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ABSTRACT
FACULTY OF NATURAL EARTH SCIENCES

Complexity Science

Thesis for the degree of Doctor of Philosophy

ON THE MOVEMENT BEHAVIOURS OF TROPICAL TUNA IN MODERN
COMMERCIAL FISHERIES
by Joe Scutt Phillips

Exploitation of tropical tunas in the western and central Pacific Ocean
constitutes an industry generating over US$5 billion annually. As concern for
the sustainability of fishing operations grows, there is an increasing need to
explore the potential effects that small-scale movement behaviours, typically
ignored in stock assessment, may have on larger scale population dynamics. In
this thesis, | examine a variety of individual movement behaviours exhibited by
skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye
(Thunnus obesus) tuna in the context of their vulnerability to fishers.

A number of simulation models of potential foraging by tuna in their
environment were developed. Simulations used alternate habitat-utilisation and
prey-field assumptions to test hypotheses regarding emergent behaviour in
tuna, in particular examining vulnerability to habitat-specific fishing gears and
fish aggregation devices (FADs). In conjunction, vertical movement data from
bio-logging experiments on tuna were examined, initially using machine
learning classification, but problems of autocorrelated data, lack of objectivity
and low statistical power suggested that new analytical methods were needed.
In light of this, a new approach to probabilistically classify multivariate bio-
logging time-series, using existing methods of hidden Markov modelling, was
developed.

The method was applied to vertical movement from 75 yellowfin and bigeye
tuna, identifying two clear behavioural states and strong patterns of diurnal
state-switching in both species. Evidence for deepening of deep state
behaviour in bigeye was found, and high levels of behavioural variability
between individuals seen, particularly in the hours following dawn.

The methods developed in this study are an improvement over previous
approaches, being more objective and quantitative, and their suggested
incorporation into standardisation of catch-per-unit-effort and catchability
parameters is discussed. Specifically, they suggest that FADs may not act as
‘ecological traps’ as has previously been hypothesised, and that fluctuations in
the prey field are the likely mechanism behind the high variability seen in
vertical movement behaviours of tropical tuna.
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Definitions and Abbreviations

BET Bigeye Tuna (Thunnus obsesus)
AFAD Anchored Fish Aggregation Device
An abstract value representing the fraction of a
Catchability population that is caught as a result of a given unit
of fishing effort
Catch-per-unit-effort, a measure of catch (usually by
weight) by standard measure of effort. Effort can
CPUE ) :
comprise of a number of alternate metrics, such as
days fishing or number of hooks set.
DFAD Drifting Fish Aggregation Device
FAD Fish Aggregation Device, a fishing gear

Fork Length
FL

A measure of fish size, from the tip of the mouth to
the point of forking in the tail

A school of tuna that is not associated to a floating

Free School object or other structure, but are freely moving
both horizontally and/or vertically
. The local distribution and abundance of species
Prey Field

which constitute prey for oceanic top predators

Recruitment

A form of overfishing in which very high catches of
not-yet-mature fish results in a lack of mature

Overfishing spawning fish in the population at a later time.

SKJ Skipjack Tuna (Katsuwonus pelamis)

WCPEC The .We.stern and Central Pacific Fisheries
Commission

WCPO The Western and Central Pacific Ocean

YFT Yellowfin Tuna (Thunnus albacares)
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Chapter 1: Introduction

1.1 The Exploitation of Tropical Tuna

“Speaking from one of the keepers of the resource, we bring to the
gathering stocks that are in good shape. From time immemorvial, we have
taken our fair share to cater to our needs but we understand the need to
share, not only because of the nutritional value of fish but because over 800
million people starve on this planet every year. These are not faceless people in

distant lands but fellow travellers in time and space.”

- The Honourable Dr Masaso Paunga, Minister for the Kingdom of Tonga,
speaking on tuna stocks in the waters around the island nation of Tonga.
Taken from the minutes of the second Multilateral, High-Level Conference,
Majuro, Republic of the Marshall Islands, 1997.

1.1.1 Tuna and the Pelagic Domain

Long before humans began hunting large pelagic fishes such as tuna to
supply their food requirements, these species had evolved complex behaviours
related to their own hunt for prey. In the three-dimensional realm of the
pelagic domain, ecological concepts such as habitat and resource availability
become increasingly dynamic in their semantics. For the most part an
environment devoid of permanent features, the open ocean never the less
provides transient features across a variety of scales that profoundly influence
the behaviour the animals living within this habitat (Levin 1992). These
transient features include the large-scale movements of bodies of water, meso-
scale eddies and upwelling, and the concentration and availability of schools of
prey in the local vicinity (Benoit-Bird and Au 2004; Lehodey and Maury 2010;
Rykaczewski and Checkley 2008).

The temporal dynamics of these features also vary considerably, from the
scale of hours to entire seasons. In the oligotrophic waters of the tropics, the
food web is a complex interconnected system (Ciannelli, Hjermann, and
Lehodey 2005). Aggregations of prey can form and disperse over short time-
scales and in three-dimensions, creating a prey field which is patchy and

heterogeneous (Arnaud Bertrand et al. 2002). The high-performance
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metabolism of top predators such as tuna and billfish allow high levels of
somatic growth (R. Brill 1996), but this can only realised through successful
hunting and high levels of feeding. Changing search strategies, exploitation of
different layers of water, and identifying patches of prey are likely to play an
important part in lives of these species from the individual through to the

school and populations.

1.1.2 Modern commercial fisheries

Hunting large pelagic predators in the open ocean has always been
considered one of the most challenging pursuits of the fisher. From the
romance of recreational big-game fishing to the necessity of small island
subsistence fishermen, it holds importance not only for food security and
economy but also a cultural significance for many nations (Bell et al. 2009;
Meltzoff and LiPuma 1986). Archaeological records suggest that as far back as
42,000 years ago, communities in Indonesia had begun fabricating the fishing
and maritime tools required to systematically hunt pelagic species such as
tuna (O’Connor, Ono, and Clarkson 2011). Over 150 year ago, fishers from
Japan were already developing sophisticated fishing gears that were designed
to more efficiently target pelagic species specifically, and many of which form
the basis for modern industrial methods (Watson and Kerstetter 2006).
Knowledge of these animals’ behavioural tendencies was clearly present, and
the design of these gears demonstrates just how useful exploiting them was
for communities that relied on food from the ocean (Butler 1982; Maggio
2001).

However, it is the large-scale commercial exploitation of pelagic species
in the present day that creates a more immediate requirement to understand
this ecological system. Modern day tuna fisheries generate many billions of
dollars annually, and operate at the subsistence, national and international
level. The relatively fast growth, global distribution and strong market value of
tuna and tuna-like species has resulted in these fish contributing around 7.5%
to worldwide marine capture fisheries production (FAO 2012). At a large-scale,
this exploitation can be considered as existing within several regions, which
operate across country boundaries and with each nation managing the
resources of its own waters. Contributions to global tropical tuna production

can be broken down as roughly 10% from the Atlantic Ocean, 20% from the
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Indian Ocean, and 70% from the Pacific Ocean. The majority of this catch is
focussed on a small group of tropical tuna species. The four principally
targeted species of tropical tuna are skipjack (Katsuwonus pelamis), yellowfin
(Thunnus albacares), bigeye (Thunnus obesus) and albacore (Thunnus
alalunga). Each fishery, which is defined as a combination of region and
fishing method, targets specific species or size classes, but catch composition
can vary and is often a combination of species (Williams and Terawasi 2012).
Skipjack tuna are the smallest and fastest growing species, while yellowfin and
bigeye are larger and more valuable by weight. Albacore are a mid-sized tuna
that are not the main target of the largest principal fisheries. All four species

are globally distributed in the tropics.

The Western and Central Pacific Fisheries Commission (WCPFC) oversee
the fishing operations in the Western and Central Pacific Ocean (WCPO),
governing an industry that generated over US$5.5 billion in 2011. It is by far
the most productive fishing region for tuna in the world, providing well over
50% of global tuna catch (Williams and Terawasi 2012). In terms of single
species catch, the largest fishery in the region is the purse seine fleet for
skipjack, but very high levels of exploitation are present for all species in both
the purse seine and long-line fisheries. Trolling and pole-and-line also

contribute significant catches in some areas.

The two major fishing techniques of this area are purse seining and
longlining. Purse seining is an active fishing method, whereby schools of tuna
near the surface are sought and enclosed by a large net that is closed at the
bottom by a “purse-string” style arrangement of cables. Skippers search for
schools of tuna near the surface using a variety of strategies, making a
decision on whether to begin the long process of “setting” the net on the
school based on the current behaviour of the fish (Baird 2009). In contrast,
longlining is a passive method of fishing, in which many thousands of baited
or lured hooks are attached to a typically 30km long line strung between
floats. The distance between the floats at the surface determines the depth at
which the hooks hang, targeting the thermal habitat of a particular species
(Bach 2003). In the case of tropical tuna this is often bigeye, although billfish,
opah and oceanic sharks are also targeted (Kitchell et al. 2002). This line is left

for several hours to drift before being reeled in and any caught fish collected.
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The operational logistics, sizes of the areas managed, and scale of
political and economic importance in these fisheries are formidable. Scientific
advice plays a key component in the successful management of pelagic
resources, and as pressure to provide more fish to the growing global
population increases, there is a greater need to understand the dynamics and

mechanisms influencing the catch of these species.

1.1.3 Behaviour and Exploitation

It is in the specifics of these fishing methods that understanding the
movement behaviours of open ocean animals plays an increasingly important
role. While high levels of horizontal movement have the potential to affect the
dynamics of a population, the exploitation of some specific behaviours by
modern day fishers also requires a deeper comprehension of how tropical tuna
utilise their environment both vertically and horizontally. High catches of
smaller size classes are increasingly under scrutiny within some fisheries,
leading to a further need to quantify how changing behaviours over size may
be leading to recruitment overfishing (Morgan 2011). Complex management
across multiple scales is now required to ensure the sustainable exploitation of

these important marine resources (Langley et al. 2009; Pauly et al. 2002).

Scientific advice is a critical input to fisheries management, principally
consisting of stock assessments that provide estimations of abundance and
structure of an exploited population. In the WCPO, this is undertaken using the
population dynamics model MULTIFAN-CL (Fournier, Hampton, and Sibert
1998), which predicts biomass as a state variable for a number of distinct
regions. This model is age-structured, estimated chiefly on fish length-
frequency data sampled from a variety of sources, and represents the best
understanding currently available of the large scale dynamics of tuna species
in the WCPO.

Small-scale movement behaviours are incorporated into this model in two
main areas. Horizontal movement is represented via migration parameters of
biomass exchange between regions, using the data from mark-recapture
tagging experiments as prior information. More than just influencing the
distribution of biomass spatially, this mechanism allows dynamics such as

source or sink regions to emerge and can have a significant influence on the
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conclusions drawn from a stock assessment (Langley, Hoyle, and Hampton
2011).

Small-scale behaviour is also partially incorporated into stock assessment
through catchability parameters. Catchability is defined as the fraction of a
population that is caught as a result of a given unit of fishing effort, for
example per 1000 hooks set in a longline. Catchability is not constant across
age-class, space or time, and as an abstract variable, aims to capture a number
of mechanisms that are important in calculating catch-per-unit-effort (CPUE).
These include the density-dependent effects of fishing from a population,
changes to gear technology and efficiency over time, and vulnerability of the
animals to fishers through behaviour (T. Matsumoto and Bayliff 2011). In
MULTIFAN-CL, catchability is a free parameter constrained only by a temporal
random walk, allowing some flexibility on accounting for different numbers of

fish caught for a given fishing effort year on year (N. Davies et al. 2011).

In addition, certain fisheries exploit very specific behaviours exhibited by
tuna. During the past thirty years, the use of man-made floating objects, or
fish-aggregation devices (FADs), has increased by an order of magnitude.
These floating assemblages appear to attract tuna both horizontally and
vertically for reasons that are not fully understood (Moreno et al. 2007),
allowing more efficient purse seining on fish exhibiting prolonged shallow
water movement around the floating objects. An increased understanding of
the mechanisms and effects of this behaviour is critical: associated-sets across
all fishing gears accounted for over 63% of catches in the WCPO in 2011
(Williams and Terawasi 2012).

1.2 Thesis Outline

1.2.1 Key Areas of Interest

In Modelling Nature, Sharon E. Kingsland (1995) described ecology as the
study of patterns in nature, of how those patterns came to be, and how they
change in space and time. Traditionally, identifying those patterns is referred
to as descriptive ecology, requiring an appropriate data gathering method to

capture and observe the patterns in the system of interest. Understanding how
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such identified patterns change in space and time is undertaken through
analysis, statistical methods and graphical representation. But when it comes
to understanding what drives or shapes these patterns, the tool of the
ecologist has traditionally been manipulative experimentation. That is, a series
of experiments are performed where certain conditions are controlled for, and
the effects on those same patterns observed in the natural system are
examined. For the ecological study of pelagic animals, the difficulty has always
been in conducting this final step (Dagorn, Josse, et al. 2000; Tim Dempster
and Taquet 2005). Appropriate manipulations of the environment are simply
not possible at the scale in which they occur in the true system. Even when
individual tuna have been successfully held in captivity for observation, the
biological conclusions alone must be made with the caveat that the
environment in the ocean may be very different (Farewell 2001). It is unlikely
that the true behavioural patterns of these animals are seen under such

conditions.

However, many in situ experiments and observations have been made of
tropical tuna. Their commercial importance means that a number of potential
sources of data exist for examining movement behaviours at a variety of
scales, despite a lack of historical manipulative experimentation. These data
include historical catch and landings information (Sibert et al. 2006),
observations of catch and aggregation events (Lawson 2011; Moreno et al.
2007), large-scale mark-recapture tagging experiments (Hampton 1997;
WCPFC Tagging Commitee 2007), and electronic archival data tagging
deployments (Schaefer, Fuller, and Block 2007). Some of these data sources
have already been incorporated into the scientific advice at the population level
through migration parameters and catchability estimates (e.g. Davies et al.
2011; Matsumoto and Bayliff 2011), but there remain many difficulties in
informing large-scale and abstract population dynamics models with small- and
individual-scale behavioural data (Dagorn et al. 2001; Freon and Misund 1998;
Sippel et al. 2014).

1.2.2 The Structure of this Thesis

In this thesis, | will examine the way in which movement behaviours are
exhibited by tropical tuna, with particular focus on yellowfin and bigeye tuna’s

vulnerability to exploitation by purse seine and longline fisheries in the WCPO.
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First, | will construct a simple theoretical simulation model of how the
individual- and school-scale behaviours of tuna may have the potential to
significantly impact critical processes such as growth or vulnerability to
fishers. This approach will make a number of assumptions from hypotheses in
the literature that have not presently been validated empirically, but a number
of key areas that influence these impacts will be identified for further study

from the results.

The suite of data available for analysing tuna movement in the WCPO will
then be examined for the potential to quantify some of these key areas of
behaviour. Preliminary characterisation will be undertaken for a number of
these data, before the most pragmatic source is focussed upon for an in-depth

empirical analysis.

A new method for quantitatively and probabilistically classifying
multivariate behavioural time-series will be developed, using further simulation
models and a small subset of real data from tuna to test the approach for
effectiveness. This method will then be applied to a large sample of vertical
movement data from yellowfin and bigeye tuna in the WCPO, examining the

effect of several important factors on the changes seen in behaviour.

Finally, the results of these empirical analyses will be examined in the
context of real fisheries stock assessment and alongside other studies of tuna
movement, describing how these findings can be used to improve our large-
scale understanding of the behaviour of tropical tuna and the influence on

their exploitation.
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Chapter 2: The Behaviour of Pelagic

Predators in Modern Fisheries

2.1 The Pelagic Domain

The pelagic domain is defined as marine or freshwater bodies of open
water that lie between the water’s surface and the earth’s surface, or demersal
domain. The marine pelagic environment constitutes 99% of the Earth's
biosphere volume, and although there are complex vertical constraints to how
much of this three-dimensional area is habitable by pelagic species, it remains
the largest realm on the surface of the planet (Game et al. 2009). The water
column itself is a habitat that is both seemingly featureless yet heterogeneous
in nature. In the open ocean, the dynamic physio-chemical nature of the
current and climate system, and its impact on the timing, distribution and
availability of prey, shapes the movement and ecology of species across
trophic levels (Bost et al. 2009). The water column contains thermal and
current structures that are complex in both space and time (Auster and
Langton 1999; Dagorn et al. 2001), and both biotic and abiotic environmental
variables that are often correlated with the behaviour, distribution and
population dynamics of pelagic predators (Torres, Read, and Halpin 2008).
These variables include sea surface temperature (e.g. Humston et al. 2000),
climate indices (e.g. Rouyer et al. 2008), wind speed (e.g. Cury and Roy 1989),
changes in thermocline depth (e.g. Su et al. 2011), and abundance and
distribution of prey species (e.g. Bertrand, Bard, and Josse 2002). Here, | briefly
summarise some of the key factors linked to the behaviour of top predators in

the tropical Pacific Ocean.

2.1.1 Structure and Production in the Water Column

Although absolute depth can vary from region to region, the pelagic
water column can never the less be divided into a number of distinct zones
(Levinton 1995). The epipelagic layer (also known as the surface layer, mixed
layer, or photic zone) is the first zone underneath the surface. In the tropical
Pacific, it is characterised by being warm and well mixed, with a strong

influence from the sun providing all the primary production in the system. In
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the western “warm-pool” area of the WCPO, the epipelagic layer generally
remains warm and thick year round (Langley, Williams, and Hampton 2008;
Lehodey 2001). In contrast, the central equatorial and eastern Pacific contains
more seasonal upwelling and higher levels of productivity, with a “cold-tongue”
of upwelling that extends through the equatorial region towards the western
warm-pool (Andreasen and Ravelo 1997; Lavin et al. 2006). North and south of
these equatorial regions lie the less productive oligotrophic gyres where

primary production is more nutrient limited (Dufour, Charpy, and Garcia 1999).

The epipelagic layer typically ranges from 100 to 200 metres in depth,
and is bounded by the start of the thermocline, the region across which water
temperature drops considerably (Andreasen and Ravelo 1997). The
thermocline is one of the key features of the pelagic environment, being the
boundary between thermally stratified layers of water, and having properties
which can vary dramatically over short distances (Arnaud Bertrand et al. 2002).
It is caused by differences in water mixing, and in the tropical Pacific shows
strong annual and inter-annual variation in nature (Wang, Wu, and Lukas
2000). The depth, compression and strength of the thermocline has significant
effects on the structure of this habitat and the aggregation of lower and mid-
trophic species in almost all pelagic environments (Bost et al. 2009; Prince and
Goodyear 2006).

The layer of water from around 200-1000m is broadly referred to as the
mesopelagic zone. The upper mesopelagic layer contains the thermocline and
continues to the cooler water immediately below, where a strong depletion of
oxygen also occurs (Lan et al. 2011). This leads to the lower mesopelagic layer
where the effect of sunlight penetrating the water column increasingly
negligible. At 1000m, no sunlight penetrates the water column at all, and this
marks the start of the bathybelagic zone (Levinton 1995). Aside from some
observed isolated dives to very deep depths, this zone appears to hold little
ecological significance to the species of pelagic predators examined in this
thesis (Leroy et al. 2010). A diagram of the pelagic water column is given in

Figure 2.1.
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Figure 2.1 Simple representation of the tropical pelagic water column, with

components of the prey field shown.

2.1.2 Distribution of Biota

When considering the behaviour of top predators, the distribution and
abundance of the species on which they prey must also be considered as a
component of the environment, often referred to as the biotic environment or
“prey field” (Busch and Johnson 2011; Daewel, Peck, and Schrum 2011; Hazen
et al. 2011). In many cases, opportunistic feeding drives the behaviour of top
predators in the tropics (Lander et al. 2011; Lehodey, Murtugudde, and Senina
2010), and so the temporal and spatial nature of the prey field in which these
species live is crucial to understanding their behavioural patterns. Many
oligotrophic regions of the tropics share similar characteristics, where food
webs are generally complex but relatively unproductive compared to less
nutrient limited regions (Ciannelli, Hijermann, and Lehodey 2005). Despite this
relatively low productivity in the open ocean regions of the tropical Pacific,
these waters support a considerable food web which underpins the world’s
largest tuna fishery (Le Borgne et al. 2011). The interacting nature of the

biogeochemical ocean structure and the food web can result in highly complex
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dynamics for top predators that are difficult to predict or study using basic
linear conceptual logic (Rouyer et al. 2008). While at a broad basin-scale the
productivity of tropical waters may be described as fairly homogeneous, in
contrast to other habitats that exhibit highly productive seasonality such as
polar regions (e.g. Dalla Rosa et al. 2008), many tropical waters have local-
scale prey fields which are continually unpredictable and are driven by short-

term dynamics such as storms and eddies (Weimerskirch et al. 2005).

The animals constituting this prey field in the tropical Pacific exhibit
considerable spatial and temporal variation in their abundance and
distribution, although at present this is not well quantified (Le Borgne et al.
2011; Torres, Read, and Halpin 2008). However, both tropical epipelagic and
mesopelagic waters are generally considered to have a non-uniformly
distributed or patchy prey field (Barnett 1984; Humphries et al. 2010), with
prey fields in shallow epipelagic waters being more dispersed within denser
aggregations (Dagorn et al. 2000). In the tropical Pacific the species
composition of the epipelagic prey field is highly varied, with species
assemblages including anchovies (Engraulidae spp.), herrings (Clupidae spp.),
small mackerels and tunas (Scombridae spp.), flying fishes (Exocoetidae spp.),
the juveniles of reef fish species in coastal waters, squids (Loliginidae spp.) and
numerous shrimps and krill species (Euphasidae spp.) (Allain et al. 2007).
Because systematic trawl surveys may not accurately sample the prey field
when species’ distributions are highly patchy (Marchal and Lebourges 1996),
much of the information on the nature of the prey field is inferred from diet
studies on predator species (e.g. Jaquemet, Potier, and Ménard 2011; Ménard
et al. 2000) or stable-isotope analyses (e.g. Graham et al. 2006; Layman et al.
2012). This necessarily introduces biases due to the differences in ecological
niche and foraging behaviours between, not just species, but even different

populations and size classes of many pelagic top predators.

Furthermore, in pelagic waters there exists a diel migration of high
numbers of these organisms from deep, colder mesopelagic layers of the
ocean into the epipelagic layer during the night (Benoit-Bird and Au 2006;
Lehodey, Murtugudde, and Senina 2010). In terms of biomass, it may be the
single largest migration on Earth (Williamson and Sanders 1996), occurring
each and every day. The migration is likely to be an evolutionary adaption to

reduce predation pressure during the day, although many predators have
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coevolved behaviours in response (Dagorn, Menczer, et al. 2000; Lehodey,
Murtugudde, and Senina 2010). While this migration certainly floods the
epipelagic layer with biomass during the night (Hidaka and Takahashi 2003)
there is an even greater uncertainty of the structure and abundance of the
micronekton in these deeper layers (Le Borgne et al. 2011). In the tropical
Pacific their contribution the total biomass of the prey field may never the less
be considerable (Allain et al. 2007; Lehodey, Murtugudde, and Senina 2010),
estimated as being over 2 tonnes/km? in some studies (Gjesaeter and
Kawaguchi 1980; V. Lam and Pauly 2005). The micronekton species
composition in the mesopelagic layer changes from region to region, but in the
tropical Pacific consists of myctophid fishes (Mytophidae spp.), squids, and
oceanic shrimps (Euphausidae spp.) (Hidaka and Takahashi 2003).

2.1.3 Sources of Data on the Biotic and Abiotic Environment

Sophisticated, empirical observations of the abiotic marine environment
have been carried out since the 1870s (Lehodey 2006), and there now exist
many long term time series of abiotic data. However, the vast three-
dimensional size of pelagic habitat, coupled with its dynamic nature, mean
that it is very difficult to make observations in the context of a particular
animal behaviour. This is even more apparent in the collection of data on the
prey field, which is itself dependent on a number of other abiotic

environmental forces (Torres, Read, and Halpin 2008).

At the highest scale, easily accessible but abstract climate indices and
seasonal environmental observations can be compared to ecological data at
similar scales. Measures of fish abundance and distribution have been
correlated to these environmental variables with some success (e.g. Cury and
Roy 1989; Lehodey 2006; Su et al. 2011), although explanation of the causes
for such correlations can be difficult and highly dependent on temporal scale
(Rouyer et al. 2008).

Large-scale oceanographic drivers of behaviour, such as sea surface
temperature, major currents, and chlorophyll, can be measured through
remote sensing (Kerr and Ostrovsky 2003). A number of studies have
correlated this type of data with experiments that observe individual-scale
behaviour (Lander et al. 2011; Luschi, Hays, and Papi 2003), although this
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approach has considerable limitations when used in combination with tracking
data obtained from nekton that occupy a range of depths in the water column,
as geolocation can be subject to considerable uncertainty (Lam, Nielsen, and
Sibert 2008; Lehodey and Maury 2010). At a broader scale, ocean models fitted
to real world data may provide an indication of the environmental context that
could be driving behaviour over similar scales (Lehodey, Senina, and
Murtugudde 2008).

Mid-scale observation of mesoscale features known to relate to the
distribution of the prey field, such as ocean eddies and upwelling filaments, is
also possible using remote sensing and satellite imagery. There is considerable
uncertainty in matching these features to behavioural observations of an
individual or population of animals (Cotté et al. 2011; Tew Kai et al. 2009).
Acoustic surveys allow estimates of abundance, position and depth of
aggregating prey species (e.g. Demer et al. 2011; Gerlotto et al. 2004; Hazen
et al. 2011), and the use of these surveys in combination with tagging or other
behavioural observations provides a more complete picture of the biotic
environmental context of behavior in marine animals (Churnside et al. 2009;

Dagorn et al. 2001; Josse, Bach, and Dagorn 1998).

At the finest scale, archival data-storage tags attached to pelagic animals
usually capture ambient environmental data such as temperature and light-
levels experienced by the individual (e.g. Hoolihan et al. 2011; Musyl et al.
2003; Prince and Goodyear 2006). In cases where prey are large enough to
themselves be tagged, it is also possible to use archival tags to observe the
dynamics of the individuals that make up the prey field (e.g. Davis et al. 2007).
As species such as tuna are believed to be opportunistic predators, their diet is
reflective of relative of abundance of prey in the area, rather than preferred
species (Kirby, Huse, and Lehodey 2003). Some inference of the recent prey
field experienced by an individual fish may therefor be made with diet studies
that examine stomach contents of individual fish (Arnaud Bertrand, Bard, and
Josse 2002; Greenstreet 1998; Rohit, Rao, and Rammohan 2010). Similarly,
stable isotope and microchemistry analysis of biological samples allow some
inference on the recent environmental and trophic history of an individual
(Layman et al. 2012), although a detailed understanding of the background
signal of these elements, or “isoscape”, of the region is required (B. S. Graham
et al. 2010).
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2.2 Foraging Strategies of Top-level Predators

The recent availability of large-scale oceanographic data has meant that
the link between physical ocean processes and phytoplankton production has
now been observed and modelled for many years (Le Quere and Harrison
2005), and has been examined across a variety of systems. By contrast, the
complexities of the phytoplankton-zooplankton relationship are more difficult
to observe and model. End-to-end studies linking spatial and temporal
variation in primary production to the abundance, distribution and behaviour
of top predators that are subject of this thesis, are much more difficult to
conduct (Huse and Fiksen 2010; Megrey et al. 2007; Rijnsdorp et al. 2009;
Rouyer et al. 2008).

Specific foraging capability and behaviour forms a key emergent property
of food webs, even at the zooplankton level (Anderson and Lucas 2008). In
many ecological systems with heterogeneously distributed resources, animals
search and gather around patchy areas that can be small in both space and
time (Bost et al. 2009; Jackson, Holcombe, and Ratnieks 2004; Tew Kai et al.
2009), resulting in emergent population dynamics that can be hard to predict
(Provenza et al. 1998, Grimm 1999, Sinerchia et al. 2011). The movement
behaviours and distribution of animals in such environments are a product of
the underlying dynamics of the prey field (Lander et al. 2011), and when that
prey field exists in three dimensions with dynamics that are not well
understood, it is difficult to interpret the observed movements of a single free-
roaming marine predator (Torres, Read, and Halpin 2008). Furthermore, the
scale at which these behaviours are considered is critical when they are to be
described (Levin 1992). For some animals, at a basin scale, movements may be
focussed on clear foraging grounds or areas, but at the local-scale within these
areas, movements may be highly variable in response to environmental or prey
field dynamics (Pinaud and Weimerskirch 2005).

As an example of changing movement behaviours, it has been observed
that some free-roaming animals change foraging strategies dependent on their
environmental context (Sims et al. 2011), although the limitations of observing
marine animals make behavioural switching hard to validate. For example,
scale-free movements such as Lévy flights have been attributed to the

behavioural time-series of animals as diverse as albatross (Viswanathan and
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Afanasyev 1996), bumblebees (Reynolds et al. 2007) and blue sharks
(Humphries et al. 2010). It has been suggested that these types of search
patterns, typified by small intense movements interspersed with less frequent,
longer displacements, may be an evolved behaviour to more optimally forage
in patchy, heterogeneous environments (Reynolds 2009; Sims et al. 2006),
such as the prey field of the tropical Pacific. Furthermore, foraging animals
may switch to alternative search behaviours, such a simple random-walk,
dependent on the distribution of the prey field currently experienced (Sims et
al. 2011). When animals exhibit quantifiable behavioural switching in response
to the prey field, analyses focused on identifying the discrete behavioural
states could be used to classify movement behaviours and potentially infer the

nature of the underlying prey field.

Two main difficulties emerge when attempting to confirm the presence of
search strategies in free-roaming animals. Firstly, in marine animals, time-
series of movement observations are often restricted to a single, vertical
dimension (e.g. Humphries et al. 2010; Sims et al. 2008). This may ignore
searching of foraging movements through the horizontal component of the
prey field, which is known to be patchy in all three dimensions. This
dimensional bias, combined with a number of sampling and transformation
procedures usually carried out, can lead to erroneous identification of Lévy
flight, or other, behaviour (Codling and Plank 2010; Edwards et al. 2007; Sims,
Righton, and Pitchford 2007). The second problem lies in attributing observed
movement patterns to a particular behavior, such as an active search strategy.
Detailed movement patterns are also observed in a variety of systems,
reflecting solely an emergent pattern from underlying dynamics rather than an
evolved behaviour. Even seemingly complex behaviours such Lévy flights have
been shown to emerge in autonomous gliders attempting to travel in straight
distances across ocean currents (Willis and Merckelbach 2011), simulated
foragers switching between two random walk behavioural states (Simon
Benhamou 2007), and animals that employ simpler movements but reject

previously depleted resource patches (Reynolds 2009).

Although hypotheses have been made about the underlying strategies of
observed foraging behaviours, there have also been a number of theoretical
studies involving simulation models to examine those unobservable but

underlying mechanisms that can cause behaviour to emerge (Dagorn, Josse, et
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al. 2000; Huse and Fiksen 2010; Koehl 1989). The co-evolved vertical foraging
strategies of several open ocean species have been simulated given simple
assumptions about distribution and movement of animals in a patchy three-
dimensional prey field (Dagorn, Menczer, et al. 2000). This individual-based
modelling (IBM) approach resulted in evolved neural-networks that mirrored
some of the behaviours seen in tropical tunas, billfishes and blue shark,
without consideration of any physiological limitations but only the dynamics of

maximising interactions between several predators and a shared prey field.

In contrast, (Humston et al. 2000) used a simple particle model to
describe the foraging of Atlantic bluefin tuna. Although each particle
represents an individual animal, the approach differs from that of an IBM in
that the behaviour is limited to movement responses to an inherent awareness
of preferred conditions. In this case, particles were attracted to the sea surface
temperatures that tuna are observed to aggregate in from aerial surveys. It is
hypothesised that these temperature gradients indicate ocean fronts, which
constitute rich feeding grounds during the summer months. The simulation
results showed very similar distribution patterns to observations, although
with less inter-annual variation, attributed to additional, unknown foraging
factors. However, if tuna are observed to aggregate with a particular thermal
preference at this scale, then it is not surprising that in the absence of other
preferences or processes, this model predicts distribution along temperature
gradients. The effect of the prey field is ignored by not including the mid-
trophic link between temperature-driven regions of production and top
predator behaviour in this model, resulting in a potentially tautological

description of movement and distribution (Kirby 2001).

In all these methods of examining the dynamics of marine top predators,
it is clear that observed movement behaviours are closely linked to the
distribution and dynamics of the three-dimensional prey field (Dagorn et al.
20071; Torres, Read, and Halpin 2008). Even if this prey field itself can not be
observed of measured, it appears critical that any analysis of movement
behaviours in marine top predators must consider the emergence of noise and
patterns as a result of many complex interactions between local sources of

forage, competition with other predators, and searching for the next patch of

prey.
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2.3 Tropical Tuna Behaviour

2.3.1 Physiological drivers

In this thesis, | focus specifically on the tropical tunas of the WCPO. In
particular, | examine the movement behaviours of skipjack (Katsuwonus
pelamis), yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna.

These species are globally distributed across tropical waters.

Although tuna spend their entire lives in constant motion, they cannot be
said to be faster swimmers than the majority of teleost fish, rather their high
performance nature stems from their metabolism (R. Brill 1996). Tropical tunas
are capable of relatively very high levels of somatic and gonadic growth, rates
of digestion and gastric evacuation, and recovery from exertion (Olson and
Mullen 1986). For example, yellowfin tuna can grow to sizes greater than
40kgs by age three (Uchiyama and Struhsaker 1981), and spawn 1-3% of body

mass every one to two days once mature (Schaefer 1996).

Although their physiology requires them to spend the majority of their
time in warm waters, some tropical tuna species also have adaptions allowing
them to spend considerable time foraging in colder and darker layers of the
water column. In particular, both yellowfin and bigeye tuna develop swim
bladders during their juvenile stages (Bertrand, Josse, and Masse 1999;
Magnuson 1973), allowing them to control buoyancy and dive to depths up to
1000m or more (Dagorn, Holland, and Hallier 2006; Schaefer, Fuller, and Block
2009). In addition, tunas are endothermic meaning that they have a physiology
which allows both generation of heat from metabolic activity, and retention of
that heat via counter-current exchange in their arterial system (Graham and
Dickson 2001). Although the ability varies between species, these adaptations
allow tuna to effectively thermoregulate and warm the central nervous system
in water significantly colder than required by their biology. These traits have
likely evolved to enable niche expansion through more effective hunting in
deeper layers of water (Block and Finnerty 1994). Other physical factors, such
as large body sizes and eyes in bigeye tuna, add to this ability to hunt in deep
prey fields through improved thermal inertia and vision, respectively (Schaefer,
Fuller, and Block 2009).
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Tunas are multiple batch-spawners, and for skipjack, yellowfin and
bigeye, spawning can occur more or less constantly throughout the year
(Schaefer 2001). Spawning events are usually nocturnal, and apart from a few
anomalous observations (e.g. Matsumoto, Skillman, and Dizon 1984; Schaefer
and Commission 1998), always occur in surface waters of at least 24°C. These
events do not appear to involve a significant migration or protracted shift in
behaviours, although pre-dusk courting behaviour between similar size males

and females has been observed in captive yellowfin (Margulies et al. 2007).

The energetic demands of constant spawning, high somatic growth and
varying levels of physiological regulation are reflected in high standard
metabolic rates of 250-400mg of oxygen per hour per kilo (R. Brill 1996),
meaning that we might consider foraging, or movement employed to hunt for
prey, to be the most significant behaviour in the life history of tropical tuna. In
the following, | separate and summarise the observed movement behaviours of

tropical tuna as vertical and horizontal.

2.3.2 Vertical movement

Like many diving animals, tropical tunas exhibit strong synchronisation
with the movement of the vertically migrating component of the prey field
(Hays 2003). This vertical movement is assumed to maximise feeding under
the assumptions of optimal foraging and is referred to as vertical habitat-use
(Hoolihan et al. 2011; Luo et al. 2006; Schaefer, Fuller, and Block 2007).
However, between species of tuna these vertical movement behaviours are
diverse and are hypothesised to represent a number of different strategies for
exploiting the prey field whilst avoiding competition with other predators
(Dagorn, Menczer, et al. 2000; Sharp 2001).

During the night, the influx of deeper prey biomass to the shallow
epipelagic layer potentially allows tropical tuna to forage in the warm mixed
layer, although the stomachs of many purse-seine caught fish are found to be
empty at dawn (Hallier and Gaertner 2008; Ménard et al. 2000). The empty
stomach effect may, however, result from association around fish aggregation
devices (see below). During the day, when the prey field is more patchily
distributed both horizontally and vertically, differences in foraging behaviour

between species become more apparent. Skipjack tuna lack the swim bladder
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and body size necessary to exploit deep prey, although they have been
observed to make isolated deep dives (Schaefer, Fuller, and Block 2009), and
typically spend the day-time limited to the deepest parts of the epipelagic
mixed layer. Yellowfin have more varied behaviour during the day, often
spending considerable time within the thermocline and upper mesopelagic
layer, but rarely spending continuous periods of time in deep cold water.
Bigeye exhibit a wide range of behaviours during the day-time but adults often
spend much of the day-time in the cold waters of mesopelagic layer, returning
regularly but briefly to the epipelagic zone to thermoregulate (Schaefer, Fuller,
and Block 2009).

Qualitative descriptions of tuna diving behaviour have been attributed to
data from archival tags in many previous studies. These behavioural patterns
are often divided and classified into a number of qualitative groups. A common
behavioural pattern in tropical tuna has been defined as time spent deep in
cold water, past a particular isotherm that represents the thermocline, with
periodic trips back to the surface, also referred to ‘characteristic’, U-shaped,
non-associative, or type | behaviour. In contrast, shallow movements within
and above the thermocline are referred to as ‘restricted’, associative, or type Il
behaviour (Leroy et al. 2010; Matsumoto, Kitagawa, and Kimura 2013a3;
Schaefer, Fuller, and Block 2007; Schaefer and Fuller 2005). Depending on the
temporal scale examined, less common patterns are also sometimes identified
(Humphries et al. 2010; Matsumoto, Kitagawa, and Kimura 2013b; Schaefer,
Fuller, and Block 2009). While at the finest resolution movement through the
water column can be highly variable from individual to individual, certain
behavioural patterns are common to all tropical tuna, and can persist from just

a few hours to an entire 12-hour diel period or longer.

2.3.3 Horizontal movement

Although tropical tuna are classed as highly migratory species in many
assessments, the movement of most individual fish has been observed to be
fairly limited (Sibert and Hampton 2003), and it may be more appropriate to
consider these species as random wanderers that are capable of occasional
large scale horizontal movements. The scale of horizontal movement in
tropical tuna is highly variable (Leroy et al. 2013), with some individuals

moving many degrees of both latitude and longitude within suitable habitat
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(Block et al. 2011). Conversely, many individuals also exhibit fairly strong
fidelity to the location of their release after tagging (Schaefer, Fuller, and Block
2007; Sibert and Hampton 2003), and schools of yellowfin have been observed
to remain in shallow coastal waters around islands in the Pacific warm-pool for
many months at a time (B. Leroy pers comms). Some consistent west to east
movements have been observed in bigeye tuna in the Eastern Pacific, alongside
considerable mixing between regions (Schaefer et al. 2015). Whether this is a
regular or seasonal phenomenon is not known. Aggregation at horizontally
occurring ocean features such as frontal zones, upwelling filaments and
mesoscale eddies also occurs (Bestley et al. 2008; Cotté et al. 2011;
Rykaczewski and Checkley 2008). Given the influence of the heterogeneous
prey field on the movement behaviours of these species, it may be likely that
there does not exist one a single migration or other classification of horizontal
movement for tropical tuna. Rather, regional populations of fish are likely to
reside or migrate in certain areas in response to the prey field dynamics

around that location.

2.3.4 Sources of data on the movement of tropical tuna

The chief way of observing individual tuna movement is through the use
of surgically implanted archival data storage tags which must be recovered by
fishers (e.g. Schaefer et al. 2007), or satellite tags that detach after a period of
time and transmit data to the Argos satellite network (e.g. Wilson et al. 2005).
These tags store information about the movement of animals, usually in the
form of high-resolution depth and temperature recordings and less accurate
longitude/latitude estimations made from light levels and length of day.
Surgically implanted acoustic tags can also provide movement information
within the radius of a fixed receiver station that registers the sonic pings
emitted from each individual tag (e.g. Josse et al. 1998, Leroy et al. 2010),

usually around Tkm.

The depth and temperature information from archival tags provide a
means to identify how marine animals utilise their vertical habitat through
their movement behaviours. Such data allow functional and numerical
relationships between species behaviour and the environment to be quantified
(e.g Mori & Boyd 2004; Block 2005; Evans et al. 2013), and are increasingly

used in ecosystem and population dynamics models for those species
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providing important economic or cultural ecosystem services (Choquenot and
Forsyth 2013; Lehodey, Senina, and Murtugudde 2008; Maury 2010; McLane et
al. 2011). However, the integrated assessment models that form the basis for
tropical tuna stock assessment in the WCPO have developed somewhat
separately from analyses of archival data, and do not currently incorporate

their information into parameter estimation (Sipell et al. 2014).

In addition to observations of depth and temperature, many modern
electronic tags also record at-depth light levels, which can be used to estimate
horizontal movements through daylight-based geolocation. Because an
individual tuna is constantly moving to different depths in the water column,
these light levels must be corrected to estimate the true light level at the
surface (Ekstrom 2004). Once the length of day is determined from these light
curves, an estimate of longitude and latitude can be made to provide a track of
horizontal movement with associated confidence intervals. In addition, the
observed sea surface temperatures from the region can be used to further
constrain the possible movements given the water temperatures recorded by
the tag (Lam, Nielsen, and Sibert 2008). These kinds of geolocation techniques
can prove very effective for examining the horizontal movements of marine
animals where individuals undertake large migrations across the ocean, or
cross boundaries between regions with distinct environmental profiles (e.g.
Block et al. 2011).

While light-based geolocation has great potential for examining
horizontal movement behaviours from archival tagging experiments, in
tropical tuna at liberty in the WCPO two key issues prevent its robust use.
Firstly, for these species the estimated surface light curves are often very poor.
This is due to a combination of the prevalent high amplitude movements
through the dive profile during the day-time for these animals, and the lack of
seasonal change in length of the day near the equator (Lehodey and Maury
2010). Secondly, there is a lack of strong temperature gradients for many
regions in the WCPO resulting in little further gains to be made from including
sea surface temperature constraints on the geolocation estimates.
Subsequently, the uncertainty associated with estimations of horizontal
movement for tropical tuna can be very large (Lam, Nielsen, and Sibert 2008).

Although broad movement patterns may be examined with some confidence,
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these same patterns are captured in greater number, and at less expense, in

mark-recapture tagging experiments.

Conventional mark-recapture dart tags have been used more broadly, and
at considerably lower expensive, to examine larger scale horizontal
movements of tropical tuna (Hampton 1997; Hoyle et al. 2014; Kolody and
Hoyle 2013), as well as to estimate other biological parameters such as fishing
and natural mortality. In the WCPO, tags are released on all three commercial
species of tropical tuna, and data on the size of fish, location and behaviour of
the school when tagged is captured at the time of release (WCPFC Tagging
Commitee 2007). For a subset of the returned tags, those fishers who caught

the tagged fish record the same information.

Unfortunately, there exists a large amount of bias in this dataset,
including effects from the tagging process itself (Hoyle et al. 2014),
inconsistent rates of return (Hampton 1997), recovery of tags from different
stages of fishing-market process, and quality of data associated with tag
returns (Leroy et al. 2013). Essentially, this tagging method provides only two
location points, one accurate at release, and another biased at point of capture
by fishers. Data from conventional tagging experiments are used in many
different types of analyses to examine broad scale patterns of populations (for
a review, see Pine et al. 2003). Mark-recapture analyses generally make the
assumptions that tagged individuals are representative of other non-tagged
individuals within the same school, the probability of capture of the tagged
individual is the same as that of a non-tagged individual (within a region and
time-frame), and that tag losses from shedding or non-reporting are negligible
or understood (Leroy et al. 2013). Stand-alone analyses using mark-recapture
tag data from tropical tuna include the examination of general migrations or
source-sink type dynamics (e.g. Schaefer and Fuller 2005; Schaefer et al.
2015), growth and mortality rates (e.g. Hallier, Stequert, and Maury 2005;
Hoyle et al. 2014) or examine mixing rates of schools and populations (e.g.
Kolody and Hoyle 2013). Mark-recapture data are also typically used to inform
the estimation of the migration parameters between regions of age-structured
biomass state variables within stock assessment models (Fournier, Hampton,
and Sibert 1998; Hoyle et al. 2011), although the temporally and spatially
sporadic nature of the tagging programmes prevents the synchronisation of

this data with more regularly collected data such as catch.
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2.4 Tropical Tuna Fisheries in the Western and Central

Pacific Ocean

2.4.1 Economic Importance

At the turn of the millennium, pelagic species such as tunas and
mackerels accounted for almost a third of estimated marine catch globally
(Pauly et al. 2002), and the conservation status of several of these species are
considered as threatened in recent assessments (Collette et al. 2011). Tropical
tuna in the WCPO have suffered substantial impacts to abundance from fishing
pressure, despite no observable shift in trophic level, and over 2.2 million
tonnes were landed from this region alone in the year 2011 (Sibert et al. 2006;
Williams and Terawasi 2012). Several recent stock assessments suggest that
the bigeye tuna population is currently being overfished in the region (Davies
et al. 2011; Harley et al. 2009), with concern that other species may be
approaching maximum sustainable yield (Langley, Hoyle, and Hampton 2011).
The importance of these species to small-island developing states is
considerable, where they provide coastal subsistence fisheries, offshore
exploitation and third-party licensing income from foreign, industrial fleets
(Bell et al. 2009).

In the Western-Central Pacific region, industrial purse-seine fisheries
accounts for over 70% of total catch, with longlining and poll-and-line gears
accounting for around 10% each, and the remainder taken by artisanal fisheries
(Langley, Williams, and Hampton 2008). The economic input into the region
and fishing companies is considerable, with the purse seine and longline tuna
catch alone estimated to have delivered around US$4,800 million in 2011
(Williams and Terawasi 2012).

2.4.2 History

Prior to the 1980s, the majority of commercial fishing effort in the WCPO
came from longline fleets targeting yellowfin and bigeye in Micronesian
countries, the majority of which were Japanese, Taiwanese and Korean distant-
water vessels. The start of the 1980s marked the development of purse seine
fleets which now account for the majority of the catch in the region, made up

of around 70% skipjack and 15-30% yellowfin (Langley et al. 2009). In contrast,

24



Tuna Movement Behaviours Chapter 2

longline vessels began increasing effort and targeting bigeye from the mid-
1980s through 90s and keeping catches of yellowfin fairly stable (Leroy et al.
2012).

With the expansion of the purse seine fleet, improving the chances of
encountering schools within the open ocean became an attractive goal for
fishers. During the first two decades of the purse-seine fishery, the use of
drifting and anchored Fish Aggregation Devices (FADs) by commercial fishing
fleets targeting tropical tuna species increased steadily (Tim Dempster and
Taquet 2005; Floyd and Pauly 1984; Guillotreau et al. 2011), replacing the
effort made on sets that had previously been around natural floating objects.
FADs are man-made devices that vary in design, but generally consist of a
collection of floating objects tied together and either moored to the sea floor
or left to drift in the open ocean. An immense variety of fauna are known to
aggregate or associate under and within floating objects, with tropical tuna
showing particularly striking behaviour, appearing attracted to these objects

via processes, and for reasons, that are not fully understood (see below).

The present day fishery in the WCPO is dominated by the purse seine
fleet, constituting around one third domestic Pacific island nation vessels and
the rest made up of distant water vessels from third party nations (Williams
and Terawasi 2012). These fleets include many sophisticated vessels, each
capable of deploying hundreds of drifting FADs equipped with GPS tracking
and acoustic echo-sounding devices (Hampton 2010; Morgan 2011). East of
160°E, purse seine effort is predominately focussed on sets of associated fish,
with effort in the warm-pool more mixed between unassociated, or “free-
school”, sets. However, effort changes in response to environmental condition,
with strong El Nifio events shifting effort towards natural floating object sets
due to the natural increase in floating debris experienced in these years (Leroy
et al. 2012).

2.4.3 Associated Sets and FADs

Purse-seine sets on FADs, or associated sets as the are known, are a more
cost effective method than searching for free-schooling tuna for many skippers
and fishing companies. Fishers have exploited the behaviour of tuna around

floating objects since the 17th century, but fisheries that use these techniques
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at an industrial scale impact the marine ecosystem in a number of ways
(Bromhead, Foster, and Attard 2003). First, it is clear that the use of purse
seining around FADs increases the levels of bycatch of species that also
associate with floating objects, which include non-commercial fish species, sea
turtles and marine mammals (Filmalter and Dagorn 2011). There are also the
polluting and “ghost-fishing” implications of FADs that are not successfully
recovered from the ocean (Nakashima and Matsuoka 2005). There are also
strong indications that FADs exert a greater influence over juveniles and
smaller individuals than large adults (Leroy et al. 2012), altering the species
composition in catches, and potentially resulting in recruitment overfishing by
fleets that prefer high probabilities of smaller, less valuable catches (Morgan
2011; Squires and Kirkley 1999). These effects are not only confined to the
industrial fleets using drifting FADs, but also to other fisheries that utilise
anchored devices in coastal areas. The majority of these coastal fisheries have
direct bearing on the food security of those people living in Pacific Island
nations. These food requirements are increasing, and one way of diversifying
the need for protein that is being promoted is to expand these coastal
communities ability to benefit from their pelagic resources (Bell et al. 2009;
Packard 2009). Near-shore anchored FADs are one of the most cost-effective

methods of achieving this.

2.4.4 Sources of data for fisheries activity and catch

The commercial importance of tropical tuna means that there are a
variety of data collected from the many monitoring programmes associated
with industrial fisheries. Although the scope and quality of such programmes
vary from fishery to fishery, in the WCPO a number of data sources exist that
are regularly used in scientific advice and stock assessment (Williams 2013),

and which may also reflect movement behaviours at broad scales.

While not a direct observation of behaviour, catch information never the
less provides an indication of where, when and in what numbers fish are
caught. Collecting fisheries-independent catch data via specific scientific
surveys is not feasible for tropical tuna in the pacific, due to the size and
distribution of the species involved, and so measuring catch from the landings
of real fisheries is a rich and heavily used source of data. In the WCPO, the

nature and quality of data varies considerably over time. Operational data, that
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is, information on vessel activity compiled by skippers themselves, has been
available for varying periods of time for each fleet. Similarly, landings and port
sampling programmes have existed in various forms across the region
(Williams 2013), but are usually country specific. Since 1993, there has been
partial observer coverage of the purse-seine fleet, with full coverage since
2010. Observer data is highly detailed, describing not simply the times and
places fished, but also information on the composition and size of the catch,
the behaviour of the school at time of setting, and even when fishing events

result in no catch.

Using observer data, it is possible to view the times of days when the
majority of purse seine sets are made (Figure 2.2). Fishing with purse seines is
not possible during the night, but it is clear that the majority of sets made on
floating objects occur at dawn. Associated sets, which are the largest
component of the purse seine fishery, are usually made during the hours
around and just after dawn, suggesting that FADs may have a more powerful
aggregating effect around this time (Dagorn, Josse, et al. 2000; Fréon and
Dagorn 2000). In contrast, sets on free schooling and megafauna- or natural
log-associated tuna occur relatively equally throughout the day as fishers

opportunistically spot these vulnerable schools near the surface.
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Proportion of observed Activities by School Association, 1993-2012
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Figure 2.2 All WCPO purse seine setting activities recorded during observer programme from 1993-2012, by time of day. Activities
are divided into sets on free schools, natural floating objects (log), drifting FADs, anchored FADs, and megafauna-

associated schools.
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A major issue with drawing conclusions about true tuna behaviour from
fishery-dependent data is that there are many inherent biases. Although there
exists observer bias in some of the more specific information collected by
purse seine observers, such as the samples of fish chosen for size measuring
(e.g. Lawson 2011), the fundamental issue is that these data are biased by the
fisheries themselves. Effort is targeted in regions and on species that provide
the most economic gain, and so any analyses will not provide a true indication
of the underlying dynamics of tuna movement behaviours. As an example,
contrary to the time of day sets shown above tuna may be only slight less
attracted to floating objects during the period 6am-8am than at dawn, but
because it is more efficient to set at dawn, the relative difference between the

two times is not represented in the data.

2.4.5 Fisheries management and scientific advice

Governance and management of pelagic resources in the Pacific has
consisted of a number of national, sub-regional and regional bodies (Langley et
al. 2009). One of these bodies is the Forum Fisheries Agency, formed in 1979
by Pacific island countries to limit vessel numbers across nations and which
now coordinates the participation of these countries in the processes and
decisions of the region. Management protocols and catch recommendations
are now provided by the Western and Central Pacific Fisheries Commission
(WCPFC), which was formed in 2005 to combine a number of pre-existing

scientific and management arrangements.

Principally, scientific advice is provided through regular species-specific
stock assessment reports (e.g. Harley et al. 2009; Langley, Hoyle, and
Hampton 2011), which have been conducted for over ten years using an age-
structured, single species population dynamics model, MULTIFAN-CL (Fournier,
Hampton, and Sibert 1998). This model is spatially structured into six large
regions covering the WCPO, and is referred to as an integrated model as it is
parameterised using a variety of data sources including bias-corrected port
sampling, catch-per-unit-effort analyses, and movement rates from mark-
recapture tagging experiments. MULTIFAN-CL assessments are subject to

constant improvements, alongside the comparison to new and alternative
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population dynamics models. The purpose of all these assessment models is
principally to estimate stock status, but supplementary analyses including
forecasts of tuna responses to future climate scenarios (e.g. Dueri, Bopp, and
Maury 2014; Patrick Lehodey et al. 2013) and analyses of fisheries

management options (e.g. Sibert et al. 2012) are also regularly undertaken.

One such alternative model that has been developed is the Spatial
Ecosystem and Population Dynamics Model (SEAPODYM) (Lehodey, Senina, and
Murtugudde 2008), a version of which has been developed for skipjack tuna
(Senina, Sibert, and Lehodey 2008). SEAPODYM follows an Advection-Diffusion-
Reaction Model (ADRM) approach, representing the movement of physical
guantities by a combination of diffusive distribution of density and directed
advection based on terms that define gradients for the diffusion. These terms
can be driven by dynamic sea surface temperatures, defined migration routes,
or a combination of any other temporally or spatially appropriate process.
SEAPODYM can be coupled to physical-biogeochemical ocean models, allowing
varying environmental drivers to be used for prediction and climate change
scenarios, and can utilise a mid-trophic sub-model which provides simulations
of tuna prey distribution and the broad scale prey field (Lehodey, Murtugudde,
and Senina 2010). Optimisation of the many parameters in this model is on
going, but it is difficult to compare simulation output to any real life
observations because they simply do not exist at this scale. Subsequently,

assessing the accuracy of this model is non-trivial.

However, the purpose of SEAPODYM is to investigate the impact of
different fishing management scenarios on stock abundance and spatial
distribution, and represents an alternative assessment method to those
currently undertaken in MULTIFAN_CL. ADRMs appear suitable for simulating
population dynamics at larger spatial and temporal scales, because they allow
multiple levels of recruitment, production and prey to be modelled over many
underlying environmental projections. By incorporating the key environmental
drivers of behaviour, this approach improves on many other models of pelagic

predators at this scale. Critically, it allows the prey field itself to be simulated.

However, the underlying parameterisations and mathematical functions
still make assumptions about the low trophic level interactions, and these

approaches have been criticised for having little biological meaning and simply
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replicating observed variation without modelling processes (Kirby 2001). The
parameter space of the model is so large that, aside from undertaking
sensitivity analyses of key parameters, it is difficult to examine the mechanics

that lead to the dynamics of the simulated output.

At present, these stock assessment models principally use large- and
mid-scale data sources for parameterisation, such as rates or size of catch and
broad movements from mark-recapture tagging experiments. Necessarily, such
models are most successful at predicting tuna dynamics at similarly large
scales. However, the collection of small- and individual-scale behaviour has
largely developed independently from stock assessment models, with little
formal incorporation into stock assessment and scientific advice (Sippel et al.
2014). In this thesis | will examine this issue with specific focus on individual-

scale movement behaviours.

2.5 Linking Small-scale Movement Behaviours to

Fisheries

The study of behavioural ecology presents a number of significant
challenges, particularly in the case of free-roaming marine animals such as
tropical tuna that cannot be directly observed. Indeed, there remain many
aspects of the behaviour of these animals that are not well understood,
including changes in vertical behaviour associated with biological factors,
differences in location, and exposure to fishing gears. Assumptions about the
vulnerability and catchability of these fish to fishers, thermal-habitat
preference, and how these differ across regions, are important components in
the stock assessment models described above. Understanding the individual
and school movement behaviours of tropical tuna, whilst perhaps not
traditionally considered when assessing commercial fish stocks, may now be

an important factor (Sippel et al. 2014).

Of the links between tuna movement behaviours and vulnerability to
fishers considered in this literature review, one of the most obvious is the
exploitation of associative behaviours by purse seine fleets deploying FADs.

These fleets deploy man-made floating objects in such number that there are
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now many thousands in use at any one time (Moreno et al. 2007). The
uncertainty associated with movement both around FADs and in free-
swimming schools is critical, as this behaviour is key to understanding such
fish-fishery interactions, as well as how to best mitigate bycatch of other
species. Although the position of some anchored FADs is known, and certain
areas are known to have more or less purse seining effort and therefore FAD
use, the exact temporal and spatial densities of sets made on drifting FADs or
natural logs is unclear (ISSF 2012). Modern industrial vessels use radio
beacons to track FADs set adrift, and echo sounders attached to the
assemblage are employed for sonar observations of the tuna aggregations
before net setting. However, at present this information is not publicly

available for analysis.

A number of phenomena are known to occur as part of the aggregation
of animals around FADs. After deployment in the water and a period of
“colonisation”, FADs begin to attract and retain tuna segregated into distinct
schools of different species or size classes. While there are many uncertain
processes that operate in this attraction and retention of tropical tuna, there
are also a number of behaviours that are clearly and consistently observed
through tagging, acoustic surveys and fishers' experiences (Bertrand, Bard, and
Josse 2002; Leroy et al. 2010; Moreno et al. 2007).

In particular, tuna appear to actively target FADs in their horizontal
movement, and may be capable of sensing these devices from up to 11km
away (Girard, Benhamou, and Dagorn 2004). The sensory mechanism used to
locate and orientate towards FADs is unknown, but is unlikely to be chemically
driven (Dempster and Kingsford 2003). It has been hypothesised that low-
frequency sounds from the anchor chain of moored FADs may help fish to
orientate towards them (Leroy et al. 2012), but the sphere of influence for
drifting FADs is considered to have a similar range in anecdotal evidence
(Moreno et al. 2007). Sound from around an anchored FAD has been
characterised as strongest at dusk and during the night, and potentially
audible to fish species up to Tkm away (Ghazali et al. 2013). It may be that
sound and vibration still play an important role in attracting tuna, both from
the device itself and the aggregation of other species nearby, creating a

positive feedback on colonisation and effectiveness at attracting fish.
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There are also apparent patterns in the foraging of FAD-attracted
individuals. Stomach contents of FAD-associated tuna are often less full than
their free-swimming counterparts (Hallier and Gaertner 2008). There may be
considerable differences in foraging impacts between anchored and drifting
FADs, with drifting devices correlated to higher frequencies of empty stomachs
(Jaquemet, Potier, and Ménard 2011). Inconsistent changes to the diet
composition in FAD-associated fish have also been observed, when compared
with opportunistic, free-swimming schools (Buckley and Miller 1994; Graham et
al. 2006; Ménard et al. 2000).

Several hypotheses have been made to explain the striking behaviour of
tuna around FADs. Three of the most acknowledged from Fréon and Dagorn

(2000) and Leroy et al. (2012) are summarised here:

Concentration of food: As a large number smaller fish species are known
to aggregate around FADs, it has been suggested that floating objects
concentrate individuals of prey species on which larger fish can feed. Whilst
the search for food is likely to be a driving factor in attracting tuna to FADs,
there is no evidence to suggest that sufficient biomass exist at these sites to
support an average of 20-40, and some times many more, tonnes of schooling

tuna at any one time.

Meeting point. This hypothesis assumes that in the pelagic realm there
are very few physical structures, and those that do exist (such as floating
objects, islands or seamounts), are used as spatial reference points to increase
encounter rates between isolated schools or individuals. These encounters
serve to gather fish together to optimum school sizes, and so benefit from the
evolutionary advantages of schooling through increased hunting success,
genetic diversity, and protection from predators (Parrish 1993; Parrish 1991).
This suggests that a positive feedback exists between individuals around FADs,
and would explain the 'warm-up' period that is required before tuna begin to
aggregate around devices for any extended period. There has been some
theoretical (Dagorn and Fréon 1999) and experimental (Soria et al. 2009)

evidence to support this process.

Indicator-log: Over evolutionary timescales, the types of naturally
occurring floating objects that tuna would have evolved behavioural

associations with would have been floating logs, branches, and drifting
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collections of algae. These objects would have been carried by currents over
potentially large distances, eventually aggregating in frontal zones, eddies or
upwelling filaments, which are often highly productive areas that can generate
and support a high biomass of zooplankton and zooplanktivorous species.
This hypothesis assumes that tuna have evolved such an association between
these objects and the productive areas that they naturally inhabit, and so
whilst the floating objects are not productive themselves, for tuna species they
are synonymous with rich patches of ocean. Under this assumption, FADs alter
the perception of the prey field by tuna. If true, man-made FADs placed in
prey-poor areas may indeed operate as ecological traps (Dagorn et al. 2013;
Hallier and Gaertner 2008), retaining tuna in areas that they erroneously
associate with high levels of prey biomass. Examining the in situ perception of
the prey field by a school of tuna in the open ocean is not easy however,

making this hypothesis difficult to test.

Clearly, whatever the mechanism behind their attraction to FADs, these
devices have the potential to become ecological traps for tropical tuna, but
because the processes behind the attraction and association of these species
are so unclear, the extent to which this has implications for populations is not
an easy question to answer (Dagorn, Holland, and Filmalter 2010; Dagorn et al.
2013). Whether FADs truly are retaining tuna near the surface for long periods
before they are caught, or altering significant horizontal displacements that
would otherwise occur are critical areas for research. In particular, whether
these dynamics are different across species, size or region are important from
the point of view of scientific advice given to regional fisheries management

organisations.

Although FAD-association is a pressing issue in the study of tropical tuna
behaviour, improving our understanding of individual movement behaviour is
also related to fisheries management in more fundamental ways. The
relationship between one of the relative index of abundance commonly used in
stock assessment, catch-per-unit-effort (CPUE), and the effect of the local
environment and prey field may be much more complex than previously
assumed (Arnaud Bertrand, Bard, and Josse 2002; T. Matsumoto and Bayliff
2011; Maunder et al. 2006). Depth distributions of tuna are clearly linked to
the vulnerability and exposure of fish to the separate gear-types (Bigelow,

Hampton, and Miyabe 2002), and understanding how these may differ across
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species, size and region may inform the use of these CPUE indices before they

are incorporated in an integrated assessment model.

Fluctuations in historical CPUE can be incorporated into model estimation
using the assumption of catchability, or the proportion of the population that
is caught from one unit of fishing effort. Catchability is not constant across
species, sizes, regions, gears or time, and as such raw CPUE alone cannot be
used assess the status of a population (Hampton et al. 2005). A commonly
applied method to cope with these factors is to standardise CPUE indices by
modelling them in response to the regions, times and fleets that are believed
to drive significantly different catchability levels (Maunder et al. 2006). In
MULTIFAN-CL, a freely estimated catchability then accounts for further
unexplained changes in CPUE. However, with an integrated approach to
assessing populations, new insights into the specific behaviours of tropical
tuna across these factors could be incorporated through CPUE standardization

or informing the prior distributions of estimated model parameters.

Improving our understanding of vertical habitat-use clearly has
implications for the scientific advice provided in the management of industrial
fisheries. In this literature review | have detailed the problems involved in
describing observed behavioural patterns objectively, correctly attributing
changes in these patterns to appropriate stimuli, and incorporating movement

data into modern stock assessments.

As a pressing example in fisheries management, it is clear that FAD’s
alter a number of behaviours in tropical tuna, but it is non-trivial to incorporate
poorly understood local scale behaviours into large population dynamics
models. The most important effects are assumed to be captured through the
use of catch data incorporated at a large spatial scale through estimations of
CPUE and size-specific catch. Future predictions are made at the same scale:
current biomass and the theoretical, ‘unexploited’ biomass are predicted
under a sweep of varying parameters. However, the widespread, and in some
areas very dense, use of FADs in the WCPO may have effects on some
parameter estimates that may suggest a re-examination of the assumption that

these effects are captured through catch data.
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2.5.1 Questions Asked in this Thesis

Although there are large gaps in the current understanding of movement
behaviours in tropical tuna, there are a number of critical questions that are in
place to be examined, given the large amount of data available across a variety
of temporal, spatial and ecological scales. This thesis will examine the
individual-scale movement behaviours of two species of tropical tuna: yellowfin
and bigeye, which are ecologically and economically important species in the
modern day fisheries of the WCPO. | will use a combination of theoretical
simulations and new empirical analysis techniques to classify and quantify
these behaviours at the individual and school scale, in the context of

understanding their potential impacts to larger population dynamics.
Specifically, | will examine the following questions:

1. How are the movement behaviours of tropical tuna best explored and

described in the context of interaction with fisheries?

This literature review has shown that the behaviour of these commercially
important species can be examined and described at a number of different
scales, from basin and species-level distributions down to the individual
interaction between predator and prey. My thesis will focus on the behaviour
towards the latter scale, but other data and information will be used if
appropriate. For example, a wide variety of dynamics are observed in tuna
catches, particularly for associated sets in the purse-seine fleet. Given the
potential importance of the interaction between individual tuna, the prey field
and FADs, examining which broad behaviours may significantly influence the

impact of FADs and exposure to fishing gears should be explored.

Sources of data on individual-scale tuna movement are varied in scale and
detail, and so these observed behavioural patterns must be quantitatively and
objectively classified. Given the qualitative nature of previous movement
behaviour classifications, a more robust approach to describing these data is
needed before they can be incorporated into any kind of current stock
assessment model or scientific advice. Potential methods that appropriately
describe the individual-scale movement data from tropical tuna will be
assessed, tested and developed where needed. The aim will be to identify the

most appropriate movement patterns, temporal scale and quantitative
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methodology that should be used to describe the behaviour of these species of

tropical tuna.
2. What causes changes to these behaviours?

Once an approach to the description of these behaviours has been found,
their dynamics in the context of interactions with, and vulnerability to, fishers
needs to be explored. Stock assessment models are species-specific, and age
or length, and usually spatially, structured. A full analysis of movement
behaviour will need to examine as many individuals as possible across these
different factors. Not only may there be significant differences in behaviour
across biological and spatial factors, but potential changes that occur during
time-at-liberty and growth should also be identified. Changes in behaviour
around known or assumed periods of association with fish aggregation devices

will also be examined in a more quantitative manner than previous studies.

3. What are the likely implications of these findings on the small-scale
movement behaviours of tropical tuna to their larger-scale population

dynamics?

Once critical small-scale movement behaviours and dynamics have been
identified and objectively classified, the likely mechanisms and pathways by
which they may scale up to affect our understanding of tropical tuna at the
larger scale of fisheries must be explored. Given the observed changes to the
nature and dynamics of behaviours and the fisheries-specific analyses
undertaken in the thesis, the wider implications scientific advice will be
discussed and the ways in which quantitative descriptions of movement data

can be incorporated in stock assessment components suggested.

In the following chapter, | will begin examining question one and two by
using an individual-based modelling approach to test simple hypotheses
regarding the perception of FADs by tuna schools. The vertical behaviour of
artificial tuna and nature of the prey field will be altered, and the emergent

effects on vulnerability to fishing will be quantified.
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Chapter 3: A Theoretical Patch of Ocean

3.1 Introduction

In Chapter Two, a broad range of mechanisms and drivers responsible for
the movement behaviours of pelagic species was discussed in a fisheries
context. One of the key barriers that have been problematic in furthering our
understanding of the dynamics of the fisheries-fish behaviour connection is the
large size of the three-dimensional area over which they operate. Practically, it
is not possible to control mesocosm environments of the appropriate scale to

the degree required for true manipulative experimentation.

Empirical observations in natural systems have provided an invaluable
way of exploring hypotheses concerned with controls on the behaviour of large
pelagic animals (Abascal et al. 2011; Taquet et al. 2007; Tinker et al. 2007).
However, due to the limitations in matching together the environmental and
prey field context alongside individual behaviour for each observation, such
hypothesis testing is severely limited (Dagorn et al. 2001). In these
circumstances, thought-experiments can be useful tools in the formation of
hypotheses to be tested with empirical data from natural experiments,
suggesting the possible mechanisms that may or may not be responsible for

the patterns observed in the real system (Bélisle 2005; Wilkinson 2003).

A recent form of thought experiment, simulation modelling, has been
used to explore hypotheses within artificial and theoretical substrates.
Although simulations have been used to demonstrate potential system
dynamics for many years (e.g. Schelling 1971), now computing power and high
level programming languages allow such thought-experiments to be easily
constructed, experimented upon, and quantified (Grimm 1999; Di Paolo,
Noble, and Bullock 2000). They can inform the future design of real-world
experimentation, be updated with new information as it becomes available,
and used to understand the uncertainty associated with observation (Kirby
2001). If behaviours observed in the real world emerge from simulation
models with very simplified underlying mechanics, there is good evidence that
these modelled components may be responsible for driving the emergent

patterns (Grimm et al. 2005).
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3.1.1 Floating Object Association

In this chapter, | describe a simulation model designed to examine some
of the unknowns associated with the behaviour of pelagic animals and the
implications of observed behaviours for fishing vulnerability. Over the past 30
years, the use of Fish Aggregation Devices (FADs) in tropical tunas fisheries
has steadily increased, and now account for around 65% of global landings.
These floating devices attract and retain pelagic species through processes
that are not fully understood, and are used in tuna fisheries because they offer
a number of attractive properties to fishers. Anchored FADs can create new
fishing grounds in coastal areas where other habitats are limited or have been
damaged (Packard 2009), while for industrial fleets fishing the high seas, using
drifting FADs increases the encounter rate of tuna schools (Guillotreau et al.
2011).

Whilst FAD-fishing offers benefits to some fishers, there are also
concerns from managers and conservationists regarding the negative impacts
of the industrial-scale use of FADs. While the ability of FADs to act as
ecological traps is still in dispute (Dagorn et al. 2013; Hallier and Gaertner
2008), it is clear that floating object-associated sets have an altered catch
composition biased towards smaller size-classes (Leroy et al. 2012), and in
many cases land fish that are of a lower condition (Menard 2000) and which
appear to have a different diet composition to their free-swimming
counterparts (Buckley and Miller 1994; Fernandez and Allain 2010). The
increased number of juvenile fish caught in the FAD-fishery suggests that,
given the large fishing effort exerted by purse seine fleets, the potential for
considerable recruitment overfishing exists (Morgan 2011). There exists,
therefore, a critical need to investigate the processes occurring around FADs
that drive this increased vulnerability and retention of smaller size classes
(Robert et al. 2012).

The extent to which size-specific effects are linked to the overall
mechanism that attracts and retains tuna to FADs is not known. A number of
hypotheses have been proposed to explain the attraction and retention of
pelagic species to and around floating objects (Castro, Santiago, and Santana-
Ortega 2001; Fréon and Dagorn 2000). These vary considerably, are not

mutually exclusive by nature, and have been reviewed in detail in previous
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publications (e.g. Leroy et al. 2012) and in Chapter Two of this thesis. Briefly,
hypotheses fall into several categories suggesting that FADs attract fishes by:
provision of a protective substrate (Fréon and Dagorn 2000), offering clues
about the local prey field (Dagorn, Holland, and Itano 2006), or performing a
social function (Robert, Dagorn, Lopez, et al. 2013). Regardless of the
mechanism(s) by which FADs operate to increase local fish biomass and/or
abundance, it is not clear whether there is an ontogenetic change in behaviour

that causes larger fish to be less susceptible to these processes.

The 'indicator-log"' hypothesis states that, over evolutionary timescales,
predatory fish have learnt to associate floating objects with productive patches
of ocean. Naturally occurring floating objects such as logs, branches and algal
masses are affected by currents and will spend much of their floating time
caught in meso-scale eddies, along the boundaries of different currents, and in
estuarine outflow regions. Due to high levels of nutrient influx and mixing in
the water column, these small areas tend to produce high levels of primary
production and grazing by secondary producers. The associative behaviour of
pelagic predators with floating objects has been hypothesised to be due to
their role as an indicative clue as to productivity of the local area (Fréon and
Dagorn 2000). As FADs are typically deployed irrespective of local productivity,
this has raised the question of whether these devices constitute ecological
traps, causing tuna and other species to make incorrect decisions about
suitable habitat.

3.1.2 Hypotheses Tested with this Model

Evidence for any of the hypotheses explaining FAD attraction is difficult
to gather as the scales involved, both spatially and temporarily, are too large
to test robustly using manipulative experiments. However, previous analysis of
observations (e.g. Gaertner et al. 2008), small scale experiments (e.g. Capello
et al. 2004; Dempster and Kingsford 2003) and theoretical studies (e.g.
Dagorn, Josse, et al. 2000; Fréon and Dagorn 2000) can provide clues about
the processes that may be operating around floating objects. Evidence for the
indicator-log hypothesis has been suggested by studies examining the
movement of tuna through arrays of FADs (Dagorn, Holland, and Itano 2006),
and the observation that changes in oceanographic conditions are often

associated with aggregations leaving floating objects (Moreno et al. 2007).
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In Dagorn, Josse, et al. (2000), an individual-based simulation model of
tuna around virtual FADs was constructed to attempt to replicate some of the
movement patterns that are observed around FADs. This study simulated the
surface waters of an artificial patch ocean in two dimensions, containing
random patches of prey and independent schools of tuna. FADs were made to
attract tuna in the absence of real prey, representing the assumptions of the
indicator-log hypothesis. The surface layer prey field had random dynamics
that tried to replicate the patchiness of the pelagic domain, alongside an influx
of biomass during the night from deeper dwelling vertically migrating species
of prey. This simulation model replicated a series of qualitative horizontal
movement behaviours observed in real tuna, and proportion of tuna associated

with the FAD at different times of the day was examined.

Here | use a simulation modelling approach to examine the theoretical
role that size-dependent foraging ability plays in the vulnerability of tropical
tuna to Fish Aggregation Devices. | use a similar model structure to that in
Dagorn, Josse, et al. (2000), but extend the artificial ocean into three
dimensions with both tuna schools and prey aggregations individually

modelled. Making a number of assumptions:

1. Tuna can perceive the presence and abundance of prey
aggregations in their local environment.

2. Tuna can perceive the presence of FADs from a further distance
away, although | ignore the mechanism by which they are able to do so.
3. Tuna confuse FADs with areas containing prey aggregations, but
only in the absence of locally sensed, 'true' prey aggregations, which
they can differentiate from a FAD, representing the indicator-log
hypothesis of FAD attraction.

4. Tuna switch between active hunting behaviours in which they search
for prey, and resting/digestion behaviour in which they ignore perceived
prey aggregations or FADs.

5. Larger size and species-classes are capable of diving to deeper

layers of the water column to search for prey aggregations.

Using this framework, | examine the relative difference between the

emergent behaviour and condition of artificial tuna in an ocean in which a FAD
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influences them, and an ocean where they remain free-swimming. Specifically, |

resolve the following hypotheses under the assumptions of the model:

1. The emergent condition and diet of the artificial tuna will change when
they exist in an ocean containing a FAD compared to a FAD-less ocean.

2. The emergent behaviour and biology of larger size-classes able to dive
into deeper layers of the ocean are less impacted by the influence of a
FAD.

3. Changes to the distribution of the prey field have major effects on the
emergent behavioural and biological impact of the FAD

4. The assumed increased spatial perception of FADs over prey is also

critical to strength of FAD impacts.

By altering the variables included in the model structure, changes will be
seen in the emergent properties of tuna agents. Indeed, if these variables are
the sole mechanisms in the model, then this is to be expected. However, the
strength and variability of emergent effects will be compared to previous
observations of in situ tuna behaviour and biology for evidence of similar and
significant changes to condition, diet and vulnerability to FADs. | ask, are the
striking patterns in tuna vulnerability and retention around FADs explained by
the simple set of assumptions above in a simulated pelagic environment, using

a limited number of physiological and environmental variables?

3.2 Materials and Methods

The use of individual-based modelling (IBM) provides a useful tool to
examine the emergent system properties from a set of assumptions about the
lower level processes, incorporating or removing those physiological and
environmental factors that may or may not play a driving role in the
mechanisms of interest. As the fundamental unit of an IBM is the individual, it
is straightforward to compare these simulated, emergent properties with
observed patterns in real world ecological systems (Grimm et al. 2005). Here |
describe the IBM developed to test my hypothesis in this study following the
standard 'Overview, Design concepts and Details' (ODD) protocol described in
Grimm et al. (2006).
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The purpose of this model is to examine the role that size-dependent
diving ability may play in the vulnerability of tropical tuna to FADs. It is
designed to simulate these impacts at the scale of individual fish or schools
over short temporal scales, rather than a community or population. This model
does not aim to explore social effects between tuna, but rather what the effect
of changing prey distribution and a FAD might have on single, idealised

pelagic hunters capable of diving to different depths in the water column.

3.2.1 State Variables and Scales

The model comprises of a 3-dimensional, artificial ocean, populated by
'super-individuals' representing schools of prey species or tuna. There are two
hierarchical levels to the model: individual school agents and the ocean cells
that they move between, and the arrangement of those cells into the complete,

3-dimensional patch of ocean.

The ocean is divided into layers of hexagonal cells, with each ocean cell
holding a depth layer coordinate, a 2-d position coordinate within that layer,
and a cell-type variable which can be 'free' or 'FAD'. Each cell represents a
patch of ocean 1km in diameter, and a depth corresponding to one of three
entire ocean layers. Each cell also contains pointers to any prey individuals

currently present in that cell.

Prey individuals represent 1000kg 'super-individual' schools of tuna prey
species. These individuals are characterised by the variables: type, position
and aggregation tendency. Type is categorised into one of five ecological
groups: Epipelagic, Migratory Upper-Mesopelagic, Non-migratory Upper-
Mesopelagic, Migratory Lower-Mesopelagic, and Non-migratory Lower-
Mesopelagic. Aggregation tendency varies with this type, resulting in different
prey types having greater or lesser probability of aggregating with other
schools of prey in their immediate location. This tendency to aggregate
controls the patchiness of the prey field in the artificial ocean. The coordinates
of the currently occupied ocean cell are stored in position, and aggregation
tendency is represented by a probability. A diagram of a section in the surface

layer of the ocean is shown in Figure 3.1.

Tuna individuals represent a single school of tuna, capable of sensing

prey and FADs in the artificial ocean. Tuna store the following variables:
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position, stomach fullness and current behaviour. Position holds the
coordinates of the currently occupied ocean cell, and stomach fullness is
represented by a percentage. Current behaviour is one of two states: hunting,
or resting. Tuna also have a maximum dive depth that they are able to dive to
hunt for prey, which is varied between simulation experiments to examine the
effect of size-dependent foraging. This results in three classes of tuna, each
capable of diving to a successively deeper layer in the water column. These are
referred to as skipjack (SKJ), which are limited to the surface, Epipelagic layer;
yellowfin (YFT), which can dive to the upper-mesopelagic layer containing the
thermocline; and bigeye (BET), which can dive through the thermocline and
down to the lower-mesopelagic layer. This species-class labelling is somewhat
unrealistic, as diving ability is more of a size-dependent ability in the real
world, but | use these simple class names to differentiate between the tuna

types used in this simulation.

Combined Prey Aggregation

Single Prey Aggregations

Prey-sensory Range of Tuna

Tuna School

Tuna Movement Path

Figure 3.1 Representation of a section of surface layer in the artificial ocean.
Prey super-individuals populate the layer, some of which have

combined to form denser aggregations.

At the higher level, the ocean is arranged in three layers of ocean cells
which do not correspond to absolute depths, but rather dynamic layers. The
dimensions of these layers grow and contract in the real pelagic domain and
are environmentally distinct both biotically and abiotically. These layers are the
Epipelagic layer, the Upper-Mesopelagic layer, and the Lower- Mesopelagic

layer, and can be summarised in the following way (see also Chapter Two):

45



J. Scutt Phillips Chapter 3

* The Epipelagic layer. The surface layer of warm, mixed water above

the thermocline, typically from 0 to ~200m depth

* The Upper-Mesopelagic layer. The layer containing the thermocline

and cooler water below, typically 200~400m

* The Lower-Mesopelagic layer. The layer at which the effect of

sunlight in the water column is negligible, typically 400m+

The artificial ocean is around 2500 km2 in surface area (50x50 ocean
cells), and wrapped around to form a torus. Simulations are run for 6 months
of simulated time, with a ten-day spin up period, and under a variety of prey
distribution scenarios (see Initialisation section). A complete list of parameters
is described in Table 3.1.

Table 3.1 Complete parameter list for individual-based model of tuna foraging.

Parameter Value

Artificial Ocean

Ocean cell diameter (km) 1

Area (cells) 50x50
Depth (cell layers) 3

Daily timesteps 48
Simulation time (timesteps) 10,000
Spin up period (timesteps) 500

No. Epipelagic prey

-SEAPODYM scenario 825
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-Balanced scenario

-ECOPATH scenario

No. Migratory Upper-Mesopelagic prey

-SEAPODYM scenario

-Balanced scenario

-ECOPATH scenario

No. Non-migratory Upper-Mesopelagic prey

-SEAPODYM scenario

-Balanced scenario

-ECOPATH scenario

No. Migratory Lower-Mesopelagic prey

-SEAPODYM scenario

-Balanced scenario

-ECOPATH scenario

No. Non-migratory Lower-Mesopelagic prey

-SEAPODYM scenario

-Balanced scenario

-ECOPATH scenario

Prey
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1321

3501

1042

1321

1915

410

1321

330

2430

1321

859

1898

1321
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Aggregation tendency (probability)

-Epipelagic prey 0.8

-All mesopelagic prey 0.4
Sensory range (cells) 1
Tuna
Diving preference (probability) 0.33
Prey sensory range (cells) 1
FAD sensory range (cells) 10
Meal fullness (%) 5
Resting digestion rate (%) 10

Maximum dive depth (cell layer)

-SKJ 1

-YFT 2

-BET 3
3.2.2 Process overview and scheduling

The model proceeds in discrete 30-minute time-steps, during which three

main processes are scheduled: updating the prey field, simulating the tuna
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school behaviour, and recording observations from the time step. For all
processes involving updating or selection between a number of ocean cells,

those cells are determined in a random order.

First, the prey field is updated one ocean cell at a time. This consists of
individual schools and aggregations of prey moving in random walks through a
single layer of the ocean with a probability that they will favour moving to local
cells containing other aggregations of prey. During crepuscular periods,
diurnally migrating prey abandon this random walk behaviour and instead
move vertically to the corresponding ocean cell above or below their current
position, at dusk or dawn respectively. For each ocean cell, all the prey
individuals present are given the chance to move in a random order. Each prey
individual senses the presence or absence of other prey in each of the seven
local cells in the current layer (six surrounding, and the cell already occupied),
also in a random order. For each of these encountered cells containing other
prey individuals, the current prey makes a stochastic choice based on its
aggregation tendency parameter to move to that cell. If no cell is chosen in
this way, then a random walk is undertaken. For all prey individuals that have
remained in their current cell and form an aggregation of greater than one
individual, this large aggregation of multiple prey then also moves in a random

walk.

Next, the movement of the tuna school is carried out. A stochastic choice
in behavioural mode is made from a probability function driven by the current
stomach fullness of the tuna (see Sub-models), and tuna subsequently either
'hunt' or 'rest'. When resting, the tuna individual simply ascends if below the
Epipelagic layer, or random walks if already there. The current stomach
fullness is then reduced by the resting digestion rate parameter, here assumed
to be a percentage of full, resulting in a linearly decreasing digestion process.
The rate of digestion was chosen to match observations of captive yellowfin
tuna achieving full gastric evacuation in five hours (Olson and Boggs 1986;
Olson and Mullen 1986).

When hunting, the tuna school senses its local, surrounding cell
environment first for the presence of prey individuals. This includes cells in
layers above and below if the tuna is of a class that is capable of moving to

those depths in the water column. | assume that tuna hunt with the same
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efficiency at all times of the day. The school then moves to the cell containing
the densest aggregation of prey individuals, randomly choosing between any
equally dense cells. The school then feeds, removing one random prey
individual from those present in the cell, which is also then regenerated at a
random location in the ocean, keeping the overall prey abundance constant. |
assume that all prey types in the artificial ocean contribute equally to tuna
stomach contents, specified by meal fullness, and that there are no extra
metabolic costs from temperature or oxygen limitation of feeding at depth for

those classes of artificial tuna capable of doing so.

If no prey aggregations are sensed, then the tuna school sense a much
larger local area for the presence of a FAD, given by FAD sensory range. The
default diameter of this range is set at 10km, consistent with observed
distances that tuna actively swim towards or are influenced by floating objects
(Girard, Benhamou, and Dagorn 2004; Moreno et al. 2007). However, this value
is also reduced to lower values in some alternative simulation experiments (see
below). If a FAD is perceived, then the tuna school will move one cell towards
it. If the school is already located at the FAD cell, it will simply random walk
around the local cells searching for prey, including deeper layers if it is capable
of diving. This behaviour represents the perception by pelagic predators of
floating objects indicating areas containing prey, as stated under the

'indicator-log' hypothesis of FAD attraction.

If neither prey nor FAD cells are sensed, then tuna move using a random
sweeping search-behaviour, with low probability high angled turns. This
behaviour is identical to that used for simulated tuna movement in Dagorn,
Josse, et al. (2000), with the additional chance of individuals moving vertically
between horizontal movement, given by their diving preference. Such
sweeping searches are suited for optimal searching in patchy environments (S
Benhamou 1992).

Finally, the recording of simulated observations is undertaken. Positions
of all agents are recorded, along with the internal state of the tuna school and
cumulative diet composition from different prey groups. Figure 3.2 depicts the

complete schedule of these processes during a single time-step.
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Figure 3.2 Process diagram showing event scheduling during a single time-step

of the simulation.
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3.2.3 Design concepts
3.2.3.1 Emergence

The emergent properties of interest in this model are the length of time
spent near the FAD by simulated tuna, and the internal condition of the tuna
(stomach fullness and diet composition), given different parameterisations of

the artificial ocean and prey distribution.

3.2.3.2 Fitness

While the timescales of the phenomena investigated by this model do not
necessitate the use of evolutionary fitness, fitness seeking by the tuna
individuals is indirectly assumed by the desire to search and feed on prey as

often as possible.

3.2.33 Sensing

Both tuna and prey individuals are assumed to be capable of sensing the
presence of other individuals in their local environment, although the specific
mechanisms used to do this are ignored here. This is chiefly due to the lack of
study into how pelagic fish gain sensory cues from floating objects of the prey
field (Dempster and Kingsford 2003; Ghazali et al. 2013). It may be that these
species are capable of perceiving dense aggregations of other fish from some

considerable distance away using a variety of sensory cues.

3.2.3.4 Interaction

The purpose of this IBM is to investigate the effect of prey field
distribution and diving ability in FAD impacts on tuna, and as such only a
single tuna school is placed in the artificial ocean in each simulation. | ignore
social interactions between individuals or schools of tuna. The prey field is
driven by strong interactions between prey schools, and tuna are capable of
indirectly influencing this further by depleting prey in areas that they are
feeding.

3.2.3.5 Stochasticity

Stochastic events occur throughout this IBM, providing a mechanism of

choice for processes that are not understood. In particular, decisions made by
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individuals regarding directions to move, which aggregations to join or feed
on, and whether to hunt or rest, are handled stochastically. Each simulation
experiment is replicated 100 times using a different random seed to smooth

out the variation caused by these processes.

3.2.3.6 Observation

Variables from each simulation are collected in such a way as to allow
qualitative comparison with real-world observations of tuna behaviour and
physiology. However, these are collected as from an omniscient observer,
rather than from a 'virtual ecologist'. The variety, and in some cases low
replication, of in situ observations results in there being no clear choice of

virtually sampling these data.

3.2.3.7 Initialisation

All agents are given random positions at the start of each simulation,
although prey schools always start at the correct depth for their type. The
stomach fullness of the tuna school is given a random value between zero and
100%. When the ocean contains a FAD, the FAD-set cells are always the centre
cells of the artificial ocean and at each of the three depth layers, as tuna are
known to aggregate across varying depths underneath FADs (Bromhead,
Foster, and Attard 2003). The abundance and distribution of prey in the
tropical pelagic domain is highly variable through both space and time (Barnett
1984; Arnaud Bertrand et al. 2002). Attempting to bracket this uncertainty, |
use three different prey field scenarios to parameterise the artificial ocean in
these simulation experiments. Two of these are based on tuna forage species
predictions from full ecosystem models, and the third is an arbitrary scenario

using a balanced distribution. These scenarios are summarised in Figure 3.3.

A Spatial Ecosystem and Population Dynamics Model (SEAPODYM) has
previously been constructed for oceanic top predators (Lehodey, Senina, and
Murtugudde 2008). This model uses output from ocean coupled bio-
geochemical climate models to predict the biomass of multi-trophic species in
the pelagic environment, taking interspecies and environmental interactions
into account. Here, | use per km? biomass estimates for each of the five
ecological prey types included in the model (migratory and highly-migratory

lower-mesopelagic prey are grouped together). These estimates are scaled up
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to the size of the artificial ocean patch and packaged into schools representing
1000kgs of tuna prey species. This SEAPODYM prey scenario is characterised
by a large biomass contributions from the deeper dwelling, migratory

components of the prey field.

Allain et al. (2007) developed an ECOPATH model for the Western and
Central Pacific warm pool pelagic ecosystem, re-balancing the prey estimates
from SEAPODYM, other ecological models and observed data using the
ECOPATH mass-balance equations. Under this approach, the total abundance
estimates for prey species are over six times higher than the SEAPODYM
predictions. When incorporated in the IBM of this study, this prey abundance
results in tuna being able to feed to an equilibrium point of 50% stomach
fullness almost constantly, with no impact from FADs or migration of prey. To
address this issue for this alternative prey field scenario, | take the total
biomass estimates of the SEAPODYM model but use the distribution across
prey groups given by the ECOPATH study of Allain et al. (2007). This prey
scenario is characterised by the majority of the biomass being located in the
Epipelagic layer, while the rest constitutes almost entirely migratory prey

groups in deeper layers.

The third, balanced scenario uses the same total abundance estimates as

the other two prey fields but distributes this biomass equally across the five

prey groups.
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Figure 3.3 Distribution of the prey field in the artificial ocean under each of the

three scenarios used in this study.

3.2.3.8 Submodels

The probability with which an artificial tuna school will decide to
undertake resting behaviour for a time step is given by a probability function.
There is evidence that active hunting by tuna reduces sharply above 50%
stomach fullness (Bertrand, Bard, and Josse 2002), with most fish caught on
passive gear types such as longlines exhibiting emptier stomachs. At each

timestep, tuna randomly choose to rest with probability

1

P(h) = 7@

where fis the proportion of stomach fullness and 0 < f < I. This function takes
the form of a logistic probability function, sharply inflexing at 0.5 stomach
fullness. Below this, there is a greater chance that hunting behaviour will be

chosen.
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3.24 Simulation experiments

The chief factor investigated in this study is the different diving ability of
the three classes of simulated tuna: SKJ, YFT and BET. All simulations were
carried out across these three factors. Simulations consisted of both oceans
free of FADs and oceans with a single FAD cell set in the centre, allowing the
comparison of impacts to stomach fullness and diet composition between
'free-swimming' and FAD impacted tuna schools. The three prey field scenarios
were used to bracket the variability caused by changing availability of prey

species.

For simulations containing FAD cells, the emergent retention of tuna
around the FAD is measured by continuous residence time (CRT). CRT has
been used to quantify FAD strength in a number of studies into fish behaviour
around arrays of floating FADs (Capello et al. 2012; Ohta and Kakuma 2004;
Robert et al. 2012), and | follow this convention here. This measure is the
number of hours spent by an acoustic telemetry tagged tuna within receiver
distance of a monitored FAD (around 500-800m), without an absence of
greater than 24 hours. In this simulation model, | classify residence as
occupying the FAD cell, corresponding to a 500m radius around the virtual
FAD.

3.3 Results

The results are presented here with focus given to changes in simulation
output across tuna types resulting from their differing abilities to exploit prey
at varying depths in the artificial ocean. For each parameterisation, output
metrics are averaged across 100 simulation runs to smooth variation from
stochastic processes. First, FAD impacts are examined by comparing average
stomach fullness and diet between tuna free-swimming in a FAD-less ocean
and those affected by a virtual FAD. Then, FAD-specific behaviours are
presented through difference in continuous residence times across tuna types
and prey field scenarios. Finally, the effect of changing the FAD perception

distance by artificial tuna is shown.
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3.3.1 Free-swimming versus FAD-impacted tuna
3.3.1.1 Feeding

The simulated impact on tuna foraging efficiency by FADs is indicated
by comparing average stomach fullness over the course of a simulation from
both oceans free of FADs and those containing a FAD. These results are shown
in Figure 3.4 and Figure 3.5 and are also vary across prey field scenario. When
a general reduction in stomach fullness occurs, tuna type becomes an
important variable, with the smallest and surface-limited tuna class SKJ
suffering the greatest impact. The SEAPODYM scenario represents the most
“difficult” ocean for all tuna types to survive, with such a large component of
the prey field located in the lower-mesopelagic layer. Under this scenario, even
the deep diving BET type tuna are negatively affected by the presence of a FAD
compared to free-swimming counterparts. When the majority of the prey field
is concentrated in the surface layer, little or no FAD-impact to stomach fullness

is seen across all three tuna-types.

3.3.1.2 Diet

| also examine impact on diet composition from FADs by comparing the
proportion of prey types from each ocean layer that contribute to tuna diet at
the end of simulation from both FAD-free and FAD containing oceans. Figure
3.6 illustrates the presence of the altered feeding behaviour caused by FADs,
changing the composition of prey groups the tuna are feeding on, although
this effect is understandably dependent on prey field scenario. These effects
are strongest in SKJ and YFT type tuna, in some cases inversing the feeding
ratio of epipelagic to mesopelgaic prey that constitute diet, when under the
assumptions of the SEAPODYM prey field scenario. Under this scenario, all
tuna-types are impacted by the effect of the FAD, although SKJ type see the
largest change from a diet of predominantly epipelagic prey to one that is
more balanced between epipelagic and migratory upper-mesopelagic prey
components. In contrast, the balanced prey field scenario shows FAD-driven
diet impacts only in SKJ type tuna, although these changes are less so than for
the SEAPODYM scenario. The ECOPATH scenario, with such a large epipelagic
biomass component in the prey field, shows little change in a epipelagic

dominated diet across all factors.
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Figure 3.4 Average stomach fullness over the course of all simulations under the SEAPODYM scenario, separated into free-

swimming oceans (green) and FAD-containing oceans (red), by tuna-type.
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Figure 3.5 Average stomach fullness under Balanced (left) and ECOPATH (right) prey field scenarios
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Figure 3.6 Diet composition for SEAPODYM (left) and Balanced (right) scenarios. Upper histograms come from free-swimming tuna,

lower are FAD-impacted tuna. Results are separated by tuna-type and prey groups.
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3.3.2 FAD-specific Effects
3.3.2.1 Emergent Residence Time Around FADs

In FAD containing oceans, the average continual residence time (CRT, the
length of time spent in the FAD cell without absences of greater than 24 hours)
is measured across the three tuna types to examine the length of time spent in
the FAD vicinity for each prey field parameterisation. These results are
summarised in Figure 3.7. SKJ-type tuna clearly spend much more time around
the FAD under the balanced and SEAPODYM prey field scenarios, with all fish
types spending relatively much more time at the FAD for the SEAPODYM
scenario than for any other. When the majority of the prey field is concentrated
in the surface layer at all times, as in the ECOPATH scenario, CRTs are an order

of magnitude lower, and more equal, for all types of tuna.
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Figure 3.7 Boxplot of continuous residence times by tuna-type under the
balanced (top) SEAPODYM (middle) and ECOPATH (bottom) prey field

scenarios.
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3.3.2.2 Changing FAD Sensory Range

A series of experiments were also performed across a number of FAD
sensory perception ranges for the artificial tuna. The change in emergent CRT
under the SEAPODYM prey field scenario, which resulted in the largest FAD
impacts, are shown across three decreasing FAD perception ranges in Figure
3.8. At 10Km, SKJ type tuna spend an order of magnitude more time than the
other tuna types, as shown previously. This difference in CRT between tuna
types reduces sharply when FAD sensory range is at 5km, with SKJ type tuna
spending an order of magnitude less time at FADs compared to the same class
of artificial tuna that senses FADs from 10km away. At 1km, the same sensory
range as for prey aggregations, mean CRT drops an order of magnitude again
for SKJ-type tuna. At this perception range there is no difference between tuna
types in their emergent CRT, with few instances of fish spending longer than
30 hours at the artificial FAD. Similarly, at this low perception range, no impact
to stomach fullness or diet is seen when a FAD is introduced to the artificial

ocean compared to free-swimming tuna (not shown).
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Figure 3.8 Boxplots of continuous residence time by tuna type, across

decreasing FAD perception ranges (top to bottom).
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3.4 Discussion

In this study | have developed a simple model to explore how tropical
tuna foraging may be affected by FADs in the pelagic environment. Under the
assumptions of the 'indicator-log' hypothesis of FAD attraction, and using a
variety of prey field scenarios, vulnerability to FAD influence differs for
different size classes of simulated tuna. There is no behaviour included in this
model that explicitly attracts one type of tuna to associate with the FAD more
of the time than other tuna; it is merely a result of the same behavioural
reaction to the available prey field and physiological diving capability of the
individual. When searching an empty ocean, all three tuna types on average
spend the same amount of time at the FAD cell. Here, | examine in turn each of

the hypotheses stated in the introduction.

3.4.1 FAD-containing oceans negatively impact simulated tuna

Clearly, the addition of an artificial FAD into the ocean results in a
number of impacts to both diet and stomach fullness of the simulated tuna,
although the strength of this impact is dependent on the prey field and is
different for each of the tuna-types examined here (see below). In general, the
artificial FAD causes a decrease in the average stomach fullness for all tuna-
types during the course of the simulation. The relative diet contributions from
each prey-type also shifts towards an increased reliance on deeper dwelling

prey groups from the upper- and lower-mesopelagic layers.

The reason that any impact occurs at all is due to the presence of a FAD
inhibiting the efficiency of the artificial tuna's hunting strategy. By adding a
fixed, false prey item to the ocean, a degree of sub-optimal foraging is
imposed on the behaviour of the predator. Rather than searching for true prey
aggregation, the tuna school is spending some or all of the time around an
arbitrary point that has no interaction with the surrounding prey. Instead of
sweeping through empty patches of ocean, tuna random walk around the same
area. It is clear that this will have an impact on feeding success, particularly
when the prey field is patchily distributed, and is a critical concern if FADs do
act as ecological traps in this manner (Bromhead, Foster, and Attard 2003;
Dagorn, Holland, et al. 2013).
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Unbiased observations of contrasting diet in free-swimming and FAD-
associated fish are varied and few in the literature, but there exist some broad
patterns for comparison. Stomach contents of FAD-caught fish have been
observed to be less full than those caught in free-swimming schools (Hallier
and Gaertner 2008), and some marked differences in diet between the same
groups although these are inconsistent (Fernandez and Allain 2010; Ménard et
al. 2000).

3.4.2 Larger size-classes of simulated tuna are less affected by FADs

In this simple representation of the pelagic domain and the indicator-log
hypothesis, where FADs provide a false perception of prey to tuna, it is the
ability of tuna schools to escape the influence of the floating objects by finding
true prey aggregations that reduces FAD vulnerability. In all simulations, the
attractive basin of the FAD for the tuna tends to cause periods of association
with the FAD cell. This association is most likely to begin during the day, when
the prey field is more sparsely spread out over all three ocean layers. At dusk,
when the prey field of the shallower layers becomes flooded with vertically
migrating individuals, there is a greater chance of tuna finding an “attractive

path” away from the influence of FAD to feed.

Once real-world tuna are associated with a FAD, Holland (1996) identified
three horizontal movement patterns that characterise the behaviour of tropical
tuna caught and released with archival or acoustic tagging equipment. 1) Fish
decide to leave the FAD, and do not return over the duration of the
experiment. 2) Fish remain associated within a 500 metre radius of the FAD for
the entire duration of the tracking. 3) Fish associate tightly with the FAD
during the day time, but leave during the night and return to the same or an
adjacent FAD the next day. This simulation model, alongside similar previous
models, replicates these horizontal movements. In particular, the third type of
behaviour occurs when the attraction of prey in the surface waters around the
FAD is strongest during the night and tuna leave to feed. At dawn, with the
thinning of the surface prey field, fish return to the FAD.

The smallest tuna type, SKJ, consistently suffers the greatest FAD impacts
to stomach fullness and diet, as well as spending more time in residence

associated at the time. This is particularly noticeable under the deeper species
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weighted SEAPODYM prey field scenario. In this model, tuna escape the FAD-
effect by sensing true prey aggregations that move into the nearby prey field
of the FAD. Larger size classes have more chance to escape the influence of
the FAD because they have more chance of sensing prey in the deeper layers,
particularly at dawn when a lot of the prey biomass migrates into deeper
layers. They are capable of following the aggregations down, rather than being
left with an empty prey field and the large influence of the FAD. Essentially,
fish with the ability to dive into deeper ocean layers simply have greater

foraging options and are less susceptible to the false prey signal of the FAD.

Previously observed patterns of tuna residence at FADs are highly variable
from one region to another, and even in the same region at two different
times. It is subsequently difficult to make direct comparisons with the
emergent results of this model and real world phenomena. For example, the
observed difference in residence times around FADs between small and larger
size classes of tuna is around 2.5 times longer for smaller fish (Robert et al.
2012). The results of this study are certainly of the same order, although

greater and lesser differences can be seen dependant on prey scenario.

3.4.3 Prey field scenario affects emergent FAD impacts

All of the metrics used here to indicate vulnerability to FADs are highly
dependent on the distribution of prey throughout the artificial ocean. It is clear
that the ECOPATH scenario, characterised by large amounts of prey biomass
aggregating in the surface layer at all times, yields the lowest FAD impact
simulations and the least variation across tuna types. All simulated tuna types,
regardless of their ability to exploit deep layers, spend more time at the
surface than other layers. This is driven partly by the vertical migration of prey
during the night, but also it is a result of individuals ascending above the
thermocline during their periods of resting behaviour. When the majority of
prey biomass is concentrated in these layers, the search efficiency of the tuna
schools is greater and enables more escape routes from the influence of the

FAD within this single layer of the ocean.

Empirical observations of both meso-scale changes to the prey field and
tuna behaviour or condition around FADs are not available for comparison with

these simulation results. However, considerable variation in residence times
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have been seen between locations that are likely to have different prey fields
(Robert et al. 2012) and even at the same FAD array at two different periods
with potentially different prey fields (Matsumoto, Kitagawa, and Kimura
2013a).

3.4.4 FAD sensory range affects the strength of impacts

A more distant sensory perception of the FAD magnifies the false prey
signal compared to real prey for tuna schools, making the chances of long
residence times much larger when there are few prey aggregations in the
surface layer. Under the assumptions of the indicator-log hypothesis, the
sensory perception of tuna to prey aggregations and floating objects is a key
driving force in residence times and therefor vulnerability of tuna to FADs and

fishers.

However, when the difference between the false prey signal of the FAD
attraction is dampened through reducing the FAD sensory perception range of
the simulated tuna, the FAD impacts measured here are reduced considerably.
Once the artificial tuna sense the FAD at the same range as the prey, the FAD
impacts actually become negligible and residence times around the FAD drop
to little more than a day on average. Once the FAD itself exhibits the same
basin of attraction as the prey aggregations, its ability to trap simulated tuna

schools in a sub-optimal foraging behaviour is completely diminished.

3.4.5 Model Caveats

Here, | have demonstrated that the vulnerability to FADs by smaller size
classes of tuna can possibly emerge from solely the reduced ability to exploit
deeper layers in the water column in a simple IBM framework. However, a
number of caveats must be stressed in the assumptions of the model

alongside potential improvements and additions that could be made.

This simulation experiment attempts to examine the effect of differences
in the prey field through alternative scenarios, but there are still many
dynamics that are not captured. In particular, although at the scale of the
artificial tuna school in this model the prey field is highly heterogeneous due
to the patchiness of aggregation, at the scale of the patch of ocean itself the

prey field is homogenous. That is, the total abundance of prey for each
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ecological group remains constant throughout the simulation. The size of the
artificial ocean here is 2500 km?, and even patches of ocean this size may
experience major changes in prey field due to seasonal or other changes in
production. Such changes are likely to affect the ecological groups differently,
altering not just the total available prey but also their temporal availability to

tunas due to the ratio between vertically migrating and non-migrating species.

Similarly, there are a number of likely density-dependent effects on the
prey aggregations that are not incorporated into the model. Aggregation
probabilities are likely to change as the number of individuals increase in an
aggregation, although the dynamics of this change are not known. For
example, there may initially be a positive feedback in the cohesiveness of the
aggregation as prey individuals group to benefit from effects of schooling on
foraging and predator avoidance (Parrish 1991). There is also likely to be a
negative feedback at larger aggregation sizes as competition for resources
becomes greater and membership of the aggregation no longer confers the

same benefits as at smaller sizes.

Under the assumptions of the indicator-log hypothesis, the attractive
sphere of the FAD is clearly critical in determining the time spent associating
with the FAD cell. The wider the sphere of attraction compared to that of a
school of prey, the more false ‘prey signal’ there is to schools of tuna from the
floating object. It may be that sensory perception of both FADs and prey
aggregations is dependent on the density and abundance of biota associated
with the object (Ghazali et al. 2013) or present in the aggregation,
respectively. This would create a positive feedback mechanism for FAD
association, whereby the more individuals were located at the FAD, the more it
would become attractive to new schools of tuna. Similarly, the perception
range and attraction of aggregation of biota and conspecifics may vary for
different species of tropical tuna. In contrast, density-dependent attraction of
prey aggregations would likely create a more balancing effect on predation.
The more dense a particular prey aggregation, the more it would attract
schools of tuna over greater ranges, which would then more rapidly decrease
the abundance of prey in the aggregation as more predators arrived to feed.
Introducing multiple schools of tuna into the model would allow some of these

dynamics to be explored.
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Unfortunately, in the absence of manipulative experimentation, it is very
unlikely that we will be able to obtain true estimates of fishes’ sensory
perception of floating objects or prey, even if measures of sound or bio-fouling
signals can be made on individual objects (Dempster and Kingsford 2003;
Ghazali et al. 2013). However, the majority of FADs occur either in arrays of
anchored FADs (Capello et al. 2012; Itano et al. 2004) or deployments of many
drifting FADs that move with currents (Dagorn, Holland, and Filmalter 2010;
Dagorn, Bez, et al. 2013). Using the model framework described in this
chapter, it would be possible to include multiple FADs that had the same
dynamics as either drifting or anchored arrays. Under these circumstances,
despite a sensory perception equal to that of the prey aggregations, impacts to
stomach fullness and diet may still be observed in the artificial environment

when multiple FADs are present.

3.4.6 Key Areas for Further Examination

In this chapter, | have shown that changing parameters in a fairly simple
representation of tuna and the pelagic ocean can result in varied dynamics in
phenomena that are of interest in a fisheries context. However, there are
clearly many unknowns associated with the validity of the assumptions and
parameterisation of this model, and likely a great many more differences in the
real world. Whilst many of the parameters and processes defined in this model
have some basis in real data, such as the area of influence of a FAD or the
distribution of the prey field, dynamics such as the probability of diving or
search strategies are purely assumptions. Despite this, there are a number of
areas indicated in this study that are likely to have some significant influence
on the movement of tuna around FADs and their vulnerability to fisheries in

general.

The diving and search strategies of real world tropical tuna are an area
where we are likely to have more success in uncovering new information given
the available data. Both the vertical and horizontal behaviours of the artificial
tuna in this IBM are essentially guesses, but it is clear that at least diving
ability and switching between the different layers of the pelagic domain may
have serious effects on the exploitation of the prey field for tuna, and

potentially their vulnerability to the effects of FADs.
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Similarly, more information on the prey field at a variety of scales would
allow a more informed IBM of this kind. Although methods such as acoustic
surveys that measure the prey field over wide distances and depths are
unlikely to be developed in the near future, more information on the
abundance, small-scale distribution and aggregation of these prey species

could be used to update the parameters of this model.

In addition, identifying new patterns or observations with which to
compare the results of this or similar simulation models with provide an
additional way of examining assumptions, without explicitly informing their
parameters. More information on the observed dynamics of vertical and
horizontal movement around floating objects would provide one source of

these patterns. Information on the observed diet of fish would provide another.

There are many ways this theoretical model could be altered, examined
further through parameter sweeps, or improved to incorporate some of the
missing dynamics described above that may be important in the real
movement behaviours of tropical tuna. However, the purpose of this model
was to examine the potential for significant impacts to the vulnerability of
tropical tuna from changes to two key drivers of behaviour: vertical movement
behaviours associated with size class, and the nature of the prey field. In the
following chapter, | will summarise a wide variety of the real-world data that is
available to us to gain new, useful information on tuna movement behaviours.
A number of preliminary analyses will be carried out, and the most pragmatic

areas to focus on for further study identified.
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Chapter 4: Analysis of Real-world Behavioural
Data

In Chapter Three, an expressive but un-fitted theoretical model was used
to show how significant changes to important traits in tuna, such as
vulnerability to fishing gears, could emerge when behavioural or prey field
dynamics are modified. In this chapter, two sources of real world data on the
movement of tropical tuna are examined for their potential to better inform
the behaviours that were identified as important in the previous chapter.
Several preliminary analyses are carried out, and their results and weaknesses

briefly discussed.

4.1 Tuna movement data

4.1.1 Mark-recapture data

Mark-recapture tagging programmes have been carried out during several
long-term periods and across a number of regions. In particular, the Regional
Tuna Tagging Programme (RTTP, 1989-1992) and Pacific Tuna Tagging
Program (PTTP, 2006-2014) have established considerable data sets for
conventional mark-recapture tags released in the WCPO, now exceeding
70,000 returns (Leroy et al. 2013). Tagging releases consist of capturing many
fish individually during a single fishing event, typically several thousand in a
day, recording species and size, and attaching a numbered dart tag to the
animal (WCPFC Tagging Commitee 2007). Following a period of time-at-liberty,
a proportion of these fish are recaptured, and the tag returned alongside
information on, ideally, time, location, fishing method and size at capture.
Within this data set exist information on changes in horizontal displacement,
growth experienced during time-at-liberty, information on school behaviour at

release and, in some cases, the same information at recapture.

Mark-recapture tagging provides only a behavioural observation at two
moments in time for each individual fish, with everything between those two

points hidden from us. Although the observed behaviours at time of release
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and at time of capture can be assumed to represent at least some of the time
of liberty, this may not be the case. For example, it is possible that an
individual tagged whilst known to be resident at an anchored FAD actually
ceased association the following day, spent several months as part of a free-
school, before returning to an anchored FAD and being caught during the first
day of association. This is especially true given that, as has been discussed,

both fishing and tagging effort is concentrated at FADs.

While these databases represent valuable resources on tuna movement
and biological information, mark-recapture tagging data contain many biases.
The robustness of the assumption that tagged individuals truly represent the
regional population is rarely known fully (Kolody and Hoyle 2013), although
some biases can be corrected within certain population modelling approaches
(Hampton 2000). Most critically, tag data are not a true measure of movement
behaviour because fishing effort is concentrated spatially and temporally
(Sibert and Hampton 2003). As tagging effort is often also concentrated in the
same areas as fishing, this may result in fish that are naturally resident being
caught in greater numbers than fish that may be naturally more migrant, and
which subsequently move to areas of lower fishing effort. In addition, concerns
regarding the quality of the data have been raised, particularly in relation to
recapture locations and events (Leroy et al. 2013). For detailed analyses into
movement behaviours, information recorded at recapture would constitute half
of the principal observations, and so any conclusions drawn must be
interpreted with considerable caution. Using a subset of the data believed to
be less prone to error, such as solely using reports from the Japanese fleet that
has firm procedures for tag recovery (S. Nicol pers. comms.), may alleviate
some of these problems. Unfortunately, this would also greatly reduce the
number of observations for some species, areas and school-types, as catches

across these factors are fleet biased.

The mark-recapture tag database of the PTTP is a great resource for
examining the broad movement behaviours of tropical tuna, but using detailed
information from recaptures in analyses will always carry the caveats of
uncertain quality and bias from the data. These data are inherently fisheries-
biased, and assumptions about their ability to accurately represent a

population of tuna make analyses problematic.
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4.1.2 Electronic tagging

Electronic bio-logging equipment provides much higher resolution data
on animal movement behaviours than conventional mark-recapture tags. The
behavioural study of wild free-ranging animals has been revolutionised over
the last two decades by the development of these types of animal telemetry
equipment. High-resolution records of the temporal and spatial behaviour of
animals are now available in unprecedented quantities (e.g Block et al. 2011;
Hammerschlag, Gallagher, and Lazarre 2011). One form of bio-logging
equipment, the electronic archival tag, is a surgically implanted electronic
device that records data on the depth and temperature information from an
individual fish at scales of seconds to minutes, while that fish is at liberty in
the ocean. The PTTP database now contains a number of returns of this type of
tag from the WCPO, numbering over 150, mostly from bigeye and yellowfin
tuna released in the Bismarck Sea, Solomon Sea and the central equatorial

Pacific.

While archival tags provide data on tuna movement that is not fisheries-
dependent in the way that conventional mark-recapture data are, there remain
a number of problems with analysis. The patterns in time-series of movement
behaviours are the result of an animal reacting to its environmental stimulus
and its own physiological needs. Unfortunately we observe neither of these
things directly from archival tagging data, but can see their effects in some the
consistent forms a dive profile takes through time. This results in highly varied
and noisy data recorded by bio-logging devices. Describing these data as
classified behaviours is problematic because, while sometimes these
behaviours are clear, often they occur as a spectrum of patterns. How deep
must a bigeye tuna dive before we can say that it is exhibiting “classic” day-
time behaviour? What if this behaviour only occurs for half of the day, or
includes many noisy movements through the water column? Are movements in
shallow water all the same, or are some significantly different in some way to
others? Describing vertical movement data requires an approach that can
incorporate these spectra of movements, without simply accounting for noisy
or bizarre observations by ascribing them to some phenomena that cannot

currently be observed.
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Often the recent context provides an indication to which group of
gualitative patterns a particular series of noisy observations belong, and
indeed when the depth and temperature records from archival tags are
examined, we see very high levels of autocorrelation in these data. This is the
chief cause of another problem in describing behavioural time-series: the data
are autocorrelated (Hartmann and Gottman 1980). What is observed over one
particular period of time is related to what has occurred during the previous
period (and in some cases even earlier), being a result of underlying
motivations such as hunger, digestion or predator avoidance. As a result, many
standard statistical methods of analysing data cannot be used, as the time-

series violate the assumption of independent data (Jassby and Powell 1990).

Considerable investment has been made in the deployment and recovery
of these electronic archival tags implanted into tropical tuna in the WCPO, as
well as many other species around the world. The time and expense involved
in undertaking these kinds of tagging experiments means that the amount of
data is several orders of magnitude less than those from mark-recapture
tagging programmes, but each tag contains a time series of many thousands
of observations for that single individual. While the time-series from archival
tags hold good quality information on the vertical movement behaviour of a
single fish, from the variety of qualitative patterns used in previous studies, it
is clear that there is no standardised method of describing these kinds of
behavioural data. When our aim is to assess these behaviours across factors
we believe to be significant, or answer questions on how vertical habitat use
changes across size classes such as posed in the previous chapter, the lack of
appropriate behavioural description is one of the primary problems to
overcome. Without quantitative analyses that describe the behavioural
information contained in these time-series, it is difficult to incorporate this
information into the large-scale population dynamics models used for stock
assessment. The integration of this rich source of data into stock assessment

analyses is a priority in current fisheries research (Sippel et al. 2014).
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4.2 Preliminary Analyses

In light of the potential for examining movement behaviours from
archival tag time-series of the PTTP, a preliminary analysis will be carried out
to examine real world examples of some of the dynamics either assumed or
simulated in Chapter Three. First, summary statistics of vertical movement
data from the PTTP archival tag database will be calculated to explore potential
changes in vertical habitat use across size classes and regions. Following this,
a number of machine learning techniques will be tested for their ability to
objectively identify and classify predefined vertical movement patterns from

archival tag time-series.

4.2.1 Summary Statistics of Vertical Habitat Use

The data recorded by electronic archival tags are not fisheries-biased in
the way mark-recapture tag data are, although the distribution of recapture
locations is still necessarily linked to fishing effort. Although a number of
problems using data from these tags for horizontal light-based geolocation has
already been discussed in Chapter Two, the vertical movement dive profiles

recorded are high resolution and contain much information.

A preliminary approach was undertaken to examine basic statistics
calculated across the entire length of time-series from the PTTP archival tag
database, to ascertain if potential changes in vertical habitat use were seen
across factors such as size of fish. | hypothesise that changes in habitat use
will be seen across size of individual fish at release, as assumed in the

simulation model of Chapter Three.

Mean depth was calculated across the time-series recorded by each tag
that did not contain periods of missing or corrupted data longer than 1 hour,
and these were compared across individual fork length-at-release. For each
species, the mean depth across the whole dive profile is plotted against length-
at-release (Figure 4.1) with a simple linear regression overlaid (adjusted R? =
0.02, P < 0.001 for yellowfin, adjusted R* = 0.31m P < 0.001 for bigeye).
Yellowfin and bigeye share similar mean depths for the smallest size classes,
but bigeye quickly begin to inhabit greater mean depths as they increase in

size. There appears to be no such change with size at release for yellowfin. No
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archival tags implanted in skipjack are examined in this thesis, as there are not

sufficient numbers of returns in the PTTP for analysis.

Yellowfin and bigeye tuna show distinct diurnal differences in their
behaviour, and averaging across these temporal periods potentially results in a
composite view of two distinct patterns. A simple way of examining this is to
approximate the timing of dawn and dusk in the tropics by dividing the time-
series into day and night at 6am and 6pm each day. Clearly this method is a
poor estimation, as large horizontal movements and seasonal changes can
significantly affect these timings for each individual, but it allows a general
separation of likely day and night periods in the data. The correlation between
fork length-at-release and mean depth alongside plotted linear regressions,

separated into day-time and night-time, are shown in Figure 4.2.

Summarising the regressions, for yellowfin there was little evidence that
mean day-time depth varied with release length (P = 0.227, adjusted R = 0.01),
while a slight positive correlation was seen for mean night-time depth (P <
0.001, adjusted R? = 0.26). For bigeye, mean day-time depth decreased with
release length (P < 0.001, adjusted R* = 0.37), while no pattern was apparent
between night-time depth and length (P = 0.679, adjusted R* = 0). An
ontogenetic shift in vertical habitat use in bigeye with size seems clear from
mean day-time depth from this simple analysis, with little evidence for a

similar change in yellowfin.
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Figure 4.1 Mean depth during archival time-series across length-at-release, alongside linear regression prediction. Results for

yellowfin are shown on the left, results for bigeye, on the right.
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Figure 4.2 Mean depth across length-at-release for yellowfin (top) and bigeye

(bottom), and separated into day-time (left) and night-time (right).
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While these kind of mean statistics may be useful in identifying some
general changes that might occur, there are again a number of fundamental
problems in drawing conclusions from them. First, these time-series contain
large amounts of data, in some cases many millions of observations. To
summarise the time-series using only one summary statistic is to ignore much
information and variation contained in this valuable data source. One of the
great strengths of archival tag data is its high-resolution nature and
subsequent ability to reveal many complex and small-scale patterns. These
patterns imply the second problem with such an analysis, namely that what we
observe in dive profiles from tropical tuna is assumed to be a composite of a
number of discrete behaviours, which cannot be summarised by one number
for the entire time-series. As discussed, the patterns in movement through
depth and temperature are the result of underlying decisions and motivations
of the individual fish, based on reactions to environmental stimuli that occur at
a variety of time-scales. It may not be possible to describe these vertical
movement patterns in terms of only absolute depth or temperature, and many
of the previously identified behaviours in tropical tuna are more complex than
a simple measurement of time spent at a certain depth (Matsumoto, Kitagawa,
and Kimura 2013a; Schaefer and Fuller 2004).

4.2.2 Classifying Vertical Movement Behaviours

A variety of qualitative descriptions and meanings have been ascribed to
the depth- and temperature-time patterns assumed to be common across
yellowfin and bigeye. These include foraging dives, thermoregulatory ascents,
V-shaped deep dives, and extended periods of association with floating objects
at the surface (Bertrand, Bard, and Josse 2002; Dagorn, Holland, and Hallier
2006; Holland et al. 1992; Itano et al. 2004). If such patterns are assumed to
be consistent across individuals, then a way to objectively describe and identify
these patterns is required, so that the variation in their nature and occurrence

can be compared between individuals and across factors of interest.

In order to automatically and objectively identify these patterns, here |
apply a variety of machine learning approaches to classify pre-defined

behaviours in vertical movement from PTTP archival tags. The hypothesis to be
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tested is that the frequency of these patterns’ occurrence will change over size

classes and between regions.

To classify vertical movements it is necessary to compress a time-series
to observations that could capture the form and dynamics of various
behavioral patterns. The electronic archival tags of the PTTP typically record
observations at intervals of between 10 seconds to 5 minutes. Although
consideration of the highest resolution observation-to-observation dynamics of
the dive track may certainly be useful, here | wish to compare more composite
collections of movements through the water column that occur at the scale of
hours, rather than seconds. The optimal time-step for such binning needed to
be long enough to capture the range of consistent, composite behaviours that
have been qualitatively described for tuna in previous studies, such as ‘U-
shaped diving’ (Schaefer and Fuller 2005; Schaefer, Fuller, and Block 2007),
whilst also being small enough to capture within-day shifts in behaviour, such
as the ‘afternoon diving’ described by Matsumoto, Kitagawa, and Kimura
(2013a). Once each time-series was divided into these suitable time bins,
summary metrics could be calculated for each section and used to characterise

and quantify the vertical movement pattern for that period.

To divide each time-series into these bins, raw data from the tags were
divided into sections from which summary metrics were calculated, starting
with two initial divisions made at points that estimated dawn and dusk. Data
were divided at these points to minimise the chance of behavioural sections
straddling the crepuscular periods during which tuna are known to undertake
behavioural switching (Musyl et al. 2003; Ohta and Kakuma 2004). In contrast
to arbitrarily choosing the 6am and 6pm time-stamp in the tag data as dawn
and dusk, as in the previous analysis, here | estimated these crepuscular points
individually for each tag. This was achieved by calculating the average time of
day at which large shifts in time-at-depth consistently occur, assuming that this
represents dawn and dusk, using a split-moving window analysis (Ludwig and
Cornelius 1987). This approach has been used elsewhere to divide the vertical
behaviour of free-roaming animals into behaviourally consistent sections over
longer timescales (Humphries et al. 2010; Sims et al. 2011). Initially, the depth
profiles for each time-series were divided into proportion of time spent within
10-meter bins during each half-hour time period of the entire dive track. Then,

a ‘virtual’ window encompassing 24 time bins (12-hours) was placed at the
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start of the track, and split into two equal halves. Summing the proportion of
time at each depth bin for each window half, the Euclidean distance was then
calculated between the split-window. This distance metric provides a measure
of how dissimilar the first window half is from the second, in terms of the time
spent by the individual at different depths. Dissimilarity was recorded at the
point in the binned depth profile split by the window, the window then moved
on one bin. The process was then repeated for the new window position. In the
case of tropical tuna, these measures of dissimilarity are often greatest when
the window equally straddles a period of deeper behaviour, typically during the
day, and shallower behaviour, such as exhibited during the night, although
this is not the case 100% of the time. There was also considerable inter-depth
movement that did not occur across these crepuscular periods. To identify
when the most consistent shifts in movement occurred, the time at depth bins
were randomly re-ordered 5000 times and the same analysis carried out. When
the dissimilarities from the random time-series failed to exceed those
calculated from the originally ordered data for a particular point 95% of the
time, it was concluded that this represented a significant shift in vertical
behaviour, given the natural variation in the data (an example section of dive

track is shown in Figure 4.3).
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Figure 4.3 Example centre points of significant changes identified between two
halves of 12-hour split moving window, shown with vertical dashed

lines.
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The periodicity of these significant behavioural changes was then
examined to identify whether there was a consistent, diel pattern in their
occurrence. Significant changes can be expected to occur more commonly at
the boundary between day and night. A histogram of periods during the 24
hours in which significant changes occurred revealed the times at which those
changes were most common. A K-means algorithm (Hartigan and Wong 1979;
MacQueen 1967) was applied to estimate two clusters from the frequency of
times of a (24-hour) day at which significant changes occur. The centre points
of these clusters were selected as the crepuscular boundary periods that divide
the dive data between day and night for the whole time-series, being the most

common times of the day when switches in depth-frequency occurred.

Once boundary periods had been identified, the data were further divided
into the smaller time-bins between those crepuscular boundary points.
Summary metrics were calculated from the raw data for time bins of 1, 2, 3, 4,
6, 12 hours duration for comparison (an example is given in Figure 4.4). At a
time step of 3 hours, a balance was obtained between capturing dynamics
such as only diving around crepuscular periods or periods of ‘U-shaped’ diving,
without very fine patterns such as lone thermoregulatory ascents being
characterised individually in the analysis. Summary metrics were calculated for
the data in each 3-hour section. These were: mean of depth and temperature;
median of depth and temperature; standard deviation of depth and
temperature; interquartile range of depth and temperature; 10" and 90"
percentiles of depth and temperature, and range between these values; the
mean delta depth and temperature, that is the mean value of successive
changes of depth or temperature in one direction, or step length; the standard
deviation of depth and temperature step length; temperature variance to depth
variance ratio; and standard deviation of velocity, which is the change in depth

per time taken between observations recorded by the tag.
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Figure 4.4 Depth from an example section of dive track (top), summarised as a

mean value over time-bins of (from top to bottom) one-hour, two-

hours, three-hours, four-hours, six-hours, and twelve-hours.

4.2.3 Qualitative descriptions

Rather than assign movement patterns based on their perceived
relationship to various factors (i.e. association to floating objects, day/night,
‘normal feeding’), here summary metrics are used to quantify four pre-
determined qualitative patterns without an implied ecological meaning. This

approach allows an examination of the relationship between vertical behaviour
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and potential covariates such as size or region, without implicitly incorporating
assumptions that may be erroneous. Dive profiles are described as a series of
these distinct patterns, which have previously been used to classify the typical
vertical movement patterns in tropical tuna for persistent periods of 3 to 12
hours. Although qualitative descriptions of behaviour have been ascribed to a
variety of temporal scales, here | make the assumption that behavioral patterns
exhibited for longer than the three-hour time bin used here are simply
continued exhibition of that behaviour, for two more individual three-hour

periods.

Four vertical behavioural patterns were defined based on the movement
of an individual through the water column, and the thermal-habitat occupied
during the behaviour. These patterns were based on consistent behaviours
used to describe tropical tuna in previous studies, although their qualitative

nature precludes them from being truly objective.
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Figure 4.5 Example time-series section of depth and water temperature during
typical shallow behaviour. Two example summary metrics, standard
deviation of depth and mean water temperature, are shown

underneath.
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State S - Shallow behaviour

This state is characterised by sustained time in surface epipelagic waters,
notably remaining in warmer waters above 25 "C for the majority of the pattern
(see Figure 4.5). The fish typically remains in the top 100m of the water
column, although the varying depth of the epipelagic layer means this is not
always the case. While there may be occasional unconnected dives into the
thermocline, these are not particularly deep or sustained, rarely penetrating
the 20°C isotherm. Such behaviours have been identified as shallow or mixed-
layer behaviour (Leroy et al. 2010; Matsumoto, Kitagawa, and Kimura 2013a;
Schaefer, Fuller, and Block 2007). This classification includes, but is not limited
to, surface or floating object association behaviour defined in other previous

studies (e.g. Schaefer and Fuller 2013)
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Figure 4.6 Section of dive track showing typical thermocline association

behaviour.
State T - Thermocline association

Thermocline association may vary considerably in depth, but all share a
general residence within and above the thermocline (see Figure 4.6). This

includes sustained movement at depth within this zone where changes in
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water temperature are very rapid, as well as continued movements in and out
of the top of the thermocline. Similar behaviours have been identified in
previous studies (Dagorn, Holland, and Itano 2006; Schaefer, Fuller, and Block
2009; Sharp 2001), particularly, although not exclusively, for yellowfin.
Thermocline association is rarely sustained at depths lower than the 20°C
isotherm, at which point regular ascensions to warmer waters tend to occur

(see States U and B below).
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Figure 4.7 Example section of U-shaped diving behaviour with

thermoregulatory ascents.
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State U - U-shaped diving behaviour

U-shaped patterns consist of clear deep diving movements. These
behaviours are typified by high frequency but low amplitude movement at
depth below the thermocline in the mesopelagic layer, interspersed with brief
ascents to the surface to rewarm (Figure 4.7). Sometimes the maximum depths
of the dives will increase during the first half of the day-time, and then
decrease until dusk. Occasionally, there are also single, deeper dives
undertaken within this behaviour, often marking the end of this pattern. Such
behaviour is typical of bigeye tuna, although it is sometimes undertaken by
large yellowfin (T. Matsumoto, Kitagawa, and Kimura 2013b; Schaefer, Fuller,
and Block 2007; Schaefer and Fuller 2005).
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Figure 4.8 Isolated example section of bounce diving behaviour below the

thermocline.
State B - Bounce diving behaviour

Bounce diving is typified by fairly continuous movement between the
surface and bottom of the thermocline, with little time spent at a particular
depth. Although sometimes similar to thermocline association, here | define

bounce diving as distinct in that many dives are made to depths colder than
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seen during thermocline association (Figure 4.8). This kind of bounce diving
has been identified for tropical tuna in (Leroy et al. 2010; Schaefer, Fuller, and
Block 2009).

4.2.4 Machine learning

Machine learning has a long history in pattern recognition for a variety of
fields, but has increasingly been used to solve ecology problems where data
are very numerous or abstract (e.g. Mapp et al. 2013; Pontin et al. 2011;
Schreer, Hines, and Kovacs 1998). Such approaches provide the benefit of
being automated, more objective than human classifiers, and, with modern
processing power and software packages, efficient and easily accessible. Here,
| initially explore the success of a number of well-known supervised machine
learning techniques on their ability to accurately classify yellowfin and bigeye
behavioural data from the PTTP.

The time constraints and lack objectivity prevent the manual classification
of the near 115,000 three-hour sections of archival dive data present in the
PTTP database. Subsequently, the machine learning algorithms were examined
for their ability to classify the PTTP archival data based on information
captured from a training set of data. This training set consisted of 2000
manually classified three-hour sections from archival tag time-series, with the
classification undertaken by four separate experts, each trained in
identification of the patterns and carried out in isolation. The sections were
taken from 6 separate fish, including yellowfin and bigeye tagged in both the
Eastern and Western Pacific regions. Each section of vertical movement data
was classified as belonging to one of the four patterns described above by
each expert. A canonical training set was then created by assigning the most
popular classification amongst the four trainers (by majority vote) to each

three-hour section.

Machine learning techniques typically look at the variation or spacing
between multi-dimensional datasets, and then group observations based on
certain criteria. Unlike statistical modelling, where the aim is usually to find the
most parsimonious solution to describing patterns in data, here we are
concerned only with successful classification. Subsequently, the more

independent ways of quantifying a given pattern are used, the more
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information is available to an algorithm for classification. Here, | use the
summary metrics calculated across the three-hour sections used for manual
classification as a quantification of these described behaviours. A pairwise plot

of metrics captured from an example bigeye time-series is given in Figure 4.9,
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showing how each pair of metrics visually correlates to one another.
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Figure 4.9 Pairwise plots of example summary metrics captured form a single

different distribution, a transformation was necessary before classification.
Therefore, all metrics were log transformed and scaled to a Z-score with zero

mean and unit variance, ensuring they better resembled normal or a mixture of

time-series. Rows and columns represent (from top to bottom, left to

right): mean depth, standard deviation of depth, median depth,

mean depth step-length, mean water temperature, standard

deviation of water temperature, and median water temperature.
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normal distributions. The data were then randomised, and 20% set aside as an

unseen “test set” not used in training the algorithms.

Three alternative machine learning approaches were examined. These
were K-nearest neighbour (Fix and Hodges Jr 1951), Nu- Support Vector
Machines (Cortes and Vapnik 1995), and Random Forest Classification
(Breiman 2001).

K-nearest Neighbour: KNN classification is one of the earliest and simplest
machine learning algorithms used for classification. Essentially, a training set
of points is used to classify a new unknown point, based on the majority
membership of its k-nearest neighbours in the multidimensional space defined
by the metrics used for classification. Here, | use the knn algorithm in the class
package (Venables and Ripley 2002) in R (R Core Team 201 3).

Nu Support Vector Machines: Nu-SVM is a version of the original support vector
machines algorithm for classification. As with KNN, this approach uses existing
positions of points from a training set to classify new data. In an SVM however,
the space is mapped such that each group from the training set is separated
by as large a gap as possible by a high-dimensional hyperplane. The most
difficult points to classify, i.e. those most alike, bound the margins of this
hyperplane and an SVM algorithm maximises this margin to create a large gap
between this points, or support vectors. Nu-SVMs take an additional parameter
Nu, which sets an upper bound on the training error and lower bound on the
number of support vectors. Here, | use the ksvm algorithm implemented in the

kernlab library (Karatzoglou, Smola, and Hornik 2013) in R.

Random Forest Classification: Random forest methods combine a high number
of weak but efficient decision trees, each created from random subsamples of
the data and predictor variables, for classification. This random sampling of
predictor variables used for splitting the data helps ensure that trees will be
less correlated with each other, particularly if a small number of these
variables are very strong predictors. New observations are run down all of the
trees in the ensemble, and a majority class membership is calculated, resulting
in a process that is computationally relatively fast. For this study | used the
algorithm randomForest in the R package of the same name (Liaw and Wiener
2002).
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A number of parameterisations are possible for each algorithm, requiring
at least a minimal parameter sweep to be carried out. A leave-one-out
validation was undertaken, in which each individual sample in the training set
was classified using an algorithm built on all of the remaining samples. A
sweep of some key parameters was done to estimate the best possible values,
alongside a cross-validation score (CV). The best parameters and
corresponding average CV scores are given in Table 4.1. The most accurate
parameterisation was then used to classify the previously unseen 20% test set
of data, providing a test score of percentage correct classification for
comparison of the three algorithms. Two additional scores were also calculated
for each individual behavioural pattern: precision, which is the ability of the
algorithm to not to label a particular sample as the behavioural pattern, when
it is actually one of the other patterns; and recall, which represents the ability
of the classifier to correctly classify a particular sample as not belonging to the
behavioural pattern, regardless of what classification was assigned. These

scores are summarised in Table 4.2.

Table 4.1 Summary of cross-validation scores of most accurate

parameterisations for each machine learning algorithm.

Algorithm CV Score

K-nearest neighbour
0.83
Number of neighbours = 3

Nu- Support Vector Machines

Kernel function = Radial Basis kernel

Kernal degree = 2 0.91
Inverse kernel width = 0.043

Nu=0.15

Random Forest Classification 0.84
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Max nodes = 5

Number of variables = 15

Table 4.2 Classification test scores for each behavioural class and overall

success.
Algorithm Precision Recall Test
Score

S|T|U|B|Overall | S|T|U]| B | Overall
KNN .91(.73|.85|.42| 0.79 |.94|.66|.79|.56| 0.78 0.78
Nu-SVM .97(.93(1.0|1.0| 0.97 |.97|.97|1.0/.89| 0.96 0.96
Random Forest .89(.76(.86|.57| 0.80 |.94(.76|.86|.44| 0.81 0.81

From these results, it is clear that the Nu-SVM machine learning performs
the highest of the three algorithms overall, as well as for each individual
behavioural classification. In particular, it appears to identify the bounce diving
state much more accurately than the KNN and Random Forest classifiers.
Although the 97% classification success on the test set is unlikely to be

replicated on a larger unseen set of data, these results are encouraging.

In light of these results, a Nu-SVM classifier was subsequently built using
the complete training set, including the previous 20% test set. The classifier
was then applied to a subset of the full PTTP archival database consisting of
117 individuals (44 yellowfin and 73 bigeye) constituting around 87000 three-
hour sections of data. The classified dive tracks were used to compare the
proportion of time spent exhibiting different behaviours, and how these differ
across factors of interest. Here, | tested the hypothesis that the proportion of
time spent undertaking each of these behaviours varied between species,
between size classes and between regions assumed to have differing FAD-

density.
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4.2.5 Results

The proportion of time spent exhibiting each of the four pre-defined
behavioural states was calculated for each time-series. These proportions were

divided into day-time, night-time, and all-day subsets.
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Figure 4.10 Boxplots of time spent exhibit behavioural states for bigeye tuna.

Figure 4.10 shows the proportions of time spent exhibiting each

behavioural class across these day-time, night-time and total divisions. Bigeye
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tuna exhibit fairly consistent switching between undertaking U-shaped diving
during the day and, in the majority of cases, shallow behaviour during the
night. This conforms to previously described ‘characteristic’ behaviour for
bigeye, which are the dominant behaviours observed in other tagging studies
(e.g. = 57% in Matsumoto, Kitagawa, and Kimura (2013a); = 52% in Schaefer
and Fuller (2010). It appears that there is greater variability between
behaviours undertaken during the day, with some individuals spending time
associated with the thermocline or the mixed layer, rather than U-shaped

diving.
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Figure 4.11 Boxplots of time spent exhibit behavioural states for yellowfin

tuna.
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Figure 4.11 displays behavioural proportion boxplots for yellowfin.
Yellowfin tuna exhibit similar behaviours to bigeye during the night-time,
spending the majority of these periods in the shallow mixed layer, although
like bigeye, they may also associate with the thermocline. Day-time behaviour
appears evenly split between U-shaped diving into colder water and time spent
in the thermocline, with day-time periods of shallow behaviour less prominent
than in bigeye tuna. It is also noted that there is a slightly higher proportion of

time spent bounce diving than bigeye tuna, particularly during the day-time.

Changes in an individual’s tendency to undertake certain behaviours may
be related to physiological changes in a fish’s ability to dive into colder layers
of water, and declining school fidelity. Previously, mean depth over the entire
time-series for each individual was used to identify potential changes in
behaviour over size at release. Here a similar effect was investigated by
visually examining the change in proportion of time spent exhibiting each
machine learning classified behaviours over the fork length of fish at time of
release. Once again, these results are separated by species and into day/night

periods.
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Figure 4.12 Proportion of time spent exhibiting four different behavioural classifications across fork length-at-release for bigeye

Length at release (cm)

during the day-time.
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Although there is lots of individual variation in the data, some general
patterns are apparent. As they grow larger, bigeye tuna undertake U-shaped
diving during the day more consistently, with the largest individuals rarely
exhibiting thermocline association. This is likely to be related to the increasing
ability to thermoregulate and the increase in the size of the swim bladder,
which is well developed in yellowfin by 70cm (Magnuson 1973). The likelihood
of uncharacteristically remaining near the surface during the day (such as
during FAD-associative behaviour) also appears to decrease. During the night,
the propensity for remaining at the surface increases with length, the largest
individuals almost exclusively remaining in the surface mixed layer during this
time. This may be due to a combination of increased thermal inertia in the
warmest layers of water, decreased need to change depths in predatory-
avoidance, or a shift to hunting larger size classes of prey inhabiting the
surface waters. Bounce diving, during either day or night periods, appears to

have no relationship with fish length.
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Figure 4.14 and Figure 4.15 show the proportions time spent in the
machine learning classified behavioural classes for yellowfin. During the day-
time, a similar pattern to bigeye is observed, although the proportion of time
spent associated with the thermocline is still relatively high for large fish. The
swim bladder in yellowfin tuna begins to develop between 50-60cm FL, and
increases rapidly until around 80cm (Magnuson 1973), which may account for
the apparent shift in preference between feeding at the thermocline and
deeper in the water column across these lengths. Shallow, ‘associative’
behaviour during the day-time appears to occur more consistently across all
length classes than in bigeye tuna. The behaviour of yellowfin at night is very
similar to that of bigeye tuna, with individuals increasingly exhibiting shallow

behaviour at the expense of other states as they increase in size.

To begin to examine the possible effect of dense FAD use on behaviour at
length, fish were initially divided into two groups: those tagged and released in
the Bismarck Sea, an area of dense FAD use (Kumoro 2002), and those
released elsewhere. The majority of bigeye released in the Bismarck Sea
occupy the same smaller size range, and so there sample size was not high
enough to compare these two regions for this species. Here just data from
yellowfin during the day-time are examined, and shown in Figure 4.16 and
Figure 4.17. Night-time behaviour was comparable across both spatial groups,

and so these subsets are also not shown.
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Figure 4.16 Proportion of time spent exhibiting behavioural classifications for yellowfin released outside of the Bismarck Sea area,

across fork length-at-release during the day-time.
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Behaviour in both groups shows a consistent pattern of no change in time
spent near the surface or bounce-diving as fish increase size. As in the non-
spatially divided vyellowfin data examined above, fish appear to slightly
increase their U-shaped diving and decrease time spent at the thermocline with
size. However, there is no clear difference between the two spatially divided

groups for any of the machine learning classified behaviours.

4.2.6 Key problems with machine learning

Supervised machine learning provides an automated and objective way of
classifying the patterns seen in dive profiles from electronic tags. The analyses
here demonstrate how large amounts of data can be processed relatively
quickly, allowing analysis of pre-determined behaviours across a population of
tags and factors of interest. The preliminary analyses in this chapter confirm
behaviours that occur with similar proportions to those that have been
previously observed in yellowfin and bigeye, although there is a large amount
of variation between individuals. Some changes are also seen which conform to
hypotheses about the effects of size and FADs on exhibited behavioural

patterns.

However, before detailed interpretations of the results can be made,
several significant caveats with this analysis must be discussed. Here, | detail
several critical problems with using such an approach to analyse behavioural
data.

Accuracy: Although the test scores showed the performance of the Nu-
SVM algorithm to be high, the accuracy of out-of-sample classifications can
always be called in question. While in many cases behavioural patterns are
clear and distinct, in reality there are many instances where behaviours occur
on a spectrum. For example, a period of intensive thermocline movement
might contain a brief pocket of U-shaped type movement, causing the classifier
to associate the pattern with other, clearer U-shaped behaviours. Furthermore,
machine learning algorithms such SVMs are binary classifiers, that is,
observations are classified as belonging to just one group, without any

measure of the probability or likelihood of group membership.

Objectivity: The problem of noisy and composite behaviours causing

problems for automated classifiers is actually part of a more critical issue in
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the description of these data; objectivity. Although machine learning methods
are an improvement over purely qualitative descriptions of the data, there are
still biases in such a selection. The algorithms themselves are built around a
training set that has been selected, interpreted and classified by a human.
Such training sets are not truly objective and make a number of assumptions,
not least of which is that four distinct behavioural states exist. The patterns
seen in dive profiles are actually the result of many underlying motivations and
reactions to local stimulus that are unknown to us, the observers. A sound
classification technique must take this into account, allowing for variation and

noise within the data.

Statistical Power: Machine learning methods do not offer statistical
likelihoods or other measures of model appropriateness that allow alternative
approaches to be easily compared, other than accuracy in classifying training
sets. Similarly, there is no way to incorporate covariate information believed to
non-linearly influence the occurrence or nature of behaviours into the classifier
itself, such as day or night. Rather, meta-analyses must be carried out on the
time series post-classification, as | have done in this chapter, adding another

layer of modelling and interpretation to results that must be considered.

Autocorrelation: The behavioural time-series of living organisms are
usually autocorrelated (Hartmann and Gottman 1980), meaning that the
behaviour exhibited at one time is usually dependent on the behaviour that
has recently occurred. Plotting the autocorrelation function of mean
temperature summary metrics, calculated over three-hour time bins for an
example bigeye from the PTTP, shows that significant auto correlation occurs
over diurnal time-scales (Figure 4.18). Ignoring this autocorrelation affects the
success of the classification algorithms, as often noisy or less clear sections of
behaviour may be more accurately categorised in relation to the context of
preceding patterns. Furthermore, traditional statistics carried out on these
classifications violate the assumption of independence of observations, and

may be unreliable for time-series (Jassby and Powell 1990).
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Figure 4.18 Autocorrelation function lag of mean water temperature from a

time-series of bigeye tuna behaviour.

Before an interpretation of the vertical movement behaviours from
archival tag time-series can be undertaken, data needs to be accurately
described and quantified. Only once an appropriate method of description is
developed can meta-analyses of changes to movement behaviours across
factors such as size or region be carried out with confidence. While the
summary statistics and machine learning approaches detailed in this chapter
are useful at examining some broad patterns, until the issues listed above can
be resolved, alone they are an incomplete solution to the kinds of analyses
required to test hypotheses about movement behaviours observed with bio-
logging devices. The lack of objectivity in the qualitative descriptions of the
data above, and derived machine learning classifications, is of particular
concern. Although unsupervised machine learning methods are also available,
where data is classified without prior training but simply from the shape of the
data themselves, this does not overcome other problems of statistical power
and autocorrelation. In the next chapter, | will develop a method that attempts
to overcome some of these issues using a hidden Markov-modelling for time-

series approach.
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Chapter 5: Classifying Continuous Dive Data
Using Multivariate-Normal Hidden Markov
Models

The potential for electronic bio-logging and archival tagging data to
provide new insights into the small-scale behaviour of tropical tuna is clear. As
discussed in Chapter Four, before interpretations and conclusions can be
drawn from any analysis of these data, an appropriate way to describe and
classify the patterns within them needs to be developed. In this chapter, | re-
visit some of the key problems with the description of bio-logging data, then
detail a method of probabilistic classification using multivariate-normal hidden
Markov models. This approach attempts to resolve the issues with the
qualitative and machine-learning analyses detailed in Chapter Four. The
method is tested on the data from series of simulation experiments, before
being applied to a small subset of the PTTP archival tag database of yellowfin
and bigeye. These results are examined for accuracy and consistency with

previous behavioural studies.

5.1 Introduction

5.1.1 The analysis of bio-logging data

Developing a set of objective tools for quantitative analyses of individual
behavioural time-series is now necessary in order for these data to be
incorporated into natural resource management models and scientific advice
(Morales and Ellner 2002; WCPFC Tagging Commitee 2007). However,
guantitative analyses of time-series from bio-logged animals typically involve
overcoming a number of problems. Three of these problems are re-iterated

here.

First, although bio-loggers can record high-resolution data relating to
individual movement, the behaviour of the tagged animal is not explicitly
observed. Changes in movement patterns are the likely result of underlying

motivational changes in animal behaviour. These motivations may persist or
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change in relation to environmental or other stimuli, but because these
interactions are not directly observed, considerable care must be taken when
interpreting time-series data recovered from bio-logging experiments. In
particular, relating qualitative descriptions of behaviour to some other variable
can implicitly incorporate erroneous assumptions, biasing perceived
relationships between movement behaviours and potential drivers (Bélisle
2005).

Second, behavioural time-series data contain significant autocorrelation -
i.e. behaviour observed at one time is related to behaviour observed
previously. This is the result of persistence of the underlying processes, such
as hunger or resting, that motivate the animal’s behaviour. The presence of
autocorrelation means that traditional statistical tools, based on the
assumption of independent observations, may be unreliable (Hartmann and
Gottman 1980; Jassby and Powell 1990).

Finally, characterising behavioural states from time-series data requires
the analyst to classify and describe distinct patterns, and to identify or smooth
noise in the data (Hartmann and Gottman 1980). When undertaken manually,
each of these stages can introduce conscious and unconscious biases to the
interpretation of this behaviour. Arriving at an objective description, however,
is problematic, and care must be taken when choosing the correct temporal
and spatial scale to examine inferred behavioural patterns in light of the

specific hypotheses being tested (Levin 1992).

Free-roaming marine species such as tropical tuna present a particular
challenge in this case. Detailed information on the movements of these
animals can be captured with bio-logging equipment, but much of the
environmental and ecological context of the behaviour is hidden from us (Kirby
2001). Their movements may be relatively unconstrained both laterally and
vertically, their spatial ranges are often large, and behavioural cues are less
familiar (Dagorn et al. 2001; Davies et al. 2012). Dynamic environmental
boundaries such as ocean fronts constrain or promote spatial behavioural
patterns which are often transient and relatively unpredictable (e.g. Bost et al.
2009; Gaspar et al. 2006; Tew Kai et al. 2009). This poverty of information
makes the signals observed from tagging experiments on marine animals

especially difficult to interpret.
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5.1.2 Describing continuous dive data

Continuous dive data can be considered as measurements of depth and
temperature captured at the scale of minutes in a single vertical dimension,
and which exhibit no consistent behavioural unit of division. In fish species, for
example, this vertical movement data is not structured according to any
convenient unit of behaviour such as surfacing to breathe, clear individual
dives or returns to a nest or colony. The information is typically recorded using
sensors that measure time, water depth, internal and external temperature,
and light. Such data captured from many bio-logged apex predators (including
tunas, billfish, sharks or marine mammals) contain patterns of diving which are
hypothesised to be associated with foraging, predator avoidance and
physiological regulation (Campana et al. 2011; Hazen et al. 2011; Schaefer,
Fuller, and Block 2007). However, since it is near impossible to measure
environmental context at depth for free-roaming animals, the behavioural cues
driving these patterns remain obscure. To address these challenges, and
range of methodologies for the description of bio-logging data have been

used.

Categorising vertical movement into behavioural classes has frequently
involved assessment by eye, or based on criteria such as time spent within
certain depth layers of water at different times of the day (e.g. Chiang et al.
2011; Schaefer, Fuller, and Block 2007; Sims et al. 2009). While behavioural
patterns can sometimes be easily recognisable by eye, these patterns may also
occur as a spectrum of noisy or composite behaviours, which are difficult to

identify objectively.

5.1.3 Hidden Markov models

Hidden Markov models (HMMs) are a form of state-space model that have
been increasingly applied to time-series of animal behaviour. HMMs have a
long history in the field of signal processing, particularly for voice recognition
(Gales and Young 2007), but their popularity as a tool for examining ecological
data has increased in recent years. Examples of such models applied to
ecological problems include the foraging behaviour of mouse lemurs (Schliehe-
Diecks, Kappeler, and Langrock 2012), horizontal movement behaviours of

southern bluefin tuna (Patterson et al. 2009), at-sea behaviour of Manx
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shearwater (Dean et al. 2012), and diving behaviour in macaroni penguins
(Hart et al. 2010). HMMs assume observations will depend on a finite number
of underlying unobservable states (MacDonald and Zucchini 2009).
Accordingly, each individual observation is assumed to be drawn from one of
several distributions, each corresponding to a ‘hidden’ state. In the case of
animal behaviour, we might assume an individual has resting and feeding
states, each associated with distinct distributions in the data recorded by a bio-
logging device. The underlying principle is analogous to an independent or
discrete mixture model (Welsh et al. 1996), in which observations are drawn
from one of several independent distributions in proportion to a probability for
each state. In a HMM, however, the transition between hidden states is
assumed to be governed by a Markov chain, where the probability of the
animal being in a given state at a given time is dependent on the state it was in
during the previously sampled time-step. Thus, if an animal was in a resting
state at a given time-step, probabilities are associated with it remaining in this
state or switching to each other state defined in the model. Autocorrelation is
therefore intrinsically incorporated into the assumptions of the model, albeit
with an assumption of first-order Markov dependence. HMMs ability to
objectively estimate patterns from data in which behaviour may not be
explicitly observed is particularly attractive in studies of in situ animal
behaviour, where behaviours can only be inferred from indirect observation.
HMMs provide a statistically rigorous framework to fit models to data, and can
be linked to covariate information by allowing these extra data to further

influence the model parameters (MacDonald and Zucchini 2009).

Here | describe a method for processing and describing continuous dive
data from free-roaming marine animals using multivariate normal HMMs. The
HMMs developed in this study model three aspects of behaviour. First, the
most likely parameters describing the state distributions are estimated,
indicating the shape of the behavioural states that we assume each
observation is drawn from. Second, the parameters that describe the
probabilities of switching between these underlying states at any time-step are
estimated. Finally, these fully describe the HMM, which can then be used to
probabilistically classify the time-series into a behavioural state at each time-

step.
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The method development is motivated by the need to objectively quantify
the behaviour of tropical tuna in light of the poor and un-objective results of
described time-series in the previous chapter. Initially | describe and explore
the method by simulating data that represent two potential scenarios for the
ecology of a theoretical marine animal. HMMs are fitted to these artificial data,
and their performance examined. | then undertake the same approach on a
small sample of datasets recovered from archival tags implanted in yellowfin
and bigeye tuna of the PTTP. The behavioural states and switching estimated
by the HMMs on this example subset of real-world time-series are examined
for consistency with previous descriptions of tuna behaviour. Finally, the
potential for using HMMs fitted to continuous dive data for population

dynamics models and providing scientific advice to fisheries are discussed.

5.2 Methods

5.2.1 Multivariate HMM

Detailed mathematical descriptions of HMMs and broader state-space
models exist in previous publications (e.g. MacDonald and Zucchini 2009;
Patterson et al. 2009), but | outline the basic concepts here. In the context of
animal behaviour, a HMM assumes that an observation, X, at a particular time-
step (e.g. distance travelled, speed or location) is drawn from a distribution, D,
associated with a behavioural or motivational state S. In addition, the time-
series of these behavioural states forms a Markov chain that is described by a
matrix of probabilities governing the switching between states. The probability
of an individual occupying a behavioural state at time t is dependent on the
probabilities of occupying each of the states at time t-1. Although | do not
explore them here, more complex g-order dependence can also be
incorporated in a variety of ways, with by including the mixture transition
distribution models proposed by Raftery (1985), or expansion of the transition
matrix to allow each state to be defined a vector containing the states of the

previous g time-steps.
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In a HMM the state at each time-step S, will be one of M states i, each
associated with a separate probability distribution D with parameters ¢. The

probability of observing x is therefor:
P(x |S,=10)=D(x1¢)

The hidden process model in a HMM that controls the switching between
these states from time t-1 to time t is described by a set of state-to-state
transition probabilities grouped in a transition matrix I, which simply arranges
the probabilities of switching from the current state to each of the others at
each time-step. Each transition from state i to state j is a transition probability,
m, collected together in the transition matrix which describes the probability

of switching from any state to any other

Ty - Tym
F={: . =P(St =JjISt-1=1)

Mme - Mum

Following the law of total probability, each row of this transition matrix
describes all possible switching outcomes from a given state, that is M, must

sum to 1 across j.

In general, the likelihood of a given set of time-series data from t = 1...T
is the joint probability of observing the observation sequence

L = P(x,, X, X, ... XT)

Although the joint probability is the product of each individual
observation probability, the sum of the logarithms is usually taken. In a HMM,
this joint probability can be decomposed as follows. The state probability,
P(S), is dependent on the state probabilities at at t-1. Consider the likelihood

contribution at time t

M

Le = ) (P (x 1S, = D) P (S = D)

i=1

M
— Z(p (X 1Sy =10) P (S =118p-1,%1))
i=1
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M
= Z(P(xt |Se=1) P(S;=1ilSe-1) P(Sp-q | X))
i=1

The likelihood contribution of each observation is therefore the sum of
probabilities of observing this observation for each behavioural state
distribution, given the probability that the individual is occupying that state,
dependent on the state occupied at the previous time-step. During parameter
estimation, the negative log-likelihood was minimised using a multivariate
adaptation of the forward filtering recursive algorithm described in Patterson
et al. (2009) and MacDonald and Zucchini (2009). The classification probability
of each behavioural state at each time-step is undertaken using the state
probability backward-smoothing approach detailed in Wikle and Berliner
(2007).

It is also possible to include further covariate information in the
estimation of these model parameters. A covariate that is assumed to affect
the value of a parameter can be included as a coefficient in an equation
describing how that parameter changes in relation to the covariate. Here only
binary information is included to assume a linear relationship between the
covariate and the state switching probabilities. In this case, for each individual

transition probability defined in equation 2,
T, =a, + BUY

where y is a continuous or binary covariate, and both « and g are estimated
parameters. In the case of the binary covariates | use here, the result is that
each state transition probability assumes one of two different values,
depending on the value of the covariate. It is also possible to include similar
covariate parameters in the state distribution means, allowing the nature of
the states themselves to change in relation to covariate information. However,
for simplicity of this example application here | assume constant state

distribution parameters across the time-series.

For fitting HMMs to behavioural time-series captured from bio-logging
devices that record data on water depth and temperature, | use a mixture of
multivariate normal distributions to model the multidimensional datasets. Thus

this observation model replaces the generic distribution in equation 1, and is a
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state-dependent multivariate normal distribution of k dimensions, such that we

assume for each observation x,
x,~D(p) = N(u, %)

where iis the current hidden state, g, is the multivariate mean in k dimensions,

and X the k by k variance-covariance matrix.

5.2.2 Data Pre-processing

For the HMMs in this study, | arranged data into a two-dimensional space
where each axis was constructed from a summary metric calculated from dive
profiles that have been separated into temporal bins. The method involved
three stages of data pre-processing. First, raw dive data is divided and
compressed to a time-series of these summary metrics in the same manner as
the machine-learning analysis of the previous chapter. Temporal binning and
metrics are chosen to capture the variation of patterns in the dive profile,
representing relevant dynamics and temporal scale to the behaviours we wish
to examine. These summary metrics are then log transformed to approximate

a mixed normal distribution, and finally arranged as a multivariate time-series.

It is important to match the temporal scale of observations to the
temporal scale of the behaviours that are the focus of the investigation.
Working with raw dive data provides many observations, but high levels of
variation and short-term behaviours, such as thermoregulatory ascents
(Holland et al. 1992). While an examination of these short-term activities using
HMMs based on raw high-resolution dive data may certainly be valuable, here |
investigate behaviour that occurs within a time frame of hours. Assuming that
this is the temporal scale that concerns feeding, digestion and satiation (Olson
and Boggs 1986), as well as fishing events (Baird 2009), the continuous raw
depth and temperature time-series data were divided into three-hour
subsections. This was done by first making divisions each day at dawn and
dusk, estimated using a split-moving window analysis (Ludwig and Cornelius
1987) on proportion of time at depth. This approach was described fully in the
previous chapter. Three divisions were made between the initial boundaries
estimated for dawn and dusk, creating eight subsections of approximately
three hours across a twenty-four-hour period. Summarising the dive data

across three-hour sections provided variation across many different
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behavioural patterns, while retaining significant autocorrelation and smoothing

some of the noise from those patterns unrelated to this study.

The same summary metrics as in the previous chapter were calculated
from each three-hour subsection to form the observations from which the HMM
was estimated. Any number of summary metrics can be chosen to form the
multivariate arrangement of observations, but here | chose a two-dimensional
observation model. The desire was to select a multivariate assemblage of
summary metrics that would capture information about relative movement
through the water column and temperature-based habitat use, both of which
are related to vulnerability to fishing gears. As the study included tuna from
different time periods and areas, | did not use measures of absolute depth that
may differ across these factors for behaviours of the same underlying
ecological motivation. Water temperature and absolute depth were highly
correlated, although non-linearly (see Figure 4.9. from the previous chapter). |
therefore used temperature as measure of thermal habitat use. As individual
deep and thermoregulatory dives can have a considerable effect on mean
temperature metrics, the median water temperature was used. To choose the
second summary metric in the multivariate assemblage, a principal component
analysis was carried out on all the summary statistics (except absolute depth)
calculated from individual fish to examine the ways in which the data may be
transformed into orthogonal components. The standard deviation of depth
provided consistently high loadings in the first principal component across a
range of individual fish. | chose this metric, a measure of vertical movement
amplitude across the time bin, as the movement component of this
multivariate normal observation model. Although co-varying, these two
variables can replicate considerable variation in patterns of raw dive data
already classified as different types in previous studies. However, they are also
related to the vulnerability of fish to fishing gears, representing both a level in

the water column and the strength of association at that depth.

The summary metrics from each time-series were log transformed to
better approximate a mixture of normal distributions. These processed data
were then arranged as a two-dimensional multivariate assemblage, forming the

time-series of observations to be modelled by the HMM.
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In addition, each observation was associated with a binary covariate
indicating the diel state, either day or night, at the time of observation. All
summary metrics were assigned as either day or night dependant on which of
the initial twelve hour subdivisions they were taken from. This binary
information was used as a coefficient in the estimation of all transition matrix
parameters, resulting in HMMs that essentially contained two sets of transition

probabilities between states, one each for day and night.

5.2.3 Model Estimation and Selection

For each dataset, a series of HMMs with two to five assumed hidden
states was estimated. In addition, a single-state model was estimated
consisting of a lone multivariate normal distribution without the transition

matrix Markov chain component.

Model parameters were estimated using the numerical estimation of a
minimum negative log-likelihood described in Patterson et al. (2009), and
using the Nelder-Weald algorithm in the R (R Core Team 2013) function optim()
(Nelder and Mead 1965), set to a tolerance 1e*. Initial values were supplied by
using a K-means algorithm (Hartigan and Wong 1979; MacQueen 1967) to
cluster the multivariate assemblage into the same number of groups as states
assumed in the model. Starting values for multivariate means and variance-
covariance parameters were calculated from these clusters, and a transition

matrix created from the observed sequence of these classified observations.

A number of techniques can be used to select the most appropriate
model from this suite for a given time-series. Using Akaike Information Criteria
on independent mixture models has been found to result in over-estimation of
the number of states and be an unreliable indicator of model suitability
(Celeux and Soromenho 1996; MclLachlan and Peel 2004). To avoid similar
potential problems selecting the most informative HMM from a suite, | instead
examined the estimated negative log-likelihood for a marked change in
decrease with increasingly complex models. As the number of pre-determined
hidden states increases, the estimated likelihood value tends to also increase
due to the model becoming more complex and fitting to the data more tightly.
However, a distinct ‘knee-bend’ can be seen in measures of the likelihood

across these models as increased numbers of parameters result in smaller

122



Tuna Movement Behaviours Chapter 5

improvements in the model fit (Dean et al. 2012; Zhao, Xu, and Franti 2008).
Likelihood estimates from models with a greater number of states than occur

at this ‘knee-bend’ are likely to be over-fitted.

In addition | used a visual inspection of ‘pseudo-residuals’. MacDonald
and Zucchini (2009) introduce these quantities, aiming to fulfil a similar model-
checking role as the residuals in conventional statistic models. In a HMM we do
not aim to predict the value of a response variable, but rather the nature and
probability of observations being a result of the assumed underlying states. As
such, there are no residuals in the sense of the difference between predicted
and observed values. However, the distribution of pseudo-residuals can be
used to examine the appropriateness of a model. A more complete description

of pseudo-residuals is given in MacDonald and Zucchini (2009).

5.24 Simulation Experiments

Validating the effectiveness of HMMs for identifying true behavioural
states from associated indirect measurements is challenging, since it requires
a priori knowledge of the true behavioural states associated with the time-
series data. In the absence of suitable data from animal studies, | also conduct
in silico simulation experiments to develop and examine the effectiveness of
using HMMs to estimate parameters that can then be compared with the true
known values. Following this, | apply the method to a small sample of real bio-

logging data taken from two species of tropical tuna.

Consider a theoretical free-roaming animal, capable of spending
extended periods of time at depth in cold oxygen-depleted layers of water. The
feeding ecology of this individual is based on active predation on vertically-
migrating prey, which spend the night-time located in a relatively narrow
mixed surface layer but which are patchily distributed throughout the water
column during the day. When a patch of prey is found the individual will
associate with the patch for a period of time, feeding until either it is satiated
or the patch disperses. In this scenario, all the phenomena described above
occur on the scale of hours. This simplified system is constructed to be
analogous to the general dynamics of many large marine predators in

oligotrophic waters, such as tunas and billfish (Dagorn, Menczer, et al. 2000).
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It is assumed that this individual has been tagged with a bio-logging
device capable of recording high resolution data for depth and water
temperature at the scale of minutes, and that this information is processed to
give summary values for these data at three hour intervals. | simulate two
scenarios and estimate HMMs, using replications of each to examine the

effectiveness of recovering true parameters:

Scenario One: In the first scenario, the individual alternates between two
behavioural states: feeding on prey in a narrow band of warm shallow water,
and feeding on prey across a variety of deep cooler water layers. These
behaviours are somewhat persistent, as the individual finds patches of prey
and associates with them to feed. A conceptual diagram of these behaviours

and summary observations is shown in Figure 5.1.

Scenario Two: In the second scenario the individual follows similar
behaviour, except that it is now capable of enduring significant time at depth,
feeding on patches of prey in very deep cold water. There are also now three
behavioural states - two persistent feeding states and a third transitive state,
representing movement throughout the water column while searching for
patches of prey. Furthermore, switching between these states is linked to a
cyclic binary covariate representing a day- and night-time cycle. Feeding in the
shallows is more persistent during the night, while feeding at depth is more

persistent during the day.
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Figure 5.1 Conceptual diagram of a simulation scenario one for the first 5
time-steps. Column one displays the simulated observations and true state
distributions they were drawn from. Column two is the true matrix of
transition probabilities. Column three gives potential examples of

corresponding real patterns from raw time-series of tropical tuna.
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| stochastically generated fifty time-series of observations from
multivariate normal distributions and transition matrices to create time-series
representing the processed data from each of the above scenarios. Each time-
series was of length N = 500 observations, which is analogous to over sixty
days of data from a bio-logging device assuming a resolution of mean values
calculated at three hour intervals. The true multivariate normal distributions,
alongside mean estimates from the HMM, are shown in Figure 5.2. A detailed

list of the parameters is given Table 5.1 and Table 5.2.

Table 5.1 True multivariate mean, variance-covariance and transition matrix

parameters for each state in simulation scenario one.

State Multivariate Variance- Transition
mean o covariance probabilities
matrix X
(depth,
temperature)
State 1- 4,10 Depth = 2 1->1=0.8
Persistent
Temp = 0.5 1->2=0.2
Shallow State

Covariance =0

State 2- 6, 6 Depth =1.5 2->1=0.3
Persistent Deep

Temp =3 2->2=0.7
State

Covariance = -

0.5
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Table 5.2 True multivariate mean, variance-covariance and day/night-time

transition matrix parameters for each state in simulation scenario

two.
State Multivariate Variance- Transition Transition
mean o covariance probabilities probabilities
matrix X during day- during night-
(depth, ] .
time time
temperature)
State 1- 4.10 Depth = 2 1->1=0.2 1->1 =0.8
Night-time
. Temp = 0.5 1->2=0.2 1->2=0.2
Persistent
Shallow Covariance=0 1->3=0.6 1->3 =0.0
State
State 2- 6, 6 Depth = 2 2>1=0.04 2>1=0.4
Transitive
. Temp = 0.5 2->2=0.48 2->2=0.58
Searching
State Covariance =0.5 2->3=0.48 2->3=0.02
State 3- 7,4 Depth = 0.5 3->1=0.3 3->1 =0.5
Day-time
. Temp = 0.5 3->2 = 0.1 3->2=0.5
Persistent
Deep State Covariance=0 3->3=0.6 3->3=0.0
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Figure 5.2 True (solid lines) and estimated (dotted lines) state distributions for scenario one (left) and scenario two (right).
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5.2.5 Real-world Data

Table 5.3 Time-series from PTTP tags used in this analysis.

Fish Species Release Time Recording Date of Notes
Fork at resolution (s)  release
length liberty
(cm) (days)
Arcl63  Bigeye 59 174 240 Nov Lotek Wireless

2011 LTD-2510

Arc294  Bigeye 53 318 30 Dec Lotek Wireless
2011 LAT-2810

Arc272  Bigeye 106 360 30 Nov Wildlife Computers
2010 TDR-Mk9

Arc88 Yellowfin 50 168 300 Feb Lotek Wireless
2007 LTD-2410

Initial 40 days of
data corrupt and

removed

Arc269  Yellowfin 98 255 30 June Wildlife Computers
2010 TDR-Mk9

Approx. 240 days
data corrupt and

removed

Arc220  Yellowfin 98 124 60 Sept Wildlife Computers
2007 TDR-Mk9

Having examined the success of using multivariate HMMs on simulated
time-series, | then applied this method to real-world data. Time-series were
chosen from six individuals across two species of tropical tuna - three
yellowfin tuna, and three bigeye tuna. The vertical behaviour of these species

has been described in numerous previous studies (e.g. Dagorn, Holland, and
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Hallier 2006; Ohta and Kakuma 2004; Schaefer, Fuller, and Block 2007),
exhibiting some differences in their evolved strategies to exploit prey through

the water column (Dagorn, Menczer, et al. 2000).

These behavioural time-series are taken from this PTTP database, and
were recorded by archival tags surgically implanted in tropical tuna following
the methods outlined in Schaefer, Fuller, and Block (2007). A variety of
electronic tag devices were used, and each time-series is summarised in Table
5.3.

5.3 Results

5.3.1 Simulation Results

The results from the two simulation experiments were examined before
building HMMs on the time-series data from real bio-loggers. The average
negative log-likelihood values from the fifty repetitions across HMMs estimated
with a successively greater number of hidden states are shown in Figure 5.3. A
visual inspection of these values, alongside pseudo-residuals, showed little
improvement for models in which the number of assumed states was greater
than the true number used in the two scenarios. These true values were two

and three states for scenarios one and two respectively.

The true and average estimated state distributions across the fifty
replications of these ‘correct’ models for each simulation scenario are also
shown in Figure 5.2. Quantifying the performance of the HMM estimation is
non-trivial. While many common statistical tests exist for comparing sample
means to a population mean, for multivariate distributions more complex
measures such as Kullbuck-Leibler divergence must be used (Kullback and
Leibler 1951). In these simulation experiments however, | simply wish to
examine the accuracy of the method for recovering the known parameter
values used in the simulation of the data. Furthermore, because of the varying
ranges of the parameters estimated in a HMM, limited in some cases to
positive numbers for variances and values between zero and one for transition
probabilities for example, interpreting accuracy from simply the relative or
absolute deviations from a true known parameter is difficult. Here | use parallel

coordinate plots (Inselberg 1985) to visually examine the accuracy and
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variation of the estimated models in these simulation experiments. These plots
are used for displaying multidimensional data, with the position of each point
marked by a line that passes through each vertical bar at the position of that
point in each dimension. The true and estimated values of each set of state
distribution parameters alongside transition probabilities for the two scenarios

are shown in Figure 5.4 and Figure 5.5.

In general the state distribution parameters were well estimated by the
models, with multivariate means estimated more accurately than variance-
covariance matrices. Less persistent states, having generally fewer
observations, had less accurately estimated parameters. Large, dimension-
specific variances were not precisely estimated, although they were normally
distributed around the true values. In addition, although covariance values of
zero were well recovered, when levels of covariance between dimensions were
non-zero, these values were both less precisely and less accurately estimated.
Transition parameters were also well estimated, although states with few
observations or high overlap with other distributions were naturally less
precise. It also appears that there may have been a bias towards
underestimation of the most persistent state transitions. In the case of
scenario one, the estimated HMMs had a mean classification rate of 97.0%
(stand. dev. 0.9%), and for the more complex scenario two, the mean was
90.6% (stand. dev. 3.4%).
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Figure 5.3 Changes in mean estimated negative log-likelihood across nhumber

of assumed states for both simulation experiments.
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Figure 5.4 Parallel coordinate plots showing true (solid lines) and 50 estimated (faint lines) values for all parameters in scenario

one.
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Figure 5.5 Parallel coordinate plots showing true (solid lines) and 50 estimated

(faint lines) values for all parameters in scenario two.

5.3.2 Real-world Data

The same model selection criteria of identifying reduced increase in
negative log-likelihood across models with an increasing number of states
(Figure 5.6), as well as an examination of the pseudo-residuals, was carried out
on models of the wild tuna. In all cases the most appropriate HMM was one
that assumed two behavioural states. These states can be considered as either
warm or cold, dependent on the value of the state distribution mean in the
median temperature dimension. Figure 5.7 shows the estimated state
distributions for all individuals, divided into these warmer and colder

categories.
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Figure 5.6 Changes in estimated negative log-likelihood across number of

assumed states for all tropical tuna time-series examined here.
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Figure 5.7 Estimated state distributions from two-state HMMs estimated on all

tuna time-series examined here.
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The estimated warm states were very similar for all individuals, exhibiting
a spectrum of depth variation but occupying a similar temperature range. The
cold states were more different across individuals, with distributions clearly
centred in colder water for the bigeye tuna compared to the yellowfin. In
contrast, depth variations were less variable across cold states, and all
distributions were centred at a greater standard deviation of depth than in the

warm states.

In this example application, | included a covariate representing diel
period as part of a linear equation defining the transition probabilities. A
concise way to summarise the information in the Markov transition matrix is to
calculate its equilibrium state, also called the stationary distribution. In the
case of behavioural time-series, the stationary distribution can be thought of
as the proportion of time an individual would spend in each state if the time-
series continued indefinitely. Thus, a transition matrix can be viewed as a
vector, where each value is the proportion of time at the limit spent in each
motivational state. It is important to note that these values are distinct from
the actual proportion of time spent exhibiting each state in the time-series;
rather, they are analogous to a limit cycle or equilibrium point in the dynamics
described by the transition matrix. Here, | use stationary distributions to

examine estimated transition matrices.

Figure 5.8 shows the two stationary distributions for all fish, one each for
day and night. There are clear differences in behavioural switching from day to
night in all individuals. All fish, except the yellowfin Arc269, have a large
probability of switching to their respective cold states during the day. In
contrast, all individuals exhibit an even greater probability of switching to their
warm state during the night, with a very small chance of switching back to
colder states. In the cases of the bigeye tuna Arc272 during the day and
Arc163 during the night, the probability of switching away from these

persistent states is actually zero.
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Figure 5.8 Estimated transition matrix stationary distributions during day-time
(top) and night-time hours (bottom). Bars represent proportions of time
exhibiting behavioural states in the limit for each fish, and are coloured

by the back-transformed distribution mean of that state, in the

temperature dimension.
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Time-series were classified by computing the most likely sequence of
states from the given observations using the chosen model parameters as
described in MacDonald and Zucchini (2009). Each state is given a probability
of occurrence for each observation in the time series, and the largest
probability was chosen as the classification of behaviour at each time-step. An
example of how these automatic classifications relate to the raw dive data is
shown in Figure 5.9. The effect of day and night is clearly seen in the
classification, although three-hour sections of warm state behaviour
occasionally still occur during the day. Note that the variation in amplitude is
much greater for warm state behaviours, exhibiting both tight association at a
particular depth and large movements through the water column during a
three-hour period. In contrast, the classified cold states are always associated

with larger movement through a range of depths.
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Yellowfin Arc88 Dive Profile

100 —
Depth
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Figure 5.9 Example section of raw dive data from a small yellowfin tuna, Arc88, automatically classified into either warm-state

(light blue) or cool-state (dark blue) sections of three-hours using a two-state HMM.
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5.4 Discussion

5.4.1 Simulation experiments

The results from the simulation experiments demonstrate the
effectiveness of the approach in describing and identifying underlying states
from multivariate mixed distributions. The aim of the contrasting simulation
scenarios is to examine how successful HMMs are at correctly estimating
parameters and classifying states when the true values are known. The two
simulation experiments provided both a simple scenario, with well separated
states and low levels of complexity in state switching, and a more problematic
scenario, containing a higher number of states and less clear switching

parameters.

When states are well separated and persistent, identifying a ‘knee-bend’
in the log-likelihood across increasingly complex models appears to be a clear
method for selection of the most appropriate model. However, as in the case
of the second scenario in which states are more diffuse in both distribution
and persistence, changes in log-likelihood from one state to the next may be
more gradual. Given the problems of using AIC and automatic model selection
in HMMs, careful consideration and examination of both the estimated state
distributions and pseudo-residuals should be undertaken for log-likelihood

curves that do not exhibit a sharp bend.

Despite the complexity of the second simulated scenario, which
contained significant overlap in distributions and transition parameters
incorporating covariate information, the correct classification success rate was
still over 90%. State distributions were accurately estimated, with consistently
low error for multivariate means in particular. The true value of dimension-
specific variance was well recovered by the HMM, but when distributions had
non-zero levels of covariance these values were less accurately estimated. Most
transition matrix parameters were accurate to within less than 10%, although
for less persistent states and transitions the error was greater. This is to be
expected, as there are fewer observations in the simulated time-series drawn
from these distributions. Subsequently, there is simply less data that can be

used for parameter estimation within the likelihood calculation. States
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estimated with large variance-covariance and low-persistence transition

probabilities should be interpreted with particular caution.

5.4.2 Tuna behavioural description and comparison to previous studies

In building a series of HMMs for the small subset of archival tags in this
chapter, the aim was not to make statements regarding the behaviour of
tropical tuna or vulnerability to fisheries initially. Rather, | sought to examine
the way in which real-world continuous dive data can be interpreted using this
approach, and if the results are consistent with the known ecology of these
species. The choice of summary metrics arranged into state-dependent
multivariate distributions represents both an association of an individual fish
with a particular layer of water and the strength of the association at that
depth, at a three-hour timescale. Consideration of this temporal scale is critical
when comparing the results to previous studies on continuous dive data. At
this scale we do not identify fine-grained changes in movement (e.g.
Humphries et al. 2010; Sims et al. 2008), individual dives (e.g. Dagorn,
Holland, and Hallier 2006), or longer-term composite dive profiles (e.g.
Schaefer, Fuller, and Block 2007; Wilson and Block 2009). Rather, | aim to
describe behaviours that occur at the scale of feeding and fishing events. Such
patterns capture changes in diving throughout the course of the day and form
the components of multi-day composite behaviours (e.g. Matsumoto, Kitagawa,
and Kimura 2013a, 2013b).

In this small sample of tropical tuna, all individuals exhibit behavioural
states centred in warm surface waters that are very similar to one another. It is
characterised by low variation in temperature but considerable variation in
movement through the water column. The thermal biology of tropical tuna
requires them to reside predominantly in warm waters. Given that the warm
surface layer of the tropical Pacific is well mixed, it is unsurprising that the
variation in temperatures is small and similar for all individuals in this warm
state. These states were centred between three-hour medians of 25.6 C and
28.2°C, comparable to mixed layer behaviours elsewhere described as surface,
associated or type | behaviour (Schaefer, Fuller, and Block 2007; Schaefer and
Fuller 2010). The distributions of standard deviation in depth were centred
between 28m and 36m. However, the variation in this metric was large for all

individuals, which suggests that there does not appear to be an association to
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specific depths; rather, individuals exhibit a continuous range of variation in
the depths that they occupy for this state. The bigeye tuna from this sample
have warm states that are centred in slightly cooler water than the yellowfin,
although this is well within variation that could be due to the temporal and

spatial factors present in this small sample.

The behavioural states centred in colder water are more varied across
species. In all cases, individuals have a looser association with a particular
depth in their cold states than the warm states. Colder state distributions were
centred on standard deviations of depth ranging from 46.7m to 73.7m. This is
consistent with observations that tropical tuna are required to return to
warmer layers of water for thermoregulation (Holland et al. 1992) and possibly
to repay oxygen-debt (Prince and Goodyear 2006), but it could also suggest
that deep cold behaviour has a generally more depth-transient nature. Tropical
tuna have evolved different ways to dive and exploit prey in colder layers of
water (Dagorn, Menczer, et al. 2000; Musyl et al. 2003), and it appears that
this is reflected in how the two species examined here exhibit deeper
behaviour. The cold states of the yellowfin tuna were considerably warmer
than those of the bigeye, with the distributions centred on median water
temperatures of 22.1°C to 24 °C. Yellowfin cold states were very similar, with
the two larger fish having almost identical distributions. The three bigeye also
had colder states that were similar to each other, although distributions were
centred between 10.8 C and 14.3°C, demonstrating a greater range of median
temperatures than for the yellowfin. Only one individual, the largest bigeye
tuna Arc272, displayed a deep state that was tightly distributed around both

water temperature and standard deviation of depth.

The stationary distributions of the transition matrices show very clear
differences in behaviour between day and night. The known foraging ecology
of tropical tuna suggests a preference for following diurnally migrating prey
species for those individuals that are physiologically capable (Bertrand, Bard,
and Josse 2002; Graham et al. 2006), and these results in this regard clearly
align with the observations of many previous studies. For the majority of
individuals, a strong tendency to switch to warm states during the night and
colder states during the day was exhibited. The persistence for warm states
during the night is demonstrated by almost an almost zero chance for all fish

of switching from these behaviours during this time. In contrast, behavioural
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states during the day are more varied, particularly for the yellowfin examined
here, with only the largest bigeye tuna displaying a complete lack of switching
from deep cold states during the day. This does not indicate that this
individual will never exhibit its warm state during the day; rather, it suggests
that once its behaviour has shifted to the cold state, it will never transition

away until dusk.

5.4.3 Method summary

In this study | have demonstrated a technique for objectively
characterising continuous dive data, summarising time-series at a temporal
scale of interest into a multivariate assemblage. Dimensions are chosen that
both represent the variation in qualitative patterns observed in previous
studies and relate to drivers of the phenomenon under investigation, allowing
straightforward incorporation into a HMM. Classification of the time-series is
objective, and provides a simple and easily interpretable way to examine if
patterns are observed across factors that can then be re-incorporated as
parameters within the transition matrices or state-distributions themselves of
an updated HMM. Data from any number of sources can be arranged into an N-
dimensional multivariate distribution as the observation model, or another
distribution more appropriate to the data can be used (Peel and MclLachlan
2000). In addition, information that does not form the behavioural observation
model of the animal, but is believed to influence either the switching between
these behaviours, the nature of the behaviours themselves, or both, can be
included as covariate parameters. While increasing the amount of data used in
estimation of the likelihood will improve model fitting, the parameter space of
a multivariate HMM will increase non-linearly due to the increasing size of the
transition and variance-covariance matrices, so care must be taken when fitting
overly complex models. Furthermore, the simulation experiments described
above have demonstrated where we might have the most confidence in
estimated parameters of a HMM, i.e. the means of multivariate state

distributions and the parameters of non-transitory states.

In the context of providing scientific advice to managers, HMM analyses
provide easily interpretable models for the objective classification of
autocorrelated behavioural data, as well as a framework for examining the

nature of, and switching between, behavioural patterns in continuous vertical
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movement time-series. When considering a particular ecological or
management question, the variables used to build the multivariate observation
model of these HMMs should be carefully selected. Rather than being an
abstract description of an animal’s behavioural space, the dimensions on
which states are estimated can be chosen such that the quantitative outputs of
the HMM can have direct interpretations. In the case of tropical tuna, a large-
scale analysis of archival tags would reveal the consistent behavioural states
across species or size classes. These behaviours can be described in
dimensions that are directly related to questions such as catchability or the
exposure of tuna to different fishing gears, and could be quantitatively
incorporated into larger natural resource management models that contain
specific behavioural components. Subsequently, HMMs containing different
covariate information influencing the nature and switching of established
states can be compared to examine alternative hypotheses on the mechanisms
driving vertical behaviour, and explore the effects that individual-scale

behaviour may have at the population level.

5.4.4 Further work

Here, | have shown how using HMMs allows an objective description of
behaviour in dimensions relative to the question being asked. Robust and
guantitative methods to describe the vertical movement time-series of the
PTTP were required before some of the questions of this thesis could be
examined. The example subset of individuals examined here provide some
evidence of what such quantitative descriptions of behaviour may look like, but
a much larger sample of tuna will be required to really examine vertical
movement behaviours across factors such as size or species. While quantitative
description of behaviour will allow comparison between individual and groups
of tuna, the classification of a large number of individuals will also permit a
number of meta-analyses on not only parameters from estimated HMMs, but
the actual sequence and dynamics of the defined behaviours observed in each
time-series. In the next chapter, | will apply this approach to a larger database
of tagged individuals and extend the method to explore more covariates that

affect behaviour.
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Chapter 6: The Vertical Movement Behaviours of

Yellowfin and Bigeye Tuna

In the previous chapter, a method was developed allowing a more
objective and quantitative approach to classifying and describing the vertical
behaviour from bio-logging time-series. A small sample of tropical tuna was
used as an example application, examining whether the modelled behaviours
were consistent and comparable to previous studies. The strengths and
weaknesses of the method were discussed, and suggestions made for
expanding the scope and complexity of the HMM analyses. In this chapter |
implement a number of the suggested improvements to the method, and apply
it to a much larger database of yellowfin and bigeye tuna taken from the PTTP.
| describe the apparent vertical movement behaviours at two different
temporal scales, and explore the potential effects of growth during time-at-
liberty and diurnal light-levels on these behaviours. These results are then
discussed for general patterns across species and regions, alongside their

implications for advice to fisheries and further work.

6.1 Introduction

Vertical behaviour and archival tag data aim to record behavioural
processes such as migration (Campana et al. 2011; Gaspar et al. 2006),
foraging (Humphries et al. 2010; Ménard et al. 2005) and physiological
regulation (Holland et al. 1992; Prince and Goodyear 2006), which are believed
to drive the temporal patterns of depth and temperature recorded from bio-
logged pelagic predators. The comparison of the tag-based evidence for
behavioural states between groups is further complicated by the wide range of
guantitative methods that have been employed to describe them (e.g. Chiang
et al. 2011; Schaefer and Fuller 2010; Sims et al. 2011). The method
developed during the previous chapter identified clear behavioural patterns in
a very small sample of tropical tuna. Some of these behaviours may be
exploited during both artisanal and industrial fishing (Bromhead, Foster, and
Attard 2003; Matsumoto and Bayliff 2011; Moreno et al. 2007), and their

147



J. Scutt Phillips Chapter 6

nature and occurrence is therefore necessarily linked to the vulnerability and

catchability of these fish in different fisheries.

Quantification of behavioural patterns is also explicitly linked to the
analyses used to evaluate the population dynamics of tropical tunas. Habitat
preferences that are used to force ecosystem dynamics (Dueri, Bopp, and
Maury 2014; Lehodey, Senina, and Murtugudde 2008) are derived from the
patterns of behaviour observed in tuna. Behaviour is also incorporated into
stock assessment models through estimated catchability parameters and
migration coefficients (e.g. Methot Jr and Wetzel 2013). These models are used
to forecast tuna responses to future climate scenarios (e.g. Lehodey et al.
2013), analyses of fisheries management options (e.g. Sibert et al. 2012) and

estimate stock status (e.g. Harley et al. 2009).

Here, | use the method of describing bio-logging time-series using
multivariate HMMs detailed in the previous chapter as the basis for a larger
analysis of yellowfin and bigeye tuna archival tag data. These data are taken
from the PTTP, which at present contains over 150 returns of electronic tags
that have recorded depth, water temperature, and in many cases, light
information from skipjack, yellowfin and bigeye from the WCPO. This database
represents over 17,500 days of high-resolution data on the vertical movement
behaviours of these species. Here, | explore a subset of 75 bigeye and
yellowfin tuna. Some improvements over the previous chapter to the data pre-
processing stage are described, and | then estimate the different behavioural
states exhibited by these individuals, and examine them for consistency across
species and region. Both the effect of changing light-level on switches between
behavioural states, and how the nature of the behaviours themselves may

change with increasing fish size are also explored.

6.2 Methods

6.2.1 Selection of tags

A baseline dataset 75 tags were taken from the PTTP archival tagging
database (summarised in Table 6.1), consisting of 30 yellowfin tuna and 45

bigeye tuna. Tags were released across a variety of seasons and areas, but
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given that fish may have moved considerably during time-at-liberty, here |
summarise region as simply being one of either the western warm-pool
(“West”) or the central equatorial Pacific, east of 180°E (“East”). Each time-series
constituted a minimum of 50 days of data from release to avoid short-term
deployments and overly significant influence from potential tagging effects.
Time-series with sections of missing or corrupted data lasting one hour or
more, which could impact the sequence of pre-processed summary metrics,
were rejected from the analysis. The subsequent alternate analyses exploring
covariate effects and differing assumptions regarding time-scale draw a subset

of tags from this dataset.
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Table 6.1 All PTTP tag information used in the “baseline” HMM analysis.

, Fork Length- Time-at- Recording .
Tag Species at-release (cm) liberty (days) Tag Model Release Date Interval (s) Region
A0720 BET 51 236 Lotek L28 07/12/2011 30 Central Pacific
AO0576 BET 51 60 Lotek L28 04/12/2011 30 Central Pacific
A0738 BET 51 60 Lotek L28 09/12/2011 30 Central Pacific
A482 BET 52 55 Lotek L25 26/03/2009 240 W. Warm-pool
A0694 BET 53 318 Lotek L28 09/12/2011 30 Central Pacific
Wildlife .
990115 BET 58 153 Computers MK9 25/05/2009 30 Central Pacific
A0281 BET 59 174 Lotek L25 08/11/2008 240 W. Warm-pool
123 BET 59 131 Lotek L28 27/10/2009 60 Central Pacific
132 BET 60 99 Lotek L28 27/10/2009 60 Central Pacific
228 BET 61 197 Lotek L28 27/10/2009 60 Central Pacific
Wildlife .
1090337b BET 61 113 Computers MK9 30/09/2012 30 Central Pacific
Wildlife
890209 BET 62 155 Computers MK9 05/11/2008 30  W. Warm-pool
Wildlife .
990315 BET 63 262 Computers MK9 26/10/2009 30 Central Pacific
Wildlife .
1190151 BET 67 153 Computers MK9 13/11/2011 30 Central Pacific
Wildlife .
1190132 BET 67 108 Computers MK9 02/10/2012 30 Central Pacific
Wildlife .
890002 BET 68 61 Computers MK9 11/05/2008 30 Central Pacific
Wildlife -
1090429 BET 68 225 Computers MK9 18/10/2011 30 Central Pacific
109 BET 68 285 Lotek L28 27/10/2009 60 Central Pacific
Wildlife .
990289 BET 69 385 Computers MK9 26/10/2009 30 Central Pacific
A0717 BET 69 291 Lotek L28 14/11/2011 30 Central Pacific
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6.2.2 Pre-processing of dive tracks

As before, raw vertical movement data were sectioned and compressed
into a bivariate time-series. In the previous chapter, sectioning was initially
undertaken by estimating crepuscular periods based re-occurring changes in
depth at two points in the day. Tropical tuna are known to exhibit
characteristic shallow and deep behaviours, which are generally tightly linked
to both night- and day-time, respectively (Matsumoto, Kitagawa, and Kimura
2013a). Using a split-moving window analysis, the two most consistent times-
of-day at which strong shifts in vertical behaviour was estimated, and these
same times of day were assumed to represent dawn and dusk for every 24-
hour period of the time-series. This approach ignores changes to the time of
dawn and dusk that may occur during the time-at-liberty of the fish. In this
chapter, | use similar marked changes in vertical behaviour throughout a 24-
hour day to form the basis of a model for each time-series that estimates how
the occurrence of dawn and dusk change over time. This estimation of

crepuscular timing is independent of light-at-depth data.

Two processes cause a drift in sunrise and sunset times. First, dependant
on latitude, seasonal changes cause day length to increase and decrease
throughout the course of the year. Second, horizontal migration by the fish
causes a change in both day length (latitudinally) and time of dawn and dusk
(longitudinally). To incorporate these two processes, the timing of section bin
divisions is represented by a simple linear model, which includes terms for
start of the day (dawn) and length of the day-time period. Parameters are
included to allow both these values to drift over time, providing a mechanism
to incorporate migration and season. These drift parameters operate at a
weekly timescale and are limited to additions of + 0.5 hours, i.e. both the start
of dawn and day-time length cannot change by more than half an hour from

one week to the next.

The time of the day at which dawn occurs during a given day for week w,
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where D is the time of dawn on the first day of the time-series, and 4D is the

drift in occurrence of dawn associated with week t.

The day-time length for a given day during week w, L , is

L,=L+ Z AL,

t=1:w

where L is the length of the day-time on the first day of the time-series, and 4L,
is the drift of day length associated with week t. Each day of data during week
W is binned into two “day” and “night” sections, divided by D _and D + L,
representing estimated dawn and dusk periods. Further divisions are made
equally between these boundaries to create the desired number of binned

sections during a 24-hour period.

Here | compress time-series to sequences of summary metrics over
approximately three-hours, with a subset of data used in HMMs estimated at
the scale of one-hour time bins for comparison. Given that initial day and night
section binning are not necessarily equal due to the estimated times of dawn
and dusk, the size of each subsequent smaller time bin may not be exactly

three-hours.

Similar to the previous chapter, time-series were arranged as multivariate
measures of variation in depth and central tendency of water temperature
experienced during each time bin, forming the observation model of
behaviour. In this series of analyses, variation in depth was again represented
by the standard deviation of depth. Central tendency of water temperature was
replaced by simply the mean water temperature, rather than median as in the
previous chapter. These two variables capture variation in different patterns of
vertical movement. Being a representation of depth (in terms of thermal
habitat), and association at the depth, this description is also related to

exposure to surface fishing gears (see Chapter Five).

6.2.3 Model assumptions and estimation

Described more fully in the previous chapter, multivariate HMMs are state
space models where imperfect observations are represented as discrete states,
each defined by a multivariate distribution observation model. The switching

between states is governed by a transition matrix giving the probability of
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switching from any one to state to any other, fundamentally incorporating
autocorrelation into the assumptions of the model; that is, the probability of
observing something at time t depends on what is observed at time t-1. State
distribution and transition parameters can be estimated using a numerical

minimisation of a negative log-likelihood (Patterson et al. 2009).

In addition, covariate information that is separate to data used in the
observation model can be incorporated into the likelihood estimation by
defining state distribution or transition parameters as linear, or other,
equations that include the covariates. For example, the probability of switching
from one state to another can vary in relation to phenomena separate to the
behaviour of the animal, or the multivariate mean of states can be made to
change over time in response to covariates. In this set of analyses, parameters
that include covariates are expanded into linear equations with coefficients

estimated by the same process of minimisation of the negative log-likelihood.

As in the previous chapter, the compressed multivariate time-series were
log-transformed to better resemble a mixture of normal distributions. Model
parameters were estimated using the optim algorithm in R, with initial
conditions generated by using k-means machine learning to cluster the data
into groups and calculate state distributions and transition probabilities from
these classified data. When covariate information was used to influence
parameters, the mean value from the maximum and minimum halves of the
covariate was used to examine the linear effect on the covariate-containing
parameter values, as estimated by the k-means clustering. The coefficients of
this linear relationship were then used as start values for the corresponding

covariate parameters.

6.2.4 Simulation experiments and tag analyses

As in Chapter Five, a number of simulation experiments were carried out
to test the effectiveness of the method to recover true parameter values, using
two of the new analyses undertaken in this chapter: changes to state means in
relation to a non-linearly increasing covariate (size of fish) and changes to
transition probabilities in relation to a continuous, cyclic covariate (estimated
changes in surface-light). In the previous chapter, covariates in the transition

matrix were simply binary, i.e. day or night. Here, covariate information is
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continuous. Fifty stochastic repetitions of 500 simulated summary metrics
were generated from pre-defined distributions and transition matrices that
include influences from covariates in the two ways discussed. HMM parameters
are estimated on the data as described above, and the parameters and
classifications compared with the true values for consistency. As before, the
simulation experiments are based on simple scenarios for the behaviour of a
free-swimming marine animal, tagged with a bio-logging device. This device
records variation in depth and mean water temperature across three-hour
periods, and these are arranged in a multivariate time-series on which to

estimate an HMM.

Scenario One- Changing State Means: Consider a marine animal that
exhibits behavioural patterns described by a multivariate assemblages of
variation in depth and mean temperature captured over a time period of hours.
It exhibits two clear states, one of which varies in both temperature and
movement through the water column in relation to a continuous covariate. As
this covariate increases, the behaviour of the animal becomes centred in colder
water with less variation in vertical movement. There is no change to the other
state. The covariate increases non-linearly through time, perhaps representing
the growth of the animal during the bio-logging deployment. The true state
distributions at the minimum and maximum value of this covariate are shown

in Figure 6.1.

Scenario Two- Changing Transition Probabilities: An alternative scenario
may be that the behaviour exhibited by our theoretical marine animal does not
alter in nature, but rather the switching between behavioural states changes
over time. In this simulation, it is assumed that a cyclic, continuous covariate
influences the transition probabilities between two distinct behavioural states.
When the covariate is high, switching to and persistence of the first state is
great, with the opposite being true when the covariate is low. The analyses of
Chapter Five essentially assumed a discrete version of this scenario, with a
binary covariate that switched between one of two values. Here, this covariate
can be considered the continuous version of the same information, perhaps
representing an external factor that drives change in the position of patches of
prey in the water column, forcing the animal to switch foraging strategies.

State distributions are the same as in Scenario One, when the covariate
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information of that scenario was at the minimum value (the most overlap in

distributions).

HMMs were estimated on these simulated data in the same way as pre-
processed time-series from real archival tags, and the results examined for

accuracy in recovering true parameter values.

True states for min(Covariate) True states for max(Covariate)
v _|
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Figure 6.1 True state distributions for simulation scenario one, when the
growth covariate was at a minimum value (left) and maximum value
(right).

Following these simulation experiments, three groups of analyses on the
time-series from the PTTP were carried out. Firstly, a “baseline” set of models
were estimated using no covariate information to classify the individual
tagging time-series data, summarised at a three-hour timescale, using
multivariate HMMs that contained one to four behavioural states. These results
were then examined for differences between species, regions, quarter of
release, and size of fish. A subset of these tags was used in an alternative set
of models, estimated using the same time-series summarised at a one-hour

timescale for comparison.

In light of these results, | then estimated more complex HMMs for two
further subsets of this baseline dataset. The first examined how behavioural

states themselves may change as the individual grows during time-at-liberty,
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and the second how behavioural switching appears to change in relation to

depth-corrected light levels from those tags that contained light-at-depth data.

The first covariate analysis was achieved by including the increasing
length of the fish whilst at liberty as a term in a linear equation that described
the parameter mean of each state distribution. While length-at-release values
are considered accurate, the length at recapture is considered less reliable
(Leroy et al. 2012) and was frequently absent from the PTTP tags used here.
Therefore the size at a particular time was estimated from length-at-release,
projected forward using the Von Bertalanffy growth curves for bigeye and
yellowfin tuna used in recent stock assessments (Harley et al. 2009; Langley,
Hoyle, and Hampton 2011). Growth increased non-linearly and drove change in
the means of all estimated behavioural states during likelihood estimation.
These modelled changes in state mean were examined and compared across

individuals.

The second covariate analysis used estimated surface light data to affect
the switching between behavioural states of a two-state HMM. The light-at-
depth data from a subset of tags were transformed to curves estimating the
corresponding light level at the surface irrespective of depth, using an existing
two-layer depth correction algorithm (Ekstrom 2004). This estimated surface-
light information, which cycles diurnally through each 24-hour period, was
used as a covariate parameter that changes the probability of state switching
in the transition matrix. The general patterns in Markov-chain stationary

distributions between species were then compared.

6.3 Results

6.3.1 Simulation Experiments

As in Chapter Five, the success of the HMM method for recovering the
known parameter values from the simulation experiments is shown visually
with parallel coordinate plots, alongside percentage correct classification rate.
As these experiments contain covariate dependent terms, when appropriate,

parameters are shown at both the minimum and maximum covariate range.
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As before, parameters were accurately, but not always precisely,
estimated. In scenario one, state distribution means varied in relation to a non-
linearly increasing covariate, but in reality, only one state truly varied in
response to this value. Variance-covariance parameters were less accurate than
state means, with covariance estimates both more inaccurate and imprecise.
State means were well recovered, despite there being changes over time, but
estimates were naturally less accurate when distributions were close to each
other, as was the case when the covariate value was low. Transition
probabilities were well recovered, with some evidence that state persistence is
consistently underestimated (Figure 6.2). Mean correct state classification rate
was 97%.

For scenario two, the true and estimated parameters are shown in Figure
6.3. In this scenario, state transition probabilities changed in relation to a
cyclic covariate. As before, well-separated state means were accurately
recovered whilst estimates of larger variance parameters were less precise. The
method was less effective at estimating transition probabilities when they
changed in response to covariate data, particularly for the less persistent state.
Some model estimations even resulted in the most probable transitions for this
state being inverted from their true values. Despite inaccuracies, the mean

correct state classification rate was still 96%.

In light of these results, it appears the dive track compression and
multivariate HMM method remains appropriate for these types of more
complex analyses. More confidence should be placed in the estimation of state
distribution means over the variance-covariance parameters. In addition,
results from fast cycling covariate information affecting state switching should
be treated with caution, with potentially many replications required before true

dynamics can be identified.
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State Distribution Parameters at Min Covariate State Distribution Parameters at Max Covariate Transition Probabilities
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Figure 6.2 Parallel coordinate plots showing the true (dark lines) and estimated (faint lines) parameters for all repetitions of

simulation one.
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Figure 6.3 Parallel coordinate plots showing the true (dark lines) and estimated (faint lines) parameters for all repetitions of

simulation two.
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6.3.2 Baseline dataset

HMMs were estimated on the baseline dataset of time-series for models
assuming one to four states. As discussed in the previous chapter, there is at
present no robust method of parsimonious model selection for HMMs.
Moreover, as no model is a true representation of reality, it may be more
useful to consider that there is no ‘correct’ number of behavioural states for a
given individual fish. Rather, each estimated model allows consideration of the
likely behavioural states, given the assumptions of that particular model
structure. While an indication of the most appropriate model can be gained
from examining likelihood curves (Dean et al. 2012), pseudo-residuals
(MacDonald and Zucchini 2009), and standard model selection criteria such as
AIC, these approaches are not truly objective and may be unreliable for HMMs
(Peel and McLachlan 2000). The estimated negative log-likelihood curves, as in
the previous chapter, display the general pattern of model fit across many
individuals (Figure 6.4).
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Figure 6.4 Change in HMM estimated negative log-likelihood over increasing
number of states, for all tags in the baseline analysis.

Using this approach, the behaviour in the majority of individuals in this

analysis is well described by two distinct behavioural states. These states are
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similar across all the model structures and alternative analyses | subsequently
assume in this chapter. The first is based in the shallow mixed-layer of warm
water. The amount of variation in vertical movement in this state occurs across
a spectrum, including both tight associations with a particular depth as well as
large amplitude movements through the water column. The second state is
centred in colder water, although the multivariate mean in the temperature
dimension is more variable across individuals. This state is linked with larger

amplitude movements through the water column.

It may also be appropriate to describe some of the time-series using
HMMs assuming either three distinct behaviours, and in some cases, just a
single behavioural state. Results under a three-state assumption are described
later in the results. The assumption of one behavioural state, where
appropriate, corresponds to cases where individuals simply have a single
shallow state that is large enough to represent all observations in the time
series, and are not shown here. For the remainder of results from the baseline
dataset, and subsequent analyses containing covariate observation, | display

results from HMMs that assume two behavioural states.

The estimated state distributions for all individuals in the baseline
analysis (N = 75) are plotted together in Figure 6.5. When assuming two
behavioural states, there are clear differences in the deep state between
yellowfin and bigeye. In contrast, this distinction is much smaller between
species in the shallow states. The deep states of bigeye tuna are generally
much colder and more variable in depth than those of yellowfin, which are
more covariant between temperature and movement through the water. This
suggests that colder habitat use during deep states in yellowfin is also
associated with greater movement through the water column. For bigeye,
amplitude in diving remains similar regardless of the thermal habitat
experienced for their deepest behaviours. These broad descriptions conform to

the a priori expectation of the two species’ behaviour (Schaefer et al. 2009).
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Figure 6.5 Estimated state distributions for all tags in the baseline analysis, under a two-state assumption. States are separated

into shallow and warm (left) and deep and cold (right).
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Aside from clear differences between species, the individual tropical tuna
examined in this analysis also existed at liberty across a wide range of
biological, spatial and temporal factors. To statistically examine the effect of
these factors on the estimated HMMs, a multivariate analysis of variance
(MANOVA) was carried out. For each HMM estimated on an individual time-
series, model parameters were arranged into a multivariate vector, comprised
of the estimated mean and variance-covariate parameters of each state. Each
vector is associated with corresponding factors representing species, year-
quarter at release of fish, and eastern (central pacific) or western (warm-pool)
region. MANOVA was used on the vector of each behavioural state to test if the
null hypothesis, that these factor groups have a common centroid in this
dependent variable space, could be rejected and how the variation in
parameters of the behavioural model is reduced by membership to these
groups. Individual and interaction terms between all factors were included, a
model reduction approach was undertaken to obtain a model with only

significant terms (P < 0.05).

For shallow states, highly significant effects of group membership in
species (F]’66 = 9.42, P <0.001), release region in the western or central Pacific
(F = 6.93, P < 0.001)

were found. The apparent effect of timing of release is somewhat confounded

= 9.00, P < 0.001), and year quarter at release (F,

1,66 6

by the fact that some year quarters only contained releases of one of the two
species. Carrying out an ANOVA on individual terms revealed that state means
of the standard deviation of depth dimension were significantly affected by
species and release-region groups, whilst the mean in the mean temperature
dimension was significantly affected by species and release-quarter. Variation
in individual variance-covariance parameters was not significantly reduced by

membership to any grouping.

For the deep states, highly significant group membership effects were
once again seen in species (Fms = 120.24, P < 0.001), and release quarter (F3'68

= 8.26, P < 0.001), while region affected parameter variation less than for the

shallow states (F]’6 = 3.66, P = 0.006). In addition, an interaction term between

8
species and Pacific region was found to be significant (F , = 6.22, P < 0.001).
Analysis of variance on individual terms showed that deep state means in both
dimensions were significantly affected by group membership of all terms in the

MANOVA analysis (see Figure 6.6). Furthermore, variance in mean temperature
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and covariance between observations

and release-quarter.

are significantly different across species
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Figure 6.6 Scatterplots showing significant differences in HMM deep state
parameters, as indicated by ANOVA, for all tags in the baseline

analysis.

The transition matrices that describe the estimated switching between
these behavioural states are also estimated in the HMM analysis. Because each
model estimates an m-by-m matrix, comparisons across multiple runs can
become complicated, although this is less so for two-state models. As in
Chapter Five, | summarise these sets of transitions probabilities using the
stationary distribution to reduce each matrix to a vector of length m. The
stationary distribution is the limiting distribution of the Markov chain
described by transition matrix, and represents the portion of time spent in

each state, if that particular Markov process were to continue indefinitely.
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Figure 6.7 All state-switching stationary distributions for tags in the baseline analysis. Bars are separated into time spent
exhibiting shallow (top) and deep (bottom) states, coloured by the back-transformed state mean in the mean water
temperature dimension. Results for bigeye are on the left, and for yellowfin on the right, with within species tags

ordered by increasing length-at-release (left to right).
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Figure 6.7 shows the stationary distributions for all individuals from the
baseline analysis, ordered first by species and then by fork length-at-release.
For the majority of fish, proportion of time spent between the shallow and
deep states is roughly equal, with a general tendency to occupy a shallow state
more frequently than a relatively deeper one. Although bigeye appear to be
more consistent across individuals in time spent between behaviours than
yellowfin, a MANOVA analysis revealed that state switching does not change
significantly with species (or any other spatial or temporal factors examined

here).

6.3.3 States estimated at one-hour intervals

A series of HMMs were also estimated using time-series compressed at
one-hour metrics, in order to compare how behavioural states may differ at
this temporal scale. These individuals were a subsample of the baseline
analysis dataset (N = 68), comprising of time-series of longer than 50 days but
with no corrupted or missing data longer than 30 minutes. The same
examination of estimated likelihood curves was undertaken to identify if a
consistent number of states in the model structure improved the fit to the data

(Figure 6.9), across HMMs assuming one to three states.

As with the three-hour scale of compression, the majority of time-series
showed a much greater improvement in likelihood increasing from a single
state to two. State distributions were fairly similar to those estimated at three
hours (Figure 6.10), although all state means in the standard deviation of
depth dimension were generally reduced. This was confirmed in a MANOVA
analysis on vectors of parameter values that significant differences between
both sets of models for all states (P < 0.001, for both shallow and deep states).
ANOVA on individual terms showed that means were significantly lower in the
standard deviation of depth dimensions for both states, which is unsurprising
given the reduced capacity for variation in depth across a smaller window of

time under one-hour compression.

Stationary distributions were also similar to models estimated at three-
hour time-scales, with a slightly greater proportion of time spent in the relative
shallow states for the majority of individuals (Figure 6.11). The autocorrelation

signal remained similar for both time-series after classification. The
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autocorrelation function of the time-series of probability of shallow state
occupation (deep state necessarily being the compliment) showed a clear
diurnal pattern, being a strong positive correlation at a lag of 7 or 23 time-
steps, for 3-hour sectioning or 1-hour sectioning, respectively. The general
pattern of diurnal state switching is reflected in a negative correlation between
classifications at a lag of 4 or 12 time-steps, for 3-hour or 1-hour sectioning,

respectively (see Figure 6.8).
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Figure 6.8 Autocorrelation function of an example classified time-series from a
bigeye tuna with summary metrics calculated at 3-hour time-bins

(top) and 1-hour time-bins (bottom).
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Figure 6.9 Change in estimated negative log-likelihood over increasing

assumed HMM states for all tags in the one-hour time-bin analysis.
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Figure 6.10 Estimated HMM state distributions for all tags in the one-hour
time-bin analysis, separated by most shallow state (left) and most

deep (right).
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Figure 6.11 All state-switching stationary distributions for tags in the one-hour analysis. Ordering and the back-transformed state

mean scale is identical to that in Figure 6.7.
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6.3.4 Change in state means with size

A simple examination of the estimated state means over length of fish at
release indicates that the temperature dimension of behavioural states may
change with size at release (Figure 6.12). This variation of, in particular, the
deep state distributions of bigeye tuna lead me to hypothesis that the nature
of these classified behavioural states may change as an individual fish grows
and undertakes physiological developments that allow it to exploit deeper
prey-fields, or perhaps exploit them with greater frequency. To explore this, |
initially examined how HMM estimated state means changed with the length of
the fish at release. A simple linear regression was fitted to the back-
transformed state means of each fish, with fork length-at-release used as a
term. Although there seemed to be little indication of a relationship between
size of fish at release and the nature of the shallow states, some significant
relationships were seen for the deep states, particularly in the mean

temperature dimension.

To examine this possibility further, | wished to utilise the fact that there
potentially exists more information on changes in behaviour and growth
during time-at-liberty within the time-series. Length of fish at release can be
thought of as “snapshot” single value giving an indication of the developmental
stage of the fish, but during a time-series changes in the behaviour states may
occur, as the fish grows during time-at-liberty. Here, | used a covariate
parameter in a set of HMM analyses estimated on a subset of the baseline
dataset (N = 65), where state means were allowed to vary in relationship to a
covariate representing the estimated size of the fish as it changes through
time. This is analogous to simulation scenario one of this chapter. As size of
fish can only increase through time from release to recapture, the addition of
covariate parameters result in state distributions that ‘drift’ linearly through

the multivariate behavioural model during the course of the time-series.
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Figure 6.13 HMM estimated relationship between state mean in the mean temperature dimension for each tag in the changing
state means analysis, overlaid with mixed-effects linear model showing population-level prediction for the same

relationship.
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Fundamentally, the description of the estimated shallow and deep states
is the same as for the baseline analysis, although mean states cannot be
compared to the baseline using MANOVA due to the covariate parameters, but
the distributions of these states now change over time. These changes can be
compared across all individuals by plotting the length of the fish at each time-
step against the corresponded modelled state mean at that same time in a
single dimension of the observation model. Modelled change in the mean

temperature dimension is shown in Figure 6.13.

Although there is much variation, there appear to be consistent changes
in behavioural state means with the length of fish, particularly in the case of
deeper states. To summarise the different relationships between size and
thermal habitat predicted, and due to the results from each individual fish
resulting from the same linear equation, | modelled all HMM predictions of
mean temperature for each state using a hierarchical approach. A linear mixed-
effects regression model was fitted to all the results from each state and from
each species. The predicted state mean temperature, for the projected fish
length at each corresponding time-step, was taken as a new observation to be
modelled. As these points were naturally grouped together for each separate
fish, a random intercept by fish was included, assuming the relationship
between length and thermal habitat for all fish share the same slope but differ
in intercept. Longer time-series also therefore carried more weight in the
model, as they contributed more observations during the mixed-effect model
estimation process. The population-level relationship given by the mixed-
effects model is overlaid on the HMM estimated relationship for each time-

series in Figure 6.13.

The results from bigeye suggest a general deepening of the thermal
habitat in both shallow and deep states, although there is considerable
variation across individuals. For the shallow state, this gradient is fairly slight,
but in the case of the deeper state it is steeper and driven in particular by
several of the smallest individuals having consistently steep changes during
time-at-liberty. There appears to be less evidence to suggest that the yellowfin
in this study exhibit a significant shift in thermal habitat across the size

classes of fish examined here.
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Figure 6.13 HMM estimated relationship between state mean in the mean temperature dimension for each tag in the changing
state means analysis, overlaid with mixed-effects linear model showing population-level prediction for the same

relationship.
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The same hierarchical modelling approach was used to summarise state
changes in the standard deviation of the depth dimension, but the results are
not shown here. The variation for the deep states of both species is very high
with little indication of change over size, but for the shallow states both
species shift to slightly less variability in depth as they increase in size,

particularly for yellowfin.

6.3.5 State-switching in response to light

A series of HMMs were estimated on a third subset of the baseline
analysis tags that recorded light-at-depth information (N = 74). The light-level
at the surface of the water for each fish, estimated by a depth-correction
algorithm, was included as cyclic covariate term in the transition parameters of

two-state HMM models, allowing state switching to change in relation to light.

Estimated state distributions were again similar to those estimated in the
baseline analysis (Figure 6.14), with two distinct states differing across two
species. A MANOVA analysis of state distribution parameters and group
membership to species and model-set membership showed no significant
effect between this group of models, and the baseline set (F, |, = 0.104, P =
0.9912 for the shallow state, FS’136 = 0.661, P=0.6539 for the deeper state).
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Figure 6.14 Estimated state distributions for the all tags in the light-dependent
switching analysis.

State switching can once again be examined by using stationary

distributions described by the estimated Markov-chain transition matrix.
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Visually displaying the proportion of time spent in each state at the limit, as
before, would necessitate multiple plots for different covariate values. Rather,
here | plot simply how the proportion of time spent in the shallow state
changes with response to light for each individual. As these are two state
models, the corresponding time spent in the deep state at any particular light-
level is simply the compliment of this value. Light data recorded by the tags of
the PTTP occupy a range of values representing different light intensities from
different regions and waters, alongside different internal measures and
sensitivities across tag models. This makes direct comparison of the absolute
depth-corrected surface light estimates between individuals difficult. To
account for this, here | use a relative range of light-levels experienced by each
individual fish for visual comparison. As the depth-correction stage of
processing the light-at-depth can result in occasional extreme values, the
range of light values between the 10" and 90" percentiles of the depth-
corrected light covariate was used as a relative measure of light that could be
compared between individuals. These data were scaled between 0% and 100%,
where 0% is the darkest surface light experienced by the individual and 100% is
the lightest (within the 10-90"™ percentile range), and plotted against
proportion of time spent in the shallow state for each individual fish (Figure
6.15).
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Figure 6.15 Estimated change in proportion of time spent in shallow behavioural states in response to relative light-level for
yellowfin (left) and bigeye (right) tuna. Mean proportion of estimated time spent in shallow behavioural states, with 95%

confidence intervals, overlaid in bold.
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There is a clear link between state switching and ambient light levels in
both species of tuna, with stronger light-driven changes in bigeye. While a
higher probability of state-occupation is seen at the high and low extremes of
surface light in bigeye, greater relative light levels are needed before switching
to deep state behaviour than yellowfin. The switching between states in
response to light is more linear for yellowfin, although this may be due to the
relative shallow and deep behaviours being less distinct in this species. In this
case switching will occur more smoothly than in the sharp contrasts between
shallow and deep U-shaped diving behaviour seen for bigeye. In contrast to
expected diel switching, day-time light levels cause a much lower probability of
switching to deep state in a number of bigeye examined here. This could be
the result of extended periods at the surface during the day heavily influencing
parameter expectation, the result of behaviour typically assigned to floating

object-association.

6.3.6 Third and intermediate states

Although the majority of yellowfin and bigeye tuna examined here can be
described as having two distinct behavioural states associated with their
vertical movement patterns, the case of a three state model can also be

considered.

In the case of a three state assumption, for many bigeye the third state is
a warmer, less common sub-distribution that is more depth variable than the
deep state estimated when assuming two states (see Figure 6.16). In contrast,
third states tend to be simply a separation of the shallow state into two for
yellowfin tuna. The addition of a third state also affects the distributions of
both other states. This is apparent in the significant MANOVA results for model
set membership when comparing both shallowest and deepest states against
those states estimated in the baseline analysis (P = 2.397e* and P = 0.0001,

for the shallow and deep states respectively).
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Figure 6.16 Estimated state distributions for all baseline tags, assuming three behavioural states.
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Stationary Distributions

Figure 6.17 Estimated stationary distributions of state switching parameters from all tags in the baseline analysis, assuming

three behavioural states. Scales are identical to Figure 6.7.
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The stationary distributions reveal more about the nature of third states
that lie between previously identified shallow and deep behaviours (Figure
6.17). In yellowfin, the addition of a third behavioural state divides shallow
behaviour into two, usually separated by exhibiting higher and lower values of
standard deviation of depth. This is also true for some bigeye, although for
some individuals this new third state appears distinct. When the mean of the
state distribution lies between the shallow and deep state in the temperature
dimension, the state occurs only rarely. There is no indication that this

intermediary state occurs across factors, other than only occurring in bigeye.

The dynamics around this intermediary state in bigeye can be further
examined by looking at the transition probabilities into and out of the state.
Taking a subset of those individuals that exhibit an intermediary state defined
as centred at a mean temperature between the warmest shallow state and the
coldest deep state, but colder than 23°C, these transitions are shown in Figure
6.18 (N = 22). The majority of these intermediary states are not persistent, and
are likely to switch to either the shallow or deep state. Intermediate states are

more likely to proceed a period of shallow behaviour than a period of deep.
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Figure 6.18 Individual transition probabilities for a potential intermediate

behavioural state in bigeye tuna.
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6.4 Discussion

6.4.1 General description of behaviour

In this analysis, | have expanded the preliminary work of the previous
chapter using a fuller dataset of behavioural time-series drawn from the PTTP.
Despite increasing the amount of data examined, the results from the baseline
dataset maintain that, in general, the vertical movement behaviours of tropical
tuna can be well described with two distinct states. These states are relative to
each individual, significantly different from each other, and significantly
different between species. The two states are associated with separate thermal
habitats, and this separation is more distinct in bigeye tuna than in yellowfin.
This is similar to the findings of many previous studies (e.g. Josse, Bach, and
Dagorn 1998; Musyl et al. 2003; Schaefer, Fuller, and Block 2009), but here
these behavioural descriptions are quantified in terms of multivariate state

distribution and state transition parameters.

The shallow state is typified by a spectrum of diving amplitudes and a
narrow range of warm thermal habitat. From the results of the MANOVA
analysis, it appears that this state distribution’s multivariate mean is
significantly different between species, in both depth variation and
temperature. As almost all bigeye tag returns come from the central equatorial
Pacific, differences in thermal habitat of shallow states may be due to differing
epipelagic temperatures between this region and the western warm-pool,
where the majority of yellowfin returns originate. For the yellowfin examined in
this chapter, shallow states are centred on a mean temperature of 28.6°C and a
mean standard deviation of depth of 32.6m. For bigeye, the states are cooler,
occurring at a mean temperature of 26.3°C, and being slightly less variable,
with a mean standard deviation of depth of 25.0m. Shallow state distribution
means were identified as significantly different between the western warm-pool
region and the central equatorial Pacific, possibly due to the former region
having a thicker and more constant epipelagic layer (Lehodey 2001), through
which tuna would move during their shallow state behaviour. Mean standard
deviation of depth for all species was 35.7m in the western warm-pool, and

23.6m in the central Pacific region.
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Compared to the shallow states, the relative deep states of yellowfin and
bigeye were typified by higher diving amplitudes and colder thermal habitat.
State distribution mean parameters were significantly different between
species, region and quarter-of-release. In yellowfin, deep state behaviour was
centred on a mean temperature of 24.8°C and a standard deviation of depth of
46.9m. For bigeye, these values were 14.0°C and 70.5m, respectively. The high
standard deviation of depth in bigeye, representing larger amplitude of
movement through the water column during deep state behaviour, is likely to
be a result of the characteristic ascents linked to thermoregulation during

movement at depth by this species (Holland et al. 1992; Maury 2005).

Behavioural states do not appear fundamentally different when they are
examined at the finer-scale of one hour. State distributions have generally
smaller variance-covariance matrices, suggesting that when the distributions
are more variable under three-hour sectioning, this may be the result of state

switching within a single three-hour period.

Behavioural switching between these two states is generally weighted in
favour of time spent in shallow states, with the largest bigeye tuna examined
here approaching an almost even proportion of time spent in each state. As
apparent in the previous chapter, state switching is highly linked to diurnal
changes in light across night and day. This light-driven switching is more
pronounced in bigeye than in yellowfin, although considerable variation exists
between individuals. The apparently sharp change in probability of state
switching across light for bigeye should be considered with caution however,
as the relative shallow and deep states for each individual are themselves more
distinct in this species. Behavioural switching may simply be clearer in bigeye
tuna compared to yellowfin, for whom shallow and deep state distributions

have greater overlap.

Evidence for cooling thermal habitat with size of fish was seen in the
results from HMMs estimated using predicted fork length as a covariate term
within state distribution mean parameters. Few consistent patterns were seen
in changing shallow state means. In addition, intra- and inter-annual changes
in climate affect the temperature of the epipelagic layer, which has the
potential to influence apparent changes in the thermal habitat of shallow state

behaviours. Seasons experienced during time-at-liberty for each individual
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must therefore also be considered before interpreting the inconsistent

patterns in changing shallow state thermal habitats over time.

Seasonal climate variations affect deeper waters differently, although
large-scale climate events can vary the temperature of these layers of water
alongside other potentially important drivers of behaviour such as dissolved
oxygen (Le Borgne et al. 2011). A cooling of deep state habitat is seen in the
results of this chapter for both bigeye and yellowfin. This is more pronounced
between fish smaller and larger than around 80cm FL, although some
individuals from both species show the opposite correlation in thermal habitat
with size. In particular, the smallest sizes of bigeye around 65cm FL examined
here may experience a non-linear deepening of thermal habitat. More data
from fish at liberty during this period of growth are required to explore this
further, but | hypothesis that this change may be driven by the development of

the swim bladder and increased thermoregulatory ability with size.

Some of the bigeye tuna examined in this chapter may also exhibit a
potentially distinct third behavioural state. This intermediate and transitory
state consists of high levels of movement through the water column and
variable water temperatures ranging between 15 and 20°C. It is not a
persistent behaviour, meaning that the probability of more than a single three-
hour observation classified as this state is unlikely. Furthermore, the state is
more likely to follow a period of shallow behaviour. Given that shallow state
behaviour is associated with the night-time, this state may the first diving
behaviour at dawn, or after a morning spent at near the surface (Matsumoto,
Kitagawa, and Kimura 2013a). It may represent an initial searching behaviour
for patches of prey in the thermocline and mesopelagic layer after extended

periods nearer the surface.

Care must be taken in ascribing meaning to this apparent transitory state.
Although there appears to be some consistency across individual bigeye in the
state’s occurrence, these intermediate states may simply be a composite of
shallow and deep state behaviours that occur within a single three-hour time-
bin. During the optimisation phase of parameter estimation, those
observations that are neither clearly drawn from distinct shallow or deep states
distributions may cause a “loose” intermediate state distribution to be

estimated, when assuming a three-state model. This intermediate distribution
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may improve the likelihood estimation because it accounts for otherwise
improbable observations. It is interesting to note that when examining the
results from three-state HMMs estimated from one-hour binned summary

metrics, less evidence for this transitory state was seen in bigeye tuna.

6.4.2 Data requirements and caveats

In this study, region and release-quarter were used as potential factors
across which the results from HMM analyses were examined. However, despite
the broad variability in tagged tuna within the PTTP database, in actuality this
dataset represents a number of separate tagging experiments. Region is highly
confounded with species, with most bigeye having been tagged in the central
Pacific and most yellowfin in the western warm-pool, and release-quarter is
related to these separate tagging events (Leroy et al. 2013). It is likely that a
great many more tag returns are required to fully examine spatially and

temporally co-varying factors that occur in the real world.

Despite the high temporal and spatial variability in the tag returns
examined in this chapter, the similarity in two-state behavioural models for
each separate species is clear. Although the addition of more tags will improve
the accuracy of these analyses, it is encouraging that identified behaviours are
consistent with both previous studies by other authors, and across the species

and alternative analyses undertaken in this thesis.

The potential complexity of these models should also be re-iterated here.
Although the two-state baseline analysis detailed in this chapter yields two
clear behavioural states across individuals of the same species, higher state-
number HMMs and analyses incorporating covariates may have complex
likelihood surfaces. Results from the simulation experiments described above
re-affirm the ability of the approach to recover true parameters when state
distributions are clearly separated, but the effect of non-linearly changing
covariate parameters can reduce this precision. If results from similar analyses
examining these kinds of covariates, or results that specifically utilise
estimated variance-covariance parameters, are incorporated into scientific
advice, alternative and more robust optimisation algorithms than Nelder-Mead

should certainly be explored.
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Similarly, a more robust approach to parameter estimation should
incorporate alternative methods to providing initial starting values and priors
than the k-means based approach used here. HMM analyses incorporating
covariate data into parameters in particular should be treated to alternative
starting values before optimisation. A sensitivity analysis could then be carried
out on an ensemble of model runs using these different prior assumptions,
ensuring that the solutions of the optimisation algorithm are consistent and

robust.

6.4.3 Fisheries implications and further work

The quantitative description and classification of yellowfin and bigeye
tuna vertical movement behaviours undertaken in this chapter provides the
means for a number of future analyses and implications for scientific advice to
fisheries. Findings of broad importance to fisheries include the apparent
differences in thermal habitat between species in both of their relative
behavioural states. Although this is already established for deep diving
behaviours, i.e. that bigeye occupy a much colder habitat than yellowfin when
diving, there may also exist differences between the thermal habitat of
yellowfin and bigeye shallow states within the epipelagic layer. Unfortunately,
within this analyses there do not exist enough tag returns of each species
across the western warm-pool and more eastern central Pacific regions to
exclude the possibility of this apparent difference in thermal habitat being

spatially driven.

However, quantified measures of thermal habitat have clear significance
for catchability across fishing gears, and could also be wused in
standardisations of catch-per-unit-effort when data on depth of gears are
available (Bigelow, Hampton, and Miyabe 2002). In addition, the evidence for
size-dependent deepening of thermal habitat in both species has implications

for the targeting of size-classes in longlining.

Although diurnal differences in the behaviour of yellowfin and bigeye
have been described numerous times previously, the analysis of behavioural
switching in response to light-levels given in this chapter provides a more
general view of some differences between species. Although there is much

variation between individuals, bigeye tuna show fewer tendencies to
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immediately begin switching behaviours when light-levels begin to increase.
These results may suggest a longer period than previously assumed in the
epipelagic layer after sunrise for some bigeye. Such behaviour would
necessarily be linked to increased vulnerability to purse seine sets on FADs,
the majority of which are made at and after dawn. It must be noted however,
that light-level is not the same as time-of-day. The low-light levels of dawn may
yield a very different pattern of behavioural switching in tuna than the low-light
levels of dusk. Despite this, a further analysis of this light-driven behavioural
switching over fish-size may reveal it as a potential cause of the recruitment
overfishing that may be occurring in associated sets on small bigeye tuna
(Bromhead, Foster, and Attard 2003; Morgan 2011).

Aside from the technical caveats with this approach, several
improvements and follow-on analyses can now be undertaken. The simplest
improvement that can be made is to expand the analysis using more tag
returns from the WCPO and elsewhere, improving the modelling of consistent
behaviours and providing more statistical strength to explore factors. In
particular, examining the change in deep state thermal habitat from fish at
liberty over 50-80cm FL would give more insight into potential impacts to
surface gear vulnerability for these size classes. Similarly, more individuals at
liberty across maturation should be analysed for potential changes in the
nature or switching of behavioural states. The length at 50% maturity, L_, is
around 115 and 120cm FL, for yellowfin and bigeye respectively (Sun, Wang,
and Yeh 2005; Zhu et al. 2011), which correspond to much larger size classes

than the majority of tuna used in this analysis.

If new behavioural data become available, classification of new time-
series may also now be undertaken with considerably less computational
resources than the full model parameter estimations carried out in this
chapter. Using the mean parameter estimates from this analysis for either
species, or from some other grouping of interest, summary metrics from new
data can be classified using the likelihood calculation defined by those
parameters. Classified dive profiles would form a new time-series of data that
probabilistically describe the observed vertical movement behaviours for an
individual, on which meta-analyses can be carried out. These meta-analyses
would aim to examine the behaviours actually observed in the time-series,

given the assumptions of the HMMs used in classification, for the population of

190



Tuna Movement Behaviours Chapter 6

new individuals. The probabilistic nature of the classification allows periods of
particular behaviours to be identified alongside a measure of confidence.
These behaviours could include likely periods of extended surface behaviour,
such as is believed to occur during FAD-association, or the probability of
undertaking certain behaviours during the hours around dawn when fish are

most vulnerable to purse-seine gears.

Now that a baseline set of described tropical tuna movement behaviours
exists, in the next chapter | will return the some of the original questions of
this thesis and undertake some of the meta-analyses suggested above. Using
the classified time-series, individual-scale patterns of extended surface
association and changing vulnerability to gears through the day will be
undertaken, and incorporating the specific outputs of these results into

analyses of population dynamics discussed.
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Chapter 7: Tropical Tuna Behaviour from

Small to Large Scales

In this final chapter, | will revisit the questions posed at the beginning of
the thesis, and show how they have been answered through example meta-
analyses and discussion. These will focus on the fisheries and population
dynamics implications of the behaviour description and exploration that | have
undertaken in this study. Finally, three avenues for future research that should
lead from this work, across increasing time-scales, will be suggested and

briefly discussed.

7.1 How are the movement behaviours of tropical tuna
best explored and described in the context of

interactions with fisheries?

In this PhD thesis, | have discussed some of the ways in which small-scale
movement behaviours of tropical tuna can be described. In the literature
review of Chapter Two, some mechanisms were identified as potentially
important in the context of a pressing question in tuna fisheries, the impacts
of fish-aggregation devices, and | presented evidence to suggest that residence
behaviour of tuna species around FADs was one of the critical pathways by
which these fish are exposed to modern fisheries. The foraging behaviours of
schools of tuna upon the animals of the prey field were also shown to be

potentially important to quantifying the vulnerability of tuna to fishing gears.

Given the difficulty in real-world behavioural experiments for these
species, the use of a simple simulation model of the pelagic environment to
explore the emergent behaviours potentially occuring around fish aggregation
devices demonstrated how nature of the prey field and vertical movement
behaviours can considerably affect simulated residence times and diet impacts
given some simple assumptions about foraging. In particular, the ability to
exploit more of the prey field through deeper habitat-utilisation, and the

sensory dynamics of foraging on schools of prey was shown to greatly affect
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the vulnerability of tuna to purse-seiners using FADs in this simulation

framework.

| then examined a wide range of real-world data on tuna movements, in
order to examine which might provide a way to quantify or inform some of the
assumptions in this theoretical model. Given the difficulties in measuring the
prey field across the range of depths, areas and times that is required for
comparison with such a model, | focused on examining the movement
behaviours of tropical tuna themselves. After some preliminary analyses with a
range of data and methods, | identified the classification and description of the
vertical movement patterns contained in data from electronic tags to be an

effective way of doing this.

Using real-world data from electronic tagging experiments to explore the
dynamics of this vertical habitat-use presents a number of problems of
statistical power and objectivity. The approach of compressing data from
archival tags to time-series of summary metrics, and then using a multivariate
extension of hidden Markov modelling, is a more objective and statistically
sound method than has been previously used to classify the behavioural
patterns identified in tropical tuna, matching the many probabilistic
geolocation methods for describing horizontal movement from bio-logging
data (Lam, Nielsen, and Sibert 2008; Patterson et al. 2008; Pedersen et al.
2008). Furthermore, the multivariate observation model can be changed in
response to the types of data available and desired classification, and other
covariate information can be incorporated into state distribution parameters or
transitions. Here, | have focussed on vertical movement behavioural states that
are defined in dimensions that relate to thermal habitat and mobility through
the water column, because they related to a number of gear interactions that
are critical in understanding exposure and catchability in tropical tuna
fisheries. Purse seining requires that schools of tuna are located in shallow
warm waters generally no deeper than 200m, and that their level of vertical
movement is low before nets can set (Baird 2009), and is the dominant fishing
gear set on FADs (Williams and Terawesi 2012). FAD-association increases
efficiency of purse seine vessels by keeping tuna in exposed locations, both
horizontally and vertically (Leroy et al. 2013), while association with particular
depths or thermal habitats are related to hook depth and soak times in long-

line fisheries (Campbell 2004). In particular, the behavioural space used in the
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estimation of the HMMs in this thesis can be said to represent a relative

exposure to surface fishing gears such as purse seines (See Figure 7.1).

Theoretical Exposure to Surface Gears

Water Temperature

Variation in Depth

Figure 7.1 Relationship between the observation model used as the basis for
behavioural states in thesis, and the assumed effect on relative

exposure to surface gears

This same approach could be used for bio-logging data from any species
that exhibits noisy and autocorrelated behaviours. For example, if dissolved
oxygen data is available and is believed to be an important component in the
behaviour of a species, it can be included as one dimension of the observation
model. If lung capacity is believed to be a physiologically limiting factor in the
diving behaviours of air-breathing animals, then submersion time can be
included as a covariate parameter influencing the switching between potential
foraging and surfacing states (Mcintyre et al. 2011). Animals tagged with
multiple bio-logging devices are also particularly well suited to this method.
Seabirds equipped GPS and submersion recorders exhibit some clear

behavioural patterns and dynamics in a multi-dimensional space that can be
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classified easily by using multivariate HMMs, for example (Dean et al. 2012;
Hart et al. 2010).

For yellowfin and bigeye tuna, | have shown that the nature and switching
of the two most prominent states within this two-dimensional behavioural
space is remarkably similar within species. The estimated shallow and deep
states are broadly consistent with many previous studies on the vertical
movement of these species (Schaefer et al. 2015, Schaefer & Fuller 2010,
Evans et al. 2008, Schaefer et al. 2007, Maury 2005, Holland et al. 1992). At
the time-scale of hours, it appears that there is little evidence for more than
two consistent movement patterns described in terms of vertical habitat-use
and movement through the water column in these species. Even with only two
vertical behaviour modes, the simulation model of Chapter 3 showed that a
wide variety of emergent behaviours at longer time-scales were possible,
dependent on environment cues such as the presence of FADs and the nature

of the prey landscape.

In real tuna, shallow behavioural states centred in the warm epipelagic
layer exist with many associated levels of movement through the water
column, ranging from both high levels of oscillatory diving through to near
constant occupation at a single depth. In contrast, colder behavioural states
are always associated with high levels of movement through the water column,
particularly in bigeye, which exhibit thermoregulatory ascents. There is no
suggestion of a specific FAD-association type vertical behaviour at this scale,
rather it is likely to be a continuation of the classified shallow state described
by the HMMs built in this thesis (see below). Diurnal state switching is also
clearly apparent and has been quantified in terms of both simple estimates of
day and night periods, and recorded light levels from the tags themselves.
Switching is, again, very similar across all species, and generally weighted in

favour of time spent in shallow states.

7.2 What causes changes in these behaviours?

While the nature and switching of hour-scale behavioural states are fairly

consistent across individuals, there is considerable variation in the dynamics of
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these behaviours through time at scales greater than the first order Markov
dependence assumed in the behavioural models of this thesis. Beyond clear
diurnal switching, the analyses of Chapter 6 have shown much individual
variation in changes to deep state behaviours in bigeye during time-at-liberty.
There is some evidence that this may be a general deepening of thermal-
habitat with growth, but more tags at the edges of the size class limits offered
by the PTTP are required to more accurately identify if this is a consistent

process.

When the classified time-series are examined, however, we see
remarkable variability in the actual occurrence of behaviours in comparison to
the theoretical switching modelled by the Markov chain component of the
HMMs. This can be explored across individuals by combining the classified
behavioural states at different times of the day for all yellowfin and bigeye
tuna examined in this thesis. This meta-analysis is distinct from the stationary
distributions used to show the theoretical proportion of time spent in each
state from the model transition parameters, but rather is simply the
distribution of the most probable model classifications as are manifest in each

actual time-series.
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Figure 7.2 Histograms of observed shallow state (light blue) and deep state (dark blue) behaviours classified throughout the day
at each one-hour time bins for all yellowfin (top) and all bigeye (bottom) combined. Overlaid are boxplots showing the

spread of observed deep states between individuals.
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Here | use the two-state HMMs estimated at one-hour intervals (N = 68),
as presented in Chapter Six, to provide the observed behavioural states
throughout a 24-hour day. At each approximate one-hour section of the day,
the most probable state was used as the behavioural classification for that
section. The frequencies of these observations were summed across each

section of the day for all individuals, separated by species (Figure 7.2).

During the majority of the night, both yellowfin and bigeye tuna almost
exclusively exhibited behaviours classified as shallow. The slightly greater
number of deep behaviours observed during the night for yellowfin may be
due to these deeper behaviours being in truth relatively shallow for some of
these fish. Because “shallow” and “deep” are relative behavioural terms for
each individual, the deep state of some yellowfin may be equivalent to a
thermal habitat centred within the thermocline. Such movement through the

thermocline may still occur during night-time hours.

A strong shift for both species occurs after dawn, although this is not
surprising given the division of the dive track used in the data pre-processing
stage of this method. It must be noted that the two approaches (split-moving
window in Chapter Five and optimised dawn/dusk parameters in Chapter Six)
used to section the archival time-series in this thesis both use marked changes
in average depth to estimate dawn and dusk. These estimated crepuscular
periods may not be the true dawn and dusk, but the behavioural dynamics

around them provides a useful frame of reference for behaviour.

During the day there is a greater contrast between yellowfin and bigeye
behaviours. Although it appears that yellowfin make a more sudden shift to
deep-states at dawn, this is due more to the fact that for many yellowfin these
behaviours are relatively shallower than for bigeye. It is likely that for bigeye
the shift to deep behaviour simply takes more time and consists of more
observations that could be considered either shallow or deep in the case of a
two-state model, or one of the intermediate states identified in the three-state

models of Chapter Six.

As daylight hours continue, bigeye tuna have a greater propensity to
exhibit deep state behaviour, with most observations occurring in the hours
preceding dusk. This would suggest that any uncharacteristic day-time surface

behaviour by bigeye tuna is more likely to occur in the first half of the day than
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the second, corresponding to the consistent “afternoon diving” behaviour
identified in Matsumoto, Kitagawa, and Kimura (2013a). Variation in observed
behaviour also decreases as the day-time continues, indicating that this
morning shallow behaviour is highly variable between individuals. In contrast,
the yellowfin examined here display a more symmetric pattern of behaviour
during the day, with the greatest observations of deep behaviour during the
middle of the day and a higher chance of remaining uncharacteristically
shallow in the hours after dawn and before dusk. Variation remains similar

throughout the day-time.

The underlying mechanism for this variation in behavioural switching
cannot be known given the available data, but may be a result of individual fish
reacting to fluctuations in the local biotic environment such as availability of
prey or density of conspecifics. The individual-based model of Chapter 3
demonstrated how stochasticity in predator-prey interactions can lead to large
variation in the dynamics of emergent tuna behaviour, within the framework
and assumptions of the simulation. Such stochasticity is likely to play a similar
role in the intra-individual variability seen in the classified time-series here.
Recent acoustic tagging experiments on tuna in FAD arrays also concluded
that variability in individual behavioural modes at FADs might be much higher
than previously thought (Robert et al. 2013). This greater propensity of shallow
behaviour during the morning in bigeye may relate to searching for new
aggregations of prey biomass following the descent of vertically migrating
mesopelagic animals at dawn. As shown in the individual-based model of
Chapter 3, sudden emptying of the prey landscape at dawn drives association
to floating objects more strongly than at other times, and this may also be
occurring for some of the bigeye tuna from the central equatorial Pacific
examined here. The reasons that a similar dynamic is not present for yellowfin
is not clear, although given the spatial factors that are different between the
majority of the two species groups of these samples, these differences may be
related to a different distribution of prey groups between the western warm

pool region and the central equatorial Pacific.

Another approach to examining changes to the switching between two

behavioural states can be made by identifying sequences of behaviours that
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are unusual, given the strong diurnal switching estimated in all the HMMs built
on tuna data in this thesis. FAD-association itself is believed to cause a change
in the dynamics of both horizontal and vertical behaviour of pelagic species.
Despite the previously described uncertainties regarding FAD-associative
behaviour, the established belief is that floating object association causes tuna
to remain near the surface for extended periods of time. No consistent and
separate vertical behaviour has been identified by the behavioural modelling |
have undertaken in this thesis, and so it appears that FAD-association is
typified by changes in state switching over a time-scale longer than hours. This
can be examined and compared between individuals by undertaking a second

meta-analysis on the HMM classified time-series.

Previous authors have characterised this FAD-association behaviour as an
individual remaining shallow during the day-time when it may otherwise be
exhibiting characteristically deeper behaviours. This belief has come from the
observation of schools of tuna aggregating beneath FADs during the day, and
from fish implanted with acoustic tags and therefore known to remain shallow
during the day-time in the local vicinity of acoustic receiver-equipped FADS
(Leroy et al. 2010; Schaefer and Fuller 2013). In bigeye tuna in the eastern
Pacific, this type of associative behaviour has been identified from bio-logging
time-series that show extended periods of shallow behaviour, which do not
include the characteristic U-shaped day-time diving of this species. Periods of
time where fish exhibit associative behaviour can be manually identified from
these unusual day-time behaviours. Alternatively, classification can be
qguantified by selecting periods of time when an individual spends more than a
particular proportion of the day above a given isotherm (Schaefer, Fuller, and
Block 2009; Schaefer and Fuller 2010).

Here, a similar meta-analysis of the dynamics in tuna behaviour through
time can be undertaken using the baseline two-state HMM classifications from
the previous chapter (which contained no covariate information affecting the
nature or switching between behavioural states, and assumed a three-hour
timescale for behavioural description) in relation to these “surface-association”
behaviours with floating objects. This approach is different to previous studies
in the dynamics of surface-type behaviours in two key ways. First, the
identification of associative periods is objective and automatic, using the HMM

classified time-series. Second, here the degree to which an individual fish
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exhibits surface-association behaviour is defined as the rolling mean across 8
time-steps (24-hours, at three-hour time-steps) of shallow state probability. If a
fish were undertaking “characteristic” diurnal switching, remaining relatively
deeper during the daytime than at night, we would expect this surface-
association probability to remain around 0.5. If behaviour switched to that
typically assigned to association with a floating object, with the fish remaining
in the epipelagic layer throughout both day and night, the probability of
surface-association would be close to 1. Varying strengths of surface-
association behaviour are therefore represented by values between 1 and 0.5
(and example is given in Figure 7.3). Continual deeper states, such as 24-hours
spent exhibiting thermocline-centred behaviours in yellowfin, are represented

by values less than 0.5.
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Time-at-liberty (days)

Figure 7.3 Example dive track, with individual three-hour sections classified
into either shallow or deep state behaviours and coloured
differently. The rolling 24-hour probability defining surface-

association is shown in red through time.

A period of surface-association can therefore be classified for points in
the time-series at which the probability exceeds a given threshold. To examine
the occurrence of surface-associations across a range of threshold values,
summary statistics were calculated from each time-series, assuming threshold
probabilities of 0.95, 0.9, 0.85, 0.8, 0.75 and 0.7. Where data allowed, | also
calculated surface-association summary metrics in relation to known events at
release and recapture. Estimated surface-association events at release were
defined as surface-association probabilities that rose above a threshold
beginning within the first 24 hours after tagging and release, and then
continued for some period of time. Estimated surface-association events at

recapture were similarly defined as events that finished rising above a
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threshold within the final 24-hour rolling mean window before capture. The
length of such events was compared across individuals. Finally, the mean
surface-association probability during the first and last 24-hours of the time-
series was compared to the mean for the entire time-series. The surface-
association probability through time, alongside any known school behaviour at
release and recapture, is shown for all fish in Figure 7.4. Summary metrics
across assumed threshold probabilities are given as linear boxplots for all

bigeye and yellowfin (Figure 7.5).
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Figure 7.4 Surface-association probabilities for all fish, ordered by species and
length-at-release (bottom to top). Dark red periods indicate high
surface-association probability (~1), orange showing probability of

more characteristic switching behaviour (~0.5).
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Figure 7.5 Summary metric boxplots of surface-association occurrence for bigeye and yellowfin. From left to right: surface-
association probability during the first 24 hours by school behaviour at release; length of the release association for
those fish that exhibited one across threshold probability used for classification; proportion of whole time-series spent
surface-associating across threshold probability; surface-association probability comparison between first 24-hours,
the entire time-series, and the final 24-hours before capture; the number of separate surface-association events across
threshold probability; the median surface-association event length for each fish across threshold probability; the length
of capture associations for those fish that exhibited one, across threshold probability; and the surface-association

probability during the final 24-hours across school behaviour at capture.
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Consistent and often long periods of surface-association were present at
the start of the time-series for the majority of central Pacific bigeye tuna, all of
which were released at anchored Tropical Atmosphere Ocean (TAO) buoys or
while associated with the tagging vessel. The first 24-hours after release
showed very high levels of surface-association for the majority of bigeye
individuals, compared to the mean value for the entire time-series. Some
yellowfin tuna released in the western warm pool also showed long periods of
surface-association near the beginning of their time-at-liberty, despite being
released into schools displaying a wider variety of behaviours. Of particular
note is YFT A0613, which was released into a free school south of New Britain
in Papua New Guinea. Despite this region being of low FAD density, this
individual exhibited over 80 days of near continuous surface-association
beginning around three days after release. The mean probability of surface-
association during the first 24-hours after release was comparable to the mean

probability during the whole time-series.

For the actual surface-association events that occurred immediately
following release (release associations), there were differences between the
two species of tuna. Assuming a 75% threshold probability, 38 of the 45
bigeye examined here had release associations, and for 29 fish this event was
the longest surface-association observed during their entire time-at-liberty. The
mean time of these associations for bigeye was 8.6 days, with a standard
deviation of 5.8 days, when assuming an 75% threshold probability. The length
of release associations did not change significantly across different threshold
probabilities. Although the true length of the association period is unknown,
as it also includes time before tagging, these first association events are far
longer than the median event length and among the longest recorded in the
time-series for many fish. For 38 of the 45 bigeye examined in this thesis,
tagging and release occurred at anchored TAO buoys that have been in place
for many years, and appear to exert a strong association effect that was clear.
These results are similar to the initial release FAD-residence reported for
bigeye in Matsumoto et al. (2013a) (mean residence time = 8.3 days, 8.6 days

here).

Release associations in yellowfin were much more varied across different
values of threshold probability. 11 fish exhibited surface-associations

immediately prior to release, assuming a threshold probability of 75%, and this
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release association was the longest in the time-series for 4 of these
individuals. The mean length of this release association was 3.9 days, with a
standard deviation also of 3.9 days, although the data were much more
positively skewed at this threshold. In contrast, the range of association
behaviours at release were much more varied in this sample of yellowfin, and
this was reflected in less consistently strong surface-association events at
release with known floating object locations. Furthermore, although some
individuals exhibited a long surface-association after being released at
anchored FADs in the western warm pool, for many of these FAD-associated
fish this event was short or even non-existent following release. The strong
spatial bias in this sample of fish prevents us from drawing definite
conclusions about this being a species-level effect. However, given that any
anchored FADs of the Bismarck Sea and coastal Solomon Islands are unlikely to
have been deployed for the same amount of time as the TAO buoys in the
equatorial Pacific, and also reside in a region of much greater anchored FAD
density dominated by archipelagic waters and seamounts, it may be that this
habitat causes a more diffusive effect on floating object associations. The mix
of surface-association behaviour exhibited by those yellowfin released into free
schools suggests that at least some of these surface-association events may
not be the result of floating-object association. The release location of several
of these free schooling yellowfin, the coastal region of south of New Britain, is
an area with few known anchored FADs arrays, and yet these fish still exhibit

clear, and in some cases extended, surface-associations.

7.2.1 Surface-association throughout time-at-liberty

During time-at-liberty, a wide variety of patterns in behaviour were seen
between all individuals. Many central Pacific bigeye exhibited clear surface-
association events interspersed between sustained periods of characteristic
diurnal shallow-deep switching behaviour. For some individuals, several short
surface-associations occurred in groups (e.g. BET 89006), and few individuals
exhibited extended periods of surface-association that were more interspersed

between characteristic behaviour (e.g. BET 990115).

The distinction between surface-association and other behaviour was less
clear in yellowfin from the warm pool. For the majority of these fish, periods of

surface-association occurred as many brief events interspersed with more
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characteristic diurnal switching behaviour. For a small number of yellowfin the
opposite was true, as they exhibited very long periods of surface-association

broken up with very brief periods of switching behaviour (e.g. YFT 0854).

For the actual length of separate surface-association events, the
distribution varied for each individual, and was positively skewed in most
cases. Most events for each individual were short, with a smaller number of
long, consistent surface-associations also occurring. When grouping the
medians event length for all individuals, the distribution of these medians was
also slightly positively skewed for both species, although the there was not
much variation for the majority of individuals. The median of grouped median
event lengths was 1 day for both species, assuming a threshold of 75% for

surface-association classification.

7.2.2 Surface-association events at recapture

The period of time immediately preceding capture was also varied
between individuals. Surface-associations existed prior to capture for some
fish (capture associations), although these were rarely as long as those
exhibited at release. Many individuals showed no signs of surface-association
prior to capture. When they did occur, capture associations were very different
to release associations. The mean probability of surface-association during the
24-hours prior to capture was varied. For many bigeye, this probability was
higher than the mean during time-at-liberty. For yellowfin, the final 24-hours at

liberty were comparable to the mean during the entire time-series.

Due to the low quality of school-association behaviour at recapture,
comparisons between tag-derived surface-associations and the school-
association observed at capture were difficult. For 21 bigeye believed to have
been caught at anchored FADs, surface-association probability during the final
24-hours at liberty was varied, but generally higher than the mean during time
at liberty. The 6 bigeye believed to have been caught at drifting FADs, this
probability was comparable to the mean during time-at-liberty. Information on
school behaviour at recapture for yellowfin was so poor that | refrain from

describing the patterns in surface-association probability here.
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7.2.3 Implications

While the behaviour typically assumed to be linked to FAD-association is a
clear and sustained residence near the surface, this meta-analysis has shown
that exhibition of a more broadly defined surface-association behaviour is
highly variable across individual fish. Despite the great many spatial and
temporal differences in local stimulus likely experienced by each fish, the
proportion of time spent exhibiting surface-association behaviours were very
similar between yellowfin tuna released predominantly in the western warm
pool, and bigeye tuna released in the central equatorial Pacific. When
compared to proportion of time spent exhibiting associative behaviour in
previous acoustic tagging experiments of yellowfin tuna at liberty within arrays
of anchored FADs, the times of the events that | describe here were much
shorter. Even assuming the less conservative threshold probability of 75%, the
yellowfin examined here spent only 18% of their time exhibiting surface-
associations, which is considerably shorter than the proportions of 60%
reported by Ohta and Kakuma (2004) and 64% reported by Robert et al. (2012).
Our results for both species are closer to the proportion of time exhibiting
association behaviour reported by Matsumoto et al. (2013a) for bigeye in the
north-western Pacific (13%), Schaefer and Fuller (2010) for bigeye in the
equatorial eastern Pacific (9%-19%), and Schaefer et al. (2009) for yellowfin

(10%) and bigeye (16%), also in the equatorial eastern Pacific.

The number and length of events was different between the two groups
of tuna, with yellowfin in the western warm pool region generally having a
greater number of short surface-association events and bigeye having a
slightly lower number of longer events. However, despite the greater plasticity
in switching to surface-behaviours in yellowfin, the highly skewed distribution
in the length of individual surface-association periods within the majority of
time-series indicates that there may be two different behavioural modes for
both species: a more common short association with the epipelagic layer, and
a less common extended association. Previous acoustic telemetry experiments
have suggested that tropical tuna known to be associated with receiver
equipped FADs have multiple modes of differing residence time (Robert,
Dagorn, Filmalter, et al. 2013), and residence times and number of known
FAD-association events have varied greatly across previous studies, even for

the same region (Robert et al. 2012). Although an inappropriate assumption, if
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the surface-associations that have been identified in this chapter are taken as
representing association with drifting or anchored floating objects, the
residence times are considerably shorter than many older studies (Ohta and
Kakuma 2004; Dagorn et al. 2007), and even slightly shorter than more recent
studies that have suggested assumed residence times should be re-considered
(Schaefer et al. 2010; Robert et al. 2012; Schaefer et al. 2013). In actuality, it is
possible that some of these short surface-associations may represent other
behaviours such as periods of active horizontal relocation (Schaefer et al.
2015), spawning (Evans et al. 2008), opportunistic feeding (Fernandez & Allain

2010) or some other unknown behaviour.

Although this analysis of surface-association behaviours reveals great
variation in vertical movement behaviours, it remains impossible to say which
surface-association events identified here are related to FAD use by tuna,
outside of identified FAD-associations at release and capture. From these
known release and capture events, and from the increase in surface-
association behaviours in yellowfin in the Bismarck Sea region, it can be said
that at least a moderate proportion of these surface-association events
represent likely FAD-associations. The long residence periods at the beginning
of bigeye tuna time-series released at TAO buoys are typical of the types of
known FAD-associations observed in previous studies (e.g. Ohta and Kakuma
2004, median residence time = 7 days, 8.1 days here). However, the short
duration of many surface-association events suggests that this may not be
such a common form of FAD-association. Fish briefly visiting FADs, travelling
between FADs in an array, or associating non-continuously with frequent
excursions away which are coupled to more characteristic vertical movement
behaviours, appears much more typical, particularly for the yellowfin from the
western warm pool examined here. This type of FAD-use by tropical tuna has
also been suggested in a number of previous studies that have described
associative behaviour in tuna within FAD arrays near island masses (Holland
1996; Dagorn et al. 2007; Leroy et al. 2010). In addition, some of the
prolonged surface-associations in yellowfin observed here are clearly linked to
time spent in archipelagic and neritic regions. Such a coastal effect has
potential implications for the many acoustic telemetry experiments that have
studied FAD-association behaviours of yellowfin and bigeye tuna within coastal
arrays of anchored FADs (Ohta and Kakuma 2004; Dagorn et al. 2007). It may
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be hypothesised that, while floating objects may concentrate tuna horizontally
at local scales, the island effect on changes to vertical behaviour may be
present at larger spatial scales, regardless of the density of floating objects in

the region.

7.3 What are the likely implications of these findings on
the small-scale movement behaviours of tropical

tuna to their larger-scale population dynamics?

The quantitative methods of description and classification of yellowfin
and bigeye tuna vertical movement behaviours developed in this thesis
provides the basis for a number of future analyses and implications for
scientific advice to fisheries. Findings of broad importance to fisheries include
the apparent differences in thermal habitat between species in both of their
relative behavioural states. Although this is already established for deep diving
behaviours, i.e. that bigeye occupy a much colder habitat than yellowfin when
diving, there may also exist differences between the thermal habitat of
yellowfin and bigeye shallow states within the epipelagic layer. Unfortunately,
within this analysis there are insufficient tag returns from each species across
the western warm pool and more eastern central Pacific regions for us to
exclude the possibility that this apparent difference in thermal habitat is driven
by spatial differences in the temperature of the epipelagic layer (Evans et al.
2008).

However, quantified measures of thermal habitat have clear significance
for catchability across fishing gears, and could be used in standardisations of
catch-per-unit-effort when data on depth of gears are available (Bigelow,
Hampton, and Miyabe 2002), or to improve habitat indices in spatial models of
distribution (Lehodey et al. 2008). In addition, the evidence for the size-
dependent variability of thermal habitat in both species has potential
implications for the targeting of size-classes in longlining. CPUE is often used
as a relative index of population abundance in both simple and integrated
stock assessment models, assuming the proportion of the population caught

by a single unit of fishing effort, the catchability, remains constant. This
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assumption is rarely the case, and so CPUE is usually standardised using a
number of explanatory variables that are believed to have affected catchability
throughout the time-series (Campbell 2004; ISSF 2012). These variables
typically include size- or age-classes of the caught fish, different fleets, periods
of time between significant changes in gear technologies, and regions or
habitat indices. Also included in some CPUE standardisations are
environmental variables or more detailed gear and fishing information
(Campbell 2012; Maunder et al. 2006), both of which aim to capture some

assumed effect on the exposure of fish to fishers.

The vertical movement behaviours of tropical tuna necessarily have a
direct relationship with their exposure to fishing gears (Bigelow, Hampton, and
Miyabe 2002). The quantification of these behaviours across factors such as
size allows incorporation of previously qualitative behavioural notions into
these types of analyses. For example, it would now be possible to use the
HMM-estimated distributions of thermal habitat in different behavioural states
as variables to explain variation in longline CPUE, structured by fish size-class.
Similarly, the distribution of observed behaviours during the course of a 24-
hour day given earlier in this chapter could be used alongside time of fishing

for the same purpose.

The estimated parameters from the HMM models estimated by this work
can also be used to inform other mechanistic models that predict or examine a
system at higher ecological scales. In this context, mechanistic models assume
that processes at the organismal level, or equivalent, are important at
governing the emergent behaviour of the ecological system. This is in contrast
to phenomenological models, which seek to predict future observations of a
system by correlation with some explanatory variables, assumed to adequately

sample the causal pattern of interest (Koehl 1989).

In fisheries, mechanistic models can relate to stock assessment, but they
can also be simple models which aim to increase our understanding of how a
system works (Schoener 1986). For example, in Chapter Three an expressive
but un-fitted individual-based model was constructed to examine the effect of
diving ability on emergent residence time at FADs, as well as other factors
such as diet. While this model broadly replicated some patterns seen in

association with FADs by tuna, many of the parameters had little basis in

213



J. Scutt Phillips Chapter 7

guantitative observation. In particular, the division of the ocean into distinct
layers and the dive probabilities of the artificial tuna appear particularly suited

to updated parameterisation from the results of this thesis.

From the tropical tuna examined here, it appears that the division of the
ocean into three distinct habitats is as a sound assumption. The thermal
habitats of the estimated behavioural states in Chapter Six suggest that both
yellowfin and bigeye occupy a very similar range of habitat in the epipelagic
layer, but separate out into two distinct groups when these species exhibit
their deepest behaviours. This thermal habitat appears more varied for
yellowfin, although due to the depth being focused within the thermocline
where the temperature change is greater per meter moved, this is not
surprising. Probabilities of switching between these thermal habitats can be

directly incorporated from the parameters of the HMMs.

The analysis of change in state distribution means by size (also in
Chapter Six), suggested that the smaller class bigeye might have deep state
thermal habitats that are similar to those of yellowfin. If bigeye of these size-
classes are as yet unable to exploit deeper layers of water, it may leave them
more vulnerable to the influence of floating objects, under the assumption that
FADs act as potentially false indicators of productivity. This was demonstrated
in the theoretical model of Chapter Three, and the resulting potential for
recruitment overfishing for this stock is a critical concern in current fisheries
management (Davies et al. 2011; Morgan 2011). Similarly, the surface-
association behaviour defined and identified from extended and high
probability surface behaviour shows that diel shifts in depth and periods of
deep state behaviour can still occur during these events. These surface-
associations provide an alternative source of patterns than acoustically tagging
fish, with which to compare potential FAD-association or other extended

surface periods from the IBM of Chapter Three.

Other, more complex mechanistic models also exist for use in providing
scientific advice. APECOSM (Apex Predators ECOSystem Model, Maury 2010), is
a community structured, dynamic energy budget model that aims to
incorporate a number of functional relationships that impact marine
populations. Organisms in the model are divided into trophic groups that

occupy different layers of the water column and in some cases are capable of
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vertical migration. The vertical behaviour of key predator species, in this case
tropical tuna, are modelled by distinct equations that govern switching
between different feeding behaviours on the biomass of these functional prey
groups, based on simulated energy and physiological requirements.
Simulations have successfully replicated a number of broad behavioural
patterns in bigeye tuna, including day/night changes in behaviour and

thermoregulatory ascents (Maury 2005).

Such models of vertical behaviour are of course driven by mechanisms
that are not included in the models estimated in this thesis. However, aside
from potentially constraining the parameterisation or structure of mechanistic
models, the approach of estimating HMMs on multivariate time-series provides
a way to generate relevant behavioural observations that can be compared to
those models that provide output at a similar scale. As an example, if depth,
water temperature and internal body temperature are the key inputs in the
physiologically-driven behavioural model of APECOSM, a three-dimensional
multivariate HMM can be built on these data from real tuna at the same time-
scale. The nature and switching of different states within this behavioural

space can be used to fit or evaluate the parameters of the mechanistic model.

Another recent model used for scientific advice to tuna fisheries is the
SEAPODYM model (Lehodey, Senina, and Murtugudde 2008). This model
simulates population dynamics of tuna-like species via bottom-up, ocean bio-
geochemical forcing, and can be fit to a variety of assimilated fisheries data. In
this sense, it is a phenomenological model in its predictions, but contains a
number of mechanistic components drawn from the current understanding of
tuna behaviour. These include both vertical and horizontal habitat preferences,
based on the believed physiological capability of different species and the
abundance and distribution of lower trophic level prey. In the case of vertical
thermal-habitat preferences, these are defined by a normal distribution with a
mean that decreases linearly with length and a standard deviation that
increases linearly with weight (see Figure 7.6). This mechanism is based on the
assumption that tuna will search for an optimum intrinsic temperature
regardless of age, but that as size increases, they will require residence in
colder water due to a higher steady state temperature and will be capable of
greater changes in vertical habitat due to the thermal inertia (Holland et al.
1992).
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Figure 7.6 Example of changes in thermal-habitat indices for different age-

classes of bigeye tuna, taken from Lehodey et al. (2008).

From the results of this thesis, vertical movement is clearly much more
complex than this mechanism. It includes dynamics such behavioural
switching, non-constant patterns over time, and potentially non-linear
relationships between these behaviours and size. Many of the parameters
estimated in multivariate HMMs of bio-logging time-series can directly inform
this component of SEAPODYM. The behavioural state distributions have
estimated means and variances in the water temperature dimension, and in
Chapter Six a relationship to describe how these state means vary with size of
the fish was calculated, showing some evidence that it may be non-linear.
Alternatively, multiple behaviours and transition probabilities could replace
this simple model of habitat preference altogether, incorporating probability

and variation of switching between thermal-habitats directly.

The degree to which FAD-association affects tuna vulnerability to fishing,
and more broadly if they constitute an ecological trap, has been discussed
many times in this thesis and elsewhere (Bromhead et al. 2003; Hallier &
Gaertner 2008; Dagorn et al. 2013). Although we cannot make definitive
statements about when during archival tag time-series FADs may have
influenced the individual tuna in this work, the high variability both within

individual time-series and between individual fish indicates that these surface-
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association periods are likely to be driven by number of local influences that
include factors other than floating objects. Throughout the work of this thesis,
the importance of the local-scale environment and prey field on the movement
behaviours of tropical tuna has been stressed. The simulation model of
Chapter Three showed how relatively minor changes to the prey field can
result in very different emergent system properties at other scales (such as
time spent around a FAD). Furthermore, while fairly consistent behavioural
states were estimated with the quantitative methods developed in chapters five
and six, it is clear that temporal dynamics are highly variable. Recent acoustic
tagging experiments on tuna in FAD arrays also concluded that variability in
individual behavioural modes at FADs might be much higher than previously
thought (Robert, Dagorn, Filmalter, et al. 2013). This stochasticity is likely due

to reactions by the individual or school to local stimulus.

Given the high variability in exhibited surface-association behaviours,
alongside the likelihood that small-scale interactions with the prey field play an
important role in determining the motivational states, it may be concluded that
at least some of this stochasticity may be due to fluctuations in the prey field.
The diet of tropical tuna is highly varied and based on opportunistic predation
(Bestley et al. 2010; Bromhead, Foster, and Attard 2003). This makes it difficult
to form a link between the apparent stochasticity in observed behaviours, and
any potential data on changes in prey adundance. However, the variability in
observed surface-associations at known points of FAD-association (i.e. release
and capture) still precludes us from identifying a single, definitive FAD-driven
surface-association behaviour. If FADs act as ecological traps, it is by
modifying the perceived habitat selection process in tuna and other pelagic
animals, causing them to remain in potentially unfavourable areas that they
may otherwise have left (Hallier & Gaertner 2008, Dagorn et al. 2010). It is
impossible to truly test this hypothesis here, due to knowledge gaps in the
local environment experienced by this sample of fish, but the results of this
thesis do have implications for our understanding of FAD-gear interactions for
these tuna. There is a horizontal component and vertical component in the
aggregative effect of FADs, both of which influence the potential vulnerability
to surface fishing gears. To varying extents, floating objects appear to bring
tuna to a locality in horizontal space and then aggregate them near the surface

for longer than normal periods of time, where they become more vulnerable to
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purse seine capture. Here, | have focussed on the vertical component of this
behavioural impact and the surface-association events | have identified in this
chapter vary greatly, both at the inter- and intra-individual level. Some events
are prolonged and result in capture, but the large majority do not. Although
examination of these behaviours over a greater range of size-classes is
required before any potential ontogenetic propensity for surface-association
can be dismissed, it appears that there are few patterns to this behaviour in
bigeye and yellowfin tuna. At a general level, exhibition of this behaviour
occurs for a very similar proportion of time for all the fish examined here
(around 15%), which were at liberty across a wide range of seasons, geographic
locations and regions of FAD-density. Therefor, | suggest that there is little
evidence to suggest that the use of FADs greatly increases the vertical
component of vulnerability to purse seine capture. Furthermore, if FAD-
association is assumed to always involve surface-association (although the
opposite appears not to be true), then it appears that in oceanic environments

sustained FAD-association is not common.

If the vertical component of FAD-association is not regularly retaining
tuna for long periods of time near the surface, then it is the concentration of
fish in the horizontal plane that is driving an increased efficiency for purse
seine vessels in locating schools. Here | have shown that similar behaviours
occur in archipelagic waters where interactions between fish and natural
floating objects or coastal regions are likely to be common. Management
measures that seek to limit the other impacts linked with FAD-associated sets,
such as altered catch composition or bycatch, should therefor seek to control
overall fishing effort on floating objects. Banning the use of FADs for particular
regions or seasons simply results in shifting effort from one place or time to
another with little impact on the catch or the number of sets made (Pilling et
al. 2013), and if the large majority of residences at floating objects by tuna are
moderately short then there is little evidence to suggest that their biology,
movement behaviours or entrainment to a region are being significantly

affected by an increased density of FADs (Dagorn et al. 2013).
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7.4 Future Research

The findings of this thesis suggest a number of further avenues of
research in understanding the movement behaviours of tropical tunas in the
context of Pacific fisheries. Here, | briefly discuss three areas in which future
effort should be made across increasingly large time-scales, from pressing
analytical studies which could be carried out immediately, to the development
of new large-scale models and implementation of region-wide conservation

measures.

7.4.1 Extended and Population Level Analyses

In the future, the number and quality of bio-logging experiments is going
to increase. Not only are current WCPO tagging programmes going to result in
increasing returns of archival tags similar to those | have examined in this
thesis, but many other tagging programmes exist for tropical tuna species in
other parts of the Pacific (e.g. Block et al. 2003; Schaefer et al. 2015). New and
cheaper bio-logging technologies are becoming available, such as geomagnetic
sensors that aid in horizontal geolocation and pop-up dart-tags that allow a
single accurate GPS location to be registered alongside implanted archival tag
data. Bio-loggers are becoming smaller, meaning that smaller individuals can
be tagged to fill the gap in our understanding of the behaviour of these size

classes.

Given the likely increase in data that will occur, and the vertical
movement time-series of tropical tuna species that already exist outside of the
PTTP, the description and classification analyses of Chapters Five and Six
should be continued with data from more tags. Although there have been a
wide variety of release locations for tags in the PTTP, they can generally be
divided into three regions: the open-ocean central Pacific, the archipelagic
waters of the Solomon Sea, and the anchored FAD-dense Bismarck Sea.
However, many other electronic tagging experiments have been carried out in
regions such as the Hawaiian Islands (Brill et al. 1999; Musyl et al. 2003),
south-western Japan (Matsumoto, Kitagawa, and Kimura 2013a, 2013b), and
the eastern equatorial Pacific (Schaefer and Fuller 2004, 2010). If these tags
could be combined with the data used in this thesis, a clearer description of

species level behaviour would be attained. In particular, the analysis of size-
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dependent differences in deeper state behaviours would benefit from more

individuals.

The meta-analyses of this chapter should also be continued and
expanded as more data becomes available. The stark differences in surface-
associations between individuals should be examined further as a priority.
Although it is impossible to know whether these events are true floating object
associations or not, we do know the school behaviour at time of release and, in
many cases, recapture. Patterns of surface-association during these known
periods of free-schooling, anchored FAD-association and drifting FAD-
association should be explored. Similarly, the dynamics surround surface-
association events should analysed to identify if these periods of behaviour
occur and cease suddenly, or whether they gradually develop over a period of

time.

Despite the general poor quality of light-based geolocation at low-
latitudes (as discussed in Chapter Two), an investigation of combining
classified vertical behaviours using the approach of this thesis alongside the
best track estimates and error margins of current geolocation methods should
be undertaken. Not only would this provide estimates of where a fish is when
surface-associations or other vertical behavioural patterns are occurring, but
also potentially general shifts in these behaviours associated with movement in
and out of particular regions. Furthermore, improved classification of vertical
behaviour could provide additional constraints on the actual estimation

process of horizontal movement tracks when these two data are combined.

7.4.2 Tagging Simulation

In Chapter Three, | developed an individual-based simulation model to
examine the effect of changing a small number of assumptions on very
specific phenomena surrounding FADs and tuna behaviour. Despite the
simplicity of the model, many broad patterns were replicated using this
approach and number of strong changes in simulated residence times and diet
were seen when behaviours or the environment were altered. The empirical
analyses of chapters five and six provide quantitative outputs that can be used
to inform this model, and the multivariate HMM method was tested on some

simple simulated datasets to ensure that the method effectively recovered
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values of known parameters. However, these simulated data were generated
from distributions and transition parameters that assumed certain theoretical
behaviours (e.g. foraging at depth with thermoregulatory ascents) would
manifest as multivariate normal distributed observations in the behavioural
space most suited to this analysis. In order to better test if vertical movement
behaviours can truly be described in a meaningful way by the HMM approach,
it is necessary to adapt the simulation model of Chapter Three to a higher
temporal and depth resolution. Using this structure, the virtual individuals or
schools of tuna in the model can be virtually “tagged”, and their high
resolution behaviour under a number of assumptions be analysed by the same
multivariate HMM approach used on real fish from the PTTP in this thesis. This
could potentially shed light on what some of the behaviours estimated by an

HMM on real tuna may represent in situ.

While such a tagging simulator could be based on some simple
assumptions about the environment or prey field as was done in the IBM of
Chapter Three, driving forces could also be input from a number of other
sources that already exist. For example, SEAPODYM can already project spatial
and temporal abundance of mid-trophic forage species (Lehodey, Murtugudde,
and Senina 2010) based on physical-biogeochemical forcing. These projections
could be used to parameterise the prey field of an individual-based tagging
simulator under a variety of different climate or other scenarios through time.
Similarly, many spatially explicit approaches to modelling fisher and fleet
behaviour already exist (e.g. (Abernethy et al. 2007; Dreyfus-Ledn 1999; Gillis,
Peterman, and Pikitch 1995), which could be incorporated into the simulator to

examine the effort effects of actual tag return distributions across regions.

More broadly, a true tagging simulator would provide a means to test a
wide variety of important assumptions about tuna behaviour that are critical to
scientific advice. The biases in conventional and electronic tagging discussed
in Chapter Four, which include the many uncertainties of estimating position
using light-based geolocation, to errors in return-rates of dart tags due to
fishing effort or reporting, are considerable. While many population dynamics
and other models exist that aim to simulate the movement of tuna biomass
both vertically and horizontally, this thesis has shown that while the some
behavioural states appear consistent across tuna, their temporal occurrence is

highly variable. Small-scale effects and stochasticity appear important. Using a
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computationally efficient individual-based, or similar, modelling approach
would allow many replications of simulated tag releases to be run with
stochastic effects incorporated. The distribution of virtual tag movements,
behaviours, and returns could then be compared with those in the WCPO to
test a wide range of hypotheses. Huge financial and scientific investments have
been made in tagging programmes in the WCPO and other regions. Not only
should the valuable information gained from these experiments be maximised
by a better understanding of biases through simulation, but also much
hypothesis testing of the behavioural assumptions used in population
dynamics models could be undertaken. The design of future tagging
experiments and monitoring programmes would be well guided by the

development of such tagging simulation experiments.

7.4.3 Smart-FADs

The difficulty with understanding the dynamics of tuna around floating
objects remains the fact that we do not know the local-scale environmental and
prey field changes occurring around them. This has been a re-occurring
problem in the interpretation of empirical analysis results in this thesis. In the
previous chapter, it was shown that higher-level behavioural dynamics, such as
surface-associations, are highly variable across individuals. This suggests that
tropical tunas may undertake these periods of extended surface behaviours for
a variety of reasons. Data on the dynamics of aggregations of tuna in relation
to the nature the prey field are scarce. It is likely that interactions between
both conspecifics and prey drive, not just aggregation around floating objects,
but also much of the unexplained variation that remains in the quantitative

observations of vertical behaviour revealed in this thesis.

In Chapter Two, some of the available sources of real world
environmental data at this scale were briefly discussed, but nothing exists
across the spatial and temporal ranges required to truly understand what is
causing this variability of behaviour from one individual to another. Although
satellite imagery provides an appropriate horizontal coverage of primary
production, the distribution and abundance of the prey field for tropical tuna
can only be characterised by acoustic surveys (Churnside et al. 2009; Josse,
Bach, and Dagorn 1998), which do not exist in high enough resolution for

analysis.
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Future networks of autonomous oceanographic stations or gliders have
been suggested as a potential ways to capture this kind of information
(Rudnick et al. 2004), but their deployment across the vast and often remote
regions of the Pacific would be a costly and difficult undertaking. Furthermore,
we do not know the abundance, locations and movements of the majority of
the many thousands of FADs deployed in the WCPO. These two gaps in
knowledge prevent definitive statements being made about the observed
changes in small-scale tuna behaviour in relation to their use of floating

objects.

However, many such autonomous collectors of this oceanographic and
biotic data already exist in FAD-fished regions. Modern day drifting, and some
anchored, FADs already make use of sophisticated GPS and echo-sounding
technologies for the benefits of fishers. This data captures much of the
information on aggregation dynamics and prey field contexts that would be
beneficial in understanding why some associative periods in tuna are
consistent and others are diffuse. While some modifications or additions would
be required to maximise the capture of this information, the cost of these

“Smart-FADS” would not be astronomical (Itano et al. 2004).

The preliminary analysis on surface-associations presented in this chapter
does not suggest that all FADs can be considered to drive a negative impact on
the vulnerability of yellowfin and bigeye. Indeed, it raises some evidence
against the “ecological trap” theory of man-made floating objects. Three-month
bans on FAD-setting have already been implemented in recent years with little
impact on catch as fishing effort is simply moved around these closure
periods. Indeed, despite these closures a record high number of FAD-sets was
made in 2011 (Pilling et al. 2013). Given the fact that FADs constitute a large
and economically important component of modern day fisheries in the Pacific,
the recommendation of a basin- or even region-wide ban on their use is
unlikely to be viewed favourably by fisheries commissions or their
stakeholders. It is still unclear as to which regions or types of FADs are
“negative”, despite the sophisticated technologies and methodologies now

available to us to study the behaviour of tuna.

Alternatively, the enforcement of a proportion of deployed FADs being

Smart-FADs, whose recorded data is available to the fisheries commission and
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its member countries, would allow a much greater characterisation of the
effects of FADs on not only the behaviour of fish, but also on the placement
and effectiveness of these devices. Capturing more information on the small-
scale environmental contexts that are important for the behaviours and
vulnerability of tunas would allow more sophisticated advice on how to control
FAD-fishing effort, for the goal of supporting true sustainable exploitation of

tropical tuna species into the future.
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