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ABSTRACT
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Doctor of Philosophy

by Stuart George

We apply a generic description of the electrochemical behaviour of nerve cells to three
specific types of cell, and take a systematic approach to the simplification of the model
to determine which anatomical details of each cell have a significant influence on the
electrochemical behaviour that occurs within it. These systematically simplified models
are compared to established models with differing assumptions regarding cell anatomy,
allowing for the suitability of these assumptions to be tested.

The first model we present in this thesis is of the squid giant axon. Our generic model,
which accounts for three-dimensional current flow and extracellular resistance not con-
sidered in the canonical model of the axon, demonstrates that for large axons in vivo

the canonical model does not correctly predict the relationship between axon radius and
action potential propagation speed, a result we discuss in terms of the evolutionary costs
associated with producing, maintaining and operating a very large axon.

The second model we present is of a myelinated axon, where asymptotic analysis of the
generic model results in a simplified model accounting for the significant anatomical
properties of the cell. Our simplified model makes predictions in line with experimental
data. Comparison of this model with existing models demonstrates that some have over
simplified the system by neglecting significant physiological details and some have under
simplified it by including detailed descriptions of negligible details.

Finally, we present a model of the electrical behaviour of the Bergmann glial cell in-
formed by its structure, and show that this accurately predicts the behaviour of the cell
under experimental conditions. We couple this model of the electrical behaviour to a
description of the behaviour of ion fluxes and concentrations within the microdomains,
providing insight into the cell’s ability to control ion concentrations in the extracellular
space.
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Chapter 1

Introduction

1.1 The nervous system

The nervous system of an organism is comprised of the cells in its body which are

specialised to carry electrical signals. These signals are used to pass information between

different regions of the body, allowing for control of movements and actions, collection

and processing of sensory inputs, and higher level processes — such as thought —

occurring in the brain.

The cells of the nervous system can be broadly divided into two classes, neurons and glia,

according to their primary function. Neurons are specialised to receive and integrate

signals in outgrowths known as dendrons, and then transmit them over relatively large

distances through long, thin, approximately cylindrical outgrowths called axons. Glia,

on the other hand, play more of a regulatory role to maintain and support neurons,

without actively transmitting signals.

1.1.1 The cell membrane

Crucial to the roles of both classes is the behaviour of the membrane of the cell, which

separates its contents (the intracellular space) from the external environment (the extra-

cellular space). This membrane is formed from a phospholipid bilayer, polar molecules

1



2 Chapter 1 Introduction

arranged in two layers, such that their hydrophilic ‘heads’ face outward into the in-

tracellular and extracellular solutions (mainly water) and their hydrophobic ‘tails’ are

between the two layers (see figure 1.1).

Figure 1.1: The phospholipid bilayer, showing the arrangement of the individual
molecules. Reproduced from [94]

This bilayer has a very small electrical conductance (10−4 S · m−2 [61]) and provides

an almost perfect barrier to the flow of ions. In neurons and glia, the electrochemical

separation of the intracellular and extracellular spaces is used to create a potential jump

across the membrane — known as the transmembrane potential — which is used for the

transmission of information. In glia these signals can be subtle, and are modulated by a

huge variety of chemical and structural factors (discussion of which we defer to chapter

4) but in neurons the principal method of signalling is a large increase in transmembrane

potential, known as an action potential — in fact neurons and glia are distinguished by

their ability to produce action potentials.

1.1.2 The action potential

Action potentials in neurons are primarily driven by flows of potassium and sodium

ions. At rest, the cell has relatively high intracellular concentrations of potassium

and relatively low intracellular concentrations of sodium, maintained by the action of

Na+/K+-ATPase, an enzyme embedded in the cell membrane which exchanges intracel-

lular sodium ions for extracellular potassium ions. The concentration gradients created
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by this enzyme provide the energy needed for the long range transmission of signals, and

also produce its steady-state transmembrane potential (this is predicted by the Gold-

man equation, which determines the transmembrane potential by balancing the effects

of potential gradients with those arising from concentration gradients, and is typically

around −70 mV [81], although it will vary between organisms and between neuron types

[29]). The transmembrane potential is manipulated by specialised proteins called ion

channels, which alter the conductances of the cell membrane to different ion species to

harness the concentration and potential gradients.

1.1.3 Ion channels

The high resistance of the phospholipid bilayer means certain adaptations are necessary

to allow ions to pass through it and change the transmembrane potential. Ion channels

(see figure 1.2) are a wide class of protein-formed pores in the membrane that selectively

allow certain ion species to flow from one side of the membrane to the other — as dictated

by potential and concentration gradients — effectively increasing the conductance of the

membrane. This effect can be undone by changes in the conformation of the protein

(in response to the binding of a chemical to the protein or changes in transmembrane

potential, for example, [38]), which perturb the finely tuned structure of the ion channel,

effectively ‘closing’ it and returning the membrane to its original, lower conductance.

Ion channels can be separated into classes based on the ion species that can flow through

them, and thus there are potassium channels, which only allow the flow of potassium

ions, sodium channels, which only allow the flow of sodium ions, channels specific to a

range of other ions and channels specific to (all) positively or negatively charged ions.

Similarly, ion channels can be classified according to the stimuli they open and close

in response to, which may be physical (transmembrane potential variations, stresses on

the membrane) or chemical (the presence or absence of certain substances) [17]. The

channels involved in action potential propagation are ‘voltage-gated’ — the protein which

forms the channel changes its conformation in response to changes in the transmembrane

potential — and so our subsequent work tends to be concerned solely with this family of

channels. Ion channels which open and close in response to some stimulus are also known
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Figure 1.2: Protein structure of an ion channel (black) embedded in the cell membrane
(green). Figure as originally published in Delemotte L et al. (2012) Molecular dynamics
simulations of voltage-gated cation channels: insights on voltage-sensor domain function

and modulation Front. Pharmacol. 3. doi: 10.3389/fphar.2012.00097

as ‘active’ channels, distinguishing them from ‘passive’ channels which don’t open and

close, and instead provide a constant increase to the conductance of the cell membrane.

1.1.4 Producing an action potential

The behaviour of voltage-gated ion channels was the subject of the seminal work of

Hodgkin and Huxley, in a series of papers published in 1952, although their existence

could only be inferred at the time [40, 41, 42, 43, 44, 45]. The work described in these pa-

pers was centred around empirical measurements of the conductance of the membrane

of the squid giant neuron to different ions at different membrane potentials. While

their subsequent model of membrane behaviour was not based on microscopic electro-

physiological data from ion channels (the existence of which could only be conclusively

demonstrated after technological advances in the 1970s [49, 66, 67]), it nevertheless

showed how action potentials are produced by the interactions of different conductances

through the cell membrane.
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When the cell membrane is depolarised (the transmembrane potential raised) above a

threshold by some local injection of current, a cycle of responses occur which lead to a

propagating signal (a simulation of this cycle is shown in figure 1.3). The time constant

(that is, the characteristic time scale over which the channel responds to transmembrane

potential changes) for the opening of sodium channels (∼ 10−4 s) is much smaller than

that of the potassium (∼ 5 × 10−3 s) [27, 44], which means that the initial current

flow in response to the depolarisation is almost entirely due to the movement of sodium

ions. Sodium channels open in response to the depolarisation and the concentration

and potential gradients cause positively charged sodium ions to flow into the cell from

the extracellular medium, further depolarising it and beginning a positive feedback loop

which opens further sodium channels. This sodium current is responsible for the sharp

upward spike seen in figure 1.3. As the transmembrane potential increases, the potassium

channels also begin to open, and the potassium concentration gradient causes positively

charged potassium ions to flow out of the cell. On a similar timescale the sodium

channels inactivate, preventing further flow of positive ions into the cell, and so the

transmembrane potential returns to its resting value (after a slight ‘overshoot’, known

as a hyperpolarisation).
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Figure 1.3: Transmembrane potential during an action potential. The initial, rapid
depolarisation is caused by the flow of sodium ions, driven into the cell by the concen-
tration and potential gradients and the slower repolarisation is caused by the flow of

potassium ions, driven out by the concentration gradient.

As the local membrane depolarisation in response to the influx of sodium ions reaches its

peak (∼40 mV), longitudinal current flow in the neuron raises the membrane potential

in neighbouring regions above the threshold required to begin the action potential cycle.
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Thus, as each region of membrane reaches its peak potential and excites the regions

adjacent to it, the action potential propagates along the neuron in the form of a travelling

wave.

1.1.5 Currents through the cell membrane

The exact form of the equations used to describe the current through the ion channels,

j∗, is dependent on the kind of membrane being modelled. For squid neurons the seminal

model is, as mentioned above, that of Hodgkin and Huxley. However, the form and basic

structure of the Hodgkin-Huxley model can be easily adapted to represent the behaviour

of almost any voltage-gated ion channel, and therefore is relevant to neuron models in

general.

In general terms, the Hodgkin-Huxley model is constructed by assuming the cell mem-

brane has independent pathways by which charge can flow through the membrane (e.g.

sodium and potassium channels). Each pathway has some maximal conductance (corre-

sponding to every channel of that type being open), and the actual conductance avail-

able is this maximal conductance multiplied by the proportion of open channels. The

proportion of open channels is governed by time-dependent, non-linear differential equa-

tions. Each channel type has an associated opening rate and closing rate (which are

dependent on the transmembrane potential), from which the rate of change of the open

proportion can be established. It should be noted again, however, that the model is

derived phenomenologically — written down and tuned in order that the results match

with experimental data — rather than being systematically derived from the underlying

physiology of the cell membrane, as the existence of ion channels was not demonstrated

until around twenty years after the work was published [66].

The Hodgkin-Huxley model of the membrane current density, j∗, in the squid giant axon

is given by

j∗ = gKn
4 (Φ∗ − ΦK) + gNam

3h (Φ∗ − ΦNa) + gL (Φ
∗ −Φl) , (1.1)
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where there are three pathways, one specific to potassium ions, one to sodium ions

and a leak current carried by no specific ion. The transmembrane potential is denoted

by Φ∗ (with a superscript asterisk signifying a dimensional variable), and the maximal

membrane conductances per unit area for the potassium, sodium and leak currents are

given by gK, gNa and gL respectively. The reversal potentials ΦK, ΦNa and Φl represent

the transmembrane potential at which the concentration gradient and potential gradient

balance, and thus the point at which the direction of the current will switch from into the

cell to out of it, or vice versa. The gating variables, n,m and h, determine the proportion

of the potassium and sodium conductances available – essentially the proportion of open

channels, but note that n, m and h are not linearly proportional to the number of open

channels — and are determined from the transmembrane potential by the following

differential equations

∂n

∂t∗
=
n∞ (Φ∗)− n

τ∗n (Φ
∗)

, (1.2)

∂m

∂t∗
=
m∞ (Φ∗)−m

τ∗m (Φ∗)
, (1.3)

∂h

∂t∗
=
h∞ (Φ∗)− h

τ∗h (Φ
∗)

, (1.4)

where

τ∗i =
1

α∗
i (Φ

∗) + β∗i (Φ
∗)
, (1.5)

i∞ = α∗
i (Φ

∗) τ∗i (Φ
∗) , (1.6)

i = n,m, h (1.7)

and

α∗
n =

104 (Φ∗ + 0.055)

1− exp (−100 (Φ∗ + 0.055))
, β∗n = 125 exp (−12.5 (Φ∗ + 0.065)) , (1.8)

α∗
m =

105 (Φ∗ + 0.04)

1− exp (−100 (Φ∗ + 0.04))
, β∗m = 4000 exp (−55.6 (Φ∗ + 0.065)) , (1.9)

α∗
h = 70 exp (−50 (Φ∗ + 0.065)) , β∗h =

1000

1 + exp (−100 (Φ∗ + 0.035))
, (1.10)

In essence each gating variable, i, tends to its steady state value, i∞, at a rate determined
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by the time constant τ∗i , which is itself determined by the empirically derived functions

αi and βi. Note that the form of the expressions above is slightly different from the form

written in [44], as we have chosen to express all variables in terms of volts and seconds,

rather than millivolts and milliseconds (which explains the large constants appearing in

the rates above).

Alternatively, we can rewrite equations (1.2) to (1.4) as follows

∂n

∂t∗
= α∗

n (Φ
∗) (1− n)− β∗n (Φ

∗)n, (1.11)

∂m

∂t∗
= α∗

m (Φ∗) (1−m)− β∗m (Φ∗)m, (1.12)

∂h

∂t∗
= α∗

h (Φ
∗) (1− h)− β∗h (Φ

∗)h, (1.13)

in which form it is clearer that α∗
i is the activation rate of gating variable i — the

rate at which it tends to 1, the state where all the channels are open — and β∗i is the

inactivation rate — at which it tends to 0, where all the channels are closed.

Note that while n, m, and h can vary spatially (that is, vary with position along in a

neuron), the equations that govern their behaviour depend only on time.

Figures 1.4 to 1.6 show the form of these activation and inactivation rates, as functions

of transmembrane potential. It is useful to notice firstly that for n and m the activa-

tion rates increase with transmembrane potential and the inactivation rates decrease,

while for h the form of the rates is reversed. This is due to the qualitatively different

behaviour of the sodium channel (the behaviour of which is modelled by m and h) to

the potassium — where the potassium channel simply opens or closes at increased or de-

creased transmembrane potentials respectively, the sodium channel closes at decreased

transmembrane potential, opens as the transmembrane potential increases and then

closes again in response to continued increases. Thus m represents the ‘opening’ of the

sodium channel in response to increased transmembrane potential and h the ‘closing’,

and therefore h behaves in the opposite way to m. Secondly, we notice that the rates

for m are both an order of magnitude larger than those for n and h, which means τ∗m is

significantly smaller than τ∗n and τ∗h (see figure 1.7), reflecting (as mentioned above) the
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fact that sodium channels respond to changes in transmembrane potential much faster

than potassium channels.
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Figure 1.4: Activation (α∗

n (Φ
∗) ( )) and inactivation (β∗

n (Φ∗) ( )) rates
for the potassium channel gating variable n.
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Figure 1.5: Activation (α∗

m (Φ∗) ( )) and inactivation (β∗

m (Φ∗) ( )) rates
for the sodium channel gating variable m.

Figure 1.8 shows the total current density through the membrane during an action

potential (positive currents here are currents out of the cell) and figure 1.9 shows the

breakdown into the three components (potassium, sodium and leak). Finally, figure 1.10

shows the behaviour of the three gating variables during the action potential.

1.1.5.1 The effects of stochasticity

The behaviour of individual ion channels is stochastic and under certain conditions this

can have significant effects on membrane behaviour — for example causing signals to
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Figure 1.6: Activation (α∗

h (Φ
∗) ( )) and inactivation (β∗

h (Φ
∗) ( )) rates for

the sodium channel gating variable h.
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Figure 1.7: Time constants of the three gating variables τn ( ), τm ( ) and
τh ( ) as a function of transmembrane potential.
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Figure 1.8: Current density through the cell membrane during an action potential
(positive currents are directed out of the cell)
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Figure 1.9: Current density through the cell membrane during an action potential bro-
ken down by component. Current densities shown through potassium channels ( ),

sodium channels ( ) and leak channels ( ).
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Figure 1.10: Values of the gating variables n ( ), m ( ) and h ( )
during an action potential. Note the significantly faster opening of the sodium channel

(green).

‘jump’ towards clusters of open channels and thus propagate at non-uniform speeds

[22]. However, in many neurons — and specifically in the types studied in this work

— the number of channels is large enough that a homogenised macroscopic model —

accounting for average ion channel activity — is appropriate [102].

A more complete discussion of ion channel behaviour and the modelling challenges they

present can be found in [38] and the references therein, but in this work we will use the

models proposed by Hodgkin and Huxley, as this provides a wide body of theory and

experimental data to draw on.
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1.2 A generic description of the current in a nerve cell

Here we describe a generic model of the current flow in the vicinity of a cell membrane.

This model was first written down by Neu and Krassowska in [68], in the context of

cardiac myocytes, which are also electrochemically excitable cells. It has subsequently

been used by others to study both cardiac myocytes ([89]) and neurons [53, 88]. Fur-

thermore, it can be systematically derived from a detailed asymptotic analysis of the

Nernst-Planck equations of electrochemistry [88].

With the relatively small currents encountered during action potentials, the electrolyte

behaviour in the interior and exterior regions of the cell (denoted by Ω∗ and Ωc∗ re-

spectively) is well approximated by Ohm’s law and current conservation (superscript

asterixes (∗) denote dimensional variables)

J∗ = −σin∇∗φ∗ and ∇∗ · J∗ = 0 in Ω∗, (1.14)

J∗ = −σout∇∗φ∗ and ∇∗ · J∗ = 0 in Ωc∗, (1.15)

where J∗ and φ∗ denote current density and electric potential respectively, and σin,out

represents the conductivity of the intracellular and extracellular electrolytes.

1.2.1 The influence of the cell membrane

The behaviour of the membrane is modelled with reference to the ion channels in the

membrane and the behaviour of the extremely narrow (on the order of one nanometre

wide) charged Debye layers lying on either side of it. It is possible to demonstrate that

the charge densities lying in the Debye layers on either side of the membrane are equal

and opposite ([88]) such that the membrane and Debye layers behave as a capacitor. This

balance of charge requires that any current which flows from the bulk electrolyte (either

intracellular or extracellular) into its corresponding Debye layer must be balanced by an

equal current flowing from the opposite Debye layer into its corresponding electrolyte

(see figure 1.12). As a result, the macroscopic current density, J∗, flowing across the
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membrane and Debye layers must be continuous:

J∗ · n|∂Ω∗ = J∗ · n|∂Ωc∗ , (1.16)

where n the unit vector normal to the membrane.

Q∗

−Q∗

Exterior

Extracellular Electrolyte

Debye Layer

Interior

Axoplasm

Debye Layer
j∗ (Φ∗, t∗)

J∗ · n|∂Ω∗

J∗ · n|∂Ωc∗

n

Figure 1.11: Current flows near to the cell membrane. The current flow from one
Debye layer to the other through the ion channels is denoted j∗ (Φ∗, t∗). Current flow
into the interior Debye layer from the bulk axoplasm (J∗ · n|∂Ω∗) must be matched
by an equivalent current flow (J∗ · n|∂Ωc∗) from the exterior Debye layer into the bulk
extracellular electrolyte, so that the charges in each Debye layer (±Q∗) remain balanced.
We can thus consider J∗ · n as a current which flows across both the membrane and

Debye layers.

We define the transmembrane potential as the potential drop across the membrane and

Debye layers, as follows

[φ∗]∂Ω
∗

∂Ωc∗ = Φ∗. (1.17)

For sufficiently small transmembrane potentials, such as those encountered in an action

potential, the membrane and Debye layers behave as a linear capacitor ([88]) whilst

the ion channels straddling it can be modelled as a nonlinear resistor with current-

voltage dependency given by j∗ (Φ∗, t∗) in parallel with this capacitor (we have chosen

to represent j∗ (Φ∗, t∗) in the form of the Hodgkin-Huxley model of ion channel current,

as detailed in section 1.1.5). The equivalent circuit is shown in figure 1.12 and the

corresponding transmembrane current density J∗ · n|∂Ω∗ , including the behaviour of
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the Debye layers, satisfies

J∗ · n|∂Ω∗ = C
∂Φ∗

∂t∗
+ j∗ (Φ∗, t∗) . (1.18)

C

j∗ (Φ∗, t∗) C ∂Φ∗

∂t∗

Φ∗

Figure 1.12: Equivalent circuit diagram for currents through the cell membrane

1.2.2 Model closure

To close this system, we require a far-field condition on φ∗ as distance from the cell

membrane tends to infinity. The precise statement of this condition is dependent on the

geometry of the cell under consideration, but in general it will take the form

φ∗ → 0 as |x∗| → ∞ (1.19)

Equations (1.14) to (1.19) now comprise the following cell-scale model for the electrolyte

potential and the transmembrane potential, Φ∗ (defined as the difference between the
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intra- and extra-cellular potentials):

J∗ = −σin∇∗φ∗ in Ω∗ (1.20)

J∗ = −σout∇∗φ∗ in Ωc∗ (1.21)

∇∗ · J∗ = 0 in Ω∗, (1.22)

∇∗ · J∗ = 0 in Ωc∗, (1.23)

J∗ · n|∂Ω∗ = J∗ · n|∂Ωc∗ , (1.24)

[φ∗]∂Ω
∗

∂Ωc∗ = Φ∗, (1.25)

J∗ · n|∂Ω∗ = C
∂Φ∗

∂t∗
+ j∗ (Φ∗, t∗) . (1.26)

φ∗ → 0 |x∗| → ∞ (1.27)

This model forms the basis of our study of three very different types of cell, where the

principal differences in behaviour are caused by marked variations in the geometry of

the cell.

1.3 Overview of this thesis

In the following chapters we apply this model to three cells that have developed specific

physical properties in order to better perform their function. In all cases we aim to assess

the impacts of physiological features on the models of cell behaviour, to determine where

details must be included in the modelling process and where simplifications can be made.

The systematic nature of this approach allows us to judge the validity of approximations

made in existing models, as well as justify the simplifications we make mathematically.

In chapter 2 we examine a particularly large neuron found in the squid, and find that

the assumption that current flows one-dimensionally along the axis of the neuron leads

to quantitatively and qualitatively different predictions of action potential propagation

from the generic model, which accounts for current flows in three dimensions. The

implications of this are discussed in the context of the evolutionary cost of a vary large

neuron.
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In chapter 3 we consider a class of neurons found in vertebrates that increase their

signalling speeds by forming organised structures with glial cells. Asymptotic analysis

of the generic model in this case results in a model of these neurons which accounts

for all the significant geometrical features of the system, which we compare to models

found in the literature. We find some existing models over simplify the problem, by

ignoring physiological details which have a significant influence on the propagation of

action potentials, while others under simplify it, by including detailed descriptions of

features which do not.

Finally, in chapter 4 we study the behaviour of the Bergmann glial cell, a cell found in

the cerebellum which has a role in supporting the behaviour of neurons surrounding it.

We write down a model of the electrical properties of the cell informed by its structure

and demonstrate that this accurately predicts the behaviour of the cell in experimental

conditions. To better understand the function of the cell we then write down a model

of the ion concentrations within it, which we derive from the Poisson-Nernst-Planck

equations that underlie the generic model described above [88].



Chapter 2

Action potential propagation in

very large axons

2.1 Introduction

In this chapter we present analysis of the generic model in equations (1.20) to (1.27) in

the context of a very large cell. In this context, the model can be reduced to a singular

integro-differential equation describing the transmembrane potential of the cell, and we

develop a numerical method for the solution of this equation. Our description of the

transmembrane potential takes into account current flows in three dimensions, and we

compare it to the established simplified model, the cable equation, where the current flow

is assumed to be one dimensional. We find that below a critical radius (which depends

upon intracellular and extracellular conductivities, and the size of ion channel currents

through the membrane) the current flow in the cell is predominantly axial, and thus

well approximated by the one dimensional cable equation. Above this critical radius,

however, we find the cable equation does not predict the correct relationship between

the size of the neuron and the speed at which action potentials propagate within it. We

note that, in vivo, the properties of a particular cell — the squid giant neuron — place

its radius close to this critical value, and discuss the implications of our results in terms

of the evolutionary costs associated with producing and maintaining very large neurons.

The work presented in this chapter is published in [26].

17
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2.1.1 The squid giant axon

The squid giant neuron is an unusually large neuron (up to around 1mm in diameter)

found in the mantle of some species of squid, although very large neurons are also found

in other types of invertebrate (for example in sea slugs of the genus aplysia [46], and

some species of lobster [8]). These giant neurons mediate the squid’s ‘escape response’,

which allows it to rapidly evade potential predatory threats [80, 75]. Larger neurons are

known to transmit action potentials faster, and since the speed of the escape response is

critical to the survival of the squid this accounts for the large size of the giant neuron.

Increasing the size of the cell comes with an increased cost to the squid, in terms of the

energy needed for its growth, maintenance and operation, and thus we expect it to have

reached some kind of ‘optimal’ size balancing these factors.

A neuron can be thought of as a central cell body — containing its nucleus and many

of the proteins and structures necessary for its growth and maintenance — connected

to long, branching, radial processes. These processes are divided into those that carry

signals towards the cell body (dendrons) and those that carry signals away (axons).

The dendrons are generally short, branch regularly and contain few active ion channels,

whereas axons are longer, branch much less (and only towards the distal end) and contain

high densities of active ion channels. Since the action potential in the squid giant neuron

can occur only where there are active ion channels, we ignore the rest of the cell for the

purposes of this work, and consider only the unbranching, uniform section of the axon.

Cell Body

Axon

Dendrons

Figure 2.1: Sketch of neuron. Signals originating in the dendrons are transmitted to
the cell body, and then transmitted away along the axon
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2.1.2 The cable equation description of an axon

In addition to their description of membrane currents detailed in section 1.1.5, Hodgkin

and Huxley (and many others since) used the cable equation to describe the longitudinal

propagation of action potentials along axons [44]. The cable equation is a nonlinear

diffusion equation, originally used to study signal transmission in transatlantic telegraph

cables [105] but quickly adapted for use in neurobiology. Key to the use of this model are

the implicit assumptions that current flow within the axon is predominantly axial and

that the potentials outside the axon are uniformly small (this is equivalent to requiring

that the resistance of the axon to be significantly larger than that of the extracellular

space). This approach yields good agreement with empirical studies — Hodgkin and

Huxley tested their model by taking parameters from a particular axon, measuring the

speed of signal transmission within this axon, and then comparing the result with a

travelling wave solution to their model. The empirical speed was found to be 21.2 ms−1,

which compares favourably to the 18.8 ms−1 predicted by their model [44]. The source

of this error has motivated a number of subsequent works. In particular, improvements

have been made to ion channel conductance models that take advantage of the wealth

of information about ion channel structure now available, improved empirical data on

single-channel behaviour, and knowledge of the features of excitable membranes, such

as thresholds and refractory periods [78, 107]. These have been found to significantly

reduce the disagreement between theory and experiment [6, 11].

The generic description of the current in the axon (equations (1.20) to (1.27)) can

be reduced to the cable equation, but only in the limit of very thin axons and equal

intra- and extracellular conductivities, which we discuss in sections 2.2 and 2.2.1. This

condition is satisfied for a wide range of axons, however some — and in particular the

squid giant axons used by Hodgkin and Huxley — inhabit a grey area where it is not

obvious that this criterion is met.

An important feature of the Hodgkin-Huxley experiment [44], and indeed most other

experiments on squid axons since ([1],[85]) is that it is conducted in vitro with an excised

axon suspended in a bath of seawater, an electrolyte with relatively high conductivity.



20 Chapter 2 Action potential propagation in very large axons

The external conditions in a live squid are rather different as, in vivo, the axon is

surrounded by a collagenous sheath, as well as other closely packed cells (see for example,

figure 2A in [15]), all acting to decrease the conductivity of the extracellular space

relative to the intracellular space [9]. This, as we shall demonstrate, has important

consequences for the validity of the cable equation approximation in vivo, and means

that it breaks down at significantly smaller radii than in the highly conductive external

medium of seawater used by Hodgkin and Huxley. A corollary of the breakdown of

the cable equation approximation is that action potential propagation velocities do not

scale with the square root of axon radius, but instead saturate to some constant value

(for large radii). Based on our estimate of extracellular conductivity we suggest that

physiological axon radius is close to optimal (certainly further gains in action potential

propagation speed become increasingly expensive). The difference between potentials

measured in the squid axon in vivo and in vitro was noted by Moore and Cole soon

after Hodgkin and Huxley’s work was published [62]. Although they did not measure

the speeds at which signals propagated, they did find differences of the time course of

the action potential. However they were unable to perform these measurements with the

squid’s mantle intact, and by slicing it open to access the giant axon will have effectively

increased the extracellular conductivity. The reduction in speed of action potentials

travelling in closely packed tissues has also been noted in conduction velocities in muscle

fibres measured in vivo [10]. We found no reference in the literature to an experiment

explicitly comparing speeds in vivo to those measured in vitro, but we believe such an

experiment may be possible using a voltage-sensitive dye, such as those described in

[115].

A useful observation on signalling speed can be made by examining travelling wave

solutions to the cable equation (as noted by [39]). We begin with the cable equation (as

used by Hodgkin and Huxley, and derived from the underlying electrochemical equations

in section 2.2.1)

C
∂Φ∗

∂t∗
=
σR

2

∂2Φ∗

∂x∗2
− j∗ (Φ∗ (x∗, t∗) ,w (x∗, t∗)) , (2.1)

where Φ∗ is the transmembrane potential (defined as the difference between the intra-
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and extra-cellular potentials), j∗ represents the current density through the ion channels,

x∗ is distance along the axon, t∗ is time, C is the capacitance of the membrane per unit

area, σ is the conductivity of the axoplasm, R is the axon radius and w (x∗, t∗) is a

vector of gating variables describing the conductivity of the axon membrane to specific

ion species (a ∗ denotes a dimensional variable). Specifically, the Hodgkin-Huxley form

of the membrane current j∗ has the form

j∗ (Φ∗,w) =

N
∑

i=1

g∗i wi (Φ
∗ −Φei) , (2.2)

∂wi

∂t
= α∗

i (Φ
∗) (1− wi)− β∗i (Φ

∗)wi, (2.3)

where Φei is the reversal potential for each ion species, g∗i is the maximal membrane

conductance per unit area of the ith ion species, wi is the proportion of this conductance

accessible through open ion channels and α∗
i and β∗i are functions (which are given in

[44]) that describe opening and closing rates for each species of ion channel.

Making the travelling wave ansatz Φ∗ = f∗ (ξ∗) and wi = ωi (ξ
∗), where ξ∗ = x∗

v
− t∗

gives

−C df
∗

dξ∗
=
σR

2v2
d2f∗

dξ∗2
−
∑

i

g∗i ωi (ξ
∗) (f∗ (ξ∗)− Φei) , (2.4)

dwi

dξ∗
= − (α∗

i (f
∗(ξ∗)) (1− wi(ξ

∗))− β∗i (f
∗(ξ∗))wi(ξ

∗)) , (2.5)

and imposing the boundary conditions f∗ → −70mV as ξ∗ → ±∞, so that the membrane

is at resting potential far from the propagating wave, yields a nonlinear eigenvalue

problem, with eigenvalue σR
2v2 . This gives us the following result for the wave speed, v

(assuming membrane capacitance to be fixed)

v ∝ σ
1

2R
1

2 , (2.6)

such that the propagation velocity of the signal in the axon scales with the square root

of the axon radius. We expect our model to reproduce this behaviour for sufficiently

small radii (since the cable equation is valid in the asymptotic limit as axon radius goes

to zero), and larger extracellular to intracellular conductance ratios, but for larger radii
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and smaller ratios we expect to observe differing predictions from the two models. Later

in this study we will revisit this notion of travelling wave speeds and make a comparison

between predictions from our model and that of Hodgkin and Huxley. By doing this we

can both assess the range of parameters over which their approximation is justified and

gain an understanding of the behaviour of very large axons, in configurations for which

the cable equation is unsuitable.

2.2 Model Formulation

We approximate the axon as a uniform cylinder, allowing us to consider the special case

of the generic model (equations (1.20) to (1.27)) where the intracellular space is defined

as follows

Ω∗ = {(r∗, θ, x∗) |0 ≤ r∗ < R, 0 ≤ θ ≤ 2π,−∞ < x∗ <∞} (2.7)

where (r∗, θ, x∗) are cylindrical coordinates. This case represents an infinitely long axon

with a uniformly circular cross-section of radius R, and is described by our model as

follows:

J∗ = −σin∇∗φ∗ in r∗ < R (2.8)

J∗ = −σout∇∗φ∗ in r∗ > R (2.9)

∇∗ · J∗ = 0 in r∗ < R, (2.10)

∇∗ · J∗ = 0 in r∗ > R, (2.11)

J∗ · n∗|r=R− = J∗ · n∗|r=R+ , (2.12)

[φ∗]r
∗=R−

r∗=R+ = Φ∗, (2.13)

J∗ · n∗|r∗=R− = C
∂Φ∗

∂t∗
+ j∗ (Φ∗, t∗) . (2.14)

φ∗ → 0 r∗ → ∞ (2.15)
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The above system can be simplified as follows, by substituting equations (2.8) and (2.9)

into equations (2.10) to (2.14), and noting that, in this geometry, n = er

∇∗2φ∗ = 0 in r∗ < R and r∗ > R, (2.16)

σin
∂φ∗

∂r∗

∣

∣

∣

∣

r∗=R−

= σout
∂φ∗

∂r∗

∣

∣

∣

∣

r∗=R+

, (2.17)

[φ∗]r
∗=R−

r∗=R+ = Φ∗, (2.18)

C
∂Φ∗

∂t∗
= − σin

∂φ∗

∂r∗

∣

∣

∣

∣

r∗=R−

− j∗ (Φ∗, t∗) , (2.19)

φ∗ → 0 as r∗ → ∞ (2.20)

We nondimensionalise via the scalings

x∗ = Lx, t∗ = τt, Φ∗ = Φ0Φ+Φrest, φ∗ = Φ0φ+Φrest,

g∗i = g0g, j∗ = g0Φ0j, α∗ =
1

τ
α, β∗ =

1

τ
β.

(2.21)

Here τ represents the typical timescale for an action potential and g0 a typical membrane

conductance per unit area. Φrest is the membrane resting potential (around -70mV),

and Φ0 a typical transmembrane potential (so that Φ represents deviations from resting

potential). After these scalings, equations (2.16) to (2.20) can be written in the form

∇2φ = 0 in r < ε and r > ε, (2.22)

∂φ

∂n

∣

∣

∣

∣

r=ε−
= σ̄

∂φ

∂n

∣

∣

∣

∣

r=ε+
, (2.23)

[φ]r=ε−

r=ε+ = Φ, (2.24)

C ∂Φ
∂t

= − ∂φ

∂n

∣

∣

∣

∣

r=ε−
− j (Φ, t) , (2.25)

φ→ 0 r → ∞ (2.26)

where

j (Φ, t) =

N
∑

i=1

giwi

(

Φ− Φ̄ei

)

, (2.27)

∂wi

∂t
= αi (Φ) (1−wi)− βi (Φ)wi, (2.28)
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and Φ̄ei is given by

Φ̄ei =
Φei +Φrest

Φ0
, (2.29)

which is the dimensionless equilibrium potential for the ith ion species, measured from

the membrane resting potential rather than from zero.

The dimensionless parameters ε, C and σ̄ are defined by

ε =
R

L
C =

CL

τσin
σ̄ =

σout

σin
, (2.30)

where ε is the dimensionless axon radius, and C and σ̄ represent the ratio of charge stored

in the Debye layers to charge moved longitudinally through the axon during a typical

action potential, and the ratio of extracellular to intracellular conductivities respectively.

We choose Φ0 to be the thermal voltage (roughly 2.5× 10−2 V), which is comparable to

a typical transmembrane potential (resting transmembrane potential is around -7×10−2

V) and the typical membrane conductance g0 to be the maximal conductance through

the voltage-gated sodium channels (1200 S·m−2 [55]). Values for the parameters C and

σin can be found in the literature (C ≈ 1 × 10−2 F·m−2 [44] and σin ≈ 1 S·m−1 [99]

(= 2.825 S·m−1 in [44])), while the effect of several values of σout is discussed in section

2.4.

We determine the length scale L by balancing the axoplasm conductivity per unit length

with membrane conductance per unit area

L =
σin

g0
, (2.31)

such that the dimensionless axon radius becomes

ǫ =
Rg0

σin
(2.32)

Where this parameter is very small the resistance of the interior of the axon is large

compared to that of the extracellular space, so that extracellular potentials are small and

the intracellular potential is well approximated by the local transmembrane potential, Φ

(see section 2.2.1 and [88]). Using the parameter values chosen above, L = O(2.5mm),
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yielding ǫ ≈ 0.2 for larger squid axons (ǫ = 0.10 for the exact parameters in [44]) and it

is not obvious (as discussed above) whether this is small enough for the cable equation

to be a suitable approximation to the general model.

2.2.1 Deriving the cable equation approximation

For a thin axon (defined as an axon where the dimensionless radius ε ≪ 1) we can

simplify our model using a power series expansion in ε. We introduce inner and exterior

regions, distances O (ε) and O
(

ε
1

2

)

from the axon, respectively, although, as we will

demonstrate, the cable equation can be derived from the equations in the inner region

alone. A detailed discussion of this problem, as well as the full treatment of the solution

for the outer region, is given in [88]. In this region we rescale coordinates as follows:

x = ε
1

2 ξ r = ερ, (2.33)

Substituting these expressions into equations (2.22) to (2.25) leads to the following

system:

1

ερ

∂

∂ρ

(

ρ
∂φ

∂ρ

)

+
∂2φ

∂ξ2
= 0 (2.34)

[φ]ρ=1−

ρ=1+
= Φ, (2.35)

∂φ

∂ρ

∣

∣

∣

∣

ρ=1−
= σ̄

∂φ

∂ρ

∣

∣

∣

∣

ρ=1+
, (2.36)

C ∂Φ
∂t

= −1

ε

∂φ

∂ρ

∣

∣

∣

∣

ρ=1−
− j (Φ, t) . (2.37)

We look for a solution of the following form (where we have included O (ε log (ε)) terms

due to the far-field logarithmic singularity encountered when solving Laplace’s equa-

tion in cylindrical coordinates, and a superscript (in) denotes a variable in the inner
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expansion).

Φ = Φ0 + ε log (ε) Φ1 + εΦ2 + · · · , (2.38)

φ =















Φ0 + ε log (ε)
(

φ
(in)
1 +Φ1

)

+ ε
(

φ
(in)
2 +Φ2

)

+ · · · for 0 ≤ ρ < 1

ε log (ε)φ
(in)
1 + εφ

(in)
2 + · · · for ρ > 1

. (2.39)

The assumption being made here, that φ is small in ρ > 1 (φ = O(ε log ε)) is key to the

understanding of why this simplification breaks down where it does. As noted in section

2.4 this is not true once the axon radius becomes sufficiently large that the intracellu-

lar resistance is comparable to the effective extracellular resistance. Furthermore this

critical radius diminishes as the extracellular conductivity decreases (since decreases in

extracellular conductivity increase extracellular resistance).

Substitution of the expansions in equations (2.38) and (2.39) into equations (2.34) to

(2.37) gives (at O (1))

1

ρ

∂

∂ρ

(

ρ
∂φ

(in)
2

∂ρ

)

= −Φ0,ξξ ρ < 1, (2.40)

1

ρ

∂

∂ρ

(

ρ
∂φ

(in)
2

∂ρ

)

= 0 ρ > 1, (2.41)

[

φ
(in)
2

]ρ=1−

ρ=1+
= 0, (2.42)

∂φ
(in)
2

∂ρ

∣

∣

∣

∣

∣

ρ=1−

= σ̄
∂φ

(in)
2

∂ρ

∣

∣

∣

∣

∣

ρ=1+

, (2.43)

which has the solution

φ
(in)
2 =



















−1

4
Φ0,ξξ

(

ρ2 − 1
)

+ γ (ξ, t) for ρ < 1

− 1

2σ̄
Φ0,ξξ log (ρ) + γ (ξ, t) for ρ > 1

. (2.44)

Finally, substitution of equation (2.44) into equation (2.37) yields the cable equation

C ∂Φ0

∂t
=

1

2

∂2Φ0

∂ξ2
− j (Φ, t) . (2.45)
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2.3 Solution of the problem for large ǫ

In the following sections we formulate a numerical procedure for solving equations (2.22)

to (2.25) without approximating it by the cable equation or exploiting the smallness of ǫ.

The approach is valid for a general axon geometry, and so we begin by briefly describing

the general solution, before specialising to the cylindrical case.

Initially we approach the problem by introducing a Green’s function, G (x;x0), defined

as the solution to

∇2G = 0, (2.46)

∂G

∂n

∣

∣

∣

∣

∂Ω

= σ̄
∂G

∂n

∣

∣

∣

∣

∂Ωc

, (2.47)

[G]∂Ω∂Ωc = δ (x− x0) , (2.48)

with a suitable far-field condition (in terms of the Green’s function, G → 0 as dis-

tance from the axon membrane becomes large), where x0 denotes a point on the axon

membrane, and δ (·) the Dirac delta function.

The solution to equations (2.22) to (2.24) can then be written in terms of a surface

integral over the axon surface ∂Ω

φ (x, t) = −
ˆ

∂Ωx0

G (x,x0)Φ (x0, t) dΩx0
, (2.49)

such that equation (2.25) can be rewritten as the following (singular) integro-differential

equation for the transmembrane potential in the axons, Φ

C ∂
∂t

Φ (x, t) = − ∂

∂n

(

−
ˆ

∂Ωx0

G (x,x0) Φ (x0, t) dΩx0

)∣

∣

∣

∣

∣

∂Ω

− j (Φ, t) , (2.50)

in which j (Φ, t) is given by equations (2.27) and (2.28).
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Figure 2.2: Schematic of the cylindrical geometry. The unit normal vector n̂ is
directed out of the cylinder

2.3.1 A uniform cylindrical axon

We now consider the specific case of a uniform cylindrical axon of dimensionless radius

ǫ, as seen in figure 2.2, with axisymmetric membrane potential Φ. We rewrite equation

(2.49) in cylindrical polar coordinates (x, y, z) = (x, r cos (θ) , r sin (θ)) as follows:

φ (x, r, θ, t) = −
ˆ ∞

−∞

ˆ 2π

0
G (x, r, θ;x0, θ0) ǫ dθ0Φ (x0, t) dx0. (2.51)

With the assumption that Φ is axisymmetric we can integrate over θ, i.e.

G (x− x0, r) =

ˆ 2π

0
G (x, r, θ;x0, θ0) dθ0, (2.52)

so that G is the Green’s function for a ‘ring’ of charge around the axon membrane,

located at x0. We observe that the axial dependence of G occurs solely as a function

of x − x0 and that integration of equations (2.46) to (2.48) over θ (on noting that
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δ (x− x0) =
1
ǫ
δ (x− x0) δ (θ − θ0)) yields the following problem for G (X, r):

∂2G
∂X2

+
1

r

∂

∂r

(

r
∂G
∂r

)

= 0 in r < ǫ and r > ǫ, (2.53)

∂G
∂r

∣

∣

∣

∣

r=ǫ−
= σ̄

∂G
∂r

∣

∣

∣

∣

r=ǫ+
, (2.54)

[G]r=ǫ−

r=ǫ+ =
1

ǫ
δ (X) , (2.55)

G → 0 as r → ∞. (2.56)

Equation (2.50) can be rewritten in terms of this axisymmetric Green’s function, G, in

the form

C ∂Φ
∂t

= − ∂

∂r

(

−
ˆ ∞

−∞

G (x− x0, r)Φ (x0, t) ǫ dx0

)∣

∣

∣

∣

r=ǫ−
− j (Φ, t) , (2.57)

Ideally, we would like to be able to replicate the travelling wave approach in section 2.1.2

to find the relationship between signal speed and axon radius in this model. Making

the change of variables ξ = t− x
v
results in the nonlinear integro-differential eigenvalue

problem

C d
dξ

Φ (ξ) = − ∂

∂r

(

−
ˆ ∞

−∞

G (v(ξ − ξ0), r) Φ (ξ0) ǫv dξ0

)∣

∣

∣

∣

r=ǫ−
−

N
∑

i=1

giwi (ξ) (Φ (ξ)−Φei) ,

(2.58)

dwi

dξ
= − (αi (Φ(ξ)) (1− wi(ξ))− βi (Φ(ξ))wi(ξ)) , (2.59)

Φ (ξ) → 0 as ξ → ±∞. (2.60)

where the eigenvalue v again depends upon ǫ and σ̄. In section 2.1.2 we were able to

explicitly determine how wave speed scales with ǫ, but the nature of the integral operator

in this problem makes direct solution of this nonlinear eigenvalue problem non-trivial.

Instead, we solve the time-dependent problem numerically, allow the solution to converge

to the travelling wave solution and then measure the speed of the subsequent wave. This

allows us to numerically determine the eigenvalue’s dependence on the value of ǫ and σ̄.
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2.3.2 Finding the Green’s function

Before we can progress with the numerical solution of the problem, we need first to find

the appropriate Green’s function. Here we shall assume that Φ is periodic with some

large period 2λ — so that in the limit λ → ∞ we retrieve the exact result. We adapt

the Green’s function problem in equations (2.53) to (2.56) to reflect the periodic nature

of the problem

∂2G
∂X2

+
1

r

∂

∂r

(

r
∂G
∂r

)

= 0 in r < ǫ and r > ǫ, (2.61)

∂G
∂r

∣

∣

∣

∣

r=ǫ−
= σ̄

∂G
∂r

∣

∣

∣

∣

r=ǫ+
, (2.62)

[G]r−r+ ǫ =
1

ǫ

∞
∑

n=−∞

δ (X + 2nλ) , (2.63)

G → 0 as r → ∞. (2.64)

We look for a solution to equations (2.61) to (2.64) for the Green’s function G(X, r) in

terms of its Fourier series

G (X, r) =
g0

2
+

∞
∑

n=1

gn cos

(

nπX

λ

)

. (2.65)

Substitution of equation (2.65) into equation (2.61) yields

∂2G
∂X2

+
1

r

∂

∂r

(

r
∂G
∂r

)

=
∞
∑

n=1

g′′n cos

(

nπX

λ

)

+
1

r

∞
∑

n=1

g′n cos

(

nπX

λ

)

− π2

λ2

∞
∑

n=1

n2gn cos

(

nπX

λ

)

+
g′′0
2

+
1

2r
g′0 = 0 in r < ǫ and r > ǫ,

(2.66)

which leads to the following ODEs for the functions gn (r)

g′′0 +
1

r
g′0 = 0, (2.67)

g′′n +
g′n
r

−
(nπ

λ

)2
gn = 0 for n ≥ 1. (2.68)
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Solution of equation (2.67) yields

g0 =















c1,0 + c2,0 ln (r) for r < ǫ

d1,0 + d2,0 ln (r) for r > ǫ

(2.69)

In order to avoid a singular solution at r = 0 and as r → ∞, we require c2,0 = d2,0 = 0.

Solution of equation (2.68) gives

gn =



















c1,nI0
(nπr

λ

)

+ c2,nK0

(

nπr
λ

)

for r < ǫ

d1,nI0
(nπr

λ

)

+ d2,nK0

(

nπr
λ

)

for r > ǫ

. (2.70)

where Iα (·) and Kα (·) denote modified Bessel functions of the first and second kind

respectively. Again we require c2,n = d1,n = 0, to avoid singularities in this solution,

leaving

gn =



















c1,nI0
(nπr

λ

)

for r < ǫ

d1,nK0

(nπr

λ

)

for r > ǫ

. (2.71)

The jump condition on G (equation (2.63)) is used to fix c1,n in terms of d1,n for all n

as follows:

δ (x− x0) =
1

λ
+

∞
∑

n=1

1

λ
cos

(

nπ (x− x0)

λ

)

, (2.72)

[g0]
r=ǫ−

r=ǫ+ = c1,0 − d1,0 =
1

λ
, (2.73)

[gn]
r=ǫ−

r=ǫ+ =
(

c1,nI0
(nπǫ

λ

)

− d1,nK0

(nπǫ

λ

))

=
1

λ
, (2.74)

⇒























c1,0 =
1 + d1,0λ

λ

c1,n =
d1,nλK0

(

nπǫ
λ

)

+ 1

λI0
(

nπǫ
λ

)

. (2.75)
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The condition on G as r → ∞ (equation (2.64)) fixes d1,0 = 0. Finally, d1,n can be

determined using the jump condition on ∂G
∂r

(equation (2.63))

dgn

dr
=



















nπ

(

d1,nλK0

(

nπǫ
λ

)

+ 1
)

I1
(

nπr
λ

)

λ2I0
(

nπǫ
λ

) for r < ǫ,

−nπd1,nK1

(

nπr
λ

)

λ
for r > ǫ

, (2.76)

dgn

dr

∣

∣

∣

∣

r=ǫ−
− σ̄

dgn

dr

∣

∣

∣

∣

r=ǫ+
= 0,

=
nπ
(

d1,nλ
(

σ̄I0
(

nπǫ
λ

)

K1

(

nπǫ
λ

)

+ I1
(

nπǫ
λ

)

K0

(

nπǫ
λ

))

+ I1
(

nπǫ
λ

))

λ2I0
(

nπǫ
λ

)

, (2.77)
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We now have the following explicit expression for G:
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and can thus calculate its derivative:
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The limit r → ǫ is trivial, and can be taken simply by evaluating at r = ǫ.

We note that the singular integral term in equation (2.57) is a Fourier convolution of

∂G
∂r

|r=ǫ− and Φ. This suggests that equation (2.57) may be tractable to a spectral method
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and leads us to also consider the Fourier series of Φ and j which we write in the form

Φ (x, t) = P0 (t) +

∞
∑

n=1

Pn (t) cos
(nπx

λ

)

, (2.81)

j (Φ, t) = j0 (t) +
∞
∑

n=1

jn (t) cos
(nπx

λ

)

. (2.82)

On noting that the nth term in the Fourier cosine series of the convolution (f ⋆ g)(x) is

1
2fngn (where fn and gn are the nth terms in the Fourier cosine series of the functions

f(x) and g(x), respectively) we see that equation (2.57) can be transformed to

dPn

dt
= − λ

2C
dgn

dr

∣

∣

∣

∣

r=ǫ−
Pn (t)− jn (t) . (2.83)

Given a functional dependence for (Φ, t) this formulation of the problem allows us to

use a Runge-Kutta method to solve for Pn (t) and thus for Φ (x, t) and has the notable

advantage (over solving equation (2.57) directly) that the singularity in G can be dealt

with easily. In the frequency domain, this singularity occurs in the limit n→ ∞, as the

Bessel functions in equation (2.79) also tend to infinity. We note that due to equation

(2.83), large and positive gn simply implies that Pn → 0 very quickly, or equivalently

that very high frequency components of our solution decay very quickly.

2.3.3 Numerical solution of equation (2.83) via a spectral method.

Given an initial condition Φ (x, 0), we calculate initial conditions for the gating variables

wi by the assumption that the axon is at rest, and thus wi (x, 0) is the steady state

solution to equation (2.28), and we use these values to determine the membrane current

j (Φ (x, 0) , 0) through equation (2.27). Once Φ and j are known, we make use of the

fast Fourier transform (FFT) to determine the coefficients Pn and jn in equation (2.83).

We can also use the values of Φ and wi (in the time domain) to find the derivatives in

equation (2.28). This allows us to write the time derivatives of Pn and wi in the form

dPn

dt
= f1 (t, x, Pn, jn) (2.84)

dwi

dt
= f2,i (t, x,Φ, wi) (2.85)
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which is amenable to solution using a standard, fourth order, Runge-Kutta method. The

only complication here is that we have to use an inverse FFT at each iteration, turning

the updated values Pn into an updated Φ, calculating new gating variable values and

then new membrane channel values in the time domain, and finally using the FFT to

convert back into the frequency domain. A sensible choice of λ depends on the choices

we make for other parameters in our model (namely ǫ and σin, and the length of time

for which we run the simulation) but we note that the results presented here are robust

for λ > 750.

2.3.4 An analytic solution to a simplified problem

In this section, we consider a simplified case of equations (2.22) to (2.25) for a uniform

cylindrical axon, by replacing the Hodgkin Huxley ion channel dynamics with a linear

membrane resistance. Although this problem is less interesting from a physiological

perspective, it is simple enough to permit an analytical solution and can therefore be

used to verify the results of our numerical simulations. This simplified model can be

stated as follows

∇2φ = 0 in r < ǫ and r > ǫ, (2.86)
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, (2.87)

[φ]r=ǫ−

r=ǫ+ = Φ(x, t) , (2.88)

C ∂Φ
∂t

= − ∂φ

∂r

∣

∣

∣

∣

r=ǫ−
− gleakΦ (x, t) , (2.89)

and

Φ (x, 0) = cos (kx) . (2.90)
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This has the solution
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(2.91)

which yields the following expression for the transmembrane potential

Φ (x, t) = cos (kx) exp

(

−
(

kσ̄I1 (kǫ)K1 (kǫ)

C (σ̄I0 (kǫ)K1 (kǫ) + I1 (kǫ)K0 (kǫ))
+
gleak

C

)

t

)

, (2.92)

where Iα (x) and Kα (x) are again modified Bessel functions of the first and second kind

respectively.

We verify the accuracy of our numerical scheme by using it to solve equations (2.86) to

(2.89), and note that the method is robust with respect to changes in resolution and

period, λ. Figure 2.3 shows this comparison graphically, and figure 2.4 shows how the

errors can be reduced to the scale of machine accuracy by taking sufficiently many time

steps.
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Figure 2.3: Numerical (solid curve) and analytic (circles) solutions to equations
(2.86)–(2.89), at times t = 0, 0.025, 0.05, using 512 space points and 5000 time steps
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2.4 Results

We use our algorithm to calculate solutions to our model for a range of dimensionless

axon radii ǫ, and for a range of conductivities. The results of these simulations are

compared to solutions of the equivalent cable equation in order to gauge its validity

both in vitro and in vivo.

In all cases, we have chosen to truncate the infinite series in equations (2.81) and (2.82)

after 16384 (= 214) terms. This value was chosen by repeatedly running the simulation

with increasing numbers of terms until the results were seen to converge. The periodicity

value, λ, was chosen in the same way, increasing it over repeated simulations. As stated

previously, a value of λ = 750 was found to be large enough that convergence was seen.

2.4.1 The case in vitro (σ̄ = 1)

We begin by looking at the case where intracellular and extracellular conductivities are

equal which we believe to be the case in the in vitro experiments conducted in [44].

We note the divergence of our results from those predicted by the cable equation as ǫ

increases, as expected. However, as shown in figure 2.5, this divergence does not become

significant until the dimensionless axon radius is considerably larger than that typically

occurring in a squid. A comparison between our solutions and those of the cable equation

is also informative, and we note that the cable equation slightly overestimates the width

of the wave profile (see figure 2.6). Figure 2.7 shows cross-sections of the intracellular

and extracellular potentials generated during an action potential. The magnitude of the

extracellular potentials generated in the smaller axon (ǫ = 0.1, top) are less than a third

those of the intracellular potentials, resulting in the close agreement between the cable

equation predictions and the results of our simulations. The size of the extracellular

potentials increases slightly as ǫ increases, but not enough (over the physiological range

of radii) to mean that the cable equation approach ceases to give an accurate estimate

of action potential velocity.
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Figure 2.5: Variation of dimensionless propagation speed, v, with dimensionless axon
radius, ǫ, with σ̄ = 1, as calculated by our simulation (solid, black curve) and predicted
by the cable equation (dashed, red curve). Dotted line on inset is at ǫ = 0.2, the
approximate upper bound on ǫ, corresponding to the largest squid axons. Over a
physiological range of ǫ, the discrepancy between the two models is not significant.
Simulations were run with λ = 750, for t = 0 to 30 with a time step of 0.001 and 8192

space steps

2.4.2 The case in vivo (σ̄ = 0.1)

An estimate for the extracellular conductivity of a nerve bundle of σout = 0.385 S·m−1

is given in [2], which is roughly one tenth of the intracellular conductivity used by

Hodgkin and Huxley (and therefore yields σ̄ = 0.1 in our model). We must note that

the determination of these parameters is non-trivial, and significant variation exists in

measurements of both intracellular and extracellular conductivities. We feel, however,

that this only strengthens the argument for considering scenarios where σ̄ 6= 1.

For the case, where σ̄ = 0.1,we find that the divergence from the solutions of the cable
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Figure 2.6: A typical travelling wave profile from our simulation (solid, black curve)
and the cable equation (dashed, red curve) for the in vitro case, ǫ = 0.2, σ̄ = 1
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Figure 2.7: Cross-section of intracellular (solid curve) and extracellular potentials
during an action potential, in axons of dimensionless radius ǫ = 0.1 (upper panel) and
ǫ = 0.3 (lower panel), for σ̄ = 1. Intracellular cross-section is taken at r = ǫ − 10−6,
with extracellular cross-sections at r = ǫ+10−6 (dashed curve), r = 1.05ǫ (dashed and

dotted curve) and r = 1.1ǫ (dotted curve)
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equation (in terms of propagation speed, in figure 2.8, and travelling wave profile, in

figure 2.9) is much more pronounced, and becomes apparent for a physiologically viable

range of axon radii, suggesting that the cable equation is an inaccurate model for the

behaviour of axons in vivo. The cross-sections in figure 2.10 explain this inaccuracy

— the increased extracellular resistance allows for significant potential changes in the

extracellular electrolyte, which cause the transmembrane potential changes during an

action potential to be generated by an increase in the intracellular potential and a

decrease in the extracellular potential, as opposed to the in vitro case where the action

potential is generated almost entirely by an increase in the intracellular potential.
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Figure 2.8: Variation of dimensionless propagation speed, v, with dimensionless axon
radius, ǫ, with σ̄ = 0.1, as calculated by our simulation (solid, black curve) and pre-
dicted by the cable equation (dashed, red curve). Dotted line on inset is at ǫ = 0.2,
the approximate upper bound on ǫ, corresponding to the largest squid axons. The
discrepancy between the two models over a physiological range of ǫ is clear. Simulation

parameters are identical to the case σ̄ = 1

Figure 2.11 shows contour plots of the potentials generated close to the axon membrane
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Figure 2.9: A typical travelling wave profile from our simulation (solid, black curve)
and the cable equation (dashed, red curve) for the in vivo case, ǫ = 0.2, σ̄ = 0.1
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Figure 2.10: Cross-section of intracellular (solid curve) and extracellular potentials
during an action potential, in axons of dimensionless radius ǫ = 0.1 (upper panel) and
ǫ = 0.3 (lower panel), for σ̄ = 0.1. Intracellular cross-section is taken at r = ǫ − 10−6,
with extracellular cross-sections at r = ǫ+10−6 (dashed curve), r = 1.05ǫ (dashed and

dotted curve) and r = 1.1ǫ (dotted curve).
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during the propagation of an action potential. As mentioned above, the extracellular

potentials are seen to be much larger in the case σ̄ = 0.1 (left-hand column), and as

such the cable equation is a much worse approximation to this case.
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Figure 2.11: Contour plots of intracellular and extracellular potentials generated by
the propagation of an action potential, for dimensionless radii ǫ = 0.1 (upper panels)
and ǫ = 0.3 (lower panels) and σ̄ = 0.1 (left panels) and σ̄ = 1 (right panels). The thick
solid line through the centre of each panel shows the location of the axon membrane

2.5 Discussion

At least one of a squid’s escape responses is initiated by an action potential propagating

along its giant axon, which triggers the contraction of the circular muscle groups around

its siphon and gives rise to a powerful propulsive jet of water [80, 75]. Fast action

potential propagation (along the giant axon) is thus associated with rapid escape and is

therefore expected to be a characteristic that is under strong selection pressure.

Study of the cable equation model of action potential propagation predicts that signal

conduction speed is maximised by maximising the axoplasmic conductivity of the axon
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or the axon radius. The fact that the cable equation predicts that propagation speed

will scale like R
1

2 without limit means that it does not predict an ‘optimal’ axon size,

simply that bigger is better. Instead, arguments concerning the increased metabolic

cost of growing and maintaining a larger axon are used to explain why the squid giant

axon is not larger than it is. Producing and maintaining a larger cell requires more raw

materials such as the phospholipids comprising the membrane and proteins forming the

ion channels, as well as more energy to operate as, for example, larger numbers of ions

must be moved to depolarise the larger surface are of the membrane and to maintain

resting potential. These higher costs mean that there is an evolutionary pressure working

against very large cells, and thus the actual size of the axon is determined by optimising

the trade-off between higher escape speed and the attendant metabolic price.

Our approach suggests that there is a law of diminishing returns (in terms of increased

propagation velocity for increases in axon radius) which means — in the physiological

case for a large axon (σ̄ = 0.1, R ≈ 0.5mm) — that increases in propagation velocity

scale significantly more slowly with increases in axon radius, R, than the R
1

2 dependence

predicted by the cable equation. In addition there is a maximal radius, for a given

conductivity ratio σ̄, at which the propagation velocity obtains a maximum value and

above which further increases in axon size result in a decrease in propagation speed.

We note however that even in the physiological case σ̄ = 0.1 the optimal radius is

significantly larger than any physiologically feasible giant axon. This suggests that

metabolic cost is still a limiting factor in determining the size of the axon — in fact we

see that the metabolic cost of increased propagation velocity is significantly larger than

that suggested by the cable equation.
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Action potential propagation in

myelinated neurons

3.1 Introduction

Speed, as discussed in chapter 2, is a key consideration for neural signalling, particularly

for neurons which carry signals related to movement and reflexes. We have seen that

larger neurons conduct signals faster, but this comes at an increased metabolic cost, as

well as taking up more physical space. Neurons in most vertebrates have an adaptation

called myelination which increases the speed of signal propagation by a different method.

Long segments of the axon are insulated by a substance called myelin, created by glial

cells close to the neuron and it is this insulation, and the organisation of the rest of the cell

around it, that increases the speed at which the action potential propagates. Although

myelination is principally associated with vertebrates, it is present in several other taxa,

where it is thought to have evolved independently, suggesting that the principles by

which it functions are universally beneficial [36].

In this chapter, we present analysis of the generic model in equations (1.20) to (1.27) in

the context of the myelinated axon, exploiting its geometrical features to simplify the

resulting model of axonal behaviour. This provides general, qualitative insights into the

behaviour of the transmembrane potential in myelinated axons, which have applications

45
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in simplifying existing computational models. It is also demonstrated that two existing

models are special cases of our more general model, which allows us to assess the validity

of these existing models over a range of physiological parameters.

3.1.1 Organisation of the myelinated axon

Myelin is produced by glia called Schwann cells, which are found in close proximity to

mammalian neurons. Schwann cells have a specialised membrane formed from a fatty,

dielectric material called myelin. Outgrowths from Schwann cells wrap around axons

many times, forming an insulating sheath which increases the resistance of the axon

membrane and decreases its capacitance (see figure 3.1). The outgrowths of neighbouring

Schwann cells do not touch, so that the myelin sheath is not continuous along the entire

axon — small gaps called nodes of Ranvier are left at regular intervals.

Figure 3.1: An axon (labelled) and myelin sheath (arrow). Reproduced from [37]

The ion channels at and around the node of Ranvier show clear spatial organisation.

Sodium channels are concentrated at the centre of the node of Ranvier [16, 20], where

there is little or no myelination and the axon membrane is exposed directly to the

extracellular space, whereas potassium channels are concentrated in what is known as

the paranodal region, close to the node of Ranvier but within the myelin sheath [79, 84].

Figure 3.2 shows a single node of Ranvier under the effects of fluorescent dyes which

bind to sodium channels (green) and potassium channels (red).
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Figure 3.2: A node of Ranvier. Different proteins in the cell membrane have
been stained with different dyes. The green dye binds to the protein that forms
the sodium channel, which is strongly concentrated at the centre of the node. The
red dye binds to the protein caspr, which is associated with the connection between
the myelin sheath and the axon. The blue dye binds to the protein which forms
the potassium channel. Figure provided by Peter Schrager, PhD, from an email

(peter shrager@urmc.rochester.edu) in August 2015

This concentration of ion channels causes action potentials to ‘jump’ from node to node,

a phenomena known as saltatory conduction, which can be orders of magnitude faster

than uniform propagation in an unmyelinated neuron of equivalent size.

A characteristic feature of the paranodal region adjacent to the node is that thickness

of the myelin sheath ‘tapers off’ here, with each roll of myelin overlapping the previous

and thus the capacitance of the membrane, which is related to the thickness of the

cell membrane and myelin sheath and is fairly constant in the other regions, can vary

spatially in the paranode.

3.1.2 Modelling the cell

3.1.2.1 The geometry of the myelinated axon

Figure 3.3 shows the geometry of a simplified myelinated axon (not to scale). The axon

is assumed to be uniformly cylindrical and formed of identical, repeating subunits con-

sisting of a node and its neighbouring paranodal and internodal regions. The assumption

that the properties of each region don’t vary along the length of the axon is useful for

the sake of clarity, although the analysis of the model does not rely on it.

mailto:peter_shrager$@$urmc.rochester.edu
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Figure 3.3: Simplified geometry of the myelinated axon (not to scale). The white
regions are the nodes of Ranvier, where the cell membrane is exposed to the extracellular
space, the sodium channel density is high and the membrane capacitance per unit
area is highest. The light-grey regions are the paranodes, where the axon is partially
myelinated, the potassium channel density is high and the membrane capacitance per
unit area is lower. The dark-grey regions are the internodes, where the axon is fully
myelinated, there are very few ion channels and the membrane capacitance is lowest.

Also shown in figure 3.3 are the labels we’ve used for the sizes of the different regions

of the axon. Roughly, LN ≈ 1 × 10−6 m, LP ≈ 1× 10−6 m, LI ≈ 100 − 1000 × 10−6 m,

and it is the large discrepancies in scale between the nodal and internodal widths that

accounts for the increased speed of action potential propagation.

3.1.2.2 A description of the electrical behaviour

Equations (1.20) to (1.27) from chapter 1 can be used to model the electrochemical

behaviour in the myelinated axon. We first define the intracellular region

Ω∗ = {r∗ < R, 0 ≤ θ < 2π,−∞ < x∗ <∞} (3.1)

where r∗, θ and x∗ are the radius, azimuth and longitudinal coordinates of a cylin-

drical coordinate system with its longitudinal axis lying along the centre of the axon.

We have to adapt equation 1.27 to allow for the different properties of the myelinated

and unmyelinated regions of the membrane, but otherwise the equations can be used

unchanged.

The current flow through the nodal membrane (white regions in figure 3.3) is determined

by the capacitance per unit area of the nodal membrane (CN ) and the current flows
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through the ion channels (current density j∗N (Φ∗, t∗))

J∗ · er|r∗=R− = CN
∂Φ∗

∂t∗
+ j∗N (Φ∗, t∗) kLI − LN < x∗ < kLI + LN , (3.2)

where we define the longitudinal coordinate, x∗, such that the origin is at the centre of

some reference node and the other nodes of the axon are then centred at x∗ = kLI , for

k ∈ Z.

Similarly, the current flows through the paranodal region (light-grey regions in figure

3.3) are determined by the capacitance per unit area of the membrane in this region

(CP (x∗)), and the current flows through the ion channels (current density j∗P (Φ∗, t∗))

J∗ · er|r∗=R− = CP (x∗)
∂Φ∗

∂t∗
+ j∗P (Φ∗, x∗, t∗) (3.3)

kLI − LN − LP < x∗ < kLI − LN and kLI + LN < x∗ < kLI + LN + LP ,

Note that the paranodal capacitance per unit area and current density vary spatially —

the thickness of the myelin sheath varies as it tapers into the node of Ranvier, affecting

the capacitance, and the density of ion channels varies (see figure 3.2). Finally, the

current flows through the internodal membranes (dark-grey regions in figure 3.3) are

determined by the capacitance per unit area (CI) and the current flows through the ion

channels (current density j∗I (Φ
∗, t∗))

J∗ · er|r∗=R− = CI
∂Φ∗

∂t∗
+ j∗I (Φ

∗, t∗) (3.4)
(

k − 1

2

)

LI < x∗ < kLI − LN − LP and kLI + LN + LP < x∗ <

(

k +
1

2
LI

)

,

This boundary condition of course holds throughout the entire internodal region on

either side of the node, but we have chosen to define it this way to break the axon

into a series of repeated, identical units, each of width LI , spanning from the centre of

one internodal region to the centre of the next. The solution to the model on one such

subunit is then valid for every subunit, with a boundary condition at x∗ =
(

k − 1
2

)

LI

and x∗ =
(

k + 1
2

)

LI to ensure continuity of current and potential.

The distribution of the ion channels in the axon plays a major role in determining
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j∗N , j∗P and j∗I . As seen in figure 3.2, the ion channels at the node of Ranvier are

all sodium specific, and so we expect j∗N to be comprised of a sodium and a general

leak component, but not of a potassium component. The channels in the paranodal

region are all potassium specific, and the distribution varies, with the highest densities

being found closest to the node of Ranvier. We thus model j∗P as being comprised of a

potassium component and a general leak component, with size depending on distance

from the node. We expect some currents to flow through the internodal membrane as

the insulating effect of the myelin is not perfect, but the number of ion channels is low,

and thus we expect the current density j∗I to be small and comprised of only a leak

component.

3.2 General, dimensional problem

The problem in dimensional form is thus

J∗ = −σin∇∗φ∗ r∗ < R, (3.5)

J∗ = −σout∇∗φ∗ r∗ > R, (3.6)

∇∗ · J∗ = 0 r∗ < R and r∗ > R, (3.7)

[φ∗]r
∗=R−

r∗=R+ = Φ∗ (x∗, t∗) , (3.8)

J · er|r∗=R+ = J · er|r∗=R− (3.9)

J∗ · er|r∗=R− = CN
∂Φ∗

∂t∗
+ j∗N (Φ∗, t∗) kLI − LN < x∗ < kLI + LN ,

(3.10)

J∗ · er|r∗=R− = CP (x∗)
∂Φ∗

∂t∗
+ j∗P (Φ∗, x∗, t∗) kLI − LN − LP < x∗ < kLI − LN

kLI + LN < x∗ < kLI + LN + LP ,

(3.11)

J∗ · er|r∗=R− = CI
∂Φ∗

∂t∗
+ j∗I (Φ

∗, t∗)

(

k − 1

2

)

LI < x∗ < kLI − LN − LP

kLI + LN + LP < x∗ <

(

k +
1

2
LI

)

,

(3.12)

φ∗ → 0 r∗ → ∞ (3.13)
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Here a ∗ denotes a dimensional variable; J∗ is current density; R is the axon radius; σin

and σout are the conductivities of the axoplasm (inside the axon) and the extracellular

electrolyte; φ∗ is the electric potential; Φ∗ is the transmembrane potential; LI is the

distance separating one node from the next; LN is half the width of one node; LP

is the width of the paranodal region; CN , CP (x∗) and CI are the capacitances per

unit area of the nodal, paranodal and internodal membranes, respectively (CP varies

with x∗ because the thickness of the myelin sheath varies throughout the paranode) and

j∗N (Φ∗, t∗), j∗P (Φ∗, x∗, t∗) and j∗I (Φ
∗, t∗) are the membrane current densities of the nodal,

paranodal and internodal membranes, respectively (again, j∗P varies with x∗ because the

ion channel density varies throughout the paranode).

The current densities are modelled by adapting the Hodgkin-Huxley approach given in

[44] and equation (1.1) except the sodium, potassium and leak currents are explicitly

separated to flow through different regions of the axon membrane, as follows

j∗N = gNam
3h (Φ∗ − ΦNa) + gL (Φ

∗ − Φl) , (3.14)

j∗P = gK (x∗)n4 (Φ∗ − ΦK) + gL (Φ
∗ − Φl) , (3.15)

j∗I = gL (Φ
∗ − Φl) (3.16)

with the gating variables h, m and n are defined as in equations (1.8) to (1.10). With the

currents in this form it is also possible to model different leak current densities through

different regions of the membrane by using a different value of gL in each of the above

equations.

We note that the ion channels in vertebrate neurons are not identical to those in the

squid, but the qualitative gating behaviour is very similar (a fast acting sodium channel

and a slower potassium channel), and that the Hodgkin-Huxley form has been adapted

for modelling myelinated axons in other works [24, 63]
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3.2.1 Non-dimensionalisation

We non-dimensionalise as follows

Φ∗ = Φ̃Φ, φ∗ = Φ̃φ, J∗ =
σinΦ̃

LI
J , (3.17)

j∗N = gNaΦ̃jN , j∗P = ḡKΦ̃jP , j∗I = gLΦ̃jI (3.18)

x∗ = LIx, r∗ = LNr, t∗ = τt, (3.19)

where Φ̃ is a characteristic membrane potential (somewhere on the order of 10 millivolts),

τ is a characteristic time scale and we choose the characteristic longitudinal length scale

to be the internodal separation, LI . The characteristic radial length scale is chosen to

be LN because the axon radius is small compared to the internodal separation LI but is

around the same order of magnitude as LN . The choice of radial length scale therefore

ensures that the position of the axon membrane is of order unity.

We choose the characteristic membrane current densities from the Hodgkin-Huxley forms

in equations (3.14) to (3.16). Thus gNa is the maximal conductance per unit area of the

nodal membrane to sodium ions, ḡK the average maximal conductance per unit area of

the paranodal membrane to potassium ions and gL the general leak conductance of the

internodes. The values of these parameters are given in table 3.1.
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Application of these scalings to equations (3.5) to (3.13) leads to the dimensionless

version of the model

J = −1

ε

∂φ

∂r
er −

∂φ

∂x
ex r < λR, (3.20)

J = −σ̄1
ε

∂φ

∂r
er − σ̄

∂φ

∂x
ex r > λR, (3.21)

1

εr

∂

∂r
(rJr) +

∂

∂x
Jx = 0 r < λR and r > λR, (3.22)

[φ]
r=λ−

R

r=λ+

R

= Φ(x, t) , (3.23)

J · er|r=λ−

R

= C ∂Φ
∂t

+ ̃N jN (Φ, t) k − ε < x < k + ε, (3.24)

J · er|r=λ−

R

= CC̃P (x)
∂Φ

∂t
+ ̃P (x) jP (Φ, t) k − ε− ελP < x < k − ε

k + ε < x < k + ε+ ελP ,

(3.25)

J · er|r=λ−

R

= ε

(

C̃IC
∂Φ

∂t
+ ̃IjI (Φ, t)

) (

k − 1

2

)

< x < k − ε− ελP

k + ε+ ελP < x <

(

k +
1

2

)

,

(3.26)

J · er|r=λ+

R

= J · er|r=λ−

R

, (3.27)

φ→ 0 r → ∞ (3.28)

where we have defined the following dimensionless parameters:

ε =
LN

LI
, λR =

R

LN
, λP =

LP

LN
, σ̄ =

σout

σin
(3.29)

C =
CNLI

σinτ
, C̃I =

CILI

CNLN
, ̃N =

gNaLI

σin
, ̃I =

gLL
2
I

σinLN
, (3.30)

and the following dimensionless functions

C̃P (x) =
CP (x)

CN
, ̃P (x) =

gK (x)LI

σin
=
gK (x)

gNa
̃N , (3.31)
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3.2.1.1 Estimates of parameter values

The values of these parameters are given below, using estimates of the properties of the

myelinated axon given in table 3.1.

ε = 3.3× 10−4 − 3.3× 10−2, λR = 0.6 − 3.8, (3.32)

λP = 6.2, σ̄ = 0.2 (3.33)

C = 0.014 − 0.14, C̃I = 0.31 − 3.1, (3.34)

̃N = 0.34 − 3.4, ̃I = 1.3 × 10−3 − 1.3× 10−1, (3.35)

The values of the dimensionless functions describing the capacitance per unit area and

current density in the paranodal regions will be of the following orders of magnitude

C̃P (x) = 10−3 − 1, ̃P (x) = 0.1 − 1 (3.36)

Most notably, ε ≪ 1, a fact we shall make use of when analysing the behaviour of the

axon.
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Table 3.1: Parameters describing the myelinated axon

Parameter Description Value Unit Reference

R Axon radius 0.4− 5× 10−6 m [63, 93]

LN Node width 0.35 − 1.6× 10−6 m [63, 92]

LP Paranode width 4× 10−6 m [73]

LI Internodal spacing 0.2− 2× 10−3 m [5]

CN Nodal membrane capacitance
per unit area

5× 10−2 F ·m−2 [7, 98]

CP Paranodal membrane capaci-
tance per unit area

10−5 − 10−2 F ·m−2

CI Internodal membrane capaci-
tance per unit area

5× 10−5 F ·m−2 [7]

gNa Sodium conductance per unit
area

1200 S ·m−2 [63]

gK Potassium conductance per unit
area

360 S ·m−2 [63]

gL General leak conductance 3 (Node)
0.015 (Internode)

S ·m−2 [14, 63]

σin Axoplasmic conductivity 0.7 S ·m−1 [96]

σout Extracellular conductivity 3 S ·m−1 [24]

τ Sodium channel opening time
constant

10−4 s [27]
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3.3 Asymptotic analysis of problem

The small parameter ε in equations (3.20) to (3.28) means the problem is amenable to

asymptotic analysis. This allows us to separate the problem into one on the length scale

of the internodal separation and one on the short (O (ε)) length scale of the node width.

We can then derive a simplified model of the axon’s behaviour from the solutions to the

problems on these two length scales.

3.3.1 The outer problem

In the outer region, which is defined such that x = O (1), we expand in powers of ε as

follows:

φ = φ
(O)
0 (x, r, t) + εφ

(O)
1 (x, r, t) + ε2φ

(O)
2 (x, r, t) + · · · , (3.37)

J = J
(O)
0 (x, r, t) + εJ

(O)
1 (x, r, t) + ε2J

(O)
2 (x, r, t) + · · · , (3.38)

Φ = Φ
(O)
0 (x, r, t) + εΦ

(O)
1 (x, r, t) + ε2Φ

(O)
2 (x, r, t) + · · · (3.39)

where the superscript (O) denotes a quantity in the outer.

3.3.1.1 The leading order outer problem

By substituting the expansions above into equations (3.20) to (3.28) at leading order,

we obtain the following problem for φ
(O)
0

∂φ
(O)
0

∂r
= 0 r < λR, (3.40)

∂φ
(O)
0

∂r
= 0 r > λR, (3.41)

[

φ
(O)
0

]r=λ−

R

r=λ+

R

= Φ
(O)
0 (x, t) , (3.42)

φ
(O)
0 → 0 r → ∞ (3.43)
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which has solution

φ
(O)
0 =















Φ
(O)
0 (x, t) r < λR

0 r > λR

(3.44)

The key insight is that the leading order potential is a function of distance along the

axon and time only (and thus is independent of distance from the axon centre). However,

the solution for the leading order potential is not fully determined (its dependence on

x and t is unknown) and in order to find this dependence we need to proceed to higher

orders and look for a solvability condition, this is described in section 3.3.3.1.

3.3.1.2 The first order outer problem

We also need to determine the leading order current density, J
(O)
0 , which is found by

proceeding to next order in equations (3.20) to (3.28), whence we obtain the following

problem

1

r

∂

∂r

(

rJ
(O)
0 · er

)

= 0 r < λR and r > λR, (3.45)

J
(O)
0 = −∂φ

(O)
1

∂r
er −

∂Φ
(O)
0

∂x
ex r < λR, (3.46)

J
(O)
0 = −σ̄ ∂φ

(O)
1

∂r
er r > λR, (3.47)

[

φ
(O)
1

]r=λ−

R

r=λ+

R

= Φ
(O)
1 (x, t) , (3.48)

J
(O)
0 · er

∣

∣

∣

r=λ−

R

= 0, (3.49)

φ
(O)
1 → 0 r → ∞ (3.50)

where we have substituted in the solution for φ
(O)
0 from (3.44). We determine the first

order potential from the problem obtained by substituting (3.46) and (3.47) into equation

(3.45)

1

r

∂

∂r

(

r
∂φ

(O)
1

∂r

)

= 0 r < λR and r > λR (3.51)
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The boundary condition in (3.49) can be rewritten as

∂φ
(O)
1

∂r

∣

∣

∣

∣

∣

r=λ−

R

= 0 (3.52)

which, along with the jump condition in (3.48) determines φ
(O)
1 as follows

φ
(O)
1 =















Φ1 (x, t) r < λR

0 r > λR

. (3.53)

Thus the first order potential in the internodal region is also a function of distance along

the axon and time only. Substituting this into equations (3.46) and (3.47) yields

J
(O)
0 =



















−∂Φ
(O)
0

∂x
ex r < λR

0 r > λR

. (3.54)

or that the leading order current flows entirely within the axon, and doesn’t vary with

distance from the axon centre (i.e. J
(O)
0 = J

(O)
0 (x, t)).

In order to connect the longitudinal current flow in two neighbouring internodal regions,

it is necessary to consider the problem at the node between them.

3.3.2 The inner problem about a nodal region

In order to investigate the solution in the nodal region we rescale equations (3.20) to

(3.28) to focus on the node, by writing x = k + εξ, such that ξ is on the scale of the
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node width. This yields the following system

J = −1

ε

∂φ

∂r
er −

1

ε

∂φ

∂ξ
ex r < λR, (3.55)

J = −1

ε
σ̄
∂φ

∂r
er −

1

ε
σ̄
∂φ

∂ξ
ex r > λR, (3.56)

1

ε

1

r

∂

∂r
(rJr) +

1

ε

∂

∂ξ
(Jx) = 0 r < λR and r > λR, (3.57)

[φ]
r=λ−

R

r=λ+

R

= Φ(ξ, t) , (3.58)

J · er|r=λ−

R

= C ∂Φ
∂t

+ ̃N jN (Φ, t) −1 < ξ < 1, (3.59)

J · er|r=λ−

R

= CC̃P (ξ)
∂Φ

∂t
+ ̃P (ξ) jP (Φ, t) −1− λP < x < −1

1 < x < 1 + λP ,

(3.60)

J · er|r=λ−

R

= ε

(

C̃IC
∂Φ

∂t
+ ̃IjI (Φ, t)

)

−∞ < x < −1− λP

1 + λP < x <∞, (3.61)

J · er|r=λ+

R

= J · er|r=λ−

R

(3.62)

φ→ 0 r → ∞, (3.63)

In this inner region, centred on the node, we expand in powers of ε, as follows

φ = φ
(i)
0 (ξ, r, t) + εφ

(i)
1 (ξ, r, t) + ε2φ

(i)
2 (ξ, r, t) + · · · , (3.64)

J = J
(i)
0 (ξ, r, t) + εJ

(i)
1 (ξ, r, t) + ε2J

(i)
2 (ξ, r, t) + · · · , (3.65)

Φ = Φ
(i)
0 (ξ, r, t) + εΦ

(i)
1 (ξ, r, t) + ε2Φ

(i)
2 (ξ, r, t) + · · · , (3.66)

j = j
(i)
0 (ξ, r, t) + εj

(i)
1 (ξ, r, t) + ε2j

(i)
2 (ξ, r, t) + · · · , (3.67)
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3.3.2.1 The leading order inner problem

To leading order the problem in the inner, obtained by substituting the above expansions

into equations (3.55) to (3.63) is

∂φ
(i)
0

∂r
= 0, r < λR and r > λR, (3.68)

∂φ
(i)
0

∂ξ
= 0, r < λR and r > λR, (3.69)

[

φ
(i)
0

]r=λ−

R

r=λ+

R

= Φ
(i)
0 , (3.70)

φ
(i)
0 → 0 r → ∞, (3.71)

This has solution

φ
(i)
0 =















Φ
(i)
0 (t) r < λR

0 r > λR

. (3.72)

That is the leading order transmembrane potential does not vary with position across the

width of the entire node and paranodal region, which is a key result for the subsequent

analysis in section 3.3.3.
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3.3.2.2 The first order inner problem

The problem for the leading order current J
(i)
0 is obtained by proceeding to first order

in the expansions in equations (3.55) to (3.63)

J
(i)
0 = −∂φ

(i)
1

∂r
er −

∂φ
(i)
1

∂ξ
ex r < λR, (3.73)

J
(i)
0 = −σ̄ ∂φ

(i)
1

∂r
er − σ̄

∂φ
(i)
1

∂ξ
ex r > λR, (3.74)

1

r

∂

∂r

(

rJ
(i)
0 · er

)

+
∂

∂ξ

(

J
(i)
0 · ex

)

= 0 r < λR and r > λR, (3.75)

[

φ
(i)
1

]r=λ−

R

r=λ+

R

= Φ
(i)
1 , (3.76)

J
(i)
0 · er

∣

∣

∣

r=λ−

R

= C ∂Φ
(i)
0

∂t
+ ̃N jN , −1 < ξ < 1, (3.77)

J
(i)
0 · er

∣

∣

∣

r=λ−

R

= CC̃P (x)
∂Φ

(i)
0

∂t
+ ̃P (x) jP −1− λP < ξ < −1

1 < ξ < 1 + λP , (3.78)

J
(i)
0 · er

∣

∣

∣

r=λ−

R

= 0 −∞ < ξ < −1− λP

1 + λP < ξ <∞, (3.79)

J
(i)
0 · er

∣

∣

∣

r=λ−

R

= J
(i)
0 · er

∣

∣

∣

r=λ+

R

(3.80)

φ
(i)
1 → 0 r → ∞, (3.81)

3.3.2.3 Matching conditions

We now need to match the leading order solution in the inner to the leading order

solution in the outer, which we do using Van Dyke’s matching principle. This leads to

the following conditions

lim
ξ→−∞

φ
(i)
0 (ξ, t) = lim

x→k−
φ
(O)
0 (x, t) (3.82)

lim
ξ→∞

J
(i)
0 (ξ, r, t) · ex = lim

x→k+
J

(O)
0 (x, t) · ex, (3.83)

lim
ξ→∞

φ
(i)
0 (ξ, t) = lim

x→k+
φ
(O)
0 (x, t) , (3.84)

lim
ξ→−∞

J
(i)
0 (ξ, r, t) · ex = lim

x→k−
J
(O)
0 (x, t) · ex, (3.85)
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These conditions can be simplified using our solutions for the leading order transmem-

brane potentials and currents in the internodal region (equations (3.44) and (3.54)) and

for the leading order transmembrane potential in the nodal region (equation (3.72)) to

obtain

Φ
(i)
0 (t) = Φ

(O)
0

(

k+, t
)

(3.86)

Φ
(i)
0 (t) = Φ

(O)
0

(

k−, t
)

, (3.87)

lim
ξ→∞

J
(i)
0 (ξ, r, t) · ex = J

(O)
0

(

k+, t
)

, (3.88)

lim
ξ→−∞

J
(i)
0 (ξ, r, t) · ex = J

(O)
0

(

k−, t
)

, (3.89)

3.3.3 Determining the leading order transmembrane potential at the

nodes of Ranvier

We relate the leading order currents in the nodal region to the leading order currents

in the internodal region by integrating equation (3.75) over the cylindrical volume D

shown in figure 3.4, bounded by the surfaces S1 (ξ = −L), S2 (ξ = L) and a surface

located at the axon membrane (r = λR). Explicitly, we obtain

ˆ ξ=L

ξ=−L

ˆ r=λR

r=0

(

1

r

∂

∂r

(

rJ
(i)
0 · er

)

+
∂

∂ξ

(

J
(i)
0 · ex

)

)

2πr drdξ =

‹

∂D

J
(i)
0 · n dS, (3.90)

where the integrand on the left-hand side is the divergence of J
(i)
0 , and implies that

the leading order current density is conserved in the volume D. As equation (3.75)

determines that the volume integral is zero

‹

∂D

J
(i)
0 (ξ, r, t) · n dS = 0, (3.91)

The surface at the axon membrane can now be subdivided to allow for the presence

of the nodal, paranodal and internodal membranes (S3, S4a,b and S5a,b in figure 3.4).
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S1 S2S3S4a S4b S5bS5a

Dξ = −L ξ = L

Figure 3.4: Volume and surfaces for the application of the divergence theorem in
equation (3.90). S3 is the nodal membrane, S4a,b are the paranodal membranes and
S5a,b are the myelinated membranes in the internodes. S1 and S2 are cross-sections

through the axon normal to the x axis at ξ = ±L.

Dividing the surface integral into its constituent parts yields

¨

S1

(

J
(i)
0 (ξ, r, t) · (−ex)

)∣

∣

∣

ξ=−L
dS +

¨

S2

(

J
(i)
0 (ξ, r, t) · ex

)∣

∣

∣

ξ=L
dS

+

(
¨

S3

+

¨

S4a∪S4b

+

¨

S5a∪S5b

)

(

J
(i)
0 (ξ, r, t) · er

)∣

∣

∣

r=λ−

R

dS = 0, (3.92)

We now expand the volume D by taking the limit L→ ∞. This allows us to determine

the longitudinal current through the surfaces S1 and S2 in the inner by matching it to

the current in the outer, in the internodal region far from the node. The surface integrals

over S1 and S2 can thus be rewritten by applying the matching conditions in equations

(3.88) and (3.89)

lim
L→∞

¨

S1

(

J
(i)
0 (ξ, r, t) · (−ex)

)∣

∣

∣

ξ=−L
dS =

¨

S1

J
(O)
0

(

k+, t
)

dS (3.93)

lim
L→∞

¨

S2

(

J
(i)
0 (ξ, r, t) · ex

)∣

∣

∣

ξ=L
dS =

¨

S2

J
(O)
0

(

k−, t
)

dS (3.94)

We can substitute the leading order longitudinal current inside the axon in the internodal

regions from equation (3.54), where we determined

J
(O)
0 (x, t) = − ∂

∂x

(

Φ
(O)
0 (x, t)

)

(3.95)

The leading order current through the nodal membrane (S3) is given by equation (3.77),

the current through the paranodal membranes (S4a,b) by equation (3.78) and the current

through the internodal membranes (S5a,b) by equation (3.79), allowing us to rewrite
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equation (3.92) as follows

¨

S1

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−
dS −

¨

S2

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+
dS

+

¨

S3

C ∂
∂t

(

Φ
(i)
0 (t)

)

+ ̃NjN

(

Φ
(i)
0 (t) , t

)

dS

+

¨

S4a∪S4b

CC̃P (ξ)
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̃P (ξ) jP

(

Φ
(i)
0 (t) , t

)

dS +

¨

S5a∪S5b

0 dS = 0,

(3.96)

We now write the integrals with the explicit definitions of the surfaces S1 to S4 (and

note that S4 is really comprised of two surfaces, to the left and right of the node), to

obtain

ˆ λR

0

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−
2πr dr

−
ˆ λR

0

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+
2πr dr

+

ˆ 1

−1

(

C ∂
∂t

(

Φ
(i)
0 (t)

)

+ ̃NjN

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ

+

ˆ −1

−1−λP

(

CC̃P (ξ)
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̃P (ξ) jP

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ

+

ˆ 1+λP

1

(

CC̃P (ξ)
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̃P (ξ) jP

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ= 0, (3.97)

Each of the first three integrands is constant over the domain of integration, so the

integration here is trivial. The integral over the paranodal membranes has to account

for the variable capacitance and current density, but since the potential is not variable

over the paranodal region we simply introduce the notation

C̄P =

´ 1+λP

1 C̃P (ξ) dξ

λP
, ̄P =

´ 1+λP

1 ̃P (ξ) dξ

λP
, (3.98)

(assuming the properties of the paranodal membranes are symmetrical about the node),

such that C̄P and ̄P are the averages of C̃P and ̃P over the paranodal region. The

remaining integration is trivial as all other terms in the integrand are constant over the

region of integration, and thus we obtain the following condition on the jump in the
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derivative of the leading order potential Φ
(O)
0 (x, t) across the node

πλ2R

(

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−
− ∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+

)

+4πλR

(

C ∂
∂t

(

Φ
(i)
0 (t)

)

+ ̃NjN

(

Φ
(i)
0 (t) , t

)

)

+4πλRλP

(

CC̄P
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̄P jP

(

Φ
(i)
0 (t) , t

)

)

= 0,

(3.99)

which can be rearranged to give the following relationship between the transmembrane

potentials in the inner and the outer

(

1 + λP C̄P

)

C ∂
∂t

(

Φ
(i)
0 (t)

)

=
λR

4

(

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+
− ∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−

)

− ̃NjN

(

Φ
(i)
0 (t) , t

)

− λP ̄P jP

(

Φ
(i)
0 (t) , t

)

,

(3.100)

Substituting for Φ
(i)
0 (t) from equation (3.86) gives

(

1 + λP C̄P

)

C ∂

∂t

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k

=
λR

4

(

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+
− ∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−

)

− ̃N jN

(

Φ
(O)
0 (k, t) , t

)

− λP ̄P jP

(

Φ
(O)
0 (k, t) , t

)

,

(3.101)

This equation essentially describes conservation of current in the inner region, accounting

for the capacitive currents onto the nodal and paranodal membranes and current loss

through the ion channels in these regions.

3.3.3.1 The outer, and a solvability condition on φ
(O)
0 (x, t)

In order to determine an equation for the leading order outer potential φ
(O)
0 (x, t), we

must proceed to second order in the expansion of equations (3.20) to (3.28), where we
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find

1

r

∂

∂r

(

rJ
(O)
1 · er

)

+
∂

∂x

(

J
(O)
0 · ex

)

= 0 r < λR, (3.102)

J
(O)
1 = −∂φ

(O)
2

∂r
er −

∂φ
(O)
1

∂x
ex r < λR, (3.103)

[

φ
(O)
2

]r=λ−

R

r=λ+

R

= Φ
(O)
2 (x, t) , (3.104)

∂

∂r

(

φ
(O)
2

)

∣

∣

∣

∣

r=λ−

R

= −
(

C̃IC
∂

∂t

(

Φ
(O)
0 (x, t)

)

+ ̃IjI

(

Φ
(O)
0 (x, t) , t

)

)

, (3.105)

φ
(O)
2 → 0 r → ∞ (3.106)

Substituting the solution for J
(O)
0 from equation (3.54) (i.e. J

(O)
0 = − ∂

∂x

(

Φ
(O)
0 (x, t)

)

ex

for r < λR) into equation (3.102) and integrating once with respect to r yields

∂φ
(O)
2

∂r
= −r

2

∂2

∂x2

(

Φ
(O)
0 (x, t)

)

+
c1 (x, t)

r
(3.107)

The boundary condition at r = λR (equation (3.105)) determines the function c1 (x, t)

as

c1 (x, t) =
λ2R
2

∂2

∂x2

(

Φ
(O)
0 (x, t)

)

− λR

(

C̃IC
∂

∂t

(

Φ
(O)
0 (x, t)

)

+ ̃IjI

(

Φ
(O)
0 (x, t) , t

)

)

.

(3.108)

Integrating equation (3.107) with respect to r yields the following expression for φ
(O)
2 :

φ
(O)
2 = c1 (x, t) ln (r)−

r2

4

∂2

∂x2

(

Φ
(O)
0 (x, t)

)

+ c2, (3.109)

In order to avoid the unphysical logarithmic singularity in the potential at r = 0, we

require that c1 (x, t) ≡ 0, that is

C̃IC
∂

∂t

(

Φ
(O)
0 (x, t)

)

=
λR

2

∂2

∂x2

(

Φ
(O)
0 (x, t)

)

− ̃IjI

(

Φ
(O)
0 (x, t) , t

)

. (3.110)

This tells us that the leading order transmembrane potential in the internodal regions

obeys the above diffusion equation in which the sink term −̃IjI
(

Φ
(O)
0 (x, t) , t

)

repre-

sents current flowing out through the myelinated membrane.
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3.3.4 A model of the leading order transmembrane potential

We now have sufficient equations to determine the leading order transmembrane poten-

tial Φ0 (x, t). To summarise, equations (3.101) and (3.110) give the following system for

Φ
(O)
0 (x, t) which, on dropping the sub- and superscripts, takes the form

(

1 + λP C̄P

)

C ∂Φ

∂t

∣

∣

∣

∣

x=k

=
λR

4

(

∂Φ

∂x

∣

∣

∣

∣

x=k+
− ∂Φ

∂x

∣

∣

∣

∣

x=k−

)

− ̃NjN (Φ (k, t) , t)− λP ̄P jP (Φ (k, t) , t) ,

(3.111)

C̃IC
∂Φ

∂t
=
λR

2

∂2Φ

∂x2
− ̃IjI (Φ, t) (3.112)

So we have the diffusion equation in each of the myelinated regions, with jump conditions

at the nodes that couple the solution in each myelinated region to its neighbours.

3.3.5 The case with small membrane currents

Let us consider the case where the transmembrane capacitive currents are small, being

of size O
(

δ2
)

in the dimensionless model, where δ ≪ 1. This is equivalent to the

distinguished limit in which the parameters C, ̃N , ̄P and ̃I are all O
(

δ2
)

, which

motivates us to rewrite them in the form

C = δ2Ĉ, ̃N = δ2̂N , ̄P = δ2̂P , ̃I = δ2̂I (3.113)

Equations (3.111) and (3.112) are then rewritten as follows

(

1 + λP C̄P

)

δ2Ĉ ∂Φ

∂t

∣

∣

∣

∣

x=k

=
λR

4

(

∂Φ

∂x

∣

∣

∣

∣

x=k+
− ∂Φ

∂x

∣

∣

∣

∣

x=k−

)

− δ2 (̂NjN (Φ (k, t) , t) + λP ̂P jP (Φ (k, t) , t)) ,

(3.114)

δ2C̃I Ĉ
∂Φ

∂t
=
λR

2

∂2Φ

∂x2
− δ2̂IjI (Φ, t) (3.115)

In this limit, we expect the transmembrane potential Φ to vary slowly along the axon,

as the transmembrane currents which influence Φ are small. We make the ansatz

Φ = Φ (η, t), where η = δx is a length scale much longer than the internodal separation,

the size of which is determined by the size of the capacitive and transmembrane currents
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(which are O
(

δ2
)

). It follows that Φ is only changed significantly by the capacitive and

transmembrane currents in many nodal and internodal regions.

Substituting this ansatz into equations (3.114) and (3.115) and making the change of

variables η = δx yields the following system, which holds on the long length scale

(

1 + λP C̄P

)

δ2Ĉ ∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

=
δλR

4

(

∂

∂η
(Φ (η, t))

∣

∣

∣

∣

η=δk+
− ∂

∂η
(Φ (η, t))

∣

∣

∣

∣

η=δk−

)

− δ2 (̂N jN (Φ (δk, t) , t) + λp̂P jP (Φ (δk, t) , t))

(3.116)

δ2
∂2

∂η2
(Φ (η, t)) = δ2

2

λR

(

C̃I Ĉ
∂

∂t
(Φ (η, t)) + ̂IjI (Φ (η, t) , t)

)

,

(3.117)

In order to simplify these equations, we integrate equation (3.117) across the single

internodal region δk < η < δ (k + 1)

ˆ δ(k+1)

δk

∂2

∂η2
(Φ (η, t)) dη =

2

λR

ˆ δ(k+1)

δk

C̃I Ĉ
∂

∂t
(Φ (η, t)) + ̂IjI (Φ (η, t) , t) dη, (3.118)

The integrand on the right-hand side is approximately constant over the domain of

integration, since our ansatz for Φ implies that it does not change significantly over the

scale of the internodal separation; thus we obtain

∂Φ

∂η

∣

∣

∣

∣

η=δk+
=
∂Φ

∂η

∣

∣

∣

∣

η=δ(k+1)−
− δ

2

λR

(

C̃I Ĉ
∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

+ ̂IjI (Φ (δk, t) , t)

)

(3.119)

Similarly, by integrating over the internodal region δ (k − 1) < η < δk, we obtain

∂Φ

∂η

∣

∣

∣

∣

η=δk−
=
∂Φ

∂η

∣

∣

∣

∣

η=δ(k−1)+
+δ

2

λR

(

C̃I Ĉ
∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

+ ̂IjI (Φ (δk, t) , t)

)

(3.120)
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These two expressions can now be substituted into equation (3.116) to obtain a single

equation for Φ (η, t), the transmembrane potential on the long length scale

(

1 + λP C̄P

)

Ĉ ∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

=
λR

4δ

(

∂

∂η
(Φ (η, t))

∣

∣

∣

∣

η=δ(k+1)−
− ∂

∂η
(Φ (η, t))

∣

∣

∣

∣

η=δ(k−1)+

)

−
(

C̃I Ĉ
∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

+ ̂IjI (Φ (δk, t) , t)

)

− (̂NjN (Φ (δk, t) , t) + λP ̂P jP (Φ (δk, t) , t))

(3.121)

In the limit δ → 0, we can use the definition of the second derivative to rewrite

(

∂
∂η

(Φ (η, t))
∣

∣

∣

η=δ(k+1)−
− ∂

∂η
(Φ (η, t))

∣

∣

∣

η=δ(k−1)+

)

2δ
=

∂2

∂η2
(Φ (η, t))

∣

∣

∣

∣

η=δk

(3.122)

Rearranging the above to collect the time derivatives leaves

(

1 + λP C̄P + C̃I

)

Ĉ ∂

∂t
(Φ (η, t))

∣

∣

∣

∣

η=δk

=
λR

2

∂2

∂η2
(Φ (η, t))

∣

∣

∣

∣

η=δk

− ̂NjN (Φ (δk, t) , t)

− λP ̂P jP (Φ (δk, t) , t)− ̂IjI (Φ (δk, t) , t)

(3.123)

The point η = δk is arbitrary, so we write the following equation for the transmembrane

potential on the long length scale

(

1 + λP C̄P + C̃I

)

Ĉ ∂Φ
∂t

=
λR

2

∂2Φ

∂η2
− ̂NjN (Φ, t)− λP ̂P jP (Φ, t)− ̂IjI (Φ, t) (3.124)

which shows that for small enough membrane currents, the behaviour of the myelinated

axon is determined by the cable equation, just as the behaviour of the unmyelinated

axon is. However, the equation holds on the long length-scale, η, which accounts for

the increase in signalling speed seen in myelinated neurons. We note that this form of

the cable equation is the same as that derived by Basser [7], which was obtained by

homegenisation of a model comprised of two cable equations describing the nodal and

internodal behaviours, although our formulation includes the influence of a paranodal

region.
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Referring to our estimates of parameter sizes in section 3.2.1.1, we see that for short

internodal distances (LI ≈ 10−4, which is the lower end of the range given in table 3.1),

C ≈ 10−2 and ̃I ≈ 10−3, so the assumption that these parameters are O
(

δ2
)

where

δ ≪ 1 is reasonable. However, ̃N ≈ 0.3 and ̃P ≈ 0.1 are significantly larger, requiring

δ ≈ 0.5. We note that the values of ̃N and ̃P are obtained from gNa and gK, the

maximal conductance per unit area of the cell membrane to sodium and potassium ions

respectively, which is appropriate during the transmission of an action potential when

large proportions of these ion channels are open. For small membrane depolarisations,

where the full action potential cycle is not initiated and many ion channels remain

closed, the actual conductances per unit area may be much less than gNa and gK and

thus the characteristic transmembrane currents will be much smaller than ̃N and ̃P .

This model, then, is certainly a good approximation to the passive behaviour of axons

with closely spaced nodes (i.e. when the transmembrane potential is sufficiently close to

resting potential that no action potentials are initiated), but we expect it to break down

as the internodal separation increases, and when a large proportion of the ion channels in

the cell membrane are open, as would be the case during an action potential. However,

in section 3.5.1 we compare numerical solutions of the full system (in equations (3.111)

and (3.112)) to the simplified form where the transmembrane currents are small (in

equation (3.124)) and note that under much of the range of parameters in table 3.1 the

two show good agreement even during action potential propagation.

3.4 Special cases

The form of our model permits simplification or modification to account for several

special cases.
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3.4.1 The case with no paranodal regions

We note that in the simple case λP = 0, equations (3.111) and (3.112) can be simplified

to

C ∂Φ

∂t

∣

∣

∣

∣

x=k

=
λR

4

(

∂Φ

∂x

∣

∣

∣

∣

x=k+
− ∂Φ

∂x

∣

∣

∣

∣

x=k−

)

− ̃NjN (Φ (k, t) , t) , (3.125)

C̃IC
∂Φ

∂t
=
λR

2

∂2Φ

∂x2
− ̃IjI (Φ, t) (3.126)

which is the same model we would have derived had we initially just considered the

nodal and internodal membrane and ignored the paranode altogether. We note that the

model without paranodes is identical to the one with, under the effective node size and

ion channel currents given below

CNL
eff
N = CNLN +

ˆ LN+LP

LN

CP (x∗) dx∗, (3.127)

Leff
N j

∗
N

eff (Φ∗, t∗) = LNj
∗
N (Φ∗, t∗) +

ˆ LN+LP

LN

j∗P (Φ∗, x∗, t∗) dx∗ (3.128)

whence it is easy to see that the effective node size and current density are chosen by

ensuring that the total capacitance of and current through the effective nodal region is

equal to the combined capacitance of and current through the actual nodal and paranodal

regions. Thus the introduction of the paranodal region has no qualitative effect of the

behaviour of the model, but instead simply modifies the properties of the node.

3.4.2 The case with idealised internodal membrane

In the case of perfectly insulating myelin with no capacitance (i.e. j∗I = 0 and CI = 0), the

equation governing the transmembrane potential in the internodal region m−1 < x < m

simplifies to

λR

2

∂2Φ

∂x2
= 0, (3.129)
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thus, by integrating over the internodal region we find

∂Φ

∂x
= Φ(k, t)− Φ (k − 1, t) (3.130)

or that the potential is linear in the internodal region and therefore the gradient is

constant, determined by the potential at the nodes at either end. In this case we can

write Φk = Φ(k, t) and the full problem can be simplified to

C ∂Φk

∂t
=
λR

4
(Φk+1 − 2Φk +Φk−1)− ̃NjN (Φk, t) , (3.131)

where the spatial derivatives in the problem have been eliminated to leave us with a single

difference equation describing {Φi (t)} the transmembrane potentials at the nodes.

This is the same form as the model written down by McNeal [57], which has subsequently

been used by others [87, 111, 114]. The more systematic nature of our approach allows

us to show exactly the simplifying assumptions that must hold in order for this model

to be appropriate, as well as providing a more general model to use when it is not.

In section 3.5.2 we compare this simplified form of the model to the full model in equa-

tions (3.111) and (3.112), and find that, for the parameter ranges in table 3.1, the

capacitance of the myelinated membrane in the internodal regions has a significant im-

pact on the behaviour of the axon. Key to understanding this point is the dimensionless

parameter C̃I , which is the ratio of the total capacitance of the membrane in an intern-

odal region to that in the nodal region. Although the capacitance per unit area of the

internodal membrane, CI , is small compared to that of the nodal membrane, CN , the

area of the internodal region is larger than that of the node by almost the same propor-

tion (the internodal capacitance per unit area is around one thousand times smaller than

that at the node and the internodal separation is around one thousand times larger than

the width of a node) and thus the total capacitances are of the same order of magnitude

(C̃I ≈ 1). For small values of C̃I (C̃I ≪ 1), equation (3.129) is a valid approximation to

equation (3.112), but clearly this is not the case for C̃1 = O (1).
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3.4.3 Demyelination

Certain neurological diseases (particularly multiple sclerosis, but many other conditions

have a similar effect) are characterised by the myelin sheath degrading and peeling back

from the node of Ranvier [56]. Two types of demyelination are shown in figure 3.5. In

the first the myelin sheath appears to stay roughly in tact, but its structure is disrupted

such that it no longer forms a neat, concentric spiral around the axon. In the second

the myelin is stripped away from the axon entirely by cells of the immune system. In

section 3.5.3 we explore the effects of these two kinds of demyelination.

Figure 3.5: Two forms of demyelinated axons. In the upper panel the myelin sheath
is peeling off the axon (A) in layers, in the lower it has been stripped by the im-
mune system. c©Wisniewski and Bloom, 1975. Originally published in J. Exp. Med.

doi:10.1084/jem.141.2.346.
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In order to model demyelination, we assume that changes in the capacitance and leak

conductance per unit area of the internodal membranes can be accounted for simply by

changing the sizes of the parameters CI and gL in the internodal regions. As long as

these parameters remain small compared to the capacitance and conductance per unit

area of the nodal membrane this will not affect the analysis of the problem.

When the myelin is destroyed or degraded near the node of Ranvier, however, the un-

derlying cell membrane will be exposed, which has a significantly higher capacitance per

unit area. In order to account for this we modify the surface integrals in equation (3.90)

to include a new, demyelinated region. We let the myelin peel back from the nodes by a

distance LD from the edges of the node of Ranvier, and let the newly exposed membrane

have a capacitance per unit area of CD and a current density j∗D. There are two possible

cases here, where the extent of the demyelination is less than or greater than the size

of the paranodal region (LD < LP and LD > LP ), which we have to treat differently in

order to correctly determine the capacitance of the node, paranode and demyelinated

region.

If LD < LP , part of the paranodal region is demyelinated, and will have a capacitance per

unit area of CD because the underlying cell membrane at the paranode has been exposed,

but the remainder will retain its original capacitance of C̃P (ξ). The conductance per

unit area of the paranodal region is unchanged throughout, as the ion channels are still

present. The surface integrals in equation (3.90) are redefined in this case as follows

ˆ λR

0

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k−
2πr dr

−
ˆ λR

0

∂

∂x

(

Φ
(O)
0 (x, t)

)

∣

∣

∣

∣

x=k+
2πr dr

+

ˆ 1

−1

(

C ∂
∂t

(

Φ
(i)
0 (t)

)

+ ̃NjN

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ

+ 2

ˆ 1+λD

1

(

CC̃D
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̃P (ξ) jP

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ

+ 2

ˆ 1+λP

1+λD

(

CC̃P (ξ)
∂

∂t

(

Φ
(i)
0 (t)

)

+ ̃P (ξ) jP

(

Φ
(i)
0 (t) , t

)

)

2πλR dξ= 0, (3.132)
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where we have defined the following dimensionless parameters

λD =
LD

LN
, C̃D =

CD

CN
, ̃D =

gDLI

σ
(3.133)

where gD is the conductance per unit area of the demyelinated membrane. We also

define

C̄P,D =

´ 1+λP

1+λD
C̃P (ξ) dξ

λP − λD
(3.134)

such that C̄P,D is the average capacitance per unit area of the remaining paranodal

membrane. This modifies equations (3.111) and (3.112) to

(

1 + (λP − λD) C̄P,D + λDC̃D

)

C ∂Φ

∂t

∣

∣

∣

∣

x=k

=
λR

4

(

∂Φ

∂x

∣

∣

∣

∣

x=k+
− ∂Φ

∂x

∣

∣

∣

∣

x=k−

)

−̃NjN (Φ (k, t) , t)− λP ̄P jP (Φ (k, t) , t)

(3.135)

If LD > LP , the entire paranodal region and the demyelinated region will now have a

capacitance per unit area of CD because the underlying cell membrane has been exposed.

The conductance per unit area of the paranodal region is again unchanged. In this case,

the surface integrals in equation (3.90) are redefined similarly to equation (3.132), except

the demyelinated region now extends past the paranodal region, and equations (3.111)

and (3.112) are modified to become

(

1 + λDC̃D

)

C ∂Φ

∂t

∣

∣

∣

∣

x=k

=
λR

4

(

∂Φ

∂x

∣

∣

∣

∣

x=k+
− ∂Φ

∂x

∣

∣

∣

∣

x=k−

)

−̃NjN (Φ (k, t) , t)− λP ̄P jP (Φ (k, t) , t)

− (λD − λP ) ̃DjD (Φ (k, t) , t)

(3.136)

In both cases, the form of the equation in the internodal regions is unchanged, but

the parameters are modified to account for the altered properties of the internodal

membrane, as follows

C̃I,DC
∂Φ

∂t
=
λR

2

∂2Φ

∂x2
− ̃I,DjI (Φ, t) (3.137)
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where we define the following dimensionless parameters

C̃I,D =
CI,DLI

CNLN
, ̃I,D =

gI,DL
2
I

σLN
(3.138)

where CI,D and gI,D are the capacitance per unit area and conductance per unit area of

the internodal membrane with degraded myelin.

Similarly to equations (3.127) and (3.128), we can derive the following effective node sizes

and currents when the demyelination is smaller than the paranodal region (LD < LP )

CNL
eff
N = CNLN + CDLD +

ˆ LP

LD

CP (x∗) dx∗, (3.139)

Leff
N j

∗
N

eff (Φ∗, t) = LNj
∗
N (Φ, t) +

ˆ LN+LP

LN

j∗P (Φ∗, x∗, t∗) dx∗ (3.140)

and in the case where the demyelination extends beyond the paranodal region (LD > LP )

CNL
eff
N = CNLN + CDLD, (3.141)

Leff
N j

∗
N

eff (Φ∗, t) = LNj
∗
N (Φ, t) +

ˆ LN+LP

LN

j∗P (Φ∗, x∗, t∗) dx∗ + (LP − LD) j
∗
D (Φ∗, t∗)

(3.142)

The current through the demyelinated region is likely to be a small, non-specific leak

current, and therefore will act against the sodium channel currents which initiate action

potentials. Thus we see that in both cases the demyelination has increased the time

constant of the nodal membrane (by increasing its capacitance) without contributing

any useful current. If the capacitance of the demyelinated region is large (that is, of the

same order of magnitude as the unmyelinated membrane at the node of Ranvier), then

the demyelination can increase the time constant of the nodal behaviour by a significant

amount, severely slowing down the transmission of the action potential or, in some cases,

preventing it altogether (as shown in figures 3.16 and 3.17 — full explanation of these

figures is deferred to section 3.5.3, after the full details of the numerical method used

for the simulation have been presented).
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3.5 Numerical simulations of the model

We now perform numerical simulations of the model in order to explore the influences

of different parameters on the behaviour of the axon. To begin, we compare the full

model in equations (3.111) and (3.112) with the modified cable equation derived under

the assumption that the membrane capacitances and transmembrane currents are small

(equation (3.124)) using a range of physiologically relevant parameters found in the

literature (table 3.1).

We then compare the full model to the much simpler difference equation model used by

McNeal and others, to judge the validity of neglecting the capacitance and conductance

of the internodal membrane [57, 87, 111, 114].

Finally, we make a brief exploration of the effects of demyelination, using the form of

the model given in equations (3.135) and (3.136).

In all cases, the ion channel currents through the membrane will take the Hodgkin-

Huxley form in equations (3.14) to (3.16), but with a different leak conductance per

unit area in the internodal region than in the nodal and paranodal regions. Thus the

exact forms of the current will be

j∗N = gNam
3h (Φ∗ − ΦNa) + gL,N (Φ∗ − Φl) , (3.143)

j∗P = gKn
4 (Φ∗ − ΦK) + gL,N (Φ∗ − Φl) , (3.144)

j∗I = gL,I (Φ
∗ − Φl) (3.145)

with gL,N = 3S · m−2 and gL,I = 0.015 S · m−2 chosen according to the values found

in the literature (see table 3.1). We have also chosen gK = 90S · m−2, which is not

the value given in table 3.1, because we found during simulations that the potassium

currents generated were too large, and were preventing the initiation or transmission of

an action potential (potassium currents act to drive the transmembrane potential back

towards resting potential). We note that this calibration is probably necessary because

the potassium conductances quoted in the literature are derived by adapting the model

Hodgkin and Huxley used for the squid axon, not from detailed electrophysiology of
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the paranodal region, and are assumed to be be present over the same area as the

sodium conductances. In our model the potassium conductances are present over a

larger area, and thus should be correspondingly smaller in order for the total potassium

and sodium currents to remain in proportion. We also note that previous modelling work

has suggested that the exact descriptions of the membrane dynamics is less important

than using approximately correct time constants and total conductances [63].

The values we use for gK (x∗) and CP (x∗) are now chosen to be constant because we can,

as described above in equations (3.98a and b), replace these values with their averages

across the paranodal region without affecting the behaviour of the model.

For each of the simulations below, we must increase the transmembrane potential above

threshold to initiate an action potential, which we have done by injecting a transient

stimulus current to the left-most node in the simulation. We have chosen the Gaussian

form given below for this current, although any current that sufficiently increases the

transmembrane potential will have the same effect

I∗stim (t∗) = Īe
−

(

t
∗
−0.0015

0.0005

)2

(3.146)

3.5.1 Comparisons between the full model and the simplified case with

small capacitances and transmembrane currents

Figures 3.7 and 3.8 compare the transmission of an action potential in the full model

with jump condition (equations (3.111) and (3.112)) and in the modified cable equation

model (equation (3.124)). The shapes of the propagating action potentials, shown in

figure 3.8, are similar but not identical, and the speeds of transmission (2.229m · s−1

in the full case and 1.996m · s−1 in the simplified) differ by around ten percent. The

exact parameters used for this simulation are taken from table 3.1, where a single value

is given, or chosen from roughly the middle of the range, if a range is given. The

parameters we have chosen from a range are given in table 3.2. With these parameter

values, the parameter δ described in section 3.3.5, which defines the long length-scale for

equation (3.124), is around 0.85, and clearly the modified cable equation approximation

is not valid for all physiological cases.
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We note that the exact numerical values of the speeds reported here are closely related

to the specific parameter set we have chosen but the qualitative relationship between

the two models is maintained across the range of parameters (at least, those which do

not determine the size of δ). To tie the behaviour of the model to experimental data, we

note that if we use the exact parameter set given in [63] (which is in turn derived from

the experimental work in [33]) then the speed predicted by the full model with jump

condition (equations (3.111) and (3.112)) is 9.209m·s−1, which compares favourably with

the value of 9.5m · s−1 cited in [34] and [63], and fits within the range of experimentally

measured speeds found in [33]. It is also notable that with these parameters the cable

equation model (equation (3.124)) predicts a speed of 7.684m·s−1, a significant difference

of seventeen percent from the full model’s prediction.
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Figure 3.6: Action potential transmission in the full model (equations (3.111) and
(3.112)), with parameters from tables 3.1 and 3.2, as described in the text. The trans-
membrane potential is raised on the left by injecting a stimulus current, and an action

potential is initiated and propagates to the right.

Table 3.2: Parameters to produce figures 3.6 to 3.8, 3.12 and 3.13

Parameter Value Unit

R 1× 10−6 m

LN 1× 10−6 m

LI 1× 10−3 m

CP 5× 10−5 F ·m−2

Figures 3.10 to 3.11 compare equivalent simulations with a smaller internodal separation

(LI = 10−4 m, see tables 3.1 and 3.3 for remaining parameters). The shapes of the

propagating action potentials, shown in figure 3.11, are now essentially identical, and
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Figure 3.7: Action potential transmission in the modified cable equation model (equa-
tion (3.124)), with parameters from tables 3.1 and 3.2, as described in the text. The
transmembrane potential is raised on the left by injecting a stimulus current, and an

action potential is initiated and propagates to the right.
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Figure 3.8: The transmembrane potential in the axon during action potential prop-
agation with parameters from tables 3.1 and 3.2, as described in the text. The trans-
membrane potential predicted at the nodes by the full model (red circles) is compared
to that predicted throughout the axon by the modified cable equation (blue curve).
The difference between the two models is noticeable for this set of parameters but, as
noted in the text, does not result in significantly different predictions of transmission

speeds.
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the speeds of transmission (1.204m ·s−1 in the full case and 1.178m·s−1 in the simplified)

differ only by around one percent. With the parameter values chosen, δ ≈ 0.27 and it

appears that the modified cable equation is a valid approximation to make.
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Figure 3.9: Action potential transmission in the full model (equations (3.111) and
(3.112)), with parameters from tables 3.1 and 3.3, as described in the text. The trans-
membrane potential is raised on the left by injecting a stimulus current, and an action

potential is initiated and propagates to the right.
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Figure 3.10: Action potential transmission in the modified cable equation model
(equation (3.124)), with parameters from tables 3.1 and 3.3, as described in the text.
The transmembrane potential is raised on the left by injecting a stimulus current, and

an action potential is initiated and propagates to the right.



82 Chapter 3 Action potential propagation in myelinated neurons

0.062 0.064 0.066 0.068 0.07 0.072
−80

−60

−40

−20

0

20

Pos i t i on on axon (m )

M
e
m
b
r
a
n
e
p
o
t
e
n
t
ia

l
(
m

V
)

Figure 3.11: The transmembrane potential in the axon during action potential prop-
agation with parameters from tables 3.1 and 3.3, as described in the text. The trans-
membrane potential predicted at the nodes by the full model (red circles) is compared
to that predicted throughout the axon by the modified cable equation (blue curve).

The difference between the two models is negligible for this set of parameters.

Table 3.3: Parameters to produce figures 3.10 and 3.11

Parameter Value Unit

R 1× 10−6 m

LN 1× 10−6 m

LI 1× 10−4 m

CP 5× 10−5 F ·m−2

3.5.2 The effects of capacitance and transmembrane currents in the

internodal regions

Figures 3.12 and 3.13 show the transmission of an action potential in the difference equa-

tion model (equation (3.131)) derived under the idealisation of the internodal membrane

where its capacitance and leak conductance per unit area are negligible. The parameters

used are those taken from the middle of the ranges in table 3.1 (given in tables 3.1 and

3.2). This is the same physical case as that in figures 3.6 and 3.7), and comparison of

the transmembrane potential in the axon during the simulation shows that idealising

the internodal membrane has a significant effect on the size and shape of the action

potential. The speed of transmission of the action potential in the model with idealised

internodal membrane is 4.053m · s−1, compared to 2.229m · s−1 from the full model in

figure 3.6, which is a very significant difference.
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Figure 3.12: Action potential transmission in the difference equation model (equa-
tion (3.131)), with parameters from tables 3.1 and 3.2, as described in the text. The
transmembrane potential is raised on the left by injecting a stimulus current, and an

action potential is initiated and propagates to the right.
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Figure 3.13: The transmembrane potential in the axon during action potential prop-
agation with parameters from tables 3.1 and 3.2, as described in the text. The trans-
membrane potential predicted at the nodes by the full model (red circles) is compared
to that predicted throughout the axon by the modified cable equation (blue curve).

The difference between the two models is pronounced for this set of parameters.

Figures 3.14 and 3.15 again show the transmission of an action potential in the model

with idealised internodal membrane (equation (3.131)), but with a small internodal

separation (tables 3.1 and 3.3). This is the same physical case as that in figures 3.9 and

3.10), and in this case comparison of the transmembrane potential in the axon during the

simulation shows much better agreement between the two models. However, the speed

of transmission of the action potential in the model with idealised internodal membrane

is 1.293m · s−1, compared to 1.204m · s−1 from the full model in figure 3.6, which is still
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a difference of around seven percent. As mentioned in section 3.4.2, we note that the

idealised internodal membrane simplification relies on C̃I ≪ 1 and ̃I ≪ 1 and although

in this case the parameters we have chosen give values of C̃I ≈ 0.1 and ̃I ≈ 0.01, it

would appear that these are not small enough for a good approximation. In order to find

transmission speeds that agree to one percent, it is necessary to reduce C̃I and ̃I by a

factor of ten (i.e. C̃I ≈ 0.01, ̃I ≈ 0.001), which requires either the capacitance per unit

area and leak conductance per unit area of the internodal membrane or the internodal

separation to be significantly less than values quoted in the literature.
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Figure 3.14: Action potential transmission in the difference equation model (equa-
tion (3.131)), with parameters from tables 3.1 and 3.2, as described in the text. The
transmembrane potential is raised on the left by injecting a stimulus current, and an

action potential is initiated and propagates to the right.

3.5.3 The effects of demyelination

Figures 3.16 and 3.17 show the effects of demyelination on signal transmission. We solve

equations (3.136) and (3.137) and change the amount of demyelination (the value of LD)

at the point x∗ = 0.1m. In this way we simulate a signal propagating from a healthy

axon, with no damage to the myelin sheath (LD = 0), into a region of demyelination

where the myelin sheath has retreated from the nodes of Ranvier, either by a distance of

5µm (figure 3.16, LD = 5×10−6 m) or 10µm (figure 3.17, LD = 10×10−6 m). We choose

the capacitance per unit area of the demyelinated membrane to be CD = 5×10−3F·m−2,

such that it is significantly larger that of the internodal membrane but less than that
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Figure 3.15: The transmembrane potential in the axon during action potential prop-
agation with parameters from tables 3.1 and 3.2, as described in the text. The trans-
membrane potential predicted at the nodes by the full model (red circles) is compared
to that predicted throughout the axon by the modified cable equation (blue curve).
The difference between the two models is much smaller for this set of parameters than

for that with larger internodal separation, but still noticeable.

of the nodal membrane — we do not expect the capacitance per unit area of the de-

myelinated membrane to be as large as that of the nodal membrane, as the influence

of the myelin sheath is unlikely to be totally removed from these areas, even if much

of the myelin is destroyed. For the purposes of this comparison, we have not changed

the capacitance per unit area or the leak conductance per unit area of the internodal

membrane.

The axon in the region x∗ < 0.1m is identical to that in figure 3.6, and the signal

propagates at the same speed of 2.229m ·s−1. In figure 3.16, with a smaller demyelinated

region, the action potential is maintained, but the speed of propagation is slowed to

1.370m · s−1, whereas in figure 3.17, with larger demyelinated regions, the signal is

blocked completely.

Figures 3.18 and 3.19 show the effects of different types of demyelination on the propa-

gation speeds of action potentials. In figure 3.18 we increase the size of the demyelinated

region at the node, to simulate the myelin sheath peeling back and uncovering a pro-

gressively larger area of cell membrane to contribute to the capacitance of the node.

This causes the action potential to propagate more slowly before, eventually, blocking

its propagation altogether. The extent of the demyelination can be quite large (around
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ten times the width of the node of Ranvier, or around twice the width of the paranodal

region) before the signal is blocked. In figure 3.19 we increase the capacitance per unit

area of the internodal membrane, to simulate the effects of degradation of the entire

myelin sheath. This again causes the action potential to propagate more slowly and

eventually fail, but we note that we can only increase the capacitance per unit area of

the internodal range by a factor of two before the action potential is blocked.
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Figure 3.16: An action potential propagating from a healthy axon, with no demyeli-
nation (x∗ < 0.1m) into an area where the myelin sheath has retreated from the nodes
by 5µm (x∗ > 0.1m). The action potential is maintained in the demyelinated region,

but propagates more slowly. Parameters are given in tables 3.1 and 3.4.
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Figure 3.17: An action potential propagating from a healthy axon, with no demyeli-
nation (x∗ < 0.1m) into an area where the myelin sheath has retreated from the nodes
by 10µm (x∗ > 0.1m). The action potential does not propagate into the demyelinated

region. Parameters are given in tables 3.1 and 3.4.
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Table 3.4: Parameters to produce figures 3.16 and 3.17

Parameter Value Unit

R 1× 10−6 m

LN 1× 10−6 m

LI 1× 10−3 m

LD (x∗ < 0.1, figures 3.16 and 3.17) 0 m

LD (x∗ > 0.1, figures 3.16) 5× 10−6 m

LD (x∗ > 0.1, figures 3.17) 10× 10−6 m

CP 5× 10−5 F ·m−2

CD 5× 10−3 F ·m−2

CI,D 5× 10−5 F ·m−2

gI,D 0.0089 S ·m−2
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Figure 3.18: Propagation speeds of action potentials against size of demyelinated
region. The speed decreases linearly with the amount of demyelination, up to the
dashed vertical line (LD ≈ 9.5µm for this set of parameters — the same trend holds
for other parameter choices but the value of LD will vary) and beyond this value, the
speed of propagation drops rapidly to zero. We note, however, that beyond this value
(to the right of the dashed line) the action potentials propagate for a long time, but do

fail eventually. Parameters are taken from tables 3.1 and 3.5.
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Figure 3.19: Propagation speed decreases as internodal capacitance per unit area
increases. Parameters are taken from tables 3.1 and 3.5 but with no demyelination
at the nodes (i.e. LD = 0). For internodal capacitance per unit area larger than

10−4 F ·m−2, propagation fails for this parameter set.

Table 3.5: Parameters to produce figure 3.18

Parameter Value Unit

R 1× 10−6 m

LN 1× 10−6 m

LI 1× 10−3 m

LD 0− 10× 10−6 m

CP 5× 10−5 F ·m−2

CD 5× 10−3 F ·m−2

CI,D 5× 10−5 F ·m−2

gI,D 0.0089 S ·m−2



Chapter 3 Action potential propagation in myelinated neurons 89

3.6 Discussion

We have systematically derived a model of the myelinated axon from a generic de-

scription of its electrochemical behaviour and a simplified description of its geometry,

producing a model which predicts action potential propagation speeds in line with those

found in experimental data. This modelling work shows that models of the myelinated

axon can be significantly simplified by noting that the leading-order transmembrane

potential does not vary spatially on the scale of a node of Ranvier and the paranodal

regions. This allows spatial variations in properties such as ion channel density and

capacitance to be modelled simply by replacing them with an appropriate (constant)

average value found by integrating over the region and dividing by its surface area. We

propose that this explains why previous modelling work (Moore et al., for example [63])

has found that precise descriptions of the ion channel dynamics in the nodal region have

less impact on the behaviour of models than choices of time constants and total con-

ductances — variations in ion channel behaviour or density on the scale of a node only

contribute to the behaviour of the axon if they change the average behaviour of the ion

channels.

More significantly, this demonstrates that no qualitatively different behaviour can be

produced in a model with paranodal regions than one without. Equations (3.127) and

(3.128) show how to construct an axon with only nodal regions which is equivalent to

one with paranodal regions included. This principle holds not just for the case of nodal

and paranodal regions, but more generally for any model of the node of Ranvier, with

any number of different regions and even for the demyelinated axon. Provided the size

of the regions is small compared to the internodal separation it will be possible to build

an equivalent model containing only nodal and internodal regions. We suggest that this

could partly simplify complex models of the myelinated axon, such as that presented in

[73], which represents three separate regions at the node of Ranvier.

As an axon with strongly segregated nodal and paranodal regions is, apparently, equiv-

alent to one without, it is natural to ask why such clear segregation exists in the first

place. It has been suggested that the density of sodium channels at the node of Ranvier
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is close to the theoretical maximum [90], and thus there is no space in which to insert

potassium channels to repolarise the cell during the action potential cycle. Increasing

the size of the node is ineffective, as this also increases the capacitance of the membrane

and thus increases the size of the current required to depolarise it, resulting in no net

gain. However, equations (3.127) and (3.128) show that the paranode can increase the

effective current through the node without significantly increasing the effective capac-

itance (i.e. if CP is small, then CNL
eff
N ≈ CNLN but Leff

N j
∗
N

eff = LNj
∗
N + LP j

∗
P ). This

allows the potassium channels in the paranode to repolarise the membrane without the

capacitance of the paranode significantly increasing the time constant of the membrane’s

response to the sodium current. Thus we suggest that the paranodes are simply a re-

sponse to the physical limits on current density at the node of Ranvier, which explains

their existence despite their apparent lack of influence on the axon’s behaviour.

We also note that the presence of the myelin sheath at the paranodes is likely to interfere

with the action of the ion channels in this region — current must flow through the ion

channels and then either through the myelin sheath or through a very narrow space

between the axon and the myelin sheath. This added resistance may make the ion

channels in the paranodal region less effective, yielding a smaller current density through

the same number of ion channels. If this is the case, it is appropriate that the potassium

channels should be in the paranodal region and the sodium channels in the node — the

sodium channels depolarise the membrane, which needs to happen quickly to maintain

propagation speeds, whereas the potassium channels repolarise the membrane over a

longer time scale and as such are not required to produce such large current densities.

Demyelination, by contrast, has almost the exact opposite effect to that of the paranodes.

Instead of increasing the current through the node without increasing the capacitance,

demyelinated regions increase the capacitance without contributing any useful current

(if j∗D is small, or at least acts against action potential initiation, then CNL
eff
N = CNLN+

CDLD but Leff
N j

∗
N

eff ≈ LNj
∗
N ). This is what slows the response of the demyelinated axon

(and prevents action potential propagation altogether in some cases).

We also note the size discrepancy between the nodes of Ranvier and the internodes

can amplify the effect of demyelination. Increasing the node size by a factor of two
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or three slows propagation slightly but is unlikely to actually block signals. However,

demyelinating on the order of just one percent of the internodal region (which can be

around a millimetre long) can increase the size of the node by a factor of ten — because

the internode is so much bigger, relatively small effects on the internodal scale can be

very large on the scale of the node of Ranvier. This means that only relatively small

proportions of the myelin sheath have to be damaged before the effects are felt on signal

propagation.

The effects of increasing the capacitance per unit area of the internodal membrane (figure

3.19) suggest that the action potential is not very robust to degradation of the myelin

sheath, with only small increases in the capacitance per unit area causing the action

potential to fail. Studies in the literature have found, however, that action potentials

can propagate to a certain extent in entirely demyelinated axons, albeit at much reduced

speeds [23]. If the demyelination takes the form seen in the top panel of figure 3.5, then

we suggest that the capacitance per unit area of the internodal membrane must still

be significantly lowered by the presence of the myelin sheath, even if its structure has

been somewhat disrupted. Other studies have found, in some cases, that active ion

channels are in fact present in the internodal membrane in small numbers, and this may

be enough to overcome the increased capacitance caused by demyelination [13].





Chapter 4

Modelling the electrochemical

behaviour of the Bergmann glial

cell

4.1 Introduction

The Bergmann glial cell, named for Karl Bergmann (1814–1865), is found in the cere-

bellum. It plays many roles in the correct functioning of this region of the brain, many

of which are not fully understood [110].

The cerebellum is the region of the brain associated with motor control and coordination

[28, 104]. Its principal features are two types of neurons — Purkinje cells, neurons with

many branches in their dendrons (see figure 4.1), and parallel fibres, straighter neurons

that cross the Purkinje cells at right-angles. These two types of cell are intricately

interconnected by thousands of junctions called synapses (see section 4.1.2), each of

which is enclosed by part of a Bergmann glial cell [52, 65].

One role that Bergmann glial cells certainly play is in the normal development of the

cerebellum, where they form a kind of scaffolding to direct the growth of neurons [82,

113]. We will not consider this role further however, focussing instead on the electrical

roles of mature glia.

93
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Figure 4.1: A Purkinje cell stained with fluorescent dye, showing the branching
structure. Each branch will form many synapses (there can be hundreds of thou-
sands of synapses on one Purkinje cell [52]), and each synapse will be enclosed by a
Bergmann glial cell. c© Priller et al. , 2001. Originally published in J. Cell. Biol. doi:

10.1083/jcb.200105103
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Microdomains
Blood Vessel

Fibres

Figure 4.2: Simplified geometry of a Bergmann glial cell. The soma is a roughly
spherical or ellipsoidal (major axis O (10) µm [77]) body, which contains the nucleus of
the cell, and many of the structures necessary for its growth. The fibres extend around
100 to 300µm from the soma where they widen to a broad, flat area called the end-foot.
Intricate structures called microdomains branch from the fibre (as shown in figure 4.3)
all along its length, and enclose synapses in large, flat regions (paddles). Ion channels

are found in the surfaces of the fibres and the microdomains.

Mature Bergmann glial cells play an ongoing homeostatic role, where they maintain the

optimal cerebellar conditions for neural signalling by removing by-products of action

potential generation [4]. In addition to this, they are also thought to play a role in

modulating communication between neurons, increasing or decreasing the strength of

the connections between the Purkinje cells and the parallel fibres according to particular

chemical or electrical cues [76].

In this chapter we construct a simple mathematical model of the Bergmann glial cell,
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Fibre
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Narrow ‘Stalks’

Figure 4.3: Detail of microdomains. The large, flat areas which enclose the synapses
are connected to the fibre by narrow stalks. The conductivity of the intracellular elec-
trolyte is roughly constant (the concentrations of ions in it do not change significantly),
so the resistance of the stalks will be much greater than the wider paddles due to the
difference in cross-sectional areas. To distinguish between the two paddles and stalks
in each microdomain, we use ‘proximal’ for those closest to the fibre, and ‘distal’ for
those furthest away. The actual geometry of the microdomain is shown in figure 4.4

Figure 4.4: Reconstruction of a microdomain from electron microscopy data [30]. The
geometry of the microdomain is extremely convoluted, so certain simplifying assump-

tions are necessary. Reproduced, with permission, from [30].



96 Chapter 4 Modelling the electrochemical behaviour of the Bergmann glial cell

which describes its electrical and chemical responses to neuronal activity in the cere-

bellum. This modelling work was performed in conjunction with experimental work by

Tomas Bellamy and Katherine Dobson at the University of Nottingham. Initially, this

experimental work was used to inform the development of the model, as described in

section 4.2.2.1, where the response of early iterations of the model were qualitatively

tested against data collected from real cells, which provided insight into the degree to

which the cell’s complex structure could be simplified. Quantitative properties of this

structure where then extracted from the experimental data, as detailed in section 4.2.4,

and used as parameters in the model. Later, the model was used to inform the further

experimental work described in section 4.3.1, where data was collected specifically to de-

termine certain properties of the cell, in order to provide estimates for other parameters

in the model.

The modelling begins with a simple equivalent circuit model of part of the Bergmann

glial cell, and the current flows predicted by this circuit are compared to experimental

recordings of current flows in five separate cells. The first iteration of the model is not

able to match the qualitative behaviour of the cell seen in experiments, so the model

is improved by taking into account more of the cell’s structural details. The improved

model now compares well with the experimental behaviour, and can be used to extract

estimates of the physical parameters of the cell which are not readily accessible by any

other means (the results of this process are summarised in section 4.2.4.5, with the full

details being given in the preceeding sections).

We then couple this simple equivalent circuit model to a partial differential equation

model which captures more of the cell’s anatomical details, allowing us to predict the

behaviour of the cell under different conditions from those imposed in the first exper-

iments. Further experiments were then designed in Nottingham to reflect these new

conditions, with the new model now able to extract more details of the cell from these

experiments.

The resulting model now accurately predicts the electric response of the cell, given some

information about its structure and physiological properties. We couple this model to

the model of ion movements inside the cell (detailed in section 4.4), which allows us to
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make quantitative predictions about the fluxes of ions within the cell, and also more

qualitative predictions about the cell’s function in general.

4.1.1 Structure of the Bergmann glial cell

The Bergmann glial cell is comprised of the soma and five or six long processes (fibres)

extending from the soma (the body of the cell) to an ‘end-foot’, where the fibre widens

to a larger area which lies on, or close to, the wall of a blood vessel. The connections

between the Purkinje cells and the parallel fibres are found along the lengths of these

fibres, where small outgrowths (microdomains) branch from the fibre and expand into

large, flat surfaces which surround the synapse. A sketch of the key features of the cell

is shown in figure 4.2, with a close up of the microdomains in figure 4.3.

The most obvious aspects of the Bergmann glial cell’s morphology (the microdomains

and end-foot) seem to be specifically adapted to the functions the cell performs. We will

now examine these functions more closely, to try to explain some of these adaptations.

4.1.2 The role of synapses

A synapse is a connection between two neurons, usually where the axon of one connects

to a dendron of the other. As shown in figure 4.5, the classical view of the synapse is

of two neuronal processes in very close proximity (the gap between them, the synaptic

cleft, is around 20nm wide [116]). The end of the pre-synaptic axon contains small

vesicles filled with neurotransmitters — chemicals which carry neuronal signals — and

the post-synaptic dendron contains ion channels which are activated by these neuro-

transmitters. Incoming pre-synaptic action potentials cause the vesicles to release their

neurotransmitters into the synaptic cleft where they diffuse across to the post-synaptic

membrane. The ion channels in this membrane are ‘ligand-gated’ — they are activated

by the presence of a particular chemical — and activate in response to the presence of

the neurotransmitter, allowing the passage of sodium ions into the post-synaptic cell

and causing the signal to be propagated through the dendron.
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Figure 4.5: The classical view of the synapse: incoming signals from the pre-synaptic
axon (red) cause vesicles (yellow) containing neurotransmitters to fuse with the cell
membrane and release into the synaptic cleft. These neurotransmitters are taken up
by ligand-gated ion channels in the dendron (blue), which depolarises and propagates

the signal further.

The ‘tripartite synapse’ is model of synaptic behaviour stemming from the discovery that

some synapses are also closely surrounded (again the separation is around 20nm) by a

third, glial cell, as seen in figure 4.6 [4, 32]. This cell is not involved in the actual trans-

mission of the signal, but plays some vital roles in the behaviour of the synapse. Firstly,

neurotransmitters diffusing out of the synaptic cleft may initiate unwanted signals at

nearby synapses, so the glial cell encloses the synapse and takes up the neurotransmit-

ter, allowing it to be usefully recycled and preventing signalling cross-talk. Secondly,

the movement of neurotransmitter across the synaptic cleft is driven by diffusion — a

relatively slow process, which is why the synaptic cleft needs to be so narrow. A large

concentration gradient will increase the speed of the process, so removing the neuro-

transmitter from the synaptic cleft quickly maintains this concentration gradient for

the next signal. The neurotransmitter released at Purkinje/parallel fibre synapses is

glutamate, and glutamate transporters are found in high densities in the membranes of

Bergmann glia [12, 47, 91]. The uptake of the glutamate into the Bergmann glia relies
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on the sodium concentration gradient between the extracellular space and the interior of

the microdomain, and thus accumulation of sodium ions in the microdomain will reduce

the size of the concentration gradient available to the glutamate transporter, in turn

reducing its efficacy [101].

Finally, the glial cell appears to play some role in modulating the synapse, controlling

the strength of the connection between the neurons through a collection of chemical

signals [4, 32, 76].

Figure 4.6: The tripartite synapse: the signal is passed from the axon to the dendron
exactly as before, but the entire synapse is now ensheathed by glial cell. Receptors in

the glial membrane mean activity at the synapse can affect glial behaviour.

The microdomains of Bergmann glial cells form the enclosing regions of tripartite synapses

(see figure 4.7, reproduced from [30]). The extremely narrow stalk which connects the

microdomain to the fibre suggests that the microdomains are effectively electrically iso-

lated, which in theory allows for very fine-grained control of synaptic modulation (i.e.

each Bergmann glial cell can independently vary the strengths of hundreds of synapses)

[30].
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Figure 4.7: TEM images of the Bergmann glial cell at a tripartite synapse. The
left-hand columns show sections through the cerebellar tissue at different depths. The
conical structure in the right-hand column is the Bergmann glia, reconstructed in three
dimensions from these sections, and the domed structure beneath it is the synapse it is

enclosing. Reproduced, with permission, from [30].

4.1.3 Spatial buffering

The specific class of glial cells that Bergmann glia belong are called ‘astrocytes’ — be-

cause of their vaguely star-shaped appearance — and one of the known ways astrocytes

support neuronal function is to maintain extracellular potassium concentrations. The

passage of an action potential in an axon causes potassium ions to pass out of the neu-

ron and into the extracellular space. In a large neuron — such as a squid giant axon —

firing isolated bursts of action potentials, the flux of ions is small enough that the con-

centrations do not change significantly. However, tissues in the brain can be much more

active — neurons in the cerebellum can fire at around 40Hz almost continually, and in

bursts at up to 200Hz — and as such potassium ions can accumulate in the extracellular

spaces [60, 21]. Accumulated potassium ions decrease the concentration gradient across

the neuron membrane, raising the potassium reversal potential and making the neuron
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more excitable. Obviously this is undesirable in a case where strict control of neural

activity is required, so it is believed that astrocytes act to return the extracellular potas-

sium concentration to its normal level by redistributing ions through a process known

as ‘spatial buffering’ [48, 74].

Astrocytes express ‘inward-rectifying’ potassium channels (Kir channels), which have a

high conductance to ions flowing from the extracellular to the intracellular space, and

a much lower conductance in the opposite direction [69, 83]. These channels allow the

astrocyte to move potassium from the extracellular space despite the high potential gra-

dient opposing this movement. The flux of potassium ions into the astrocyte causes a

local depolarisation, creating a potential gradient which redistributes the ions through-

out the cell, thus moving them away from the region of high neural activity (there is also

a concentration gradient created, which can modulate the behaviour of ion channels in

the cell membrane). Over a much longer timescale than that of neural activity (O (1) s,

[18]) potassium ions leak back out of the astrocyte into the extracellular space, causing

a smaller, slower increase in potassium concentration (hence ‘buffering’), over a larger

area (hence ‘spatial’ buffering).

Astrocytes make this behaviour more efficient by connecting with their neighbours in

structures known as ‘gap junctions’. Gap junctions form between astrocytes in close

proximity, where proteins similar to ion channels span the cell membranes of both astro-

cytes, allowing ions to pass from one to the other without flowing through the extracel-

lular space. A large collection of astrocytes (or certain other types of cell, for example,

cardiac myocytes [95]) connected in this way is known as a ‘syncytium’, and there is a

growing body of evidence that this structure contributes to the effectiveness of spatial

buffering [58, 108], for example, the large spatial extent of the syncytium may mean

that potassium ions can be buffered over larger distances than would be possible in a

single cell — glial cells in a syncytium have been found to be electrically-coupled at

separations of around 300µm, although it is not known for certain that spatial buffering

can be effective on this scale [50, 109].
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4.1.4 Potassium siphoning

The Bergmann glial cell is thought to perform a behaviour very similar to spatial buffer-

ing, known as potassium siphoning. Potassium siphoning has been most extensively

studied in Müller cells — glia found in the retina — but Bergmann glia are thought

to play a similar role. The cell takes up potassium at regions of high concentration,

as described above, but the subsequent intracellular fluxes of potassium are contained

within a single cell. Bergmann glia do form a syncytium, but it does not appear to be as

vital for spatial buffering [103]. Instead, the blood vessel at the glial end-foot provides a

sink for the potassium ions, which are deposited into the circulatory system and easily

disposed of [71]. It has been proposed that this interaction between the astrocyte and

circulatory system allows for the creation of localised changes in blood flow at the site of

more intense neuronal activity, although there is some disagreement on the significance

of this effect [3, 59].

4.1.5 Overview of our modelling work

In this chapter we construct a simple model of the Bergmann glial cell, informed where

possible by experimental data. This allows us to produce a simple picture of the physical

structure of the cell, and only include more details where the data shows their effects are

significant. The simplified model we produce accurately predicts the electrical response

of the cell at the cell scale. In order to explore the behaviour of the cell near to the

synapse, and to assess its ability to transport potassium ions, we also write down a

simple model of the behaviour of ions in the microdomains, including the effects of

potential and concentration gradients, allowing us to track the changes in ion fluxes and

concentrations that occur in response to simulated synaptic activity. This allows us to

quantify, for example, the rate at which sodium ions can flow from the microdomains

into the fibre, and hence judge the cell’s effectiveness at maintaining a favourable sodium

concentration for the action of the glutamate transporter mentioned in section 4.1.2.
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4.2 Modelling the electrical response of a microdomain

Current models of the Bergmann glial cell focus primarily on the potassium siphoning

behaviour of the fibre, and do not take the geometry of the rest of the cell (i.e. the mi-

crodomains) into account. Anatomical data suggests that around 90% of the Bergmann

glia cell’s surface area is made up by the membranes of the microdomains, and that this

membrane contains Kir channels, so it is plausible to suggest that there is some kind of

potassium siphoning effect occurring [30].

Generalised models of astrocyte potassium buffering focus strongly on the precise repre-

sentation of the ion channel dynamics involved in ion movements. In certain cases (see,

for example [112]), this extends to ignoring entirely the geometry of the astrocyte, and

instead considering a model consisting of a synapse, astrocyte and blood vessel, with no

spatial variations within these regions. This approach may be useful to understanding

the behaviour of large ensembles of astrocytes, but it cannot really elucidate the be-

haviour of a single cell, and tells us more about the behaviour of the ion channels than

how the cell’s structure influences its role.

In addition, the models of ion channels used require large numbers of parameters (55

are used in [112]). Many of these parameters are not known with any great certainty

and others have to be estimated with no supporting biological data, and the sensitivity

of the resulting model to these parameter choices means that this approach is not useful

for providing general insights into the cell’s function.

Models accounting for spatial variations within astrocytes also exist, some which are

approached analytically (for example [18]) and others computationally (for example

[100]). However, these also use very simplified geometries — cylindrical or approximately

cylindrical cells — which cannot easily account for behaviours in the Bergmann glial cell

microdomains.

The microdomains of the Bergmann glial cell seem to be particularly badly designed

for the purpose of potassium siphoning. Any potassium ions entering the microdomains

have to pass through the very narrow stalk (with very high resistance) to get to the
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fibre and then the end-foot. It may be the case that all of the siphoning behaviour of

the cell occurs within the fibre, with the microdomains performing entirely independent

roles, but with the large surface area of the microdomains, a relatively small effect per

microdomain could be amplified into a large effect over the entire cell. It also may

be that under low-levels of neural activity, the siphoning effect of the microdomains is

small but in periods of intense activity the cumulative effect of the large numbers of

microdomains becomes significant. Our model suggests, in fact, that a reasonably large

proportion (up to around twenty percent, depending on the exact properties of the cell)

of the potassium ions introduced at a microdomain can flow out of the cell through the

end-foot membrane, which suggests that the microdomains can contribute significantly

to the siphoning behaviour of the cell (a quantification of the proportion of ion channels

flowing out through the end-foot membrane as a function of its conductance per unit

area is shown in figure 4.33, though a full explanation of the figure is deferred until the

explicit details of the model have been presented).

We write down a partial differential equation model of the behaviour of the cell based

on its morphology, certain aspects of which can be exploited to simplify the model.

Simulations of the cell can then be used to predict both its electrical response and the

movements of potassium and sodium ions within it.

There are two parts to the model: a description of the behaviour of a microdomain —

including the effects of the ion channels in its membrane — and a description of the

behaviour of the fibre.

4.2.1 Microdomain morphology

There has been little modelling work performed on the behaviour of microdomains.

In Grosche et al. [30], a model was used to show that depolarisations in a single mi-

crodomain have a very small effect on the membrane potential found in the fibre, sug-

gesting that the microdomains are electrically isolated from one another. This model

used an extremely detailed representation of the morphology of a single microdomain,

consisting of around 50 different sub-compartments, and was solved in the NEURON
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simulation environment to gauge the effects of microdomain depolarisations on the fi-

bre. However, the complexity of the model means it’s not easily scaleable to a whole cell

level, and an analysis of the behaviour of the model suggests that it can be simplified

considerably without losing the key qualitative behaviours.

Simplifying the model allows us to work on the scale of the whole cell, where we can

determine how the effects of single microdomains combine when they are depolarised in

large numbers. If we retain only the important physical features of the microdomain we

can create a more tractable model, which provides better insight into cell behaviour.

A more detailed look at microdomains shows (at least) two distinct large regions, which

we refer to hereon as ‘paddles’, connected by narrow stalks (see figure 4.8). Assum-

ing that the conductivity of the intracellular electrolyte is approximately constant (we

demonstrate the validity of this assumption in section B), the resistance encountered

between the fibre (A in figure 4.8) and the distal end of the microdomain (E) is essen-

tially determined by the cross-sectional area of the microdomain. The majority of the

potential drop across the microdomain therefore happens in the narrowest regions, the

stalks (B and D). Although this ignores a lot of the details of the anatomy seen in figure

4.4, its efficacy is borne out by the modelling work in [30], where simulations show two

large potential drops through the microdomain, corresponding to the two stalks, and no

other significant sources of resistance (see section 4.6.2 for a direct comparison of our

model to theirs).

The key property of the paddles in the microdomain (with regards to the model) is their

very high surface area to volume ratio [30]. Their small volume and low resistance to the

movement of charge within them mean that variations in concentration and potential

equilibrate quickly, such that each paddle can be thought of as being equipotential. The

large surface area means that membrane effects — ion channel and capacitive currents

— tend to dominate the behaviour, and thus are the most significant factors our model

must include.
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Figure 4.8: A simplified model of the microdomain, derived from the anatomical
details in figure 4.4. The model consists of the fibre (A), a proximal high resistance,
low capacitance stalk (B), a proximal low resistance, high capacitance paddle (C), a
distal high resistance, low capacitance stalk and a distal low resistance high capacitance
paddle. The current sources/sinks considered are: (1) flow between the fibre and the
proximal paddle; (2) leak currents through the proximal paddle membrane; (3) flow
between the proximal and distal paddles; (4) leak currents through the distal paddle

membrane; (5) ion channel modulated currents in response to synaptic activity.

4.2.2 Equivalent circuit models for the glial cell

In order to determine the structure of the microdomain, we construct a simple equivalent

circuit model based on its anatomical features. The large areas of cell membrane in the

paddles have a significant capacitance (from the bilayer structure) and conductance

(from the presence of ion channels) and so can be modelled as a circuit comprising a

capacitor and resistor in parallel [88]. The narrow stalks of the microdomain can, as

mentioned above, be thought of as resistances and the model of the microdomain can be

built from just these two features — the membrane in the paddles and the resistances

between them.

4.2.2.1 Description of the voltage clamp experiment

Once the behaviour of the equivalent circuit has been determined, we determine the

parameters of the model by fitting to experimental data, obtained by imposing known

transmembrane potentials on a cell. This data was obtained by our collaborators at

the University of Nottingham, and an example of it is shown in figure 4.9, showing
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the current through the microdomain membranes in response to a step change in the

transmembrane potential. A description of the experimental procedure is given below,

full details can be found in [25]. This data is obtained by inserting an electrode into the

cell at the soma and one into the extracellular space, far from the cell, such that the

potential drop across the whole cell can be recorded and current can be injected directly

into the cell (this setup is sketched in figure 4.10). Injecting current into the soma

through the recording electrode (labelled in figure 4.10) depolarises the cell membrane in

the fibre and microdomains, causing current flows out of the cell, and so a feedback loop

can be created to hold the potential drop across the cell at a fixed value by balancing the

current out of the cell through the fibre and microdomain membranes with the current in

through the electrode. The electrode current required to keep the potential drop steady

(which is recorded) is thus equivalent to the current flowing through the cell membranes.

In figure 4.9, the potential drop across the cell is initially held at −80mV, which results

in a small inward current through the fibre and microdomain membranes. At 50ms the

potential drop across the cell is quickly switched to 0mV causing a brief, large outward

current that decays exponentially to a constant value over a scale of 10–50ms. After

250ms the potential drop is returned to −80mV, which causes a brief inward current

before the cell returns to equilibrium. Our complete data set was obtained by applying

ten such voltage step changes (from −60 to +140mV) to each of five cells.

4.2.3 Equivalent circuit model based on a single paddle microdomain

We initially construct a simple model of the cell membrane in the microdomain as

a resistor and capacitor in parallel, connected to the fibre of the Bergmann glial cell

(which is assumed to be equipotential because of its relatively large width, and hence

its low resistance) by a single, high-resistance stalk (i.e. a microdomain with only one

paddle, rather than the two described previously). Using the known potential difference

across the microdomains (imposed by the experiment), we can write down equations

which describe the behaviour of this circuit and solve them to find the current through

it.
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Figure 4.9: Example of experimental results showing current through the cell mem-
brane (black curve, left-hand axis) and imposed potential drop across the cell (blue
curve, right-hand axis). The key feature of this data is the behaviour after the large
spike at 50ms, which shows two rates of exponential decay. We determine the param-

eters of our equivalent circuit by fitting its response to this biexponential decay.

Reference electrode

Recording electrode

Figure 4.10: A sketch of the voltage clamp experimental set up. In order to maintain a
fixed potential drop between the recording and reference electrodes, the current applied
through the recording electrode must balance the current flow out of the cell through
the microdomains. The record of the current input to the cell thus reflects the total
current out of the cell through the microdomain membranes, and can be compared to

the outputs of our simulations.
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The radius of the fibre is around ten times that of the stalks in the microdomains (see

table 4.2 for a complete list of parameters of the cell) and as such we do not expect it

to have a significant resistance compared to the stalks, unless it contains constrictions

or obstructions of some kind. We therefore begin by neglecting its resistance such

that the entire fibre (including the soma) is equipotential. In this case the cell can

be modelled as many of the circuits described above connected in parallel, and the

current through each microdomain will be identical. The total current recorded at the

soma (by the recording electrode) will therefore simply be equal to the current through

one microdomain multiplied by the number of microdomains (we have to estimate the

number of microdomains from values given in the literature — [54] and [86] both contain

estimates of the number of microdomains per unit length).

Analysis of the data shows that it contains two exponential decay rates, one faster and

one slower, whereas this simple model predicts only one. We can fit the model to either

the fast or the slow rate by changing parameters, but obviously neither predicts the

response of the cell very well. See figure 4.11 for the fit to the faster decay rate, and

figure 4.12 for the slower.

Although this model doesn’t compare well to the experimental data, the analysis is useful

firstly because it demonstrates exactly why a single-paddle model of the microdomain is

not enough to predict the full behaviour of the microdomain and secondly because it can

be used to inform subsequent modelling work — it’s clear we need to add a mechanism

which will contribute a different decay rate. Further discussion with our experimental

collaborators suggested that this second decay rate could be contributed by a second

region of the microdomain, and thus we produced the second iteration of the model,

detailed below.

4.2.4 Equivalent circuit model based on a two paddle microdomain

Examination of the electron micrographs of the microdomain in figure 4.4 suggests that

there is a significant resistance within the microdomain itself, in addition to the resis-

tance between the fibre and the microdomain. This motivates the equivalent circuit

model of a two-paddle microdomain seen in figure 4.13 (and overlaid on the relevant
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Figure 4.11: Single paddle equivalent circuit model fitted to fast decay rate of ex-
perimental data. Triangles show data used to fit parameters, circles show other data,
dashed curves are predictions of the model. The initial agreement between the model
and the data is good, but gets worse over time because the data does not decay at a

constant rate.

morphology in figure 4.14). We can determine the parameters of the equivalent circuit

(the surface areas of the two paddles, the paddle membrane’s passive conductance per

unit area and the resistance of the two stalks) by solving the equations describing its

behaviour and fitting the predicted response to experimental data. Again, we assume

that the fibre and soma are equipotential and thus that the current through each mi-

crodomain is identical. The total current recorded at the some is therefore equal to the

current through one microdomain multiplied by the number of microdomains (which,

again, we estimate from the same values in the literature used for the single paddle

equivalent circuit).

Using some basic properties of the circuit illustrated in figure 4.13, we can derive an

ODE governing the current through the cell in response to an applied voltage. We know

voltages sum across elements in series, and currents sum through elements in parallel,
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Figure 4.12: Single paddle equivalent circuit model fitted to slow decay rate of ex-
perimental data. Again, triangles show data used to fit parameters, circles show other
data, dashed curves are predictions of the model. The model and data agree well on a

longer time-scale, but the initial spikes in the data are not present in the model.
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Figure 4.13: Equivalent circuit representing a microdomain with two distinct paddles.
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Figure 4.14: The equivalent circuit for the model of the microdomain presented in
figure 4.8, overlaid on its morphology. Labelled are the resistances of the two stalks
(Ωs

p, Ω
s
d), the capacitances of the two paddles (C1, C2) and the resistances of the two

paddles (R1,R1).

Figure 4.15: The equivalent circuit model of the whole cell. Assuming the resistance
of the fibre is negligible, the cell behaves like many microdomains in parallel

thus:

V ∗ = V ∗
1 + V ∗

2 (4.1)

V ∗
2 = V ∗

3 + V ∗
4 (4.2)

I∗ = I∗1 + I∗2 (4.3)

where V1,2,3,4 and I1,2 are as labelled in figure 4.13. The current through the top half

of the second component in figure 4.13, I∗1 , is determined using Ohm’s law through the

resistor and the law of capacitance

I∗1 =
V ∗
2

R1
+ C1V̇

∗
2 (4.4)

where R1 and C1 are the resistance and capacitance of the proximal paddle membrane,
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respectively. The current, I∗2 , through each part of the bottom half of the second com-

ponent in figure 4.13 is given by the following expressions

I∗2 =
V ∗
4

R2
+ C2V̇

∗
4 , (4.5)

I∗2 =
V ∗
3

Ωs
d

(4.6)

where R2 and C2 are the resistance and capacitance of the distal paddle membrane, and

Ωs
d is the resistance of the distal stalk. From equations (4.2) and (4.6)

V ∗
4 = V ∗

2 − I∗2Ω
s
d (4.7)

which can be substituted into equation (4.5)

I∗2 = C2V̇
∗
2 − C2İ

∗
2Ω

s
d +

1

R2
V ∗
2 − I∗2

Ωs
d

R2
(4.8)

Equations (4.3) and (4.4) give us an alternative expression for I∗2

I∗2 = I∗ − C1V̇
∗
2 − 1

R1
V ∗
2 (4.9)

which can be combined with equation (4.8) to give the following result for the total

current through the equivalent circuit for the two paddle microdomain (that is, the

current from the fibre into the microdomain)

I∗ = C1V̇
∗
2 + V ∗

2

1

R1
+ C2V̇

∗
2 − C2İ

∗
2Ω

s
d + V ∗

2

1

R2
− I∗2

Ωs
d

R2

= (C1 + C2) V̇
∗
2 +

(

1

R1
+

1

R2

)

V ∗
2 − C2R1İ

∗
2 − Ωs

d

R2
I∗2

= (C1 + C2) V̇
∗
2 +

(

1

R1
+

1

R2

)

V ∗
2 − C2R1

(

İ∗ − C1V̈
∗
2 − 1

R1
V̇ ∗
2

)

− Ωs
d

R2

(

I∗ − C1V̇
∗
2 − 1

R1
V ∗
2

)

= C1C2Ω
s
dV̈

∗
2 +

(

C1

(

1 +
Ωs
d

R2

)

+C2

(

1 +
Ωs
d

R1

))

V̇ ∗
2

+

(

1

R1
+

1

R2
+

Ωs
d

R1R2

)

V ∗
2 − C2Ω

s
dİ

∗ − Ωs
d

R2
I∗

(4.10)
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We can now use equation (4.1) and Ohm’s law through the first resistor to derive the

following expression for V ∗
2

V ∗
2 = V ∗ − I∗Ωs

p (4.11)

where Ωs
p is the resistance of the proximal stalk. This can be substituted in to our

expression for I∗ to obtain

I∗ = C1C2Ω
s
dV̈

∗ +

(

C1

(

1 +
Ωs
d

R2

)

+ C2

(

1 +
Ωs
d

R1

))

V̇ ∗

+

(

1

R1
+

1

R2
+

Ωs
d

R1R2

)

V ∗ − C1C2Ω
s
pΩ

s
dÏ

∗

−
(

Ωs
p

(

C1

(

1 +
Ωs
d

R2

)

+ C2

(

1 +
Ωs
d

R1

))

+ C2Ω
s
d

)

İ∗

−
(

Ωs
p

(

1

R1
+

1

R2
+

Ωs
d

R1R2

)

+
Ωs
d

R2

)

I∗

(4.12)

All of the coefficients in this equation are constants, determined by the parameters of

the circuit and so we rewrite the equation in the more manageable form below

Ï∗ + αİ∗ + βI∗ = γV̈ ∗ + ζV̇ ∗ + ηV ∗, (4.13)

where

α =
1

C2

(

1

Ωs
d

+
1

R2

)

+
1

C1

(

1

Ωs
p

+
1

Ωs
d

+
1

R1

)

(4.14)

β =
1

C1C2

(

1

R1Ωs
d

+
1

Ωs
dR2

+
1

R1R2
+

1

Ωs
pR2

+
1

Ωs
pΩ

s
d

)

(4.15)

γ =
1

Ωs
p

(4.16)

ζ =
1

Ωs
p

(

1

C2

(

1

Ωs
d

+
1

R2

)

+
1

C1

(

1

Ωs
d

+
1

R1

))

(4.17)

η =
1

C1C2Ωs
p

(

1

R1Ωs
d

+
1

Ωs
dR2

+
1

R1R2

)

(4.18)

We also know the form of V ∗, which is the potential imposed by the experiment

V ∗ =















−VH − VR t∗ < t0

−VH − VR + VS t∗ ≥ t0

(4.19)

where VH is the holding potential (= −80mV), VR is the membrane resting potential
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(≈ −75mV) and VS is the step in the holding potential (which varies between −60 and

+140mV). We write the potential in this way because it’s deviations from the resting

potential which drive net current flows through the membrane, not deviations from zero.

We can write this more compactly using the Heaviside step function (H) as follows

V ∗ = −VH − VR + VSH (t∗ − t0) (4.20)

from which we can easily calculate the necessary derivatives

V̇ ∗ = VSδ (t
∗ − t0) (4.21)

V̈ ∗ = VS δ̇ (t
∗ − t0) (4.22)

4.2.4.1 Choosing initial conditions

In setting up the experiment, the cell is held at a potential of −80mV until its behaviour

reaches a steady-state. At t = 0, therefore, we know

I∗ (t∗ = 0) = I− =
η

β
(−VH − VR) , (4.23)

İ∗ (t∗ = 0) = 0 (4.24)

(The experiment is run long enough after the jump in potential that another equilibrium

is reached. As t∗ → +∞, therefore, we also know

lim
t∗→∞

I∗ = I+ =
η

β
(−VH − VR + VS) (4.25)

which we cannot impose as an initial condition, but will return to later to determine the

value of η
β
.)
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4.2.4.2 Non-dimensionalising the problem

We can now collect this into the following closed problem

Ï∗ + αİ∗ + βI∗ = γVS δ̇ (t
∗ − t0) + ζVSδ (t

∗ − t0) + η (−VH − VR + VSH (t∗ − t0)) ,

(4.26)

I∗ (0) = I−, (4.27)

İ∗ (0) = 0 (4.28)

We nondimensionalise the system as follows

I∗ =
η (VH + VR)

β
I, t∗ =

1√
β
t, (4.29)

which yields the following statement of the dimensionless problem

Ï + κİ + I = λV̄ δ̇ (t− T ) + µV̄ δ (t− T ) + V̄ H (t− t0)− 1, (4.30)

I (0) = −1, (4.31)

İ (0) = 0 (4.32)

where

V̄ =
VS

VH + VR
(4.33)

κ =
α√
β
, (4.34)

λ =
βγ

η
, (4.35)

µ =

√
βζ

η
(4.36)

4.2.4.3 Solution

It can be shown that the following expression solves equations (4.30) to (4.32)

I = −1 + V̄ H (t− T )
(

1 + k1e
−m1(t−T ) + k2e

−m2(t−T )
)

(4.37)
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where

k1 =
1

2

(

λ− 1 +
2µ− κ (λ+ 1)√

κ2 − 4

)

, (4.38)

k2 =
1

2

(

λ− 1− 2µ− κ (λ+ 1)√
κ2 − 4

)

, (4.39)

m1 =
1

2

(

κ−
√

κ2 − 4
)

, (4.40)

m2 =
1

2

(

κ+
√

κ2 − 4
)

(4.41)

Thus we can clearly see the solution takes the form of a biexponential decay, which we

can now fit to the two decay rates seen in the data.

4.2.4.4 Fitting to data

To fit this expression to the experimental data we use the method of least squares to

minimise differences between the exponential decay seen in the data and the decay in

the model. This analysis determines k∗1 , k
∗
2 , m

∗
1 and m∗

2, defined as the minimisers of

∑

i

(

y∗i − k∗1e
−m∗

1
t∗ − k∗2e

−m∗

2
t∗
)2

(4.42)

where {y∗i } are the (dimensional) data points and {t∗i } are the (dimensional) times at

which the data points are taken.

As seen in figures 4.16 and 4.17, the behaviour of the cell is predicted well by the

model, with the medium and long term currents being basically indistinguishable. The

difference in the very short-term behaviour immediately after the voltage step is due to

the limitations of the experimental apparatus, which cannot register the cell’s response

over this time-scale.

The values from the least-squares regression tell us the values of k1, k2, m1 and m2 to

use in the dimensionless equation to obtain the best fit to the data. Once we know this,

we can work backwards to find κ, λ, µ and τ , and thence α, β, γ, η and ζ, and finally the

resistances and capacitances of the equivalent circuit, by simply inverting the definitions

in equations (4.14) to (4.18), (4.34) to (4.36) and (4.38) to (4.41). The analytic solution
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Figure 4.16: Comparison of the model to the experimental data from the first cell.
Line with triangles is data used for fitting, lines with circles are the rest of the data,

dashed lines are model predictions
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Figure 4.17: Comparison of the model (red, dashed) to a single experiment (blue,
solid), over a longer time-scale
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for the resistances and capacitances is too convoluted to be illuminating when written

out in full, but it is trivial to find these values computationally.

In order to pin down all the parameters of the cell it is necessary to make some assump-

tions — we have six parameters to determine (Ωs
p and Ωs

d, C1 and C2 and R1 and R2)

and only five bits of information from the data (k1, k2, m1, m2 and the long time scale

steady state current, I+), and the number of microdomains is unknown. The capaci-

tance of the lipid bilayer is primarily determined by its thickness, which is fixed by the

molecular structure, not any of the properties of the cell, so we can assume that the

capacitance of all the membranes in the circuit is 0.01F · m2, which is a value widely

used in the literature [30, 44]. We also assume that the conductance per unit area of the

microdomain membrane is constant (that is, all the ion channels in the microdomain

are uniformly distributed — throughout both paddles). With these assumptions, the

capacitance and resistance of the membranes in the two paddles become, respectively,

proportional and inversely proportional to the surface area. Mathematically, we make

the substitutions

C1 = CAp, (4.43)

C2 = CAd, (4.44)

R1 =
1

gmAp
, (4.45)

R2 =
1

gmAd
, (4.46)

where C is the capacitance of the membrane per unit area, gm is the conductance per

unit area of the membrane (S · m−2) and Ap and Ad are the surface areas of the two

paddles. This reduces the number of undetermined parameters in the model by one.

We also have to account for the fact that the current measured experimentally is the sum

of the currents through all of the microdomains. To do this, we note that the current

through each microdomain is identical, such that the current recorded at the soma is

equal to the current through one microdomain multiplied by the number of microdomins.

We estimate the number of microdomains on the fibre to be around one hundred, based
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on a fibre of length 100µm and a density of one microdomain per micrometer (106 m−1),

from the information in [54] and [86].

4.2.4.5 Cell parameters determined by the model

We have experimental data from five different cells, each of which was subjected to

ten different voltage steps. We can thus obtain ten sets of estimates from each cell

by choosing a voltage step, using the data from that particular experiment to fit the

parameters of the model and repeating this process for each of the voltage steps until

we have used all the data.

A summary of the parameters found is given in table 4.1, with values taken from the

literature given in table 4.2. The measurements of microdomain surface area given in [30]

are around 300µm2 (O
(

10−10
)

m2) (although these results may underestimate the true

area of the microdomain because of the lack of resolution of the electron micrographs

over the highly convoluted three dimensional geometry of the microdomain), and the

leak conductance per unit area is estimated to be somewhere between 0.83 and 83 S·m−2,

and thus we feel satisfied that the results of the analysis are reasonably trustworthy. We

also now have estimates for parameters that aren’t given in the literature anywhere else

— the resistance of the stalks — which agree reasonably well with the estimates we can

make based on the geometry of the cell seen in the electron micrographs in [30].

The complete sets of parameters determined by this approach are given in tables A.1 to

A.5 in appendix A.

There are variations in the parameters from fitting to different voltage steps, and with

this in mind we have tried to quantify the scale of the uncertainty in our estimates.

What we see is that for three of the five parameters (Ap, Ωs
p and Ωs

d) the standard

deviations of our measurements are around 10% of the means, whereas for the other two

(Ad, g
m) they are closer to 40–60%. This seems like a large variation, but given the

nature of what is being measured it is useful simply to be able to estimate an order of

magnitude.
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Table 4.1: Summary of results from fitting equivalent circuit model to experimental
data

Cell
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

1
Mean 45.5 697 0.92 1.99 1.710

Std. Dev 4.33 270.1 0.077 0.211 1.0920

2
Mean 42.9 145 0.91 1.91 3.650

Std. Dev 4.96 54.7 0.071 0.163 0.9886

3
Mean 42.9 145 0.91 1.91 3.650

Std. Dev 3.65 69.3 0.028 0.234 0.9307

4
Mean 64.7 152 1.42 2.86 2.190

Std. Dev 4.38 127.8 0.025 0.439 0.5672

5
Mean 49.0 221 1.19 1.86 2.970

Std. Dev 4.25 88.1 0.036 0.104 0.8724

4.3 Modelling the fibre

4.3.1 Motivation and details of a second experiment

In the previous analysis, we have assumed that the longitudinal resistance of the fibre

is negligible, and thus that the fibre is approximately equipotential. Although the re-

sulting model of current flows in the microdomains fits well to the experimental data,

exploratory data obtained by our collaborators suggested that potential gradients did

exist in the fibre, and should be reflected in the model. A simple model of the behaviour

of the fibre (detailed below) was coupled to the existing model of the microdomains to

account for potential variations within the fibre. An experiment was then designed to

rigorously determine the potential gradients present in the fibre (details of the exper-

iment are given below, and full detail can be found in [25]) for comparison with the

model. Again, good agreement was found between our predictions and the experimental

data.

The data is obtained by stimulating input currents to the microdomains at varying

distances from the soma and measuring the depolarisation of the soma membrane (a

sketch of the experimental setup is shown in figure 4.18). In these experiments, electrodes
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Table 4.2: Values and estimates for parameters derived from the literature

Quantity Symbol Value Ref

Resting potential Φ̃ (−80 to −50)× 10−3 V [64]
−82± 6× 10−3 V [19]

Intracellular electrolyte conductivity σ 0.83 S ·m−1 [30]

Membrane capacitance per unit area C 0.01 F ·m−2 [30]

Fibre radius R 1.5 ×10−6 m [31]

Fibre length (rat) L 200 ×10−6 m [31]

Microdomain density N∗ 5× 105 m−1 [54]

Total synapses ensheathed 2142 – 6358 [86]

Equivalent density
(assuming 1–5 fibres, 100–300µm
long)

N∗ 1× 106 – 6× 107 m−1

Stalk radius 0.15 ×10−6 m [30],[31]

Stalk length 7 ×10−6 m [30]

Stalk Resistance
(from Length

Electrolyte Conductivity×Cross-sectional Area)
Ωs
p, Ω

s
d 108 Ω

Microdomain volume 16 ×10−18 m3 [30]

Microdomain surface area Ap, Ad 317 ×10−12 m2 [30]

Total microdomain surface area 90% Cell Surface Area [30]

Microdomain membrane conductance
per unit area

g 8 S ·m−2 (0.8− 80) [30]

Extracellular bath solution KCl 3.5 mol·m−3 [97]
Extracellular bath solution NaCl 130 mol·m−3 [97]
Pipette solution KCl 140 mol·m−3 [97]

are inserted into the soma of the cell and the extracellular space far from the cell,

allowing the potential drop across the cell to be measured. More electrodes are then

used to stimulate the parallel fibres in the tissue surrounding the cell, activating the

synapses with Purkinje fibres and causing current to flow into the Bergmann glial cell

at the microdomains surrounding these synapses. The parallel fibres lie perpendicular

across the Bergmann glial cell fibre, and so it is assumed that the distance between

the parallel fibre and the soma (measured parallel to the Bergmann glial cell fibre)

is equal to the distance between the stimulated microdomain and the soma. In this

way a relationship can be established between the distance between the soma and the

stimulated microdomain and the size of the response at the soma.
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Parallel fibres

Stimulation distance

Recording electrode

Stimulation electrode

Figure 4.18: A sketch of the experimental set up to determine the length constant
of the cell. Action potentials are induced in the parallel fibres by the stimulating
electrode, activating the synapses and stimulating the membrane at the Bergmann glial
cell microdomain, and the response in the Bergmann glial cell is recorded in the soma.
The parallel fibres are approximately perpendicular to the Bergmann glial cell fibre, so
that the distance between the two electrodes (measured parallel to the Bergmann glial
cell fibre) is approximately equal to the distance between the soma and the stimulated

microdomain.

If the resistance of the fibre were truly negligible, we would expect the response of the

soma to be independent of the distance to the stimulated microdomain, but the data

clearly shows that this is not the case. Fitting exponential models to the data in figure

4.19 suggests that the three cells have length constants on the order of 30µm, which is

significantly shorter than our estimates of the length of the fibre in table 4.2 and thus

we expect to see variations in the transmembrane potential within the fibre.

This motivates a model of the behaviour of the Bergmann glial cell which accounts

for the resistance of the fibre. While the underlying behaviour of the microdomains

will be equivalent to that described in section 4.2.4, we restructure the model to focus

on the response of the transmembrane potential to currents through the microdomain

membrane (where the equivalent circuit analysis dealt with the reverse case of currents

induced by known changes in transmembrane potential).
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Figure 4.19: The maximum depolarisation observed in the soma decays as the dis-
tance to the stimulus current increases, obtained experimentally. Fitting an exponential
model to the data predicts length constants of 30µm (blue cell), 47µm (green cell) and

17µm (red cell)

4.3.2 Microdomains

If we denote the transmembrane potential in the fibre and proximal and distal paddles

of the microdomain by Φ∗, φ∗, and ψ∗ respectively, then the equivalent circuit tells us

that the transmembrane potential in the proximal paddle behaves as follows

ApC
dφ∗

dt∗
=

Φ∗ − φ∗

Ωs
p

+
ψ∗ − φ∗

Ωs
d

−Apg
m
p φ

∗, (4.47)

where all parameters are defined as in the equivalent circuit analysis in section 4.2.4. The

terms in this equation represent (on the left-hand-side) the capacitive current flowing

out of the proximal paddle membrane and (on the right-hand-side), the current through

the proximal stalk from the fibre (Φ∗ − φ∗ is the potential difference between the fibre

and the proximal paddle) the current through the distal stalk from the distal paddle

(φ∗ − ψ∗ is the potential drop between the proximal and distal paddles) and the leak

current through passive ion channels in the proximal paddle membrane.

Similarly, for the distal paddle

AdC
dψ∗

dt∗
= −ψ

∗ − φ∗

Ωs
d

−Adg
m
d ψ

∗ + I∗c , (4.48)
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where I∗c is the active ion channel current into the distal paddle, and all other parameters

are again defined as in the equivalent circuit, except we have now allowed the passive

leak conductances to vary across paddles (the equivalent circuit analysis was performed

with gmp = gmd = gm). The terms in this equation represent (on the left-hand-side) the

capacitive current flowing out of the distal paddle membrane and (on the right-hand-

side) the current through the distal stalk to the proximal paddle, the current through

the passive ion channels and the current through the active ion channels.

Thus equations (4.48) and (4.48) are identical to the equivalent circuit presented in

section 4.2.4, only they model the behaviour of the transmembrane potentials in the

microdomain, rather than the membrane currents.

The fact that the transmembrane potential in the fibre is spatially varying (such that

Φ∗ = Φ∗ (x∗, t∗), where x∗ denotes distance from the soma along the fibre) means that

the transmembrane potentials in the microdomain must now also vary spatially. Thus

we define φ∗i and ψ∗
i to be the transmembrane potentials in the proximal and distal

paddles of the ith microdomain, located at a distance xi from the soma, and obtain the

following set of ODEs

ApC
dφ∗i
dt∗

=
Φ∗ (xi, t

∗)− φ∗i
Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

−Apg
m
p φ

∗
i i = 1, . . . , N (4.49)

AdC
dψ∗

i

dt∗
= −ψ

∗
i − φ∗i
Ωs
d

−Adg
m
d ψ

∗
i + I∗c i = 1, . . . , N (4.50)

which describe the behaviour of the transmembrane potential in each of the N mi-

crodomains.

4.3.2.1 Morphology and electrical properties of the fibre

The fibre of the Bergmann glial cell is sufficiently thin that we can apply the cable

equation approximation detailed in part 2, which represents the longitudinal resistance

of the fibre and the capacitance of and leak currents through its membrane. In this form,

the currents from the microdomains form source terms to the cable equation, allowing

us to investigate the behaviour of the complete cell.
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We have chosen to model the microdomains as discrete current sources on the fibre

membrane. The current Ii between the ith microdomain and the fibre is given by Ohm’s

law (as in equation (4.49) above), and is proportional to the potential difference between

the proximal paddle and the fibre, being given by

Ii = −Φ∗ (xi)− φ∗i
Ωs
p

(4.51)

where φi denotes the transmembrane potential in the proximal paddle of the ith mi-

crodomain.

We estimate from the data in figure 4.19 that the length constant of the fibre is of the

order of ten micrometers, and thus is fairly large compared to the distance between

microdomains (a distance of 10µm on the fibre covers around five to five hundred mi-

crodomains (see table 4.2)). The large length constant suggests that the model could be

simplified by instead treating the microdomains as a continuous distribution of current

sources but, given the uncertainty in the estimates of the number of microdomains on

the fibre, we have chosen to continue with the discrete current source model. We have,

in fact, performed simulations of the model with this simplification and found that in

the relevant parameter range the difference between the two approaches is negligible;

discrepancies only occur for cells with very small numbers of microdomains.

In addition to the cable conductor model to describe the capacitance, resistance and leak

conductances in the fibre we also introduce leak (i.e. constant, passive) conductances

through membrane at the soma and end-foot.

The equation describing the behaviour of the fibre is thus

2πRfC
∂Φ∗

∂t∗
= σπR2

f

∂2Φ∗

∂x∗2
− 2πRfgfΦ

∗ −
∑

i

δ (x∗ − xi)
Φ∗ − φ∗i

Ωs
p

, (4.52)

where Rf is the fibre radius, σ is the intracellular electrolyte conductivity, gf is the

leak conductance per unit area of the fibre membrane and xi is the distance from the

soma of the ith microdomain. (This is the standard cable equation for a fibre with a

distributed leak conductance, to which we have added current sources describing the

current between the fibre and the microdomains.)
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Boundary condition at the soma: We assume the membrane of the soma has

constant, passive conductance per unit area gs and surface area As. The total current

flowing out through the soma membrane is given by

I∗s = Asgs Φ
∗|x=0 (4.53)

We currently do not account for the capacitive effects of the soma membrane, which we

expect to be small relative to those of the microdomains.

Kirchoff’s law dictates that the longitudinal current in the fibre at the soma must equal

the current out of the cell through the soma membrane, thus

− I∗|x=0 = I∗s (4.54)

and since the current density in the fibre is given by the longitudinal gradient of the

transmembrane potential, as follows:

I∗|x=0 = −πR2
fσ

∂Φ∗

∂x∗

∣

∣

∣

∣

x∗=0

, (4.55)

the boundary condition on Φ∗ at the end of the fibre attached to the soma is

∂Φ∗

∂x∗

∣

∣

∣

∣

x∗=0

=
Asgs

πR2
fσ

Φ∗|x∗=0 , (4.56)

Boundary condition at the end-foot: We assume the end-foot has constant, passive

conductance per unit area ge and surface area Ae. The current through the end-foot is

thus given by

I∗e = Aege Φ
∗|x=L (4.57)

where L is the length of the fibre. Again, we have ignored the capacitance of the end-foot

membrane, which we expect to be relatively small.

Kirchoff’s law again dictates that the longitudinal current in the fibre at the end-foot

must equal the current out of the cell through the end-foot membrane, and thus the
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Figure 4.20: Sketch of soma,
with current flows in red

Figure 4.21: Sketch of end-foot,
with current flows in red

boundary condition at the end-foot is

∂Φ∗

∂x∗

∣

∣

∣

∣

x∗=L

= − Aege

πR2
fσ

Φ∗|x∗=L (4.58)

4.3.2.2 Full model of the electrical behaviour of the cell

Equation (4.52), describing the behaviour of the fibre, is coupled to equations (4.49) and

(4.50), describing the behaviour of the microdomains, to produce a complete model of

the electrical behaviour of the Bergmann glial cell.

Appropriate boundary conditions are imposed by considering the behaviour at the soma

(4.56) and the end-foot (4.58), and the problem is closed by imposing an initial condition

on the potential in the fibre and the two parts of the microdomain. The full model is
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thus

2πRfC
∂Φ∗

∂t∗
= σπR2

f

∂2Φ∗

∂x∗2
− 2πRfgfΦ

∗ −
∑

i

δ (x∗ − xi)
Φ∗ − φ∗i

Ωs
p

, (4.59)

CAp
∂φ∗i
∂t∗

=
Φ∗ (xi)− φ∗i

Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

−Apg
m
p φ

∗
i , (4.60)

CAd
∂ψ∗

i

∂t∗
= −ψ

∗
i − φ∗i
Ωs
d

−Adg
m
d ψ

∗
i + I∗c,i (4.61)

∂Φ∗

∂x∗
(0, t∗) =

Asgs

πR2
fσ

Φ∗ (0, t∗) , (4.62)

∂Φ∗

∂x∗
(L, t∗) = − Aege

πR2
fσ

Φ∗ (L, t∗) , (4.63)

Φ∗ (x∗, 0) = f∗1 (x
∗) , (4.64)

φ∗i (x
∗, 0) = f∗2 (xi) , (4.65)

ψ∗
i (x

∗, 0) = f∗3 (xi) , (4.66)

The parameters of this model are determined from estimates from the literature (see

table 4.2) or, where possible, from fitting the equivalent circuit model in section 4.2.4

to experimental data (these parameters are summarised in table 4.1). The radius of the

fibre is determined by fitting the length constant of the model to the data shown in

figure 4.19.

From the comparison of the experimental data and the response of the model to ex-

perimental conditions shown in figures 4.23 to 4.25, we can see that the model makes

good predictions of the electrical behaviour of the Bergmann glial cell. We now derive

a model of the ion transport in the microdomains, to allow us to investigate the cell’s

ability to redistribute ions.

4.4 Ion concentrations

To obtain more insight into the function of the Bergmann glia, we need a model capable

of describing ion transport through these cells. This will allow us to quantify both

the cell’s effectiveness in siphoning potassium ions away from active synapses and the

significance of sodium ion accumulation on the transport of glutamate into the cell. The
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flow of current within the microdomain may also be affected by the ion concentrations, so

it is useful to explore the electrochemistry of the cell in a little more detail, to determine

the size and significance of all these effects.

In appendix B we examine the effects that currents in the microdomains have on the

intracellular ion concentrations and produce the model of ion concentrations given in

equations (4.67) to (4.70) which describes the behaviour of sodium and potassium ions in

the microdomains. This model is derived from the Poisson-Nernst-Planck equations, a

basic continuum model of ion concentrations in an electric field, accounting for the fluxes

of ions induced by the concentration and potential gradients in the microdomains, and

the effects of the ion concentrations on the electric field and the conductivity of the elec-

trolyte (see, for example, [72]). These changes in conductivity mean that the resistance

of the stalks, Ωs
p and Ωs

d, should in fact become functions of the potassium concentrations

in the paddles the stalk connects (i.e. Ωs
p = Ωs

p,i

(

Kf ,K
∗
p,i

)

and Ωs
d = Ωs

d,i

(

K∗
p,i,K

∗
d,i

)

where Kf is the concentration in the fibre, and K∗
p,i and K

∗
d,i are the potassium concen-

trations in the proximal and distal paddles of the ith microdomain. However, simulations

suggest that the variations in concentrations under realistic conditions are small enough

that the resistances of the stalks do not vary significantly, and so the behaviour of the

transmembrane potentials can be decoupled from the behaviour of the ion concentra-

tions. Thus equations (4.59) to (4.66) are sufficient to describe the transmembrane

potential with or without changes in ion concentrations and the ion concentrations then

passively follow the electric fields.

The situation we consider in appendix B is of three reservoirs of ions, representing the

fibre, proximal paddle and distal paddle, connected by the proximal and distal stalks,

and is summarised in figure 4.22. The dominant species of ions in these reservoirs (those

found at highest concentrations) are potassium and chloride, with a much smaller con-

centration of sodium ions. The electrolyte in the majority of the fibre and microdomains

(excluding the very narrow Debye layers close to the membrane) is charge neutral, mean-

ing that the concentration of positive ions is balanced (almost) exactly by the concen-

tration of negative ions. Practically, this means that the concentrations of potassium

and chloride ions are equal everywhere except in the Debye layers, and so we only have
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to track the behaviour of one ion to determine the concentrations of both. The fibre

is large enough that the concentration within it is not changed by the relatively small

fluxes from the microdomains, so we denote by Kf and Nf the constant concentrations

of potassium and sodium ions in the fibre, respectively. The relatively small volumes

of the proximal and distal paddles mean that the concentrations within them will not

vary spatially, although they can change over time in response to changes in transmem-

brane potential or to input fluxes through the membrane. Thus these concentrations are

given by K∗
p,i (t

∗) and K∗
d,i (t

∗) (the potassium concentrations in the proximal and distal

paddles of the ith microdomain, respectively) and N∗
p,i (t

∗) and N∗
d,i (t

∗) (the sodium

concentrations in the proximal and distal paddles of the ith microdomain, respectively).

We have chosen not to explicitly include the chloride concentration, because it can be

trivially determined from the potassium.

A B C D E

Kf

Nf

Φ∗ (t∗)

K∗
p,i (t

∗)

N∗
p,i (t

∗)

φ∗i (t
∗)

K∗
d,i (t

∗)

N∗
d,i (t

∗)

ψ∗
i (t

∗)

Figure 4.22: Ion concentrations and fluxes in the simple model of the microdomain.
The fibre (A) is large enough that the ion concentrations are unaffected by the relatively
small fluxes of ions from the microdomains, and hence are constant (Kf , Nf). The
concentrations are constant throughout the proximal paddle (K∗

p,i and N∗

p,i, C) and
distal paddle (K∗

d,i and N∗

d,i, E). Fluxes are driven through the stalks (B and D) by
the concentration gradients between the paddles, and carried through the stalks and

paddle membranes by the currents.

There are three significant fluxes through each of the stalks, a potassium and a sodium

flux driven by the concentration gradient and a potassium flux carried by the current

through the stalk. In appendix B we determine that the fluxes driven by the con-

centration gradients in the stalks are proportional to the concentration change across

them, and that the current is carried by equal and opposite movements of potassium

and chloride ions. The diffusive resistance of the stalks is determined by the ratio of

their cross-sectional area to their length (longer, thinner stalks have a higher diffusive
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resistance than shorter, fatter ones), which also determines their electrical resistance.

Thus the estimates of the electrical resistances of the stalks obtained in section 4.2.4 can

also be used to estimate their diffusive resistance.

In addition to the fluxes through the stalk, the model also accounts for the ion fluxes

carried by leak currents through the paddle membranes. This model is derived in full

detail in appendix B, and stated as follows for the potassium and sodium concentrations

in the ith proximal paddle

Vp
dK∗

p,i

dt∗
=

RT

Π0F 2Ωs
p

(

Kf −K∗
p,i

)

+
RT

Π0F 2Ωs
d

(

K∗
d,i −K∗

p,i

)

− Apgp

F
φ∗i

+
1

2F

Kf

Kf +Nf

(

Φ∗ (xi)− φ∗i
Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

) (4.67)

Vp
dN∗

p,i

dt∗
=

RT

Π0F 2Ωs
p

(

Nf −N∗
p,i

)

+
RT

Π0F 2Ωs
d

(

N∗
d,i −N∗

p,i

)

+
1

2F

Nf

Kf +Nf

(

Φ∗ (xi)− φ∗i
Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

) (4.68)

where Vp is the volume of the proximal paddle, Kf and Nf are the (constant) potassium

and sodium concentrations in the fibre, and K∗
p,i and N

∗
p,i are the potassium and sodium

concentrations in the proximal paddle of the ith microdomain, and K∗
d,i and N

∗
d,i are the

potassium and sodium concentrations in the distal paddle of the ith microdomain. R is

the ideal gas constant (R = 8.31 J ·mol−1 ·K−1), T is the temperature (T = 310K), Π0 is

the resting concentration of positive (potassium and sodium) ions (Π0 = 145mol ·m−3)

and F is the Faraday constant (F = 9.65× 104 C ·mol−1). The terms in equation (4.67)

represent, respectively, the concentration-gradient driven potassium flux between the

fibre and the proximal paddle, the concentration-gradient driven potassium flux between

the proximal and distal paddles, the potassium flux carried by the leak current through

the proximal paddle membrane, the potassium flux carried by the current between the

proximal paddle and the fibre and the potassium flux carried by the current between

the proximal and distal paddles. The factor of one half in the terms representing the

flux carried by the currents is derived from the fact that the transference number of the

electrolyte is approximately one half, and thus current is carried by equal and opposite

flows of positive and negative ions (i.e. half of the current is carried by sodium and

potassium ions moving in one direction, and the other half by chloride ions moving
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in the opposite direction). The factor of the ratio of the potassium concentration to

the total concentration of positive ions (i.e.
Kf

Kf +Nf
) simply reflects the fact that

potassium and sodium ions constitute the current flux in the same proportions they are

present in in the electrolyte — strictly speaking this proportion will change as the ion

concentrations fluctuate in the microdomains, but we have found in practice (much like

for the resistances of the stalks as described above) that the actual variations are small

enough that the resting concentration proportions can be used. The terms in equation

(4.68) represent, respectively, the concentration-gradient driven sodium fluxes between

the fibre and the proximal paddle, and the proximal paddle and the distal paddle, and

the sodium fluxes driven by the current between the fibre and the proximal paddle and

the proximal and distal paddles (the factor of on half is determined by the transference

number, as noted for the potassium fluxes, and the remaining factor represents the ratio

of sodium ions to positive ions present in the electrolyte).

The model of the potassium and sodium concentrations in the distal paddle is as follows

Vd
dK∗

d,i

dt∗
=

RT

Π0F 2Ωs
d

(

K∗
p,i −K∗

d,i

)

− Adgd

F
ψ∗
i +

1

2F

Kf

Kf +Nf

φ∗i − ψ∗
i

Ωs
d

+ F∗
K,i (t

∗) (4.69)

Vd
dN∗

d,i

dt∗
=

RT

Π0F 2Ωs
d

(

N∗
p,i −N∗

d,i

)

+
1

2F

Kf

Kf +Nf

φ∗i − ψ∗
i

Ωs
d

+ F∗
Na,i (t

∗) (4.70)

where Vd is the volume of the distal paddle. The first term in each of these equations

again represents the concentration-gradient driven flux, the second term in equation

(4.69) the potassium flux carried by the leak current through the distal paddle membrane

and the third term in equation (4.69) and the second in equation (4.70) represent the

current between the proximal and distal paddles, divided into potassium and sodium

components. The final terms in each equation (F∗
K,i (t

∗) and F∗
Na,i (t

∗)) represent the

ion fluxes carried into the distal paddle by the ion channels in the distal membrane

responding to synaptic activity. Thus the ion channel current into the distal paddle,

I∗c,i, introduce in equation (4.48) and detailed in section 4.3.2, can be thought of as

being driven by the sum of the fluxes of potassium and sodium ions, as follows

I∗c,i = F ×
(

F∗
K,i (t

∗) + F∗
Na,i (t

∗)
)

(4.71)
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where F is the Faraday constant.

4.5 Nondimensionalisation of the complete model

We non-dimensionalise equations (4.59) to (4.70) as follows:

Φ∗ = F F̃Ωs
dΦ, φ∗i = F F̃Ωs

dφi, ψ∗
i = F F̃Ωs

dψi, (4.72)

t∗ = CAdΩ
s
dt, x∗ = Lx, (4.73)

K∗
x,i =

CAdF̃Ωs
d

Vd
Kx,i, N∗

x,i =
CAdF̃Ωs

d

Vd
Nx,i, F∗

x = F̃Fx (4.74)

This leads to the following dimensionless closed system for the electric potentials

α
∂Φ

∂t
= β

∂2Φ

∂x2
− ḡfΦ− Ω̄

∑

i

δ (x− λi) (Φ− φi) , (4.75)

Ā
dφi

dt
= Ω̄ (Φ (λi)− φi) + (ψi − φi)− ḡpφi, (4.76)

dψi

dt
= (φi − ψi)− ḡdψi + FK,i (t) + FNa,i (t) , (4.77)

with boundary and initial conditions

∂Φ

∂x

∣

∣

∣

∣

x=0

= ḡsΦ (0, t) ,
∂Φ

∂x

∣

∣

∣

∣

x=1

= −ḡeΦ (1, t) , (4.78)

Φ (x, 0) = f1 (x) , φi (0) = f2 (x) , ψi (0) = f3 (x) . (4.79)

in which the dimensionless parameters are given by

α =
2πLRf

Ad
, β =

σπR2
fΩ

s
d

L
, ḡf = 2πLRfgfΩ

s
d, λi =

xi

L
(4.80)

Ā =
Ap

Ad

, Ω̄ =
Ωs
d

Ωs
p

, ḡp = ApgpΩ
s
d, ḡd = AdgdΩ

s
d, (4.81)

where

ḡs =
AsCLgs

σπR2
f

, ḡe =
AeLge

σπR2
f

, (4.82)
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The dimensionless model for the ion concentrations, which couples to that for the po-

tentials, is given by

V̄
dKp,i

dt
= γΩ̄

(

K̄ −Kp,i

)

+ γ (Kd,i −Kp,i)− ḡpφi +
1

2
Ω̄ (Φ (λi)− φi) +

1

2
(ψi − φi) ,

(4.83)

dKd,i

dt
= γ (Kp,i −Kd,i)− ḡdψi +FK,i +

1

2
(φi − ψi) , (4.84)

V̄
dNp,i

dt
= γΩ̄

(

N̄ −Np,i

)

+ γ (Nd,i −Np,i) , (4.85)

dNd,i

dt
= γ (Np,i −Nd,i) + FNa,i, (4.86)

and the initial concentrations are given by

Kp,i (0) = K̄, Kd,i (0) = K̄, Np,i (0) = N̄ , Nd,i (0) = N̄ . (4.87)

where the dimensionless parameters are given by

γ =
AdRT

F 2Π0Vd
, V̄ =

Vp

Vd
, (4.88)

K̄ =
Vd

AdCF̃Ωs
d

Kf , N̄ =
Vd

AdCF̃Ωs
d

Nf , (4.89)

Details of the numerical solution of this problem are given in Appendix C.

4.6 Results of simulations

4.6.1 Comparison of the model to experimental data

To compare the model of the cell’s electrical behaviour (equations 4.75 to 4.77) to the

experimental data, we first need to account for the length constant of the fibre, which will

mean that the potential drop is not equal across each microdomain. As the equivalent

circuit model is linear in V , the potential drop across the microdomain, the current

through a collection of microdomains at varying potential drops is equivalent to the

current through the same number of microdomains all at the same, average potential

drop. Thus to correctly determine the parameters of the cell with the equivalent circuit
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model we first need to determine the average potential drop across the microdomain from

the fibre length constant, and then use this as the potential drop in the equivalent circuit

model. Using these parameters, we then simulate input currents at varying distances

from the soma, and match the length constant of the cell to the data in figure 4.19 by

varying the radius of the fibre.

The results of this simulation are shown in figures 4.23 and 4.25, where we see the fit

to the length constant is excellent, but the fit to the voltage clamp data, while good,

is not as good as before. This is perhaps to be expected, as the fibre membrane adds

an (albeit small) capacitive effect which is not accounted for by the equivalent circuit

model.

We are confident that the model makes very good qualitative (and good quantitative)

predictions of the behaviour of the cell, and that the two-paddle representation of the

microdomain is sufficient to model the response of the cell to stimulation, suggesting that

the simplifications we have made are not eliminating any significant aspects of the cell’s

behaviour. Similarly, the cable equation representation of the fibre does not introduce

any significant behaviour not seen in the experimental data.
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Figure 4.23: Comparison of the length constant determined by experiment (blue
circles) to that predicted by the model (red , dashed curve). Parameters from table 4.3
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Figure 4.24: Comparison of model to voltage clamp data using same parameters as
used for length constant in figure 4.23. Parameters from table 4.3
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Figure 4.25: Comparison of model to voltage clamp data using same parameters as
used for length constant in figure 4.23, over a shorter time scale. Parameters from table

4.3

4.6.2 Microdomain depolarisations — comparisons with existing model

We can also compare our model — and our choice of parameters — with the equivalent

model used in [30], as shown in figures 4.26 to 4.29. Figure 4.26 shows the time course

of the depolarisations in the different paddles of the microdomain predicted by Grosche.

Our representation is much simpler than that in Grosche, so there is not a one-to-

one correspondence between the regions of the microdomain, but we believe the region

labelled “synapse 1” in their paper corresponds approximately to our distal paddle, that

labelled “stalk” to our proximal paddle and that labelled “stem process” to our fibre.
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Table 4.3: Parameters to produce figures 4.23 to 4.25

Parameter Value Unit

L 75× 10−6 m

Rf 0.5× 10−6 m

C 1× 10−2 F ·m−2

σ 0.8 S ·m
As 1× 10−11 m2

Ae 1× 10−11 m2

Vd 5× 10−18 m3

Vp 10× 10−18 m3

Kf 140 mol ·m−3

Nf 5 mol ·m−3

R 8.31 J ·mol−1 ·K−1

T 310 K

Π0 Kf +Nf = 145 mol ·m−3

F 9.65 × 104 C ·mol−1

Ωs
p 1.0× 109 Ω

Ωs
d 1.4× 109 Ω

Ap 52.5 × 10−12 m2

Ad 186× 10−12 m2

gf 0 S ·m2

gp 4.6 S ·m2

gd 4.6 S ·m2

gs 0 S ·m2

ge 0 S ·m2

As we can see, with the parameters estimated from the voltage-clamp on cell one (figure

4.27), the response of the microdomains is much slower in our model than in Grosche.

The speed of the response in each paddle of the microdomain is dictated by the capaci-

tance, and as the areas of cell one (and therefore the capacitances) are larger than the

estimates found in Grosche, it is perhaps understandable that our model responds more

slowly. However, using the parameters from cell two, which are much closer to those

in Grosche, the response of the cell is still significantly slower (figure 4.28). In fact, in

order to see a response commensurate with that seen in figure 4.26, we must reduce the
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Figure 4.26: Time course of microdomain depolarisations, as predicted by model in
[30]. Reproduced, with permission, from [30].
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Figure 4.27: Time course of depolarisations in distal paddle ( ), proximal paddle
( ) and fibre ( ), using parameters determined by voltage clamp on cell one

(tables 4.4 and 4.5).

areas of the microdomains in our model by an order of magnitude (figure 4.29 shows the

response when Ap = Ad = 10µm2). This disparity is probably too big to be explained

by random variations in the sizes of parameters — the estimate of the capacitive surface

area of the paddles found by matching to [30] lies significantly outside the range of our

predictions.

It is not clear the exact form that the model in [30] takes, but we suggest it represents

one of the cases in figure 4.30 or 4.31, in which the current is being injected into a paddle

with a very small surface area. The case in figure 4.30, with two paddles where the distal

paddle is very small, is not consistent with the voltage clamp data, but it is possible that
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Figure 4.28: Time course of depolarisations in distal paddle ( ), proximal paddle
( ) and fibre ( ), using parameters determined by voltage clamp on cell two

(tables 4.4 and 4.6).
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Figure 4.29: Time course of depolarisations in distal paddle ( ), proximal paddle
( ) and fibre ( ), using parameters chosen to match to figure 4.26 (tables 4.4

and 4.7).

the microdomains contain more than two paddles, as in figure 4.31, but the contribution

of the third paddle to the voltage clamp current is too small to be detected.

From the amplitude of the depolarisations in the different paddles, we can also see

that the balance of resistances is slightly different in our model. In [30], almost all

of the potential drop (and thus the majority of the resistance) in the microdomain

occurs between the distal and proximal paddles, whereas our estimates suggest that

the drop is more evenly distributed between the fibre and the proximal paddle and the

proximal and distal paddles. This discrepancy may be explained by random variations in
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Figure 4.30: A two paddle mi-
crodomain with a small distal sur-
face area and a large distal resis-

tance.

Figure 4.31: A three paddle
microdomain, with the additional
paddle having a small surface
area, connected by a large resis-

tance.

microdomain geometry, but we emphasis that our estimates are systematically derived

from electrophysiological data.

4.6.3 Ion Movements

Another useful aspect of our model is that it allows us to predict the flux of potassium

ions through the membrane of the cell. In particular, we can quantify how many and

where ions flow into or out of the cell, allowing us to evaluate how effective the cell is at

siphoning ions away from the synapses in the microdomains. To produce 4.32 and 4.33

we simulate injecting current into a microdomain in the centre of the fibre and record

the fluxes out of the other regions of the cell, for sufficiently long that the cell returns

to resting potential. This allows us to report the proportion of ions which are siphoned

effectively (those that leave through the end-foot membrane) and the proportion which

leak back into the surrounding extracellular space.
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Table 4.4: Parameters to produce figures 4.27 to 4.29 and 4.32 to 4.38

Parameter Value Unit

L 200× 10−6 m

Rf 1.5× 10−6 m

C 1× 10−2 F ·m−2

σ 0.8 S ·m
As 1× 10−11 m2

Ae 1× 10−11 m2

Vd 5× 10−18 m3

Vp 10× 10−18 m3

Kf 140 mol ·m−3

Nf 5 mol ·m−3

R 8.31 J ·mol−1 ·K−1

T 310 K

Π0 Kf +Nf = 145 mol ·m−3

F 9.65 × 104 C ·mol−1

Table 4.5: Parameters to produce figure 4.27

Parameter Value Unit

Ωs
p 0.9 × 109 Ω

Ωs
d 2.0 × 109 Ω

Ap 45.5 × 10−12 m2

Ad 697 × 10−12 m2

gf 1.7 S ·m2

gp 1.7 S ·m2

gd 1.7 S ·m2

gs 1.7 S ·m2

ge 1.7 S ·m2
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Table 4.6: Parameters to produce figures 4.28 and 4.32 to 4.38

Parameter Value Unit

Ωs
p 0.9 × 109 Ω

Ωs
d 1.9 × 109 Ω

Ap 42.9 × 10−12 m2

Ad 145 × 10−12 m2

gf 3.6 S ·m2

gp 3.6 S ·m2

gd 3.6 S ·m2

gs 3.6 S ·m2

ge 3.6 S ·m2

Table 4.7: Parameters to produce figure 4.29

Parameter Value Unit

Ωs
p 0.9× 109 Ω

Ωs
d 2.0× 109 Ω

Ap 10× 10−12 m2

Ad 10× 10−12 m2

gf 1.7 S ·m2

gp 1.7 S ·m2

gd 1.7 S ·m2

gs 1.7 S ·m2

ge 1.7 S ·m2

We can see qualitatively how the end-foot conductance affects the behaviour of the cell,

although our exact representation of inward-rectifying potassium channels may not be

very realistic.

Measurements from the literature suggest that the conductance per unit area of the

end-foot can be ten to sixty times higher than that of the fibre membrane [70]. This

estimate is used in figure 4.32, where the end-foot conductance per unit area is varied

over this range, and the model shows that only a very small proportion of ions leave the

cell through the end-foot membrane.

However, it may be the surface area of the end-foot is larger than we have estimated —

figure 3 in [106], for example, shows the fibre flaring out significantly to form the end



144 Chapter 4 Modelling the electrochemical behaviour of the Bergmann glial cell

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

End - f oot c onduc tan c e p e r un i t are a (S · m− 2)

P
ro

p
o
rt
io
n

th
ro

u
g
h

re
g
io
n

Figure 4.32: Proportion of ions flowing out of the cell by region, as a function of end-
foot conductance per unit area: ( ) proportion out of fibre; ( ) proportion
out of proximal paddle; ( ) proportion out of distal paddle; ( ) proportion
out of soma; ( ) proportion out of end-foot. Parameters from tables 4.4 and 4.6

except end-foot conductance per unit area, which is varied.
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Figure 4.33: Proportion of ions flowing out of the cell by region, as a function of end-
foot conductance per unit area: ( ) proportion out of fibre; ( ) proportion
out of proximal paddle; ( ) proportion out of distal paddle; ( ) proportion
out of soma; ( ) proportion out of end-foot. Parameters from tables 4.4 and 4.6
except end-foot conductance per unit area (ge), which is varied and end-foot surface

area (Ae = 1× 10−9m−2), which is increased.
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foot. In this case, the total conductance of the end-foot membrane is doubly increased,

by the effects of higher conductance per unit area and increased total surface area.

Figure 4.33 shows the equivalent simulations to figure 4.32 but with end-foot surface

area increased one hundred fold. In this case we start to see a significant proportion of

ions flowing out of the end-foot, although the majority of ions still flow directly out of

the microdomain.

4.6.4 Ion destinations

Figure 4.34 shows the currents out of the cell over a period of 300ms (long enough for

the current flows to have returned to zero) after a stimulation current was applied to a

microdomain. The simulation uses the same parameters as those in the right-hand bar

of figure 4.33 (i.e. from tables 4.4 and 4.6, but with end-foot conductance per unit area

ge = 200S ·m−2 and surface area Ae = 1× 10−9 m−2).
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Figure 4.34: Current out of the cell by region: ( ) proportion out of proxi-
mal paddle; ( ) proportion out of distal paddle; ( ) proportion out of fibre;
( ) proportion out of soma; ( ) proportion out of end-foot. Parameters equiv-
alent to far right bar in figure 4.33 (i.e. from tables 4.4 and 4.6, but with end-foot con-
ductance per unit area ge = 200 S ·m−2 and surface area Ae = 1× 10−9m−2). Dashed

line shows stimulation current applied to microdomain.

Figures 4.35 and 4.36 show the ion fluxes into the microdomain on the left axis and

the change in the total number of ions in the cell on the right. The fluxes are sepa-

rated by where they enter the microdomain, either through the passive ion channels in

the proximal and distal membrane, from the fibre driven by potential or concentration
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gradients or introduced by the stimulation current through the active ion channels. We

have chosen our input current to be carried by equal numbers of potassium and sodium

ions to allows us to qualitatively judge how each species of ion behaves. The actual

ionic composition of the current will vary depending on what kinds of ion channels are

activated in the microdomain membrane, but the insights our model gives us are valid

regardless of the exact details of the stimulation current.

Figure 4.35 is on the 300ms scale of figure 4.34, over which we see that the fluxes are

primarily driven by the depolarisation in the microdomain, which causes large fluxes

out through the leak conductance in the distal paddle and smaller fluxes through the

leak conductance in the proximal paddle and into the fibre. The flux driven into the

fibre by concentration gradients is not significant on this scale. Figure 4.36 shows the

behaviour of the simulation over a longer time-scale, on which the flux driven by the

concentration gradient becomes significant. We see that the fast changes in potassium

concentration driven by the large, membrane potential driven fluxes are counteracted by

the smaller concentration gradient driven flux over a much longer time scale. The actual

concentration of potassium ions changes only by a small amount, from an initial value

of 140mol ·m−3 to a minimum of around 139mol ·m−3 in the stimulated microdomain,

with the concentrations in other microdomains changing by less than 10−3 mol ·m−3.

Figures 4.37 and 4.38 show the equivalent results of the simulation for sodium ions. Note

that the leak conductance out of the microdomains is thought to be carried through

potassium channels, and the sodium concentration is small enough that potential driven

fluxes are negligible, such that active ion channel currents and the concentration gradient

driven flux to the fibre are the only significant fluxes here. As with the potassium

concentration, the sodium concentration in the microdomains is changing only by small

amounts, from an initial value of 5mol ·m−3 to a maximum of around 6mol ·m−3 in the

stimulated microdomain.



Chapter 4 Modelling the electrochemical behaviour of the Bergmann glial cell 147

−6

−4

−2

0

2

4

6
x 10

6

N
u
m
b
e
r
o
f
io

n
s

0 100 200 300
−2

−1

0

1

2
x 10

8

Time (m s )

T
o
t
a
l
fl
u
x
(
Io

n
s
·
s−

1
)

Figure 4.35: Potassium ions into microdomain by region: ( ) proportion in
through proximal paddle; ( ) proportion in through distal paddle; ( ) pro-
portion in from fibre (concentration gradient); ( ) proportion in from fibre (poten-
tial gradient); ( ) proportion in through ion channels. Dashed, black curve shows

accumulation of ions within microdomain.
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Figure 4.36: Potassium ions into microdomain by region: ( ) proportion in
through proximal paddle; ( ) proportion in through distal paddle; ( ) pro-
portion in from fibre (concentration gradient); ( ) proportion in from fibre (poten-
tial gradient); ( ) proportion in through ion channels. Dashed, black curve shows

accumulation of ions within microdomain.
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Figure 4.37: Sodium ions into microdomain by region: ( ) proportion in through
proximal paddle; ( ) proportion in through distal paddle; ( ) proportion in
from fibre (concentration gradient); ( ) proportion in from fibre (potential gradi-
ent); ( ) proportion in through ion channels. Dashed, black curve shows accumu-

lation of ions within microdomain.
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Figure 4.38: Sodium ions into microdomain by region: ( ) proportion in through
proximal paddle; ( ) proportion in through distal paddle; ( ) proportion in
from fibre (concentration gradient); ( ) proportion in from fibre (potential gradi-
ent); ( ) proportion in through ion channels. Dashed, black curve shows accumu-

lation of ions within microdomain.
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4.7 Discussion

Our model is a simple representation of a Bergmann glial cell, which makes good predic-

tions of its electrical behaviour. The key structural features of the microdomains have

been determined from analysis of voltage-clamp data, with the resulting model of the

microdomain being simple enough to easily use in a cell scale model. This model can

accurately predict the length constant of the fibre of the cell while still reproducing the

key qualitative features of the voltage-clamp data. Each stage of the modelling pro-

cess has been informed by experimental data and used to inform the design of further

experiments.

Using the insights into the structure of the cell gained from this analysis, we have also

modelled the behaviour of the ion concentrations in the Bergmann glial cell, which allows

us to assess how effectively the cell can perform certain functions involving moving ions

around. The data from the voltage clamp experiments tells us about the electrical

resistances in different regions of the cell, but importantly we can infer resistance to the

flow of ions from the electrical resistance, which in turn allows us to infer the relative

strengths of ion transport pathways.

Figure 4.33 shows that over a wide range of physiological parameter estimates, the

majority of the potassium ions which enter the distal paddle leak straight back into

the extracellular space surrounding it, albeit after a short time delay. This means that

uptake of potassium ions in the microdomains is unlikely to be useful in terms of keeping

potassium concentrations in the extracellular space low, because the very high resistances

of the stalks compared to the resistance of the paddle membranes prevents significant

ion fluxes into the fibre (and thus to the end-foot), but it may be that sequestering the

potassium ions in the microdomain even briefly is useful to some extent.

The cell’s ability to move sodium ions around is also limited by the slow rate at which

the concentration gradients between the paddles can drive fluxes. This rate is quantified

by the parameter γ appearing in equations (4.83) to (4.83), which is the ratio of the time

scales on which the potentials charge and discharge the capacitance of the microdomain

membrane and the concentrations diffuse between paddles. Our parameter estimates
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give γ = O
(

10−4
)

, or that the concentration gradients act around ten-thousand times

more slowly than the membrane charges and discharges. Thus sodium ions accumulate

in the microdomain and can only be moved out on a time scale of seconds or tens

of seconds, which is far too long to have a significant effect on the behaviour of the

glutamate transporter, unless the synapse is activated at an extremely low frequency.

We conclude, therefore, that it seems unlikely that the microdomain is removing sodium

ions to keep the glutamate transporters working effectively, as the geometry of the cell

makes this behaviour too slow. It may again be useful however, just to remove the sodium

ions from the extracellular space, and the fact that the glial cell can only redistribute

them over a longer time scale is less important.

Some aspects of this work will be affected by the fact that we have not used accurate

representations of the currents through the microdomain membranes. These currents are

likely to contain components from several different types of ion channel and transporters,

and the precise dynamics of these proteins will obviously influence the responses of the

cell. Certain elements of our model’s behaviour, therefore, need to be considered only

as the response of the cell with the specific membrane currents we have modelled —

the absolute value of the changes in ion concentrations, for example, will depend on the

composition, size and duration of the input currents evoked by activity in the synapses,

which is not easily measured. However, insights such as those above, related to the time

scales over which ion movements occur, are founded primarily on the physical structure

of the cell, and thus remain valid for any type of ion channel current.
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Conclusions

This thesis has presented mathematical models of three very different types of cell found

in the nervous system. In each case the model is underpinned by the same basic elec-

trochemistry, but the structure of the cell contributes to its function in a very different

way.

In chapter 2 we examined the propagation of action potentials in very large unmyelinated

axons and find that the cable equation approximation to the general model of the elec-

trochemical behaviour in the axon relies on a small dimensionless parameter determined

by the axon radius and the relative conductivities of the intracellular and extracellular

electrolytes. We derive a numerical method to solve the general model, allowing us to

evaluate the accuracy of the cable equation approximation, and find that it is a good

model of the propagation speed and travelling wave profile of the action potential for

physiological axon sizes when the intracellular and extracellular conductivities are equal

(as in the in vitro case of the Hodgkin-Huxley experiment). When the extracellular con-

ductivity is small, as is the case in vivo, in the confines of a nerve bundle, we find that for

large, but physiologically feasible axons, the cable equation significantly overestimates

the speed at which an action potential will propagate.

In chapter 3 we explored action potential propagation in myelinated axons, whose geom-

etry is more complex than that of a uniform, unmyelinated axon. Asymptotic analysis,

151
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exploiting the large difference between the width of a node of Ranvier and the intern-

odal separation, yields insights into the behaviour of the transmembrane potential at

the nodes of Ranvier which can be used to simplify existing models of myelinated axons.

Further analysis yields a cell scale model of the myelinated axon which accounts for all

of its structural features, and we demonstrate that two existing models are special cases

of this model in appropriate limits. This allows us to gauge the validity of the existing

models, and find that, for certain physiological parameter choices, neither accurately

predicts the propagation speed or travelling wave profile of an action potential. We

then apply our model to the problem of demyelination, where its form allows qualitative

insights into how demyelination blocks action potential propagation.

Finally, in chapter 4 we present a model of the Bergmann glial cell, a cell which is very

different again from the myelinated or unmyelinated neuron. We develop a simple equiv-

alent circuit model of the microdomain — determining the basic structure from electron

microscopy — which accurately predicts the response of the microdomain under voltage

clamp conditions. Motivated by further experimental data, we couple a representation of

the fibre of the Bergmann glial cell to our model of the microdomain, and demonstrate

good cell scale predictions of the cell’s electrical behaviour. We then explore the ion

fluxes induced in the microdomains by the application of current, constructing a model

of the concentration of two species of ions in the two paddles of the microdomain. This

allows us to make qualitative predictions regarding the ability of the cell to redistribute

ions taken up by the microdomains.

While this work has focussed on the differences in cell scale function created by the

variation in geometry between the cells, there are certain unifying concepts connected the

different models. Giant axons, discussed in chapter 2, and myelinated axons, discussed

in chapter 3, are two adaptations which serve the same purpose, to increase the speed

at which electrical signals propagate through the neuron. The adaptation of the giant

axon is very simple, whereas the myelination of an axon requires the interaction and

coordination of many attendant Schwann cells, but our work shows that (in certain cases)

myelinated axons and giant axons in fact propagate signals in qualitatively identical

ways, and both can be modelled by the cable equation.
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The suitability of the cable equation to model the propagation of action potentials leads

to a key theme of this thesis, in which we find it is hard to determine, a priori, how much

physical and anatomical detail it is necessary to include in a model of any given cell.

Chapter 2 demonstrates that, while the cable equation is a good model of the behaviour

of unmyelinated axons under experimental conditions, the assumptions it makes about

the properties of the extracellular space mean that it does not necessarily make correct

predictions of the behaviour of cells in vivo. Chapter 3 shows that two simplified models

of the myelinated axon found in the literature are special cases of the more general model

we present. Both simplifications are appropriate only in certain limits, and physiological

cases exist where neither makes predictions that agree well with those of the general

model. The model presented in chapter 3 also demonstrates, however, that certain

structural properties of the myelinated axon, such as the organisation of ion channels in

and around the node of Ranvier, have no qualitative influence on its behaviour (at least

from a theoretical perspective, we note that there may be physical limitations on the axon

which necessitate this organisation). Asymptotic analysis of the equations describing

the underlying electrochemical behaviour allow us to identify which features of the cell

are significant and which are not, and thus propose a means for simplifying existing

models of myelinated axons. Similarly, our analysis of experimental data obtained from

Bergmann glial cells allows us to determine the significant anatomical features of the

cell and extract quantitative information about these features. This in turn allows us to

present a relatively simple, cell scale model which nonetheless makes good predictions

of the cell’s electrical behaviour.

Finally, we note that the work presented in chapter 4 can be extended in the future

by considering additional physiological details. The inclusion of representations of the

inwardly rectifying potassium channel and glutamate transporter in the microdomains,

verified by experimental data, for example, would allow for quantitative predictions of

the Bergmann glial cell’s ability to clear the extracellular space and redistribute ions,

when coupled to a model of the extracellular ion concentrations.





Appendix A

Bergmann glial cell parameters

determined by equivalent circuit

Table A.1: Parameter estimates determined by the data from cell one

Fitted VS (mV)
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

-60 45.5 707 0.92 2.24 1.565
-40 42.2 291 0.92 2.27 3.171
-20 41.2 179 0.81 2.33 4.089
20 42.9 618 0.90 2.02 2.020
40 44.7 965 0.96 1.84 1.245
60 44.8 944 0.85 1.92 0.998
80 45.2 946 0.88 1.83 0.851
100 45.1 825 0.91 1.82 0.902
120 45.9 735 0.96 1.81 1.055
140 57.0 762 1.09 1.83 1.187

Mean 45.5 697 0.92 1.99 1.710
Std. Dev 4.33 270.1 0.077 0.211 1.0920
%age 10 39 8 11 64
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Table A.2: Parameter estimates determined by the data from cell two

Fitted VS (mV)
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

-60 44.8 167 0.90 2.14 3.395
-40 38.6 99 0.85 1.87 4.496
-20 32.5 68 0.81 1.55 5.557
20 46.1 219 0.91 2.04 2.818
40 43.8 194 0.91 1.92 2.842
60 43.6 195 0.94 1.89 2.779
80 47.1 189 0.91 1.97 2.704
100 43.6 139 0.90 1.92 3.221
120 39.5 100 0.87 1.78 4.041
140 49.9 81 1.08 2.05 4.673

Mean 42.9 145 0.91 1.91 3.650
Std. Dev 4.96 54.7 0.071 0.163 0.9886
%age 12 38 8 9 27

Table A.3: Parameter estimates determined by the data from cell three

Fitted VS (mV)
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

-60 54.0 265 1.15 2.99 3.167
-40 45.8 62 1.10 2.53 5.181
-20 45.8 86 1.12 2.41 4.577
20 50.4 146 1.14 2.59 3.265
40 51.4 172 1.15 2.55 3.014
60 51.1 190 1.16 2.46 2.815
80 51.5 197 1.19 2.46 2.716
100 54.4 182 1.15 2.73 2.818
120 49.2 90 1.13 2.57 3.836
140 43.4 52 1.10 2.07 4.882

Mean 49.7 144 1.14 2.53 3.630
Std. Dev 3.65 69.3 0.028 0.234 0.9307
%age 7 48 2 9 26
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Table A.4: Parameter estimates determined by the data from cell four

Fitted VS (mV)
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

-60 70.7 504 1.45 3.22 1.397
-40 67.1 153 1.43 3.50 2.473
-20 61.6 82 1.43 2.94 2.945
20 66.0 138 1.42 2.83 2.000
40 63.2 129 1.43 2.63 1.953
60 64.9 127 1.46 2.68 1.892
80 67.4 137 1.42 2.94 1.737
100 64.6 107 1.41 2.81 1.987
120 67.0 92 1.42 3.15 2.257
140 54.5 48 1.37 1.86 3.278

Mean 64.7 152 1.42 2.86 2.190
Std. Dev 4.38 127.8 0.025 0.439 0.5672
%age 7 84 2 15 26

Table A.5: Parameter estimates determined by the data from cell five

Fitted VS (mV)
Ap Ad Ωs

p Ωs
d gm

(

×10−12 m2
) (

×10−12 m2
) (

×109 Ω
) (

×109 Ω
) (

S ·m−2
)

-60 48.9 132 1.18 1.98 3.647
-40 43.8 119 1.13 1.81 3.990
-20 46.6 166 1.17 1.92 3.575
20 52.9 257 1.21 1.97 2.612
40 51.1 294 1.20 1.91 2.301
60 51.2 327 1.21 1.86 2.072
80 50.9 331 1.23 1.81 2.003
100 54.5 281 1.22 1.88 2.237
120 49.3 198 1.19 1.84 2.848
140 40.5 101 1.12 1.61 4.424

Mean 49.0 221 1.19 1.86 2.970
Std. Dev 4.25 88.1 0.036 0.104 0.8724
%age 9 40 3 6 29
%age 9 40 3 6 28





Appendix B

Ion concentrations in Bergmann

glia

B.1 Ion fluxes in the fibre

Firstly, we consider the problem of ion fluxes in the fibre — the volume of the fibre is

significantly (O (100) times) bigger than that of the microdomains, and so we approach

the behaviour of the microdomains differently (in section B.2).

In the bulk of the cell (the regions outside the Debye layers, far from the cell membrane)

the electrolyte is ‘charge-neutral’, which means that the concentration of positive charge

in the electrolyte (contributed by K+ and much smaller amounts of Na+) is almost

exactly balanced by the concentration of negative charge (contributed by Cl+). The

mobility of potassium ions in the electrolyte is approximately equal to that of chloride

ions, and so currents in the electrolyte are carried by approximately equal fluxes of

potassium and chloride ions being driven in opposite directions by the electric field.

Current through the cell membrane, however, is controlled by ion channels and other

proteins, and therefore will not necessarily be carried by equal flows of positive and

negative ions. Thus we wish to determine how the current through the membrane, which

may be carried by a single ion species, is converted to current in the bulk electrolyte,

carried by equal numbers of positive and negative ions. This change in the composition

159



160 Appendix B Ion concentrations in Bergmann glia

of the current occurs between the bulk electrolyte and the Debye layer, in what we call

the intermediate region.

As the volume of the fibre is reasonably big, we do not expect fluxes from the mi-

crodomains to have a significant impact on the ion concentrations in the fibre. However,

the ion channels in the fibre membrane are specific to potassium ions, and so all outward

current is carried by potassium ions, while in the bulk electrolyte, half of the current is

carried by positive charges (potassium ions) moving in one direction and half by nega-

tive charges (chloride ions) moving in the other. These currents are matched across the

intermediate region, and we can see that ions must accumulate in the intermediate layer

as the composition of the current changes. We study the problem in the intermediate

region in order to ascertain whether this accumulation of ions will have significant effects

on the behaviour of the fibre.

The ion concentrations in the electrolyte are described by the Poisson-Nernst-Planck

equations (see, for example, [72]). These comprise equations for the conservation of ions

and descriptions of the fluxes induced by concentration and potential gradients. They

take the form

∂K∗

∂t∗
+∇∗ · F k

∗ = 0, F k
∗ = −Dk

(

∇∗K∗ +
F

RT
K∗∇∗u∗

)

, (B.1)

∂C∗

∂t∗
+∇∗ · F c

∗ = 0, F c
∗ = −Dc

(

∇∗C∗ − F

RT
C∗∇∗u∗

)

, (B.2)

∇∗2u∗ =
F

ǫ
(C∗ −K∗) (B.3)

where K∗ and C∗, F k
∗ and F c

∗, and Dk and Dc are, respectively, the concentrations,

fluxes and diffusion coefficients of potassium and chloride ions, and u∗ is the electric

potential. RT
F

≈ 25mV is the thermal voltage, calculated from the Faraday constant,

F , the gas constant R and the temperature, T .

The boundary conditions to the problem are, in general, determined from the flux

through the ion channels

F k
∗|x∗=0 · ex = fk

∗, F c
∗|x∗=0 · ex = fc

∗, (B.4)
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where x∗ = 0 is the position of the cell membrane. In the more specific case we are

interested in (where only leak currents are present), fc
∗ = 0 and all the current through

the channels is carried by potassium ions.

B.1.1 Non-dimensionalisation

We non-dimensionalise the problem as follows

t∗ = τt, K∗ = Π0K, C∗ = Π0C, (B.5)

u∗ =
RT

F
u, fk

∗ = F̃ fk, fc
∗ = F̃ fc, (B.6)

x∗ = Lx, F k
∗ = F̃F k, F c

∗ = F̃F c (B.7)

where Π0 is the total concentration of positive ions in the bulk (≈ 140mol · m−3), F̃

is a typical flux of ions through the cell membrane, τ is the typical time-scale of the

problem, and L the length-scale. This yields the following dimensionless problem:

∂K

∂t
+ δ∇ · F k = 0, F k = −D̄k (∇K +K∇u) , (B.8)

∂C

∂t
+ δ∇ · F c = 0, F c = −D̄c (∇C − C∇u) , (B.9)

∇2u =
1

δ2
(C −K) , (B.10)

F k|x=0 · ex = fk, F c|x=0 · ex = fc, (B.11)

where

L =
DΠ0

F̃
, λD =

√

ǫRT

F 2Π0
, τ =

Π0

F̃
λD (B.12)

and we have defined the dimensionless constants

δ =
λD

L
, D̄k =

Dk

D
, D̄c =

Dc

D
(B.13)

The scale L is the scale where electric field contributions to ion fluxes balance transmem-

brane ion fluxes, and λD is the Debye length. Using the parameters in table B.1, the
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Debye length is between 3× 10−10 m and 1× 10−9 m, and the length-scale L is between

1.4 × 10−3 m and 4.2 × 10−3 m. Thus the dimensionless parameter δ =
λD

L
is small

(between 6.9 × 10−8 and 8.3× 10−7) and D̄k and D̄c are order 1.

The problem we are interested is that in the intermediate region. The problems in

the bulk electrolyte and the Debye layer are solved in [88] and where necessary we will

use these solutions to impose boundary conditions on the problem in the intermediate

region.

Table B.1: Parameters for the analysis of the electrochemical problem

Parameter Value Unit

T 310 K

Π0 140 mol ·m−3

D 2× 10−9 [35] m2s−1

ǫ 4.4× 10−11 to 7.1 × 10−10 C ·V−1 ·m−1

R 8.31 J ·mol−1 ·K−1

F 9.65 × 104 mol ·m−2

F̃ 6.7× 10−5 to 2× 10−4 mol ·m−2 · s−1

B.1.2 Problem in the intermediate layer

The problem on the intermediate length scale is, on writing

F k = Fkxex + Fkyey + Fkzez, (B.14)

F c = Fcxex + Fcyey + Fczez (B.15)

and rescaling to the intermediate length scale x = δ
1

2w, given by

1

δ

∂K

∂t
+

1

δ
1

2

∂Fkx

∂w
+
∂Fky

∂y
+
∂Fkz

∂z
= 0, Fkx = −D̄k

δ
1

2

(

∂K

∂w
+K

∂u

∂w

)

, (B.16)

1

δ

∂C

∂t
+

1

δ
1

2

∂Fcx

∂w
+
∂Fcy

∂y
+
∂Fcz

∂z
= 0, Fcx = −D̄c

δ
1

2

(

∂C

∂w
− C

∂u

∂w

)

, (B.17)

δ
∂2u

∂w2
+ δ2

(

∂2u

∂y2
+
∂2u

∂z2

)

= C −K (B.18)
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We replace K, C and u with the asymptotic expansions in powers of δ
1

2 below

K = K
(I)
0 + δ

1

2K
(I)
1 + · · · , (B.19)

C = C
(I)
0 + δ

1

2C
(I)
1 + · · · , (B.20)

u = u
(I)
0 + δ

1

2u
(I)
1 + · · · (B.21)

and find the leading order behaviour is

K
(I)
0 = K̄(I), (B.22)

C
(I)
0 = K̄(I), (B.23)

u
(I)
0 = u

(I)
0 (y, z, t) (B.24)

The first-order problem is

∂K
(I)
1

∂t
+
∂F

(I)
kx,0

∂w
= 0, (B.25)

∂C
(I)
1

∂t
+
∂F

(I)
cx,0

∂w
= 0, (B.26)

C
(I)
1 = K

(I)
1 (B.27)

Subtracting equation (B.26) from (B.25), using (B.27) to cancel the time-derivative, and

integrating with respect to w tells us that

F
(I)
kx,0 − F

(I)
cx,0 = j (y, z, t) (B.28)

Here j, the dimensionless current through the intermediate layer is seen to be indepen-

dent of the distance, w, from the membrane.

The leading order fluxes are given by

F
(I)
kx,0 = −D̄k

(

∂K
(I)
1

∂w
+ K̄(I) ∂u

(I)
1

∂w

)

, (B.29)

F
(I)
cx,0 = −D̄c

(

∂K
(I)
1

∂w
− K̄(I) ∂u

(I)
1

∂w

)

, (B.30)
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such that, when we substitute these into equations (B.25) and (B.26), we obtain

∂K
(I)
1

∂t
− D̄k

∂2K
(I)
1

∂w2
− D̄kK̄

(I) ∂
2u

(I)
1

∂w2
= 0, (B.31)

∂K
(I)
1

∂t
− D̄c

∂2K
(I)
1

∂w2
+ D̄cK̄

(I) ∂
2u

(I)
1

∂w2
= 0, (B.32)

We can eliminate derivatives of u
(I)
1 by taking (D̄c(B.31) + D̄k(B.32)) , as follows

∂K
(I)
1

∂t
=

2D̄cD̄k

D̄c + D̄k

∂2K
(I)
1

∂w2
, (B.33)

Using the definitions of the leading order fluxes (equations (B.29) and (B.30)), equation

(B.28) can be rewritten as follows

−
(

D̄c + D̄k

)

K̄(I) ∂u
(I)
1

∂w
+
(

D̄c − D̄k

) ∂K
(I)
1

∂w
= j (y, z, t) (B.34)

The boundary conditions on the problem on the intermediate length scale come from

matching to the Debye layer as w → 0 and the outer as w → ∞.

B.1.3 Problem in the outer

In the outer region, we replace K, C and u with the asymptotic expansion in powers of

δ
1

2 below

K = K
(O)
0 + δK

(O)
1 + · · · , (B.35)

C = C
(O)
0 + δC

(O)
1 + · · · , (B.36)

u = u
(O)
0 + δu

(O)
1 + · · · (B.37)

On substituting this expansion into equations (B.8) to (B.11) we find that the ion con-

centrations are independent of time (to leading order), thus we find

K
(O)
0 = C

(O)
0 = K̄(O) (x) (B.38)
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The leading order fluxes are given by substituting the expansions in equations (B.35) to

(B.37) in equations (B.8) to (B.11) and are

F
(O)
k,0 = −D̄k

(

∇K̄(O) + K̄(O)∇u(O)
0

)

, (B.39)

F
(O)
c,0 = −D̄c

(

∇K̄(O) − K̄(O)∇u(O)
0

)

, (B.40)

Thus the leading order current is given by:

j
(O)
0 = F

(O)
k,0 − F

(O)
c,0 =

(

D̄c − D̄k

)

∇K̄(O) −
(

D̄k + D̄c

)

K̄(O)∇u(O)
0 (B.41)

Matching the intermediate solution as w → ∞ to the outer as x → 0+ leads to the

following conditions

lim
x→0+

F
(O)
kx,0 = lim

w→∞
F

(I)
kx,0, (B.42)

lim
x→0+

F
(O)
cx,0 = lim

w→∞
F

(I)
cx,0 (B.43)

which stipulate that the leading order fluxes normal to the cell membrane must be

continuous between the outer and intermediate regions. Substituting in the definitions

of the flux in the outer (from equations (B.39) and (B.40)) and in the intermediate layer

(from equations (B.29) and (B.30)) yields

lim
w→∞

∂K
(I)
1

∂w
=
∂K̄(O)

∂x

∣

∣

∣

∣

∣

x=0

, (B.44)

lim
w→∞

K̄(I) ∂u
(I)
1

∂w
= K̄(O) (0)

∂u
(O)
0

∂x

∣

∣

∣

∣

∣

x=0

. (B.45)
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B.1.4 Problem in the Debye layer

The matching conditions between the intermediate region and Debye layer come from

again stipulating that the leading order fluxes normal to the membrane are continuous

lim
ξ→∞

F
(D)
kx,0 = lim

w→0+
F

(I)
kx,0, (B.46)

lim
ξ→∞

F
(D)
cx,0 = lim

w→0+
F

(I)
cx,0 (B.47)

Analysis of the problem in the Debye layer determines that the flux density out of the

Debye layer into the intermediate layer is equal to the flux density into the Debye layer

through the cell membrane [88]

F
(I)
kx,0

∣

∣

∣

w=0+
= fk, (B.48)

F
(I)
cx,0

∣

∣

∣

w=0+
= fc, (B.49)

Substituting the definitions of the leading order fluxes in the intermediate layer (equa-

tions (B.29) and (B.30)) into the above yields the following boundary conditions on the

intermediate problem

∂K
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= −1

2

(

1

D̄k

fk +
1

D̄c

fc

)

, (B.50)

∂u
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= − 1

2K̄(I)

(

1

D̄k

fk −
1

D̄c

fc

)

, (B.51)

B.1.5 Analysis of the problem in the intermediate region

The problem in the intermediate layer, from equations (B.33) and (B.34), with boundary

conditions from equations (B.44) and (B.45), and (B.50) and (B.51), is now stated in
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its entirety as follows

∂K
(I)
1

∂t
=

2D̄cD̄k

D̄c + D̄k

∂2K
(I)
1

∂w2
, (B.52)

j (y, z, t) = −
(

D̄c + D̄k

)

K̄(I) ∂u
(I)
1

∂w
+
(

D̄c − D̄k

) ∂K
(I)
1

∂w
(B.53)

∂K
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= −D̄cfk + D̄kfc

2D̄cD̄k

, (B.54)

lim
w→∞

∂K
(I)
1

∂w
=
∂K̄

∂x

∣

∣

∣

∣

x=0

, (B.55)

∂u
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= −D̄cfk − D̄kfc

2K̄(I)D̄cD̄k

, (B.56)

lim
w→∞

K̄(I) ∂u
(I)
1

∂w
= K̄(O) (0)

∂u
(O)
0

∂x

∣

∣

∣

∣

∣

x=0

, (B.57)

Equation (B.53) can be used to match the leading order current through the membrane

to the leading order current into the outer, by noting

(

−
(

D̄c + D̄k

)

K̄(I) ∂u
(I)
1

∂w
+
(

D̄c − D̄k

) ∂K
(I)
1

∂w

)∣

∣

∣

∣

∣

w=∞

=

(

−
(

D̄c + D̄k

)

K̄(I) ∂u
(I)
1

∂w
+
(

D̄c − D̄k

) ∂K
(I)
1

∂w

)∣

∣

∣

∣

∣

w=0+

. (B.58)

Substituting in the boundary conditions from equations (B.54) to (B.56) yields

(

−
(

D̄c + D̄k

)

K̄(O) ∂u
(O)
0

∂x
+
(

D̄c − D̄k

) ∂K̄(O)

∂x

)∣

∣

∣

∣

∣

x=0+

= fk − fc (B.59)

The remaining problem for the ion concentration in the intermediate layer is stated as

follows (equations (B.33), with boundary conditions from equations (B.44) and (B.50))

∂K
(I)
1

∂t
=

2D̄cD̄k

D̄c + D̄k

∂2K
(I)
1

∂w2
, (B.60)

∂K
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= −D̄cfk + D̄kfc

2D̄cD̄k

, (B.61)

lim
w→∞

∂K
(I)
1

∂w
=
∂K̄

∂x

∣

∣

∣

∣

x=0

, (B.62)
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We are in interested in the case where the membrane flux is comprised entirely of potas-

sium ions (to model membrane containing only potassium specific ion channels), such

that fc = 0

∂K
(I)
1

∂t
=

2D̄cD̄k

D̄c + D̄k

∂2K
(I)
1

∂w2
(B.63)

∂K
(I)
1

∂w

∣

∣

∣

∣

∣

w=0+

= − fk

2D̄k

(B.64)

lim
w→∞

∂K
(I)
1

∂w
=
∂K̄

∂x

∣

∣

∣

∣

x=0

(B.65)

The key qualitative insight we require from this analysis is regarding the depletion or

accumulation of ions in the intermediate region. In fact, we can determine the scale

of the ion depletion without solving the above system. Firstly we note that, if the

intermediate region is not to grow indefinitely, we require

1

2D̄k

ˆ t1

0
fk (t) dt =

ˆ t1

0

∂K̄

∂x

∣

∣

∣

∣

x=0

dt, (B.66)

⇒ ∂K̄

∂x

∣

∣

∣

∣

x=0

=
1

2D̄kt1

ˆ t1

0
fk (t) dt (B.67)

over some time interval t1 which is long compared to the characteristic time scale of fk.

We estimate that fk will be an oscillatory function, switching on and off as synapses fire

near the microdomains (at between 40 to 200 Hz), with a maximum amplitude of around

10−6 mol ·m−2 · s−1 and a characteristic time scale of between 5× 10−3 and 2.5× 10−2 s,

such that the (dimensional) flux out of the outer region must be

F ∗
kx,0

(O) = −Dk
∂K̄∗

∂x∗
≈ 10−6 mol ·m−2 · s−1 (B.68)

This allows us to estimate the length scale over which K̄∗ (x∗) will vary as follows

Dk
K̃

λ
≈ 10−6, (B.69)

⇒ λ ≈ DkK̃

10−6
(B.70)

≈ 0.1m (B.71)
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which is much larger than the length of the cell fibre (around 10−4 m). There are

proteins in the cell membrane (particularly Na+/K+-ATPase, the sodium-potassium

pump) which will contribute small inward fluxes of potassium ions, which we have thus

far ignored in this analysis. As the length scale of the K̄ variations is so long, it is safe

to assume that the effects of the potassium flux out of the membrane can be countered

by a relatively small gradient in the concentration in the bulk of the electrolyte in the

cell, and this small gradient can easily be maintained by small fluxes contributed by

proteins distributed throughout the entire fibre membrane.

Thus we conclude that our assumption that the concentration is constant throughout

the fibre is reasonable, and will not be invalidated by the ion fluxes leaving the cell as

it functions. Most significantly, this means that the conductivity of the electrolyte will

be constant throughout the fibre and microdomains.

B.2 Ion fluxes between the proximal and distal paddles,

and between the proximal paddle and the fibre

What we take from the behaviour of the intermediate layers is that the concentrations

in most of the cell are almost uniform, with major concentration changes only occurring

in the very narrow Debye layers and possible across the very narrow stalks connecting

the fibre and paddles. The microdomains have very small volumes compared to that

of the fibre, and so we expect the ion fluxes through their membranes to have a more

significant effect on the concentrations within them.

The ion fluxes in the microdomains are again described by the Poisson-Nernst-Planck

equations, except we add an equation describing the sodium concentration, as this is
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relevant to the behaviour of the glutamate transmitters in the microdomain membrane.

∂K∗

∂t∗
+∇∗ · F k

∗ = 0, F k
∗ = −Dk

(

∇∗K∗ +
F

RT
K∗∇∗u∗

)

, (B.72)

∂N∗

∂t∗
+∇∗ · F n

∗ = 0, F n
∗ = −Dn

(

∇∗N∗ +
F

RT
N∗∇∗u∗

)

, (B.73)

∂C∗

∂t∗
+∇∗ · F c

∗ = 0, F c
∗ = −Dc

(

∇∗C∗ − F

RT
C∗∇∗u∗

)

, (B.74)

∇∗2u∗ =
F

ǫ
(C∗ −K∗ −N∗) (B.75)

However, the sodium concentration is small compared to that of the potassium and

chloride ions (i.e. N∗ ≪ K∗) [51, 97], and so equation (B.73) decouples from the problem

as follows

∂K∗

∂t∗
+∇∗ · F k

∗ = 0, F k
∗ = −Dk

(

∇∗K∗ +
F

RT
K∗∇∗u∗

)

, (B.76)

∂C∗

∂t∗
+∇∗ · F c

∗ = 0, F c
∗ = −Dc

(

∇∗C∗ − F

RT
C∗∇∗u∗

)

, (B.77)

∇∗2u∗ =
F

ǫ
(C∗ −K∗) (B.78)

∂N∗

∂t∗
+∇∗ · F n

∗ = 0, F n
∗ = −Dn

(

∇∗N∗ +
F

RT
N∗∇∗u∗

)

, (B.79)

Thus the electric field is now generated only by the concentrations of potassium and

chloride ions, and the sodium ions passively advect and diffuse in this field.

The current density generated by the fluxes and the total ionic flux are given by

j∗

F
= F ∗

k − F ∗
c , (B.80)

F
∗ = F ∗

k + F ∗
c , (B.81)

where we have neglected the contribution from the sodium ions to the current and flux

densities, because it is small compared to the contributions from the potassium and

chloride ions. Substituting equations (B.76b), (B.77b) and (B.79b) into the above yields

j∗

F
= −Dk∇∗K∗ +Dc∇∗C∗ − (DkK

∗ +DcC
∗)

F

RT
∇∗u∗, (B.82)

F
∗ = −Dk∇∗K∗ −Dc∇∗C∗ − (DkK

∗ −DcC
∗)

F

RT
∇∗u∗, (B.83)
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Charge neutrality, as in the intermediate region problem, tells us that the positive charge

is balanced by the negative at leading order, thus C∗ = K∗. The diffusivities of the three

ions are also approximately equal (so Dk = Dn = Dc = D is a reasonable approxima-

tion), and therefore

j∗

F
= −2

F

RT
DK∗∇∗u∗, (B.84)

F
∗ = −2D∇∗K∗, (B.85)

The time-scale for diffusion is given by

τ =
λ2

2D
(B.86)

Choosing the length scale, λ, to be on the order of 1µm, which is the characteristic

length of the microdomains, yields a value of τ on the order of 10−4 s. The frequency

of inputs to the cell can be estimated from the rate of activity of the cells forming the

synapses the Bergmann glial cell ensheathes, which is around 40Hz. Thus the diffusion

time scale is sufficiently smaller than the time scale of inputs to the cell (O (ε), for some

small ε), and we can write

ε
∂K∗

∂t∗
+∇∗ ·F∗ = 0 (B.87)

The first result of this is that, assuming the membrane flux into a single paddle of the

microdomain is uniformly distributed, the concentration within the paddle will be a

function of time only — that is, the concentration equilibrates quickly over the entire

paddle.

Secondly, in the approximately one-dimensional stalks which connect the paddles (the

stalks are much longer than they are wide), the expression for the flux can, at leading

order, be simplifed as follows

F
∗ = (F∗, 0, 0) , (B.88)

∂F∗

∂x∗
= 0, (B.89)

⇒ F∗ = F∗ (t∗) (B.90)
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Thus, at leading order, the flux of ions is entirely directed longitudinally through the

stalk, and is independent of distance along the stalk — as we would expect if there is to

be no build-up of concentration within the stalk.

Conservation of current also tells us that

∇∗ · j∗ = 0 (B.91)

which allows us to simplify the expression for the current flow through the (one-dimensional)

stalk, as follows

j∗ = (j∗, 0, 0) , (B.92)

∂j∗

∂x∗
= 0, (B.93)

⇒ j∗ = j∗ (t∗) (B.94)

or that the current density is also, at leading order, directed longitudinally through the

stalk and independent of distance along the stalk — as we would expect if there is to

be no build-up of charge within the stalk.

These simplifications lead to the picture of ion fluxes in the microdomains summarised

in figure B.1. Each stalk can be thought of as connecting two reservoirs of ions (with

concentrations that vary with time) at given potentials (which also vary with time). We

now determine the current density and potassium flux through the stalk (and note that

the sodium flux is determined identically to the potassium).

In order to determine the concentration in the stalk, we substitute equation (B.90) into

equation (B.85) and rewrite as follows

∂K∗

∂x∗
= −F∗ (t∗)

2D
. (B.95)

By integrating with respect to x∗, we obtain the following expression for the concentra-

tion in the stalk

K∗ (x∗, t∗) = −F∗ (t∗)

2D
x∗ + c1 (t

∗) (B.96)
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A B C D E

Kf

Nf

Φ∗ (t∗)

K∗
p,i (t

∗)

N∗
p,i (t

∗)

φ∗i (t
∗)

K∗
d,i (t

∗)

N∗
d,i (t

∗)

ψ∗
i (t

∗)

Figure B.1: Ion concentrations and fluxes in the microdomain. The fibre (A) is large
enough that the ion concentrations are unaffected by the relatively small fluxes of ions
from the microdomains, and hence are constant (Kf and Nf denote the potassium and
sodium concentrations, respectively). The concentrations equilibrate quickly in the
proximal paddle (C) and distal paddle (E), such that they are independent of distance
from the fibre, and thus functions of time only (K∗

p,i and N∗

p,i denote the potassium
and sodium concentrations in the proximal paddle, K∗

d,i and N
∗

d,i in the distal).

The constant of integration c1 is determined by the concentration in the stalk at x∗ = 0,

which we call K∗
l (t

∗), thus c1 = K∗
l (t

∗) (identical analysis holds for the proximal stalk,

where K∗
l (t

∗) = Kf , and the distal stalk, where K∗
l (t

∗) = K∗
p,i (t

∗)). Matching the

concentration at the far end of the stalk (x = Ls, where Ls is the length of the stalk)

with the concentration in the reservoir K∗
r (t

∗) (where K∗
r (t

∗) = K∗
p,i (t

∗) in the proximal

stalk and K∗
r (t

∗) = K∗
d,i (t

∗) in the distal) yields the following expression for the flux

through the stalk

F∗ (t∗) = −2D

Ls
(K∗

r (t
∗)−K∗

l (t
∗)) . (B.97)

The potential in the stalk can be determined by substituting equation (B.94) into equa-

tion (B.85) and rewriting as follows

∂u∗

∂x∗
= − RT

2DF 2
j∗ (t)

1

K∗ (x∗, t∗)
, (B.98)

Again, by integrating with respect to x∗ we obtain the following expression for the

potential in the stalk

u (x∗, t∗) = −RT
F 2

j∗ (t∗)

F (t∗)
(log (K∗ (x∗, t∗))− log (K∗

l (t
∗))) + c2 (B.99)
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The constant of integration is fixed by imposing u∗ (0, t∗) = u∗l (t
∗) (where u∗l (t

∗) =

Φ∗ (t∗) in the proximal stalk and u∗l (t
∗) = φ∗i (t

∗) in the distal), to yield

u (x∗, t∗) = −RT
F 2

j∗ (t∗)

F (t∗)
(log (K∗ (x∗, t∗))− log (Kl (t

∗))) + u∗l (t
∗) (B.100)

Matching the potential at the far end of the stalk (x = Ls) with the potential in the

reservoir u∗r (t
∗) (where u∗r (t

∗) = φ∗i (t
∗) in the proximal stalk and u∗r (t

∗) = ψ∗
i (t

∗) in

the distal) yields the following expression for the current density through the stalk

j∗ = 2D
F 2

RT

(K∗
r (t

∗)−K∗
l (t

∗))

Ls log
(

K∗

r (t
∗)

K∗

l
(t∗)

) (u∗r (t
∗)− u∗l (t

∗)) , (B.101)

The total current and ion flow through the stalk are therefore given by integrating the

current density and flux over the cross-sectional area of the stalk. Both quantities are

constant over this area, however, so the integration is simply equivalent to multiplying

by the cross-sectional area, Xs, as follows:

I∗s = 2D
F 2

RT

Xs

Ls

(K∗
r (t

∗)−K∗
l (t

∗))

log
(

K∗

r (t
∗)

K∗

l
(t∗)

) (u∗r (t
∗)− u∗l (t

∗)) , (B.102)

F ∗
tot = −2D

Xs

Ls
(K∗

r (t
∗)−K∗

l (t
∗)) (B.103)

In the case with no concentration gradients (K∗
l (t

∗) = K∗
r (t

∗)), it is interesting to

consider the resistance of the stalk predicted by this analysis, and compare it to our

previous estimates, both from fitting to the voltage clamp data and from estimates of

the axoplasmic conductivity and stalk size given in the literature. Firstly, we note the

following limit

lim
(Kl,Kr)→Π0





Kr −Kl

ln
(

Kr

Kl

)



 = Π0, (B.104)

such that the conductivity of the axoplasm in the stalk, given by

σaxoplasm = 2D
F 2

RT

K∗
r (t

∗)−K∗
l (t

∗)

ln
(

K∗

r (t
∗)

K∗

l
(t∗)

) (B.105)
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can be reduced to

σaxoplasm = 2DΠ0
F 2

RT
≈ 2 S ·m−1 (B.106)

using the figures in table B.1, which compares well to the ≈ 0.8 S · m−1 quoted in the

literature. The total resistance of the stalk is

1

2DΠ0

Ls

Xs

RT

F 2
≈ 2× 106 Ω (B.107)

which is significantly smaller than that found by the data analysis. However, we expect

this idealised version to underestimate the resistance of the stalk, as there are likely to

be other considerations involved in vivo (for example, constrictions in the stalk reducing

its effective cross-sectional area, larger molecules inside the axoplasm increasing the tor-

tuosity of the paths ions must take through the stalk or organelles such as mitochondria

partially blocking the stalk), as well as natural variations in the sizes and shapes of the

stalks.

Given that the resistances of the stalks can be determined from experimental data by

the equivalent circuit analysis, it is more useful to use this data to fix the value of Xs

Ls
,

as follows

Xs

Ls
=

RT

2DΠ0F 2Ωs
(B.108)

and then use this value to determine the diffusive resistance of the stalk and thus the

ion flux in equation (B.103).

F ∗
tot = − RT

Π0F 2Ωs
(K∗

r −K∗
l ) (B.109)

B.2.1 Determining the ion concentrations in each region of the mi-

crodomain

We have now determined that the ion concentrations are independent of position within

a single paddle (equation (B.87)), and we know the currents (equation (B.102)) and

fluxes (equation (B.109)) through the stalks that connect them. Thus we can write
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down equations governing the concentrations of sodium and potassium ions in the mi-

crodomains, and these equations take the following form for the potassium and sodium

concentrations in the proximal paddle

Vp
dK∗

p,i

dt∗
=

RT

Π0F 2Ωs
p

(

Kf −K∗
p,i

)

+
RT

Π0F 2Ωs
d

(

K∗
d,i −K∗

p,i

)

− Apgp

F
φ∗i

+
1

2F

Kf

Kf +Nf

(

Φ∗ (xi)− φ∗i
Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

) (B.110)

Vp
dN∗

p,i

dt∗
=

RT

Π0F 2Ωs
p

(

Nf −N∗
p,i

)

+
RT

Π0F 2Ωs
d

(

N∗
d,i −N∗

p,i

)

+
1

2F

Nf

Kf +Nf

(

Φ∗ (xi)− φ∗i
Ωs
p

+
ψ∗
i − φ∗i
Ωs
d

) (B.111)

where Vp is the volume of the proximal paddle, Kf and Nf are the (constant) potassium

and sodium concentrations in the fibre, and K∗
p,i and N

∗
p,i are the potassium and sodium

concentrations in the proximal paddle of the ith microdomain, and K∗
d,i and N

∗
d,i are the

potassium and sodium concentrations in the distal paddle of the ith microdomain. R is

the ideal gas constant (R = 8.31 J ·mol−1 ·K−1), T is the temperature (T = 310K), Π0 is

the resting concentration of positive (potassium and sodium) ions (Π0 = 145mol ·m−3)

and F is the Faraday constant (F = 9.65×104 C ·mol−1). The terms in equation (B.110)

represent, respectively, the concentration-gradient driven potassium flux between the

fibre and the proximal paddle, the concentration-gradient driven potassium flux between

the proximal and distal paddles, the potassium flux carried by the leak current through

the proximal paddle membrane, the potassium flux carried by the current between the

proximal paddle and the fibre and the potassium flux carried by the current between

the proximal and distal paddles. The factor of one half in the terms representing the

flux carried by the currents is derived from the fact that the transference number of the

electrolyte is approximately one half, and thus current is carried by equal and opposite

flows of positive and negative ions (i.e. half of the current is carried by sodium and

potassium ions moving in one direction, and the other half by chloride ions moving

in the opposite direction). The factor of the ratio of the potassium concentration to

the total concentration of positive ions (i.e.
Kf

Kf +Nf
) simply reflects the fact that

potassium and sodium ions constitute the current flux in the same proportions they are

present in in the electrolyte — strictly speaking this proportion will change as the ion
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concentrations fluctuate in the microdomains, but we have found in practice (much like

for the resistances of the stalks as described above) that the actual variations are small

enough that the resting concentration proportions can be used. The terms in equation

(B.111) represent, respectively, the concentration-gradient driven sodium fluxes between

the fibre and the proximal paddle, and the proximal paddle and the distal paddle, and

the sodium fluxes driven by the current between the fibre and the proximal paddle and

the proximal and distal paddles (the factor of on half is determined by the transference

number, as noted for the potassium fluxes, and the remaining factor represents the ratio

of sodium ions to positive ions present in the electrolyte).

The model of the potassium and sodium concentrations in the distal paddle is as follows

Vd
dK∗

d,i

dt∗
=

RT

Π0F 2Ωs
d

(

K∗
p,i −K∗

d,i

)

− Adgd

F
ψ∗
i +

1

2F

Kf

Kf +Nf

φ∗i − ψ∗
i

Ωs
d

+ F∗
K,i (t

∗)

(B.112)

Vd
dN∗

d,i

dt∗
=

RT

Π0F 2Ωs
d

(

N∗
p,i −N∗

d,i

)

+
1

2F

Kf

Kf +Nf

φ∗i − ψ∗
i

Ωs
d

+ F∗
Na,i (t

∗) (B.113)

where Vd is the volume of the distal paddle. The first term in each of these equations

again represents the concentration-gradient driven flux, the second term in equation

(B.112) the potassium flux carried by the leak current through the distal paddle mem-

brane and the third term in equation (B.112) and the second in equation (B.113) rep-

resent the current between the proximal and distal paddles, divided into potassium and

sodium components. The final terms in each equation (F∗
K,i (t

∗) and F∗
Na,i (t

∗)) represent

the ion fluxes carried into the distal paddle by the ion channels in the distal membrane

responding to synaptic activity.
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Numerical solution of the model

of the Bergmann glia

Here we discuss the numerical solution of equations (4.75) to (4.77), and (4.83) to (4.86),

the model of the transmembrane potentials and ionic concentrations in the Bergmann

glial cell. Equations (4.76) and (4.77), and (4.83) to (4.86) are linear, ordinary differential

equations, and are solved using the ode15s routines from MATLAB. Equation (4.75),

however, is more complicated in that the delta function must be accounted for.

Briefly, we multiply the equation by a test function wk (x) and integrate with respect to

x to yield

α

ˆ 1

0
wk (x)

∂Φ

∂t
dx = β

ˆ 1

0
wk (x)

∂2Φ

∂x2
dx− ḡf

ˆ 1

0
wk (x) Φ dx

−
∑

i

ˆ 1

0
wk (x) δ (x− λi) (Φ (λi)− φi) dx (C.1)

We then perform integration by parts on the first term on the right-hand-side of the

equation above, and perform the integration on the final term on the right-hand side to

179
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eliminate the delta function, to obtain the following weak formulation of the problem

α

ˆ 1

0
wk (x)

∂Φ

∂t
dx = β

(

wk (1)
∂Φ

∂x

∣

∣

∣

∣

x=1

− wk (0)
∂Φ

∂x

∣

∣

∣

∣

x=0

−
ˆ 1

0

∂

∂x
(wk (x))

∂Φ

∂x
dx

)

− ḡf

ˆ 1

0
wk (x)Φ dx−

∑

i

wk (λi) (Φ (λi)− φi) (C.2)

We approach this by writing Φ as the sum over a set of basis functions

Φ (x, t) =
∑

j

Φj (t)wj (x) (C.3)

From the weak formulation of the problem, we only require our basis functions to be

once-differentiable, and so we choose the following, piecewise-linear, set of basis functions

wk (x) =







































x− (k − 1)∆x

∆x
(k − 1)∆x ≤ x ≤ k∆x

(k + 1)∆x− x

∆x
k∆x ≤ x ≤ (k + 1)∆x

0 x < (k − 1)∆x or x > (k + 1)∆x

(C.4)

such that we have replaced Φ with a linear interpolation on the points k∆x, for k = 0, . . . , N

(where N∆x = 1).

We can now perform the integration in equation (C.2). Proceeding term by term we

find, for k = 1, . . . , N − 1

ˆ 1

0
wk (x)

∂Φ

∂t
dx =

ˆ 1

0
wk (x)

∑

j

Φ̇j (t)wj (x) dx, (C.5)

=
∑

j

Φ̇j

ˆ 1

0
wj(x)wk(x) dx, (C.6)

=
∆x

6

(

Φ̇k−1 + 4Φ̇k + Φ̇k+1

)

(C.7)

For k = 0
ˆ 1

0
w0 (x)

∂Φ

∂t
dx =

∆x

6

(

2Φ̇0 + Φ̇1

)

(C.8)

For k = N
ˆ 1

0
wN (x)

∂Φ

∂t
dx =

∆x

6

(

Φ̇N−1 + 2Φ̇N

)

(C.9)



Appendix C Numerical solution of the model of the Bergmann glia 181

The first integral on the right-hand side yields, for k = 1, . . . , N − 1

ˆ 1

0

∂

∂x
(wk (x))

∂Φ

∂x
dx =

ˆ 1

0

∂

∂x
(wk (x))

N
∑

j=0

Φj
∂

∂x
(wj (x)) dx (C.10)

=

N
∑

j=0

Φj

ˆ 1

0

∂

∂x
(wk (x))

∂

∂x
(wj (x)) dx (C.11)

=
1

∆x
(−Φk−1 + 2Φk − Φk+1) (C.12)

For k = 0

ˆ 1

0

∂

∂x
(w0 (x))

∂Φ

∂x
dx =

ˆ 1

0

∂

∂x
(w0 (x))

N
∑

j=0

Φj
∂

∂x
(wj (x)) dx (C.13)

=
N
∑

j=0

Φj

ˆ 1

0

∂

∂x
(w0 (x))

∂

∂x
(wj (x)) dx (C.14)

=
1

∆x
(Φ0 − Φ1) (C.15)

Similarly, for k = N

ˆ 1

0

∂

∂x
(wN (x))

∂Φ

∂x
dx =

ˆ 1

0

∂

∂x
(wN (x))

N
∑

j=0

Φj
∂

∂x
(wj (x)) dx (C.16)

=
N
∑

j=0

Φj

ˆ 1

0

∂

∂x
(wN (x))

∂

∂x
(wj (x)) dx (C.17)

=
1

∆x
(−ΦN−1 +ΦN ) (C.18)

The integration of the second term on the right-hand side is the same as that of the

time derivative (equations (C.5) to (C.5)). For k = 1 . . . , N − 1

ˆ 1

0
wk (x)Φ dx =

∆x

6
(Φk−1 + 4Φk +Φk+1) (C.19)

For k = 0
ˆ 1

0
w0 (x)Φ dx =

∆x

6
(2Φ0 +Φ1) (C.20)

For k = N
ˆ 1

0
wN (x)Φ dx =

∆x

6
(ΦN−1 + 2ΦN ) (C.21)
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We can now rewrite the weak formulation (equation (C.2)), for k = 1, . . . , N − 1

α
∆x

6

(

Φ̇k−1 + 4Φ̇k + Φ̇k+1

)

= β
1

∆x
(Φk−1 − 2Φk +Φk+1)

− ḡf
∆x

6
(Φk−1 + 4Φk +Φk+1)

−
∑

i

wk (λi) (Φ (λi)− φi)

(C.22)

For k = 0

α
∆x

6

(

2Φ̇0 + Φ̇1

)

= −β
(

∂Φ

∂x

∣

∣

∣

∣

x=0

+
1

∆x
(Φ0 − Φ1)

)

− ḡf
∆x

6
(2Φ0 +Φ1)−

∑

i

w0 (λi) (Φ (λi)− φi)
(C.23)

For k = N

α
∆x

6

(

Φ̇N−1 + 2Φ̇N

)

= β

(

∂Φ

∂x

∣

∣

∣

∣

x=1

+
1

∆x
(ΦN−1 − ΦN )

)

− ḡf
∆x

6
(ΦN−1 + 2ΦN )−

∑

i

wN (λi) (Φ (λi)− φi)
(C.24)

Equations (C.22) to (C.24) can now be written in matrix form as follows

αAΦ̇ = βBΦ− ḡfCΦ− V (C.25)

where

Φ =

























Φ0

Φ1

...

ΦN−1

ΦN

























(C.26)
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and

A =

























∆x
3

∆x
6 0 · · · 0

∆x
6

2∆x
3

∆x
6 · · · 0

...
. . .

. . .
. . .

...

0 · · · ∆x
6

2∆x
3

∆x
6

0 · · · 0 ∆x
6

∆x
3

























(C.27)

B =

























− 1
∆x

1
∆x

0 · · · 0

1
∆x

− 2
∆x

1
∆x

· · · 0

...
. . .

. . .
. . .

...

0 · · · 1
∆x

− 2
∆x

1
∆x

0 · · · 0 1
∆x

− 1
∆x

























(C.28)

C = A (C.29)

V =
∑

i



























(

∑

j Φjwj (λi)− φi

)

w0 (λi)− β ∂Φ
∂x

∣

∣

x=0
(

∑

j Φjwj (λi)− φi

)

w1 (λi)

...
(
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j Φjwj (λi)− φi

)

wN−1 (λi)
(

∑

j Φjwj (λi)− φi

)

wN (λi) + β ∂Φ
∂x

∣

∣

x=1



























(C.30)

Equation (C.25) now defines a linear system of ODEs, which can also be solved using

ode15s in MATLAB.
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