
UTSG January 2016 
Bristol 

YOUNG & BLAINEY: Defining probability-based 
rail station catchments for demand modelling 

 

This paper is produced and circulated privately and its inclusion  

in the conference does not constitute publication.  1 

 

Defining probability-based rail station catchments for 
demand modelling 

 
Mr Marcus Young 
PhD Student 
Transportation Research Group, University of Southampton 
 
Dr Simon Blainey 
Lecturer 
Transportation Research Group, University of Southampton 
 
 
Abstract 
The aggregate models commonly used in the UK to estimate demand for new local rail 
stations require the station catchment to be defined first, so that inputs into the model, such 
as the population from which demand will be generated, can be specified. The methods 
typically used to define the catchment implicitly assume that station choice is a deterministic 
process, and that stations exist in isolation from each other. However, studies show that pre-
defined catchments account for only 50-60 percent of observed trips, choice of station is not 
homogeneous within zones, catchments overlap, and catchments vary by access mode and 
station type. This paper describes early work to implement an alternative probability-based 
approach, through the development of a station choice prediction model. To derive realistic 
station access journey explanatory variables, a routable multi-modal network, incorporating 
data from OpenStreetMap, the Traveline National Data Set and National Rail timetable, was 
built using OpenTripPlanner and queried using an API wrapper developed in R. Results from 
a series of multinomial logit models are presented and a method for generating probabilistic 
catchments using estimated parameter values is described. An example probabilistic 
catchment is found to provide a realistic representation of the observed catchment, and to 
perform better than deterministic catchments. 
 
1  Introduction 
In Great Britain (GB), travel by rail has experienced a resurgence in recent decades, with a 
rapid growth in passenger journeys replacing the declines of the 1960s and 1970s and the 
modest growth of the 1980s. The average annual growth in passenger journeys was 4% 
between 1997/98 and 2013/14 (compared to 0.33% between 1980/81 and 1996/97), and has 
substantially out-paced growth in GDP (Rail Delivery Group 2014). The rail network has also 
expanded, with some 370 stations either reopened or newly built during the last 50 years, 
and many more currently under construction, proposed or being campaigned for by local 
communities (Railfuture 2015). Against this backdrop, the potential to meet local or regional 
transport needs, and also economic growth objectives, by investing in new rail stations, 
routes or services, is increasingly being recognised by UK local authorities, Passenger 
Transport Executives and Local Enterprise Partnerships (Department for Transport 2011). 
 
To assess whether a particular scheme or intervention will achieve the required objectives, it 
is necessary to produce accurate forecasts of the effect on demand. The models typically 
used for new local rail stations (trip rate, trip end, and flow models) rely on aggregating 
relevant data, such as population, and need a station catchment to be defined. Two main 
methods are commonly used. The first is a buffer around a station, such as the 0.8km and 
2km radial catchments proposed by Preston & Aldridge (1991); and the second divides the 
population into zones and allocates each zone to its nearest station. For example, Blainey 
(2010) assigned census output areas based on road travel time. Both methods produce 
deterministic catchments, where a particular trip origin is assumed to fall within the 
catchment of a single station, and competition between stations is not accounted for. 
 
1.1  Catchments in reality 
Previous studies have explored how representative defined catchments are of real station 
catchments. Blainey & Evens (2011) found that 2km non-overlapping radial catchments 
based on straight-line distance accounted for only 57% of observed trips, with large 
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variations at the individual station level. Neither do all passengers choose their nearest 
station. For example, Mahmoud et al. (2014) found that over 30% of commuters accessing a 
station by car did not choose their nearest; and Blainey & Preston (2010) found that only 
53% of trip ends were located within catchments defined by assigning census areas to their 
nearest station by road access time. Several studies have used Geographical Information 
Systems to visualise observed catchments and reported significant overlap (Fan et al. 1993; 
Mahmoud et al. 2014), and others have found that station choice is not homogeneous within 
catchment zones (for example, Givoni & Rietveld (2014)). It is also intuitive to expect 
catchments to vary by access mode, with walk catchments smaller than those for motorised 
vehicles, and public transport catchments reflecting the routes serving a station (Givoni & 
Rietveld 2014). The size and shape of catchments will also depend on the type of station, 
with passengers willing to travel further to stations that offer inter-urban services, where the 
access journey is a smaller part of the total journey (Lythgoe & Wardman 2004). 

 
It is clear that deterministic catchments do not reflect reality, suggesting that the aggregate 
demand models could be improved by using probability-based catchments. This paper will 
now briefly review prior station choice research and then describe the development of a 
station choice model and its application to generate probabilistic catchments. 
 
2  Previous station choice research 
A consensus has formed around using relatively simple closed-form discrete choice models 
to model station choice, with multinomial logit commonly used to model station choice alone 
(for example, see Blainey & Evens (2011); Mahmoud et al. (2014)), and nested logit used to 
model combined access mode and station choice (for example, see Debrezion et al. (2009); 
Givoni & Rietveld (2014)). These models are based on the concept of Random Utility 
Maximisation, where an individual is assumed to choose the one alternative, from a group of 
alternatives known as the choice set, that provides them with maximum utility. The 
researcher attempts to measure utility by identifying attributes of the alternatives and/or the 
individual. That part of utility that the researcher cannot measure is called the unobserved 
portion of utility and is treated as a random component. The utility that an individual derives 
from an alternative is expressed using the following formula: 

ninini VU   (1) 

Where Uni is the utility for individual n of alternative i, Vni is the utility measured by the 
researcher, and ε is the unobserved portion of utility. In practice V, which is known as the 
representative or observed utility, will be a function consisting of the selected attributes and 
their respective parameters. The parameters, if unknown, are obtained statistically, for 
example by maximum likelihood estimation. 
 
The effect of a range of factors related to the access journey and service levels has been 
consistently reported. Station utility decreases as the access journey becomes further or 
longer, as the rail leg journey time increases, and when the journey involves more transfers 
or has a higher fare; and utility increases as departures become more frequent. The effect of 
station facilities, such as car parking, is more problematic, potentially due to endogeneity 
issues, and only limited attention has been given to land-use factors. Recently, more 
complex model frameworks have been proposed, for example using mixed logit (Chen et al. 
2014), but it remains unclear how well even the simple models can predict station choice in 
real-world scenarios or how the models can be used to improve industry standard rail 
demand forecasting methods. Most prior studies have focussed on developing models to 
better understand the factors that influence station choice, and there have been few attempts 
to create a transferable station choice model and integrate it into one of the aggregate 
models used to predict demand at new stations. Wardman & Whelan (1999) attempted to 
incorporate probabilistic station catchments into a direct demand model by apportioning 
population to one of five competing stations for each postal sector, but due to time and 
computer resource constraints they had to use a subset of the data which resulted in the 
model failing to converge. In the work of Lythgoe & Wardman (2004) station choice is an 
intrinsic component of a spatial interaction model, but the method is limited to forecasting 
demand for inter-urban journeys in excess of 40km. 
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3  Data sources and processing 
Methods and practices that support research reproducibility and automated workflows were 
adopted for the manipulation and analysis of data, with open-source data management and 
analytical tools being used wherever it was practical to do so. This approach enables 
processes to be easily repeated on the same or a new dataset, and allows process 
modifications to be readily applied. The R environment was used for data processing, 
descriptive analysis, developing the choice models, and graphical output. Data was stored in 
a series of related tables in a PostgreSQL database and the PostGIS spatial extension was 
used for spatial analysis. Data visualisation was carried out in QGIS. 
 
3.1  Revealed preference data 
In order to develop disaggregate models of station choice, information is required about 
individual trips via the rail network. This data needs to include the access station where a 
train was first boarded, the final egress station, and the ultimate origin of the trip, such as 
home or work address. The data must also be at a spatial resolution that is sufficient for the 
variability in explanatory factors between individual decision makers, such as access 
distance, to be revealed. For UK-based research, the unit postcode area boundary is 
probably the maximum spatial unit of address aggregation appropriate for this type of 
analysis. Suitable trip data was obtained from an on-train survey carried out on the Cardiff 
Central to Rhymney line in South Wales (Blainey 2009). This was an ideal dataset for 
developing data processing techniques and estimating initial choice models, as it was 
already in a “clean” state and of a manageable size, consisting of 513 responses. 
Observations without data for both the origin and destination parts of the trip were removed, 
reducing the number of observations to 284. 
 
3.2  Supporting data 
Details on railway stations in GB were obtained from the National Public Transport Access 
Node (NaPTAN) database. The centroid of each unit postcode in the UK was obtained from 
the Ordnance Survey Code-Point dataset which was downloaded from EDINA Digimap 
(Code-Point 2015). Polygons representing the area covered by each postcode, used to 
visualise station catchments, were obtained from the Ordnance Survey Code-Point with 
Polygons dataset which was downloaded from EDINA Digimap (Code-Point with Polygons 
2015). 
 
3.3  Developing a routable multi-modal network 
As the access journey is such an important factor influencing station choice, a key objective 
of this research was to generate realistic representations of the access journey made by 
survey respondents. This required a multimodal network that could generate routes for a 
range of motorised and non-motorised transport modes. 

 
3.3.1  Selecting a suitable routing tool 
A review of commercial and open source tools identified three candidates: Google Maps API, 
Visography TRACC and OpenTripPlanner (OTP). The Google Maps API limits the number of 
API calls and has restrictive usage conditions. It is also limited to current timetables and it is 
not possible to query historic timetable data to match the date of origin-destination surveys, 
nor to add new public transport routes, adjust frequencies or add station stops to assess the 
impact of potential service changes. Visography TRACC is a commercial application that can 
import the standard UK public transport data formats: NaPTAN, TransXChange, and ATCO 
CIF. However, given that the UK public transport data is freely available under open data 
initiatives, a solution that is not reliant on commercial software was considered preferable. 
OTP is an open-source and cross-platform multi-modal route planner written in JAVA that 
uses imported OpenStreetMap (OSM) data for routing on the street and path network and 
supports multi-agency public transport routing through imported GTFS feeds. OTP has a 
web front-end and a sophisticated API, and was considered the most promising platform. 
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3.3.2  Building the multi-modal network 
As OTP has a high random access memory (RAM) requirement when graph building1, this 
stage was carried out on a Microsoft Azure Linux cloud server with 56 GB of RAM. The 
graph was then transferred to a local server for normal operation of the trip planner. The 
initial graph build included OSM data for GB obtained from Geofabrik2 and a GTFS feed for 
GB National Rail services3. Bus timetable data for Wales was obtained from the Traveline 
National Dataset (TNDS) in TransXChange format, a UK XML standard, and an attempt was 
made to convert this to GTFS using the open source TransXChange2GTFS converter4. This 
failed when processing most of the TNDS XML files, despite the files passing validation in 
the official TransXChange Publisher tool, and it was rejected as a plausible solution. The 
only alternative was Visography TRACC, which is able to import TransXChange files and 
export a GTFS feed. 
 
3.4  Deriving explanatory variables 

 
3.4.1  Access journey 
Measures of the access journey, from origin postcode centroid to station, were obtained by 
running an R script to query the OTP API, processing the JSON response and then writing 
the results to a database table. A set of functions were developed to query the OTP API, and 
these are the beginnings of an API wrapper for OTP which has the potential to be released 
as an R package in the future. For the bus time variable, which consists of walk time, on-bus 
time and waiting time (in the case of transfers), a desired trip start time of 09:00 on Monday 
5 October 2015 was set, which corresponds with the Rhymney Line survey which was 
carried out on weekdays in early October. Several other parameters were set for the bus trip, 
including a “soft” maximum walk distance (for walk to and from the bus stop) of 1600m, a 
minimum time to allow for transfer between buses of 10 minutes, and a walk reluctance 
parameter that ensured a realistic balance between the walk and bus components of the 
multi-modal trip. 

 
Two additional variables related to the access journey were generated. The ’nearest station’ 
dummy variable indicates whether or not a station in an individual’s choice set is the closest 
station by drive distance; and ’directness’ is obtained by dividing the drive distance from the 
trip origin to the station by the straight line (euclidean) distance, with the value of the ratio 
increasing from one as the route becomes more circuitous and deviates from the straight 
line. 
 
3.4.2  Station facilities 
Information on a range of potential facilities available at railway stations was obtained from 
the National Rail Enquiries (NRE) Stations XML feed, which forms part of the NRE 
Knowledgebase. This was queried for every station in the UK and the XML response was 
processed using an R script and the results written to a database table. The variables 
recorded were: car park spaces (number), station CCTV (y/n), ticket machine (y/n), waiting 
room (y/n), station buffet (y/n), toilets (y/n), cycle storage (y/n), taxi rank (y/n), bus services 
available (y/n), and staffing level (unstaffed, part-time, full-time). 
 
3.4.3  Train journey 
For every unique origin station:destination station pair, a single train journey itinerary was 
obtained by querying the OTP API. The JSON response was processed and required 
variables written to a database table. A minimum transfer time of six minutes was specified, 
corresponding to the suggested connection time for a medium-sized interchange station. The 
desired trip start time was set to 09:00 on Monday 5 October 2015, which corresponds with 
the Rhymney Line survey. The variables used in the choice models are the journey duration, 
consisting of on-train time and waiting time (in the case of transfers); the number of 

                                                      
1 The trip planner graph specifies every location in the region covered and how to travel between them. It is 
compiled from the OSM and GTFS data. 
2 see http://download.geofrabrik.de 
3 see http://www.gbrail.info 
4 see https://code.google.com/p/googletransitdatafeed/wiki/GoogleTransitDataFeed 
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transfers; and the difference between the desired departure time (09:00) and the actual 
departure time. The latter measure should, to an extent, capture effects related to frequency 
and headway. 

 
Fares data is available direct from ATOC, but it is provided in a large number of flat text files 
that would have required a considerable investment of time and effort to produce any 
meaningful data from. Fortuitously, the independent BR Fares website5 provides a fares 
lookup service, and permission to use the associated API was obtained. The API was 
queried using an R script, the JSON response processed, and required variables were 
written to the database. The cheapest off-peak and anytime return fares for each unique 
origin and destination station pair were extracted. As off-peak return fares are not an 
available ticket option on the Rhymney line, only the anytime return fare was used in model 
estimation. 
 
3.4.4  Land use and built environment 
A land-use mix measure was generated using the Ordnance Survey Points of Interest 
dataset, obtained for the study region from the EDINA Digimap service (Points of Interest 
2015). The number of points of interest for each of the nine top level classifications within a 
euclidean distance of 400m of each station were counted using a spatial query. The 
Herfindahl-Hirschman Index (HHI) was then calculated for each station. It indicates the 
extent to which one land use type dominates in an area, and is influenced by the number of 
land uses and their relative size. It is calculated by squaring the percentage share of each 
classification, and then summing the squares. In this study, with a possble nine 
classifications, the HHI can range from 1,111, where each is equally represented in an area, 
to 10,000 where only a single classification is present. 
 
4  Choice models 

 
4.1  Defining choice sets 
It was decided, given the spatial nature of the choice alternatives, to define a separate 
choice set for each origin postcode based on selecting the nearest n stations to that 
postcode. To establish an appropriate value for n, for each unique origin postcode in the 
survey the 50 nearest stations by euclidean distance were identified, using the efficient 
PostGIS indexed nearest neighbour query. For each postcode:station pair the drive distance 
was obtained from an API call to OTP, and for each postcode the stations were then ranked 
by drive distance. The 15 nearest stations by drive distance account for all the observed 
choice, with the nearest 10 stations accounting for 98.94% of observations. It was therefore 
decided to use the nearest 10 stations to each postcode as the choice set and these were 
added to a database table which was then populated with various access journey variables 
obtained from OTP API calls as described in Section 3.4.1. Populating the variables for each 
origin postcode, rather than for each observation, eliminates duplication and minimises the 
number of API calls required to populate the variables. 
 
4.2  Model estimation 
Prior to estimating any models a correlation matrix was produced. Apart from expected high 
correlation between the various access distance measures, there is a very high correlation 
between several of the station facility variables. For example, there is a correlation of 1 
between full time staffed stations and the presence of a station buffet; and a correlation of 
0.95 between toilets and waiting room. There is also a very high correlation (0.98) between 
the presence of station CCTV and CCTV covering cycle parking areas, as might be 
expected. There is a moderate to high correlation between the duration of the train leg and 
the fare paid (0.69), and between the number of car parking spaces and the presence of a 
taxi rank (0.78). In view of the very high correlation between many of the station facility 
variables, it was decided to include the staffing level categorical variable as the main station 
facilities measure. Summary statistics for the choice dataset used in the models that follow 
are shown in Tables 1 and 2. As the car parking spaces parameter was only estimated 
against observations that access the station by car, its summary statistics only relate to 

                                                      
5 see http://www.brfares.com/ 
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those observations. As there are so few observations for bicycle or taxi as access mode, no 
variables specifically relating to those modes were included in the models. 
 
4.2.1  Models with basic choice sets 
A series of models were estimated using the R package mclogit (Elff 2014), with the choice 
sets as defined in Section 4.1 and using an additive linear utility function. Explanatory 
variables were entered in a manual forward selection procedure, and the results are shown 
in Table 3. In Models 1 to 3, access drive distance, staffing level dummies (with full-time 
excluded as the reference), and train journey time are entered into the models. All the 
variable parameters are significant at the 99.9% confidence level and all have a negative 
effect as would intuitively be expected. The staffing level parameters have to be interpreted 
with reference to the full-time staffing level, and the results indicate that the utility of a station 
is lower for part-time or unstaffed stations. This would be expected, especially as the level of 
staffing is also an indicator of a range of station facilities. 

 

   min   max   mean   var   sd   n  

cardist(km)   0.08   14.70   5.05   9.17   3.03   2800 
train_time(mins)   2.00   144.00   34.87   364.89   19.10   2800  

fare(£)   2.40   22.40   6.21   2.53   1.59   2800  
transfers   0.00   1.00   0.33   0.22   0.47   2800  

headway(mins)   0.00   55.00   15.15   168.38   12.98   2800  
carspaces   0.00   402.00   36.96   3279.04   57.26   519  

Table 1: Summary statistics for numeric variables - Models 1-10 
   

 Access mode   Staffing level   CCTV  

 NA: 20   fullTime : 221  FALSE: 611 
 Walk: 1981   partTime : 521  TRUE: 2189 
 Bus: 240   unstaffed: 2058  NA’s: 0 
 Car(driver): 320      
 Car(passenger): 199      
 Bicycle: 20      
 Taxi: 20      

Table 2: Summary statistics for logical and categorical 
variables - Models 1-10 

 
The fare variable is introduced in Model 4, and while this is significant at the 99% level and 
results in a small but significant (at 95% level) reduction in the log likelihood (LL) function6, 
the positive effect on utility is counter-intuitive. It would be expected that given a choice of 
stations, all else being equal, an individual would choose the station with the lowest fare. 
Fare has a moderate to high positive correlation with train time (0.69), and correlation 
between two variables can result in the parameter for one of the variables having the wrong 
sign. To confirm this another model was run (4a) with train time removed, and the parameter 
for fare is significant and negative in this model7. As fare results in a much smaller reduction 
in LL than train time, it is removed from the next model (5) and replaced with the nearest 
station dummy variable. As other studies have found (see, for example, Adcock (1997); Fan 
et al. (1993)), this variable does improve the model. When the number of transfers for the 
train journey was added to the model (6), an extremely high standard error was reported for 
the parameter (1,016), and further investigation revealed that this model is invalid due to 
complete separation, with all chosen stations having zero transfers. Previous studies have 
found the number of transfers to have a negative effect on station utility, but the nature of the 
data in this study, with both chosen origin and destination stations limited to a single rail line, 
has resulted in no journeys involving transfers. In Model 7, the transfers variable was 
removed and replaced with the headway measure, the difference in minutes between the 
desired departure time (09:00) and the actual departure time. The parameter is significant at 
the 95% level and has the expected sign, and the small reduction in the LL (compared to 

                                                      
6 Calculated using log likelihood ratio test. 
7 In view of this it may be preferable to use a generalised journey time variable that combines both fare and train 
time. 
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Model 5) is also significant at the 95% level. However, once the CCTV variable is added in 
Model 8, headway is no longer significant, while the presence of CCTV has a strong and 
significant positive effect on station utility, and also has little impact on the other parameters. 
This result is surprising as it has not been included in previous studies of station choice. 
However, the main source of advice on passenger demand forecasting for the rail industry in 
GB, the Passenger Demand Forecasting Handbook (ATOC 2013), does recommend a 
demand uplift when adding CCTV to a station of 8% for business and leisure trips and 5% for 
commuter trips. In Model 9, headway is removed and replaced with the car park spaces 
variable. As the availability of car parking spaces is only relevant to travellers using a car as 
access mode, the car park spaces variable was interacted with a dummy variable indicating 
whether either of the car access modes (driver or passenger) was used. 
 
  Drive 

distance 
Staffing level  Train time Fare Nearest 

station 
Transfers Headway CCTV Car 

spaces 
logLik Adj R2 

   PT None           

1  -1.00***                   -349  0.46 

2 -0.93***  -3.40***  -4.50***             -249  0.62 

3 -1.10***  -2.20***  -2.70***   -0.21***           -212  0.67 

4 -1.10***  -1.30*  -1.90***   -0.25***  0.73***          -209  0.68 

4a -0.97***  -3.50***  -4.50***     -0.41**           -247  0.62 

5 -0.82***  -2.20***  -2.80***   -0.21***    0.98***         -203  0.69 

6 -0.79***  -1.60**  -2.30***   -0.18***    0.98***  -15.00        -201  0.69 

7 -0.84***  -2.10***  -2.60***   -0.20***    0.94***   -0.03**      -201  0.69 

8 -0.82***  -2.50***  -2.60***   -0.20***   0.98***    -0.02  1.40***    -195  0.70 

9 -0.81***  -2.60***  -2.70***   -0.20***   1.00***     1.40***  0.002  -196  0.70 

10 -0.81***  -2.60***  -2.70***   -0.20***    0.99***     1.40***    -196  0.70 

Table 3: Model results - basic choice sets 

 
The utility function for this model, for individual i choosing station k, is therefore:  

 )( kikkkkkkik PsDcarCNsTSnoSptDV    (2) 

where D is drive distance, Spt is staffing level (part time), Sno is staffing level (unstaffed), T 
is train time, Ns is nearest station, C is CCTV, Dcar is a dummy variable with value 1 if 
individual i uses the car as access mode, and zero otherwise; Ps is the number of parking 
spaces and α, β, γ, δ, ε, ζ, and η are parameters to be estimated. The parameter for car park 
spaces was not significant in the model. Car parking is the most common station facility 
attribute considered in prior studies, and in most cases the presence of a car park or the 
number of parking spaces has a positive effect on station choice, although there have been 
conflicting results and counter-intuitive coefficient signs in some cases. It may be that in this 
study car parking is not a limiting factor. Of the 52 observations where the station was 
accessed by car, only three used one of the central Cardiff stations where parking is likely to 
be difficult. It is also possible that the number of spaces is not the most appropriate measure. 
The presence or not of a car park, the availability of spaces or on-street parking and level of 
fee may all be relevant factors. Car park spaces is removed from Model 10, which is the final 
and best fitting of the models using the basic choice sets. 
 
4.2.2  Models with threshold-based choice sets and access mode specific parameters 
A feature of logit models is that an alternative can never have a probability of zero, and if an 
alternative has no realistic prospect of being chosen it can be excluded from the choice set 
(Train 2009). If an individual has chosen to walk to a station, then there must be a cut-off 
distance at which a station is no longer considered a feasible alternative; and if bus is used 
as the access mode, the choice of stations should be restricted to those that can realistically 
be accessed by bus from the individual’s trip origin. A further potential limitation of the earlier 
models is the assumption that the negative effect on utility of increasing access distance is 
the same irrespective of access mode. If only a single parameter is estimated for access 
distance this will represent an average effect on utility across the different access modes. In 
reality, a 1km increase in access distance would be expected to have a greater negative 
effect on utility for walking or cycling modes than it would for driving or bus modes. The basic 
models also assume that the access distance is the same for all modes, when this is unlikely 
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to be the case. Pedestrians can use off-road pathways and are not governed by restrictions 
such as one-way working, while buses are likely to take a longer more circuitous route than a 
car driver. Furthermore, it could be argued that access distance is not the most appropriate 
measure, as it is the access time that is important, rather than the distance which may not be 
known to the individual when making a choice. To address these potential limitations, with 
the view to producing more accurate predictive models, the following adjustments were 
made to the dataset: 
 

 Observations where the access mode was not recorded (two observations) and 
where bicycle or taxi/minicab was the access mode (too few observations, two for 
each mode) were removed.  

 For observations where the access mode is bus, stations were removed from the 
choice set where no bus route was available (i.e. not returned by OTP), or where the 
bus walk time was equal to the total bus duration (i.e. where OTP advised walking to 
the station rather than catching a bus due to its close proximity)  

 The survey data shows that the maximum walk time to access a chosen station was 
97.25 minutes. This appears to be an outlier, as the next highest is 43.77 minutes, a 
more reasonable figure. Therefore, 45 minutes was taken as the maximum walk 
time, and any stations where the access time exceeded this were removed from the 
choice set for those individuals that used walk mode. The outlier was also removed. 

 
The amendments reduced the number of individuals in the dataset from 281 to 274, and 
reduced the average choice set size from 10 alternatives to six. Summary statistics for the 
new dataset are shown in Table 4. As the mode specific access time parameters were only 
estimated against observations that accessed the station using that mode, the summary 
statistics for those variables only relate to those observations. 
 

  min   max   mean   var   sd   n  

cardist(km)   0.08   14.70   3.96   8.82   2.97   1659  
train_time(mins)   2.00   133.00   34.40   282.94   16.82   1659  

poihhi   1400.00   3066.67   2016.76   134089.17   366.18   1659  
directness   0.81   9.06   1.68   0.54   0.74   1659  

time_walk(mins)   1.60   44.93   24.17   118.31   10.88   903  
time_bus(mins)   1.05   105.22   34.48   428.39   20.70   237  

time_car_p(mins)   0.57   26.75   12.07   26.03   5.10   199  
time_car_d(mins)   0.30   25.13   12.22   25.26   5.03   320  

Table 4: Summary statistics for numeric variables - models 11-14 
 
A series of models were estimated using the amended dataset, and the results are shown in 
Table 5. It should be noted that the measures of model fit in these models, LL and 
McFadden’s adjusted R2, cannot be compared directly with those reported in Table 3. As a 
reference point, Model 11 was run with the same parameters as Model 10. The change in 
the choice sets does not have a major impact on the model, but the negative effect of drive 
distance is reduced somewhat, and the positive effects of nearest station and CCTV are 
increased. In Model 12 access mode specific parameters are estimated by including an 
access time variable for each mode (obtained from OTP) which is interacted with a dummy 
variable for that mode. The utility function for this model, for individual i choosing station k, is 
as follows: 

 kkkkk

m

kmimmtimeik CNsTSnoSpttimeDmodeV  


4

1

)(  (3) 

where Dmodeim is 1 if individual i used access mode m, and zero otherwise; timekm is the 
access time to alternative k using mode m; and αmtime is the parameter to be estimated for 
access time by mode m. This model is an improvement over the reference model (11), with a 
significantly lower LL, suggesting that this is also an improvement over Model 10. The 
access time parameters for the two car modes are similar, as might be expected. The 
negative effect on utility when walking to the station is less than half the size of the car effect, 
which may at first appear counter intuitive. However, these parameters represent the change 
in utility for each additional minute of access time, and the distance covered by car within a 
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minute will be considerably more than that covered on foot. Assuming an average walk 
speed of 3mph and an average drive speed of 40mph, the parameters indicate that an 
additional half mile of access distance reduces the utility of a station for car access by 0.22 
units, and reduces the utility of a station for walk access by 1.3 units. The larger effect for 
walk access is what would be intuitively expected. Nevertheless, the results indicate that one 
minute of extra travel time is a greater cost to car drivers and passengers than to bus 
passengers or pedestrians. The HHI is introduced in Model 13, and the parameter estimate 
is negative and significant, at the 90% level. The LL is reduced from -159 to -157 and this 
difference is significant at the 95% level. This suggests that a station is more likely to be 
chosen if it is surrounded by greater land use diversity. The parameter is very small, but as 
the HHI ranges from 1,111 - 10,000 this is potentially more important than it may at first 
seem. At 10,000 (where only one point of interest group is represented) utility would be 
reduced by 10 units. In the data HHI ranges from 1400 to 3067, representing a potential 
effect on utility between -1.4 and -3.07. In the final model (14) the directness measure is 
added. The parameter is significant and improves the model, but the direction of the effect 
was not expected. It was thought that a more circuitous access journey would make a station 
less attractive than a station with a more direct route, especially for walk mode, but the 
model suggests the opposite (a higher directness value signifies a less direct route). A plot of 
the directness measure against station access drive distance revealed that shorter access 
journeys tend to be less direct. This could be due to shorter journeys being confined to urban 
areas around trip origins, where the road network is dense and the layout more complex, 
while longer journeys are likely to include roads in non-built up areas which have longer and 
straighter stretches. This variable could therefore be responding to the preference for nearer 
stations, rather than a desire for less direct routes, although the correlation between 
directness and car distance is fairly low (-0.21***). It should also be noted that a one unit 
change in the directness measure will represent a considerable deviation from a straight line 
(the standard deviation for directness in the dataset is only 0.74).  
  
  Drive 

distance  
Access 
time (car 
drive)  

Access 
time (car 
pas)  

Access 
time 
(bus)  

Access 
time 
(walk)  

Staff level  Train 
time  

Nearest 
station  

CCTV  HHI  directness  logLik  AdjR2 

      PT  None               

11 -0.60***       -2.70***  -2.60***  -0.21***   1.10***  1.70***      -178  0.61 

12  -0.29***  -0.32***  -0.18***  -0.13***  -3.00***  -3.00***  -0.20***   0.78***  1.80***     -159  0.65 

13   -0.31***  -0.33***  -0.19***  -0.13***  -3.10***  -2.70***  -0.22***   0.78***  1.80***  -0.001*    -157  0.65 

14   -0.28***  -0.30***  -0.18***  -0.11***  -3.00***  -2.60***  -0.24***   1.10***  2.00***  -0.001*  0.40***  -153  0.66 

Table 5: Model results - threshold based choice sets and access mode specific parameters 
  
5  Generating probabilistic catchments 
As the purpose of developing a predictive model of station choice is to enable probabilistic 
catchments to be incorporated into station demand models, it was considered important to 
assess the practicability of generating such catchments using the results of this early 
modelling work. To reduce the complexity and the amount of data processing involved, the 
best performing of the basic choice set models, Model 10, was selected to generate the 
catchments. The utility function with the parameters estimated in Model 10 is as follows: 

)4.1()99.0()2.0()7.2()6.2()81.0( kkkkkkik CNsTSnoSptDV   (4) 

As the utility function contains the time of the train journey, the probabilistic catchment will 
depend upon the destination station, and each station will have a different catchment for 
each destination. As an example, the process of generating the catchments for Ystrad 
Mynach and surrounding stations on the Rhymney line, using Cardiff Central as the 
destination station, involved the following steps:   

 For each unit postcode in the area of interest, the 20 nearest stations (by euclidean 
distance) were identified. The drive distance from each postcode to each station was 
then obtained from OTP, and the stations then ranked by drive distance. The top 10 
ranked stations were placed in a database table and the access journey variables 
obtained by querying the OTP API as described in Section 3.4.1.  

 A train leg table was generated for each unique origin station:Cardiff Central pair, 
and populated with train time and fare variables as described in Section 3.4.3.  
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 A separate probability table was then generated. This pulls together the explanatory 
variables for each origin postcode:origin station pair and calculates the probability of 
each alternative station being chosen for each postcode (using the standard 
multinomial logit probability equation and the utility function described in Formula 4). 

 The probabilistic catchments for a specific station were generated using a database 
view, which pulls data from the probability table and the Code-Point Polygons table. 
These were then visualised in QGIS.  

Figure 1: Probabilistic catchment for Ystrad Mynach station to Cardiff 
Central and observed catchment (all destinations) 

Figure 2: Nearest station, 2km radial and observed catchments 
for Ystrad Mynach station 

   
Figure 1 shows the probabilistic catchment for Ystrad Mynach rail station (to Cardiff Central), 
along with its observed catchment (all destinations), and the trip origins for Ystrad Mynach, 
Hengoed and Pengam rail stations in the full survey dataset. Figure 2 shows catchments for 
Ystrad Mynach based on assigning unit postcodes to their nearest station (by drive 
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distance), and based on a 2km radial buffer around the station. As the buffers of nearby 
stations overlap with one another, Voronoi polygons have been used to generate a discrete 
catchment for each station. Whilst the very high probability postcodes match well with the 
nearest station catchment, the probabilistic catchment extends further to the north west to 
postcodes which have a nearer station. The postcodes here have a 30 - 40 percent 
probability of choosing Ystrad Mynach, and correspond well with the observed catchment. 
The on-train survey did not include the stations on the rail line to the west, so there is no 
data on trips that may have originated in this area and chosen one of those stations. The 
probabilistic catchment also extends to the north east of Ystrad Mynach station with 
probabilities in the 10 - 20 percent range. This also corresponds well with the observed 
catchment and the effect of “competition” from Hengoed and Pengam stations. The 
catchment derived from the 2km radial buffer captures many of the highest probability 
postcodes, but not all of them, and, like the nearest station catchment, misses many of the 
observed trip origins. 
 
6  Conclusions and future work 
This paper has shown that it is possible to calibrate a relatively simple station choice model 
that fits the observed data well. The estimated parameters can be used to generate 
probabilistic station catchments that are a realistic representation of observed catchments 
and perform better than the deterministic station catchments used in conventional aggregate 
demand models. This paper has also described a set of robust and reproducible methods for 
deriving explanatory variables using open source data and software tools. Future work will 
seek to apply these methods to much larger datasets, test additional variables and variable 
forms (for example, a generalised journey time measure), and develop more sophisticated 
choice models. A particular issue with the multinomial logit models described in this paper, is 
that they suffer from proportional substitution behaviour, and if a proposed new station is 
added to the choice set the probability of all existing stations will be reduced by the same 
percentage. However, it is more likely that a new station will have a greater effect on the 
probability of nearer stations. Ensuring a realistic representation of abstraction from pre-
existing stations is an important consideration, and is a significant limitation of the existing 
aggregate demand models. Failure to account for abstraction can result in a new station 
having a smaller net effect on rail demand than predicted, and in some circumstances this 
could undermine the business case for the station. Once a suitable station choice model has 
been calibrated, a key component of future work will be to incorporate probabilistic 
catchments into the aggregate rail demand models. This will represent a novel application of 
station choice modelling, and should allow the demand impacts of opening new stations and 
of making amendments to existing rail services to be more accurately assessed. 
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