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found that at a 5-month lag, the Ekman component mainly 
contributes to the southern part of the dipole and cumula-
tive air–sea fluxes only explain a small fraction of the SSTA 
variability. Given that the southern part of the SSTA dipole 
encompasses the main development region for Atlantic 
hurricanes, our results therefore suggest the potential for 
AMOC observations from 26◦N to be used to complement 
existing seasonal hurricane forecasts in the Atlantic.

Keywords  Atlantic meridional overturning circulation · 
RAPID array · Seasonal potential predictability · Sea 
surface temperature · Air–sea heat flux

1  Introduction

The Atlantic meridional overturning circulation (AMOC), 
consists of a net northward flow of warm water in the upper 
ocean (typically in the top 1000 m), which is compensated 

Abstract  The Atlantic meridional overturning circula-
tion (AMOC) plays a critical role in the climate system and 
is responsible for much of the meridional heat transported 
by the ocean. In this paper, the potential of using AMOC 
observations from the 26◦N RAPID array to predict North 
Atlantic sea surface temperatures is investigated for the first 
time. Using spatial correlations and a composite method, 
the AMOC anomaly is used as a precursor of North Atlan-
tic sea-surface temperature anomalies (SSTAs). The results 
show that the AMOC leads a dipolar SSTA with maximum 
correlations between 2 and 5 months. The physical mech-
anism explaining the link between AMOC and SSTA is 
described as a seesaw mechanism where a strong AMOC 
anomaly increases the amount of heat advected north of 26◦

N as well as the SSTA, and decreases the heat content and 
the SSTA south of this section. In order to further under-
stand the origins of this SSTA dipole, the respective con-
tributions of the heat advected by the AMOC versus the 
Ekman transport and air–sea fluxes have been assessed. We 
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at greater depths by a cold southward return flow (e.g. 
Trenberth and Caron 2001; Ganachaud and Wunsch 2002; 
Wunsch 2005). The AMOC has long been used in order to 
investigate the origin of interannual to decadal variability 
in the climate system. Indeed, both observational and mod-
elling studies support the idea that the decadal climate vari-
ability in the North Atlantic has been closely related to the 
AMOC (e.g. Gordon et al. 1992; Winton 2003; Latif et al. 
2004; Herweijer et al. 2005). Consequently, several climate 
predictability studies focused on, first, trying to predict 
the AMOC (Matei et al. 2012; Pohlmann et al. 2013) and 
second, assessing its impact on climate (Collins and Sinha 
2003; Keenlyside et al. 2008; Msadek et al. 2010; Robson 
et al. 2012a, 2014; Persechino et al. 2013).

Interest in the AMOC has been stimulated by the pros-
pect of its gradual weakening during the 21st century as 
suggested by the climate model scenarios of the 4th and 
5th Intergovernmental Panel on Climate Change (IPCC) 
assessment reports (Solomon et  al. 2007; Stocker et  al. 
2013). Climate model forecasts suggest a decline of the 
AMOC by 25 % over the next few decades (Bindoff et al. 
2007). Over the past decade, a decrease in the subtropical 
AMOC has been observed (Smeed et  al. 2014) in addi-
tion to increased Atlantic sea-surface temperatures (SSTs) 
(Buchan et al. 2014), and an upward trend in Atlantic hur-
ricanes has been observed since 1995 (Goldenberg et  al. 
2001; Emanuel 2005; Sriver and Huber 2007; Klotzbach 
and Gray 2008; Strazzo et al. 2013). A possible degree of 
causality exists between these processes and indicates that 
measuring the large scale ocean circulation could be a use-
ful tool in assessing seasonal hurricane formation prob-
abilities, in addition to other climate indices. As the AMOC 
transport results in a net northward transport of heat around 
1 PW (1015 W), it makes a substantial contribution to the 
mild maritime climate of Northwest Europe and any slow-
down in the AMOC would have profound implications for 
climate in the North Atlantic region. Investigating the link 
between the AMOC and the SST on decadal timescales, 
and using coupled climate models, Stouffer et  al. (2005) 
found that a hypothetical 100-year shut down in the AMOC 
would lead to an increased temperature in the southern 
hemisphere and a decrease of temperature in the northern 
hemisphere up to 12 ◦C around Greenland and the Nordic 
Seas.

Since the AMOC transports upper-ocean heat across lat-
itudes, it has been proposed that it may lead to large-scale 
climate patterns, through the development of SST anoma-
lies (SSTAs) (Robson et al. 2012a, b). Results from numer-
ical models suggest that the intra-annual AMOC variabil-
ity may be rather local and that there is little correlation 
between the variability found e.g. at 26◦N and locations 
situated a few degrees further north or south (Hirschi et al. 
2007; Bingham et al. 2010). The implications of a limited 

meridional coherence of the AMOC on subannual time-
scales means that there can be anomalous convergence and 
divergence of heat in the ocean (Cunningham et al. 2013; 
Sonnewald et  al. 2013; Bryden et  al. 2014). An accumu-
lation of heat into a region can result in higher SSTs, and 
therefore, the AMOC could be an indicator for a develop-
ing SSTA. This simple idea is the motivation for us to test 
whether the available AMOC observations from 26◦N can 
be used to predict the formation of SSTAs.

Since April 2004, an observing system for the AMOC 
has been deployed and maintained at 26◦N in the Atlantic 
in the framework of the UK–US RAPID–MOCHA project 
(Hirschi et al. 2003; Cunningham et al. 2007). It provides 
continuous measurements of the strength and vertical struc-
ture of the AMOC and its associated heat flux. The dec-
ade long time series has provided unexpected insights into 
the behaviour of the AMOC from seasonal to interannual 
timescales. One important finding of the RAPID–MOCHA 
campaign has been that even on intrannual timescales 
the AMOC exhibits a large temporal variability (Fig.  1). 
On these timescales, the AMOC variations are caused by 
both fluctuations in the density field and in the wind stress 
(Hirschi et al. 2007; Chidichimo et al. 2010; Kanzow et al. 
2010; Duchez et al. 2014).

Large fluctuations in the AMOC have also been found 
on interannual timescales and McCarthy et  al. (2012) 
showed a 30 % decline in the AMOC for 14 months during 
2009–2010, where the AMOC transport was 6 Sv weaker in 
the mean compared to the previous years.
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Fig. 1   Timeseries of the AMOC anomaly and the anomaly of its 
components (the seasonal cycle is removed in coloured plots) meas-
ured by the RAPID array at 26◦N from April 2004 to March 2014 
(monthly mean data). The Florida Straits transport (FST) is derived 
from electromagnetic cable measurements in the Florida Straits and 
is represented in blue. The Ekman transport (EKM) is derived from 
ERA-Interim wind estimates and is represented in green. The Upper 
Mid-Ocean (UMO) transport is derived from geostrophic veloc-
ity profiles from moored instruments across the Atlantic Ocean and 
is represented in pink. The AMOC transport is the sum of the FST, 
EKM and UMO transports and is shown in red. Grey curves show the 
same timeseries with the monthly seasonal cycle included
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This weak AMOC transport is attributed to an anoma-
lously high southward thermocline transport (where the 
typical seasonal cycle has vanished) and extreme south-
ward Ekman transports in the winter period. Roberts et al. 
(2013) found that the amplitude of this observed slowdown 
was extraordinary compared to the simulated AMOC vari-
ability and such a weakening was not represented in the 
variability of a set of 10 CMIP5 coupled climate models. 
This AMOC event led to a reduced northward ocean heat 
transport across 26◦N by 0.4 PW resulting in colder waters 
north of 26◦N and warmer waters south of 26◦N, a spatial 
pattern that helped push the wintertime atmospheric circu-
lation during both 2009–2010 and 2010–2011 into record-
low negative North Atlantic Oscillation (NAO) conditions 
associated with severe winter conditions over northwestern 
Europe (Taws et  al. 2011; Cunningham et  al. 2013; Son-
newald et al. 2013; Bryden et al. 2014; Buchan et al. 2014). 
In 2010, the warming south of 26◦N also coincided with 
the strongest Atlantic hurricane season since 2005 (Bender 
et al. 2010).

The 2009–2010 AMOC event is a good example illus-
trating the main hypothesis of this paper. While the AMOC 
and Meridional Heat Transport (MHT) reduced at 26◦N 
during this period of time, the MHT did not reduce as much 
at 41◦N (Johns et al. 2011; Hobbs and Willis 2013; Bryden 
et  al. 2014). There was thus more heat moving north-
ward through 41◦N than coming in at 26◦N resulting in an 
anomalous divergence of heat between these two latitudes. 
Bryden et al. (2014) showed that the SST patterns in win-
ter 2009–2010 conditions were not primarily due to air–sea 
interactions. Consequently, since volume transport governs 
heat transport, and the heat transport north of 41◦N did not 
change much, and the surface fluxes did not change enough 
to explain the cooling, the widespread cooling of the North 
Atlantic was attributed to the changes in the AMOC at 26◦

N. The main goal of this paper is to generalise the hypoth-
esis that the AMOC has an influence on the North Atlan-
tic SSTs and assess the link between these two quantities 
more generally for the 2004–2014 period. We use the first 
decade (2004–2014) of AMOC observations at 26◦N as a 
precursor of the SST over the North Atlantic region, and 
aim to determine to what extent knowing the AMOC allows 
us to predict SSTs. We thus investigate the link between 
the observed AMOC anomalies at 26◦N and satellite based 
SSTA data (Reynolds et al. 2007), with the AMOC leading 
the SSTA fluctuations. Section 2 describes the datasets and 
methods used in this paper. In Sect. 3, we assess the cor-
relation pattern between the AMOC and the North Atlantic 
SSTAs when the AMOC leads the SSTAs. A discussion and 
summary of the paper are given in Sects. 4 and 5, where we 
further discuss the possible physical mechanisms behind 
the correlations between AMOC and SSTA when the SSTA 
leads, alongside hypotheses on the impact of seasonal SST 

predictions for Atlantic hurricane forecasting and extreme 
weather in Northwestern Europe.

2 � Data and methods

2.1 � Data

The data used in this paper cover the period April 2004–
March 2014 and comprise the AMOC observed by the 
RAPID array at 26◦N, satellite based SST data and air–sea 
fluxes from ERA-Interim (Dee et  al. 2011). Monthly data 
are used throughout and the seasonal cycle is removed from 
these 3 datasets.

2.1.1 � Calculation of the AMOC by the RAPID array

The AMOC as observed by the RAPID array is defined 
as the sum of the Gulf Stream through the Straits of 
Florida (the Florida Straits transport, FST), the meridi-
onal Ekman transport (EKM), and an interior transbasin 
transport estimated from the mooring array. The FST has 
been monitored using a submarine cable between Flor-
ida and the Bahamas using the principles of electromag-
netic induction (Baringer and Larsen 2001) with daily 
estimates, and repeated ship sections since 1982. The 
Florida Current cable and section data are made freely 
available on the Atlantic Oceanographic and Meteoro-
logical Laboratory web page (www.aoml.noaa.gov/phod/
floridacurrent/).

The meridional component of wind-driven Ekman trans-
port is calculated from the zonally-integrated meridional 
ERA-Interim wind stress across 26◦N from the shelf off 
Abaco (Bahamas) to the African Coast. This transport is 
applied in the top 100 m.

Finally, the transbasin transport includes a directly 
estimated component, west of 76.75◦W, a geostrophic 
component east of 76.75◦W and a uniform compensation 
transport, chosen to enforce zero net transport across 26◦

N (including transbasin, Florida Current and Ekman trans-
ports) on a 10-day timescale. This compensation term 
effectively replaces the choice of a level of no-motion as 
typically used for transports estimated from hydrographic 
sections (Roemmich and Wunsch 1985; Bryden et  al. 
2005). To estimate the geostrophic component of the trans-
basin transport, the principle of the array is to estimate the 
zonally integrated geostrophic profile of northward velocity 
from measurements of temperature and salinity at the east-
ern and western boundary of the array using the thermal 
wind relationship.

Overall, the AMOC strength is computed as:

(1)AMOC(t) = FST(t)+ EKM(t)+ UMO(t),

http://www.aoml.noaa.gov/phod/floridacurrent/
http://www.aoml.noaa.gov/phod/floridacurrent/
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where UMO (for Upper Mid-Ocean) is the transbasin trans-
port above the depth of maximum overturning. Data are 
processed and made available through the RAPID website 
(http://www.rapid.ac.uk/rapidmoc) with a temporal reso-
lution of 12  h. In the following work, the data obtained 
from April 2004 to March 2014 were monthly averaged 
and deseasoned by removing the 12-month climatology 
obtained from the monthly data. The 12-month climatology 
is a timeseries defined as the mean of all January data, Feb-
ruary data, and so on, up to December. Then, each compo-
nent (AMOC, FST, EKM and UMO) was de-trended and 
filtered with a 2-month running mean.

From April 2004 to March 2014, the mean AMOC strength 
was 17.0 ± 3.3 Sv (1Sv = 106 m3/s), FST was 31.4± 2.3 Sv, 
EKM was 3.6± 2.0  Sv, and the UMO transport was 
−17.9± 2.7 Sv1. Full details of the 26◦N AMOC calculation 
can be found in McCarthy et al. (2014).

2.1.2 � SST data

SST data are collected from the NOAA optimum interpola-
tion dataset (NOAA OI, Reynolds et al. (2007), http://www.
esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html). 
This dataset has a resolution of 1◦ × 1◦, and is based on 
global satellite observations. SST data were processed the 
same way as the RAPID data. The data were deseasoned 
(and subsequently referred to as SST anomalies: SSTAs) 
using the climatology obtained from the monthly SST 
data from December 1981 to March 2015 (the longest 
possible period is used to obtain a robust seasonal cycle) 
before being de-trended and filtered. We then extracted the 
data from April 2003 to March 2015 to span the RAPID 
era (April 2004–March 2014). These data were extracted 
1 year before and after the RAPID era in order to perform 
lagged correlations between the SST data and the AMOC 
timeseries and components.

2.1.3 � Air–sea heat fluxes

Changes in the local air–sea heat fluxes are a likely con-
tribution to observed SSTA patterns. The heat flux can be 
divided into 4 components, the net shortwave and longwave 
radiation and the sensible and latent heat flux anomalies. 
Variability in the net shortwave radiation will depend on 
changes in cloudiness and the sea–ice albedo. Changes in 
the net longwave radiation are due to changes in the lower 
atmospheric temperature, cloudiness, or SST. Longwave 

1  Positive and negative numbers indicate northward and southward 
transports, respectively. (The standard deviations mentioned here are 
based on monthly data after removal of the mean seasonal cycle and 
the trend).

radiation anomalies tend to damp SSTAs. The sensible and 
latent heat fluxes depend on gradients between the lower 
atmosphere and the sea surface in temperature and water 
vapor pressure respectively. Both latent and sensible heat 
fluxes depend strongly on the surface wind speed and thus 
are well correlated.

The air–sea flux (ASF) anomalies used in this paper 
are extracted from the ERA-Interim reanalysis (Dee 
et  al. 2011) and comprise all 4 components of the net 
heat flux (sensible, latent, shortwave and longwave radia-
tions). ERA-Interim is a global atmospheric reanalysis 
from 1979, continuously updated in real time. The spatial 
resolution of the data set is approximately 80  km on 60 
vertical levels from the surface up to 0.1 hPa. The ERA-
Interim data used in this study were downloaded from 
http://apps.ecmwf.int/datasets/data/interim-full-daily/. 
Analyses using the ERA-Interim ASFs cover the same 
period April 2004–March 2014, and the ASF anomalies 
were calculated by removing the seasonal cycle from 
1979 to 2012.

In Sect.  3.3.1, where the role of ASFs on the develop-
ment of SSTA patterns is assessed, the ERA-Interim SST 
dataset is used in order to avoid any unnecessary regridding 
of the Reynolds SST data on the ERA-Interim grid. As the 
ERA-Interim dataset makes use of satellite data (Dee et al. 
2011), it is likely to be close to Reynolds SSTs.

2.2 � Methods

Unlike previous studies which aimed at predicting the 
AMOC variability (Hawkins and Sutton 2009; Robson 
et al. 2012a, 2014; Sévellec and Fedorov 2014), we assume 
in this paper that we know the AMOC, and want to know 
what we can predict from this starting point.

For this purpose, the RAPID data (the AMOC and com-
ponents) and the SSTAs were correlated for different time 
lags. Since our main interest in this paper is to use AMOC 
information to predict SSTAs, we will mainly focus on 
situations where the AMOC and its components lead the 
SSTA fields. These results will be shown in Sect. 3, while 
the correlations when SSTAs lead are shown in the discus-
sion section of this paper.

The significance of these correlations is evaluated with 
a method based on composites. This method consists of 
generating a thousand random discretised (binary) sig-
nals (composites) with similar statistical properties as the 
RAPID data. For the random selection of months to be sta-
tistically comparable to the RAPID AMOC anomaly time-
series we ensure that we randomly pick the same number 
of months with positive and negative anomalies (i.e. 66 and 
54). For example, positive and negative SSTA composites 
are therefore the averages of 66 and 54 selected months 
during the 2004–2014 period (Eqs. 2, 3):

http://www.rapid.ac.uk/rapidmoc
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html
http://apps.ecmwf.int/datasets/data/interim-full-daily/
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where t+ and t− are the timings from the positive and nega-
tive anomalies in the AMOC (or its components) or from 
the random sampling mentioned above; N+ and N− are the 
total numbers of positive and negative months and N is the 
total number of months (N = 120). Therefore, by construc-
tion we have:

We ensure that the temporal properties of the random time-
series are comparable to those of the AMOC observations. 
For this, we compute lagged autocorrelations for discre-
tised transport timeseries (i.e. −1 for AMOC < 0 and 1 for 
AMOC ≥ 0) and for the equivalent discretised timeseries 
obtained from the randomly selected timings. For each 
timeseries the lagged autocorrelations are integrated from 
lag 0 up to the lag where the first zero-crossing occurs. We 
only keep the randomly generated timeseries for which the 
value of the integral is between 0.75 to 1.25 times the value 
obtained for the RAPID data. We have tested a broader 
envelope of 0.50–1.50 and our results showed a slightly 
higher significance for the AMOC–SST correlation. In con-
trast, narrowing the envelope leads to slightly decreased 
significance. The range of 0.75–1.25 was found to be a 
good compromise between allowing too many unrealis-
tic random timeseries or being too strict and not allowing 
enough freedom for the random timeseries to have enough 
variety in their temporal properties.

(2)SSTA+

=

∑N+

1 SSTAt+

N+

−

∑N
1 SSTA

N
,

(3)SSTA−

=

∑N−

1 SSTAt−

N−

−

∑N
1 SSTA

N
,

(4)
SSTA+

× N+
+ SSTA−

× N−

N
= 0.

Figure 2 illustrates on top the AMOC with the positive 
(blue) and negative (red) anomalies, and at the bottom, 
the SSTA (at a specific location in the North Atlantic) for 
which SSTA+ and SSTA− are calculated.

In a last step we use the composite method to determine 
the statistical significance of the correlations between the 
RAPID timeseries and SSTA. Absolute composite values 
(i.e. abs(SSTA+), abs(SSTA−)) are a measure for the covari-
ance between SST and the AMOC. For each grid cell the 
1000 random composites provide a distribution of values 
which we compare to the composite value we obtain when 
using the observed AMOC timeseries. A correlation in a 
given grid cell is deemed significant if less than 5 % of the 
absolute values (i.e. abs(SSTA+), abs(SSTA−)) found for 
the randomly generated composites are higher than the val-
ues for abs(SSTA+) and abs(SSTA−) obtained when using 
the observed RAPID timeseries.

3 � Results

The datasets previously described are used in this section 
in order to test our main hypothesis: the AMOC timeseries 
can be used to predict the SSTA over the North Atlantic. 
In this section we therefore concentrate on the case where 
the AMOC leads SSTAs. The case where SSTAs lead the 
AMOC is discussed in Sect. 4.

3.1 � The North Atlantic SST response to the AMOC 
variability

To assess the link between the AMOC at 26◦N and the 
SSTA over the North Atlantic, lagged spatial correla-
tions were calculated for lags from 0 to 12  months, 
where the AMOC leads the SSTA. These correlations 

Fig. 2   Bar plot of the AMOC 
anomaly timeseries with 66 
positive values in blue and 
54 negative ones in red (top 
panel). The bottom figure shows 
the SST anomaly (SSTA) at a 
specific location (9.5◦N, 80.5◦

W) where the SSTAs in red and 
blue correspond to the AMOC 
negative and positive values, 
respectively
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are shown in Fig.  3 with the AMOC leading the SSTA 
by 0, 2, 5, 7, 9 and 12 months. The 95 % level of sig-
nificance in these correlations is obtained using the 
composite method described in Sect. 2.2 and the strong-
est signal is found when the AMOC leads the SSTA by 
5 months (Fig. 3c).

For this specific lag (Fig.  3c), the correlation pattern 
exhibits a distinct dipole structure where positive correla-
tions are found between the AMOC and the SSTA south-
east of Newfoundland between 26 and 45◦N and nega-
tive correlations occur in a zonal band reaching from the 
Gulf of Mexico to the African coast between 10 and 26◦
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Fig. 3   Lagged correlations between the SSTA over the North Atlan-
tic and the AMOC at 26◦N. In these correlations, the AMOC leads the 
SSTA. a shows 0 lag, b a lag of 2 months, c 5 months, d 7 months, e 

9 months and f 12 months. Black contours indicate 95 % significance 
levels and were obtained using the composite method
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N. This occurrence of positive/negative can be explained 
with a simple conceptual model schematised in Fig. 4. As 
mentioned in the introduction, the meridional coherence 

of AMOC anomalies on subannual timescales is likely to 
be small. Therefore, the correlation/anticorrelation pat-
tern in the North Atlantic could be the consequence of a 

warmer SST

Strong AMOC

26°N 26°N

Weak AMOC

colder SST
warmer SST

colder SST

Fig. 4   Schematics representing a seesaw mechanism relating the 
AMOC fluctuations (upper red and lower blue arrows) to the SSTA 
pattern (red and blue patches at the surface) in the North Atlantic. The 

26◦N section is represented by a yellow wall on this figure. A stronger 
AMOC advects more heat north of 26◦N and leads to warmer sub-
tropics and colder tropics as more heat is extracted from this region
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seesaw-like mechanism. A positive AMOC anomaly at 26◦

N increases the input of oceanic heat into the region north 
of the RAPID–MOCHA section. At the same time a posi-
tive AMOC anomaly extracts more heat from the region 
south of the RAPID–MOCHA section. An increased input 
and extraction of heat north and south of the 26◦N section 
is consistent with positive and negative SSTAs north and 
south of the 26◦N section. Conversely, a negative AMOC 
anomaly is consistent with the development of negative 
and positive SSTAs north and south of the 26◦N section. In 
order to understand the contribution of each of the AMOC 
components to the emergence of the SSTA dipole, spatial 
correlations and composites are also calculated between the 
SSTA and EKM (Fig. 5b), the FST (Fig. 5c) and the UMO 
transport (Fig. 5d), the components leading the SSTA. For 
a lag of 5 months, the EKM component mainly contributes 
to the development of the tropical part of the dipole while 
the other components seem to equally contribute to the for-
mation of this SSTA dipole. While a weakening in EKM 
is associated with a warming of the SSTA off the west-
ern European coast (anticorrelation pattern in Fig.  5b), a 
strengthening in the UMO transport also seems to be asso-
ciated with a warming in this same area (correlation pattern 
in Fig.  5d). The 95  % significance contours indicate that 
the FST is the component which contributes the least to the 
development of this SSTA pattern for this specific lag.

3.2 � Spatial and temporal variability of the SSTA 
over the North Atlantic

3.2.1 � Spatial pattern of SST variability

To better characterise the variability of the SST over the 
North Atlantic, we apply an Empirical Orthogonal Func-
tion (EOF) analysis to the North Atlantic SST field from 
5◦ to 80◦N and analyse the spatial structure of the dominant 
mode of variability of SST during the RAPID era (April 
2004–March 2014). Details of the EOF methodology can 
be found in Preisendorfer (1988). Since we do not want 
our signal to be contaminated by the seasonal warming 
and cooling of the SST, the annual cycle (calculated from 
the full SST timeseries available from December 1981 to 
March 2015) has been removed from our timeseries and 
the data are first smoothed with a 2-month low pass filter 
before calculating the EOFs.

The 3 first EOFs explain almost 40 % of the total vari-
ance (Fig. 6). The principal component associated with the 
first EOF shows a large range of variability (up to 2 ◦C) and 
is characterized by two minima in mid-2005 and mid-2010. 
The spatial pattern associated with this first mode (Fig. 6b), 
explains 20.4 % of the total variance and is characterized 
by a distinct tripole structure (also called the North Atlan-
tic SST tripole) that is reminiscent of Atlantic SST patterns 
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discussed in previous studies (e.g. Czaja and Frankignoul 
2002; Seager et al. 2000; Fan and Schneider 2012). In this 
tripole, the tropics (5◦ to 20◦N) and subpolar gyre (50◦ to 
70◦N) vary with an opposite sign compared to the subtropi-
cal gyre. Buchan et al. (2014) and Taws et al. (2011) asso-
ciated this tripole with an exceptionally negative phase of 
NAO, characterising both cold winters in 2009–2010 and 
2010–2011.

Earlier work (Seager et  al. 2000; Fan and Schneider 
2012) based on the net surface heat flux from the NCEP 
reanalysis, demonstrated that in the latter half of the 20th 
century this SST tripole pattern was consistent with being 
forced primarily by the atmospheric heat flux. Schnei-
der and Fan (2012) examined the role of ocean dynamics 
and concluded that the influence of the simulated AMOC 
on the SST tripole was minor. The mechanism explained 
in the previous section of this paper show that the AMOC 
may partially explain the origin of the subtropical and mid-
latitude lobes of the tripole (the 2 patterns at mid and low 
latitudes) described by this first mode of variability.

The principal component associated with the second 
mode of variability (explaining 10.1  % of the total vari-
ance) does not show any particular extreme SSTA value 
compared to the first mode. The corresponding spatial 
pattern (Fig.  6c) is also characterised by a tripole pattern 
which is shifted southward by about 10◦–15◦ compared to 
the first mode, with stronger intensities toward the Nordic 
Seas and the Atlantic coast of Western Europe as well as an 
intensified pattern east of Newfoundland.

Finally the principal component associated with the 
third mode of variability (explaining 8.1 % of the variance) 
shows 3 maxima, during late 2009, beginning of 2011 and 
beginning of 2013. The spatial structure associated with 
this third mode is characterised by a dipole structure north 
and south of about 30◦N but does not resemble the dipole 
found by relating the AMOC to SSTAs.

3.2.2 � Temporal relationship between the AMOC 
and SSTAs

To further relate the AMOC to the main mode of vari-
ability of SSTA over the North Atlantic, we perform 
cross correlations between the AMOC, its components, 
and the principal component associated with the first 
mode of variability of SSTA (Fig. 7). We are interested 
here in negative lags when the AMOC leads the SSTA. 
Some discussion about possible physical mechanisms 
consistent with the correlations for positive lags will be 
provided in the discussion section of this paper (Sect. 4). 
The strongest correlations between the AMOC and 
SSTA (the AMOC leading) are reached for lags from 2 
to 5  months for which the correlations reach a plateau 

with values above 0.3, which is in good agreement with 
the results obtained in Sect.  3.1. For a lag of 3-months 
for example, the corresponding lagged correlation coef-
ficient is 0.37 (compared to 0.16 without lag) and 0.43 
if a 3-month low pass filter is applied to both timeseries. 
In the following we concentrate on the lag of 5 months 
as this is the longest lead time that is part of the plateau 
with increased correlations between AMOC and SSTAs 
shown in Fig. 7.

Since the observed AMOC is calculated as the sum 
of EKM, FST and UMO transport, all components con-
tribute to the SSTA anomaly patterns associated with 
the AMOC (Fig.  5). However, we do not expect the 
AMOC’s components to all contribute at the same time 
due to the different timescales that govern the physical 
processes underlying each component (Fig. 7). Between 
EKM and SSTAs the highest correlation occurs for a lag 
of 1–2 months. Between FST/UMO and SSTAs the high-
est correlations are found for lags of 3 and 7  months, 
respectively.

In summary, during the period 2004–2014, the main 
mode of SSTA variability is characterised by a trip-
ole pattern over the North Atlantic. Following the ideas 
behind the suggested physical mechanism (described in 
Sect. 3.1) associated with the 2 to 5-month lagged SSTA 
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port
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response to AMOC fluctuations, the AMOC’s contribu-
tion seems to be limited to the two southern lobes of the 
SSTA tripole.

3.3 � Is this SSTA dipole a direct response 
to atmospheric forcing?

Given the small meridional coherence across the 40◦N 
boundary in the AMOC on subannual timescales (Bing-
ham et al. 2010; Josey et al. 2009), the main hypothesis in 
this paper is that the variations in the heat advected by the 
AMOC at 26◦N is not likely to be the same further north 
resulting in a divergence or convergence of heat between 
the two latitudes considered and the development of SSTAs. 
Although the link between the volume transport and heat 
transport has been established (Sonnewald et al. 2013), as 
well as the link between the heat transport and heat content 
in the ocean, a change in the heat content is not necessarily 
accompanied by a change in the SST. Ocean heat content 
changes may remain confined to the subsurface and SSTAs 
can directly result from air–sea fluxes.

Changes in ocean temperatures are partly due to radia-
tive and turbulent heat exchanges at the air–sea interface, 
and due to advective heat transport divergence resulting 
from varying ocean currents (Bjerknes 1964). To make 
sure that the heat advected by the AMOC is responsible for 
the SSTA dipole structure previously described, we need 
to make sure that these SSTA fluctuations are not just the 
response to atmospheric heat fluxes.

3.3.1 � Air–sea fluxes

To determine the areas where the SSTA variance is more 
likely to be explained by air–sea exchanges, spatial correla-
tions between the cumulated air–sea flux (ASF) anomalies 
and SSTAs are calculated over the North Atlantic (Fig. 8), 
where ASFs lead SSTAs.

A positive correlation indicates that both the ASF anom-
alies and SSTAs vary with the same sign. This can occur 
if positive ASF anomalies (which imply either that more 
heat is gained by the ocean or less heat is lost) tend to be 
co-located with positive SSTAs (or vice versa i.e. negative 
heat flux anomalies with negative SSTAs). In each case, 
the SSTA is consistent with an ocean response to atmos-
pheric forcing e.g. more heat gain by the ocean leads to 
surface warming. Positive correlations thus indicate the 
areas where the SSTAs can be seen to be a response to the 
ASF anomalies as opposed to being their source. In the 
latter case a negative correlation would be expected as for 
example positive SSTAs are now associated with negative 
air–sea heat flux anomalies i.e. increased ocean heat loss or 
less heat gain.

In order to compute these correlations, the SSTA time-
series has been correlated to the ASF anomaly timeseries 
cumulated over an increasing number of months from 2 
(Fig.  8b) to 12  months (Fig.  8l). If we focus on the area 
where the AMOC–SSTA dipole was located (shown in 
Fig. 5a), positive correlations mainly occur in a band reach-
ing from 12◦N to 26◦N, the strength of this correlation 
increasing with increasing accumulation of months in the 
ASF data. In this band of latitudes, maximum correlations 
occur around 6–7  months and explain up to 25  % of the 
SSTA variance. This means that for shorter periods of time 
between 2 and 5 months when we showed highest correla-
tions between the AMOC and the SSTA in the dipole previ-
ously described, the SSTA is not mainly responding to a 
forcing from atmospheric heat fluxes and ASFs contribute 
to a lesser extent to the development of this SSTA dipole 
(explaining less than 16 % of the variance around the lower 
lobe of the dipole).

In summary, the strongest correlations between the 
cumulative ASFs and SSTAs are found at lags from 6 to 
7  months and over most of the North Atlantic, these cor-
relations are lower than 0.3 (e.g. the region coinciding with 
the northern lobe of the SSTA dipole of Fig.  5). For lags 
between 2 and 5  months when the AMOC/SSTA correla-
tions are the strongest, the ASF/SSTA correlations are even 
lower.

3.3.2 � Ekman transport

Second to the surface heat flux, the most effective driver of 
SST variations is the wind-induced Ekman heat transport, 
especially along oceanic thermal fronts, such as the Gulf 
Stream (Frankignoul 1985). Lagged correlations and com-
posites between EKM and the SSTA are shown in Fig. 9 at 
0 lag (Fig. 9a), for a lag of 2 months (Fig. 9b), 5 months 
(Fig.  9c), 7  months (Fig.  9d), 9  months (Fig.  9e) and 
12  months (Fig.  9f), EKM leading the SSTA. The strong 
correlations found south of about 40◦ N for lags of up to 
2 months indicate that EKM plays a significant role in set-
ting the SSTA response pattern up to this latitude, but can 
only partly explain the dipole structure shown in Fig.  5a. 
At a lag of 5 months, EKM explains the tropical lobe of the 
dipole but for the northern lobe, significant correlations are 
only found in the eastern part of the basin. Generally, the 
correlation between EKM and the SSTA decreases as the 
lag increases beyond lags of 2 months.

To further assess the contribution of EKM to the link 
previously made between the AMOC and the SSTA, the 
EKM component has been subtracted from the AMOC 
(called “AMOC–EKM”, Fig. 10b, d, Mielke et al. (2013)) 
before calculating the correlations between the AMOC and 
the SSTA. At 0 lag (Fig. 10a, b), the correlations between 
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the AMOC and SSTA and AMOC–EKM and SSTA show 
different spatial patterns, highlighting the role previously 
demonstrated of EKM in the characterisation of this pat-
tern. For a lag of 5 months (Fig. 10c, d), these spatial cor-
relations show a very similar spatial structure; the main 

difference between these figures being the intensity of the 
negative correlation between 0 and 20◦N. This indicates 
that for these longer periods of time, EKM is predomi-
nantly contributing to the development of the southern part 
of the SSTA tripole.
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Black contours indicate 95 % significance levels and were obtained 
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4 � Discussion

That the Atlantic has a large impact on the climate of north-
western Europe is an old concept (e.g. Maury (1855)). 
The prominent mode of Atlantic variability, the Atlantic 
Multidecadal Oscillation (AMO: the averaged SST over 
the whole North Atlantic) has been linked with rainfall in 
the Sahel, India and northwest Brazil, hurricane formation 
in the Atlantic and northern hemisphere mean tempera-
ture fluctuations (Knight et al. 2006; Zhang and Delworth 
2006). In terms of the impact on northwestern Europe, pos-
itive AMO leads to warmer temperatures and wetter sum-
mers (e.g. Sutton and Dong 2012). Several modelling stud-
ies have shown a relationship between the AMOC and the 
AMO at decadal and longer timescales (Griffies and Bryan 
1992; Latif et al. 2004; Knight et al. 2006). Still at decadal 
timescales, the AMO has recently been shown to be pre-
ceded by changes in the North Atlantic ocean circulation 
(McCarthy et al. 2015). In this study, we show for the first 

time the potential of the AMOC timeseries at 26◦N to be 
used to predict the Atlantic SST at seasonal timescales.

We show in this paper that the SSTA response to the 
AMOC variability at a maximum lag of 5 months is char-
acterised by a dipole with a tropical and a subtropical lobe 
(Fig.  3). The tropical pattern covers the latitudes from 5 
to 26◦N and thus includes the Main Development Region 
(MDR) for hurricane formation: 10–20◦N, 30–60◦W. The 
benefit of having estimates of Atlantic SST patterns half a 
year in advance is that SSTAs could then be linked to an 
increased or decreased probability of storm formation. Due 
to its potential for widespread destruction, hurricane activ-
ity is a noteworthy feature of interannual climate variabil-
ity, deserving of further investigation into the contributing 
large-scale processes and associated predictability. Sta-
tistical analyses have shown that Atlantic basin hurricane 
counts depend on Atlantic SST on interannual and longer 
timescales and that tropical Atlantic SST accounts for a 
third of interannual hurricane count variability (Elsner et al. 
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2008; Saunders and Lea 2008). It is also not understood 
exactly how warm SSTs influence tropical cyclone forma-
tion, though it is likely through sustained vertical motion, 
convective processes and cloudiness.

The MDR for hurricanes, 10–20◦N, 30–60◦W, has been 
anomalously warm since 1995 and tropical cyclone activity 

has also been above average since then. 2005 and 2010 had 
record high SSTs in the MDR (which is well illustrated in 
the principal component of the first mode of SSTA over the 
North Atlantic: Fig.  6a), and correspondingly significant 
devastating major hurricane landfall activity (Trenberth and 
Shea 2006).
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The link established in this paper between the AMOC and 
the SSTA over the North Atlantic region suggests that estimat-
ing the AMOC transport could provide some additional infor-
mation for statistical and dynamical tropical cyclone forecast 
models by improving SST forecasts for the following season 
(e.g. LaRow et al. 2010; Vecchi et al. 2011; Davis et al. 2015; 

Camp et al. 2015). Indeed, conditions may be more conducive 
than usual to tropical cyclone development when subtropical 
AMOC transport is anomalously low and heat builds up south 
of 26◦N. The lead time of 5 months between the AMOC and 
the SSTA would be important for forecasting climate condi-
tions in advance in order to make preparations.
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In addition to the relationship demonstrated in this paper, 
showing that the AMOC (and components) leads an SSTA 
dipole by up to 5 months, Fig. 7 also suggests an interest-
ing link between SSTAs and the AMOC and components 
when the SSTA leads. Focusing on lags when the SSTA 

leads, a correlation of −0.32 is found between the AMOC 
and SSTA when a lag of 7 months is applied to the SSTA 
(the SSTA leading), this correlation increasing to −0.43 
when a 3-month low-pass filter is applied to the data 
(Fig. 7). The lagged correlations between the first mode of 

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

UMO−SST lagged correlations (SST leads)

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

  72 oW
  54oW   36oW   18oW

   0
o

  15 oN

  30 oN

  45 oN

  60 oN

  75 oN

12 month lag

d

e f

a 3 month lagb

5 month lag 7 month lag

1 month lag

c

−1

−0.2

−0.4

−0.6

−0.8

−1

−0.4

−0.6

−0.8

−1

1

−0.2

1

−0.8

−0.6

−0.4

−0.6

−0.8

0.4

0.2

0.6

0.4

0.2

0

0.6

0.4

0.2

0

0.6

0.4

0.2

0.6

0.4

0.2

0

0.8

−0.2

1

0.8

−0.4

−0.6

−0.8

−1

1

0.8

0.8

0.6

0

−0.2

−0.2

−0.4

−1

−1

1

−0.2

9 month lag

0.6

0.4

0.2

0

1

0.8

0

0.8

−0.4

−0.6

−0.8

Fig. 13   Lagged correlations between the SSTA over the North 
Atlantic and the UMO transport at 26◦N. In these correlations, the 
SSTA leads the UMO transport. a shows 0 lag, b a lag of 2 months, c 

5 months (same as Fig. 5b), d 7 months, e 9 months and f 12 months. 
Black contours indicate 95 % significance levels and were obtained 
using the composite method



3367Potential for seasonal prediction of Atlantic sea surface temperatures using the RAPID array...

1 3

SSTA variability and the AMOC components (Fig. 7) show 
that UMO is the main contributor to the correlation pattern 
between the AMOC and SSTAs. EKM and FST only pro-
vide a minor contribution. The spatial correlation patterns 
between SSTAs and the AMOC (Fig.  11) confirm that the 
maximum correlation is reached for a lag around 7 months, 
characterised by a tripole SSTA pattern with significant posi-
tive correlations between 0 and about 25◦N and 45 to 60◦N 
and a band of significant negative correlations in between. 
This correlation pattern gradually increases up to 7 months 
and decreases afterwards. Figure 12 confirms the weak link 
found between the SSTA and EKM when the SSTA leads the 
correlation. Maximum correlations are also found for a lag 
of 7 months with significant correlation patterns constrained 
to the central part of the basin between 25 and 45◦N.

The lagged correlations between SSTAs and the UMO 
transport (Fig.  13) show the tripole pattern described for 
the SSTA/AMOC correlations with significant correlations 
from lag 1 up to lag 7 when it reaches its maximum. A pos-
itive UMO (AMOC) anomaly is then preceded by positive 
SSTAs at low latitudes (with a 7-month lag). The high cor-
relations originate 7 months in advance in the lower lobe 
of the tripole south of about 30◦N when the correlation is 
maximal (Fig. 13d).

Focusing on the eastern part of the basin (African coast) 
the area of positive correlations then propagates northward 
along the coast up to the Spanish coast at a lag of 1 month. 
For lags from 3 to 1 month (Fig. 13a, b) a narrow area of 
significant correlations extends northwards past the Canar-
ies and covers the latitudes around the 26◦N section where 
the RAPID moorings used to compute the UMO transport 
are located. This band of positive correlation could possi-
bly be associated with Kelvin (or more generally boundary 
trapped) waves.

In order to better understand the physical mechanisms 
explaining the link between the SSTA and UMO transport 
when the SSTA leads, a closer look to the thermal wind 
relationship is needed (Eq. 5):

This equation computes the mid-ocean geostrophic veloci-
ties used to estimate the UMO transport, and L is the 
basin width, f is the Coriolis parameter, g is the accelera-
tion of gravity, ρ is the density of sea water and ρw and 
ρe are the densities at the western and eastern boundary 
of the 26◦N section respectively. From Eq.  5, we can see 
that if the eastern boundary of 26◦N is warmer than usual 
(around 26◦N: Fig.  13a, b), assuming a constant salinity, 
we expect a smaller density at the eastern boundary and 
a smaller difference between the density at the eastern 
and western boundary of the array, which would lead to a 
weaker (southward) UMO transport (i.e. vgeo becomes less 

(5)vgeo(z) = −

g

ρfL

∫ z

bottom

(ρe − ρw) dz.

negative). For example, a SSTA of +1 ◦C (warmer at the 
eastern boundary, and if we assume a vertical extent of this 
anomaly of 200 m) would correspond to a density anomaly 
of approximately 0.25 kg/m3, leading to an anomaly in the 
UMO transport of 1.5  Sv, which is of similar magnitude 
compared to the standard deviation of 2.7  Sv previously 
mentioned.

Consequently, the propagating correlation pattern seen 
in Fig. 13a, b around 26◦N suggests the development of a 
positive temperature anomaly that leads to a decrease of the 
UMO transport and to an increase of the AMOC. This is 
consistent with a positive correlation between SSTAs and 
the UMO transport (Fig.  13) and SSTAs and the AMOC 
(Fig. 11), in the lower lobe of the tripole.

Of course SSTA patterns can be deceptive and we would 
need to know the vertical density structure to be sure that 
the SSTAs are indeed consistent with a strengthening of 
the geostrophic transport. The analyses presented in this 
paper are based on a joint use of observation-based prod-
ucts, which allowed us to test our hypotheses on 10 years 
of data. Using a 1/4◦ NEMO simulation, Grist et al. (2010) 
partitioned annual-timescale ocean heat content anomalies 
between surface fluxes and ocean heat transport, finding 
that ocean heat transport (divergence) dominates interan-
nual variability of ocean heat content (and probably SST) 
in extratropics, while both contribute in similar measure in 
the tropics/sub-tropics. Future work will consist in repro-
ducing the analyses performed in this paper using high-res-
olution coupled climate model output (not yet available) in 
order to check the validity of our results using longer time-
series. Using high-resolution coupled models will be cru-
cial in order to test the impact of the coupling (and hence 
the representation of air–sea interactions) on our results.

5 � Summary and conclusions

We have tested the potential of the AMOC observations 
from 26◦N between April 2004 and March 2014 to be used 
to predict SSTs. Our results suggest that:

•	 There is a significant link between AMOC anomalies 
and SSTAs where the AMOC leads SSTAs by lags 
between 2 and 5 months. For positive (negative) AMOC 
anomalies the SSTA pattern consists of a dipole with 
negative (positive) SSTAs in the tropical Atlantic and 
positive (negative) SSTAs to the southeast of New-
foundland.

•	 All AMOC components contribute to the SSTA pattern 
found at a 5-month lag. The southern part of the dipole 
can mainly be linked to the Ekman component, whereas 
UMO, Ekman and to a lesser extent FST contribute to 
the northern part of the dipole.
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•	 The SSTA dipole found at a lag of 5 months cannot be 
attributed to the action of instantaneous air–sea fluxes. 
Cumulative air–sea fluxes mainly explain the SSTA 
fluctuations for lags longer than 6–7  months and only 
explain a small fraction of the SSTA variability for lags 
from 2 to 5 months when the AMOC/SSTA correlations 
are the strongest.

•	 The southern part of the SSTA dipole found at a lag of 
5 months encompasses the MDR for Atlantic hurricanes. 
Our results therefore suggest a potential use of AMOC 
observations from 26◦N to be used to complement exist-
ing seasonal hurricane forecasts in the Atlantic.

•	 Investigating the link between the SSTA and AMOC and 
its components when the SSTA leads the transport anoma-
lies, a significant relationship was found between the SSTA 
and the AMOC for a lag of 7 months. This correlation is 
mainly attributed to the UMO transport where anomalously 
high temperatures at the eastern boundary of 26◦N for lags 
between 0 and 3  months are consistent with a reduced 
southward UMO transport and an increased AMOC.
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