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Abstract

In this paper a grey-box model of a nonlinear dynamical system is constructed. This involves
using a Gaussian process to emulate model error - the error that arises as a result of flaws
in one’s physical-law based model of the system. The work shows how such an approach
can be extended towards dynamical systems. Specifically, it is applied to experimental data,
obtained from a dynamical system whose response is known to be strongly influenced by
friction effects.

1 Introduction

Grey box models are typically described as a combination of a ‘white-box model’, whose
equations of motion have been derived from the underlying physics of the problem of in-
terest, and a ‘black-box model’, which is purely data-based (examples of black-box models
include neural networks and Gaussian processes). In the current paper, the white box model
consists of the hypothesised equation of motion of an experimental dynamical system, inves-
tigated in [1], whose response is known to be influenced by friction effects. This is augmented
with a Gaussian process which is designed to emulated model error, thus accounting for the
shortcomings of the white-box model.

This concept was given a very general treatment in [2, 3] and, within an engineering
context, has been applied for a variety of purposes (see [4, 5, 6, 7] for example). The current
paper differs from previous work in that it shows how Gaussian processes can be used to
emulate the errors present in dynamical models - not just just those that are static.

2 Experiment

A schematic of the nonlinear dynamical system in question is shown in Figure 1. This de-
vice, which was originally designed to harvest electrical energy from ambient vibrations, is
composed of a sprung mass which is coupled to an electrical generator by a ball-screw (this
allows low frequency translational motion to be converted to high frequency rotary motion).
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Figure 1: Schematic of friction-affected dynamical system.

Defining l as the ball-screw lead, cm as mechanical damping, k as spring stiffness, m as
the oscillating mass and J as the moment of inertia of the system, it is hypothesised that
the system’s equation of motion is

Mÿ + bmẏ + ky + f(ẏ) = −mü (1)

where u is the displacement of the base, y is the relative displacement between the mass
and the base,

M = m+ J

(

2π

l

)

2

, (2)

bm =

(

2π

l

)

2

cm (3)

and f(ẏ) is a friction model. Based on the work conducted in [1], it is hypothesised that

f(ẏ) = Fc tanh(βẏ) (4)

where Fc and β are parameters which require estimation. Equation (1) represents the white-
box model of the device.

Figure 2 shows the experimental setup used for testing. The device was mounted to an
electro-hydraulic shaker and MEMS accelerometers were attached to the oscillating mass
and the shaker table. A Gaussian noise base acceleration - filtered by a low-pass filter with
cutoff frequency of 15 Hz - was used to perturb the device. Acceleration time histories of the
base and the mass were measured in each test. Throughout this work these are denoted by
the vectors ü = {ü1, ü2, ...}

T and z̈ = {z̈1, z̈2, ...}
T respectively. It is important to note that

z̈ represents the measured relative acceleration while ÿ represents the relative acceleration
predicted by the white-box model.
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Figure 2: Experimental setup.

3 White-box modelling

Through a combination of the work conducted in [1] and [8], the ‘best guess’ parameter
estimates shown in Table 1 were realised. It should be noted that, utilising a Bayesian
framework, probabilistic estimates of those parameters which were difficult to measure di-
rectly were realised in [1]. The resulting parameter uncertainties were found to have little
influence on the model’s ability to make predictions and, as such, only crisp parameter es-
timates are used in the remainder of this study.

Parameter Estimate Unit

M 12.8 kg
m 8 kg
k 250 N/m
cm 109.5 Ns/m
Fc 11.86 N
β 88.35 s/m

Table 1: Parameters of white-box model.

Using these parameter estimates, the ability of the white-box model (equation (1)) to
predict a set of relative acceleration measurements in shown in Figure 3. While the model
is able to represent some of the measured behavior there is clearly room for improvement.
In the current paper, this is achieved through the addition of a data-based element to the
white-box model (details in the next section).
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Figure 3: Predictions made by white-box model.

4 Model error

Building on the work[2], it is hypothesised that the measured response of the device is related
to the output of the physical-law based model, ÿ, by

z̈i = ÿi + ηi(xi) + ǫ ǫ ∼ N (0, β−1) (5)

where ǫ represents measurement noise, η - the ‘discrepancy term’ - accounts for the dynam-
ics that cannot realised using the white-box model and x represents an input which will be
defined shortly. The aim then, is to develop a data-based model which, given the inputs
x1,x2, ..., can predict the model discrepancies η1, η2, ....

Here the vector η = {η1, η2, ...}
T is modelled using a Gaussian process (GP). This

involves first hypothesising a Gaussian prior distribution over the functions η:

p(η) = N (0,A), Aij = a(xi,xj) (6)

where A is a user-defined covariance matrix and a is known as the ‘kernel function’. This is
convenient as, by defining the kernel function, it is possible to introduce correlations between
ηi(xi) and ηj(xj) which depend on the closeness of the inputs xi and xj . In the current
work this is achieved by defining the kernel function as

a(xi,xj) = exp
(

−
α

2
(xi − xj)

T (xi − xj)
)

(7)

where α is a hyperparameter. Defining

η̂ = η + ǫ (8)

such that
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p(η̂|η) = N (η, β−1I). (9)

then, from equations (6) and (9), it follows that

p(t) = N (0,C) (10)

where

C = β−1I +A =⇒ Cij = β−1δij + a(xi,xj). (11)

At this point it is useful to recall that the aim here is to develop a data-based model which,
given a new input x∗, can be used to analyse the probability of the model discrepancy, η̂∗.
Using equation (10), the joint probability distribution of {η̂, η̂∗} is

p(η̂, η̂∗) = N

(

0,

[

C a

aT c

])

(12)

where

an = a(xn,x
∗), n = 1, ..., N (13)

and

c = β−1 + a(x∗,x∗). (14)

Using some of the fundamental properties of Gaussian distributions (see [9] for example), it
is then possible to show that

p(η̂∗|η̂) = N (µ, σ2) (15)

where

µ = aTC−1η̂, σ2 = c− aTC−1a. (16)

GPs are typically presented as a way of modelling a static relationship between a set of
inputs and a set of outputs. However, by including the past response of a system in the GP
inputs, they can also be used to replicate the behaviour of dynamical systems. An example
of this method - typically referred to as a GP-NARX modelling - can be found in [10]. Here
it assumed that there is a dynamical relationship between the response of the system and
the model error. To that end, the inputs of the GP are (somewhat arbitrarily) defined such
that they include the two previous measurements of model error and the current excitation
measurement:

xn =







η̈n−2

η̈n−1

ün







. (17)

Such a formulation allows the GP NARX model to make a ‘one step ahead’ prediction, η∗n.
To make long term predictions, the inputs to the GP NARX model must contain its own
previous estimates such that, for example, an input of the form

xn =







η̈∗n−2

η̈∗n−1

ün







(18)
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is required. As η∗n−1
and η∗n−2

are themselves uncertain, such ‘full model’ predictions can,
in some cases, become associated with high levels of uncertainty.

Before the GP can be implemented, one must estimate the hyperparameters θ = {α, β}.
In the current work this was realiesd through maximisation of the log-likelihood function

log p(η̂|θ) =
1

2

(

N log 2π + log |C|+ tTC−1t
)

(19)

(achieved using gradient descent - see [9] for more information).

5 Grey-box modelling

1000 points of time-history were used to train the GP. The grey-box model was then used to
predict a further 4000 points of data. Utilising one step ahead predictions, Figure 4 compares
the prediction of the white-box model with the mean prediction made by the grey-box model.
It is clear that, at both high and low amplitudes, the grey-box model is able to outperform
the white-box model. As the variance of the GP predictions is available (equation (16)), it
is also possible to quantity the uncertainty in one’s predictions of dynamical model error.
Figure 5 shows a close-up of the predictions made by the grey-box model, including 3 σ

confidence bounds. It is clear that the confidence bounds nicely enclose the measured data.
Unfortunately, as predicted in the previous section, full model predictions of model error
led to much higher levels of uncertainty. The authors are currently investigating ways of
mitigating the uncertainties associated with emulating dynamical systems.
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Figure 4: (a) predictions made by the white-box model and (b) average predictions made
by the grey-box model.
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Figure 5: Predictions made by the grey-box model, including 3 σ confidence bounds.

6 Discussion

In this paper, to facilitate the emulation of dynamical model error, it was necessary to in-
clude a certain ‘lag’ in the GP inputs. The amount of lag which is required for the GP
to work effectively is not clear at this stage. For future work the authors intend to use
Automatic Relevance Determination to assess the relative importance of all the elements
contained in the input vector, x. It is hoped that this will give a more thorough insight into
the amount of lag which should be included in the GP inputs.

It is also worth noting that, in the current study, the influence of parameter uncertainties
were not considered - the parameters of the white-box model and the GP hyperparameters
(θ and {α, β} respectively) were held fixed to their most-probable values. This is because,
based on the author’s experience, parametric uncertainty tends to be very small relative
to the uncertainties involved in predicting model error (an observation also noted in [2]).
Typically, if one did want to include parameter uncertainties in the analysis, numerical sam-
pling methods would be need to be used to generate samples from the posterior p(θ, α, β|D)
(where D represents the entire set of experimental data). The authors believe that advanced
Markov chain Monte Carlo (MCMC) methods would be well suited to this task (the merits
of MCMC within the context of structural dynamics are discussed in [11]).

The current paper only shows the ability of the GP NARX to perform accurate one step
ahead predictions of model error. For future work, the authors aim to reduce the uncertain-
ties associated with full model predictions of model error.
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