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ABSTRACT
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Doctor of Philosophy

ESSAYS ON THE INDUSTRIAL ORGANIZATION OF THE INTERNATIONAL

COPPER INDUSTRY

by Andrés Luengo Morales

The aim of this thesis is to study the main drivers of the supply of copper. This

thesis proposes and estimates a dynamic structural model of the operation of copper

mines using a unique dataset with rich information at the mine level from 330 mines

that account for more than 85% of the world production during 1992-2010. It includes

several aspects of this industry that have been often neglected by previous econometric

models using data at a more aggregate level. First, there is a substantial number of mines

that adjust their production at the extensive margin, i.e., temporary mine closings and

re-openings that may last several years. Second, there is very large heterogeneity across

mines in their unit costs. This heterogeneity is mainly explained by differences across

mines in ore grades (i.e., the degree of concentration of copper in the rock) though

differences in capacity and input prices have also relevant contributions. Third, at the

mine level, ore grade is not constant over time and it evolves endogenously. Ore grade

declines with the depletion of the mine reserves, and it may increase as a result of

(lumpy) investment in exploration. Fourth, for some copper mines, output from sub-

products (e.g., gold, silver, nickel) represents a substantial fraction of their revenue.

Fifth, there is high concentration of market shares in very few mines, and evidence of

market power and strategic behavior. Finally, sunk entry and exit costs are large and a

key determinant of mine turnover. This sunk costs are also an important driver of prices.

The proposed and estimated structural model in this thesis helps to understand better the

dynamics of prices and extraction behaviour not only for the copper industry but to all

extractive industries.
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Introduction

Mineral natural resources, such as copper, play a fundamental role in our economies.
They are key inputs in important industries like construction, electric materials, elec-
tronics, ship building, or automobiles, among many others. This importance has con-
tributed to develop large industries for the extraction and processing of these minerals.
In 2008, the world consumption of copper was approximately 15 million tonnes, gross-
ing 105 billion dollars in sales, and employing more than 360.000 people (source: US
Geological survey). The evolution and the volatility of the price of these commodities,
the concern for the socially optimal exploitation of non-renewable resources, or the im-
plications of cartels, are some important topics that have received substantial attention
of researches in Natural Resource economics at least since the 70s. More recently, the
environmental regulation of these industries and the increasing concern on the over-
exploitation of natural resources have generated a revival of the interest in research in
these industries.
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Hotelling model (Hotelling, 1931) has been the standard framework to study topics
related to the dynamics of extraction of natural resources. In that model, a firm should
decide the optimal production or extraction path of the resource to maximize the ex-
pected and discounted flow of profits subject to a known and finite stock of reserves
of the non-renewable resource. The Euler equation of this model establishes that, un-
der the optimal extraction path, the price-cost margin of the natural resource should
increase over time at a rate equal to the interest rate. This prediction, described in the
literature as Hotelling’s rule, is often rejected in empirical applications (Farrow, 1985;
Young, 1992). Different extensions of the basic model have been proposed to explain
this puzzle. Pindyck (1978) included exploration decisions: a firm should decide ev-
ery period not only the optimal extraction rate but also investment in exploration. In
contrast to Hotelling’s rule, this model predicts that prices should follow a U-shaped
path. Gilbert (1979) and Pindyck (1980) introduce uncertainty in reserves and demand.
Slade and Thille (1997) propose and estimate a model that integrates financial and out-
put information and finds a depletion effect that is consistent with Hotelling model.
Krautkraemer (1988) presents a comprehensive review of the literature, theoretical and
empirical, on extensions of the Hotelling model.

Hotelling model and the different extensions are models for the optimal behavior
production and investment decisions of a mine. The predictions that these models pro-
vide should be tested at the mine level because they involve mine specific state variables.
An important limitation in the literature comes from the data that has been used to es-
timate these models. The type of data most commonly used in applications consists of
aggregate data on output and reserves at the country or firm level with very limited infor-
mation at the mine level. These applications assume that the ‘in situ’ depletion effects
at the mine level can be aggregated to obtain similar depletion effects using aggregate
industry data. However, in general, the necessary conditions for this “representative
mine” model to work are very restrictive and they do not hold. This is particularly the
case in an industry, such as copper mining, characterized by huge heterogeneity across
mines in key state variables such as reserves, ore grade, and unit costs. Using aggre-
gate level data to test Hotelling rule can be misleading. Perhaps most importantly, the



Introduction 3

estimation of aggregate industry models can generate important biases in our estimates
of short-run and long-run responses to demand and supply shocks or to public policy
changes.

In this thesis, we propose and estimate a dynamic structural model of the operation
of copper mines using a unique dataset with rich information at the mine level from
330 mines that account for more than 85% of the world production during 1992-2010.
Our descriptive analysis of the data reveals several aspects of this industry that have
been often neglected in previous econometric models using data at a more aggregate
level. First, there is a substantial number of small and medium size mines that adjust
their production at the extensive margin, i.e., they go from zero production to positive
production or vice versa. In most of the cases, these decisions are not permanent mine
closings or new mines but re-openings and temporary closings that may last several
years. Second, there is very large heterogeneity across mines in their unit costs. This
heterogeneity is mainly explained by substantial differences across mines in ore grades
(i.e., the degree of concentration of copper in the rock) though differences in capacity
and input prices have also relevant contributions. Third, at the mine level, ore grade
is not constant over time and it evolves endogenously. Ore grade declines with the
depletion of the mine reserves, and it may increase as a result of (lumpy) investment in
exploration. Fourth, there is high concentration of market shares in very few mines, and
evidence of market power and strategic behavior.

We present a dynamic structural model that incorporates these features of the in-
dustry and the operation of a mine. In the model, every period (year) a mine manager
makes two dynamic decisions: the decision of being active or not; and if active, how
much output to produce. Related to these decisions, there are also four state variables
at the mine level that evolve endogenously and can have important impacts on the mine
costs. The amount of reserves of a mine is a key state variable because it determines the
expected remaining life time, and may have also effects on operating costs. A second
state variable is the indicator that the firm was active at previous period. This variable
determines whether the firm has to pay a (re-) start-up cost to operate. The ore grade
of a mine is an important state variable as well because it determines the amount of
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copper per volume of extracted ore. This is the most important determinant of a mine
average cost because it can generate large differences in output for given amounts of
(other) inputs. The cross-sectional distribution of ore grades across mines has a range
that goes from 0.1% to more than 10%. There is also substantial variation in ore grades
within a mine. This variation is partly exogenous due to heterogeneity in ore grades in
different sections of the mine that are unpredictable to managers and engineers. How-
ever, part of the variation is endogenous and depends on the depletion/production rate
of the mine. Sections of the mine with high expected ore grades tend to be depleted
sooner than areas with lower grades. As a result, the (marginal) ore grade of a mine
declines with accumulated output. Finally, the capacity or capital equipment of a mine
is an important state variable. Capacity is measured in terms of the maximum amount
of copper that a mine can produce in a certain period (year), and it is determined by
the mine extracting and processing equipment, such as hydraulic shovels, transportation
equipment, crushing machines, leaching plants, mills, smelting equipment, etc.1 The
model includes multiple exogenous state variables such as input prices, productivity
shocks, and demand shifters.

The set of structural parameters or primitives of the model includes the production
function, demand equation, the functions that represent start-up costs and fixed costs,
the endogenous transition rule of ore grade, and the stochastic processes of the exoge-
nous state variables. The production function includes as inputs labor, capital, energy,
ore grade and reserves. Our dataset has several features that are particularly important
in the estimation of the production function: data on the amounts of output and inputs
are in physical units; we have data on input prices at the mine level; data on output
distinguishes two stages, output at the extraction stage (i.e., amount of extracted ore),
and output at the final stage (i.e., amount of pure copper produced). We present esti-
mates of a production function using alternative methods including dynamic panel data
methods Arellano and Bond (1991) and Blundell and Bond (2000), and control function
methods (Olley and Pakes, 1996; Levinsohn and Petrin, 2003). For the estimation of the
transition rule of ore grade, we also present estimates based on dynamic panel methods.

1Capacity is equivalent to capital equipment but it is measured in units of potential output.
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The estimation of the structural parameters in the functions for start-up costs and
fixed costs in chapter 7, is based on the mine’s dynamic decision model. The large
dimension of the state space, with twelve continuous state variables, makes computa-
tionally very demanding the estimation of the model using full solution methods (Rust,
1987) or even two-step / sequential methods that involve the computation of present val-
ues (Hotz and Miller, 1993; Aguirregabiria and Mira, 2002). Instead, we estimate the
dynamic model using moment conditions that come from Euler equations for each of the
decision variables. For the discrete choice variables (i.e., entry/exit and investment/no
investment decisions), we derive Euler equations using the approach in Aguirregabiria
and Magesan (2013, 2014). For the Euler equation of the output decision, we construct
moment conditions and a GMM estimator in the spirit of Hansen and Singleton (1982).

The GMM-Euler equation approach for the estimation of dynamic discrete choice
models has several important advantages. First, the estimator does not require the re-
searcher to compute or approximate present values, and this results into substantial sav-
ings in computation time and, most importantly, in eliminating the bias induced by the
substantial approximation error of value functions when the state space is large. Sec-
ond, since Euler equations do not incorporate present values and include only optimality
conditions and state variables at a small number of time periods, the method can eas-
ily accommodate aggregate shocks and non-stationarities without having to specify and
estimate the stochastic process of these aggregate processes.

In this model, the derivation of Euler equations has an interest that goes beyond the
estimation of the model. Hotelling rule is the Euler equation for output in a simple
dynamic model for the optimal depletion of a non-renewable natural resource where the
firm is a price taker, it is always active, ore grade is constant over time, reserves and ore
grade do not affect costs, and there are no investments in capacity or/and explorations.
The Euler equations relax all these assumptions. The comparison of our Euler equations
with Hotelling rule provides a relatively simple way to study and to measure how each
of the extension of the basic model contribute to the predictions of the model.

The estimates quantifies many important determinants of the structure of the indus-
try. First, there is an important dynamic role of the depletion effect. By doubling current
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output ore grades depreciates by 7%. In addition, for the average mine, the depletion
effect represents 5% of marginal costs. Second, from our production function estimates,
we find that the industry presents constant returns to scale and substantial economies of
scale. The technology in this industry is very intensive in capital and energy but not in
labor. This is the reflect of a modern mining with high qualified labor. Third, we find
that some mines enjoy large markups. This is due to large heterogeneity in geological
characteristics across mines which affect the exogenous part of their marginal costs.
For example, if we eliminate the variability of the ore grade, all the rest constant, the
variance of marginal costs would decline by 58%. Fourth, price is mainly determined
by demand factors. Our model shows that positive (negative) shocks in demand leads to
temporary entry (exit) of small and less efficient mines. In general, the productivity of
the industry grown up by 7%, 43% of this increase is explained by a reallocation effect.
Fifth, there is robust evidence of market power and strategic behaviour. Conjectural
Variation estimates reject a competitive pricing and suggest Cournot oligopoly as the
more likely result. This is an important result as the literature of natural resources typ-
ically assumes that commodity markets are perfectly competitive. Sixth, market power
cannot explain all the volatility observed on prices, however, if we shut down market
power, price would decline, in average, by 19%. We observe a lower impact of the
depletion effect on prices. By eliminating the depletion effect, price would decline by
1.3%. Finally, estimates of our structural model suggest that the average entry cost is
about of 3.8 billions of dollars. This implies that the average mine recovers its initial
investment in almost 10 years. Start-up costs have a strong implication in price dynam-
ics, for instance, an increase of 10% in entry costs would lead to an increase of 43% in
the average price. In addition, environmental regulation could play an important role in
exit decisions, we observe a non-negligible exit value of almost 140 millions of dollars
for the average mine. This is an interesting topic for further research.

The rest of this thesis is organized as follows. Chapter 2 provides a description of
copper mining industry (history, extraction of processing techniques, geographic loca-
tion of mines and market structure). Chapter 3 presents relevant literature on economics
of natural resources and presents the main model of the thesis. In this chapter, we derive



Introduction 7

Euler equations for the different decision variables, both continuous and discrete. Chap-
ter 4 describe the dataset and presents the stylized facts of this industry that motivate
the different extensions in the model. Chapter 5 presents the heterogeneity of ore grades
and describes the depletion effect. Chapters 6 and 7 describes the structural estimation
and econometric issues and present the main results of this thesis. Chapter 8 concludes.



2

The Copper Mining Industry

2.1 Brief History of the Copper Mining Industry

The earliest usage of copper dates from prehistoric times when copper in native form
was collected and beaten into primitive tools by stone age people in Cyprus (where its
name originates), Northern Iran, and the Lake region in Michigan (Mikesell, 2013). The
use of copper increased greatly since the invention of smelting around the year 5000 BP,
where copper ore was transformed into metal, and the development of bronze, an alloy
of copper with tin. Since then until the development of iron metallurgy around 3000 BP,
copper and bronze were widely used in the manufacture of weapons, tools, pipes and
roofing. In the next millennium, iron dominated the metal consumption and copper was
displaced to secondary positions. However, a huge expansion in copper production took
place with the discovery of brass, an alloy of copper and zinc, in Roman times reaching a
peak of 16 thousand tonnes per year in the 150-year period straddling the birth of Christ
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(Radetzki, 2009). Romans also improved greatly the extraction techniques of copper.
For instance, they implement the pumping drainage and widened the resource base from
oxide to sulfide ores by implementing basic leaching techniques for the sulfide ores.
After the fall of the Roman Empire, copper and all metals consumption declined and
production was sustained by the use of copper in the manufacture of bronze cannons for
both land and naval use, and as Christianity spreads for roofing and bells in churches
(Radetzki, 2009).

The industrial revolution in the half eighteenth century marked a new era in mining
and usage for all metals. However, copper did not emerge until 100 years later with the
growth of electricity. The subsequent increased demand for energy and telecommuni-
cations led to an impressive growth in the demand for copper, e.g., in 1866 a telegraph
cable made of copper was laid across the Atlantic to connect North America and Eu-
rope; ten years later the first message was transmitted through a copper telephone wire
by Alexander Graham Bell; in 1878 Thomas Alva Edison produced an incandescent
lamp powered through a copper wire (Radetzki, 2009). In 1913, the International Elec-
trotechnical Commission (IEC) established copper as the standard reference for elec-
trical conductivity. From that time until now, the use of copper has spread to different
industrial and service sectors, but still half of the total consumption of copper is related
to electricity. Copper wires have been used to conduct electricity and telecommunica-
tions across long distances as well as inside houses and buildings, cars, aircrafts and
many electric devices. Copper’s corrosion resistance, heat conductivity and malleabil-
ity has made it an excellent material for plumbing and heating applications such as car
radiators and air conditioners, among others (Radetzki, 2009).

The evolution of the copper industry has also historically been closely related, from
a macroeconomic point of view, to the economic activity in developed countries and
the international political scene. Figure 2.1 shows how the evolution of price and pro-
duction has been affected by factors such as: world wars, political reasons (mainly in
South America and Africa, which resulted in the nationalization of several U.S. copper
operators in the 1960s and 1970s), the great depression, the Asian crisis and recently
the subprime crisis.
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Figure 2.1: World Copper Industry 1900 - 2010
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Until the late 1970s, the United States dominated the global copper industry. In 1947
it accounted for 49% of the world copper consumption and 37% of the world copper
mine production, whereas in 1970 it consumed 26% of world copper and produced the
27%. However, the copper production controlled by the American multinational com-
panies outside the US declined because of successive strikes, the 1973 oil crisis, and
the nationalization processes in Zambia, Zaire, Peru and Chile. Since 1978 the copper
industry has been characterized by several changes in ownership and geographical loca-
tion.1 The London Metal Exchange (LME) price has been adopted as the international
price reference by producers and the market structure has experienced a consolidation
era, where a few large companies have dominated this market.

1As deposits are depleted, mining shifts to countries with the next best deposits. In the absence of
new discoveries and technological change, this tendency to exploit poorer quality ores tends to push
productivity down and the prices of mineral commodities up over time.
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2.2 Copper Production Technology

A copper mine is a production unit that vertically integrates the extraction and the pro-
cessing (purification) of the mineral.2 At the extraction stage, a copper mine is an
excavation in earth for the extraction of copper ores, i.e., rocks that contain copper-
bearing minerals. Copper mines can be underground or open-pit (at surface level), and
this characteristic is pretty much invariant over time.3 Most of the rock extracted from
a copper mine is waste material. The ore grade of a mine is roughly the ratio between
the pure copper produced and the amount of ores extracted. In our dataset, the average
ore grade is 1.2% but, as we illustrate in chapter 5, there is large heterogeneity across
mines, going from 0.1% to 11% ore grades.4 Other important physical characteristic of
a mine is the type of ore or minerals that copper is linked to: sulfide ores if copper is
linked with sulfur, and oxide ores when copper is linked with either carbon or silicon,
and oxygen. Although a mine may contain both types, the technological process typ-
ically depends on the main type of the ore. The type of ore is relevant because they
have substantial differences in ore grades and volume of the reserves and because the
processing technology is very different. Sulfide copper deposits have the lowest grade
or copper content. However, sulfide deposits are very attractive for mining companies
because their large volume, that allows exploiting economies of scale. On the other
hand, although oxide deposits are smaller in volume, they have higher ore grade and
their processing and purification implies a much lower cost than sulfide ores. Sulfide
ores represent most of the world’s copper production (80%).

The production process of copper can be described mainly in three stages: extrac-
tion, concentration, and a purification process. In the extraction process copper ore can
be mined by either open pit or underground methods. Independently of the extraction
method, copper ores and other elements are extracted from the mine through digging

2As explained below, mines differ on the level of vertical integration.
3Some open-pit mines may eventually become underground, but this possible event occurs only once

in the long lifetime of a copper mine.
4This final ore grade includes the recuperation rate that is the ratio between the ore grade at the end of

production process and the ore grade after extraction and before the purification process. In our dataset
the mean recuperation rate is 73.3%.
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Figure 2.2: Copper Production Technology
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and blasting, then they are transported out of the mine and finally crushed and milled.
The concentration and refining processes depend on whether the ore is sulfide or oxide.
In the first case, sulfide ores are converted into copper concentrates with a purity varying
from 20% to 50% by a froth flotation process. In the purification stage, copper concen-
trates are melted removing unwanted elements such as iron and sulfur and obtaining a
blister copper with a purity of 99.5%. Next, these blister copper are refined by electricity
or fire eliminating impurities and obtaining a high-grade copper cathode with a purity
of 99.9%. Typically, smelting and refining (or only refining) are carried out at smelter
and refinery plants, different from the mine, either at the same country of the mine or
in the final destination of the copper. High-grade copper is more easily extracted from
oxide ores. In this case, refined copper is extracted in a two-stage hydrometallurgical
process, so-called solvent extraction-electrowinning (SX-EW), where copper ores are
first stacked and irrigated with acid solutions and subsequently cleaned by a solvent
extraction process obtaining an organic solution. Next, in the refining process, copper
with a grade of 99.9% is recovered from the organic solution by the application of elec-
tricity in a process called electrowinning. The final product for industrial consumption
and sold in local or international markets is a copper cathode with a purity of 99.9%. As
we describe in section 2.3, the SX-EW technology also allows to process residual ores
(low ore grade) or waste dumps in mines from sulfide ores which have been oxidized by
exposure to the air or bacterial leaching. Figure 2.2 describes the technological process
of the copper production.

2.3 Technological Change

As noted in section 2.1, the industrial revolution also had an impact on the technology
of mining. There have been important breakthroughs in mining techniques that have
allowed not only to reduce production costs but to increase the resource reserves, re-
ducing the fear of exhaustion. Probably, the two most important breakthroughs took
place in a very short time. First, by 1905 the mining engineer Daniel C. Jackling, first
introduced the mass mining at the Bingham Canyon open-pit mine in Utah (Mikesell,
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2013). Mass mining applied large scale machinery in the production process, e.g., the
use of steam shovels, heavy blasting, ore crushers, trucks and rail made profitable the
exploitation of low-grade sulfide ores through economies of scale. The second most
important development was the flotation process, created in Britain and first introduced
in copper in Butte, Montana in 1911 (Slade, 2013b). This process, which is used to
concentrate sulfide ores, improved significantly the recovery rates of metal and in turn
lowered the processing costs. By 1935, recovery rates increased to more than 90% from
the 75% average recovery rate observed in 1914 (McMahon, 1965).

Once open-pit mining, heavy blasting and flotation techniques were more practica-
ble, the exploitation of low-grade sulfide deposits became economically profitable. By
the beginning of the twentieth century most of the copper exploited came from selective
mining where high grade veins were extracted and mass mining was not possible be-
cause of high loss of metal. The average grade of copper ore decreased greatly as large
scale mining was introduced, while at the beginning of the twentieth century the average
grades were close to 4%, by 1920s they had fallen to less than 2%. Despite this decrease
in ore grades, production costs also declined in this period. The costs in 1923 decline
at least 20% compared with those in 1918. Moreover, between 1900 and 1950 world
copper output was quintupled, raising from 490 Kt. in 1900 to 2490 Kt. in 1950, in
response to the explosive demand and the new mining techniques that increased mining
production (Radetzki, 2009).

A third important breakthrough was the improvement in leaching techniques for ox-
ide ores by the introduction in 1968 of the SX-EW process for copper at the Bluebird
mine in Arizona. This process, as described above, allows to extract high-grade copper
by applying acid solutions to oxide ores. Before the SX-EW process were introduced
oxide ores were treated by a combination of leaching and smelting processes. The
SX-EW process presents a number of advantages compared with the more traditional
pyrometallurgical process, e.g., it requires a lower capital investment and faster start-up
times, allow to process lower grade ores and mining waste dumps (Radetzki, 2009).
The application of this process has spread greatly in recent decades. Between 1980 and
1995, the U.S. production by this method increased from 6% to 27% (Tilton and Lands-
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berg, 1999). The SX-EW has also spread at international level. In 1992, this process
accounted for the 8% of the world production and by 2010 its participation increased to
20% (Cochilco, 2001, 2013).

2.4 Geographical Distribution of World Production

As noted above, since the industrialization of mining until the late 1970s, the United
States dominated the world industry. In the decade of 1920s, the U.S. copper indus-
try reached its peak. By 1925, the United States produced 52% of the world’s copper,
while developing countries in Latin America, Africa and communist countries, pro-
duced 31%. This proportion was gradually reversed over time and by 1960 the U.S.
world production rate had declined to 24% while that developing countries produced
40%. Africa accounted only about 7% by 1925, but by 1960 Africa, mainly by Zambia
(14%), produced the 56% (Mikesell, 2013). In 1982, the United States produced the
16.23% while Chile, that between 1925 and early 1970s had accounted for the 15% of
the world production, produced the 16.39% becoming the new world leader in the in-
dustry until today. The relative importance of the main producer countries for the period
between 1985 and 2010 can be seen in table 2.1.

Copper deposits are distributed throughout the world in a series of extensive and
narrow metallurgical regions. Most of copper deposits are concentrated in the so-called
“Ring of Fire” around the western coast of the Pacific Ocean in South and North Amer-
ica and in some copper belts located in eastern Europe and southern Asia. The geo-
graphical distribution of large and medium size copper deposits is shown in figure 2.3.
As noted above, Chile is the major producer of copper and it accounts for 10 of the
biggest 20 world copper mines, followed far behind by Indonesia, Peru and the United
States with 2 world class mines each5. The biggest 10 mines in the world for the period
between 1992 and 2010 are shown in table 2.2.

5Mines with a minimum production of at least 200 ktn. at any period of the sample.
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Table 2.1: Producer Countries Market Shares (%) 1985 - 2010

Country(1) 1985 1990 1995 2000 2005 2010

1. Chile 16 18 25 35 36 34
2. China 3 3 4 4 5 8
3. Peru 5 3 4 4 7 7
4. USA 13 18 19 11 8 7
5. Indonesia 1 2 5 8 7 5
6. Australia 3 3 4 6 6 5
7. Zambia 6 5 3 2 3 4
8. Russia 0 0 5 4 4 4
9. Canada 9 8 7 5 4 3
10. Congo DR 6 4 0 0 0 3

Source: Codelco

Note (1): Ranking is based on output in 2010.

Figure 2.3: World Copper Mines 1992 - 2010
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Table 2.2: The Biggest 10 Mines in the World 1992 - 2010

Annual production
Mine name(1) Country Operator (thousand Mt)

1. Escondida Chile BHP Billiton 1443.5
2. Grasberg Indonesia Freeport McMoran 834.1
3. Chuquicamata Chile Codelco 674.1
4. Collahuasi Chile Xstrata Plc 517.4
5. Morenci USA Freeport McMoran 500.9
6. El Teniente Chile Codelco 433.7
7. Norilsk Russia Norilsk Group 392.7
8. Los Pelambres Chile Antofagasta Plc 379.0
9. Antamina Peru BHP Billiton 370.2

10. Batu Hijau Indonesia Newmont Mining 313.8

Source: Codelco.

Note (1) Ranking is based on maximum annual production during 1992-2010.

2.5 The Industry Today

Prices. Copper is a commodity traded at spot prices which are determined in interna-
tional auction markets such as the London Metal Exchange (LME) and the New York
Commodity Exchange (Comex).6 However, from the end of the Second World War un-
til the late 1970s, the international copper market was spatially segregated in two main
markets: The U.S. local market and a market for the rest of the world. In the US market
the price was set by the largest domestic producers. In contrast, in the rest of the world,

6A typical contract between producers and consumers specifies the frequency and point of deliveries.
However, price is not specified in contracts, but is determined as the spot price in either COMEX or LME
at the time of delivery.
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copper was sold at LME spot prices. This period, known as the “two-price system”,
officially ended in 1978, when the largest US producers announced that they would use
the Exchange prices as reference to set their contracts.

Figure 2.4 depicts both LME and US producer copper prices (in constant 2010 US
dollars) from 1950 to 2010. A glance at this figure shows that prices present a slightly
declining trend. However, it is possible to identify at least three major booms in this pe-
riod. Radetzki (2006) states that the post war booms of the early 1950s, early 1970s and
2004 onwards can be explained by demand shocks. Furthermore, he explains that the
first boom was caused by inventory build up in response to the Korean War, the second
boom in turn was triggered by the price increases instituted by the oil cartel, while the
third boom has been a consequence of the explosive growth of China’s and India’s row
materials demand. In an attempt to give a deeper understanding of the current boom,
Radetzki et al. (2008) state that increasing demand is not a full explanation for the high
prices observed in the last period. Hence, they postulate three possible explanations for
the 2004 onwards boom: firstly, it now takes much longer time to build new capacity
than in previous booms. Secondly, investors could have failed to predict the increasing
demand, underestimating needed capacity. Finally, exploring costs may have increased,
pushing up in turn prices to justify investment in new capacity. However, there is very
little econometric evidence that measures the contribution of each of these factors.

Consumption. Copper is the world’s third most widely used metal, after iron and
aluminum. Its unique chemical and physical properties (e.g., excellent heat and elec-
tricity conductivity, corrosion resistance, non-magnetic and antibacterial) make it a very
valuable production input in industries such as electrical and telecommunications, trans-
portation, industrial machinery and construction, among others. Fueled by the strong
economic development in East Asia, and specially in China, the consumption of copper
has grown rapidly. In 2008, world copper consumption was approximately 15 mil-
lion tonnes, grossing roughly $105 billion in sales. Table 2.3 shows the consumption
shares of the top ten consumer countries starting in 19807. In this period China began
an economic reform process, where the market rather the state has driven the Chinese

7Ranking list is elaborated in base of the top ten consumer countries in 2009.
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Figure 2.4: Copper Price 1950 - 2009
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economy, which has been very successful and it has led China to an important period
of economic growth and industrial development. This China’s economic success has
permitted it to overcome the United States’ consumption since 2002. Moreover, in
the period of 2005 to 2009 China has almost tripled the U.S. consumption, accounting
roughly for 28% of world copper consumption.

Table 2.3: World Consumption Shares (%) of Refined Copper 1980 - 2009

Country(1) 1980-84 1985-89 1990-94 1995-99 2000-04 2005-09

1. China 5.92 6.09 7.19 10.07 17.32 28.00
2. USA 20.63 20.43 20.9 21.07 16.34 11.59
3. Germany - 3.85 9.11 8.16 7.20 7.40
4. Japan 13.59 12.49 13.48 10.49 7.89 6.62
5. South Korea 1.51 2.41 3.54 4.73 5.71 4.59
6. Italy 3.85 3.99 4.41 4.24 4.31 3.88
7. Russia - 2.86 3.69 1.24 2.33 3.39
8. Taiwan 1.07 1.99 3.94 4.49 4.02 3.36
9. India 0.90 1.14 1.06 1.62 1.93 2.73
10. France 4.51 3.98 4.33 4.16 3.53 2.42

Source: ICSG

Note (1): Ranking is based of consumption in 2009.

Supply. The supply of refined copper originates from two sources, primary produc-
tion (mine production) and secondary production (copper produced from recycling old
scrap). As figure 2.5 shows primary production has almost tripled whereas secondary
production has increased much more modestly. Some tentative explanations for this
fact can be found in the existing literature of mineral economics. An important factor to
explain this poor growth of the secondary production is that the cost of recycling cop-
per scrap has remained high, especially when copper scrap is old (Gómez et al., 2007).
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Other important factor is the effort of primary copper producers to reduce their produc-
tion costs over this period that has contributed to a decline in the real price of copper
since the early 1970s.

Figure 2.5: World Primary and Secondary Copper Production 1966 - 2009
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Copper costs have been extensively studied in the literature, e.g., Foley and Clark
(1982), Davenport (2002), Crowson (2003, 2007) and Agostini (2006), as well as re-
ports from companies and agencies. In mineral economics, costs are mainly classified
in cash costs, operating costs and total costs. Cash costs (C1) represent all costs in-
curred at mine level, from mining through to recoverable copper delivered to market,
less net by-product credits. Operating costs (C2) are the sum of cash costs (C1) and
depreciation and amortization. Finally, total costs (C3) are operating costs (C2) plus
corporate overheads, royalties, other indirect expenses and financial interest. Figure
2.6 shows world average copper costs and copper price in 2010 real terms from 1980
onwards. Both price and costs moved cyclically around a declining trend. However,
since 2003 price has increased steadily while costs, with a certain lag, have increased
since 2005. Part of the decrease in costs can be explained by management improvement
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(Pérez, 2010), the introduction of SX-EW technology and geographical change in the
production, from high-cost regions to low-cost regions Crowson (2003). The increase
in costs in the last period can be explained by an increase in input prices and a decline
in ore grades (Pérez, 2010).

Figure 2.6: World Average Copper Costs 1980 - 2010
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Table 2.4 compares weighted average costs between top ten producer countries in the
period from 1980 to 2010. Chile, Indonesia and Peru present the lowest costs for most
of the period. Interestingly, USA has experienced the most dramatic decline in average
costs. These three countries have become the most cost efficient places to produce
copper.
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Table 2.4: Weighted Average Costs by Country 1980-2010

Country(1)(2) 1980-84 1985-89 1990-94 1995-99 2000-04 2005-10

1. Indonesia 1.05 0.78 0.67 0.26 0.22 0.22
2. Peru 1.21 1.16 1.05 0.74 0.54 0.40
3. USA 1.72 1.15 1.03 0.86 0.74 0.71
4. Chile 1.03 0.76 0.91 0.71 0.54 0.82
5. China - - - 0.72 0.79 1.02
6. Russia - - - 0.89 0.61 1.09
7. Australia 1.59 1.04 1.00 0.89 0.64 1.26
8. Poland - - 0.62 1.06 0.84 1.27
9. Canada 1.35 1.10 1.23 0.96 0.77 1.34
10. Zambia 1.52 0.82 0.89 1.16 1.02 1.54

World Average 1.37 1.01 1.03 0.80 0.59 0.86

Source: Brook Hunt.

Note (1): Ranking is based on average costs in 2010.

Note (2): In US dollars per pound (Deflated 2010)

Figure 2.7 presents the main cost components of copper production, in constant
(2010) US dollars. The biggest contributors to production costs are the storage costs,
which accounted for roughly 33%, on average, during this period. Labor costs are the
second most important component in production costs. Labor costs increased, in real
terms, from 0.21 $/lb to 0.28 $/lb between 1987 and 2010, but this represented a reduc-
tion from 28% to 24% of total production costs, as other costs, such as fuel and services,
experienced larger increases. Electricity, that is intensively used at the SX-EW and re-
fining stages, represents on average roughly 13% of the production costs of a pound of
copper.
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Figure 2.7: Average Cost by Component 1987 - 2010
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A Microeconometric Theoretical Model for the Copper

Mining Industry

This chapter has been co-authored with Dr. Victor Aguirregabiria, Professor in Eco-

nomics, Department of Economics, University of Toronto, Max Gluskin House, Toronto,

Ontario, M5S 3G7, Canada. Email: victor.aguirregabiria@utoronto.ca

This chapter builds upon the natural resources literature. Natural resource indus-
tries have been little explored in the modern Industrial Organization literature. Most
of the research had focused in commodity price fluctuations and the Hotelling’s rule,
and cartel behavior. New tools in empirical industrial organization and new and better
data sets developed in recent years are leading to a revival of the interest on these old
and somewhat forgotten models of natural resources. For instance, Slade (2013a) ex-
plores investment decisions under uncertainty in the U.S. copper industry. Lin (2013)
estimates a dynamic game of investment in the offshore petroleum industry. Huang and
Smith (2014) estimate a dynamic entry game of a fishery resource.
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The dynamics of the extraction of natural resources has been analyzed by economists
since Hotelling’s seminal paper. The basic and well known Hotelling model considers
the extraction path that maximizes the expected and discounted flow of profits of a firm
given a known and finite stock of reserves of a nonrenewable resource. An important
prediction of the model is that, under the optimal depletion of the natural resource, the
price-cost margin should increase at a rate equal to the interest rate, i.e., Hotelling rule.
Hotelling’s paper also first introduced the concept of depletion effect which reflects the
increasing cost associated with the scarcity of the resource.

Subsequent literature on natural resources has extended Hotelling model in different
directions. Pindyck (1978) includes exploration in Hotelling model, and uses this model
to derive the optimal production and exploration paths in the competitive and monopoly
cases. He finds that the optimal path for price is U-shaped. Gilbert (1979) and Pindyck
(1980) introduce uncertainty in reserves and demand. There has been also substantial
amount of empirical work testing Hotelling rule. Most empirical studies have found evi-
dence that contradicts Hotelling’s rule. Farrow (1985) and Young (1992), using a sample
of copper mines, reject the Hotelling rule. In contrast, Slade and Thille (1997) finds a
negative and significant depletion effect and results more consistent with theory using a
model of pricing of a natural-resource that integrates financial and output information.
Krautkraemer (1998) and Slade and Thille (2009) provide comprehensive reviews of
the theoretical and empirical literature, respectively, extending Hotelling model.

The copper industry has been largely examined by empirical researches since the
well known study of competition by Herfindahl in 1956. In general, the literature on
the copper industry can be divided into four groups according to their main interest.
Most of these studies have used this industry to test more general theories on prices,
uncertainty, tax effects and efficiency.

A first group include those studies in which the main purpose is to examine the be-
havior of prices and investment under uncertainty in the industry. A seminal paper in
this branch is the work by Fisher et al. (1972a) who uses aggregate yearly data on prices,
output and market characteristics for the period 1948-1956 and several countries to esti-
mate the effect on the LME copper price of an exogenous increase in supply either from
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new local policies or new discovery. They found that these increases in supply will
be mainly absorbed by offsetting reductions in the supply from other countries. Har-
chaoui and Lasserre (2001) study capacity decisions of Canadian copper mines during
1954-1980 using a dynamic investment model under uncertainty. They found that the
model explains satisfactorily the investment behavior of mines. Slade (2001) estimates
a real-option model to evaluate the managerial decision of whether to operate a mine
or not also using a sample of Canadian copper mines. More recently, Slade (2013a)
investigates the relationship between uncertainty and investment using a extensive data
series of investment decisions of U.S. copper mines. She uses a reduced form analysis
to estimate the investment timing to go forward and the price thresholds that trigger
this decision. Interestingly, she finds that with time-to-build, the effect of uncertainty
on investment is positive. In a companion paper, Slade (2013b) studies the main de-
terminants of entry decisions using a reduced form analysis. She extends the previous
analysis adding concentration of the industry and resource depletion. Here, copper is
considered as a common pool resource and depletion is measured as cumulative pro-
duction in all the industry rather than depletion at single mine level. Slade finds that
technological change and concentration of the industry has a positive effect on entry
decisions whereas resource depletion affects negatively the new entry of mines. Inter-
estingly, in contrast to the companion paper, Slade finds a negative effect of uncertainty
on entry decisions. The provided explanation is that an increase in uncertainty (with
time-to-build) may encourage the implementation of investment projects that are at the
planning stage, but it has also a negative effect in the long-run by moving resources
towards industries with lower levels of uncertainty.

A second group of papers have studied the conditions for dynamic efficiency in
mines output decisions in the spirit of the aforementioned Hotelling’s model. Most
of these studies use a structural model where the decision variable is the amount of out-
put. Young (1992) examines Hotelling’s model using a panel of small Canadian copper
mines for the period 1954-1986. She estimated the optimal output path in a two stage
procedure. In a first step, she estimates a translog cost function, and in a second step the
estimated marginal cost is plugged into the Euler equation of the firm’s intertemporal
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decision problem for output, and the moment conditions are tested in the spirit of the
GMM approach in Hansen and Singleton (1982). The results showed that her data is
no consistent with Hotelling model. Slade and Thille (1997) use the same data as in
Young (1992) to analyze the expected rate of return of a mine investment by combining
Hotelling model with a CAPM portfolio choice model. Gaudet (2007) explores copper
price behavior and survey the factors that characterize the rate of return on holding an
exhaustible natural resource stock and determine their implications in the context of the
Hotelling’s model.

A third group of papers study the effects of taxes and / or environmental policies
(certifications) on the decisions of copper mines. Slade (1984) studies the effect of taxes
on the decision of ore extraction and metal output. Foley and Clark (1982) evaluates
the effects of potential state taxes on price and production in 47 U.S. copper mines
using proprietary cost data for the period 1970-1978. Tole and Koop (2013) studies the
implications on costs and operation output decisions of the adoption of environmental
ISO using a panel of 99 copper mines from different producing countries for the period
1992-2007. They find evidence that ISO adoption increases costs.

This model and its empirical results emphasize the importance of the extensive mar-
gin, and the heterogeneity and endogeneity of ore grade to explain the joint dynamics
of supply and prices in the copper industry. Krautkraemer (1988, 1989) and Farrow and
Krautkraemer (1989) present seminal theoretical models on these topics.

Finally, a reduced group of papers has studied the competition and strategic interac-
tions in the copper industry. Agostini (2006) estimates a static demand and supply and
a conjectural variation approach a la Porter (1983) to measure the nature or degree of
competition in the U.S. copper industry before 1978. He finds evidence consistent with
competitive behavior.
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3.1 Basic Framework

A copper firm, indexed by f , consists of a set of minesMf , indexed by i ∈ Mf each
one having its own specific characteristics. Time is discrete and indexed by t. A firm’s
profit at period t is the sum of profits from each of its mines, Πft =

∑
i∈Mf

πit. For
the moment, we assume that profits are separable across mines and we focus on the
decision problem of a single mine. Every period (year) t, the managers of the mine
make two decisions that have implications on current and future profits: (1) whether
to be active or not next period (ait+1 ∈ {0, 1}); and (2) how much output to produce
(qit). Let dit ≡ (ait+1, qit) be the vector with these decision variables, and let yit ≡
(ait, kit, git, rit) be the vector of endogenous state variables, where kit represents capital
equipment, rit represents ore reserves, and git is ore grade. Similarly, let (zit, εit) be the
vector with all the exogenous state variables in demand, productivity, and input prices,
where zit represents exogenous state variables that are observable to the researcher, and
εit represents unobservables. We use xit ≡ (yit, zit) to represent the vector with all the
observable state variables, and sit ≡ (xit, εit) to represent all the state variables. Then,
the dynamic decision problem of a mine manager can be represented using the Bellman
equation:

Vi (sit) = max
dit

{
πi (dit, sit)

+β

∫
Vi (yit+1, zit+1, εit+1) fy(yit+1|dit,yit) fz(zit+1|zit) fε(εit+1|εit)

}
(3.1.1)

where β ∈ (0, 1) is the discount factor, and fy, fz, and fε are the transition probability
functions of the state variables.

The rest of this section describes in detail the economics of the primitive functions
πi, fy, fz, and fε. Section 3.2 presents the parametric specification of these functions.
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(a) Profit function. The one-period profit function of a mine is:

πit = Pt qit − V Cit(qit)− FCit − ECit −XCit (3.1.2)

where Pt is the price of copper in the international market, V Cit is the variable cost
function, FCit represents fixed operating costs, ECit is the cost of entry (re-opening)
and XCit is the cost of closing the mine.

(b) Markets, competition, and demand function. The market of copper is global and its
price Pt is determined by aggregate world demand and supply. World inverse demand
function is:

Pt = p
(
Qt, z

(d)
t , ε

(d)
t

)
(3.1.3)

where Qt is the aggregate industry output at period t, and
(
z
(d)
t , ε

(d)
t

)
are exogenous

variables that enter in the demand function. z
(d)
t is a vector of exogenous demand

shifters observable to the researcher, such as GDP growths of US, EU, and China, and
the price of aluminium (i.e., the closest substitute of copper). ε(d)t is a demand shock that
is unobservable to the researcher. We assume that firms (mines) in this industry compete
a la Nash-Cournot. When a mine decides its optimal amount of output at period t, qit,
it takes as given the output choices of the rest of the mines in the industry, Q−it. Note
that our game of Cournot competition is dynamic. As we describe below, a mine output
decision has effects on future profits. Mine managers are forward looking and take into
account these dynamic effects. We assume that mines are price takers in input markets.

(c) Active / no active choice. Every year t, the managers of a mine decide whether
to operate the mine next period or not. We represent this decision using the binary
variable ait+1 ∈ {0, 1}, where ait+1 = 1 indicates that the mine decides to be active
(operating) at period t + 1. Based on information from conversations with industry
experts, we assume that there is time-to-build in the decision of opening or closing a
mine: a decision taken at year t is not effective until year t+ 1. Our conversations with
industry experts also indicate that almost all the mine closings during our sample period
were not permanent closings. This is reinforced by evidence in our data showing a
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substantial amount of reopenings during our sample period. Therefore, in our model, we
consider that mine closings are reversible decisions. Though re-opening is reversible, it
is costly. If the mine is not active at t, there is a fix cost ECit of starting-up at t + 1.
This cost may depend on state variables such as mine size as measured by reserves, and
the price of fixed inputs. Closing a mine is costly too. If the mine is active at year t
and the managers decide to stop operations at t + 1, there is a cost of closing the mine.
Start-up and closing costs are paid at period t but the decision is not effective until t+1.
Start-up cost has the following form:

ECit = c
(e)
i (xit) + ε

(e)
it , (3.1.4)

and similarly, the closing cost is:

XCit = c
(x)
i (xit) + ε

(x)
it , (3.1.5)

where c(e)i (.) and c(x)i (.) are functions of the vector of observable state variables xit that
we specify below. ε(e)it and ε(x)it are state variables that are observable to mine managers
but unobservable to the researcher.

(d) Production decision / Production function / Variable costs. An active mine at year
t (i.e., ait = 1) should decide how much copper to produce during the year, qit. This
is a dynamic decision because current production has two important implications on
future profits. First, current production depletes reserves and then reduces the expected
lifetime of the mine. Reducing reserves can also increase future production costs. A
second dynamic effect is that the depletion of the mine has a negative impact on ore
grade. We capture these effects through the specification of the variable cost function (or
equivalently, the production function), and through the transition rule of ore grade. The
production function of copper in a mine is Cobb-Douglas with six different production
inputs:

qit = (`it)
α` (eit)

αe (fit)
αf (kit)

αk (rit)
αr (git)

αg exp{ωit} (3.1.6)
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where `it is labor, eit and fit represent electricity and fuel, respectively, kit is capital
equipment, rit represents ore reserves, git is ore grade, ωit is a productivity shock, and
α’s are parameters. Capital, reserves, ore grade, and productivity shock, (kit, rit, git, ωit),
are predetermined variables for the output decision at year t. The mine chooses the
amount of labor, electricity, and fuel at year t, (`it, eit, fit), and this decision is equiv-
alent to the choice of output qit. The first order conditions of optimality for the three
variable inputs are the following: for every variable input v ∈ {`, e, f}:

MRit
∂qit
∂vit
− pvit + β Et

[
∂Vit+1

∂yit+1

∂yit+1

∂qit

]
∂qit
∂vit

= 0 (3.1.7)

where: MRit ≡ [p′t (Qt) qit + Pt] is the marginal revenue of mine i; ∂qit/∂vit is the
marginal productivity of variable input v ∈ {`, e, f}; pvit is the price of this input at
the input markets where mine i operates; ∂yit+1/∂qit represents the dynamic effects
of current output on next period reserves and ore grade, that we describe below; and
∂Vit+1/∂yit+1 is the marginal value of reserves and ore grade. Though the choice
of these variable inputs have dynamic implications, the dynamic effect operates only
through current output. Therefore, it is clear that these dynamic marginal conditions of
optimality imply the standard static condition that the ratio between marginal produc-
tivity of inputs should equal the ratio between input prices:

∂qit/∂`it
∂qit/∂eit

=
p`it
peit

and
∂qit/∂`it
∂qit/∂fit

=
p`it

pfit
(3.1.8)

Using these conditions, the production function, and the definition of variable cost as
V Cit ≡ p`it `it + peit eit + pfit fit, we can derive the variable cost function1:

V Cit = αv

(p`it/α`)α` (peit/αe)
αe
(
pfit/αf

)αf
(kit)αk (rit)αr (git)αg exp{ωit}

qit

(1/αv)

(3.1.9)

where αv is the sum of the coefficients of all the variable inputs, i.e., α` +αe +αf . The

1See Appendix A.1 for a more detailed derivation of the variable and marginal costs.
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marginal cost is equal to MCit = (1/αv) (V Cit/qit).

(e) Transition rule for reserves and ore grade. The endogenous evolution of ore reserves
is described by the equation:

ri,t+1 = rit −
(
qit
git

)
+ z

(r)
i,t+1 (3.1.10)

qit/git represents the amount of ore that was extracted from the mine at period t to
produce qit units of copper. z(r)i,t+1 is an stochastic shock that represents updates in ore
reserves due to new discoveries or reviews in the estimated value of reserves. For the
moment, we assume that z(r)i,t+1 follows an exogenous stochastic process. More specif-
ically, z(r)i,t+1 follows a first order Markov process, i.e., new discoveries have positive
serial correlation. We assume that z(r)i,t+1 is unknown to the mine managers when they
make their decisions at year t, but they know zrit, and this is a state variable of the model.
Note that z(r)it is observable to the researcher, i.e., for every mine i and year t, we can
construct z(r)it = rit − rit−1 + qit−1/git−1. For periods where a mine is not active, we
have that z(r)it = 0.

The transition for ore grade captures the depletion effect on the quality of the mine.
Following Caldentey et al. (2006) and consistent with mining practices, we assume
that a mine is divided into a collection of blocks each one having particular geological
characteristics, i.e., its own ore grades and extraction costs. These blocks represent
minimal extraction units so that the miner’s production decisions are made at block
level. Usually, blocks with the highest ore grade are extracted first which determine the
block extraction path of the mine. As deposits are depleted, mining shifts to blocks with
the next best quality. However, given the physical characteristics of the mine, factors
other than ore grade, such as the depth level of the block, hardness of the rocks, and
distance to the processing plant, play also a role in the optimal path of block extraction.
We have tried different specifications for the transition rule of ore grade. The following
equation describes our favored specification:

ln gi,t+1 = ln git − δ(g)q ln(1 + qit) + δ(g)z z
(r)
it + ε

(g)
it+1 (3.1.11)
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The model imposes the restriction that all the effects, exogenous or endogenous, on ore
grade are permanent. We have tried specifications where the parameter of git is smaller
than 1, and the estimate of this parameter, though precise, is not significantly different
to 1. The parameter δ(g)q (depletion elasticity of ore grade) is positive and −δ(g)q ln qit

captures the depletion effect on ore grade. The term δ
(g)
z z

(r)
it takes into account that new

discoveries may imply changes in ore grade.

(f) Fixed costs. The operation of a copper mine is very intensive in specialized and
expensive capital equipment, i.e., extraction machinery, transportation equipment, and
processing/refining equipment. These inputs are typically fixed within a year, but they
imply costs of amortization, leasing, and maintenance. These costs depend on the size
of the mine as measured by reserves and capital.

FCit = pkit kit + θ
(fc)
1 kit + θ

(fc)
2 rit + θ

(fc)
3 (kit)

2 + θ
(fc)
4 (rit)

2, (3.1.12)

where pkit price of capital, as measured by interest costs, and {θ(fc)j } are parameters
that capture the relationship between mine size and fixed costs. Parameters θ(fc)3 and
θ
(fc)
4 can be either positive or negative, depending on whether there are economies or

diseconomies of scale associated to the size of the mine (in contrast to the more standard
economies of scale associated to the level of output, that are captured by the fixed cost
itself).

3.2 Euler Equations

In this section, we derive the dynamic conditions of optimality that we use for the es-
timation of model parameters and for testing some specification assumptions. These
optimality conditions, that we generally describe as Euler equations, involve decisions
and state variables, at a small number of consecutive years. We derive two different
types of Euler equations: (a) for output when output is positive; and (b) for the binary
choice of being active or not. Euler equation (a) is standard and it can be derived by
combining marginal conditions of optimality at two consecutive periods with the appli-
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cation of the Envelope Theorem in the Bellman equation. The second Euler equation
is not standard. The Euler equation for the entry decision is not standard because it
involves discrete choices and, in principle, these choices do not involve marginal con-
ditions of optimality. Following Aguirregabiria and Magesan (2013), we show that our
dynamic decision model has a representation where discrete choices for output is de-
scribed in terms of Conditional Choice Probabilities (CCPs). Then, we show that a mine
optimal decision rule for this discrete decisions implies marginal conditions of optimal-
ity. Finally, we show that we can combine these marginal conditions at two consecutive
periods to derive Euler equations.

For notational simplicity, in this section we omit the mine subindex i.

3.2.1 Euler Equation for Output

Consider a mine that is active at two consecutive years, t and t+ 1. Note that the time-
to-build assumption, on opening and closing decisions, implies that when the managers
of the mine make output decision at year t they know that the mine will be active at
year t + 1 with probability one. The managers know that the marginal condition of
optimality with respect to output will hold at period t + 1 with probability one. Under
this condition and taking into account the form of the profit function πt, we can derive
a standard Euler equation for output. We show in Appendix A.2 that the Euler equation
for output is:

MRt −MCt = β Et
(

[MRt+1 −MCt+1]
(1 + qt+1)

(1 + qt)
+ αgδ

(g)
q

qt+1

(1 + qt)
MCt+1

)
(3.2.1)

where αgδ
(g)
q

qt+1

(1 + qt)
MCt+1 represents the increase in marginal costs due to the de-

pletion effect. This Euler equation already contains several extensions with respect to
Hotelling’s rule. In a simple dynamic decision model for the exploitation of a nonre-
newable resource, where firms do not have market power, the marginal production cost
does not depend on reserves and ore grade and

(
1+qt+1

1+qt

)
= 1, the Euler equation of

the model becomes Pt − MCt = β Et (Pt+1 −MCt+1), that often is represented as
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Hotelling’s rule as:
Et (Pt+1 −MCt+1)

Pt −MCt
− 1 =

1− β
β

(3.2.2)

This equation is a particular solution of our model and implies that, on average, the
price-cost margin increases over time at an annual rate equal to (1 − β)/β, e.g., for
β = 0.95, this rate is equal to 5.2%. This prediction is typically rejected for most
non-renewable resources, and for copper in particular. The Euler equation in (3.2.1)
introduces two extensions that modify this prediction. First, a unit increase in output at
period t implies an increase in the marginal cost at t+ 1 equal to αgδ

(g)
q

qt+1

(1 + qt)
MCt+1.

Depletion increases future marginal cost. This effect may offset, partly or even com-
pletely, the standard depletion effect on price-cost margin in Hotelling model. To see
this, we can write the Euler equation as:

Et (Pt+1 −MCt+1)

Pt −MCt
− 1 =

1− β
β
−

Et
(
αgδ

(g)
q

qt+1

(1 + qt)
MCt+1

)
Pt −MCt

(3.2.3)

The second term in the equation is negative and it can be larger, in absolute, than (1 −
β)/β. In chapter 6, we present our estimates of production function parameters and
show that αg is relatively large, i.e., point estimates between 0.59 and 0.77, depending
on the estimation method.

3.2.2 Euler Equation for Discrete Choice Active/Non active

Let π∗(at+1,xt) + εt(at+1) be the one-period profit function such that: (a) it is condi-
tional to the hypothetical choice of at+1 for the active/no active decision; and (b) we
have already solved in this function the optimal decision for output. By definition, we
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have that εt(0) = −at ε(x)t and εt(1) = −(1− at) ε(e)t , and:

π∗(at+1,xt) = π (at+1, q
∗[xt],xt) =


Π∗(xt)− at c(x)i (xt) if at+1 = 0

Π∗(xt)− (1− at) c(e)i (xt) if at+1 = 1
(3.2.4)

where Π∗(xt) ≡ V P ∗(xt) − FC(xt) is the part of the profit function that does not
depend on at+1. We can use the profit function to define a dynamic binary choice model
that represents the part of our model related to the mine decision to be active or not. The
Bellman equation of this problem is:

V (xt, εt) = max
at+1∈{0,1}

{
π∗(at+1,xt) + εt(at+1)

+β

∫
V (xt+1, εt+1) f

∗
x(xt+1|at+1,xt) fε(εt+1|εt)

}
(3.2.5)

Let at+1 = α∗(xt, εt) be the optimal decision rule of this DP problem. Under the
assumption that εt = {εt(0), εt(1)} is i.i.d. over time, this optimal decision rule has a
threshold structure, i.e., there is a real-valued function µ∗(xt) such that:

at+1 = α∗(xt, εt) = 1 {εt(0)− εt(1) ≤ µ∗(xt)} (3.2.6)

Therefore, to characterize this optimal decision rule, we can concentrate in the class
of decision rules with the structure α(xt, εt) = 1 {εt(0)− εt(1) ≤ µ(xt)}, for arbitrary
µ(xt). Given the CDF of εt(0)− εt(1), i.e., F (.), and an arbitrary real-valued function
µ(xt), we can uniquely define a Conditional Choice Probability (CCP) function:

P (xt) ≡ F (µ(xt)) (3.2.7)

This CCP function represents the probability of being active at period t + 1 given the
observable state xt and given the decision rule µ.

It is clear that there is a one-to-one relationship between the three representations
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of a decision rule: (1) the representation in action space, α(xt, εt); (2) the threshold
function µ(xt); and (3) the CCP function P (xt). Following Aguirregabiria and Magesan
(2013), we consider a representation of the model in terms of the CCP function. This
representation has the following (integrated) Bellman equation:

V P (xt) = max
P (xt)∈[0,1]

{
ΠP (P (xt),xt) + β

∫
V P (xt+1) f

P
x (xt+1|P (xt),xt) dxt+1

}
(3.2.8)

with:

ΠP (P (xt),xt) ≡ (1−P (xt)) [π∗ (0,xt)+e(0,xt, P )]+P (xt) [π∗ (1,xt)+e(1,xt, P )],
(3.2.9)

where e(a,xt, P ) is the expected value of εt(a) conditional on alternative a being chosen
under decision rule P (xt); and

fPx (xt+1|P (xt),xt) ≡ (1− P (xt)) f
P
x (xt+1|0,xt) + P (xt) f

P
x (xt+1|1,xt). (3.2.10)

Proposition 2(i) in Aguirregabiria and Magesan (2013) shows that the optimal CCP
function P ∗(xt) that solves Bellman equation (3.2.8) is the CCP function that corre-
sponds to the optimal decision rule in our original problem in equation (3.2.5), i.e.,
at+1 = α∗(xt, εt) = 1 {εt(0)− εt(1) ≤ F−1[P (xt)]}.

Using this representation property of our dynamic binary choice model, we can de-
rive the following Euler equation that involves CCPs at periods t and t+ 1. We provide
the details of this derivation in Appendix A.3.[

π∗ (at+1 = 1,xt)− π∗ (at+1 = 0,xt)

σε
− ln

(
P (xt)

1− P (xt)

)]

+β Et
[
π∗ (at+2 = 1, at+1 = 1,xt+1)− π∗ (at+2 = 1, at+1 = 0,xt+1)

σε

− ln

(
P (at+1 = 1,xt+1)

P (at+1 = 0,xt+1)

)]
= 0 (3.2.11)
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Or taking into account the form of the profit function πt:[
at c

(x)(xt) + (1− at)c(e)(xt)
σε

− ln

(
P (xt)

1− P (xt)

)]
+

β Et
[

Π∗(xt+1) + c(e)(xt+1)

σε
− ln

(
P (at+1 = 1,xt+1)

P (at+1 = 0,xt+1)

)]
= 0
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Data and Descriptive Evidence

4.1 Data Description

We have built a unique dataset of almost two decades for this industry. We have col-
lected yearly data for 330 copper mines from 1992 to 2010 using different sources. The
dataset contains detailed information at the mine-year level on extraction of ore and
final production of copper and by-products (all in physical units),1 reserves, ore and
mill grades, recuperation rate, capacity, labor, energy and fuel consumption (in physical
units), input prices, total production costs, indicators for whether the mine is temporar-
ily or permanently inactive, and mine ownership.2 Mine level data is compiled for active
mines by Codelco. This data set represents, approximately, 85% of the industry output.

1By-products include cobalt, gold, lead, molybdenum, nickel, silver, and zinc.
2We are especially grateful to Juan Cristobal Ciudad and Claudio Valencia of Codelco, Daniel Elstein

of USGS, Carlos Risopatron and Joe Pickard of ICGS, and Victor Garay of Cochilco for providing the
data for this analysis.
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Price at the LME is collected by USGS. Capacity and consumption data are from ICSG.

Table 4.1 presents the summary statistics for variables both at the mine level and
market level. On average, there are 172 active mines per year, with a minimum of 144

in year 1993 and a maximum of 226 in 2010. We describe the evolution of the number
of mines, entry, and exit in section 4.2 below. On average, an active mine produces
64 thousand tonnes of copper per year. The average copper concentration or grade is
1.21%. There is large heterogeneity across mines in production, capacity, reserves, ore
grade, and costs. We describe this heterogeneity in more detail in section 4.2.

Next, we describe the main variables in the data set:

Market Level:
LME price: Copper price at the London Metal Exchange in US$ per tonne (USGS).
World Consumption: World total consumption of primary copper in thousands of
tonnes (ICSG).
World Capacity: World annual production capability for copper units, whether con-
tained in concentrate, anode, blister, or refined copper in thousands of metric tonnes
(ICSG).
World Production: World total mine copper produced by mines in thousands of tonnes
(USGS).

Mine Level:
Number of Mines: Number of active mines per year (Codelco).
Capacity: Capacity reflects a plant’s annual production capability for copper units,
whether contained in concentrate, anode, blister, or refined copper in thousands of met-
ric tonnes. Capacity is usually determined by a combination of engineering factors,
such as gross tonnage of milling capacity and feed grades that determine long-term sus-
tainable production rates. Mine capacity is not generally adjusted to reflect short-term
variations in ore grade but would reflect long-term trends in ore grade. Electrowinning
capacity is usually determined by tankhouse parameters. (ICGS)
Copper production: Total payable copper produced either by concentrates or electro-
winning in thousands of tonnes. Production data in concentrates is presented in terms
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of the amount of metal contained in the concentrate (Codelco).
By-products production: A mine can extract by-products or secondary metals as con-
sequence of copper mining, this by-products can include cobalt, gold, lead, molybde-
num, nickel, silver, and zinc (Codelco). Which by-product is extracted at each mine
depends on the geographical location of the mine. By-products could be very impor-
tant for the profitability of a mine and if they are not considered in the analysis there
is a high risk of overestimate variable and marginal costs. It is transformed into copper
equivalent units using 1992 copper prices.
Reserves: Ore reserves accounts for part of the mineral resource for which appropriate
assessments have been carried out to demonstrate at a given date that extraction could
be reasonably justified in terms of mining, economic, legal and environmental factors.
Ore Grade: Percentage of copper content in the ore body.
Realized Grade: Percentage of equivalent copper content in the ore body (including
by-products).
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Table 4.1: Copper Mines Panel Data 1992-2010. Summary Statistics

Variable (measurement units) Units(1) Obs. Mean Std. Dev. Min Max

Mine-Year level data
Number of active mines mines 19 172.8 26.4 144.0 226.0
Capacity kt of cu 2672 86.36 146.89 0.25 1500.00
Copper production kt of cu 3284 64.51 127.53 0.00 1443.54
By-products production(2) kt of equivalent cu 3284 23.75 61.42 0.00 809.10
Ore mined mt of ore 3261 11.48 25.68 0.006 314.21
Reserves mt of ore 2687 253.16 533.14 0.02 5730.15
Copper ore grade % 2630 1.21 1.22 0.02 11.42
Copper realized grade % 3279 0.97 1.11 0.00 10.96
Copper equiv. realized grade % 3279 2.25 2.03 0.01 15.17
Number of workers workers 3270 1584.49 3499.01 18.00 48750.00
Labor cost US $ / t cu equiv. 3270 445.68 559.55 38.90 21277
Electricity consumption Kwh/t treated ore 3011 78.70 299.26 1.13 7530.96
Electricity unit cost US Cents/Kwh 3276 5.27 2.88 0.26 35.00
Fuel consumption litres/t treated ore 3253 1.60 1.36 0.00 21.52
Fuel unit cost US Cents/Litre 3260 44.48 26.16 0.70 156.00

Market-Year level data
LME Price US$/t 19 3375 2097 1559 7550
World consumption mt 19 13.04 2.17 9.46 16.33
World production mt 19 13.10 2.24 9.50 16.17
World capacity mt 19 14.78 2.87 10.82 19.81
Total production in our sample mt 19 11.14 2.34 7.28 13.95
Total capacity in our sample mt 19 12.84 2.49 9.11 16.92

Source: Codelco

Note (1): t represents metric tonnes (1,000 Kg), kt thousand of metric tonnes, and mt million of metric tonnes.

Note (2): By-product production is transformed into copper equivalent production using 1992 copper price.
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4.2 Descriptive Evidence

In this section, we use our dataset to present descriptive evidence on four features in the
operation of copper mines that have been often neglected in previous econometric mod-
els: (a) the high concentration of market shares in very few mines, and indirect evidence
of market power and strategic behavior; (b) the lumpiness of investment; (c) the impor-
tance of production decisions at the extensive, i.e., active / inactive decision; and (d) the
very large heterogeneity across mines in unit costs and geological characteristics.

4.2.1 Concentration of Market Shares

The international copper market structure, as many other mineral industries, is charac-
terized by a reduced number of mines that account for a very large proportion of world
production. Table 4.2 presents the market shares of the leading copper mines in 1996.
Escondida (BHP-Billiton) and the Chilean state-owned mine, Chuquicamata (Codelco),
have dominated the market with the 16% of world copper production. Some changes in
the industry have undergone in the last decade as new mines are discovered. For exam-
ple, Collahuasi (Xstrata) and Los Pelambres (Antofagasta Minerals), two world-class
mines located in Chile have been developed since then and were ranked fourth and sev-
enth, respectively, in 2010. However, in general, market shares and concentration ratios
have remained relatively stable over the sample period.
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Table 4.2: Market Shares and Concentration Ratios: Year 1996

Rank Mine (Country) Annual production Share % Con. Ratio
in 1996 (thousand Mt) CR(n) %

1. Escondida (Chile) 825 9.1 9.1
2. Chuquicamata (Chile) 623 6.9 16.0
3. Grasberg (Indonesia) 507 5.5 21.5
4. Morenci (Arizona, USA) 462 5.1 26.6
5. KGHM (Poland) 409 4.4 31.0
6. El Teniente (Chile) 344 3.8 34.8
7. ZCCM (Zambia) 314 3.4 38.2
8. Bingham C. (Utah, USA) 290 3.2 41.4
9. Ok Tedi (Papua) 179 2.0 43.4
10. La Caridad (Mexico) 176 2.0 45.4

4.2.2 Lumpy Investment in Capacity

Table 4.3 present the empirical distribution of investment rate in capacity, iit ≡ (kit −
kit−1)/kit−1, for the subsample of observations where the firm is active at two consecu-
tive years. Investment is very lumpy, with a high proportion of observations with zero
investment, and large investment rates when positive.
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Table 4.3: Empirical Distribution Investment Rate in Capacity

Statistic 1993 1997 2001 2005 2009

% Obs. Zero Investment 80.0% 41.6% 45.0% 60.3% 69.8%
Conditional on positive

Pctile 25% 12.5% 6.2% 6.2% 4.0% 7.8%
Pctile 50% 20.0% 16.2% 20.0% 21.7% 37.5%
Pctile 75% 100.0% 31.6% 100.0% 80.0% 116.6%

Source: Codelco

4.2.3 Active / Inactive Decision

Figure 4.1 presents the evolution of the number of active mines and the LME copper
price during the period 1992-2010. The evolution of the number of active mines fol-
lows closely the evolution of copper price in the international market, though the series
of price shows more volatility. The correlation between the two series is 0.89. How-
ever, market price and aggregate market conditions are not the only important factors
affecting the evolution of the number of active mines. Mine idiosyncratic factors play
an important role too. As shown in figure 4.2 and in table 4.4, this adjustment in the
number of active mines is the result of very substantial amount of simultaneous entry
(re-opening) and exit (temporary closing) decisions.



48 4.2 Descriptive Evidence

Figure 4.1: Evolution of the Number of Active Mines: 1992-2010
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Figure 4.2: Entry (Re-opening) and Exit (Temporary Closings) Rates of Mines: 1992-
2010
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Table 4.4: Number of Mines, Entries and Exits

Variable 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

# Active mines 146 144 146 149 161 167 169 158 159 157
Entries - 5 8 10 21 15 10 3 15 7
Exits - 7 6 7 9 9 8 14 14 9

Variable 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

# Active mines 160 159 164 177 193 205 221 223 226 -
Entries 12 8 10 16 23 13 18 15 7
Exits 9 9 5 3 7 1 2 13 4 -

Source: Codelco

Table 4.5 presents estimates of a probit model for the decision of exit (closing) that
provide reduced form evidence on the effects of different market and mine characteris-
tics on this decision. We present estimates both from standard (pooled) and fixed effect
estimations, and report coefficients and marginal effects evaluated at sample means.
The fixed effect Probit provides more sensible results: the signs of all the estimated ef-
fects are as expected, in particular, the effect of market price is positive and significant;
and the marginal effects of the mine cost and ore grade variables become stronger. The
smaller marginal effect of ore reserves in the FE Probit has also an economic interpre-
tation: the mine fixed effect is capturing most of the “expected lifetime” effect (see the
very substantial increase in the standard error), and the remaining effect captured by
reserves is mainly through current costs. The estimates show that mine-specific state
variables play a key role in the decision of staying active. The effect of ore grade is
particularly important: doubling ore grade from the sample average 1.23% to 2.66%

(percentile 85) implies an increase in the probability of staying active of almost 12 per-
centage points.
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Figure 4.3 shows the estimated probability of an incumbent staying active varies with
ore grade. Figure 4.4 presents this probability as a function of the mine average cost
(C1). In this case, the higher the cost, the less likely an incumbent mine remain active.

Table 4.5: Reduced Form Probit for “Stay Active”(1)

Variable Probit Marginal effect FE Probit Marginal effect

ln(Price LME)[t] -0.0681 -0.0201 0.520*** 0.101***
(0.0473) (0.0139) (0.140) (0.0270)

ln(mine Avg. cost)[t-1] -0.290*** -0.0857*** -1.940*** -0.377***
(0.0442) (0.0128) (0.214) (0.0401)

ln(Ore reserves)[t-1] 0.125*** 0.0368*** 0.235*** 0.0456***
(0.0108) (0.00303) (0.0697) (0.0135)

ln(Ore grade)[t-1] 0.0242 0.00714 0.591*** 0.115***
(0.0276) (0.00815) (0.167) (0.0322)

Number of obs. 3243 2233
Log-likelihood -1697.4 -784.9

Note (1): Subsample of mines active at year t-1. Dependent variable: Dummy “Mine active at year t”.

Note (2): * = significant at 10%; ** = significant at 5%; *** = significant at 1%;

4.2.4 Large Heterogeneity Across Mines

There is very large heterogeneity across mines in geological characteristics, such as re-
serves, metal ores and ore grade, but also in capacity, production and average costs.
The degree of this heterogeneity is larger than what we typically find in manufactur-
ing industries. Nature generates very different endowments of metals, ore grade and
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Figure 4.3: Probability for Incumbent Staying Active by Ore Grade Level
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Figure 4.4: Probability for Incumbent Staying Active by Average Cost Level
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reserves across mines, and investment decisions tend to be complementary with these
endowments such that they amplify differences across mines.

Copper mines frequently produce a variety set of metals as by-products of copper.
The metal mix of by-products could include cobalt, nickel, lead, zinc, molybdenum,
gold and silver depending on geological and geographical characteristics. Therefore,
there is a high degree of heterogeneity in the mix of metal production across mines.
In our sample, a mine produces typically two by-products and the maximum is four.
However, the mine’s by-product mix remains relatively constant over time. Ignoring
the importance of by-products in the final output results in misleading estimates of both
variable and marginal costs. Therefore, in order to take into account the role of by-
products in mine’s output, we transform the production of each metal in copper equiva-
lent units. Table 4.6 presents the mean share distributions of production for each metal
across mines, it also presents the number of mines producing each metal and the number
of mines for which is their main metal. Most of the mines produce silver and gold as
by-products and 284 mines produce at least one by-product. Surprisingly, for 125 mines
a single metal different than copper was their main product and for 129 mines the 50%
or more of their production is coming from aggregate metals other than copper.
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Table 4.6: Metal Share Mix Across Mines

Percentile(1) Copper Cobalt Nickel Lead Zinc Molybdenum Gold Silver

Pctile 1% 0.0038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Pctile 5% 0.0234 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Pctile 10% 0.0465 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Pctile 25% 0.1612 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Pctile 50% 0.7600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047 0.0104

Pctile 75% 0.9655 0.0000 0.0000 0.0117 0.4904 0.0000 0.0660 0.0417

Pctile 90% 1.0000 0.0000 0.0000 0.0959 0.7650 0.0017 0.2174 0.1253

Pctile 95% 1.0000 0.0530 0.0000 0.1430 0.8383 0.0259 0.4332 0.2525

Pctile 99% 1.0000 0.5148 0.7322 0.3804 0.9315 0.1548 0.6641 0.3768

Mean 0.6016 0.0134 0.0197 0.0290 0.2211 0.0045 0.0678 0.0429

Std. Dev. 0.3820 0.0719 0.1190 0.0855 0.3155 0.0211 0.1412 0.0855

Min 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Max 1.0000 0.6317 0.9079 0.8769 0.9676 0.1928 0.8007 0.6754

Obs 330 330 330 330 330 330 330 330

Mines With Positive Production of Metal

Copper Cobalt Nickel Lead Zinc Molybdenum Gold Silver

# Mines 330 18 9 93 130 36 191 248

Main metal 205 4 9 3 93 0 12 4

Source: Codelco

Note (1): Cross-sectional distribution of mean values for each mine.

We have measures of ore grade for each mine-year observation both for copper only
(i.e., copper output per extracted ore volume) and for the copper equivalent output mea-
sure that takes into account by-products (i.e., copper equivalent output per extracted ore
volume). Both measures present a similar heterogeneity across mines. Table 4.7 shows
that the differences in realized ore grade imply that two mines with exactly the same
amount of inputs but different ore grades produce very different amount of output: a
mine in percentile 75 would produce double than a median mine (i.e., 3.42/1.71), and
five times the amount of output of a mine in percentile 25.
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Table 4.7: Heterogeneity Across Mines

Realized Grade Reserves Production Capacity Avg. Total Cost Avg. Cost C1

Percentile(1) (%) (million t ore) (thousand t) (thousand t) ($/t cu) ($/t cu)

Pctile 1% 0.14 0.11 0.01 0.05 908.80 450.94
Pctile 5% 0.26 0.60 0.04 0.42 1047.11 1021.50
Pctile 10% 0.39 1.11 0.16 0.95 1196.84 1287.78
Pctile 25% 0.75 3.66 1.09 2.79 1686.25 1632.94
Pctile 50% 1.71 13.48 5.10 8.58 2658.43 2067.43
Pctile 75% 3.42 120.61 22.72 38.00 8633.27 2638.71
Pctile 90% 5.16 541.99 96.50 151.37 33972.39 3867.84
Pctile 95% 6.28 978.48 156.23 203.79 80417.01 4968.07
Pctile 99% 8.99 2039.28 426.18 653.84 806386.06 7691.77

Source: Codelco

Note (1): Cross-sectional distribution of mean values for each mine.
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Endogenous Ore Grade and Evidence of Depletion

Effect

There is substantial time variation of realized ore grade within a mine. Figure 5.1
presents the empirical distribution for the change in realized ore grade (truncated at
percentiles 2% and 98%). The median and the mode of this distribution is zero (almost
30% of the observations are zero), but there are substantial deviations from this median
value. To interpret the magnitude of these changes, it is useful to take into account
that the mean realized grade is 2.25%, and therefore changes in realized grade with
magnitude −0.25 and −0.02 represent, ceteris paribus, roughly 10% and 1% reductions
in output and productivity. Since the 10th percentile is −0.25, we have that for one-
tenth of the mine-year observations the decline in ore grade can generate reductions in
productivity of more than 10%.

Figure 5.2 and table 5.1 present reduced form evidence on the evolution of realized
grade over time. Time is number of years active (production > 0). Grades tend to
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Figure 5.1: Empirical Distribution of Time Change in Ore Grade
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decrease over active periods. This evidence is consistent with a depletion effect. More-
over, grade levels depreciate at different rates across mines according to size, which
is mainly given by geological characteristics. For example, large mines present lower
grades and lower grade depreciation rates whereas small and medium size mines have
higher grades and higher grade depreciation rates. In general, there is no evidence
to support that better mines (high initial grades) leave longer as this also depends on
reserves and technology. This would indicate that small and medium size mines are ex-
hausted faster which is consistent with the average years being active. However, older
mines present a higher grade in the tail of the sample for all sizes.
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Figure 5.2: Evolution of Ore Grade by Years of Production
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Table 5.1: Realized Ore Grade Descriptive Statistics

Mine Size All

Large Medium Small

# Mines 18 81 231 330

(%) 5.5 24.5 70 100

Realized grade (%) 1.6 1.89 2.52 2.25

Real. grade dep. rate (%) -0.40 -1.42 -0.94 -1.29

Years active 14.83 12.91 8.53 9.95

Mean Realized Grade for all Mines

Years Active

Age of the Mine 1-5 6-10 11-15 15-19

1-5 2.38 - - -

6-10 2.99 2.54 - -

11-15 2.29 2.34 1.91 -

15-19 2.20 2.10 1.96 1.82
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Figure 5.3 presents reduced form evidence on the relationship between the total av-
erage production costs, demand for inputs and ore grade (truncated at percentiles 2%
and 98%). Mines with lower grades presents higher production costs, f.i. the lower the
ore grade the more processing of ore is needed to produce the same amount of copper
and therefore the higher is the cost. Moreover, the aging of mines or the depletion ef-
fect, as described above, implies an increase in demand for inputs such as electricity,
fuel and other inputs, as shown in the right graph of figure 5.3 for the case of electricity
consumption.

Figure 5.3: Production Cost, Electricity Consumption and Ore Grade
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5.1 Empirical Evidence of Depletion Effect

One of the most important questions that we study in this thesis is how much of these
changes in grades are endogenous in the sense that they depend on the depletion or
production rate of a mine. More specifically, current production decreases the quality
or grade of the mine and this, in turn, increases future production costs. On the other
hand, investments in exploration can improve not only the amount of reserves but also
the grade levels. Table 5.2 presents estimates of our dynamic model that support this
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hypothesis. The empirical representation of equation (3.1.11) to estimate is:

ln (Gradeit)− ln (Gradeit−1) = β1 ln
(
1 + Outputit−1

)
+β2 Discoveryit+αi+γt+uit

(5.1.1)
where “Grade” is our realized measure of ore grade, “Output” is the mine production in
copper equivalents units and “Discovery” is a binary indicator that is equal to 1 if the
mine reserves increase by 20% or more, and it is zero otherwise. The estimates show
a significant relationship between the change in the realized ore grade at period t and
depletion (production) at t− 1 after controlling for mine fixed effects and time effects.
Doubling output is related to a reduction of almost 7% in realized ore grade. In others
words, we have that increasing today’s output by 100% implies a 7% reduction in the
mine productivity next year. This is a non-negligible dynamic effect.
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Table 5.2: Estimation for Dynamics of Realized Ore Grade(1)

OLS
Variable ln(grade) [t] ln(grade) [t] Dif. ln(grade) [t] Dif. ln(grade) [t]

ln(grade) [t-1] 0.9812*** 0.9812*** 1.000 1.000
(0.007) (0.007) (-) (-)

ln(output)[t-1] -0.0181*** -0.0181*** -0.0159*** -0.0159***
(0.005) (0.005) (0.004) (0.004)

Discovery[t] 0.0004 -0.0028
(0.008) (0.008)

Number of obs. 2918 2918 2918 2918
m1 p-value 0.9180 0.9177 0.8020 0.8006
m2 p-value 0.3802 0.3811 0.1173 0.1137

Fixed Effect
Variable ln(grade) [t] ln(grade) [t] Dif. ln(grade) [t] Dif. ln(grade) [t]

ln(grade) [t-1] 0.6937*** 0.6936*** 1.000 1.000
(0.040) (0.040) (-) (-)

ln(output)[t-1] -0.0458*** -0.0458*** -0.0973*** -0.0972***
(0.013) (0.013) (0.015) (0.015)

Discovery[t] 0.0064 0.0054
(0.009) (0.010)

Number of obs. 2918 2918 2918 2918
m1 p-value 0.2747 0.2769 0.0289 0.0288
m2 p-value 0.3417 0.3543 0.0003 0.0003

Blundell and Bond
Variable ln(grade) [t] ln(grade) [t] Dif. ln(grade) [t] Dif. ln(grade) [t]

ln(grade) [t-1] 0.9091*** 0.9062*** 1.000 1.000
(0.051) (0.052) (-) (-)

ln(output)[t-1] -0.0710** -0.0708** -0.0686*** -0.0684***
(0.029) (0.029) (0.026) (0.026)

Discovery[t] 0.0126 0.0008
(0.016) (0.011)

Number of obs. 2918 2918 2918 2918
m1 p-value 0.0001 0.0001 0.0001 0.0001
m2 p-value 0.9952 0.9884 0.9631 0.9666
Hansen p-value 0.1969 0.1955 0.1547 0.1503
RW(3) 0.0754 0.0733

Note (1): Subsample of mines active at years t-1 and t.

Note (2): * = significant at 10%; ** = significant at 5%; *** = significant at 1%.

Note (3): RW is Wald test for random walk in the lagged dependent variable.

Note (4): Year dummies included in all models.
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5.2 Econometric Analysis of the Depletion Effect

In this section, we comment in more detail these estimates and the main econometric
issues.

Equation (3.1.11) in the theoretical model presents the specification of the transition
rule of ore grade. If the mine is inactive (qit = 0), the evolution of the logarithm of
ore grade is governed by a random walk ln (gi,t+1) − ln (git) = δ

(g)
z z

(r)
it + ε

(g)
it+1, where

δ
(g)
z z

(r)
it + ε

(g)
it+1 represent new discoveries and natural events affecting the mine. The

term −δ(g)q ln(1 + qit) captures the depletion effect on ore grade, where δ(g)q > 0 is the
depletion elasticity. Table 5.2 emphasizes the importance of dynamics and depletion in
ore grade.

The main econometric concern in the estimation of equation (3.1.11) comes from the
potential correlation between output qit and the unobservable shock ε(g)it+1. For instance,
suppose that new discoveries have positive serial correlation (i.e., cov(ε

(g)
it , ε

(g)
it+1) > 0)

and that new discoveries at period t have a positive impact on output (as we would ex-
pect from our dynamic decision model). Under these conditions, OLS estimation of
equation (3.1.11) provides an under-estimation of the depletion effect, i.e., the OLS es-
timate of δ(g)q is upward biased.1 Our OLS estimates of the depletion elasticity, in the top
panel of table 5.2, are between −0.016 and −0.018. However, we find strong positive
serial correlation in the OLS residuals, what indicates that these estimates are inconsis-
tent. To control for potential changes in grade due to new discoveries in reserves, we
include a discovery dummy, z(r)it , for changes in the level of reserves of at least 20%.
However, in none of our specifications new discoveries seems to play a role for changes
in realized grades.

We deal with this endogeneity problem using standard methods in the econometrics
of dynamic panel data models. We assume that the error has the following variance-

1Another potential source of bias in our estimates is because of measurement error. Since our mea-
sure of output contains a conversion of by-products to a copper equivalents units of output, any error in
this measurement, which is uncorrelated with the fixed characteristic of the mine, would imply that the
depletion effect is further underestimated.
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components structure: ε(g)it+1 = α
(g)
i + γ

(g)
t+1 + u

(g)
i,t+1, where the term α

(g)
i denotes time-

invariant differences in realized grades across mines such as geological characteristics.
γ
(g)
t+1 is an aggregate shock affecting all mines and u(g)i,t+1 is a mine idiosyncratic shock

that is assumed not serially correlated over time. Under the assumption of no serial
correlation in the transitory shock, we have that output at period t is not correlated
with u(g)i,t+1. Since we have a relatively large number of mines in our sample, we can
control for the aggregate shocks γ(g)t+1 using time dummies. In principle, if our sample
included also a large number of years for each mine, we could also control for the
individual effects α(g)

i by using mine dummies. This is the approach in the Fixed Effects
estimation presented in the second panel in Table 5.2. The fixed-effect estimates of the
depletion elasticity are between−0.046 and−0.097 that are substantially larger than the
OLS estimates. As we expected, controlling for persistent unobservables in innovation
ε
(g)
it+1 contributes to reduce the OLS downward bias in depletion elasticity. However,

as it is well known in the dynamic panel data literature, this fixed effects estimator
can be seriously biased when the number of time periods in the sample is smaller than
T = 20 or T = 30. The most common approach to deal with this problem is the
GMM estimators proposed by Arellano and Bond (1991) and Blundell and Bond (1998).
Since the parameter for the lagged ore grade is very close to one and the Arellano-
Bond estimator suffers of a weak instruments problem in that situation, here we use
the System GMM estimator proposed by Blundell and Bond. Our GMM estimates of
the depletion elasticity, in the bottom panel in Table 5.2, are between −0.068 (s.e. =
0.026) and −0.071 (s.e. = 0.029). These estimates are very robust to imposing or not
the restriction that lagged ore grade has a unit coefficient. As expected, the magnitude
of the System GMM estimates of the effect of output in the evolution of realized grade
is higher than those in the OLS estimates. The Arellano-Bond test of autocorrelation in
the residuals cannot reject zero second-order autocorrelation in first differences. This
evidence support the key assumption for identification of no serial correlation in the
error term. The Hansen test for over-identifying restrictions does not reject the validity
of the instruments. The estimated coefficient for lagged ore grade is close to 1 and,
using a Wald test, we cannot reject the null hypothesis that it is equal to 1.
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The main finding in our estimates of the transition function of the realized grade is
that current output has a substantial negative effect on future ore grades. This dynamic
depletion effect is not negligible. Our favorite specification states that increasing current
output by 100% leads to a depreciation of 7% in the mine realized grades next period.
Note that this is a long-run effect.
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Production Function

In recent years, there has been renewed interest in the estimation of production functions
mainly triggered by a significant methodological improvement in econometric tools and
by the increasing availability of firm-level data. The estimation of production functions
is an important component in many economic models. For example, it plays an impor-
tant role to evaluate the efficiency of an industry, f.i. economies of scale and economies
of scope, and to analyse the total factor productivity growth driven by changes in strate-
gies or policies such as investment in R & D, tariff regulation or the adoption of a new
technology.

The estimation of production functions, however, is subject to several econometric
issues. The most important econometric problems in the identification of production
functions are the simultaneity between output and variable inputs and the selection bi-
ases.

Intuitively, simultaneity arises because firms’ unobserved productivity, for the econo-
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metrician but not for the firm, may be correlated with their input choices (Aguirre-
gabiria, 2009; Olley and Pakes, 1996; Ackerberg et al., 2007). Specifically, firms will
increase their use of variable inputs such as labor and materials as a result of a positive
productivity shock. The correlation between variable inputs and productivity will intro-
duce an upward bias in the OLS coefficient estimates of the variable inputs. Similarly,
Levinsohn and Petrin (2003) show that OLS estimation of the production function will
lead to a downward estimation of capital.

The selection bias emerges because firms with a low productivity level will be more
likely to exit the market, and in turn the dataset, than firms with a high productivity
level. In addition, the probability that a firm exit from the market is correlated with the
firm size or capital stock. Therefore, firms with a large capital stock will be more likely
to stay in the market, even with a low productivity level, than those firms with a small
capital supply. This negative correlation between the size of the firm and the probability
of exit for a given productivity level would generate downward estimates of the capital
coefficient (Yasar et al., 2008).

Other common issues in the estimation of production functions include measurement
error and specification problems. Given that, typically, quantities are not observable for
the researcher, deflated sales and aggregated prices are used as proxy for output and in-
puts. However, if firm-level prices variation is negatively correlated with output, which
in turn is positively correlated with input choices, the coefficient of variable inputs will
be estimated with downward bias (Van Beveren, 2012). Specification problems that
would lead to a bias in the estimation of the coefficients in the production function
emerge when firms produce multiple products and these products are produced with
different technologies or when firms use different types of inputs that can be comple-
mentary or substitutes and the econometrician does not take into account this level of
detail in her specification.

Different approaches have been proposed to deal with these issues. We will briefly
describe the intuition of some common solutions to the simultaneity and selection prob-
lems. The traditional methods to solve the endogeneity problem have been instrumental
variables and fixed effects (Ackerberg et al., 2007). First, given that the unobserved pro-
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ductivity shock and the choice of inputs are simultaneously determined, the idea behind
instrumental variables is to use input prices as instruments for labor (or variable inputs)
and capital. Input prices are correlated with input choices but not with the productivity
shock as long as input markets are competitive. However, as Ackerberg et al. (2007)
state, there are some issues when using instrumental variables. Price of inputs are not
always available for the researchers, and when available they may not have significant
variation across firms, f.i. input prices typically are measured at national markets. More-
over, if we observe input prices and they have enough sample variation, they can reflect
differences in unobserved input quality rather than differences in exogenous input mar-
ket conditions. For example, differences in the quality of labor could be correlated with
differences in productivity as high wages will attract high quality workers that will in-
crease the productivity. Therefore, wages are correlated with productivity and wages
are not longer good instruments.

A second approach to deal with simultaneity issues is the estimation of fixed effects.
Taking advantage of panel datasets, fixed effects estimation assumes that the unobserved
productivity shock is constant over time. Therefore, we could obtain consistent esti-
mates of the production function parameters by using mean or first differences (Acker-
berg et al., 2007). However, assuming that the productivity shock is time-invariant is
very unrealistic. Typically, we are interested in to analyse the dynamics of the produc-
tivity, so if the productivity shock is not time-invariant, then fixed effects will not solve
the endogeneity problem and mean and first differences will be biased. In other words,
fixed effects assumes that the productivity shock is realized after the firm decides the
amount of inputs to use (Aguirregabiria, 2009). Fixed effects, in practice, will lead to a
downward bias in the estimation of the capital coefficient.

More recent solutions to the simultaneity problem are dynamic panel models and
control function approaches. The Dynamic Panel Method, proposed by Arellano and
Bond (1991), relax the assumption of the strictly exogeneity of inputs and estimate the
parameters in the production function by first-differencing the production function and
using as instruments lagged inputs rather than input prices to solve for the endogeneity
problem. A key assumption for identification in this method is that the productivity
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shock is not serially correlated (Aguirregabiria, 2009). However, a well known problem
of this estimator is the weak instruments problem, if inputs are persistent over time, then
lagged levels of inputs will be weakly correlated with differences in inputs. A conse-
quence of this is that coefficients of labor and capital will be downward biased. Blundell
and Bond (2000) propose a system-GMM estimator to solve the weak-instrument prob-
lem. The idea consists in to use lagged first-differences of the inputs as instruments for
the equation in levels. Another advantages of this method are that it exploits the cross-
sectional variation of input and output in the sample as it does not drop the fixed effect
in the production function and it can be easily extended for autocorrelation of order one
in the productivity shock (Aguirregabiria, 2009).

A popular solution in Industrial Organization for both endogeneity and simultane-
ity problems in the estimation of production functions has been proposed by Olley and
Pakes (1996). The simultaneity problem is solved by using the firm’s investment deci-
sions to proxy for unobserved and time-varying productivity shocks whereas the selec-
tion issue is solved by controlling for endogenous exit (Van Beveren, 2012; Yasar et al.,
2008; Aguirregabiria, 2009). Olley and Pakes approach requires several assumptions
on the unobserved productivity and the timing of input choices. First, the productiv-
ity shock follows a first-order Markov process. This is more general than the AR(1)
assumption in the Dynamic Panel approach, however, it removes the cross sectional
variation in the productivity shock (Ackerberg et al., 2007). Second, Olley and Pakes
assume a timing of input choices and a dynamic nature of inputs. Timing refers to the
time when input choices are made and dynamic of inputs implies that current choices
of inputs impact future profits. For instance, in the OP approach labor is considered as
a flexible and non-dynamic input because it is chosen at the current period and because
current choices do not impact future costs. On the contrary, capital is assumed as a
fixed and dynamic input because it is chosen at previous periods (time-to-build assump-
tion) and because current choices of capital will have an effect on future profits. The
final assumption in OP is the Strict Monotonicity assumption of the investment demand
function. Firm’s investment decision is a strictly increasing function in the productiv-
ity shocks (Ackerberg et al., 2007). This assumption implies that the firm’s investment
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function is invertible, which allow us to recover the unobservable productivity shocks.

The OP procedure for the estimation of production functions consists in two-stages.
In the first stage, variable inputs can be consistently estimated by OLS and using a con-
trol function for the productivity shock. Typically, this control function is approximated
by a third or fourth order polynomial of the state variables, f.i. capital and investment.
In the second stage, we use the Markov and timing assumptions to estimate the fixed
and dynamic inputs, f.i., capital. We could run a Non-linear Least Square estimator or
to apply a GMM estimator in the second stage depending on the timing assumptions
of variable inputs. For a technical review of the OP procedure, the interested reader
is referred to Ackerberg et al. (2007) and Aguirregabiria (2009). Several works have
relaxed some of these assumptions and extended the OP method. For example, Levin-
sohn and Petrin (2003) have pointed out that a significant number of firms reports zero
investments, which could imply ignoring an important part of the sample. In order to
address this issue, LP proposed to use materials as proxy for unobserved productivity
rather than investment. Ackerberg et al. (2006) have shown that if there exists cost of
adjustment in labor, then labor will be a state variable and it will no longer be identified
in the first stage. Therefore, ACF propose a method where only the unobserved produc-
tivity is recovered in the first step and the labor coefficient is identified in the second
step.

It is not clear when a method is better than another. Some advocates of the OP ap-
proach argues that the Dynamic Panel approach lacks of economic justification for its
assumptions. On the other hand, some assumptions in the OP approach can be con-
sidered as too strong. For example, Dynamic Panel approach does not requires the
monotonicity assumption and allows for fixed effects in the productivity shocks. If
fixed effects are part of the productivity shocks, then the OP approach would fail.
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6.1 Production Function Estimates

This section presents estimates of the parameters of the production function proposed
in chapter 3.

We estimate a Cobb-Douglas production function in terms of physical units for out-
put, capital, labor, reserves, ore grade, and intermediate inputs electricity and fuel. The
log-linearized production function is:

ln qit = αk ln kit + α` ln `it + αe ln eit + αf ln fit + αg ln git + αr ln rit + ωit + eit

(6.1.1)
where the input variables are capital, k, labor, `, electricity, e, fuel, f , ore grade, g, and
reserves, r. ωit is a productivity shock and eit represents a measurement error in output
or any shock that is unknown to the mine when it decides the quantity of inputs to use.
The estimation of the parameters in this function should deal with the aforementioned
endogeneity problem due to the simultaneous determination of inputs and output. Here,
we present estimates from two different methods, as mentioned above, that deal with
this problem: dynamic panel data methods proposed by Arellano and Bond (1991) and
Blundell and Bond (1998); and control function approach methods proposed Olley and
Pakes (1996) and Levinsohn and Petrin (2003).

Table 6.1 presents our estimations of production function parameters. We report
estimates from six different specifications and methods. All the specifications include
time dummies. Column (1) reports fixed effect estimates (OLS with mine dummies)
based on the assumption that the productivity shock follows a variance-components
structure ωit = ηi + γt + ω∗it, where ηi is a time-invariant mine specific effect such as
some geological characteristics, and ω∗it is not serially correlated and it is realized after
the miner decides the amount of inputs to use at period t. Of course, the conditions for
consistency of the fixed effects estimator are very strong.

Column (2) provides estimates using Arellano-Bond GMM method, based on the
same covariance-structure for productivity, ωit = ηi + γt + ω∗it, and the assumption
that ω∗it is not serially correlated, but allowing for correlation between inputs and the
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productivity shock ω∗it. In the equation in first differences at period t, ∆ ln qit = ∆ lnxit

α + ∆ω∗it, inputs and output variables dated at t − 2 and before are valid instruments
for endogenous inputs: i.e., E(lnxit−2 ∆ω∗it) = 0 and E(ln qit−2 ∆ω∗it) = 0. The
assumption of no serial correlation in ω∗it is key for the consistency of this estimator, but
this assumption is testable: i.e., it implies no serial correlation of second order in the
residuals in first differences, E(∆ω∗it ∆ω∗it−2) = 0.

Column (3) presents also estimates using Arellano-Bond GMM estimator but of a
model where the productivity shock ω∗it follows an AR(1) process, ω∗it = ρ ω∗it−1 + ξit,

where ξit is not serially correlated. In this model, we can apply a quasi-time-difference
transformation, (1−ρL), that accounts for the AR(1) process in ω∗it, and then a standard
first difference transformation that eliminates the time-invariant individual effects. This
transformation provides the equation, ∆ ln qit = ρ ∆ ln qit−1 + ∆ lnxit α + ∆ lnxit−1

(−ρα) + ∆ξit, where inputs and output variables dated at t − 2 and before are valid
instruments: i.e., E(lnxit−2 ∆ξit) = 0 and E(ln qit−2 ∆ξit) = 0.

Column (4) reports estimates using Blundell-Bond System GMM. As we have men-
tioned above for the estimation of the transition rule of ore grade, in the presence of
persistent explanatory variables, the First-Difference GMM may suffer a weak instru-
ments problem that implies substantial variance and finite sample bias of the estimator.
In this case, the Blundell-Bond System GMM is preferred to Arellano-Bond method.
This system GMM is based on two sets of moment conditions: the Arellano-Bond mo-
ment conditions, i.e., input variables in levels at t−2 and before are valid instruments in
the equation in first differences at period t; and the Blundell-Bond moment conditions,
i.e., input variables in first-differences at t − 1 and before are valid instruments in the
equation in levels at period t, E(∆ lnxit−1 [ηi +ω∗it]) = 0 and E(∆ ln qit−1 ω

∗
it) = 0. As

in the Arellano-Bond estimator, the assumption of no serial correlation in ω∗it is funda-
mental for the validity of these moment conditions and the consistency of the estimator.
Column (5) provides estimates using Blundell-Bond System GMM for the model where
ω∗it follows an AR(1) process.

Column (6) presents estimates using the control function approach of Olley and
Pakes (1996) based in the extension proposed by Levinsohn and Petrin (2003). We
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use materials rather than investment as proxy for the productivity shock given the high
degree of lumpiness in our investment measure. We also allow for adjustment costs in
labor and introduce formally lagged labor as an state variable in the control function. A
mine demand for materials, mit, is given by mit = mt(kit, `it−1,git, rit, ωit). Since this
demand is strictly monotonic in the productivity shock, ωit, there is an inverse function
ωit = m−1t (mit, kit, `it−1,git, rit) and we can control for the unobserved productivity in
the estimation of the production function by including a nonparametric function (i.e.,
high order polynomial) of the observables (mit, kit, `it−1,git, rit), such that, ln qit = α`

ln `it+αe ln eit+αf ln fit+ φt(mit, kit, `it−1,git, rit)+eit. In the first step of this method,
parameters α`, αe, and αf , and the parameters in the polynomials φt are estimated by
least squares. We use a third order polynomial function to approximate our control
function. The parameters αk, αg, and αr are estimated in a second step by exploiting
the assumption that the productivity shock evolves following a first-order Markov pro-
cess. For instance, if we assume that ωit follows an AR(1) process,1 ωit = ρ ωit−1 + ξit,
then the model implies the equation φit = ρ φit−1 + αk ln kit + (−ραk) ln kit−1 + αg

ln git + (−ραg) ln git−1 + αr ln rit + (−ραr) ln rit−1 + ξit. All the regressors in this
equation are pre-determined before period t and therefore not correlated with ξit. Given
that φit has been estimated in the first step, this equation can be estimated by nonlinear
least squares to obtain consistent estimates of αk, αg, αr, and ρ.2

1Note that this assumption is different to the specification of the productivity shock in dynamic panel
models. In the Olley-Pakes model, the whole productivity shock, ωit, follows a Markov process. In
dynamic panel data models, we have that ωit = ηi + ω∗

it, and ω∗
it follows an AR(1) process.

2We experiment with many alternative specifications, however, results does not vary too much. We
also allow for selection bias in the LP method but results are very similar.
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Table 6.1: Production Function Estimates

(1) (2) (3) (4) (5) (6)
FE FD-GMM FD-GMM SYS-GMM SYS-GMM LP

no AR(1) no AR(1) AR(1) no AR(1) AR(1)

Capital 0.2417*** 0.3728*** 0.2431*** 0.1265*** 0.2206*** 0.3328***
(0.054) (0.064) (0.065) (0.035) (0.060) (0.020)

Labor 0.1418*** 0.1841* 0.0860 0.0319 0.0936* 0.0355
(0.038) (0.096) (0.096) (0.065) (0.051) (0.046)

Electricity 0.2229*** 0.1335* 0.1835** 0.3217*** 0.2316*** 0.2063***
(0.078) (0.069) (0.079) (0.078) (0.084) (0.047)

Fuel 0.4001*** 0.4755*** 0.4547*** 0.3582*** 0.4372*** 0.1609***
(0.048) (0.055) (0.073) (0.055) (0.067) (0.022)

Grade 0.7432*** 0.6120*** 0.7688*** 0.6657*** 0.6999*** 0.5860***
(0.069) (0.142) (0.122) (0.055) (0.068) (0.032)

Reserves 0.0011 -0.0621** -0.0211 0.0693*** 0.0159 0.0062
(0.014) (0.030) (0.026) (0.017) (0.015) (0.012)

Output(t-1) (ρ) - - 0.5467*** - 0.5660*** -
- - (0.074) - (0.060) -

Obs. 2150 1906 1684 2150 1906 1719
m1-pvalue 0.0000 0.0296 0.0000 0.0459 0.0000
m2-pvalue 0.0000 0.0112 0.4438 0.0264 0.4514
Hansen -pvalue 0.9105 0.7569 1.0000 1.0000
RTS 1.0076 1.1037 0.9464 0.9076 0.9989 0.7355
Null CRS 0.8449 0.2076 0.5706 0.0320 0.9825

In Table 6.1, several important empirical results are robust across the different spec-
ifications and estimation methods. First, the production technology is very intensive in
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energy, both electricity and fuel. The sum of the parameters for energy and fuel, αe+αf ,
is always between 0.61 and 0.68 and represents approximately two thirds of the returns
to scale of all the inputs. The technology is also relatively intense in capital, with a
capital coefficient between 0.13 and 0.37. In contrast, the technology presents a low co-
efficient for labor, between 0.03 and 0.18. Second, the coefficient of ore grade is large
and very significant, between 0.61 and 0.77. Ceteris paribus, we would expect a grade
elasticity equal to one, i.e., keeping all the inputs constant, an increase in the ore grade
should imply a proportional increase in output. The estimated elasticity, though high,
is significantly lower than one. This could be explained by heterogeneity across mines.
Mines with different ore grades may be also different in the type of mineral, hardness of
the rock, depth of the mineral, or distance to the processing plant. Third, the estimated
coefficient for reserves is always very small and not economically significant. Fourth,
tests of serial correlation in the residuals in columns (2) and (4) reject the null hypoth-
esis of no serial correlation of second order, and therefore reject the hypothesis that the
shock ω∗it is not serially correlated. The same test for the models in columns (3) and
(5) (with an AR(1) process for ω∗it) cannot reject the null hypothesis that the shock ξit
in the AR(1) process is not serially correlated. Therefore, these tests clearly favor the
specification with an AR(1) process for ω∗it.

Based on the specification tests and on the economic interpretation of the results, our
preferred specification and estimates are the ones in column (5). These estimates imply
an industry very intensive in energy (αe + αf = 0.67) and capital (αk = 0.23) but not
in labor (α` = 0.09), with constant returns to scale (i.e., µ = 0.99, the hypothesis of
CRS cannot be rejected), a sizeable effect of ore grade (αg = 0.70), and very persistent
idiosyncratic productivity shocks.

6.2 Marginal Costs and Variable Costs

Given the estimated parameters of the production function, and the information on vari-
able input prices, we calculate variable costs and marginal costs using the formula in
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equation (3.1.9). Table 6.2 presents the empirical distributions of variable cost, aver-
age variable cost, marginal cost, and the exogenous part (or predetermined part) of the
marginal cost (ExMC) defined as the marginal cost of producing the first unit of out-
put (i.e., the first ton of copper). We can interpret this exogenous marginal cost as the
intercept of the marginal cost curve with the vertical axis at q = 1.

Table 6.2: Distribution of Estimated Marginal and Variable Costs(1)

Pctile. Marginal Cost Ex. Marginal Cost Variable Cost AVC

Pctile 1% 99.09 17.59 937.58 75.55
Pctile 5% 156.17 40.90 1,741.60 119.07
Pctile 10% 197.11 57.25 3,076.57 150.29
Pctile 25% 306.30 89.88 7,209.35 233.54
Pctile 50% 541.56 154.21 20,506.95 412.90
Pctile 75% 1,008.46 285.06 80,177.51 768.89
Pctile 90% 1,932.51 561.43 181,830.00 1,473.42
Pctile 95% 2,632.80 832.48 335,716.40 2,007.34
Pctile 99% 4,901.29 1,619.28 1,026,301.00 3,736.93

Mean 878.70 262.37 83,047.93 669.95
Std. Dev. 1104.82 354.02 189,853.30 842.36
Min 26.47 7.81 140.53 20.18
Max 15298.46 5,591.10 2,657,656.00 11,664.12
Obs 2102 2102 2102 2102

Note (1): values in US$ per ton.

There is very substantial heterogeneity across mines in all measures of variable cost.
For the exogenous marginal cost, the interquartile difference is 217% (i.e., (285.06 −
89.88)/89.88), and the difference between the 90th and 10th percentiles is 880% (i.e.,
(561.43 − 57.25)/57.25). Interestingly, the degree of heterogeneity in marginal cost is
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similar to the heterogeneity in its exogenous component. This clearly contradicts the
hypothesis of static perfect competition.

Table 6.3 provides a decomposition of the variance of the logarithm of the exogenous
marginal cost into the contribution of its different components. The top-panel reports the
variance-covariance matrix of the seven components of the (exogenous) marginal cost.
The bottom panel presents the variance decomposition. By definition, the logarithm
of the exogenous marginal cost (i.e., ln[ExMC]) is equal to β` ln(p`it)+ βe ln(peit)+

βf ln(pfit)+ βg ln(git)+ βr ln(rit)+ βk ln(kit)+ βωωit, where β` = α`/(α` + αe + αf ),
βg = −αg/(α`+αe+αf ), and so on. For each of its additive components, we calculate
its covariance with ln[ExMC]. This decomposition provides a measure of the con-
tribution of each component to the heterogeneity in marginal costs. There are several
interesting results. First, ore grade is, by far, the factor with the most important contri-
bution to the heterogeneity in marginal costs across mines. If we eliminate that source
of heterogeneity, keeping the rest of the elements constant, the variance of marginal
costs would decline by 58%. Second, total factor productivity with 19% and fuel prices
with 17% are the other most important sources of heterogeneous marginal costs. These
three variables together account for 95% of the variance. Electricity prices have also a
non-negligible contribution of 5.6%. Third, the contribution of capital to the dispersion
of marginal costs is basically null. This is despite, our estimation of the production
function, implies that capital has an important contribution to output and marginal cost,
and also despite the variance of capital across mines is quite important (see top panel in
this table). The explanation for this result comes from the correlation between capital
and ore grade. Capital and ore grade have a strong negative correlation (i.e., correlation
coefficient−0.47). Mines with poorer ore grades require typically more equipment both
in extraction and in the processing stages. The contribution of capital to the variance of
marginal costs is mostly offset by the fact that larger mines in terms of capital are typi-
cally associated with lower ore grades. Fourth, interestingly, the contribution of wages
is zero.
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Table 6.3: Variance Decomposition of Marginal Cost

Variance - Covariance Matrix(1),(2)

(all variables in logarithms)

Wage Elect. p. Fuel p. Ore grade Reserves Capital Product.

Wage 1.0526
Electricity price 0.0469 0.2289
Fuel price 0.0658 0.1069 0.3983
Ore grade 0.0215 0.0127 0.0538 0.9265
Reserves 0.1497 0.0015 -0.1834 -1.4527 5.5826
Capital 0.3470 0.0139 -0.0864 -0.7434 2.9898 2.7069
Productivity 0.0598 -0.0254 -0.0037 -0.0276 0.0162 -0.1177 0.1377

Variance Decomposition: Exogenous Part of Marginal Cost(1),(2),(3)

x Variance Covariance Weight (%) Obs.

Marginal cost (Ex) 0.8384 0.8384 100.0 2102

Wage 0.0159 -0.0025 -0.30 2102

Electricity price 0.0211 0.0469 5.6 2102

Fuel price 0.1310 0.1452 17.3 2102

Ore grade 0.7806 0.4879 58.2 2102

Reserves 0.0024 -0.0051 -0.6 2102

Capital 0.2266 0.0033 0.4 2102

Productivity 0.2368 0.1627 19.4 2102

Note (1): All variables in logs.

Note (2): Weight is computed as cov(βx ln[x], ln[ExMC])/V ar(ln[ExMC]).

Note (3): The number of observations is restricted to observed productivity from the estimation

of the production function.
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Figure 6.1 presents the evolution over time of the contribution of each component
in the variance of the exogenous marginal costs. Weights remain relatively stable over
the period. However, the contribution of the variance of productivity is decreasing over
time. This decreasing effect of productivity could be capturing the extensive and inten-
sive changes effects during the boom, as described below.

Figure 6.1: Evolution of Exogenous MC Components Weights
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Figure 6.2 provides evidence on the relationship between the evolution of the LME
copper price and the evolution of the 5th, 50th and 95th percentiles of the estimated
marginal costs. We present figures both for the exogenous and for the total marginal
cost, and for a balanced panel of 43 mines and an unbalanced panel of 212 mines. These
figures provide an interesting description of the relationship between copper prices,
marginal costs, and demand. First, panel (c) presents the evolution of ExMC for the
balanced panel of mines. This figure represents changes in marginal costs that are not
associated to changes in the composition of active firms and are not related to the amount
of output produced, i.e., to demand. We can see that there is a relatively modest increase
in the marginal cost at the 95th percentile between 2003 and 2010. This modest increase
can account only for a small portion of the observed increased in copper price during
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this period. Panel (d) presents the evolution of ExMC for the unbalanced panel. The
evidence provided by this figure is similar as the one from panel (c): even if we take
into account changes in the composition of mines, and more specifically the entry of
less efficient mines due to increasing prices, the increase in the exogenous marginal
cost accounts at most for one-fourth of the increase in price. Second, the comparison
of panels (c) and (d) provides evidence that positive demand shocks promote entry of
less efficient mines. For instance, the exogenous marginal costs of the mines at the 95th
percentile in the unbalanced panel is a 16% higher than the exogenous marginal costs
of those mines in the balanced panel. Third, panels (a) and (b) present the evolution of
total (endogenous) marginal cost. Interestingly, the 95th percentile follows very closely
the evolution of copper price, though the 5th and 50th percentiles are still quite flat. This
picture seems consistent with the story that most of the price increase comes from the
combination of a positive demand shock, but also with the fact that mines with relatively
higher marginal costs have increased their production share during this period. Fourth,
these figures show that some mines in this industry enjoy large markups in terms of
marginal costs. Price is mainly determined by the marginal cost of less efficient mines,
and given the high heterogeneity in marginal costs, most efficient mines have large
markups.

6.3 Productivity Implications

Finally, we use the estimates from our favorite specification of the production function
to analyze the evolution of the productivity growth. We follow Olley and Pakes (1996)
and define the aggregated productivity of the industry as a weighted average productiv-
ity: Ωt =

∑Nt
i=1 sitωit, where sit is the output share of mine i at period t. It is difficult

to identify the drivers of the aggregated productivity growth. A recurrent claim made
in the industry is that ore grades are an important determinant of productivity. Since
we have controlled for ore grade in the estimation of the productivity, it is not possible
to attribute a role of the depletion effect on the evolution of our measure of aggregated
productivity . However, following the Olley and Pakes decomposition method, it is pos-
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Figure 6.2: Evolution of Est. Marginal Cost and Exogenous Marginal Cost
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a) Endogenous MC - Balanced Panel

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

U
S

$ 
/ t

on
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10

Year

LME MC - Pctile 50%
MC - Pctile 5% MC - Pctile 95%
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sible to distinguish between two drivers of this productivity growth: reallocation and
average productivity growth. The method consists in to decompose the aggregate pro-
ductivity into a within component and the covariance between productivity and market
share:

Ωt = ω̄t +
Nt∑
i=1

(∆sit∆ωit) = ω̄t + Ψsω
t (6.3.1)

where ∆sit = sit − s̄t and ∆ωit = ωit − ω̄t. ω̄t represents the unweighted average
of mine-level productivity and Ψsω

t is the covariance between output and productivity.
The larger this covariance, the higher the reallocation effect. Table 6.4 shows that the
aggregated productivity grew up by 7% from 1992 to 2010. On the one hand, the 57%
of this increase can be explained by the average mine productivity growth, which was a
4% more productive in 2010 than in 1992. On the other hand, we could attribute a 43%
of the increase in the aggregate productivity to the extensive margin. In other words,
the aggregate productivity increased in 3% due to reallocation toward more productive
mines. 3

Finally, we find a negative correlation between price and the aggregated productiv-
ity growth (-0.28). This have two important implications. First, prices are negatively
correlated with technical productivity within mines (-0.68). Second, reallocation has a
negative correlation with prices (-0.81). These results are consistent with the entry (exit)
of less efficient mines in periods of high (low) prices.

3A dynamic analysis of reallocation is left for future research. For a complete and interesting study of
reallocation in the steel industry see Collard-Wexler and De Loecker (2015)
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Table 6.4: Decomposition of Productivity Growth

Years Weighted TFP: Unweighted average: Reallocation:
∆Ωt ∆ω̄it ∆Ψsω

t

1992-1994 0.04 0.01 0.03
1995-1997 0.00 -0.02 0.02
1997-1999 -0.01 -0.01 0.00
2000-2002 0.01 0.00 0.01
2003-2005 0.04 -0.01 0.05
2006-2008 -0.02 -0.02 0.00
2009-2010 -0.02 0.04 -0.06

1992-2010 0.07 0.04 0.03
(0.57) (0.43)

Note: Contribution of each component in the aggregated productivity
growth in parenthesis.



7

Measuring Market Power

In this chapter, we present estimates of the competitive behaviour of the industry. First,
we use aggregated data at the industry level to measure market power. We base our
results on a static version of the Conjectural Variation approach. Second, we estimate
the structural model and extend the analysis of market power and pricing by taking
advantage of our microeconometric model developed in chapter 3 and using data at
mine level. Finally, we estimate entry costs for this industry and explore its effect on
price setting.

7.1 Literature Review on Conjectural Variations

The empirical estimation of market power has been widely discussed in the Indus-
trial Organization literature. The main discussion has focused in the observability of
marginal cost. This has led to two major research approaches: First, the traditional
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approach Structure Conduct Performance (SCP), which has been characterized by the
analysis of market power based on the relationship between profit measures and industry
concentration indices1. Second, mainly because of the unavailability of marginal cost
information, it arises the New Empirical Industrial Organization (NEIO) theory, which
is characterized by inferring the market behavior through price responses to variations
in the elasticity of demand and exogenous cost components. NEIO models, also called
Conduct Parameter Method (CPM), consist on the identification of a conduct parameter
by using aggregate or firm level data2. CPM nests several market structures,f.i. per-
fect competition, collusion or others possible solutions of imperfect competition, and it
reflects the markup of price over marginal costs (Karp and Perloff, 1993).

Research on conduct parameter method has spread rapidly since the pioneering work
of Bresnahan (1982) and it has been widely applied in a variety of questions and indus-
tries. Among the articles that investigate market power3, a few studies have used some
static version of the CPM in commodity markets. Suslow (1986) estimates a structural
model to measure the degree of market power for the interwar period in the US alu-
minum industry. Graddy (1995) estimates market power and price differences paid for
different customers at Fulton Fish Market. Igami (2012) uses a model of demand and
oligopolistic competition to assess the impact of the International Coffee cartel on prices
and global welfare. Policy issues have been another area of application for the CPM.
For example, Ryan (2012), using a dynamic model of oligopoly, evaluates the welfare
costs of the 1990 Amendments to the Clean Air Act on the US cement industry4.

As most of the empirical models, this approach has been exposed to several criti-
cisms. First, Corts (1999) shows that if the conduct parameter indexing intermediate
levels of collusive behavior is not the result of a conjectural variation equilibrium, then
the estimated conduct parameter will tend to underestimate the degree of market power.

1See Perloff et al. (2007) for a book-length treatment of this subject.
2Bresnahan (1982) and Lau (1982) developed the necessary and sufficient conditions for identification

of the conduct parameter.
3Bresnahan (1989) surveys the use of empirical techniques in identifying market power.
4See Röller and Steen (2006) and Salvo (2010) for applications of the CPM to the Norwegian and

Brazilian cement industry, respectively.
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As a result, the CPM would only be useful to test if the industry behaves competitively,
monopolistically or à la Cournot (Zeidan and Resende, 2009). Using information of
marginal cost for the US sugar industry and the British electricity spot market, Genesove
and Mullin (1998) and Wolfram (1999), respectively, assess the efficacy of NEIO ap-
proach. They show that the NEIO estimations of market power are not very different to
its true values.

Second, this methodology has also been questioned given its essentially static nature.
For instance, if researchers estimate a static model when the firms are indeed facing
a dynamic profit maximization problem, their inferences about market power will be
misleading. This has given rise to explicitly model the dynamic strategic interactions
between firms to measure market power. For example, Karp and Perloff (1989, 1993)
use open-loop strategies assuming a particular oligopoly regimen to estimate the degree
of market power in the rice and coffee export markets, respectively. Steen and Salvanes
(1999) and Zeidan and Resende (2009) have estimated dynamic versions of the NEIO
approach by specifying an error correction framework applied to the EU salmon and the
Brazilian cement market, respectively. Kutlu and Sickles (2012) study the relationship
between market power and efficiency in the US airline industry, they use a dynamic
firm’s profit maximization problem as base for the estimation of the conduct parameter.

Although, we acknowledge the importance of these critiques, we follow Igami (2012)
and interpret the conduct parameter as the average collusiveness of the industry, which
can be interpreted as a “reduced-form” representation of all the possible dynamic inter-
actions allowing us to distinguish between different equilibrium prices.

7.2 Static Conduct Parameter

We start from the first-order condition of the firm i′s maximization problem:

Pt = MCi

(
qit, Z

(s)
t , βi

)
− qit

∂P
(
Qt, Z

(d)
t , α

)
∂Q

∂Q

∂qi
(7.2.1)
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which can be re-written as a supply relationship:

Pt = MCi

(
qit, Z

(s)
t , βi

)
+ θit

Pt
ηt
, (7.2.2)

where ηt = −∂Q
∂P

Pt
Qt

is the price elasticity of demand, Z(s)
t is a vector of observable

and aggregate factors that shift mine i’s marginal costs. θit represents firm i′s conduct
parameter. For example, if the firm behaves competitively then θit = 0, in the case of
a monopolist firm θit = 1 and the Cournot oligopoly, for a symmetric n-firm, is given
by θit = si = 1

n
, where si ≡ qit

Qt
is the market share of firm i. Following Cowling and

Waterson (1976) by using the firm i′s market share and summing over i, it is possible
to write the industry average of firms’ supply relationship in equation (7.2.2) as:

Pt = MC
(
Qt, Z

(s)
t , β

)
+ θt

Pt
ηt
, (7.2.3)

WhereMC =
∑n

i=1 sit·MCit and θt =
∑n

i=1 sitθit. θt still embeds perfect competition,
Cournot and monopoly pricing as special cases5 (Rosen, 2007).

7.2.1 Identification Issues

The main empirical challenge in all NEIO studies is how to identify the conduct param-
eter, θ. A first stage on the identification of θ is to estimate consistently the demand
parameters. Then, we concentrate in the necessary assumptions to identify the demand
parameters. We use z(d) and z(s) to denote representative realizations of the random
variables Z(d)

t and Z(s)
t . We assume that firms have prior information on the realization

of the demand and marginal cost unobservables
(
ε
(d)
t , ε

(s)
t

)
and that the realization of

(q, p) as a function of
(
z(d), z(s), εd, εs

)
is jointly determined by firm’s decision rules

and the demand. This implies that price is endogenously determined. However, endo-
geneity can be solved with appropriate instruments for Pt, for which the cost covariates,
Z

(s)
t , are reasonable candidates. Instrumental variable estimations for lineal models is

5See Appendix B.1 for the detailed derivation of the conduct parameter and its special cases.
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well known, then we present assumptions for the demand identification as:
Assumption 1. Each component of (q, p) has nonnegative bounded support.

The exclusion restriction to estimate the demand function independently of the marginal
cost function is given by:
Assumption 2. E

[
ε
(d)
t , ε

(s)
t |Z(d), Z(s)

]
= 0

The intuition behind this assumption is that the demand is a function of exogenous
variables affecting the demand but not the marginal costs and viceversa. Moreover, we
treat the inverse demand function and its derivative with respect to Q as observed.

Assumption 3. P
(
Q,Z(d)

)
is continuously differentiable in Q and

∂P
(
Q,Z

(d)
t ,

)
∂Q

< 0 for

all z(d) ∈ Z(d)
t .

The estimation process of the demand parameters is the base for the estimation of θ.
However, the identification procedure will depend on the information on the marginal
costs known by the researcher. Firstly, if the researcher has full information on marginal
costs, Genesove and Mullin (1998) propose a direct measure of the conduct parameter
or elasticity-adjusted Lerner index. Then, with full information on marginal cost and
solving for θt in equation (7.2.3), the conduct parameter can be written as:

θt =
Pt −MC(·)

Pt
· ηt (7.2.4)

= Lt · ηt

where Lt is the Lerner index, so that θt is an elasticity-adjusted Lerner index. Note that,
in the case of an industry facing an inelastic demand, the elasticity-adjusted Lerner index
will be lower than the unadjusted Lerner index, whereas for a monopoly, that always
produces on the elastic region of the demand curve, it will be higher. Secondly, in the
case that the researcher had incomplete information on marginal costs, the identification
procedure differs according to the knowledge on the functional form of marginal costs.
Bresnahan (1982) propose to modify the demand equation by adding interaction terms
between price and demand shifters.6

6Interested readers are referred to Bresnahan (1982) for an illustration of the identification procedure
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7.2.2 Estimation of the Static Model

In this section, we present estimates of the static model of conjectural variations. The
estimation follows in two steps. In a first step, we estimate the parameters of the demand
function. In a second step, we estimate the conduct parameter by both the direct and
NEIO approaches using industry level data and estimates of the demand.

7.2.3 Demand

Demand estimation provides the basis for the subsequent discrete and dynamic analysis.
We use a linear specification as a starting point. Since copper is an homogenous good,
its demand is a derived demand without any identification of the producer. Copper is
mainly used in the production of intermediate goods which are later used as inputs in the
production of final goods. Table 7.1 presents the estimates of the demand parameters
based on the following linear form:

Qt = α0 + α1Pt + α2GDPt + α3PAlt + α4Pt × PAlt + ε
(d)
t (7.2.5)

where Q is the world copper consumption, Pt is the LME copper price, GDPt is the
importing countries’ GDP, PAlt is the price of aluminium, and ε(d)t is the unobserved
shock for the demand.

when partial information is available.
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Table 7.1: Demand Estimates

OLS IV
Dependent var: Qt [1] [2] [3] [4] [5] [6]

Pt (Copper price) -16.82 -6.98 -55.55*** -20.32 -9.96** -114.87***
(11.37) (5.64) (16.52) (12.40) (4.97) (36.38)

GDP 0.36*** 0.35*** 0.37*** 0.36***
(0.04) (0.03) (0.04) (0.03)

Aluminium price 2.93 -76.01*** 7.20 -165.77***
(9.42) (21.18) (10.12) (49.74)

PtPAlt (Interaction) 0.42*** 0.91***
(0.13) (0.29)

Constant 9601.65*** 2650.29* 11547.73*** 9000.62*** 2247.59 21722.57***
(2269.45) (1466.60) (2276.89) (2455.56) (1743.43) (5988.17)

Adjusted R2 0.12 0.90 0.91 0.11 0.89 0.88
Overid 5.00 4.94 5.06
p-value 0.08 0.08 0.08

ηP (Price elasticity) -0.23 -0.10 -0.11 -0.28 -0.14 -0.16
ηPZ (Cross-price elasticity) 0.03 -0.04 0.07 -0.08

In table 7.1, columns [1], [2] and [3] present the OLS estimates. In columns [4], [5]

and [6], to address the potential simultaneity problem, we apply two-stage least squares
using the (aggregated) variables Wages, Energy and a time trend as instrument for price.
Demand estimates look reasonable, the income variables present positive coefficients
and most of coefficients are significant at 5 percent level. The cross-price elasticity
at the point of means is ηP×PAl =

[
α3 + α4P

] [
PAl
Q

]
are between −0.04 and −0.08.

We would have expected a positive cross-price elasticity. However, several author have
presented similar results. Fisher et al. (1972b) states that this can be explained because
the aluminium price is not an equilibrium price because it is subject to discounts and
quantity rationing. The same author proposes that the most common solution is to use
aluminium prices from a competitive market such as Germany. However, we have not
access to this data and we decided to keep the LME aluminium price in the model even
if the results are mixed.
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Now, we focus our attention on price elasticity. As expected, IV estimates are more
stable and higher in magnitude than OLS. This is because the instruments, energy and
wages, isolate both the unobserved demand shocks and the noise due to measurement
error. The p-values of the Hansen test for over-identifying restrictions do not reject
the validity of the instruments. Given that an inconsistent or biased estimation of price
elasticity would lead to misleading interpretations on the industry’s market conduct θ,
it would be desirable that our estimated elasticity were similar to the ones observed
in the literature. Fisher et al. (1972b) estimated separately demand equations for the
United States, Europe, Japan and the rest of the world in the period between 1950 and
1966, where the estimated price elasticities, in absolute values, were 0.21, 0.08, 0.09 and
0.22, respectively. Taking weighted average, the price elasticity were 0.15 7. Using a
linear model and monthly data in the 1950 - 1995 period, Agostini (2006) estimated the
price elasticity for the United States in the range from 0.12 to 0.24, in absolute values.
Therefore, a comparison of price elasticities in table 7.1 with these estimates show that
our results are no far from these authors’ findings.

As a simple back of the envelope calculation, we estimate the monopoly and Cournot
pricing rules using the elasticity price in column [4]8. The mean monopoly price would
be $330.43, well above the observed mean price of $153.09 in table 4.1, while that the
Cournot price would be $133.72, 12% below the observed mean price9. These results
foreshadow some of the final findings of this chapter.

7.2.4 Direct Measures of the Conduct Parameter

In this section, we use as benchmark for the conduct parameter its estimated value con-
sidering the full set of available information and the elasticity of demand, η, recovered
from the previous section. Although, we do not know the marginal cost as precisely,
we use the information of the direct cash costs as a proxy. Then, we estimate the con-

7The weights being proportional to 1963 consumption as published in Fisher et al. (1972b) and using
annual data.

8See Appendix B.2 for a detailed derivation of these prices.
9Price estimated with a ten-firm symmetric Cournot oligopoly.
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duct parameter by the elasticity adjusted Lerner index, Lη in equation (7.2.4). Table 7.2
presents summary statistics of this measure. The first row shows the well-known Lerner
index while that in the subsequent rows, we present the adjusted Lerner index with the
elasticities taken from the corresponding demand specification in table 7.1.

Table 7.2: Estimates of the Conduct Parameter

Lerner Index Mean Std. Dev. Std. Error 95% Conf. Interval

Unadjusted: 0.42 0.17 0.03 0.36 0.49
Adjusted using
specification:

[1] 0.10 0.04 0.01 0.08 0.11
[2] 0.04 0.02 0.00 0.03 0.05
[3] 0.05 0.02 0.00 0.04 0.05
[4] 0.12 0.05 0.01 0.10 0.14
[5] 0.06 0.02 0.00 0.05 0.07
[6] 0.07 0.03 0.00 0.06 0.08

The price-cost markup in this industry is sizable, yet the measured conduct param-
eter, θ, is very small. The first row indicates that the price is 42% higher than the
producer’s marginal costs, while that the mean Lη is close to 0.07. In the case of the IV
specifications the mean is close to 0.08. This implies a level of competition similar to a
static Cournot oligopoly with 14 and 12 symmetric firms, respectively. This is a similar
structure to the one presented in table 4.2. The small values of the conduct parameter
are mainly explained by the inelasticity of the demand. Based on this results, we can
clearly reject both hypothesis competitive pricing (θ = 0) and and the monopoly pricing
(θ = 1).

Though the high price-cost markup seems the result of a more collusive regime, the
producers appear not to be taking full advantage of the inelasticity of the demand to
charge even higher prices. A reasonable initial explanation is that the industry pricing
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behavior was constrained by the substitution effect of aluminum. As mentioned before,
a high long run price of copper can lead to a material substitution process10. Overall,
given these results there is evidence to reject both perfect competition and monopoly
behavior. In addition, the Cournot equilibrium seems the most likely result for this
industry.

7.2.5 Static Conjectural Variation Estimates

In this section, we present the results of the conduct parameter estimations using the
NEIO or conjectural variations approach. We identify θ by analyzing the producer’s
response to changes in demand following the oligopoly model formulated by Bresnahan
(1982) and Lau (1982). This method allows for a more flexible structure about the
functional form of the marginal costs. We assume constant and increasing functional
forms for the marginal cost function when estimating the conduct parameter.

Taking into account these two forms of marginal costs, the supply relationship can
be written in an empirical form as:

Pt = β0 + β1Qt + β2Wt + β3Ent + θQ∗t + εst (7.2.6)

whereWt represents wages,Ent is the energy price andQ∗=−
Qt

(α1+α3PAlt)
. When assum-

ing constant marginal cost, β1 in the supply relationship is zero and it is not necessary
for identification the interaction term in the demand equation Perloff et al. (2007). In
the case of increasing marginal costs, we use the classic procedure of Bresnahan (1982)
and Lau (1982).

Table 7.3 presents the estimates of the supply relationship assuming both functional
forms for the marginal costs.11 The Hansen J statistics for overidentification tests sup-

10Although substitution effect results are mixed in the demand estimation, this effect should be consid-
ered and analyzed with a long run elasticity. For a complete analysis of the copper-aluminum substitution
see Messner (2002).

11We experimented with several estimations being the main difference the variables used to measure
energy and wage, our preferred estimates were using oil prices and mine wages as measure of energy and



92 7.2 Static Conduct Parameter

port the validity of the instruments. Coefficient estimates of the conduct parameter,
θ, range between 0.35 and 0.0012. As before, we can reject perfect competition and
monopoly power. However, these results are fare from the benchmark conduct mea-
sured value reported in table 7.2 (0.06 and 0.07 respectively).

The difference in the estimates of θ seems to suggest that the identification of the con-
duct parameter is very sensitive to assumptions of the functional form in the marginal
cost function. On the one hand, by assuming constant marginal costs the conduct pa-
rameter is upwards biased. The source of this bias could be an omitted variable bias as
quantity appears to be a key component of the supply relationship. On the other hand,
when we assume increasing marginal costs, the conduct parameter is underestimated.
Thus, even when it is unclear to what extent it is possible to apply NEIO techniques
to the international copper industry, this method at least allows to reject both perfect
competition and monopoly pricing.12

wage respectively.
12Similar results were obtained by Genesove and Mullin (1998) and Wolfram (1999) using increasing

marginal costs.
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Table 7.3: Supply Relationship

Marginal costs
Dependent var: Pt [5] [6]

Constant Increasing
W1t (Wage) 0.4201*** 0.4038***

(0.0448) (0.0387)
W2t (Energy) 0.8646*** 1.0374***

(0.3121) (0.3058)
Qt (Consumption) 0.0346***

(0.0031)
Constant -1405.0626*** -1362.2021***

(149.5899) (130.7689)

θ Conduct parameter 0.3547*** 0.0012***
(0.0343) (0.0002)

Adjusted R2 0.7478 0.7662
Overid 4.1580 3.4483
p-value 0.1251 0.1783

7.3 Estimation of the Structural Model

This section presents the estimates of our theoretical model developed in chapter 3. We
proceed in two steps. In the first step, we estimate a dynamic model of conjectural
variations using the euler equation (3.2.1). Second, we estimate the parameters in the
fixed and entry cost functions using the discrete euler equation (3.2.11).
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7.3.1 Dynamic Conduct Parameter

In this section, we provide a microeconometric dynamic analysis of the level of competi-
tion in this industry. We extend the Static Conjectural Variation approach by estimating
a dynamic model of competition taking advantage of the Euler equation for output from
our theoretical model in chapter 3:

MRt −MCt = β Et
(

[MRt+1 −MCt+1]
(1 + qt+1)

(1 + qt)
+ αgδ

(g)
q

qt+1

(1 + qt)
MCt+1

)
(7.3.1)

The dynamic in this model comes from the expectations of price and marginal cost in
the next period as well as the expected depletion effect, αgδ

(g)
q

qt+1

(1 + qt)
MCt+1. As men-

tioned before, the depletion effect measures the impact on future marginal costs from
exploiting the mine today. Given the form of the Euler equation, we can explore the
nature of competition at mine and firm level in a static and dynamic framework and
to measure the impact of the depletion effect on competitive behavior by applying the
Conjectural Variation approach to the Euler equation 7.3.1.13 We first consider com-
petition at mine level. An empirical model to test for competition based in our Euler
equation can be written as:

i) Static model:
Pt −MCit = θ̃MPt

qit
Qt

ii) Dynamic model without depletion effect:

Pt−MCit− β (Pt+1 −MCit+1)
(1 + qit+1)

(1 + qit)
= θ̃M

(
Pt
qit
Qt

− βPt+1
qit+1

Qt+1

(1 + qit+1)

(1 + qit)

)

13Static in this model refers to shut down the marginal effect on next period profits.
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iii) Dynamic model with depletion effect:

Pt −MCit − β
[
(Pt+1 −MCit+1)

(1 + qit+1)

(1 + qit)
+ αg

qit+1

(1 + qit)
δ(g)q MCit+1

]
=

θ̃M
(
Pt
qit
Qt

− βPt+1
qit+1

Qt+1

(1 + qit+1)

(1 + qit)

)

where θ̃M =
(

1+θM

ηD

)
, θM is the conduct parameter at mine level and ηD is the elasticity

of demand (estimated in section 7.2.3). The value of the conduct parameter, as before,
captures the competitive behavior in the industry, f.i. competitive pricing, θM = −1,
Cournot pricing, θM = 0, or the cartel pricing with symmetric mines, θM = N − 1.14

By including mine fixed effects, we can address the Corts’ critique of tacit collusion
as suggested by Puller (2009). The top panel in Table 7.4 presents estimates of the
conjectural variation at mine level for the static, dynamic and dynamic including deple-
tion effect models. Standard errors of the conduct parameters are computed through the
Delta method. The fixed effect estimates of the conduct parameter, in columns (1) to
(3), are between -0.73 and 10.18. The static model predicts a very competitive structure
while that the dynamic models present a structure something less competitive that the
Cournot solution.

Given that the right hand side in our Euler representations of the conjectural variation
model could be endogenously determined, as prices and quantities are simultaneously
driven, we also estimate them by IV-GMM in columns (4) - (6). The Conduct param-
eters are now less competitive in all the models, ranging from 9.72 in the static model
to 47.53 in the dynamic model including depletion. These results clearly reject both
perfect competition and the joint profit-maximization solution. Moreover, the depletion
effect seems not to play an important role in the degree of competition, as the difference
between the dynamic model with and without depletion effect is very small. In other
words, the natural depreciation due to exploitation is a common factor across mines and
it is already internalized in the definition of the competitive strategies of mines.

Similarly, the flexibility of the Euler equation allows us to explore competition at

14Note that values of conjectural variation in the dynamic model differ from the static one.
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firm level. Unlike the previous analysis, mines belonging to the same firm are managed
by a general manager. Therefore, we assume that this firm manager maximizes the joint
profit of all mines within the firm. We can write an empirical model of conjectural vari-
ations at firm level as:

i) Static model:

Pt −MCit = θ̃FPt
Qf(i)t

Qt

ii) Dynamic model without depletion effect:

Pt−MCit−β (Pt+1 −MCit+1)
(1 + qit+1)

(1 + qit)
= θ̃F

(
Pt
Qf(i)t

Qt

− βPt+1

Qf(i)t+1

Qt+1

(1 + qit+1)

(1 + qit)

)
iii) Dynamic model with depletion effect:

Pt −MCit − β
[
(Pt+1 −MCit+1)

(1 + qit+1)

(1 + qit)
+ αg

qit+1

(1 + qit)
δ(g)q MCit+1

]
=

θ̃F
(
Pt
Qf(i)t

Qt

− βPt+1

Qf(i)t+1

Qt+1

(1 + qit+1)

(1 + qit)

)

where Qf(i)t
Qt

represents the market share of the firm f to which mine i belongs to. θ̃F =(
1+θF

ηD

)
and θF is the conduct parameter at firm level. Similar results to the analysis

at mine level are obtained for competition at firm level in the middle panel of table
7.4, although estimates of the conduct parameter are lower than the ones at mine level.
Moreover, estimates are very close to the Cournot solution.

Finally, the theoretical model allows us to understand the relevant unit level of com-
petition f.i. mine or firm level. We can nest several regimes of competition such as
Cournot or perfect competition at mine and firm level in a single general model and test
for which unit better explain the data. For example, in the case of a dynamic model with
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depletion, the nested or general model of competition can be written as:

Pt −MCit − β
[
(Pt+1 −MCit+1)

(1 + qit+1)

(1 + qit)
+ αg

qit+1

(1 + qit)
δ(g)q MCit+1

]
=

θ̃NM
(
Pt
qit
Qt

− βPt+1
qit+1

Qt+1

(1 + qit+1)

(1 + qit)

)
+ θ̃NF

(
Pt
Qf(−i)t

Qt

− βPt+1

Qf(−i)t+1

Qt+1

(1 + qit+1)

(1 + qit)

)
where the regime of competition would be:

a) An oligopoly solution at firm level if θ̃NM = θ̃NF > 0

b) An oligopoly solution at mine level if θ̃NM > 0 and θ̃NF = 0

c) Cournot solution at firm level if θ̃NM = θ̃NF = 1
ηD

d) Cournot solution at mine level if θ̃NM = 1
ηD

and θ̃NF = 0

e) Perfect competition if θ̃NM = θ̃NF = 0
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Table 7.4: Conjectural Variation Estimates

Mine Level
Fixed Effect IV-GMM

Variable Static Dynamic Depletion Static Dynamic Depletion

θ̃M 0.8961* 36.8807*** 37.2734*** 35.7286*** 158.8657*** 161.7532***
(0.493) (4.948) (4.986) (5.112) (18.448) (18.786)

Constant 1159.7732*** 36.1302 10.4365 3166.0799*** -223.1199 -237.5774
(73.253) (213.069) (214.656) (346.657) (1148.835) (1169.881)

Number of Obs. 1864 1864 1864 1864 1864 1864
θM -0.7312 10.0642 10.1820 9.7186 46.6597 47.5260

(0.1479) (1.4844) (1.4959) (1.534) (5.534) (5.636)
Hansen p-value - - - 0.0000 0.3213 0.3157

Firm Level
Fixed Effect IV-GMM

Variable Static Dynamic Depletion Static Dynamic Depletion

θ̃F 0.7196*** 6.8985*** 7.0262*** 11.2211*** 20.8877*** 21.2750***
(0.238) (1.127) (1.116) (1.838) (1.814) (1.839)

Constant 1375.5509*** 564.9152*** 548.7357*** 2801.1761*** -534.2012 -553.987
(78.058) (142.748) (141.941) (390.478) (817.197) (828.604)

Number of Obs. 1864 1864 1864 1864 1864 1864
θF -0.7841 1.0695 1.1079 2.3663 5.2663 5.3825

(0.072) (0.338) (0.335) (0.551) (0.544) (0.552)
Hansen p-value - - - 0.0000 0.0002 0.0002

Nested Model
Fixed Effect IV-GMM

Variable Static Dynamic Depletion Static Dynamic Depletion

θ̃NM 0.4569 28.7139*** 28.8933*** 34.4128*** 131.2138*** 133.2582***
(0.511) (5.134) (5.156) (6.749) (37.449) (38.043)

θ̃NF 0.7709*** 4.6916*** 4.8141*** 1.1709 3.9094 4.0424
(0.289) (0.448) (0.448) (3.423) (6.203) (6.302)

Constant 1367.6997*** -55.3711 -83.4545 3083.2807*** -295.0495 -311.2214
(81.282) (185.069) (185.733) (406.534) (977.348) (992.847)

Number of Obs. 1864 1864 1864 1864 1864 1864
θNM -0.8629 7.6142 7.668 9.3238 38.3641 38.9775

(0.153) (1.540) (1.547) (2.025) (11.235) (11.413)
θNF -0.7687 0.4075 0.4442 -0.6487 0.1728 0.2127

(0.087) (0.134) (0.134) (1.027) (1.861) (1.891)
H0 : θ̃NM = 0 0.3715 0.0000 0.0000 0.0000 0.0005 0.0005
H0 : θ̃NF = 0 0.0076 0.0000 0.0000 0.7323 0.5286 0.5212
Hansen p-value - - - 0.0000 0.1035 0.1001

Note: Dependent variable is left hand side in each model. Explanatory variables are defined as the right
hand side (rhs) in each model. β fixed at 0.95. All regressions include time and mine dummies.
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The bottom panel in table 7.4 presents estimates of the static, dynamic and dynamic
with depletion nested models. We present estimates for both fixed effects and Instru-
mental Variables GMM. The fixed effect results suggest a more competitive environ-
ment in all specifications. The IV-GMM estimates show a significative value for the
parameter of competition at mine level, θ̃NM , while that the associated firms’ conduct
parameter θ̃NF is not significative. Therefore, we cannot reject the null hypothesis of
θ̃NM > 0 and θ̃NM = 0, this suggest that strategic interactions between mines explain
better the competition in this industry. This is an important result because it suggests
that given the substantial heterogeneity across mines even within a firm, managers will
set its level of output and strategies taking into account strategies of rival mines rather
than rival firms. This is a more reasonable result for large and medium mines because to
shut down temporarily a mine is costly. The results also suggest an environment some-
thing less competitive than Cournot, θNM ∈ {9, 39}. In general, these results provide
reasonably evidence of market power and strategic behavior in this industry. However,
results of the conduct parameters are constant over time and not take into account short-
run changes in the competitive behavior, so they should certainly be read carefully.

7.3.2 Price Counterfactual Experiments

In the above section, we have exploited our continuous Euler equation to study the com-
petitive behavior in the copper industry. With the same structure and taking advantage
of the richness of the data, we can perform a simple experiment to study the effect of
both market power and depletion effect on price. Copper price is highly volatile and
uncertain, it decreased by more than 20% between the years 1992 and 2000 and in-
creased in almost 3 times in 2008. In our experiment, if we shut down market power
the copper price would have been, in average, a 19% lower. However, the hypothetical
price without market power and the actual price follow the same trend, so market power
cannot explain by itself the volatility of prices. As described before, this trend is mainly
determined by the demand of developing countries. Second, we analyse the influence of
the depletion effect on copper prices. Results suggest that without depletion effect the
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price of copper would have been, in average, 1,3% lower than the actual price. This is a
non-negligible effect, taking into account that the average mine in the sample produce
147 thousand tons of copper per year, this would imply an average decrease in incomes
of 6 million dollars per year. However, as in the case of market power, it is not enough to
explain the high volatility of prices. Table 7.5 shows the actual and hypothetical prices
from this exercise.

Table 7.5: Hypothetical Prices: No Market Power and No Depletion Effect

Copper Price
Year Actual % No Market Power % No Depletion %

1992 2299.21 - 1921.76 -16% 2269.60 -1.30%
2000 1812.20 -21% 1435.58 -21% 1785.92 -1.50%
2008 6950.95 284% 5402.37 -22% 6880.31 -1.01%

7.3.3 Entry Cost Estimates

In this section, we estimate the structural parameters in the entry and fixed cost func-
tions, θ = {C(e), θ

(fc)
i , σε} for i = 1, ..., 4., derived in the section 3.2.2 using a two-step

GMM estimator. The first step consists in the estimation of the conditional choice prob-
abilities (CCPs) at two consecutive periods, Pt(ait+1|xit) and Pt+1(ait+2|ait+1,xit+1),
∀ ait, ait+1 ∈ {1, 0}. We estimate the decision of being active next period using a logit
model and including all the state variables as regressors:

Pt(at+1 = 1|xt) = Λ(β0 + β1Pt + β2git + β3rit + β4ωit

+β5kit + β7p
l
it + β8p

e
it + β9p

f
it + β10Q−it + β11ait + eit)

(7.3.2)

Given that individual state variables are not observable for potential entrants, we esti-
mate them by running an OLS regression of the state variable on a fixed effect and a
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time dummy, sit = αi + γt + εit
15. Given this representation of the conditional choice

model, the estimated probability that a mine is active in the next period conditional on
the state variables xit is:

̂Pt(at+1 = 1|xt) =
exp{X′β̂}

1 + exp{X′β̂}
(7.3.3)

In the second step, we estimate our parameterized Euler equation16:

β
[
V P ∗(xt+1)− pkit+1kit+1

]
= −βC(e)(xt+1) + (1− at)C(e,x)(xt)

+θ
(fc)
1 βkit+1 + θ

(fc)
2 βrit+1 + θ

(fc)
3 βk2it+1 + θ

(fc)
4 βr2it+1 + σεε̃t+1 (7.3.4)

where V P ∗(xt+1) = Pt+1×qit+1(xt+1)−V Cit+1(xt+1) and ε̃t+1 = [ln(1−Pt(1|xt))+

β lnPt+1(1, 0,xt+1)− lnPt(1|xt)− β lnPt+1(1, 1,xt+1)].

We estimate θ = {C(e), C(e,x), θ
(fc)
i , σε} using a GMM estimator based on the mo-

ment conditionEt(Zt{V P ∗(xt+1)−pkit+1kit+1−θ(fc)1 βkit+1−θ(fc)2 βrit+1−θ(fc)3 βk2it+1−
θ
(fc)
4 βr2it+1 + βC(e)(xt+1)− (1− at)C(e,x)(xt)− σεε̃t+1}), where the vector of instru-

ments Zt is {1, git−1, lnP (1|xt)}′17.

15We consider as potential entrants, mines which were active in any period of the sample. Similar
results are also obtained for the predicted choice probabilities if we keep equal to the last available obser-
vation the values for the deterministic state variables, {git, rit}.

16Given that is not possible to identify separately C(e)
i (Xt) from C

(x)
i (Xt) in equation (3.2.11), the

parameter C(e,x) provides a net (of the exit value) entry cost. An alternative method to avoid this con-
straint is to estimate a Pseudo Likelihood Policy Iteration mapping for the Euler equation (EE-PI), where
the dependent variable would be the choice probability.

17The entry indicator is treated as endogenous.
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Table 7.6: Estimation of Entry Costs

(1) (2)
OLS IV-GMM

C(e,x)(xt) 4434561.8747*** 4015409.0413***
(351692.704) (468787.228)

θ
(fc)
1 2511.4382*** 2653.4407***

(357.998) (372.327)
θ
(fc)
2 -0.3240*** -0.3292***

(0.085) (0.085)
θ
(fc)
3 -3.2100*** -2.9004***

(0.378) (0.442)
θ
(fc)
4 0.0000** 0.0000***

(0.000) (0.000)
σε -829753.4801*** -755549.5284***

(63962.473) (84268.385)
βC(e)(xt+1) -4265633.1874*** -3878864.9085***

(332862.473) (438830.180)

Obs. 1132 1132
R2 0.6286 0.6281

Table 7.6 presents estimates of the structural parameters based on the Euler equation
7.3.4. The annual discount factor, β, is fixed at 0.95. All the estimated parameters are
measured in 2010 thousands of dollars. The estimated entry cost is roughly 3.8 billions
of dollars. For comparison reasons, it is helpful to take into account that the annual
revenue generated by the average mine is 624.25 millions of dollars. The mean value
of the annual variable profit is approximately 496.4 millions of dollars whereas that the
average estimated fixed cost is 113.7 millions of dollars. Therefore, the estimated entry
cost represents 7.8 times the annual variable profits and 34 times the fixed costs. The
average mine in the sample takes almost 10 years to recover its initial investment. The
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average life of a mine is 32 years in our sample18, this implies an internal rate of return
of 9%. Given our representation of the Euler equation, we can recover the exit value as
the difference between βC(e)(xt+1) and C(e,x)(xt). This implies a non-negligible exit
value of 136.5 millions of dollars for the average mine. It is interesting to note that the
exit value implies an important cost for the mine and it can be associated with a cost of
closure due to environmental regulation19. Finally, the low value of the ratio between
the means of the average cost ($2435.1 /t) and the marginal costs ($1137.8) suggests
substantial economies of scale for this industry. However, the coefficients of capital
implies a concave relationship between capital and the profit measure suggesting that
there is an optimal size of the mine to exploit this economies of scale.

Finally, we use the estimates of the structural parameters to conduct a counterfactual
experiment by quantifying the effect of the entry cost on the price evolution. Figure 7.1
shows the actual and the estimated price due to an increase of 10% in the entry costs. In
average, an increase of 10% on entry costs will lead to an increase of 43% in the price.

18The sample in this section is reduced from 1864 to 1132 observations due to missing values for the
cost of capital.

19Typically in dynamic games, exit implies a positive revenue for firms as they sell their infrastructure
to other firms or as scrap metal. However, closing a mine could be a complex process, it requires to
remove large infrastructures and equipment, the rehabilitation of the environment and a permanent mon-
itoring of the toxic waste generated during its operation. This process could last several years or even
decades and it is subject to a strict regulation in some producer countries.
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Figure 7.1: Counterfactual Experiment: Increase in Entry Costs.
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Conclusion

This thesis have explored the microeconometrics of the world copper mining industry.
It makes a contribution to both the industrial organization literature and the natural re-
sources literature by proposing and estimating a dynamic structural model that includes
several characteristics of this industry that have been omitted by previous econometric
models using data at more aggregate level. We have build a unique dataset of almost
two decades for 330 mines in this industry. This also is an important empirical contri-
bution. The dataset contains information provided by one of the world’s largest copper
producers and data collected from other several private and public sources. The dataset
includes detailed information on price, capacity, production, reserves, ore grades, input
uses and prices, opening and closing activity and other characteristics at mine level.

In this thesis, important drivers of the supply of copper are identified and outlined.
First, there is a large heterogeneity in geological characteristics across mines that helps
to understand the dynamics of the market structure. It is found that differences in ore
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grade is the main determinant of heterogeneity in marginal costs. If it were possible
to eliminate the heterogeneity in ore grade, keeping all other elements constant, the
variance of marginal costs would decline by almost 60%. These exogenous or natural
differences also help to explain entry and exit decisions. It is found evidence of a sub-
stantial number of mines in the lower part of the distribution of ore grades that adjust
their production at the extensive margin, i.e., temporary mine closings and re-openings,
in response to price changes. There is also strong evidence of changes at the intensive
margin in response to price changes, f.i., mines increase the extraction of lower quality
ores, increasing their marginal costs, when price is high.

Second, it is found an important depletion effect. Natural endowments at mine level
such as ore grades and reserves are not constant over time and they evolve endogenously.
Ore grades decline with the depletion of mine reserves, and they may increase as a result
of investment in exploration within the mine. Doubling today’s output implies a 7%
reduction in mine productivity next period. There is evidence of almost a one-to-one
relationship between ore grades and marginal costs, the depletion effect of ore grades
represents, in average, 5% of marginal costs. It is important to note that this thesis is the
first attempt into introduce theoretically and empirically the endogeneity of ore grades.

Third, results from the production function estimates have shown evidence of con-
stant returns to scale and substantial economies of scale. It is also found that production
technology in this industry is very energy and capital intensive. This supports the idea
that mining can be thought as a modern industry where massive and relatively low-grade
ores are exploited by highly skilled workers and using modern equipment and technol-
ogy. On the other hand, there is evidence of a positive productivity growth and that
this growth could be explained in part by reallocation of resources from less to more
productive mines.

Fourth, results from the output Euler equations estimates provide strong evidence of
market power and strategic behaviour. Descriptive evidence also showed that the con-
centration ratio of the four largest mines was more than 26% and the average Lerner
index was 42%, this is a suggestive indicator for the possibility of market power. Con-
jectural variation estimates reject both a competitive and monopolistic behaviour and
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suggest that the Cournot model of oligopoly could explain better the data. This is an
important result as the literature of natural resources typically assumes that commodity
markets behaves competitively. Counterfactual experiments showed that market power
plays an important role in determining the structure of the industry, f.i., by eliminating
market power, price would decrease, in average, by almost 20%.

Finally, structural estimates show that mines have to pay substantial sunk entry and
exit costs. For example, estimates indicate that, in average, the entry cost can reach 3.8
billions of dollars while that exit costs are almost 140 millions of dollars. These sunk
costs represent an important barrier to entry and help to explain the large concentration
and market power in this industry. In addition, the conducted experiments have shown
that start-up costs are an important determinant of price setting, f.i., an increase of 10%
in the entry cost would imply an increase of almost 40% in the average price.

Finally, an interesting extension of this work would be to include investment in ca-
pacity, measured as capital and equipment investments, in the model. These investment
decisions could be important for the structure of the industry, f.i., incumbent mines
could adjust their capacity by both responding to demand shocks or strategically rea-
sons to prevent entry. This extension is currently being explored in a working paper
that include most of the findings of this thesis. Further extensions of this thesis include
to explore the effects of an increasing environmental regulation in extractive industries
and recent technological breakthroughs in mining on productivity and the market struc-
ture. Among the main findings in this thesis, it has been highlighted that the exit value
or closing cost could play an important role in mines’ decision of remain active and
that environmental costs of closing would be an important component of this closing
costs. Therefore, environmental regulation could have important consequences on price
and market power in this industry. On the other hand, copper mining has experimented
recent developments in production technology such as the introduction of the electro-
winning technique. One question that could be addressed is weather improvements in
technology have played a role in the observed productivity growth. There are many
other interesting dynamic features in this industry to explore, from the substantial num-
ber of merges and acquisitions observed in the data to the dynamics in demand and
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inventories. All these interesting topics are leaved for future work.

The results provided in this thesis help to understand better the dynamics of this
industry. Moreover, it would be possible to extend these findings to other non-renewable
natural resources markets.



APPENDIX A

Appendix to Chapter 3

A.1 Variable and Marginal Costs

Given the production function:

qit = (`it)
α` (eit)

αe (fit)
αf (kit)

αk (rit)
αr (git)

αg exp{ωit} (A.1.1)

and the definition of variable cost:

V Cit ≡ p`it`it + peiteit + pfitfit (A.1.2)



110 A.1 Variable and Marginal Costs

we can derive the variable cost function as the solution to:

L = p`it`it + peiteit + pfitfit

+λ [qit − (`it)
α` (eit)

αe (fit)
αf (kit)

αk (rit)
αr (git)

αg exp{ωit}]

(A.1.3)

the first order conditions for each variable input are:

`it =

[(
qit

(kit)
αk (rit)

αr (git)
αg exp{ωit}

)(
peit
p`it

α`
αe

)αe (pfit
p`it

α`
αf

)αf
] 1
αv

(A.1.4)

eit =

[(
qit

(kit)
αk (rit)

αr (git)
αg exp{ωit}

)(
p`it
peit

αe
α`

)α` (pfit
peit

αe
αf

)αf
] 1
αv

(A.1.5)

and,

fit =

[(
qit

(kit)
αk (rit)

αr (git)
αg exp{ωit}

)(
p`it
peit

αf
α`

)α` (peit
pfit

αf
αe

)αe] 1
αv

(A.1.6)

where αv = α` +αe +αf . Solving equations (A.1.4), (A.1.5) and (A.1.6) into equation
(A.1.2) and rearranging terms, we get the variable cost as:

V Cit = αv

(p`it/α`)α` (peit/αe)
αe
(
pfit/αf

)αf
(kit)αk (rit)αr (git)αg exp{ωit}

qit

(1/αv)

(A.1.7)

Finally, taking derivatives with respect to qit, we get the marginal cost as:

MCit =

(
1

αv

)(
V Cit
qit

)
(A.1.8)
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A.2 Euler Equation for Output

Let us consider the following Bellman equation:

V (rt, gt) = max
qt

[Rt(qt)− V C(qt, rt, gt) + β Et (V (rt+1, gt+1) )] (A.2.1)

with the variable cost function:

V Ct = αv

(p`t/α`)α` (pet/αe)
αe
(
pft /αf

)αf
(kt)αk (rt)αr (gt)αg exp{ωt}

qit

(1/αv)

and transition functions for reserves and ore grades:

rt+1 = rt −
qt
gt

+ z
(r)
t+1 (A.2.2)

gt+1 =
gt exp{δ(g)z z

(r)
t + ε

(g)
t+1}

(1 + qt)δ
(g)
q

(A.2.3)

The first order condition is:

∂Vt
∂qt

= MRt −MCt + β Et
(
∂Vt+1

∂rt+1

∂rt+1

∂qt
+
∂Vt+1

∂gt+1

∂gt+1

∂qt

)
= 0 (A.2.4)

Taking into account that
∂rt+1

∂qt
=
−1

gt
and

∂gt+1

∂qt
= −δ(g)q

gt+1

(1 + qt)
, we have that:

MRt −MCt − β Et
(
∂Vt+1

∂rt+1

1

gt
+
∂Vt+1

∂gt+1

δ(g)q

gt+1

(1 + qt)

)
= 0 (A.2.5)

Taking envelope conditions with respect to reserves and ore grades:

[i] Envelope condition w.r.t. rt:

∂Vt
∂rt

= −∂V Ct
∂rt

+ β Et
(
∂Vt+1

∂rt+1

)
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and taking into account that
∂V Ct
∂rt

= −αr
αv

V Ct
rt

= −αr
qt
rt
MCt, we have:

∂Vt
∂rt

= αr
qt
rt
MCt + β Et

(
∂Vt+1

∂rt+1

)
[ii] Envelope condition w.r.t. gt:

∂Vt
∂gt

= −∂V Ct
∂gt

+ β Et
(
∂Vt+1

∂gt+1

gt+1

gt

)

and taking into account that
∂V Ct
∂gt

= −αg
αv

V Ct
gt

= −αg
qt
gt
MCt, we have:

∂Vt
∂gt

= αg
qt
gt
MCt + β Et

(
∂Vt+1

∂gt+1

gt+1

gt

)
Given that we have two endogenous state variables, gt and rt, and only one decision
variable, qt. it is not possible to derive an standard Euler equation. However, given
that our estimates of αr in the production function is not significantly different from
zero and also given that

qt
rt

is a very small number for all the mines in our data, it is

possible to argue that αr
qt
rt
MCt is very close to zero, and therefore

∂Vt
∂rt

should be also

very close to zero. In contrast, our estimate of αg in the production function is large and
qt
gt

is also a large number for the mines in the sample, then αg
qt
gt
MCt should be large,

therefore, the depletion effect through ore grade is potentially quite important. Under
this assumption, we can re-write the first order condition (A.2.4) as:

∂Vt
∂qt

= MRt −MCt + β Et
(
∂Vt+1

∂gt+1

∂gt+1

∂qt

)
= 0 (A.2.6)

From transition rule of ore grades, we have that:

∂gt+1

∂qt
=

(
−δ(g)q

)
(1 + qt)

−
(
δ
(g)
q +1

)
gt exp{δ(g)z z

(r)
t + ε

(g)
t+1}

=
(
−δ(g)q

) gt+1

(1 + qt)
(A.2.7)
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Solving into equation (A.2.6):

MRt −MCt − β Et
(
∂Vt+1

∂gt+1

δ(g)q

gt+1

(1 + qt)

)
= 0 (A.2.8)

The envelope condition with respect to gt is:

∂Vt
∂gt

= αg
qt
gt
MCt + β Et

(
∂Vt+1

∂gt+1

gt+1

gt

)
(A.2.9)

Equation (A.2.6) implies that:

β Et
(
∂Vt+1

∂gt+1

δ(g)q

gt+1

(1 + qt)

)
= MRt −MCt

Or:
β Et

(
∂Vt+1

∂gt+1

gt+1

gt

)
=
MRt −MCt

δ
(g)
q

(1 + qt)

gt
(A.2.10)

Solving equation (A.2.10) into equation (A.2.9) and given that ∂gt+1

∂gt
= gt+1

gt
, we have:

∂Vt
∂gt

= αg
qt
gt
MCt +

(
MRt −MCt

δ
(g)
q

(1 + qt)

gt

)
(A.2.11)

This implies that at t+ 1, we have:(
∂Vt+1

∂gt+1

δ(g)q

gt+1

(1 + qt)

)
= αg

qt+1

gt+1

MCt+1 δ
(g)
q

gt+1

(1 + qt)

+

(
MRt+1 −MCt+1

δ
(g)
q

(1 + qt+1)

gt+1

)
δ(g)q

gt+1

(1 + qt)

= αgδ
(g)
q

qt+1

(1 + qt)
MCt+1 +

(
[MRt+1 −MCt+1]

(1 + qt+1)

(1 + qt)

)
Therefore, the Euler equation is:

MRt −MCt = β Et
(

[MRt+1 −MCt+1]
(1 + qt+1)

(1 + qt)
+ αgδ

(g)
q

qt+1

(1 + qt)
MCt+1

)
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A.3 Euler Equation for Discrete Choice Active/Non Ac-
tive

Let us consider a simplified version of the binary entry/exit decision problem:

V P (Xt) = max
P (Xt)∈[0,1]

{
πet (Xt, Pt)

+β
∑
Zt+1

fz(Zt+1|Zt)[Pt(0|Xt)π
e
t+1(0, Zt+1, Pt+1) + Pt(1|Xt)π

e
t+1(1, Zt+1, Pt+1)]

}

subject to

f et→t+2(1|Xt, Pt, Pt+1) =
∑
Zt+1

fZ(Zt+1|Zt)[Pt(0|Xt)Pt+1(1|0, Zt+1)+Pt(1|Xt)Pt+1(1|1, Zt+1)]

Therefore, the free probabilities that enter in the Lagrangian problem are Pt(1|Xt),
Pt+1(1|0, Zt+1) and Pt+1(1|1, Zt+1).

L = πet (Xt, Pt)

+β
∑
Zt+1

fz(Zt+1|Zt)[Pt(0|Xt)π
e
t+1(0, Zt+1, Pt+1) + Pt(1|Xt)π

e
t+1(1, Zt+1, Pt+1)]

−λ(Xt)
∑
Zt+1

fz(Zt+1|Zt)[Pt(0|Xt)Pt+1(1|0, Zt+1) + Pt(1|Xt)Pt+1(1|1, Zt+1)]

(A.3.1)

The marginal condition with respect to one of the probabilities Pt+1(1|Xt+1) is
β
∂πet+1(1,Zt+1,Pt+1)

∂Pt+1(1|1,Zt+1)
= β

∂πet+1(0,Zt+1,Pt+1)

∂Pt+1(1|0,Zt+1)
= λ(Xt). Substituting the marginal condition

with respect to Pt+1(1|Xt+1) into the marginal condition with respect to Pt(1|Xt), we
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get the Euler equation:

∂πet (Xt, Pt)

∂Pt(1|Xt)
+ βEt

[
πet+1(1, Zt+1)− πet+1(0, Zt+1)

]
+βEt

[
Pt+1(1|0, Zt+1)

∂πet+1(0, Zt+1)

∂Pt+1(1|0, Zt+1)
− Pt+1(1|1, Zt+1)

∂πet+1(1, Zt+1)

∂Pt+1(1|1, Zt+1)

]
= 0

(A.3.2)

Assuming a logit specification for the unobservables, we have that the marginal ex-
pected profits are:

i) ∂πet
∂Pt(1|Xt) = πt(1, yt, Zt)− πt(0, yt, Zt)− σε ln

(
Pt(1|yt,Zt)
Pt(0|yt,Zt)

)
ii) ∂πet+1

∂Pt+1(1|0,Zt+1)
= πt+1(1, 0, Zt+1)− πt+1(0, 0, Zt+1)− σε ln

(
Pt+1(1|0,Zt+1)
Pt+1(0|0,Zt+1)

)
iii) ∂πet+1

∂Pt+1(1|1,Zt+1)
= πt+1(1, 1, Zt+1)− πt+1(0, 1, Zt+1)− σε ln

(
Pt+1(1|1,Zt+1)
Pt+1(0|1,Zt+1)

)
Moreover, we know that:

iv) πet+1(1, Zt+1) = Pt+1(0|1, Zt+1)[πt+1(0, 1, Zt+1)− σε lnPt+1(0|1, Zt+1)]

+ Pt+1(1|1, Zt+1)[πt+1(1, 1, Zt+1)− σε lnPt+1(1|1, Zt+1)]

v) πet+1(0, Zt+1) = Pt+1(0|0, Zt+1)[πt+1(0, 0, Zt+1)− σε lnPt+1(0|0, Zt+1)]

+ Pt+1(1|0, Zt+1)[πt+1(1, 0, Zt+1)− σε lnPt+1(1|0, Zt+1)]

Solving equations i) to v) into equation A.3.2 and operating in the probabilities, we get
the Euler equation: [

πt(1, yt, Zt)− πt(0, yt, Zt)− σε ln

(
Pt(1|yt, Zt)
Pt(0|yt, Zt)

)]
+βEt

[
πt+1(1, 1, Zt+1)− πt+1(1, 0, Zt+1)− σε ln

(
Pt+1(1|1, Zt+1)

Pt+1(1|0, Zt+1)

)]
= 0
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Appendix to Chapter 7

B.1 Derivation of the Conduct Parameter

Assuming that firms choose to produce a quantity qi which maximizes its profit Πi, then
the firm i′s profit maximization problem can be written as:

Max
qit

Πit = P (Qt, Xt, α) qit − C (qit,Wit, β)

The first order condition is given by:

∂Πit

∂qit
= Pt + qit

∂P (Qt, Xt, α)

∂Q

∂Q

∂qi
−MCi (qit,Wt, βi) = 0

Pt = MCi (qit,Wt, βi)− qit
∂P (Qt, Xt, α)

∂Q

∂Q

∂qi
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Multiplying both sides by Q
P

:

Pt = MCi (qit,Wt, βi)−
∂P (Qt, Xt, α)

∂Q

Q

P

∂Q

∂qi

qit
Q
Pt

given that ηt = −∂Q
∂P

Pt
Qt

is the price elasticity of demand, this equation can be re-written
as:

Pt = MCi (qit,Wt, βi) +
Pt
ηt

∂Q

∂qi

qit
Q

Summing over firms, this supply relationship can be written on an industry level as:

Pt =
n∑
i=1

sitMCit +
Pt
ηt

n∑
i=1

sit
∂Q

∂qi

qit
Q

The Term
∑n

i=1 sit
∂Q
∂qi

qit
Q

represents the response of total market to firm i′s change in
production. Now, it is possible to write a conduct parameter, θt, nesting several market
structures as:

θt =
n∑
i=1

sit
∂Q

∂qi

qit
Q

In a static perfect competition equilibrium, the firms are too small compared to the
total market. Therefore ∂Q

∂qi

qit
Q

= 0. The best response for a firm in a static Cournot game
is to produce up to its capacity, then an increase of one percent in firm i′s quantity will
lead to an increase of one percent in the total market quantity. Therefore, ∂Q

∂qi

qit
Q

= sit

and θt = s2it, which is the Herfindahl Index, if firms are symmetric, then θt = 1
n

. In a
static monopoly, if the firm i increase its quantity in an x percent, all other firms will
increase their quantity in the same x percent, then ∂Q

∂qi

qit
Q

= 1. Therefore, the supply
relationship can be re-written on an industry level as:

Pt = MC (Qt,Wt, βi) + θt
Pt
ηt
,
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B.2 Monopoly and Cournot Pricing Rules

Consider the following general form of the demand curve:

Q(P ) = β (α− P )γ

where Q is the quantity demanded of copper and P is the price of copper. This spec-
ification includes several cases for the demand function: γ = 1 for the linear demand
function, γ = 2 for the quadratic demand function, and α = 0 γ = 1 for the log-linear
demand function. For simplicity, we choose to use the linear demand function. The
corresponding demand equation is as follow:

Q = β (α− P ) + ε

To correct for potential endogeneity problems, we use wage and energy as instru-
ments for price (See table 7.1).

The implied monopoly price under constant marginal cost c, PM (c) satisfies

PM (c) =
α + γc

1 + γ

Finally, the implied n-firm symmetric Cournot price under constant marginal cost c,
PN(c) satisfies:

PN(c) =
1
n
α + γc

1 + γ 1
n

Therefore, the implied monopoly and Cournot pricing rule are 285.42 + 0.5c and
51.89 + 0.91c, respectively. Using the mean of the direct cash costs (90.04 cents per
pound) as proxy for the mean of marginal cost, the implied price are 330.43 and 133.72

cents per pound of copper, respectively.
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