Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates
Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates
This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N−1 were obtained from the optimum formulation printed on Polyester–cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N−1) on Polyester–cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.
flexible substrates, fabrics, e-textiles, piezoelectric composites, polymers, energy harvesting, clamping
1-8
Almusallam, A.
26fd0681-6153-4512-aa45-2b55e7ab2e82
Yang, K.
f1c9b81d-e821-47eb-a69e-b3bc419de9c7
Zhu, Dibin
3f787498-e788-4b49-b07c-c9b675e55cfa
Torah, R.N.
7147b47b-db01-4124-95dc-90d6a9842688
Komolafe, A.
2ad52b33-af35-4281-924f-12001b697fbc
Tudor, J.
46eea408-2246-4aa0-8b44-86169ed601ff
Beeby, S.P.
ba565001-2812-4300-89f1-fe5a437ecb0d
22 October 2015
Almusallam, A.
26fd0681-6153-4512-aa45-2b55e7ab2e82
Yang, K.
f1c9b81d-e821-47eb-a69e-b3bc419de9c7
Zhu, Dibin
3f787498-e788-4b49-b07c-c9b675e55cfa
Torah, R.N.
7147b47b-db01-4124-95dc-90d6a9842688
Komolafe, A.
2ad52b33-af35-4281-924f-12001b697fbc
Tudor, J.
46eea408-2246-4aa0-8b44-86169ed601ff
Beeby, S.P.
ba565001-2812-4300-89f1-fe5a437ecb0d
Almusallam, A., Yang, K., Zhu, Dibin, Torah, R.N., Komolafe, A., Tudor, J. and Beeby, S.P.
(2015)
Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates.
Smart Materials and Structures, 24 (11), , [115030].
(doi:10.1088/0964-1726/24/11/115030).
Abstract
This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N−1 were obtained from the optimum formulation printed on Polyester–cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N−1) on Polyester–cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.
More information
Accepted/In Press date: 24 August 2015
Published date: 22 October 2015
Keywords:
flexible substrates, fabrics, e-textiles, piezoelectric composites, polymers, energy harvesting, clamping
Organisations:
EEE
Identifiers
Local EPrints ID: 384255
URI: http://eprints.soton.ac.uk/id/eprint/384255
PURE UUID: fc12d993-e330-4a7b-8801-4a5c34437080
Catalogue record
Date deposited: 21 Dec 2015 10:45
Last modified: 15 Mar 2024 03:35
Export record
Altmetrics
Contributors
Author:
A. Almusallam
Author:
Dibin Zhu
Author:
R.N. Torah
Author:
A. Komolafe
Author:
J. Tudor
Author:
S.P. Beeby
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics