variance X,. Therefore, BjT ~ N(B;‘»F, 3., ), conditional on ,BJT #0,.

To jointly sample d; and 3;, we need to calculate the conditional posterior probability
that 3] = 0,, which is

1_pa
(1= pa) — paBF’

P = (A.30)

where p, is the prior probability that BJT # 0, and BF is the Bayes Factor, which is
the ratio of the conditional distribution for ,BJT = 0, and BjT # 0,. To calculate BF,

we first need to integrate out 3, from (A.29). Hence we calculate
oo 00 -1 -1 Naw —
S S lem e [ { =B e (Y = Xugby)T VI(9)7! (Vg — Xgby) ||
132187 _ 1y - 1pT 8. -8 21 (3. -8 'V as.
XeXp 26] * 18] 2 jw 7 eXp 2 (18] B]) * (16] 6]) 18]

_1 13T —
— e3[4 exp (38,57 8] — ibjw b))

X exp [tr{— 271
><|2*|% ff"oo...ffooo IE*IeXp{—% (ﬂj _Bj) ! (ﬂj _BJ)T}dﬂJ’

and the conditional density for BJT # 0, is therefore

re (Yiy — Xigby) V(o) (Y — ijbj)}]

2* % 2—1 Nw -
(LED P ltr{_g (ij—ijbj)TV(@kl(ij—ijbj)}]

k=1
Lam18" — lpw ! A31
X exXp 5,3] *:8]'_5 i@ Dj ( )
Using (A.28) and (A.31), the BF is
1
- (lczl)jexp{ { zk (Y —Xisb; )TV(¢)—1(ij—ijbj)H exp<§ﬂj2:lﬁf—ébjw*1bf)

exp{ft ( e YT V(qs),;lij)}



1
3.\ 2 T e -1 DI L
= (555) exp {—tr (B i YE VOV )+t (B S0 YEV(9): Kby )
—1 -1
i (H Ty XL V0) Vi ) —tr (Z iy bTXEV(0) Kb )

— -1 Nw — A _1A,T
—5bjw bl 4 tr (B SR, YEV(0), 1Yy ) fexo (38,2018] )

- <|c§3§3*||>é exp [tr (2771 i YijV(¢) 'X};bj ) + tr (Zzwl bTXZJV(@I;lijETA)

~tr { Zb! (S0 XE V() Xy ) bT ) — dbsw by | exp (18,5718) )

—1 -1
exp [tr (Z- Tpe, YEV(0) Xy ) + tr (E- Z;IY,{].V(@,;lxkjbj)

Il
VR
—
4™
N———

[ SIS

> - -
-t {bj (T K ijv(@klx’”) bﬂT} ~ b lbﬂ P (% )
_ N - an XTV 1Y
e (7 Stz X v ) (B3 bf}
B an XT V(qb) 1y
+ytr {( TR XV (¢)k1X’”) (Ziw XV (0)y IXZ) bj}

B tr{ ( Iy XEV (¢);§1ij> b]T} - %bjwflbﬂ exp <%Bj2*_118?>

[NIES

(%) o [t (5 s v o)
+4tr {b; (27 She, XEV(6); ' X4y ) BT}

—str {b; (=71 S0, XEV(6); Xy ) bY b — $byw b | exp (38,2787

SIS

J

= (i)

= (&) e (18,30]).

To jointly sample ¢; and 3;, we

exp [bjw_lbjr 1bjw bl — lbjw_lbr} exp(%sz;lﬁf)

1. Sample v from U(0,1).

2. If p; > wu then §; = 0 and ,8? = 0,. Otherwise, §; = 1 and ,BJT ~N (B?,Z*),
where 8; = bjw™ '3, and B, = ((w™!) + (¢X)~)~" when

Zil X%}V(@;ij
b; = Tw XTV(qb)*lX .
k=1 “Mkj k “Mkj
and
by
w = — .
R XEV(0), X
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