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Abstract

The aggregate models commonly used in the UK to estimate demand for new local rail
stations require the station catchment to be defined first, so that inputs into the model, such
as the population from which demand will be generated, can be specified. The methods
typically used to define the catchment implicitly assume that station choice is a deterministic
process, and that stations exist in isolation from each other. However, studies show that pre-
defined catchments account for only 50-60 percent of observed trips, choice of station is not
homogeneous within zones, catchments overlap, and catchments vary by access mode and
station type. This paper describes early work to implement an alternative probability-based
approach, through the development of a station choice prediction model. To derive realistic
station access journey explanatory variables, a routable multi-modal network, incorporating
data from OpenStreetMap, the Traveline National Data Set and National Rail timetable, was
built using OpenTripPlanner and queried using an API wrapper developed in R. Results from
a series of multinomial logit models are presented and a method for generating probabilistic
catchments using estimated parameter values is described. An example probabilistic
catchment is found to provide a realistic representation of the observed catchment, and to
perform better than deterministic catchments.

1 Introduction

In Great Britain (GB), travel by rail has experienced a resurgence in recent decades, with a
rapid growth in passenger journeys replacing the declines of the 1960s and 1970s and the
modest growth of the 1980s. The average annual growth in passenger journeys was 4%
between 1997/98 and 2013/14 (compared to 0.33% between 1980/81 and 1996/97), and has
substantially out-paced growth in GDP (Rail Delivery Group 2014). The rail network has also
expanded, with some 370 stations either reopened or newly built during the last 50 years,
and many more currently under construction, proposed or being campaigned for by local
communities (Railfuture 2015). Against this backdrop, the potential to meet local or regional
transport needs, and also economic growth objectives, by investing in new rail stations,
routes or services, is increasingly being recognised by UK local authorities, Passenger
Transport Executives and Local Enterprise Partnerships (Department for Transport 2011).

To assess whether a particular scheme or intervention will achieve the required objectives, it
is necessary to produce accurate forecasts of the effect on demand. The models typically
used for new local rail stations (trip rate, trip end, and flow models) rely on aggregating
relevant data, such as population, and need a station catchment to be defined. Two main
methods are commonly used. The first is a buffer around a station, such as the 0.8km and
2km radial catchments proposed by Preston & Aldridge (1991); and the second divides the
population into zones and allocates each zone to its nearest station. For example, Blainey
(2010) assigned census output areas based on road travel time. Both methods produce
deterministic catchments, where a particular trip origin is assumed to fall within the
catchment of a single station, and competition between stations is not accounted for.

1.1 Catchments in reality

Previous studies have explored how representative defined catchments are of real station
catchments. Blainey & Evens (2011) found that 2km non-overlapping radial catchments
based on straight-line distance accounted for only 57% of observed trips, with large
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variations at the individual station level. Neither do all passengers choose their nearest
station. For example, Mahmoud et al. (2014) found that over 30% of commuters accessing a
station by car did not choose their nearest; and Blainey & Preston (2010) found that only
53% of trip ends were located within catchments defined by assigning census areas to their
nearest station by road access time. Several studies have used Geographical Information
Systems to visualise observed catchments and reported significant overlap (Fan et al. 1993;
Mahmoud et al. 2014), and others have found that station choice is not homogeneous within
catchment zones (for example, Givoni & Rietveld (2014)). It is also intuitive to expect
catchments to vary by access mode, with walk catchments smaller than those for motorised
vehicles, and public transport catchments reflecting the routes serving a station (Givoni &
Rietveld 2014). The size and shape of catchments will also depend on the type of station,
with passengers willing to travel further to stations that offer inter-urban services, where the
access journey is a smaller part of the total journey (Lythgoe & Wardman 2004).

It is clear that deterministic catchments do not reflect reality, suggesting that the aggregate
demand models could be improved by using probability-based catchments. This paper will
now briefly review prior station choice research and then describe the development of a
station choice model and its application to generate probabilistic catchments.

2 Previous station choice research

A consensus has formed around using relatively simple closed-form discrete choice models
to model station choice, with multinomial logit commonly used to model station choice alone
(for example, see Blainey & Evens (2011); Mahmoud et al. (2014)), and nested logit used to
model combined access mode and station choice (for example, see Debrezion et al. (2009);
Givoni & Rietveld (2014)). These models are based on the concept of Random Ultility
Maximisation, where an individual is assumed to choose the one alternative, from a group of
alternatives known as the choice set, that provides them with maximum utility. The
researcher attempts to measure utility by identifying attributes of the alternatives and/or the
individual. That part of utility that the researcher cannot measure is called the unobserved
portion of utility and is treated as a random component. The utility that an individual derives
from an alternative is expressed using the following formula:

Uni :Vni +gni (1)

Where Uy, is the utility for individual n of alternative i, Vni is the utility measured by the
researcher, and ¢ is the unobserved portion of utility. In practice V, which is known as the
representative or observed utility, will be a function consisting of the selected attributes and
their respective parameters. The parameters, if unknown, are obtained statistically, for
example by maximum likelihood estimation.

The effect of a range of factors related to the access journey and service levels has been
consistently reported. Station utility decreases as the access journey becomes further or
longer, as the rail leg journey time increases, and when the journey involves more transfers
or has a higher fare; and utility increases as departures become more frequent. The effect of
station facilities, such as car parking, is more problematic, potentially due to endogeneity
issues, and only limited attention has been given to land-use factors. Recently, more
complex model frameworks have been proposed, for example using mixed logit (Chen et al.
2014), but it remains unclear how well even the simple models can predict station choice in
real-world scenarios or how the models can be used to improve industry standard rail
demand forecasting methods. Most prior studies have focussed on developing models to
better understand the factors that influence station choice, and there have been few attempts
to create a transferable station choice model and integrate it into one of the aggregate
models used to predict demand at new stations. Wardman & Whelan (1999) attempted to
incorporate probabilistic station catchments into a direct demand model by apportioning
population to one of five competing stations for each postal sector, but due to time and
computer resource constraints they had to use a subset of the data which resulted in the
model failing to converge. In the work of Lythgoe & Wardman (2004) station choice is an
intrinsic component of a spatial interaction model, but the method is limited to forecasting
demand for inter-urban journeys in excess of 40km.
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3 Data sources and processing

Methods and practices that support research reproducibility and automated workflows were
adopted for the manipulation and analysis of data, with open-source data management and
analytical tools being used wherever it was practical to do so. This approach enables
processes to be easily repeated on the same or a new dataset, and allows process
modifications to be readily applied. The R environment was used for data processing,
descriptive analysis, developing the choice models, and graphical output. Data was stored in
a series of related tables in a PostgreSQL database and the PostGIS spatial extension was
used for spatial analysis. Data visualisation was carried out in QGIS.

3.1 Revealed preference data

In order to develop disaggregate models of station choice, information is required about
individual trips via the rail network. This data needs to include the access station where a
train was first boarded, the final egress station, and the ultimate origin of the trip, such as
home or work address. The data must also be at a spatial resolution that is sufficient for the
variability in explanatory factors between individual decision makers, such as access
distance, to be revealed. For UK-based research, the unit postcode area boundary is
probably the maximum spatial unit of address aggregation appropriate for this type of
analysis. Suitable trip data was obtained from an on-train survey carried out on the Cardiff
Central to Rhymney line in South Wales (Blainey 2009). This was an ideal dataset for
developing data processing techniques and estimating initial choice models, as it was
already in a “clean” state and of a manageable size, consisting of 513 responses.
Observations without data for both the origin and destination parts of the trip were removed,
reducing the number of observations to 284.

3.2 Supporting data

Details on railway stations in GB were obtained from the National Public Transport Access
Node (NaPTAN) database. The centroid of each unit postcode in the UK was obtained from
the Ordnance Survey Code-Point dataset which was downloaded from EDINA Digimap
(Code-Point 2015). Polygons representing the area covered by each postcode, used to
visualise station catchments, were obtained from the Ordnance Survey Code-Point with
Polygons dataset which was downloaded from EDINA Digimap (Code-Point with Polygons
2015).

3.3 Developing a routable multi-modal network

As the access journey is such an important factor influencing station choice, a key objective
of this research was to generate realistic representations of the access journey made by
survey respondents. This required a multimodal network that could generate routes for a
range of motorised and non-motorised transport modes.

3.3.1 Selecting a suitable routing tool

A review of commercial and open source tools identified three candidates: Google Maps API,
Visography TRACC and OpenTripPlanner (OTP). The Google Maps API limits the number of
API calls and has restrictive usage conditions. It is also limited to current timetables and it is
not possible to query historic timetable data to match the date of origin-destination surveys,
nor to add new public transport routes, adjust frequencies or add station stops to assess the
impact of potential service changes. Visography TRACC is a commercial application that can
import the standard UK public transport data formats: NaPTAN, TransXChange, and ATCO
CIF. However, given that the UK public transport data is freely available under open data
initiatives, a solution that is not reliant on commercial software was considered preferable.
OTP is an open-source and cross-platform multi-modal route planner written in JAVA that
uses imported OpenStreetMap (OSM) data for routing on the street and path network and
supports multi-agency public transport routing through imported GTFS feeds. OTP has a
web front-end and a sophisticated API, and was considered the most promising platform.
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3.3.2 Building the multi-modal network

As OTP has a high random access memory (RAM) requirement when graph building?, this
stage was carried out on a Microsoft Azure Linux cloud server with 56 GB of RAM. The
graph was then transferred to a local server for normal operation of the trip planner. The
initial graph build included OSM data for GB obtained from Geofabrik? and a GTFS feed for
GB National Rail services®. Bus timetable data for Wales was obtained from the Traveline
National Dataset (TNDS) in TransXChange format, a UK XML standard, and an attempt was
made to convert this to GTFS using the open source TransXChange2GTFS converter. This
failed when processing most of the TNDS XML files, despite the files passing validation in
the official TransXChange Publisher tool, and it was rejected as a plausible solution. The
only alternative was Visography TRACC, which is able to import TransXChange files and
export a GTFS feed.

3.4 Deriving explanatory variables

3.4.1 Access journey

Measures of the access journey, from origin postcode centroid to station, were obtained by
running an R script to query the OTP API, processing the JSON response and then writing
the results to a database table. A set of functions were developed to query the OTP API, and
these are the beginnings of an APl wrapper for OTP which has the potential to be released
as an R package in the future. For the bus time variable, which consists of walk time, on-bus
time and waiting time (in the case of transfers), a desired trip start time of 09:00 on Monday
5 October 2015 was set, which corresponds with the Rhymney Line survey which was
carried out on weekdays in early October. Several other parameters were set for the bus trip,
including a “soft” maximum walk distance (for walk to and from the bus stop) of 1600m, a
minimum time to allow for transfer between buses of 10 minutes, and a walk reluctance
parameter that ensured a realistic balance between the walk and bus components of the
multi-modal trip.

Two additional variables related to the access journey were generated. The 'nearest station’
dummy variable indicates whether or not a station in an individual’s choice set is the closest
station by drive distance; and 'directness’ is obtained by dividing the drive distance from the
trip origin to the station by the straight line (euclidean) distance, with the value of the ratio
increasing from one as the route becomes more circuitous and deviates from the straight
line.

3.4.2 Station facilities

Information on a range of potential facilities available at railway stations was obtained from
the National Rail Enquiries (NRE) Stations XML feed, which forms part of the NRE
Knowledgebase. This was queried for every station in the UK and the XML response was
processed using an R script and the results written to a database table. The variables
recorded were: car park spaces (number), station CCTV (y/n), ticket machine (y/n), waiting
room (y/n), station buffet (y/n), toilets (y/n), cycle storage (y/n), taxi rank (y/n), bus services
available (y/n), and staffing level (unstaffed, part-time, full-time).

3.4.3 Train journey

For every unique origin station:destination station pair, a single train journey itinerary was
obtained by querying the OTP API. The JSON response was processed and required
variables written to a database table. A minimum transfer time of six minutes was specified,
corresponding to the suggested connection time for a medium-sized interchange station. The
desired trip start time was set to 09:00 on Monday 5 October 2015, which corresponds with
the Rhymney Line survey. The variables used in the choice models are the journey duration,
consisting of on-train time and waiting time (in the case of transfers); the number of

1 The trip planner graph specifies every location in the region covered and how to travel between them. It is
compiled from the OSM and GTFS data.

2 see http://download.geofrabrik.de

3 see http://www.gbrail.info

“ see https://code.google.com/p/googletransitdatafeed/wiki/Google TransitDataFeed
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transfers; and the difference between the desired departure time (09:00) and the actual
departure time. The latter measure should, to an extent, capture effects related to frequency
and headway.

Fares data is available direct from ATOC, but it is provided in a large number of flat text files
that would have required a considerable investment of time and effort to produce any
meaningful data from. Fortuitously, the independent BR Fares website® provides a fares
lookup service, and permission to use the associated APl was obtained. The APl was
queried using an R script, the JSON response processed, and required variables were
written to the database. The cheapest off-peak and anytime return fares for each unique
origin and destination station pair were extracted. As off-peak return fares are not an
available ticket option on the Rhymney line, only the anytime return fare was used in model
estimation.

3.4.4 Land use and built environment

A land-use mix measure was generated using the Ordnance Survey Points of Interest
dataset, obtained for the study region from the EDINA Digimap service (Points of Interest
2015). The number of points of interest for each of the nine top level classifications within a
euclidean distance of 400m of each station were counted using a spatial query. The
Herfindahl-Hirschman Index (HHI) was then calculated for each station. It indicates the
extent to which one land use type dominates in an area, and is influenced by the number of
land uses and their relative size. It is calculated by squaring the percentage share of each
classification, and then summing the squares. In this study, with a possble nine
classifications, the HHI can range from 1,111, where each is equally represented in an area,
to 10,000 where only a single classification is present.

4 Choice models

4.1 Defining choice sets

It was decided, given the spatial nature of the choice alternatives, to define a separate
choice set for each origin postcode based on selecting the nearest n stations to that
postcode. To establish an appropriate value for n, for each unique origin postcode in the
survey the 50 nearest stations by euclidean distance were identified, using the efficient
PostGIS indexed nearest neighbour query. For each postcode:station pair the drive distance
was obtained from an API call to OTP, and for each postcode the stations were then ranked
by drive distance. The 15 nearest stations by drive distance account for all the observed
choice, with the nearest 10 stations accounting for 98.94% of observations. It was therefore
decided to use the nearest 10 stations to each postcode as the choice set and these were
added to a database table which was then populated with various access journey variables
obtained from OTP API calls as described in Section 3.4.1. Populating the variables for each
origin postcode, rather than for each observation, eliminates duplication and minimises the
number of API calls required to populate the variables.

4.2 Model estimation

Prior to estimating any models a correlation matrix was produced. Apart from expected high
correlation between the various access distance measures, there is a very high correlation
between several of the station facility variables. For example, there is a correlation of 1
between full time staffed stations and the presence of a station buffet; and a correlation of
0.95 between toilets and waiting room. There is also a very high correlation (0.98) between
the presence of station CCTV and CCTV covering cycle parking areas, as might be
expected. There is a moderate to high correlation between the duration of the train leg and
the fare paid (0.69), and between the number of car parking spaces and the presence of a
taxi rank (0.78). In view of the very high correlation between many of the station facility
variables, it was decided to include the staffing level categorical variable as the main station
facilities measure. Summary statistics for the choice dataset used in the models that follow
are shown in Tables 1 and 2. As the car parking spaces parameter was only estimated
against observations that access the station by car, its summary statistics only relate to

5 see http://lwww.brfares.com/
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those observations. As there are so few observations for bicycle or taxi as access mode, no
variables specifically relating to those modes were included in the models.

4.2.1 Models with basic choice sets

A series of models were estimated using the R package mclogit (EIff 2014), with the choice
sets as defined in Section 4.1 and using an additive linear utility function. Explanatory
variables were entered in a manual forward selection procedure, and the results are shown
in Table 3. In Models 1 to 3, access drive distance, staffing level dummies (with full-time
excluded as the reference), and train journey time are entered into the models. All the
variable parameters are significant at the 99.9% confidence level and all have a negative
effect as would intuitively be expected. The staffing level parameters have to be interpreted
with reference to the full-time staffing level, and the results indicate that the utility of a station
is lower for part-time or unstaffed stations. This would be expected, especially as the level of
staffing is also an indicator of a range of station facilities.

min max mean var sd n

cardist(km) 0.08 14.70 5.05 9.17 3.03 2800
train_time(mins) 2.00 144.00 34.87 364.89 19.10 2800
fare(£) 2.40 22.40 6.21 2.53 1.59 2800
transfers 0.00 1.00 0.33 0.22 0.47 2800
headway(mins) 0.00 55.00 15.15 168.38 12.98 2800
carspaces 0.00 402.00 36.96 3279.04 57.26 519

Table 1: Summary statistics for numeric variables - Models 1-10

Access mode Staffing level CCTV
NA: 20 fullTime : 221 FALSE: 611
Walk: 1981 partTime : 521 TRUE: 2189
Bus: 240 unstaffed: 2058 NA’s: 0

Car(driver): 320
Car(passenger): 199
Bicycle: 20

Taxi: 20

Table 2: Summary statistics for logical and categorical
variables - Models 1-10

The fare variable is introduced in Model 4, and while this is significant at the 99% level and
results in a small but significant (at 95% level) reduction in the log likelihood (LL) function®,
the positive effect on utility is counter-intuitive. It would be expected that given a choice of
stations, all else being equal, an individual would choose the station with the lowest fare.
Fare has a moderate to high positive correlation with train time (0.69), and correlation
between two variables can result in the parameter for one of the variables having the wrong
sign. To confirm this another model was run (4a) with train time removed, and the parameter
for fare is significant and negative in this model”. As fare results in a much smaller reduction
in LL than train time, it is removed from the next model (5) and replaced with the nearest
station dummy variable. As other studies have found (see, for example, Adcock (1997); Fan
et al. (1993)), this variable does improve the model. When the number of transfers for the
train journey was added to the model (6), an extremely high standard error was reported for
the parameter (1,016), and further investigation revealed that this model is invalid due to
complete separation, with all chosen stations having zero transfers. Previous studies have
found the number of transfers to have a negative effect on station utility, but the nature of the
data in this study, with both chosen origin and destination stations limited to a single rail line,
has resulted in no journeys involving transfers. In Model 7, the transfers variable was
removed and replaced with the headway measure, the difference in minutes between the
desired departure time (09:00) and the actual departure time. The parameter is significant at
the 95% level and has the expected sign, and the small reduction in the LL (compared to

6 Calculated using log likelihood ratio test.
" In view of this it may be preferable to use a generalised journey time variable that combines both fare and train
time.
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Model 5) is also significant at the 95% level. However, once the CCTV variable is added in
Model 8, headway is no longer significant, while the presence of CCTV has a strong and
significant positive effect on station utility, and also has little impact on the other parameters.
This result is surprising as it has not been included in previous studies of station choice.
However, the main source of advice on passenger demand forecasting for the rail industry in
GB, the Passenger Demand Forecasting Handbook (ATOC 2013), does recommend a
demand uplift when adding CCTV to a station of 8% for business and leisure trips and 5% for
commuter trips. In Model 9, headway is removed and replaced with the car park spaces
variable. As the availability of car parking spaces is only relevant to travellers using a car as
access mode, the car park spaces variable was interacted with a dummy variable indicating
whether either of the car access modes (driver or passenger) was used.

Drive Staffing level Train time Fare Nearest Transfers Headway CCTV Car logLik AdjR?
distance station spaces
PT None

1 -1.00%** -349 0.46
2 -0.93*** -3.40*** -4.50%* -249  0.62
3 -L10%r -2.20%* 2. 70%*  -0.21%* -212  0.67
4 -1.10%* -1.30* -1.90*** -0.25*** (.73*** -209 0.68
4a -0.97** -3.50%** -4 50*** -0.41** -247  0.62
5 -0.82%* -220%* -280%* -0.21%* 0.98*** -203  0.69
6 -0.79** -1.60** -2.30** -0.18*** 0.98** -15.00 -201 0.69
7 -0.84%** -2.10%* -2.60*** -0.20*** 0.94*** -0.03** -201  0.69
8 -0.82*** -2.50** -2.60** -0.20%** 0.98*** -0.02 1.40%** -195 0.70
9 -0.81** -2.60%* -2.70%* -0.20%** 1.00%** 1.40*** 0.002 -196 0.70
10 -0.81*** -2.60*** -2.70*%* -0.20%** 0.99%** 1.40%** -196 0.70

Table 3: Model results - basic choice sets

The utility function for this model, for individual i choosing station k, is therefore:
V, =aD, + f/Spt, +)8no, + JT, +&Ns, +¢C, +n(Dcar, xPs, ) 2)

where D is drive distance, Spt is staffing level (part time), Sno is staffing level (unstaffed), T
is train time, Ns is nearest station, C is CCTV, Dcar is a dummy variable with value 1 if
individual i uses the car as access mode, and zero otherwise; Ps is the humber of parking
spaces and a, B, v, 9, €, {, and n are parameters to be estimated. The parameter for car park
spaces was not significant in the model. Car parking is the most common station facility
attribute considered in prior studies, and in most cases the presence of a car park or the
number of parking spaces has a positive effect on station choice, although there have been
conflicting results and counter-intuitive coefficient signs in some cases. It may be that in this
study car parking is not a limiting factor. Of the 52 observations where the station was
accessed by car, only three used one of the central Cardiff stations where parking is likely to
be difficult. It is also possible that the number of spaces is not the most appropriate measure.
The presence or not of a car park, the availability of spaces or on-street parking and level of
fee may all be relevant factors. Car park spaces is removed from Model 10, which is the final
and best fitting of the models using the basic choice sets.

4.2.2 Models with threshold-based choice sets and access mode specific parameters

A feature of logit models is that an alternative can never have a probability of zero, and if an
alternative has no realistic prospect of being chosen it can be excluded from the choice set
(Train 2009). If an individual has chosen to walk to a station, then there must be a cut-off
distance at which a station is no longer considered a feasible alternative; and if bus is used
as the access mode, the choice of stations should be restricted to those that can realistically
be accessed by bus from the individual’s trip origin. A further potential limitation of the earlier
models is the assumption that the negative effect on utility of increasing access distance is
the same irrespective of access mode. If only a single parameter is estimated for access
distance this will represent an average effect on utility across the different access modes. In
reality, a 1km increase in access distance would be expected to have a greater negative
effect on utility for walking or cycling modes than it would for driving or bus modes. The basic
models also assume that the access distance is the same for all modes, when this is unlikely

This paper is produced and circulated privately and its inclusion
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to be the case. Pedestrians can use off-road pathways and are not governed by restrictions
such as one-way working, while buses are likely to take a longer more circuitous route than a
car driver. Furthermore, it could be argued that access distance is not the most appropriate
measure, as it is the access time that is important, rather than the distance which may not be
known to the individual when making a choice. To address these potential limitations, with
the view to producing more accurate predictive models, the following adjustments were
made to the dataset:

e Observations where the access mode was not recorded (two observations) and
where bicycle or taxi/minicab was the access mode (too few observations, two for
each mode) were removed.

e For observations where the access mode is bus, stations were removed from the
choice set where no bus route was available (i.e. not returned by OTP), or where the
bus walk time was equal to the total bus duration (i.e. where OTP advised walking to
the station rather than catching a bus due to its close proximity)

e The survey data shows that the maximum walk time to access a chosen station was
97.25 minutes. This appears to be an outlier, as the next highest is 43.77 minutes, a
more reasonable figure. Therefore, 45 minutes was taken as the maximum walk
time, and any stations where the access time exceeded this were removed from the
choice set for those individuals that used walk mode. The outlier was also removed.

The amendments reduced the number of individuals in the dataset from 281 to 274, and
reduced the average choice set size from 10 alternatives to six. Summary statistics for the
new dataset are shown in Table 4. As the mode specific access time parameters were only
estimated against observations that accessed the station using that mode, the summary
statistics for those variables only relate to those observations.

min max mean var sd n

cardist(km) 0.08 14.70 3.96 8.82 2.97 1659
train_time(mins) 2.00 133.00 34.40 282.94 16.82 1659
poihhi 1400.00 3066.67 2016.76  134089.17 366.18 1659

directness 0.81 9.06 1.68 0.54 0.74 1659
time_walk(mins) 1.60 44.93 24.17 118.31 10.88 903
time_bus(mins) 1.05 105.22 34.48 428.39 20.70 237
time_car_p(mins) 0.57 26.75 12.07 26.03 5.10 199
time_car_d(mins) 0.30 25.13 12.22 25.26 5.03 320

Table 4: Summary statistics for numeric variables - models 11-14

A series of models were estimated using the amended dataset, and the results are shown in
Table 5. It should be noted that the measures of model fit in these models, LL and
McFadden’s adjusted R?, cannot be compared directly with those reported in Table 3. As a
reference point, Model 11 was run with the same parameters as Model 10. The change in
the choice sets does not have a major impact on the model, but the negative effect of drive
distance is reduced somewhat, and the positive effects of nearest station and CCTV are
increased. In Model 12 access mode specific parameters are estimated by including an
access time variable for each mode (obtained from OTP) which is interacted with a dummy
variable for that mode. The utility function for this model, for individual i choosing station Kk, is
as follows:

4

Vi =D Cine (DMode, xtime, )+ ASpt, + 78n0, + 8T, +&Ns, + (T, 3)

m=1

where Dmodein, is 1 if individual i used access mode m, and zero otherwise; timexm is the
access time to alternative k using mode m; and amime iS the parameter to be estimated for
access time by mode m. This model is an improvement over the reference model (11), with a
significantly lower LL, suggesting that this is also an improvement over Model 10. The
access time parameters for the two car modes are similar, as might be expected. The
negative effect on utility when walking to the station is less than half the size of the car effect,
which may at first appear counter intuitive. However, these parameters represent the change
in utility for each additional minute of access time, and the distance covered by car within a
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minute will be considerably more than that covered on foot. Assuming an average walk
speed of 3mph and an average drive speed of 40mph, the parameters indicate that an
additional half mile of access distance reduces the utility of a station for car access by 0.22
units, and reduces the utility of a station for walk access by 1.3 units. The larger effect for
walk access is what would be intuitively expected. Nevertheless, the results indicate that one
minute of extra travel time is a greater cost to car drivers and passengers than to bus
passengers or pedestrians. The HHI is introduced in Model 13, and the parameter estimate
is negative and significant, at the 90% level. The LL is reduced from -159 to -157 and this
difference is significant at the 95% level. This suggests that a station is more likely to be
chosen if it is surrounded by greater land use diversity. The parameter is very small, but as
the HHI ranges from 1,111 - 10,000 this is potentially more important than it may at first
seem. At 10,000 (where only one point of interest group is represented) utility would be
reduced by 10 units. In the data HHI ranges from 1400 to 3067, representing a potential
effect on utility between -1.4 and -3.07. In the final model (14) the directness measure is
added. The parameter is significant and improves the model, but the direction of the effect
was not expected. It was thought that a more circuitous access journey would make a station
less attractive than a station with a more direct route, especially for walk mode, but the
model suggests the opposite (a higher directness value signifies a less direct route). A plot of
the directness measure against station access drive distance revealed that shorter access
journeys tend to be less direct. This could be due to shorter journeys being confined to urban
areas around trip origins, where the road network is dense and the layout more complex,
while longer journeys are likely to include roads in non-built up areas which have longer and
straighter stretches. This variable could therefore be responding to the preference for nearer
stations, rather than a desire for less direct routes, although the correlation between
directness and car distance is fairly low (-0.21***). It should also be noted that a one unit
change in the directness measure will represent a considerable deviation from a straight line
(the standard deviation for directness in the dataset is only 0.74).

Drive Access Access Access Access Staff level Train  Nearest CCTV HHI directness logLik AdjR2
distance time (car time (car time time time station
drive) pas) (bus)  (walk)
PT None

11 -0.60*** -2.70%%* -2,60%** -0.21%** 1.10%** 1.70*** -178  0.61
12 -0.29%**  -0.32%**  -0.18*** -0.13*** -3.00*** -3.00*** -0.20*** (0.78*** 1.80*** -159  0.65
13 -0.31%*  -0.33%*  -0.19%** -0.13*** -3,10*** -2,70*** -0.22*** (0.78** 1.80*** -0.001* -157  0.65
14 -0.28***  -0.30***  -0.18*** -0.11*** -3.00*** -2.60*** -0.24*** 1.10*** 2.00*** -0.001* 0.40*** -153  0.66

Table 5: Model results - threshold based choice sets and access mode specific parameters

5 Generating probabilistic catchments

As the purpose of developing a predictive model of station choice is to enable probabilistic
catchments to be incorporated into station demand models, it was considered important to
assess the practicability of generating such catchments using the results of this early
modelling work. To reduce the complexity and the amount of data processing involved, the
best performing of the basic choice set models, Model 10, was selected to generate the
catchments. The utility function with the parameters estimated in Model 10 is as follows:

V, =(-0.81xD,)+(-2.6xSpt, ) + (—2.7xSno, ) + (-0.2xT,) +(0.99x Ns, )+ (1.4xC,)  (4)

As the utility function contains the time of the train journey, the probabilistic catchment will
depend upon the destination station, and each station will have a different catchment for
each destination. As an example, the process of generating the catchments for Ystrad
Mynach and surrounding stations on the Rhymney line, using Cardiff Central as the
destination station, involved the following steps:

e For each unit postcode in the area of interest, the 20 nearest stations (by euclidean
distance) were identified. The drive distance from each postcode to each station was
then obtained from OTP, and the stations then ranked by drive distance. The top 10
ranked stations were placed in a database table and the access journey variables
obtained by querying the OTP API as described in Section 3.4.1.

e Atrain leg table was generated for each unique origin station:Cardiff Central pair,
and populated with train time and fare variables as described in Section 3.4.3.

This paper is produced and circulated privately and its inclusion
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e A separate probability table was then generated. This pulls together the explanatory
variables for each origin postcode:origin station pair and calculates the probability of
each alternative station being chosen for each postcode (using the standard
multinomial logit probability equation and the utility function described in Formula 4).

e The probabilistic catchments for a specific station were generated using a database
view, which pulls data from the probability table and the Code-Point Polygons table.
These were then visualised in QGIS.

]

® Station
trip origins by station
¢ Hengoed
% Pengam
® Ystrad Mynach
[ Ystrad Mynach obs. catchment
Ystrad Probabilistic Catchment (Pr)
0.00-0.10
0.10-0.20
0.20-0.30
0.30 - 0.40
0.40 - 0.50
0.50 - 0.60
0.60 - 0.70
0.70 - 0.80
0.80 - 0.90
0.90 - 1.00

N
o ® EHengoed Rail Station

A
strad Mynach Rail Station

Figure 1: Probabilistic catchment for Ystrad Mynach station to Cardiff
Central and observed catchment (all destinations)

#® Station
Trip origins by station

+ Hengoed

* Pengam

® Ystrad Mynach
[ Ystrad Mynach observed catchment
| (] 2km radial catchments - Voronoi
YM nearest station catchment

Figure 2: Nearest station, 2km radial and observed catchments
for Ystrad Mynach station

Figure 1 shows the probabilistic catchment for Ystrad Mynach rail station (to Cardiff Central),
along with its observed catchment (all destinations), and the trip origins for Ystrad Mynach,
Hengoed and Pengam rail stations in the full survey dataset. Figure 2 shows catchments for
Ystrad Mynach based on assigning unit postcodes to their nearest station (by drive
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distance), and based on a 2km radial buffer around the station. As the buffers of nearby
stations overlap with one another, Voronoi polygons have been used to generate a discrete
catchment for each station. Whilst the very high probability postcodes match well with the
nearest station catchment, the probabilistic catchment extends further to the north west to
postcodes which have a nearer station. The postcodes here have a 30 - 40 percent
probability of choosing Ystrad Mynach, and correspond well with the observed catchment.
The on-train survey did not include the stations on the rail line to the west, so there is no
data on trips that may have originated in this area and chosen one of those stations. The
probabilistic catchment also extends to the north east of Ystrad Mynach station with
probabilities in the 10 - 20 percent range. This also corresponds well with the observed
catchment and the effect of “competition” from Hengoed and Pengam stations. The
catchment derived from the 2km radial buffer captures many of the highest probability
postcodes, but not all of them, and, like the nearest station catchment, misses many of the
observed trip origins.

6 Conclusions and future work

This paper has shown that it is possible to calibrate a relatively simple station choice model
that fits the observed data well. The estimated parameters can be used to generate
probabilistic station catchments that are a realistic representation of observed catchments
and perform better than the deterministic station catchments used in conventional aggregate
demand models. This paper has also described a set of robust and reproducible methods for
deriving explanatory variables using open source data and software tools. Future work will
seek to apply these methods to much larger datasets, test additional variables and variable
forms (for example, a generalised journey time measure), and develop more sophisticated
choice models. A particular issue with the multinomial logit models described in this paper, is
that they suffer from proportional substitution behaviour, and if a proposed new station is
added to the choice set the probability of all existing stations will be reduced by the same
percentage. However, it is more likely that a new station will have a greater effect on the
probability of nearer stations. Ensuring a realistic representation of abstraction from pre-
existing stations is an important consideration, and is a significant limitation of the existing
aggregate demand models. Failure to account for abstraction can result in a new station
having a smaller net effect on rail demand than predicted, and in some circumstances this
could undermine the business case for the station. Once a suitable station choice model has
been calibrated, a key component of future work will be to incorporate probabilistic
catchments into the aggregate rail demand models. This will represent a novel application of
station choice modelling, and should allow the demand impacts of opening new stations and
of making amendments to existing rail services to be more accurately assessed.
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