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SUMMARY

Computational modeling remains key to the acoustic design of various applications, but it is constrained
by the cost of solving large Helmholtz problems at high frequencies. This paper presents an efficient
implementation of the high-order Finite Element Method for tackling large-scale engineering problems
arising in acoustics. A key feature of the proposed method is the ability to select automatically the order
of interpolation in each element so as to obtain a target accuracy while minimising the cost. This is achieved
using a simple local a priori error indicator. For simulations involving several frequencies, the use of
hierarchic shape functions leads to an efficient strategy to accelerate the assembly of the finite element
model. The intrinsic performance of the high-order FEM for 3D Helmholtz problem is assessed and an error
indicator is devised to select the polynomial order in each element. A realistic 3D application is presented in
detail to demonstrate the reduction in computational costs and the robustness of the a priori error indicator.
For this test case the proposed method accelerates the simulation by an order of magnitude and requires less
than a quarter of the memory needed by the standard FEM. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many engineering applications, solutions of the Helmholtz equation are required over a wide
frequency range. For acoustics applications, one is often interested in modeling the sound field
over the full audible frequency range, i.e. from 20 Hz to 20 kHz. The nature of the solution and the
requirements in terms of mesh resolution vary drastically over this range. Ideally, a separate mesh
should be prepared for each frequency of interest so as to obtain an accurate solution while using
the coarsest mesh possible. In practice this is rarely done as this is more demanding for the end-user.
Instead, it is common to use a single mesh, designed for the highest frequency of interest, to cover a
large frequency range, despite the large increase in computational cost incurred with this approach.
These practical considerations are compounded by more fundamental limitations of the conventional
finite element methods at mid- to high frequencies. In particular, the pollution effect (which can be
described as the cumulative build up of dispersion error over the computational domain) leads to a
rapid increase in numerical error at high frequencies [1]. This enhances even further the differences
in mesh resolutions required for low and high frequencies.

A range of techniques have been proposed to reduce the pollution error inherent to the finite
element method. Stabilized Finite Elements [2, 3] have been successfully applied to a number of
problems, but their performance decreases significantly on unstructured grids. Another alternative
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consists in embedding the oscillatory nature of the solution in the approximating functions, like
in the partition of unity method [4], the discontinuous enrichment method [5], and the ultraweak
variational formulation [6]. For a review of these methods and a comparison of their performance
see [7, 8]. Although these methods have been shown to reduce the dispersion error, they still
suffer from a number of drawbacks. Firstly, they are inherently less adapted to problems with
inhomogeneous media, likely to be encountered in many applications. Secondly, the design of error
estimators in view of their usage in a p-adaptive or hp-adaptive context remains an open question.

Another alternative to reduce the pollution error is to increase the order of interpolation
of the polynomial basis. Higher-order approximations lead to significantly reduced resolution
requirements which in turn result in smaller numbers of degrees of freedom for a specific
Helmholtz problem. In [9], several polynomial bases commonly used in spectral and FE
methods (Lagrange, integrated Legendre and Bernstein shape functions) are compared. High-order
polynomial approximations are shown to efficiently control the pollution effect and lead to more
efficient iterative calculations. However, the link between the number of degrees of freedom and
the computational cost for large-scale problems is not so direct as p-FEM models typically result
in larger matrix bandwidth. Defining the optimal element order p that minimizes the computational
effort required to achieve a given accuracy on a given problem is therefore not trivial. This issue
is examined by Vos et al for different equations including the Helmholtz operator [10]. For two-
dimensional problems, results indicate that the optimal performance for a given error tolerance
is typically obtained with an order p = 6. In [11], three-dimensional Helmholtz problems are
considered but only the evaluation of the system matrix is monitored and not the factorization
of the global system matrix, which remains the most computationally intensive operation. Their
study indicates that the benefits of high-order approximations are even greater in three dimensions.
In [12], Giorgioni et al compare the performance of high-order continuous and discontinuous
Galerkin methods for various 2D smooth and non-smooth scattering problems. The computational
cost is assessed in terms of CPU time for solving the linear system and it is shown that high-order
methods exhibit an efficiency orders of magnitude above that of classical linear approximations. In
[13], Huerta et al perform a theoretical complexity analysis of the operations involved in solving
continuous and discontinuous Galerkin models. This study is carried out for a constant accuracy,
based on a simple one-dimensional error estimator. They conclude that for an engineering accuracy,
high-order methods are superior for all major operations, that is for the creation of the element
matrices as well as for the cost of solving the global linear system. The superiority of continuous
approximations over discontinuous approximations is also clearly established.

High-order finite elements form the basis for the development of hp-adaptive methods where
both the mesh and the polynomial order are concurrently adjusted automatically to achieve a
prescribed level of error. This approach is motivated by the fact that a suitable combination of spatial
refinement (h-adaptivity) and order refinement (p-adaptivity) can provide exponential convergence
on a class of problems where h-FEM or p-FEM methods achieve only algebraic convergence [14].
Automatic hp-adaptive computations can be viewed as an iterative procedure that generates a
sequence of converging solutions rather than a unique approximation. The performance of these
methods is largely dependent on the design of accurate a posteriori error estimates which are used
to guide the mesh refinements and the selection of polynomial orders. The most common error
estimates are residual based or recovery based [15], and the design of accurate a posteriori error
estimators for Helmholtz problems remains challenging [16]. In particular, these local estimators
do not incorporate the pollution effect and as a result their accuracy deteriorates as the frequency
increases [17]. hp-adaptivity also relies on robust, automated mesh generation. While this is a
subject of active ongoing research [18, 19, 20], the complete integration of the mesh generator with
a finite-element solver would require a complete overhaul of the architecture of existing industrial
codes [21].

The objective of this paper is to propose an efficient implementation of the p-FEM approach
for large-scale three-dimensional acoustic calculations required over a range of frequencies. A key
aspect in this approach is the design of a robust a priori error indicator to select the polynomial
order in each element. This allows to use a single mesh for multiple calculations over a wide range
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of frequencies. It was also shown how the use of hierarchic shape functions is important to accelerate
the assembly process by reducing the cost of evaluating large element matrices associated with high-
order elements. This combination leads to an efficient numerical method able to provide accurate
solutions with significantly reduced memory and time. The aim of this study is to not only to assess
the intrinsic computational performance of the p-FEM but also to discuss how this method can be
used efficiently in an industrial context for large-scale acoustic simulations.

The present paper is structured as follows. Section 2 introduces the Helmholtz finite element
formulation as well as the high-order FEM approximation basis. The proposed implementation
of the high-order FEM for tackling multi-frequency Helmholtz problems is then presented. In
Section 3, the computational performance of p-FEM for three-dimensional Helmholtz problems
is assessed in terms of polynomial order and element size. In Section 4, the a priori error indicator
is presented and its performance is assessed with uniform or strongly non-uniform meshes. Finally,
in Section 5, the benefits of the proposed approach are demonstrated with an industrial test case,
while Section 6 summarizes the main findings in this paper.

2. HIGH-ORDER FINITE ELEMENTS

2.1. Problem description

We consider the propagation of harmonic, linear sound waves in a uniform, quiescent medium
within a bounded domain Ω. Throughout this paper an implicit time dependence e+iωt is assumed,
where ω is the angular frequency. The complex amplitude u of the acoustic pressure is governed by
the Helmholtz equation:

∇2u+ k2u = −s in Ω , (1)

where k = ω/c is the acoustic wavenumber (with c the sound speed) and s is an arbitrary volume
source term.

A generic Robin condition is applied on the boundary Γ = ∂Ω of the domain:

∇u · n + γu = g in Γ , (2)

where n is the unit normal to Γ pointing out of the domain Ω. The coefficient γ(ω) can be used to
represent an acoustic treatment and g(ω) an imposed normal velocity applied on the boundaries.

This algebraic system is typically solved at a large number Nf of individual frequencies, sorted
in ascending order over a frequency range

F =
{
f1, f2, · · · , fNf

}
, (3)

and for a large number Nrhs of right-hand-sides.
Using the Galerkin method, equations (1) and (2) can be combined into a weak variational

formulation. It consists in finding the solution u ∈ H1(Ω) such that:

K(v, u)− k2M(v, u) + γ(ω)MΓ(v, u) = S(v) + SΓ(v), ∀v ∈ H1(Ω), (4)

with the sesquilinear forms:

M(v, u) =

∫
Ω

vudΩ , K(v, u) =

∫
Ω

∇v · ∇udΩ , MΓ(v, u) =

∫
Γ

vudΓ , (5)

and the source terms:
S(v) =

∫
Ω

vsdΩ , SΓ(v) =

∫
Γ

vg dΓ , (6)

where denotes the complex conjugate.
To define a finite-element approximation of the variational formulation (4) the domain Ω is

partitioned into a set of non-overlapping finite elements Ωe of typical size h. The approximate
solution uh and the associated test functions vh are constructed using the classical H1-conforming
p-FEM with hierarchic shape functions (see Šolín et al. [22] for details).
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2.2. Lobatto shape functions

In one dimension the reference element is defined as EL = {ξ ∈ R;−1 < ξ < 1}. The first order
p = 1 only involves the standard linear nodal shape functions:

l0(ξ) =
1− ξ

2
, l1(ξ) =

1 + ξ

2
. (7)

For higher orders p > 1 the basis is complemented by p− 1 shape functions given by the Lobatto
functions (also called integrated Legendre polynomials):

li(ξ) =
√
i− 1

2

∫ ξ

−1

Li−1(s) ds , with i = 2, 3, ..., p , (8)

where Li(ξ) are the Legendre polynomials of order i, see [23].
An important property of the Lobatto functions is the following orthogonality property:∫ 1

−1

dli
dξ

dlj
dξ

dξ = δij , with i, j = 0, 1, ..., p , and i or j > 2 , (9)

which ensures an optimal conditioning of the stiffness matrix for Helmholtz problems [24].
Another crucial property of the functions li(ξ) is that they form a hierarchic basis, meaning that

the basis used at order p is fully retained in the basis of order p+ 1. In other words, one can construct
the basis at order p+ 1 by adding more functions to the basis of order p rather than defining a
completely different set of basis functions. An important consequence is that this basis naturally
allows for local p-refinement since two adjacent elements using different interpolation orders can
coexist (see Section 2.4). Standard Lagrangian polynomial shape functions, commonly used for
low-order finite element methods, do not offer such flexibility. Finally the hierarchic nature of this
basis can also be used to accelerate the calculation of the system matrices when solving the problem
repeatedly over a range of frequencies (this will be discussed in more detail in Section 2.4).

On each element Ωe the solution is expanded on the shape functions φen, as follows

uh(x) =

Ne
dof∑

n=1

φen(x)uen = Φe(x)Tue , (10)

where uen represents the contribution of the n-th shape function to the local solution andNe
dof denotes

the total number of shape functions contributing on the element e.
In the usual way each element is mapped onto a reference element with coordinates ξ and the

shape functions φen(ξ) are defined on this reference element. The construction of the Lobatto shape
functions for different types of elements is well described in the literature [22, 25], and will not be
repeated here. The discussion that follows will take the example of the tetrahedral element as it will
be used in the subsequent sections.

The tetrahedral shape functions φen are constructed through a specific generalized coordinate
mapping which matches the corresponding hexahedral shapes, formed by a tensor product of the
Lobatto shape functions li(ξ), see [26]. These functions can be classified into four categories,
namely vertex, edge, face and bubble functions [22]. In the simple situation where the polynomial
order p is the same for all elements, it is easy to show that the number of degrees of freedom
contributing to the solution on any given element e is given by

Ne
dof = 4 +

6∑
i=1

(p− 1) +
1

2

4∑
i=1

(p− 2)(p− 1) +
1

6
(p− 3)(p− 2)(p− 1) , ∀p ≥ 1 , (11)

where the four terms correspond to the numbers of nodal, face, edge and bubble functions,
respectively.

In practice, as will be discussed in Section 5, it is often necessary to adjust the polynomial
order over the mesh (p-refinement). A different order pe is therefore associated to each element
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e (the actual process to select a suitable order pe will be discussed in detail in Section 4). Due
to its hierarchic structure, the p-FEM can easily handle local order variations, meaning that two
conforming adjacent elements can coexist with different polynomial orders, without requiring to
modify the local approximation basis and without violating the H1 conformity rule. From the order
pe defined for each elements, one can assign a unique interpolation order pl to each edge and ps
to each face of the mesh, based on a given conformity rule. In this paper, we use the maximum
rule which states that the polynomial order assigned to a given face or edge in the physical mesh is
equal to the maximum order of all adjacent elements sharing this face or edge. This rule guarantees
that the polynomial order of any shape function associated with an element e verifies its order of
approximation. Numerical experiments suggest that this rule leads to robust approximations in the
presence of highly non-uniform meshes (see Section 4). The number of shape functions on a given
element e is

Ne
dof = 4 +

6∑
i=1

(peli − 1) +
1

2

4∑
i=1

(pesi − 2)(pesi − 1) +
1

6
(pe − 3)(pe − 2)(pe − 1) , (12)

where again the four terms correspond to the numbers of nodal, face, edge and bubble functions.
pesi (respectively peli) denotes the order of the i-th face (resp. edge) of element e. Note that the case
pe = psi = pli = 1 corresponds to the linear finite elements, with Ne

dof = 4.
The bubble functions are purely internal, i.e. they vanish on the element boundaries and are

therefore not coupled to the neighbouring elements.
Static condensation consists in factoring out all bubble functions from the discrete system during

the assembly. Bubble functions only affect the solution locally as they are not shared between
elements. The corresponding DOFs are said to be internal whereas the DOFs associated to the
nodal, edge and face functions are external because they contribute to the solution in the neighboring
elements. These internal degrees of freedom can be statically condensed out at the assembly level,
with the objective to remove them from the global system matrix. This procedure does not affect the
final solution but it can reduce significantly the size of the discrete problem to solve. The internal
values of the solution can be recovered during the post-processing stage by solving elementwise
local linear problems. This procedure is a very efficient tool to reduce the size and improve the
condition number of hp finite element system matrices [22].

The number of internal degrees of freedom of a tetrahedral element of order pe is equal to

1

6
(pe − 3)(pe − 2)(pe − 1), ∀pe ≥ 3. (13)

Hence, linear and quadratic tetrahedral elements do not involve any internal DOFs and cannot
benefit from the static condensation. Besides, the effect of the condensation becomes more
significant when the polynomial order gets high because the number of bubble functions is a cubic
function of the order. In the remainder of this paper, all computations are performed using static
condensation of the bubble shape functions.

2.3. Standard solution procedure

The discretization of the weak form (4) yields the following algebraic system:

A(ω)u(ω) = b(ω) , (14)

where A is a sparse, square, complex symmetric matrix of size Ndof with Nnz non-zero entries. u is
the vector of degrees of freedom. b is the complex-valued right-hand side vector.

The global matrix A and right-hand side b are obtained by assembling the element contribution
Ae and be. It is useful to make the dependence of the element matrices with frequency explicit by
writing:

Ae = Ke − k2Me + γ(ω)MΓe
, (15)

where the following mass and stiffness element matrices have been introduced:

Me =

∫
Ωe

ΦeΦ
T
e dΩe , Ke =

∫
Ωe

∇Φe · ∇ΦT
e dΩe , MΓe =

∫
Γe

Φe ·ΦT
e dΓe , (16)
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of size Ne
dof ×Ne

dof. The column vector Φe contains the shape functions for the element e. The
element matrices defined in (16) are independent of frequency. The right-hand-side element vector
is also introduced

be =

∫
Ωe

Φes(ω) dΩe +

∫
Γe

Φeg(ω) dΓe. (17)

The integrals in equations (16) and (17) are evaluated using numerical quadrature schemes, see
[22, 27, 25]. A large number of quadrature points will invariably be needed due to the presence
of high-order polynomials in the integrands. With curved elements and/or non-uniform coefficients
one has to increase the order of quadrature further to accommodate for the varying Jacobian and
coefficients. Even with optimized quadrature rules the cost of evaluating these integrals will grow
very rapidly with increasing order p. As a consequence, and while solving the linear sparse system
(14) remains the most costly task of the solution procedure, the calculation of element matrices is
far from negligible for high-order FEM.

Once assembled, the sparse system (14) need to be solved using a direct or an iterative approach.
The development of robust iterative solvers for Helmholtz problems is still an area of active
research. Various efficient short term recurrence algorithms with dedicated preconditioners have
been proposed for the algebraic systems arising from a linear FEM discretization (for a review
see [28]). However, the indefiniteness of the operator tends to hinder their performance at higher
frequencies. Besides, the system matrices arising from a p-FEM discretization typically exhibits
higher condition numbers than the linear FEM ones, which renders the problem even more
challenging. Finally, iterative solutions are not suited for solutions involving a large number of
right-hand-sides, which are likely to be encountered in many applications. For all the reasons stated
above, iterative solutions will not be considered here and instead, the Cholesky algorithm of the
MUltifrontal Massively Parallel sparse direct Solver (MUMPS) [29] is employed to solve the linear
system (14) at each frequency.

At this stage it is useful to recall some results on the performance of high-order finite elements.
For the hp version of the finite element method for the Helmholtz equation, Ihlenburg and Babuška
[30] have obtained upper bounds for the global error in H1 semi-norm

E < C1

(
kh

2p

)p
+ C2k

(
kh

2p

)2p

. (18)

The first term in this expression represents the interpolation error and has a dependency of order
p with kh. This error can be controlled by using a sufficient number of elements per wavelength,
given by 2π/(kh). The second term is associated with the dispersion error and the pollution effect.
The dispersion error is the difference between the theoretical wavenumber k and the wavenumber
k̃ actually observed in the numerical model. Ainsworth [31] has obtained detailed results for
the dispersion error of the hp-FEM. In particular for well-resolved models (kh� 1) the relative
dispersion error can be approximated as:

k̃ − k
k

= −1

2

[
p!

(2p)!

]2
(kh)2p

2p+ 1
+O((kh)2p+2) . (19)

This expression shows that the dispersion error decreases at a much faster rate than the interpolation
error. However, the relative dispersion error (19) is a local effect since it represents the error incurred
over one wavelength. In practice a wave can travel over many wavelengths in the computational
domain, leading to a significant build-up of the dispersion error. This is the so-called pollution effect
which is included in equation (18) through the additional factor k in the second term. Therefore, in
practice, the dispersion error still dominates the overall error for moderately and poorly resolved
models.

2.4. An efficient multi-frequency algorithm

There are several issues associated with a multi-frequency calculation for a large model at high
frequencies. The methodology outlined in this section addresses these issues.
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Firstly, solving the large linear system associated with the numerical model is the main bottleneck
due to the time and memory required for this task. This is addressed here by using high-order p-FEM
that leads to a drastic reduction of computational cost.

Secondly, assembling a high-order FE model repeatedly for a large number of frequency is rather
costly due to the numerical quadrature of high-order polynomials. This can be avoided by using
hierarchic shape functions such as the Lobatto polynomials used here. The element matrices can
be calculated only once for the highest order and from these, the element matrices for lower orders
models can be extracted directly.

Thirdly, when using a fixed-order method (e.g. standard linear or quadratic FEM) one would have
to produce an individual mesh for each frequency to achieve the best performance (fixed accuracy
with the minimum computational cost). This is not practical or efficient as the end-user would have
to create a large number of meshes.

In addition, in practical applications, the element size is rarely uniform in the computational
domain, often due to the need to accurately resolve the geometry of the problem. In such situations,
using the same polynomial order is not optimal as the resolution of the numerical model will vary
significantly over the domain. Instead, one would like to use the lowest polynomial order possible
in each element so as to achieve a uniform level of numerical error. This requires to adjust p
independently in each element, which suggests the use of a local error indicator.

With standard Lagrange interpolation it would be difficult to change the order independently
as interpolation points are shared between neighbouring elements. In contrast, with the hierarchic
Lobatto interpolation, the high-order shape functions are modal and their order can be easily defined
independently in each element, see [22]. With a variable-order method such as p-FEM it is possible
to use a single mesh for the complete range of frequencies and adjust the polynomial order for each
frequency to ensure the required level of accuracy is maintained. This approach is followed here by
developing an a priori adaptive scheme, which solution strategy is outlined below. In what follows,
the superscript i is used to denote the quantity computed at a given frequency fi.

1. Consider an a priori error indicator attributing an order pie to each element at each frequency
fi ∈ F , so as to achieve a user defined target error (that will be discussed in detail in section
4)

2. Based on this indicator, the highest polynomial order required for each element across the
frequency range is identified. In the case of non-frequency dependent sound velocity, this
amounts to considering the maximum frequency of interest pNf

e .
3. Using the maximum conformity rule described above, the highest polynomial orders used for

each edge and face in the mesh can be determined.
4. For each element, the element matrices in (16), M

Nf
e ,K

Nf
e ,M

Nf

Γe
are evaluated and stored up

to the highest order. Because of the hierarchic structure of the Lobatto basis, these matrices
also contain the smaller matrices that will be required for all the lower frequencies

Mi
e ⊂M

Nf
e , Ki

e ⊂ K
Nf
e , Mi

Γe
⊂M

Nf

Γe
, ∀i ∈ F =

{
f1, f2, . . . , fNf

}
. (20)

5. At each frequency i, the submatrices corresponding to the local order pie

Ai
e = Ki

e − k2
iM

i
e + γ(ωi)M

i
Γe

(21)

are then recovered and assembled. The resulting global linear system is solved and the solution
is post-processed.

With this simple approach, all the element matrices are evaluated only once, which renders the
discrete system evaluation negligible for problems involving a large number of frequencies.

3. EVALUATION OF PERFORMANCE AT FIXED ORDER

Before discussing the use of an adaptive scheme to select the optimal polynomial order it is
important to assess the performance of the p-FEM method with a fixed order. To properly design
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Figure 1. Sketch of the fixed order test case.

such an adaptive approach, it is necessary to have a clear understanding of the relation between the
numerical model (element size, polynomial order), the computational cost (memory and time) and
the accuracy. This is done in this section by considering a simple test case, and by illustrating the
impact of mesh size and order on the accuracy and computational cost. These results will inform the
use of an adaptive method (described in section 4) and will also provide guidelines for the design of
a mesh suitable for p-FEM.

3.1. Description of the test case

As a three-dimensional benchmark problem the propagation of a time-harmonic plane wave is
simulated using the p-FEM approach described above. The exact solution is written

uex = exp(−ik · x) , with k = k (cos θ cosα, sin θ cosα, sinα) , (22)

where k is the wave vector and α and θ are the azimuthal and polar angle of the wave (see Figure
1). For simplicity the computational domain is a cube of size a represented by a mesh of tetrahedral
elements with uniform size h.

The discussion will concentrate on tetrahedral elements as they are the most common elements
used for this type of applications (results for other types of elements can be found in [32]). The
inhomogeneous Robin condition (2) is used on all boundaries to generate the plane wave inside the
computational domain by setting γ = ik and g = ∂uex/∂n+ γuex = −i(k · n− k)uex. Note that
the source term g is not interpolated on the mesh but is calculated exactly at the Gauss points for the
evaluation of the right-hand side be in equation (17) .

Finite element models for the Helmholtz equation suffer from two main sources of error: the
interpolation error and the dispersion error [33]. Both errors are highly anisotropic, as they vary
significantly with the orientation of the incident wave relative to each element. In order to minimize
this effect and characterize the performance of the p-FEM in a way that is representative of real
applications, a fully unstructured mesh is used and a large number of plane wave directions are
considered. A total of 30 plane waves with randomly distributed directions in the range θ = [0, 2π]
and α = [0, π] are used. This is to account for the fact that in real applications, the acoustic field
is composed of a combination of waves with different directions and the numerical error will be
controlled by the wave direction inducing the largest error.

For each polynomial order from p = 1 (conventional linear finite elements) to p = 10, the mesh
size is varied from h = a to h = a/50. Two tetrahedral meshes, corresponding to h = a/4 and
h = a/35 are shown in Figure 2.

Only ten meshes were considered per order, leading to a total of 100 tetrahedral (h, p)
combinations. For each (h, p) combination, the solution is calculated and the accuracy is measured

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



9

Figure 2. Examples of meshes used for the fixed order test case with h = a/4 (left) and h = a/35 (right).

by evaluating the relative error in the L2 or H1 norm defined by

EL2 =
‖uex − u‖L2

‖uex‖L2

, with ‖f‖L2 =

(∫
Ω

|f |2 dΩ

)1/2

, (23)

and

EH1 =
‖uex − u‖H1

‖uex‖H1

, with ‖f‖H1 =

(∫
Ω

|f |2 + |∇f |2 /k2 dΩ

)1/2

. (24)

This is repeated for the range of plane wave directions described above and the largest error over
the wave directions is retained. In addition the cost of solving the linear system is also measured.
In this work we use the multi-frontal solver MUMPS 4.10 [29] for large, sparse linear systems to
solve equation (14). The time and memory required were measured on a PC with 16 threads, 48
Gb of memory and 2.80 GHz CPU speed (all calculations were performed ‘in-core’, and the out-of-
core method was not used). Note that the times recorded include both the factorization of the global
matrix as well as the back-substitutions for the 30 wave directions.

3.2. Performance analysis

This section investigates the performance of p-FEM in the mid- and high-frequency regimes, that
is when the cost of the conventional FEM increases significantly due to the pollution effect (see
Equ. (18)). A high Helmholtz number ka = 50 provides a representative example of challenging
cases for three-dimensional FE models. Other frequencies have also been considered (ka = 25 and
75) and the same conclusions can be drawn.

First the properties of the sparse global matrix A are examined by plotting the number of degrees
of freedom as a function of the relative H1 error in figures 3a (results obtained with the relative L2

error lead to similar conclusions and are not reported here for conciseness). Note that the bubble
shape functions in each elements have been factored out and are not included in the results in this
graph. As expected, increasing the order p allows to significantly reduce the number of degrees of
freedom required to achieve a given accuracy. For instance for a relative error of 1 %, up to 1 million
unknowns are needed with an order p = 3 but this is reduced by an order of magnitude when using
p = 10.

However, the global matrices originating from high-order models are more densely populated.
Figure 3b shows the number of non-zero entries against accuracy and it is clear that increasing
the polynomial order has a limited impact on the non-zero entries necessary to achieve a given
accuracy. This is because, for a given accuracy, the number of degrees of freedom is significantly
reduced by increasing p, but at the same time the number of interactions between degrees of freedom
increases rapidly with p. As a consequence, the total numbers of terms in the matrices resulting from
the low-order and high-order discretisations are of the same order of magnitude. For instance for
1 % accuracy, the average number of entries per row in the matrix varies from 14.9 with p = 1 to
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Figure 3. Computational cost to reach a given accuracy for the 100 tetrahedral (h, p) combinations at
ka = 50. (a) number of degrees of freedom, (b) number of non-zero entries, (c) factorisation time and (d)

factorization memory.

364.2 with p = 10. The total number of non-zero entries needed to reach a 1 % accuracy varies only
slightly with the polynomial order and remains close to 30 million.

The argument that the improvement in accuracy of high-order p-FEM are significantly, or
completely, balanced by the rapid increase in cost is often put forward in the literature. But the
results in figures 3c and 3d for the time and memory used by p-FEM suggest that this argument is
not applicable for the present solver. At an engineering accuracy of 1%, increasing the polynomial
order does yield significant benefits for both measures of cost. With p = 10 the solution procedure
is two orders of magnitude faster than the conventional FEM solution (p = 2). A similar drastic
improvement is observed for the memory requirements. A quadratic solution requires around 200
Gb to converge to 1% error but will require only 2 Gb when increasing the order to p = 10. This
represents the difference between an intensive simulation mobilising a specialised computational
platform and a routine calculation on a basic workstation.

The results in figure 3 also illustrates that the link between the number of non-zero entries and the
cost of solving the linear system is not straightforward, and an increase in non-zero entries does not
translate into a comparable increase in computational cost. At constant number of entries, it appears
that the structure of high-order matrices is more favorable for factorization, by requiring less fill-in.

A key observation from this test case is that the optimal (h, p) combination is almost always
obtained with the maximum order p = 10 (one exception being for low levels of accuracy, typically
EH1 > 20 %). While the benefit observed by increasing the order tends to diminish for large orders,
we did not observe trends suggesting that a further increase in p would lead to a deterioration in
performance.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



11

Relative H1 error (in %)

10
-3

10
-2

10
-1

10
0

10
1

10
2

E
le

m
e
n
t 
s
iz

e
 h

10
-2

10
-1

10
0

1

2
3

4

5

67
8

9
10

Figure 4. Mesh resolution required to reach a given accuracy for the 100 tetrahedral (h, p) combinations at
ka = 50.

This is in contrast with the conclusion reported in Vos et al. [10] where run-times for a large
number of (h, p) combinations were measured for a two-dimensional Helmholtz problem. For an
engineering accuracy of 10% at ka = 2π, the minimal computational time was obtained using the
sixth-order expansion p = 6. Several reasons can explain this difference with the present work.
Firstly, the previous study focused on the performance of the p-FEM in the lower frequency range,
with ka = 2π. In this regime, the pollution effect is negligible and the interpolation error dominates,
and from equation (18) it is clear that increasing the order in p-FEM has a much stronger impact
on dispersion error compared to interpolation error. Secondly, only a two-dimensional Helmholtz
problem was examined in [10] and it is known that resorting to higher polynomial orders is even
more beneficial in three dimensions [11]. Thirdly, It could be argued that the gains observed depend
to some extent on the value of the targeted error EH1 . In particular, a higher target error would tend
to favor lower-order models. However, even if one considers a much larger error of, say 20%, the
high-order FEM solutions are still computationally cheaper, although to a lesser extent.

It is also useful to examine the link between element size h, polynomial order p and accuracy,
which is shown in figure 4. As expected, the requirement in terms of element size required to achieve
a prescribed accuracy is greatly reduced when using higher order elements. As an example, for a
fixed accuracy of 1 % there is a factor 7 between the element size required with cubic elements and
with elements of order 10. For real applications there is a practical limit to this trend: one cannot
use too large elements because the geometry of the problems has to be described with sufficient
accuracy. This is an important aspect of high-order FEM that will be discussed in more detail in
section 5 for a realistic application.

We can now summarize the main conclusions that will guide the strategy for the p-adaptive
scheme presented in the next section.

To achieve a given accuracy, resorting to high order elements is consistently beneficial in terms
of performance, as shown by the results in figure 3. Therefore the guideline for mesh generation is
to use elements as large as possible while still capturing the geometry accurately (this guideline will
be discussed in more detail in section 5).

For a given frequency and mesh, the objective is to identify a trade-off between accuracy and
efficiency. In this work one specifies a target level of accuracy and the smallest polynomial order
required to achieve this accuracy is then identified. How this is achieved automatically using a
simple error indicator is the topic of the next section.

4. DESIGN OF AN A PRIORI ERROR INDICATOR

Following the strategy outlined in the previous section a simple error indicator used to adjust the
polynomial order in each element is now described and verified.
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4.1. Description of the adaptive scheme

In each element the relevant parameters are the sound speed c, the frequency ω and the edge lengths
hi for this element. Based on this information the aim is to select the polynomial order p to ensure
that the relative numerical error remains below a prescribed target ET based on EL2 or EH1 , as
defined by (23) and (24).

To achieve this one needs an error estimator, or indicator, to identify the smallest order sufficient
to meet the error target. Error estimators approximate a measure of the actual error in a given norm
(like in equation (18)). On the other hand, error indicators, are based on heuristic considerations [34].
It is shown here that a simple error indicator can be used effectively to provide sufficient control
on the actual numerical error to be used in practice. The reasons for using this indicator instead of
other alternatives are also discussed.

The error incurred in the element is estimated a priori using a single, one-dimensional element
with the same wavenumber k and a length h calculated from the edge lengths hi of the actual
element. On this domain [0, h] the variational formulation (4) is solved with the Robin boundary
condition (2). At x = 0 the choice of parameters γ = ik and g = 1 generates a single traveling wave
e−ikx. The parameters γ = ik and g = 0 are used at x = h so that this traveling wave leaves the
computational domain without spurious reflection. The numerical error ε over this one-dimensional
element can be calculated in the L2 or H1 norm, and is denoted by εL2 or εH1 . This error is a
function of only the polynomial order p and kh (the ratio between the element size h and the acoustic
wavelength) and it is plotted in figure 5. For a given frequency, sound speed and element size it is
then straightforward to identify the smallest order p required to maintain the error εL2 or εH1 below
the target error ET.

In fact it is possible to tabulate the order p(kh,ET) in terms of the mesh resolution kh and the
target error ET such that in practice one does not need to solve the 1D model. This is illustrated in
Table I for three levels of error, namely εL2 = 15%, 5% and 0.5%. This table can be used to directly
determine the element order based on the knowledge of the local values of k and h.

order p 1 2 3 4 5 6 7 8 9 10
εL2 = 15% 1.5 2.9 4.6 6.4 8.1 10.1 11.8 13.7 15.5 17.4
εL2 = 5% 0.8 2.0 3.4 5.0 6.6 8.4 10.1 11.9 13.7 15.4
εL2 = 0.5% 0.2 0.9 1.9 3.1 4.5 5.9 7.4 8.9 10.6 12.2

Table I. Tabulated values of kh to achieve a given accuracy at a given order p.

Different definitions of ET have been compared (based on εL2 or εH1), as well as different
definitions of the length h for the 1D model (minimum, maximum or average values of the edge
lengths). All these tests are not reported here for the sake of brevity but can be found in [35]. In
what follows the length h of the 1D element is defined as the average edge length of the actual
element as it was found to be more robust. Besides, the target error ET is specified in terms of the
error based on the εL2(kh, p) measure calculated on the 1D element.

There are several reasons for using this error indicator. First of all, error estimators such as
(18) rely on constants that are strongly problem dependent. In addition, when the dispersion
error dominates equation (18) tends to overestimate the rate of convergence for large order (more
precisely when kh is not very small).

The coefficients C1 and C2 in equation (18) are independent of the element size h, the frequency
and are only weak functions of the polynomial order p. However they are still problem dependent.
Using simple tests these coefficients have been found to vary significantly between different test
cases.

4.2. Verification for 2D models

To show that this simple error indicator is able to control the numerical error, a 2D model of a single
plane wave propagating in a duct is first considered. The square computational domain, discretised
with a fully unstructured mesh, is shown in figure 6a. Parameters are made non-dimensional by
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Figure 5. Errors εL2(kh, p) (a) and εH1(kh, p) (b) measured on the single 1D element with the polynomial
order p varying from 1 to 10.
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Figure 6. (a) Non-uniform mesh used for the 2D verification of the adaptive order scheme. (b) Mesh used to
illustrate the effect of the pollution effect.

setting the domain size, the sound speed and density to unity. A single plane wave is introduced on
the boundary x = 0 while the unit impedance is imposed at x = 1 so that the plane wave leaves the
domain without reflection. A hard-wall condition is applied on the other boundaries.

In figure 7, the actual numerical error EL2 calculated over the computational domain is plotted
for four different frequencies against the target error ET used to adjust p in each element. It can be
seen that in almost all cases the actual error is lower but close to the target error, thus maximising
the efficiency of the numerical model.

The main exception is found at high frequencies (figure 7c and 7d) for small values of the
target error ET. In this situation all the elements are using the highest order available, in this case
pmax = 10, but this is not sufficient to achieve the requested level of accuracy. This can be easily
addressed by implementing higher order shape functions or by refining the mesh.

But figure 7 illustrates clearly that the mesh resolution has to be selected so that the target
accuracy can be achieved by the adaptive method over the whole range of frequencies of interest.
Table I shows for instance that for a target error of 0.5%, the resolution should be chosen such that
kh < 12.2 across the whole mesh, for a highest available order pmax = 10.

Note also that for large ET and low frequencies (figure 7a), all the elements use linear shape
functions and yet the actual error is significantly smaller than the target. This is not an issue since the
cost of solving the problem at such low frequencies is insignificant compared to high frequencies.

When the polynomial order has been chosen in each element, one can use the error indicator εL2

to measure the local numerical error incurred within each element. It is then interesting to compare
the minimum and maximum values of the local error given by εL2 against the global error EL2

actually obtained. This is shown in figure 7 where the global error (blue line) is almost always
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Figure 7. Numerical error as a function of the target error ET for ω = 1 (a), 10 (b), 20 (c) and 50 (d). Actual
global relative error EL2 in the numerical model (solid blue line). Minimum and maximum values of the
error indicator εL2 (red dashed lines). The dotted black line shows when the actual error matches the target

error.

within the bounds of the local error (red line), the only exception being for very high values of ET.
This suggests that a simple local error indicator such as εL2 can be used to effectively control the
global numerical error (a caveat is when the pollution effect is very significant, see section 4.4).

4.3. Verification for 3D models

We illustrate that this simple error indicator is applicable to three-dimensional problems as well.
The computational domain is a unit cube with the same boundary condition as in the 2D test case
mentioned above.

Different meshes have been considered and are shown in figure 8. They include a uniform coarse
mesh and three meshes with different levels of local refinement to illustrate more realistic situations
when the boundary of the domain is often refined to capture the geometry accurately.

To illustrate the use of the p-FEM method in practice, each of these meshes is used to solve this
problem over a wide frequency range from ω = 2π/5 to ω = 26π. At the highest frequency this
corresponds to 13 acoustic wavelengths in the computational domain. As the frequency is varied,
the method relies solely on the use of the adaptive polynomial order to improve the resolution of the
numerical model at high frequency since the same mesh is used for all frequencies. Three different
error levels are prescribed for the selection of the polynomial orders, with ET = 15%, 5% and 0.5%.

The global error EL2 obtained in all theses cases is shown in figure 9 while figure 10 shows the
evolution of the minimum, mean and maximum order as the frequency increases. It can be seen
that the adaptive method is indeed able to maintain the numerical error at a relatively constant level
over most of the frequency range. As expected this is achieved by progressively increasing the
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(a) (b)

(c) (d)

Figure 8. Unit cube with unstructured meshes with hmax = 0.2. Uniform element size hmin = hmax (a),
non-uniform element sizes: hmin = 0.05 (b), hmin = 0.04 (c) and hmin = 0.02 (d).

polynomial order. For strongly non-uniform meshes (figure 10b corresponding to 9b) the range of
orders used in the model is much larger because p remains low in the small elements. The actual
errors obtained in 3D are somewhat lower than the target accuracy obtained from the 1D model.
For instance, a target error of ET = 5% yields an average L2 error close to 1% for all the meshes in
figure 8.

For low frequencies some oscillations are visible. This is because the transition from order 1 to
2 has a much stronger impact on the accuracy compared to, say, the transition from order 7 to 8.
For the uniform mesh this transition happens simultaneously for almost all the elements, as seen in
figure 10a, resulting in the sharp changes in accuracy visible in figure 9a.

At high frequencies, it can be seen that for each mesh the error increases above a certain
frequency, as already observed above for the 2D results. This is because the adaptive order allocate
the highest available order pmax = 10 to almost all the elements but this is not sufficient to maintain
the same target level of global error.
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Figure 9. Global numerical error for the meshes shown in figure 8 with target accuracy ET 15% (dashed
line), 5% (solid line) and 0.5% (dotted line).
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Figure 10. Minimum (green), average (blue) and maximum (red) orders for the meshes (a) and (b) in figure
8 as a function of frequency.
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Figure 11. Actual error as a function of the length of the computational domain for (a) ω = 5, (b) ω = 10,
(c) ω = 20, (d) ω = 40. EL2 error (solid line), EH1 error (dashed line), minimum and maximum values of

the error indicator εL2 (red line) over all the elements.

4.4. Pollution effect

It is important to note that this error indicator is used in each element independently and that
therefore it can only control the numerical error incurred within this element. As a consequence,
it is not designed to account for the pollution effect which corresponds to the build up of phase error
as a wave propagates over several wavelengths.

This can be illustrated by using the same test case as in section 4.2 by keeping all the parameters
constant except for the length of the domain which varies from 1 to 20. A non-uniform mesh is used
for this purpose with an element size varying from h = 0.3 at y = 0 to h = 0.07 at y = 1 (see figure
6b for a domain length of 3). Different frequencies are tested such that in the worst configuration,
for a domain length of 20 at ω = 40, more than 127 wavelengths are found in the domain. The target
error is fixed to ET = 1%.

As shown in figure 11, the global numerical error steadily increases with domain length and this
is directly attributed to the pollution effect. Also shown in figure 11 are the minimum and maximum
values of the error indicator over all the elements. As expected these remain almost constant with ω
since the same target accuracy has been specified for all frequencies. For problems with a very large
number of wavelengths in the domain, it is advised to reduce the target error ET so as to maintain a
sufficient level of accuracy for the global solution.
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5. APPLICATION TO A REALISTIC CASE

The application of the p-FEM approach for a realistic 3D problem is now discussed. The first
objective is to illustrate the benefits of the high-order FEM solver on a real-life engineering test
case, by comparing its performance with a generic commercial FEM solution. The second objective
is to highlight best practice that should be followed when preparing models for adaptive high-order
solvers.

All computations reported in this section were performed using the FEMAO solver which is
an industrial implementation of the high-order FEM method with the adaptive order approach
described in section 4. Developed in Fortran 2003 and using the MUMPS library [29] to solve sparse
linear systems, the FEMAO solver is part of the vibro-acoustic simulation package Virtual.Lab
Acoustic, commercialised by the company Siemens Industry Software [36]. Simulations were
performed on a platform with 126 Gb of RAM and two Intel Xeon processors operating at 2.53
GHz with a total of 16 threads.

5.1. Description of the test case

Predicting the sound field in the cabin of a car is a typical example of numerical modelling regularly
performed to support the acoustic design of new vehicles. Acoustic simulation tools are used in the
automotive industry to reduce the booming noise corresponding to high sound pressure levels near
the resonance frequencies of the cabin. This is also an example of applications where the use of
numerical modeling is still limited by the cost of standard FE methods.

Figure 12. Schematic of the car cabin together with the associated boundary conditions.

A realistic geometry is used for the cabin of the car, as illustrated in Fig. 12. The overall
dimensions of the model are Lx = 2.25 m, Ly = 1.62 m and Lz = 1.23 m and the total volume
is 3.42 m3. The sound speed and fluid density are considered homogeneous in the cavity with
c = 340 m/s and ρ = 1.225 kg/m3. Several surfaces of the cabin are acoustically treated: the
floor, ceiling and the so-called firewall (the lower front of the cabin). The impedance condition
representing these boundaries is obtain by setting γ = iωρAz and g = 0 in the Robin condition (2).
The acoustic admittance Az of the surface is assumed to be a cubic function of frequency (see [37]).
The resulting linear system in (15) is therefore not of second order. In this situation the application of
the modal analysis is difficult and resorting to a direct solution procedure is justified. Two separate
external excitations are considered. First, a point mass source of amplitude As = 10−3 is positioned
at xs = [0.4, 0., 0.2], see figure 12. This source is enforced by applying s = Asδ(xs) in equation
(6). Secondly, a normal velocity V = 10−3 m/s is imposed on the firewall to simulate an acoustic
excitation due to the engine vibrations. This is achieved using the Robin condition (2) with γ = 0
and g = −iωρV .

The aim with this model is to obtain accurate predictions of the pressure field over the frequency
range from 20 Hz to 2 kHz. This corresponds to a Helmholtz number in the range ka = [0.6, 60]
based on a model characteristic length of a = Ly = 1.62 m.
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5.2. Mesh creation process

We begin by discussing the issues influencing the design of a finite element mesh suitable for high-
order FEM, and the meshes used for the present test case are then described.

As already outlined in Section 3, the computational performance of p-FEM is maximised when
large elements with high-polynomial orders are used. An added benefit of this is that it makes
the process of generating and manipulating these meshes much easier and faster, compared to the
fine meshes required for conventional finite element models. There are however a number of other
considerations that should be addressed in any practical problem.

Firstly, while the polynomial order is automatically selected, there is necessarily a limit to the
order available, in this case pmax = 10. The mesh should be sufficiently fine so that at the highest
frequency of interest the maximum order will be sufficient to maintain a sufficient level of accuracy.
Based on the definition of the error indicator given in Section 4, the following recommendation for
the element size can be inferred

h < CET

c

fmax
(25)

where the constant CET
is adjusted according to the required accuracy and the maximum available

order. From the tabulated values in Table I for pmax = 10 one finds that C5% = 15.4/(2π) = 2.44
and C0.5% = 17.4/(2π) = 1.94.

Secondly, the geometry of the problem should also be accurately represented by the finite element
mesh. Capturing the relevant geometrical features in the model will usually require to use smaller
elements near the boundaries of the domain. Improved geometry representation in FE model is an
active research area, including high-order curvilinear meshes [38] or NURBS-enhanced method
[39]. This goes beyond the scope of the present paper and in this paper the element geometry is
described with classical linear interpolation.

The level of refinement of the geometry is determined by the ratio between the characteristic
length l of a given geometric detail and the smallest acoustic wavelength λmin. If l� λmin then this
geometrical feature can be considered acoustically compact and it does not need to be accurately
described. However if l ≈ λmin, then the mesh should be refined locally such that h� l.

With conventional iso-parametric FEM, the geometry and the solution are approximated with the
same interpolation. The mesh resolution selected for the solution (based on the number of points per
wavelength) is implicitly providing a selection of the geometrical length scales (in other words, any
feature not captured by the mesh is unlikely to be significant for the wavelength of interest). With
p-FEM, the discretization of the geometry and of the solution are decoupled and one should ensure
that all the relevant geometrical features of the problem are appropriately resolved.

(a) (b)

Figure 13. Envelope surface meshes used to generate the volume meshes (a) coarse grid, h = 22mm, (b)
refined grid h = 17mm.

In order to demonstrate the robustness of the proposed adaptive approach, several meshes were
generated. Two surface meshes of the car cabin are used with a uniform element size of h = 17 mm
or h = 22 mm, as shown in figure 13. From these surfaces meshes, the volume of the domain is
discretised with linear tetrahedral elements.
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For the reference solution based on the conventional FEM, the fine surface mesh is used
(h = 17 mm) and the tetrahedral elements inside the domain also have a size h = 17 mm. Solutions
obtained with this mesh will be denoted ‘FEM’ in what follows.

To illustrate the guidelines discussed above, the meshes used for the FEMAO solver use
larger elements inside the domain so that the benefit of using higher-order approximation can be
demonstrated. Three different meshes are considered for the high-order adaptive method:

• A mesh based on the surface mesh with h = 17 mm with a ratio between smallest and largest
element size of 8, denoted ‘FEMAO I’.

• A mesh based on an envelope mesh of size h = 22 mm with a ratio between smallest and
largest element size of 12, denoted ‘FEMAO II’.

• A mesh based on an envelope mesh of size h = 22 mm with a ratio between smallest and
largest element size of 20, denoted ‘FEMAO III’.

(a) FEM (b) FEMAO I (c) FEMAO II (d) FEMAO III

Figure 14. Cross-section of the four meshes used for the car cavity test case.

Longitudinal cross sections of these four different meshes are shown in Fig. 14. Their properties
are outlined in Table II. The high-order coarse meshes contain far less nodes and elements than
their FEM counterpart. The maximum frequency of a given high-order mesh is easily obtained from
equation (25), it reads

fmax = CET

c

hmax
(26)

where hmax designates the largest element average edge length in the mesh. For the FEM mesh, the
maximum frequency is obtained from the usual rule of thumb:

fmax =
1

10

c

hmax
(27)

which guarantees a resolution rate of 10 degrees of freedom per wavelength. According to these
rules, all the meshes presented here are valid up to 2kHz.

Mesh # of nodes # of elements Max frequency
FEM 1 173 716 6 902 675 2000 Hz ∗

FEMAO I 177 803 869 540 5215 Hz †

FEMAO II 62 865 261 626 2987 Hz †

FEMAO III 53 601 200 938 2020 Hz †
Table II. Characteristics of the car cavity meshes used for the computations (∗ computed using the classical

FEM rule of thumb (27), † computed using the a priori error indicator rule (26) with ET = 5%)

5.3. Comparison of results

The numerical predictions at several distinct frequencies are first compared. For each of these
frequencies, the reference linear FEM solutions is computed using the mesh described above, and
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the high-order adaptive method is then used with the other three coarse finite element meshes (see
table II) with a fixed target accuracy of ET = 5%.

The numerical predictions are compared on a horizontal control plane of size 1 m× 1.8 m, located
in the center of the car cavity (see Fig. 12).

The real part of the acoustic pressure obtained with the monopole source is shown in figure 15 for
400 Hz, 1400 Hz and 2000 Hz. Overall, the pressure distribution is in good agreement for all models
across the whole frequency range. For 2 kHz the differences between the standard FEM model and
the high-order solutions appear to be more visible, and this is because the mesh resolution for the
standard FEM is close to its limit.

The results obtained with the imposed panel velocity instead of the monopole source yield similar
conclusions and are not reported here for brevity.

A second comparison is done in terms of the frequency response function (FRF) by covering
the frequency range from 20 Hz to 2000 Hz with a fine resolution of 5 Hz (corresponding to 397
calculations). Note that, for such a fine frequency increment, fast frequency reduction methods
involving reduced-order models could also be considered to accelerate the frequency sweep [37, 40],
but this is left for further study.

The FRFs in the center of the control plane predicted by the four numerical models are shown in
Figure 16 for the velocity boundary condition and for the monopole source (with a dB reference of
2.10−5 Pa).

Below 1200 Hz the four models yield very similar predictions (except near resonance
frequencies). Above 1200 Hz, there is very little difference between the three high-order models,
but the standard FEM solutions begin to differ significantly and the resonance frequencies tend to
be overestimated, which is a typical symptom of the pollution effect.

To confirm that it is indeed the standard FE model that is less accurate at high frequencies,
calculations have been performed with the high-order scheme with a much more stringent target
of ET = 0.5% for the numerical accuracy using the mesh FEMAO II. When compared to the results
obtained with ET = 5%, see figure 17, it is clear that there is very little difference and that the
high-order solutions have already converged with ET = 5% over the whole range of frequencies of
interest.

Another observation from figure 16 is that the adaptive scheme is able to adjust the polynomial
order to obtain reliable results over a wide range of frequencies despite the fact that the three meshes
used with the FEMAO solver are very different (with a change in characteristic element size of the
order of 10 to 20).

Although the proposed error indicator is only local and does not account for the pollution effect,
these results indicates that for this test case the adaptive scheme is able to maintain a sufficient level
of accuracy even at high frequencies when the waves are propagating over several wavelengths
within the computational domain.

5.4. Computational performance

The efficiency of the different numerical models is now investigated.
The computational cost of the high-order adaptive approach is inherently varying with frequency

since the error indicator will adjust the polynomial order with frequency. This mechanism can be
clearly illustrated by plotting the different orders p used for each frequency. This is shown in figure
18 for 20 frequencies between 100 Hz to 2000 Hz by plotting the relative predominance of each
order measured in terms of volume percentage (that is the volume occupied by all elements of order
p compared to the total volume).

This is a convenient metric for highly inhomogeneous meshes where a small number of elements
can represent a large portion of the computational domain.

Predictably, at 100 Hz, all the FEMAO solutions rely on a linear approximation as this is
sufficient to achieve the target accuracy. At higher frequencies, as the proportion of higher-orders
progressively increases, the volume occupied by the linear elements decreases, until they represent
less than 10% of the volume at 2000 Hz (they might still be dominant in terms of number of
elements). These remaining linear elements are found in the refined areas of the mesh close to
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Figure 15. Real part of pressure on the control plane for the monopole source. Models (from left to right):
FEM, FEMAO I, FEMAO II and FEMAO III. Top: 400Hz (16 contours levels between ±8.86 10−4 Pa);
Middle: 1400Hz (16 contours levels between ±1.38 10−3 Pa); Bottom: 2000Hz (16 contours levels between

±8.85 10−4 Pa).

the boundary of the computational domain. In terms of highest polynomial order, to cover the full
frequency range, the FEMAO I model uses at most elements of order p = 5 while the FEMAO II
and III models require elements of order p = 8 and 10, respectively. It should also be noted that
on the mesh FEMAO III, between 1700 Hz and 2000 Hz, the complete range of approximations is
used, with polynomial orders ranging from p = 1 to p = 10. This highlights the fact that the error
indicator adjusts the order at each frequency to the local properties of the mesh.

In terms of performance, for the 20 frequencies shown in figure 18, the high-order FEM adaptive
solutions were considerably faster than the linear FEM model. The full computation time, including
the matrix assembly and the post-processing of the results on the control plane (shown in figure 15),
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Figure 16. Frequency response at the center of the control plane for the velocity boundary condition (top) and
the monopole source (bottom). Straight line: FEMAO I; dashed line: FEMAO II; dash-dotted line: FEMAO

III, blue line: FEM.

took 6641, 1399, 658 and 553 seconds for the FEM, FEMAO I, FEMAO II and FEMAO III models
respectively. This corresponds to speed-up factors of respectively 4.7, 10.1 and 12.0 for the three
high-order models.

The computational cost of computing the frequency response functions presented in figure 16
is shown in figure 19 in terms of the runtime and memory required for each frequency. The
computational time per frequency includes the matrix assembly, the static condensation of all
internal degrees of freedom, the factorization and the solving of the two right-hand sides through
forward-backward substitution. The computational cost of the FEM reference is also shown for
comparison. Note that the calculation of the element matrices is not included as the mass, stiffness
and damping matrices are computed prior to the frequency loop (this applies as well to the FEM
reference solution).

When compared to the reference FEM solution, the high-order adaptive models are faster and
require less memory across the whole frequency range. This is also true above 1200 Hz where figures
16 and 17 show that the high-order models are more accurate.

Two different regimes can be observed in figure 19. First, for low frequencies the computational
cost does not increase. The solution is approximated using mostly linear elements and although it
would be beneficial, the approximation space can only be coarsened by changing the mesh to use
larger elements. This regime is therefore sub-optimal since large parts of the solutions are over-
resolved.

Secondly, an asymptotic regime is observed for high frequencies where the computational cost
increases with frequency asO(ω3). Ideally, the input mesh should be designed for a given frequency
range so as to operate completely in this asymptotic regime (that is, by avoiding mesh refinements
which may lead to over-discretized regions). Note that the O(ω3) scaling of the computational cost
in the asymptotic regime is as expected. An adaptive scheme based on an h-FEM approach in which
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Figure 17. Frequency response at the center of the control plane for the monopole source (5Hz increment).
Black line: FEMAO II with standard accuracy ET = 5%; magenta line: FEMAO II with refined accuracy

ET = 0.5%.

Model Matrix evaluation timing (s) Total time (s) Speed-up factor
FEM 12.0 122 780 -

FEMAO I 20.9 18 824 6.5
FEMAO II 21.4 7 467 16.4
FEMAO III 24.6 6 125 20.0

Table III. Runtime for the calculation of a FRF for the car cavity test case on the frequency range [20,2000]
Hz with a resolution of 5 Hz.

a separate input mesh is designed for each frequency by keeping kh constant would yield a similar
frequency dependency. In essence, the adaptive approach does not modify the complexity of the
standard finite element model with respect to the size of the model or the frequency, but it renders
the computational process more efficient and robust.

Table III provides the overall runtime associated with the calculations of the FRFs shown in
figure 16. The high-order adaptive solutions are an order of magnitude faster than the standard
FEM model. The FEM solution required 34 hours for the full frequency range, whereas the fastest
adaptive solution (FEMAO III) required only 1 hour and 42 minutes, corresponding to a speed-up
factor of 20. The reported speed-up factors for the refined models FEMAO I and FEMAO II (16.4
and 6.5) are lower. In terms of memory requirements, the standard FEM model requires 33.8 Gb,
while the optimal high-order model (FEMAO III) can handle the full frequency range in-core with
only 7.9 Gb, which represents a reduction by a factor 4.3.

The CPU time for the creation of the mass and stiffness matrices is also reported in Table III.
These results illustrate that for higher-order solutions evaluating the element matrices represents a
larger proportion of the overall computational time. For the linear FEM, the matrix evaluation is a
small operation in comparison with the factorization, with respectively 12 s against approximately
290 s, which represents a ratio of 1/25 (4 %). In contrast, the cost of one matrix evaluation for
FEMAO III represents 40% of the overall solving time at 2 kHz (24.6 s against 60 s). Note however
that this is an increase in relative term compared to the overall solution procedure and the total
cost of the model is reduced when increasing the polynomial order for a fixed accuracy (as shown
in figure 3). If a matrix evaluation was required for each individual frequency, it would represent
a significant portion of the overall cost the method. However this cost can be factored out of the
frequency loop through the use of hierarchical shape functions, allowing the matrix evaluation to be
performed only once.

It could be argued that using a single mesh when calculating a FRF with the standard FEM is not
optimal, and that at least several meshes should be prepared to cover the full frequency range. While
this is true, in practice it is not uncommon that a single mesh designed for the highest frequency is
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(a) FEMAO I
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(b) FEMAO II
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(c) FEMAO III

Figure 18. Element order repartition, in percentage of the total volume, as a function of frequency.

used for the full FRF in order to save time for the end user. And even with a mesh optimized for
each frequency in the FRF, the high-order finite element would still outperform the standard FEM.

Since the high-order method leads to significant improvements in accuracy, it is possible, with
the same computational resources, to tackle larger problems or higher frequencies. As an example,
the solution at 5000 Hz (corresponding to a Helmholtz number of 150) was calculated using the
mesh FEMAO I with a target accuracy of ET = 5%. The real part of pressure obtained from this
computation is shown on a refined visualization mesh in Figure 20. This model involved 4 314 740
degrees of freedom and the corresponding sparse matrix contained 173 533 294 non-zero entries.
The matrix factorization required 210 Gb of memory and was performed in-core in approximately
1 hour.

6. SUMMARY AND CONCLUSIONS

An efficient implementation of a high-order finite element method for the Helmholtz equation was
presented. It is designed to tackle realistic acoustic engineering problems, typically large-scale 3D
models to be solved over a large number of frequencies. The key aspect of this approach can be
summarised as follows.

• To reduce the computational cost for large problems and/or at high frequencies it is crucial to
minimise the dispersion error of the discrete model so at to mitigate the pollution effect. This is
achieved in the present method with the p-FEM approach using Lobatto shape functions which
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Figure 19. Computational cost of the numerical models as a function of frequency. Dotted line, third-order
frequency dependency.

Figure 20. Colormap of the real part of the pressure (between ±10−3 Pa) for the monopole source at
5000Hz, obtained with the mesh FEMAO I (ET = 5%).

allows to drastically improve the accuracy of the numerical model compared to conventional
FEM. An assessment of the cost and accuracy of this method over a range of frequency,
element sizes and polynomial orders was conducted to identify the optimal parameters.
Contrary to what has been reported elsewhere for smaller 2D models, the computational
efficiency for large 3D models does not drop as the order is increased up to p = 10 (although
it could be worth considering even higher polynomial orders).

• An added benefit of using a hierarchic set of shape functions such as the Lobatto polynomials
is found when solutions are required over a range of frequencies. It is possible to compute the
element matrices only once for the highest order and then at each frequency one can extract
only the required portion of these matrices to assemble the global matrix. This is crucial as
the cost of calculating high-order element matrices is significant due to the large number of
quadrature points involved.

• A key feature of the proposed method is the use of a simple local error indicator to select
a priori the polynomial order in each element. This is based on the numerical error for a
1D element. Despite its apparent simplicity, a number of tests have shown that it is able to
maintain the accuracy of a p-FEM within specified target accuracy. However, since it is purely
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local it does not account for the pollution effect. Addressing this issue would require more
complex adaptive methods, in particular a posteriori schemes.

• For calculations over a range of frequencies, the proposed approach requires only a single
mesh and the error estimator is able to select the suitable polynomial order in each element
to maintain the efficiency and accuracy as the frequency is changed by identifying the lowest
order required for the accuracy target. Best practice for preparing meshes suited for p-FEM
were discussed. The element size is dictated by the high frequency of interest and the high
order available, and a simple guideline was proposed in (26). When using linear or quadratic
description of the element geometry, as is the case with conventional FEM, smaller elements
are still required to describe the geometry, which penalizes the performance of the high-order
scheme. Several options for improving the geometry description of high-order methods have
been proposed and will be the subject of future work [38, 39].

The application of this approach to a demanding industrial problem was discussed in detail by
considering the prediction of the sound field in a 3D model of a car cabin over a large frequency
range. Significant gains in performance were observed compared to a standard finite element model.
For this test case, the memory requirements is reduced by a factor 4.3. The calculation of a complete
FRF with a fine frequency resolution is performed 10 times faster and remains accurate over a wider
range of frequencies. It was found also that the numerical model is particularly robust to significant
changes in the element size and that the error indicator is able to compensate for these changes to
maintain the same level of accuracy. Finally, the computational cost (memory and time) is found to
scale like O(ω3) which is similar to an h-FEM approach where a separate mesh would be designed
specifically for each frequency of interest (by keeping kh constant). With the p-FEM approach used
here, this scaling is achieved with a single mesh and the proposed adaptive scheme, which simplifies
the solution procedure significantly.

The current study focuses solely on direct solution procedure and future work should consider
the application of robust iterative solution algorithms as an alternative to limit the memory footprint
of the method. In particular the conditioning of high-order p-FEM models and its impact on the
performance of iterative schemes should be investigated. Other possible research directions include
reduced order methods to accelerate the computation of frequency responses over a broad frequency
range.
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