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Abstract. In this paper, a mixed model for studying ground vibration generated from surface
railway tracks is presented. A ballasted track with nonlinear resilient components is modelled
in the time domain using the Finite Element method. The ground is modelled as a linear homo-
geneous half-space in the wavenumber domain for faster computation. The interaction between
the track and the ground is incorporated into the track model through a layer of Lumped Pa-
rameter Model (LPM) representing the vertical impedance of the ground. The coefficients of the
components of the LPM are obtained by curve fitting of the transfer function of the half-space
for a load applied at its origin.

The coupled equation of motion for the track/ground system is formulated with excitation from
a stationary point load- consisting of static and dynamic parts- acting at the centre of the rail.
The coupled equation is solved by numerical integration. The calculated interaction forces at
the ballast/ground interface from the space-time domain track model are Fourier transformed
to the wavenumber domain and used as excitation to the ground model in order to calculate
free-field surface vibration of the ground.

Results are presented for the vertical dynamic impedance for the ground, track and ground
displacement in the vicinity of the track and in the free-field. A comparative study between the
mixed formulation with the LPM for the ground, and a fully coupled wavenumber domain model
is conducted for linear parameters. Using the fully coupled model as a benchmark, it has been
observed that the inclusion of the lumped parameter ground model in the track model gives
good estimation of the transmitted forces, and hence ground vibration, both in the near and far
fields. Finally, the effect of nonlinear track components is briefly investigated for different levels
of static preload.
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1 INTRODUCTION

The numerical modelling of ground vibration from surface railways has been the focus of
many researches over the years. When linear parameters are used considered for the track and
ground, the modelling can be readily done in the frequency-wavenumber domain, e.g. [1} 2.
However, time domain techniques such as Finite Element (FE) and Boundary Elements (BE) are
necessary for this problem when non-linear components and/ or complex irregular geometries
are to be modelled, e.g. [3]]. The use of FE and BE methods can be very costly indeed in terms
of the computational hardware and time required for the simulations. This is mainly due to the
sheer number of elements required to discretise the ground.

An alternative, which is widely used in soil-structure interaction problems, e.g. vibration of
machine foundation on a half-space, is to represent the ground as approximate Lumped Param-
eter Models (LPM) of spring, dashpot and mass elements. This approach has been applied to
ground vibration from surface trains by [4, 5]. The LPM is formulated based on Lysmer’s ana-
log fitting which, due to its simplicity, is mostly accurate for modelling the asymptotic values of
the dynamic impedance at low and high frequencies, without capturing mid frequency fluctua-
tions. A systematic approach for formulating consistent LPM with real, frequency independent
coefficients, to represent an unbounded soil medium was presented in [6, [7]. In this approach,
each dynamic stiffness coefficient in the frequency domain; e.g. the vertical impedance due to
a vertical load, can be represented in discrete form as a rational fraction. This is subsequently
decomposed into singular, first- and second-order parts, depending on the nature of the roots of
the rational fraction. These models can provide high degree of accuracy when sufficiently high
order of approximating polynomials are used. They also have the advantage of being incorpo-
rated in standard FE/BE routines with the possibility of including nonlinear parameters in the
structure.

In this paper, a mixed space-time and wavenumber domain approach for predicting ground
vibration is presented. In Section[2} an LPM for a halfspace subjected to a rectangular loading is
formulated by fitting the vertical dynamic impedance calculated in the wavenumber-frequency
domain. This model is then used in a time domain nonlinear FE model of a railway track,
presented in Section [3] in order to calculate the dynamic track/ground interaction forces. Once
these forces are obtained, they can be transformed to the wavenumber domain and used as input
for predicting surface ground vibration in the far-field. The procedure for doing this is briefly
discussed in Section[d] Results are presented in Section [5| which show the validity of the method
and to study the influence of track nonlinearity on the predicted ground vibration.

2 MODELLING OF THE GROUND

The ground is modelled as a homogeneous elastic half-space in the wavenumber-frequency
domain. The excitation is a harmonic load distributed over a rectangular area and centred about
the origin of the half-space. The wavenumber-frequency domain representation of the vertical
impedance of the ground is presented in Section The approximate LPM for this impedance
function is formulated in Section

2.1 Wavenumber-domain modelling of the ground

Figure [T] shows a 3D model of a half-space that represents the ground. A harmonic rectan-
gular load acts about its origin with dimensions 2a and 2b in the x and y directions respectively.
The formulation for this problem was presented by [1].

The distributed force on the rectangular area is defined as Fy(x,y)e“!, where Fy(z,y) is
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Figure 1: Ground modelled as a 3D half-space and subjected to a rectangular load.

related to the total point force, I, by

Fo. ) F,/4ab, |z|<a and |yl <b,
x,Y) = :
oLy 0, elsewhere

ey

The complex amplitude of the displacement of the ground in the wavenumber domain can

be expressed as

~ ~ sin a sinyb
Ug(&: v, w) = Hy(€, 7, W)Fgw

where ﬁg(f ,7,w) is the displacement of the ground at the origin due to the total force, Fy,
concentrated at the origin. H,(§,~,w) is given by [8]
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where 1, = —/&? +7 —w?/ud, M3 = \/52 +7% —w?/up; for R(my) < 0 and () <
0, v2 = (XA +2u)/p, v2 = p/p; with v, and v, being the pressure and shear wave speeds
respectively, A and . the Lamé constants and p the soil density.

By transforming Eq. (2) from the wavenumber to the space domain using the double inverse
Fourier transforms, the displacement in the space is obtained as

sm Easin yb i(Ez+y)
g, 9, f f (€ pw0) = el dedy, (4)

The vertical dynamic impedance k,(x,y,w) is the ratio of the input force to the displacement
and can therefore be written as
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In the next section, the LPM that approximately models the impedance function in Eq. [5|will
be formulated.

2.2 Lumped parameter representation of the ground

The objective of this section is to formulate an LPM with spring and dashpot components
having real frequency independent coefficients [6, /], to approximately model the dynamic
impedance function in Eq. (5). Suppose that Eq. (5) can be represented in discrete form
as sum of its singular part, K,(iw), and remaining regular part, K, (iw. The singular part,

[fs(iw) = ko + iwcy, describes its asymptotic value at high frequencies. The regular part,

K, (iw) can be expressed as a rational fraction with numerator having order 1 less than the
denominator. Hence, the discrete dynamic impedance, K (iw) can be summarised as

_ 1 i P2 C(fw)M-1
R (i) = ko + g + o Priw) +paliw)” - F par— (i)
—_—— 1+ q¢1(iw) + go(iw)? + - - - + g (iw)M

singular part —
regular part

(6)

where p; and g; are the 2M — 1 unknown real coefficients to be determined by numerical curve
fitting. The regular part, K, (iw) can be alternatively represented using partial fraction expansion

as
M

K (iw) =Y A (7)

iw—3s
=1

where s; and A; are the poles and corresponding residues of K, (iw). Note that for a stable sys-
tem, each s; should have a negative real part, and this condition can be achieved by adopting an
iterative procedure in the curve fitting routine. The poles of K, (iw) can be all real, all complex
conjugate pairs or a combination of these. A real pole results in a first-order approximation
term with corresponding real coefficients whereas a pair of complex conjugate poles, when
added together, form a second-order approximation term with real coefficients. For .J complex
conjugate pairs and the remaining M — 2.J real poles, the dynamic stiffness for the generalised
LPM can be written in parallel form that includes all the sub components as

e . d Buiw + B & Ay
K(iw) = ko +iwe + ; (iw)? + ayiw + ag i ; iw—s’ ®
The coefficients of the second-order term are as follows
Jj+1 J+1 J+1
ao =[5 ou==> s Bu=—(Ajsjm1+Ajs;), Bu=) A,
=] 1=] 1=
where j € {1,3,---,2J — 1} and j + 1 form a pair of complex conjugates of poles and of

corresponding residues at those poles.

Figure 2] shows the generalised LPM, with the components marked (I), (II) and (III) being
the singular part, first-order terms and second-order terms of the regular part respectively. The
coefficients of the first and second order terms are derived in [6] as being related to the poles
and residues of K, (iw) as follows

A A Boi ao B — o Por
/<?1,l = C =75, k2,j = (5= 3 )
S s ol Qo
Bol(—awBu + a1 fo)? B3 (—aBu + aubo)

ko ji1 = Coj+1 = .
! ad (% — anububu + 65)’ ’ ok (auf? — aubufu + BE)
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Figure 2: Lumped parameter ground model approximation for a half-space

The force-displacement relationship of the generalised LPM can be expressed in matrix form

as
{Fg} = [Cg} {Ug} + [Kg] {Ug}7 )
where
ko —kix o —kiv—2s —kop 0 oo oo —kgoyqp O
—kia ki1
—ki -2 kiai—2g
% —]{?271 k2,1
g 0 Fa.o ’
—ka 271 ko271
i 0 koo
o .
C1,1
C1,M—2J
C21 —C21
Cg - _ )
Co1 C21 -+ Co2
C22J-1 —C22J-1
L C227-1 C2.2J
T . )
and {Ug} = {uo, Uy, v, UM—27, UN—241," " e ,uM}. Equation (9) can be di-

rectly used in coupling a structure to the ground, as will be described for the case of a railway
track in the next section.
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3 SPACE-TIME DOMAIN MODELLING OF THE TRACK
3.1 Model description

Fig. [3] shows a model of a ballasted railway track. The model comprises of rail discretely
supported on sleepers via railpads. The sleepers are resting on ballast which is in turn resting on
the ground. The rail is modelled as an Euler-Bernoulli beam of mass, m,., per unit length and

Figure 3: Model of a ballasted railway track on supporting ground layer, excited by a
moving vehicle on irregular rail surface

bending stiffness, /1. The railpads are modelled as nonlinear with preload dependent stiffness
and damping, k, and ¢, respectively. The sleepers are modelled as lumped masses, m, having
only vertical translation. At each sleeper position, the ballast is modelled as having a mass, m,
consistently distributed between the sleeper and ground nodes, stiffness and damping, k;, and ¢,
respectively. The LPM formulated in the previous section to represent the ground, is coupled to
the each sleeper node. It should be noted that appropriate scaling of the LPM needs to be done
to correctly account for the sleeper spacing.

3.2 Equation of motion of the track/ground model

The differential equation for the coupled track/ground model is given by

M, 0 07 (U, c’ Ccy 07 (U,
0 M,+M MU, 3+ |C CF+Cy C7| U
0 My MY |0, 0 ¢ ¢ \g, 10)
K, +K" K 0] (U, F,
+| KV KF+KP KY[(Up=—¢0,,
0 K K| |U, F,

where My, C{.}, K¢y and Uy, are the global mass, damping and stiffness matrices and dis-
placement vector of the track components indicated by the subscripts, r, s, b and g, for the rail,
sleeper, ballast and ground respectively. The superscripts on the other hand designate cross-
coupling between these components. F, is the external nodal force vector of the rail due to the

6
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excitation force and F is the interaction force vector at the ballast/ground interface. F, is the
global assembly of all the ground nodes, each represented by Eq. (9). Since the ground dis-
placements are also unknowns, direct substitution of F, results in a modification to the global
damping and stiffness matrices of the track/ground model.

3.3 Nonlinear railpad and ballast properties

As stated earlier, the railpad and ballast properties are modelled as generally nonlinear with
preload dependent stiffness and damping properties. The static force-displacement behaviour
of the railpad and ballast can be approximated by polynomials of degree v and (3 respectively,

Fps(tps) = Kp1tips + kpotl, + -+ + kp qus, (11a)
Fos(Ups) = Ky 1Ups + kpoup, + -+ + kbﬁuﬁs (11b)

where f,s, u,s and k1 - - -k, , are the static force (in Newton), displacement (in metre) and
stiffness coefficients of the railpad respectively. fys, ups and ky g - - - Ky g are the corresponding
values for the ballast. For the railpad, the values of the non zeros coefficients are %, ; = 20.00
MN/m, k, 3 = 3.94 x 10 MN/m?, k, 5 = —1.78 x 10'> MN/m”® and k, ; = 3.28 x 10'® MN/m’
[9], and for the ballast, k; = 22.75 MN/m and k3 = 2.6 x 10® MN/m? [10]. Note that when
the track is fully unloaded, the railpad and ballast possess unloaded stiffness of %, ; and k;
respectively.

3.4 Solution of the coupled equation of motion

Under the action of the static load, the preloads and hence the preloaded stiffness of the
railpads and ballast are calculated by solving the nonlinear static equivalent of Eq. (I0) using
Newton-Raphson iterative routine. These are then used as input values for the dynamic part
of the problem, defined by Eq. (I0). The solution for the track and ground displacements and
the interaction forces at the ballast/ground interface are obtained by by progressive numerical
integration.

The calculated interaction forces at the ballast/ground are then used as input to calculate ground
vibration in the far-field. This process is described in the next section.

4 FREE-FIELD GROUND VIBRATION CALCULATION

Using the computed displacement and its derivatives, the interaction forces at the ballast/ground
interface can also be computed. For this problem, all sleeper and hence ground nodes vibrate
with the same frequency as the load. Therefore it is sufficient to consider only the complex
amplitude of the interaction force in the space-time domain. This is given as

F,(x,) = [F,(2,,t)| = |CU, + K,U,|. (12)

The non-zero forces of F;(x;) occur at the ground nodes that are coupled to the sleepers, with
the internal nodes of the LPM being zeros. These non-zero forces are assembled in a new vector,
F’g(ass), with size 2n, + 1 x 1, where n, and ¢ are the number of sleepers and sleeper positions
respectively. It is convenient to convert Fy(x,) to piecewise continuous function, F;(:z:), using
linear shape functions.

The spatial Fourier transformation of Fg’(x) to the wavenumber domain can be obtained from
F(¢) = f F!(z)e " dx. (13)

7
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The complex amplitude of the ground displacement in the wavenumber domain is therefore
given by

U1(€,70) = (€, 7.0) Fofe)

The corresponding displacement in the space-time domain is obtained by applying the double
inverse Fourier transformation as follows

(14)

T T - sinyb silér
(i, j jH (€ 7,00) Fy (€)= dedy. (15)

In the next section, numerical results will be presented to show the validity of this approach
and to investigate the effect of nonlinear track properties on ground vibration.

5 RESULT AND DISCUSSION

Section[5.1|presents the result of the LPM approximation of the ground dynamic impedance.
The LPM is then used to study nonlinear track dynamics. Results for this application are given
in Section [5.2] whereas free-field ground displacements are presented in Section

5.1 Dynamic stiffness of the LPM

The following parameters are used for the ground: p = 1800 kg/m?, v, = 245 m/s and
v, = 750 m/s and damping ratio of 5%.

The vertical dynamic stiffness from Eq. (5] is computed using b = 1.35 m and an optimal a
value of 0.724 m. For the LPM approximation, polynomials of order 6 and 7 for the numerator
and denominator respectively are used. This results in one real and three complex conjugate pair
poles, hence the LPM consists of one first-order and three second-order terms. These are then
arranged in parallel with the singular part of spring, kg = —12.853 and dashpot, ¢y = 2.5609.
The values of the coefficient of the components of the LPM are given in Table|T]

Table 1: Coefficients of the components of the LPM

j ki crj  kay  kejp1 oy cajna

p—

-16.290 -1.142 1.755 -0.381 -0.110 0.077
2.524 -0.141 0.108 -0.106
1.821 -0.067 -0.118 0.109

Figure [] shows the real and imaginary parts of the dynamic stiffness, normalised against the
static stiffness, K. It shows a comparison between the numerical and LPM representation. A
dimensionless frequency w = wh /v, has been adopted; where h is a characteristic length, taken
as the smaller of the rectangular load dimensions a and b. It can be seen that the LPM is a good
representation of the computed dynamic stiffness of the half-space.

5.2 Track and ground vibration

Table [2| contains the track parameters used in the computation of the track dynamic response
and, together with the LPM model, the ground response.
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Figure 4: (a) Real and (b) imaginary parts of the dynamic stiffness of a half-space subjected
to rectangular harmonic load. Comparison between the semi-analytic and LPM

Table 2: Track parameters used in the numerical study

Rail Railpad Sleeper Ballast
m, =60.21 kg/m (,=0.125 m,;=250kg/m m; =870 kg/m
EI. =6.4 MN m? ¢ =0.50
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Figure 5: Displacement amplitude and phase of the rail (—,o0), sleeper (---,[]) and ground
(---,*), plotted against excitation frequency. Comparison between track on half-space [2]
(lines) and on LPM for the ground (markers).



Samuel Koroma, David Thompson, Mohammed Hussein and Evangelos Ntotsios

Figure [5] shows the variation of the rail, sleeper and ground displacement amplitude and
phase at the driving point with frequency. The results obtained using the LPM is compared with
that of the semi-analytic procedure for linear track parameters. For this calculation, the rail is
modelled using 240 elements, each of length 0.3 m, 121 sleepers and therefore same number of
ground nodes. Good agreement between the two methods can be observed. At low frequencies,
the rail displacement is about 6.1 and 18.5 dB larger than the sleeper and ground displacements.
Resonances can be seen to occur for the sleeper/ballast at around 48-60 Hz and for the rail at
around 220 Hz. The fluctuations in the ground displacement due to the width of the ballast can
also be seen.

Results will now be presented to show the effect of track nonlinearity for static loads of 0,
50, 87.5 and 125 kN. The stiffness of the railpad and ballast increases significantly with preload.
Figure [6|shows the amplitude and phase of he rail, sleeper and ground displacements at the driv-
ing point, plotted against frequency for these preload levels. The effect of increasing stiffness

z -150 0
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— —_
o -160 3 -50
©
p =)
3. -170 $ -100
g £
S -180 -150
‘®
® _100 -200 -
10" 10° 10 10°
Frequency [Hz] Frequency [Hz]
z
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o
n —220 -200
10" 10°
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T -180 200
—
L S 100
2 -200 ﬁ
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Figure 6: Displacement amplitude and phase of the rail, sleeper and ground, plotted against
excitation frequency for preload levels of 0 kN —, 50 kN ---, 87.5 kN - - -, 125 kN - - -,

of the railpad and ballast, which is a direct consequence of the preload dependence, is apparent
in the figure with lower amplitudes and increased cut-on frequency observed with increase in
static load. Also the preload dependence of the railpad and ballast results to higher interac-
tion force at the ballast/ground interface and consequently leads to larger ground displacements

10
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over a wide range of frequencies. Since the ground is linear, however, the peaks in the ground
displacement occur at approximately the same frequencies for all preload levels.

5.3 Free-field ground vibration

Finally, using the interaction forces at the ballast/ground interface, free-field ground vibra-
tion can be calculated in accordance with the procedure in Section 4]
Figure[/|shows the ground displacement amplitude plotted against distance away from the track
for the preload levels specified above, for a load oscillating at (a) 10 Hz and (b) 120 Hz. For

-170 T T

-185

-200

-215r 1

(a)

-230 . -
0 10 20 30

Distance from track centre [m]

Displacement [dB re 1m/N]

_180 T T

Linear

- —+— Nonlinear-50 kN
— — — Nonlinear-87.5 kN
<<<<<<< Nonlinear-125 kN

-195

-210r

-225}
(b)

Displacement [dB re 1m/N]

-240 : P :
0 10 20 30
Distance from track centre [m]

Figure 7: Variation of ground displacement amplitude with distance away from the track
for the four preload levels and load frequency of (a) 10 Hz, (b) 120 Hz.

the case in (a), only small differences in the vicinity of the track can be observed, with the dis-
placement being almost the same further away from the track. The interaction force profile of
the nonlinear track is narrower than that for the linear track, so that even though its amplitudes
are larger, the total transmitted force to the ground (taken as the area under the force profile)
is fairly equivalent with the linear track. Larger differences of up to 3 dB can be observed,
however, for the higher frequency case in (b).

6 CONCLUSIONS

This paper presents a mixed formulation involving both space-time and wavenumber domain
techniques applied to the study of ground vibration from surface trains. The track is modelled in
the time domain in order to include nonlinear track elements, and the ground in the wavenumber
domain. For the purpose of calculating the track/ground interaction forces in the space-time
domain, the ground is represented by a layer of consistent lumped parameter model consisting
of frequency independent stiffness and damping components. The calculated interaction forces

11



Samuel Koroma, David Thompson, Mohammed Hussein and Evangelos Ntotsios

are then transformed to the wavenumber domain and used as input to study ground vibration
in the far field. For the example case presented, the LPM model shows good comparison with
the fully coupled track-ground model. The effect of nonlinearity on ground vibration has been
found to be significant mostly in the vicinity of the track but not in the far field, with differences
of up to 3 dB observed between the linear and the highly nonlinear cases.
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