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ABSTRACT 

 

Unbiased direct estimators for small area quantities are usually considered too variable to be 

of any practical use. In this paper we propose a class of model-based direct estimators for 

small area quantities that appears to overcome this objection, in the sense that these estimators 

are comparable in efficiency to the indirect model-based small area estimators (e.g. empirical 

best linear unbiased predictors, or EBLUPs) that are now widely used. There are many 

practical advantages associated with such model-based direct (MBD) estimators, arising from 

the fact that they are computed as weighted linear combinations of the actual sample data 

from the small areas of interest. Note that in this case the weights ‘borrow strength’ via a 

model that explicitly allows for small area effects. One particular advantage that we explore 

in this paper is that estimation of mean squared error (MSE) is then straightforward, using 

well-known methods that are in common use for population level estimates. Empirical results 

reported in this paper show that the MBD estimator represents a real alternative to the 

EBLUP, with the simple MSE estimator associated with the MBD estimator providing good 

coverage performance. We also report results that indicate that the MBD estimator may be 

more robust than the EBLUP when the small area model is incorrectly specified. Furthermore, 

the MBD approach is easily extended to provide multi-purpose weights that are efficient 

across a range of variables, including variables that are unsuitable for EBLUP, e.g. variables 

that contain a significant proportion of zeros. 

 
Key Words: Small Area Estimation; Model-based estimation; Multipurpose sample weights; 

MSE estimation, Mixed model, EBLUP. 
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1. Introduction 

The dominant paradigm in survey estimation for populations is weighted linear estimation, 

typically based on linear regression models, while the rapidly expanding field of small area 

estimation is currently dominated by a model-based predictive approach (EBLUP) where the 

survey weights have little or no relevance. See Rao (2003). Many of the practical advantages 

of weighted linear estimation are lost when one adopts EBLUP. Perhaps the most important 

of these are the simplicity of both the estimation process and estimation of mean squared 

error, and the fact that one can use multi-purpose weights for straightforward analysis of 

survey data sets that contain many variables (Chambers, 1996). A further advantage is that 

calibration constraints are readily included in an estimation method that uses weights, 

allowing survey analysts who prefer a design-based approach to inference to obtain estimates 

that have good design-based properties (Hidiroglou et al, 2000). 

 

In the following section we review the use of regression-based survey weighting for 

population level quantities. In Section 3 we discuss issues that arise when survey weights that 

also reflect small area or local characteristics are required. Section 4 introduces survey 

weights based on the linear mixed model used in many small area estimation applications. 

These weights lead naturally to the model-based direct estimator (MBD) for small areas, 

which is then contrasted with the EBLUP under the same model. In section 5 we provide 

illustrative empirical results that compare the EBLUP and MBD approaches. Finally, in 

Section 6 we discuss some important issues that arise when a weighting approach is used in 

small area estimation and identify related topics that require further attention. 

 

2. Regression-Based Sample Weighting for Population Estimation 

In this section we briefly review regression-based sample weighting for estimation of 

population level quantities. To start, we fix our notation. Let Y
U

 denote an N-vector of 

population values of a characteristic of interest, and suppose that our primary aim is 

estimation of the total Ty  of the values in Y
U

 (or their mean My ). In order to assist us in this 

objective, we shall assume that we have ‘access’ to X
U

, an N × p matrix of values of p 

auxiliary variables that are related, in some sense, to the values in Y
U

. In particular, we 

assume that the individual sample values in X
U

 are known. The non-sample values in X
U

 

may not be individually known, but are assumed known at some aggregate level. At a 
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minimum, we know the population totals T
x
 of the columns of X

U
. Given this set up, it is 

standard to estimate the total and mean of the values in Y
U

 by 

  T̂wy = wiyis!          (1) 

and 

  M̂wy = wiyis! / wis!        (2) 

respectively. Here s is a sample of size n from a population of size N and the weights 

{w
i
;i !s}  are O(Nn!1

) . Many survey applications require weights that are calibrated on X, in 

the sense that they exactly reproduce the known population totals defined by the columns of 

X
U

, i.e. 

w
i
x
is

! = T̂
wx
= T

x
.        (3) 

 

Weights that satisfy (3) can be constructed under the assumption that Y
U

 and X
U

 are related 

by the linear regression model 

Y
U
= X

U
! + "

U
        (4) 

where !
U

 is random error vector of dimension N with E(!
U
) = 0  and Var(!

U
) = "

2
V , where 

V is a known positive definite matrix of order N. Without loss of generality, we arrange the 

vector Y
U

 so that its first n elements correspond to the sample units. We can then 

conformably partition Y
U

, X
U

 and V  according to sample and non-sample units as 

Y
U
=
Y
s

Y
r

!

"
#

$

%
& , X

U
=

X
s

X
r

!

"
#

$

%
&  and V =

V
ss

V
rs

!

"
#

  V
sr

  V
rr

$

%
& . 

Here Y
s
 is the n !1  vector defined by the sample values in Y

U
, X

s
 is the corresponding 

n ! p  matrix of sample values of the auxiliary variable and V
ss

 is the n ! n  component of V 

associated with Y
s
. A subscript of r is used to denote corresponding quantities defined by the 

N ! n  non-sample units, e.g. V
rs

 is the N ! n( ) " n  matrix defined by Cov Y
r
,Y

s( ) = !
2
V
rs

. 

 

Given this set-up, and assuming (4) holds, the Best Linear Unbiased Predictor (BLUP) of the 

population total of Y is given by (1) with weights defined by 

w
BLUP

= 1
n
+ !H !X

U
1
N
" !X

s
1
n( ) + I

n
" !H !X

s( )Vss
"1
V
sr
1
N "n

   (5) 

where I
n

 is the identity matrix of order n, 1
N

, 1
n
, 1

r
 are vectors of one’s with dimensions N, 

n and N - n respectively, and H = !X
s
V
ss

"1
X
s( )

"1

!X
s
V
ss

"1 . See Royall (1976). 
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It is easy to see that the BLUP weights (5) are calibrated on the variables defining the 

columns of X
U

, i.e. !X
s
w
BLUP

= !X
U
1
N
= T

x
. Furthermore, this calibration property is equivalent 

to unbiased prediction under the linear regression model (4), since for any vector of weights 

w  that satisfies the calibration constraints (3) we have 

E(T̂wy ! Ty ) = E( "w Ys ! "1NYU ) = E( "w Xs ! "1N XU )# = 0 . 

 

3. Sample Weighting for Small Area Estimation 

The primary target of most surveys is estimation of population level quantities, and so sample 

weights are usually calculated so that they lead to efficient population level inference. We 

refer to this as population weighting. In particular, small area and individual level variation 

are assumed to ‘average out’ over the population, in the sense that if in fact Y = X! + Zu + e  

where X!  denotes the contribution from population level effects, Zu  denotes the 

contribution from small area effects and e denotes the contribution from individual effects, 

then !1 X" >> !1 (Zu + e)  so that weights based on the model y = X! + "  (i.e. population 

weighting) will still give almost unbiased estimates at population level. However, estimation 

at small area level is typically an increasingly important secondary objective of many sample 

surveys, and in this context the above argument fails. This is because small area effects do not 

average out at small area level. For example, using population weights w
i
;i !s{ }  for 

estimating the mean Myj  of the survey variable Y in small area j via the weighted mean of the 

survey values in area j will be inefficient, maybe even biased. Here s j  denotes the sampled 

units in small area j. This estimator is often referred to as the (weighted) direct estimator of 

Myj . 

 

An immediate consequence is that some form of local weighting is required if survey weights 

are used to construct small area estimates, where we define local weighting as weights that 

reflect the local characteristics of the small areas that make up the population. This 

requirement is in addition to the calibration constraints typically imposed for population 

estimation, resulting in more variable sample weights and leading to greater mean squared 

errors when the resulting small area estimates are aggregated to the population level. 
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The simplest way to take account of differences in the distribution of Y across the J small 

areas of interest is to assume that area effects are constant within a small area. This suggests 

we extend (4) to 

Yj = Xj! + Z j1N j
+ " j         (7) 

where a subscript of j denotes restriction to small area j. It is easy to see that unbiased 

estimation under this model requires weights that are calibrated both on X and on the small 

area population counts N j . Assuming X contains an intercept term, this equates to p + J !1 

calibration constraints, i.e. an additional J !1 constraints. 

 

There are two problems with (7). The first is that it implicitly contains the assumption that the 

relationship between Y and X is essentially the same in each small area. The second is that J is 

sometimes so large that fitting (7) becomes difficult using the sample data. If we believe that 

the relationship between Y and X varies between areas we could consider extending (7) (again 

assuming X contains an intercept term) to 

Yj = Xj! j + " j .        (8) 

This is the small area post-stratification model, and is equivalent to calibrating on X at small 

area, rather than population, level (i.e. pJ constraints). It can only be used if we know the area 

level values of the calibration constraints and is clearly even more problematic than (7) when 

J is large. 

 

However, we can also build small area effects into survey weights by basing them on mixed 

models. That is, we use the BLUP specification (5), with V defined by an appropriate model 

that allows for the possibility of correlations between individuals, both within small areas and 

between small areas. 

 

4. Small Area Estimation Based on a Linear Mixed Model 

The most commonly used class of models in small area inference is the class of linear mixed 

models. Let Yj  be the N j !1  vector of values of variable of interest in small area j and let Xj  

be the N j ! p  matrix of values of the auxiliary variables associated with. We consider the 

following specification for the distribution of Yj  given Xj : 

 Yj  = Xj! + Z ju j  + ej .        (9) 
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Here !  is a p !1  vector of fixed effects, Z j  is a N j ! q  matrix of known covariates 

characterising differences between the J small areas,  u j  is a random area effect associated 

with the jth small area and ej  is a N j !1  vector of individual level random errors. The random 

vectors u j  and ej  are assumed to be independently distributed, with zero means and with 

variances Var(u j ) = !  and Var(ej ) = ! e

2
IN j

 respectively, so that the covariance matrix of Yj  

is then  
Var(Yj ) = Vj = ! e

2
IN j

+ Z j" #Z j , which depends on a k !1  vector of parameters ! , and 

which together with !
e

2  are usually called the variance components of the model. Finally, it is 

usually assumed that sampling is uninformative given the values of the auxiliary variables, so 

the sample data also follow the population model (9). 

  

By aggregating the area-specific models (9) over the J small areas, we are led to the 

population level model 

Y = X! + Zu + e         (10) 

where Y = ( !Y1 ,......, !Y
J
!) , X = ( !X1 ,....., !X

J
!) , Z = diag(Z j ;1 ! j ! J ) , u = ( !u1 ,......., !u

J
!)  and 

e = ( !e1 ,....., !eJ !) . The variance-covariance matrix of Y is V = diag(Vj ;1 ! j ! J ) . We assume 

that X has full column rank p. This is the general linear mixed model, which includes most of 

the small area models used in practice (Rao, 2003, page 107). Again, we consider the 

decomposition of Y, X, Z and V into sample and non-sample components as mentioned after 

(4). We use similar notation at the small area level by introducing an extra subscript j to 

denote small area. For example, we denote by s j  the set of nj  sample units in area j, rj  the 

corresponding N j ! nj  non-sampled units in the area and put Vjss = ! e

2
Inj + Z js" #Z js  and 

Vjsr = Z js! "Z jr . In practice the variance components that define V are unknown and must be 

estimated from the sample data using suitable estimation methods such as maximum 

likelihood (ML), restricted maximum likelihood (REML) or method of moments. We use a 

‘hat’ to denote an estimate and put V̂ = diag(V̂j ;1 ! j ! J ) , with V̂j = !̂ e

2
IN j

+ Z j "̂ #Z j . 

 

Given this notation, and assuming (9) holds, we first note that the EBLUP for the jth small 

area mean Myj  is 

 M̂ yj

EBLUP
= f jYjs + (1! f j )[ "Xjr#̂ + "Z jr$̂ "Z jsV̂jss

-1
(Yjs ! Xjs#̂)]    (11) 
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where f j = nj N j  and Xjr  and Z jr  are vectors of means for the N j ! nj  non-sampled units in 

small area j. An approximately unbiased estimator of the MSE of (11) is 

 v(M̂ yj

EBLUP
) = (1! f j )

2
g
1 j ("̂) + g2 j ("̂) + 2g3 j ("̂)#

$
%
& + N j

!1
(1! f j )'̂ e

2   (12) 

where 

g
1 j (!̂) = "Z jr #̂ - #̂ "Z jsV̂jss

-1
Z js#̂( )Z jr , 

g
2 j (!̂) = "Xjr # "bjX js( ) "XjsV̂jss

-1
Xjsj$( )

-1

"Xjr # "bjX js( )"  

g
3 j (!̂) = tr " #bj( )V̂jss "bj( )v(!̂){ }  

with   !bj = !Z jr"̂ !Z jsV̂jss

-1 , ! "bj = # "bj #$  and where v(!̂)  is the estimate of the asymptotic 

covariance matrix of !̂  defined by the inverse of the relevant observed information matrix. 

See Prasad and Rao (1990) and Rao (2003, pp. 107-110). 

 

In contrast, under the population level linear mixed model (10), the sample weights that define 

the EBLUP for the population total of Y are 

w
EBLUP

= 1
n
+ !Ĥ !X 1

N
" !X

s
1
n( ) + I

n
" !Ĥ !X

s( )V̂ss"1V̂sr1r    (13) 

where 
 
Ĥ = !XsV̂ss

"1
Xs( )

"1

!XsV̂ss
"1
= !XjsV̂jss

-1
Xjsj#( )

"1

!Xjs  V̂jss

"1

j#( ) . It is easy to see that these 

‘EBLUP’ weights are the empirical version of the BLUP weights (5) under (10). Furthermore, 

since they only depend on the random area effects structure of the mixed model (10) via the 

covariance structure in the sample/population, extension to more complex covariance 

structures (e.g. spatial correlation between population units) only requires V̂
ss

!1  and V̂
sr

 to be 

computed under these more complex models. We do not pursue this extension in this paper 

however. 

 

The model-based direct (MBD) estimator of the jth small area mean Myj  is the direct 

estimator of this quantity based on the EBLUP weights (13). That is, it is defined as 

M̂ yj

MBD
= wiyis j
! wisj

!        (14) 

where the weights used in (14) are those associated with the sample units in small area j in 

(13). Note that we refer to (14) as a direct estimator because it is a weighted mean of the 

sample data from the small area of interest. However, this does not mean that it can be 

calculated just using these data. The EBLUP sample weights (13) will be a function of the 
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data from the entire sample. That is, they ‘borrow strength’ from other areas through the 

model (10). Another important point that needs be made at this stage is that the MBD 

estimator (14) is not the same as EBLUP (11), even though both sum to the same population 

level EBLUP. This is because there is no unique representation of (11) as a weighted mean of 

the sample data values from small area j. 

 

An important consideration in small area estimation is estimation of the mean squared error 

(MSE) of the small area estimator. We can easily adapt straightforward methods of MSE 

estimation for population level estimators to estimation of the MSE of (14). To start, observe 

that when small area effects are part of the mean structure of a linear model for Y, e.g. via 

fixed area effects, see (8) and (9), MSE estimation is relatively straightforward. Well known 

results indicate that robust model-based methods as well as appropriately conditioned design-

based methods lead to MSE estimators 
 
v(M̂ y ) = wi

2
(yi ! ŷi )

2

s" + lower  order terms , where 

ŷi  denotes the fitted value for yi  under the linear model implied by the calibration 

constraints. 

 

In order to estimate the mean squared error of (15), we note that the implied population level 

model (10) includes random area effects and so one needs to consider whether it is 

appropriate to condition on these effects when estimating this MSE. For example, the rather 

complicated MSE estimator (12) of the EBLUP does involve this conditioning. On the other 

hand, estimation of the MSE of (15) is straightforward if we do not condition on random area 

effects, treat the EBLUP weights (13) as fixed and use standard methods for estimating the 

MSE of a weighted linear estimator of a domain mean under the population model (4). See 

Royall and Cumberland (1978). The choice between these two approaches is largely 

philosophical and depends on how much one ‘believes’ the linear mixed model (10). In 

particular, in this paper we treat this model as a vehicle for generating estimation weights, but 

then base inference on (4), which is consistent with the way mean squared errors are 

estimated at population level. Thus, we write down a first order approximation to prediction 

variance for the area j weighted mean (14) as 

Var(M̂ yj

MBD ! Myj ) = Var wis j
"( )

!1

wiyis j
"( ) ! N j

!1
yis j

" + yirj
"( )#

$
%

&
'
(

 

       ! N j

"2
ai
2
Var(yi )s j

# + Var(yi )rj
#( )     (15) 
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where ai = wksj
!( )

"1

N jwi " wksj
!( ) . A robust model-based estimate of (15) is obtained by 

substituting the squared residual (yi ! "xi#̂)
2  for Var(yi )  in the first (leading) term on the right 

hand side of (15). If these squared sample residuals are also used to estimate the second term, 

the resulting estimator of (15) is 

v(M̂ yj

MBD
) = !i (yi " #xi$̂)

2

s j
%        (16) 

where !i = N j

"2
ai
2
+ (N j " nj ) (nj "1)( ) . Using (16) to estimate the prediction mean squared 

error of ˆ MBD
yjM  implicitly assumes that this weighted mean is unbiased for Myj . However, this 

is not generally the case, since E(M̂ yj

MBD ! Myj ) " (M̂ xj

MBD ! Mxj #) $  under (10), where M̂ xj

MBD  

denotes the weighted average of the sample values of the auxiliary variables in area j. 

Calibration on X ensures that this term vanishes at population level, but not necessarily at 

small area level. A simple estimate of this bias is 

b(M̂ yj

MBD
) = (M̂ xj

MBD ! Mxj ") #̂ .       (17) 

Our suggested estimator of the mean squared error of (14) is therefore 

mŝe(M̂ yj

MBD
) = v(M̂ yj

MBD
) + b(M̂ yj

MBD
)( )
2

     (18) 

Note that one could alternatively ‘bias correct’ M̂ yj

MBD  directly using b(M̂ yj

MBD
) . However, this 

is not recommended since this correction increases the variability of our estimator much more 

than it reduces its bias. Using it in (18) is a more conservative, and safer, approach. 

 

Like the EBLUP (11), the EBLUP weights (13) are variable specific since they depend on the 

estimated variance components for Y via the matrices V̂
sr

 and V̂
ss

. This can be a limitation if a 

true ‘multipurpose’ approach to small area estimation is required. In the context of weighted 

linear estimation via (14), this translates into the use of the same sample weights across a 

wide range of variable types. In this paper we investigate two approaches to deriving multi-

purpose weights based on (13), the first based on averaging the variance components 

associated with a select group of variables and the second based on averaging the sample 

weights (13) generated for these variables. We also investigated a third approach based on 

averaging the intra-area correlations associated with these variables. However, this led to 

rather unstable results, and so was not pursued further. 
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In what follows we use a subscript of k to index the group of K variables that define the 

multipurpose weights. In our first approach, we average the estimated covariance matrices 

V̂k , j  for each variable and each small area 

Vj =
1

K
V̂k , j

k=1

K

! =
1

K
"̂ e,k

2
IN j

+ Zk , j #̂k $Zk , j( )
k=1

K

! . 

The corresponding multipurpose version of the EBLUP sample weights (13) is then 

w
EBLUP

( I )
= 1

n
+ !H ( !X 1

N
" !X

s
1
n
) + (I

n
" !H !X

s
)V

ss

"1
V
sr
1
r
    (19) 

where H = !XjsVjss

"1
Xjsj#( )

"1

!XjsVjss

"1

j#( )  and Vjss , Vjsr  are defined by the sample/non-sample 

decomposition of Vj . Our second approach simply defines the multipurpose weights as the 

average of the variable specific weights (13) across the group of K variables. That is 

w
EBLUP

( II )
=
1

K
w
k ,EBLUP

k=1

K

! .       (20) 

Under either (19) or (20), the MBD estimator (14) of the jth small area mean for a variable of 

interest Y is then calculated using these multi-purpose sample weights. Similarly, when using 

(18) to estimate the MSE of this estimator we use these weights to define a
i
 (and hence !

i
) 

in (16). Note, however, that implementation of this formula requires calculation of ˆ! , which 

depends on the particular variable of interest. Under (19) we have the option of either using 

the ‘average’ Vjss  in this calculation or using the actual V̂jss  for this variable. For (20), there is 

no alternative but to use a variable specific ˆ! . The empirical investigations reported in the 

next section indicated that there was almost no difference in MSE estimation performance for 

the MBD estimator defined by (19) depending on which of these alternative ways of defining 

ˆ!  was used. Our empirical study therefore used variable specific values of ˆ!  to define the 

residuals underpinning MSE estimation for the MBD estimators based on both (19) and (20). 

 

The MBD estimator (14) is easy to interpret and to build into a survey processing system. 

Furthermore, its mean squared error is easily estimated via a straightforward generalisation of 

the standard robust estimator of the mean squared error of the EBLUP for the population 

mean of Y. This is in contrast to the rather complicated estimator (12) of the conditional 

prediction variance of the area j EBLUP (11). However, this does not mean that the MBD 

estimator (14) is superior to the EBLUP (11). As noted earlier, both (11) and (14) sum to the 

population EBLUP under the linear mixed model (10). Furthermore, under this model it is 
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clear that the EBLUP must be more efficient asymptotically, since it approximates the best 

linear predictor when (10) actually holds. For example, in the special case where X = Z = 1
N

, 

the weight associated with sampled unit i in area j under the MBD approach is 

w
i
=
N

n
1+

1

1+ n
j
!̂
(N

j
" n

j
)!̂ +

N " n
n

#
$%

&
'(

)
*
+,

-
.
/,

 

where !̂ = "̂ / #̂
e

2 , N = N
j
(1+ n

j
!̂)"1

j# / (1+ n
j
!̂)"1

j#  and n  is defined similarly. That is, 

(14) reduces to the area j sample mean, which is well known to have high variability in small 

samples. In contrast, (11) is then a linear combination of the overall sample mean and the area 

j sample mean, and has much less variability. In the next section we provide some simulation 

results that illustrate the loss of efficiency when the linear mixed model (9) holds for the 

small areas of interest and the MBD rather than the EBLUP is used to predict the small area 

means. 

 

It is sometimes claimed that a disadvantage of any direct estimator (including the MBD 

estimator) is that it is not defined when there is no sample in small area j. In contrast, the 

EBLUP (11) then equals the synthetic estimator !Mxj
ˆ" . However, no sample data in an area 

also means that the validity of any estimator for that area is completely model-dependent. In 

particular, we cannot check to see if (9) holds. There is also the problem that different areas 

are then treated unequally in estimation. Areas with sample data have their means estimated 

via EBLUP, while those without have their means estimated via synthetic estimators. 

Furthermore, in such a case the weighted average of these estimates across all small areas 

does not equal the EBLUP of the population mean (a property of the MBD estimators). A 

standard work-around when this occurs is to rescale all the small area estimates to sum to this 

population estimate (or some other acceptable value). However, this is rather arbitrary. For 

example, if most of the small areas have no sample, then such a rescaling exercise could 

substantially change the final predicted value of the area j mean of Y for a ‘sample area’ 

relative to its EBLUP value (11), in which case one has to wonder about the efficiency of the 

final result. 

 

5. Some Empirical Results 

In this section we illustrate the performance of small area estimation based on the MBD 

approach via design-based simulation. Our basic data come from the same sample of 1652 



 13 

Australian broadacre farms that were used in the simulation study reported in Chambers 

(1996). Here however we used these sample farms to generate a target population of 81982 

farms by sampling with replacement from them with probabilities proportional to their sample 

weights. We then drew 1000 independent stratified random samples from this (fixed) 

population, with total sample size in each simulation equal to the original sample size (1652) 

and with strata defined by the 29 different Australian broadacre agricultural regions. Sample 

sizes within these strata were fixed to be the same as in the original sample. Note that these 

varied from a low of 6 to a high of 117, allowing an evaluation of the performance of 

different small area estimation methods across a range of realistic small area sample sizes. 

Table 1 shows the stratum population and sample sizes for this population. 

 

We considered the 29 regions as small areas, with 8 variables of interest. These are (i) TCC = 

total cash costs (A$) of the farm business over the surveyed year, (ii) TCR = total cash 

receipts (A$) of the farm business over the surveyed year, (iii) FCI = farm cash income (A$), 

defined as TCR – TCC, (iv) Crops = area under crops (in hectares), (v) Cattle = number of 

beef cattle on the farm, (vi) Sheep = number of sheep on the farm, (vii) Equity = total farm 

equity (A$), and (viii) Debt = total farm debt (A$). Our aim was to estimate the average of 

these variables in each of the 29 different regions. In doing so, we used the fact that these 

regions can be grouped into three zones (Pastoral, Mixed Farming, and Coastal), with farm 

area (hectares) known for each farm in the population. This auxiliary variable is referred to as 

Size in what follows. 

 

Although the linear relationship between the eight target variables and Size is rather weak in 

the original sample data, this improves when separate linear models are fitted within six post 

strata. These post-strata are defined by splitting each zone into small farms (farm area less 

than zone median) and large farms (farm area greater than or equal to zone median). The 

matrix X of auxiliary variable values in (10) was then defined so as to include an effect for 

Size, effects for the post-strata and effects for interactions between Size and the post strata. 

Two different specification for X (corresponding to whether an intercept was included or not) 

and two different specifications for Z (corresponding to whether a random slope on Size was 

included or not) were then used to specify (10) and hence the EBLUP and MBD estimators 

based on this model. These four specifications are set out in Table 2. 
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For the farm data, models I and II are appropriate (with II fitting marginally better) while 

models III and IV are badly specified. We use REML estimates of random effects parameters 

throughout, obtained via the lme function in R (Bates and Pinheiro, 1998). For each model, 

four different estimators of the 29 regional means were computed, along with corresponding 

estimators of their mean squared error. These were the EBLUP (11) with MSE estimator (12), 

referred to as EBLUP below; the MBD estimator (14) based on variable specific weights (13) 

and with MSE estimator (18), referred to as MBD0 below; the MBD estimator (14) based on 

multipurpose weights (19) and with MSE estimator (18), referred to as MBD1 below; and the 

MBD estimator (14) based on multipurpose weights (20) and with MSE estimator (18), 

referred to as MBD2 below. Note that three of the eight target variables in the study (Crops, 

Equity and Debt) were not suited to linear modelling via (10) because of large numbers of 

zeros, so the weights used in MBD1 and MBD2 were based on the K = 5 remaining variables 

(TCC, TCR, FCI, Cattle and Sheep). 

 

The simulation study was carried out in two stages. In the first, we contrasted the performance 

of MBD0 with EBLUP under models I to IV using TCC as the variable of interest. Results 

from this stage are set out in Table 3 and in Figures 1 – 3. In the second stage of the study we 

investigated the performance all four methods for all eight response variables under the 

‘reasonably specified’ models I and II. Results from this stage are set out in Tables 4 – 6 and 

in Figures 4 – 5. 

 

Three measures of estimation performance were computed using the estimates generated in 

the simulation study. These were the relative mean error and the relative root mean squared 

error (RMSE), both expressed as percentages, of regional mean estimates and the coverage 

rate of nominal 95 per cent confidence intervals for regional means. Table 3 presents the 

average and median values of these measures (all computed over the 29 regions) generated by 

EBLUP and MBD0 under models I – IV for the variable TCC. We note that the average 

relative mean errors under MBD0 are smaller than those under EBLUP for all models except 

model IV. However, the average relative RMSEs for MBD0 are marginally higher than those 

for EBLUP under models I and II and smaller for models III and IV. Average coverage rates 

for MBD0 are relatively higher than those for EBLUP under all models. Although neither 

dominates, it seems clear that for TCC, MBD0 is more robust to model misspecification than 

EBLUP. 
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Figures 1 – 3 show the region-specific performances generated by EBLUP and MBD0 

(ordered by increasing population size). Figure 1 shows the better relative mean error 

performances of both EBLUP and MBD0 under models I and II and their worse relative mean 

error performance under model IV. Figure 2 shows that the relative RMSEs of regional 

estimates generated by MBD0 are comparable with those generated under EBLUP, with 

neither approach dominating. Overall, with the exception of two regions (3 and 21), it seems 

that MBD0 under model II performs marginally better overall. 

 

In the two regions (3 and 21) where MBD0 fails, inspection of the population and sample data 

indicated that this is because of a few outlying estimates. In fact, the outlying values of 

MBD0 for region 21 are all caused by the presence of a single massive outlier (TCC > 

A$30,000,000) in the original sample. This outlier was included in the simulation population 

(twice) and then selected (in one case, twice) in 37 of the 1000 simulation samples. If we 

discard the outlier driven estimates in regions 3 and 21 then the MBD approach seems the 

method of choice for regional estimation in our simulation study. This is confirmed when we 

return to Table 3 and now consider the columns containing the median values of relative 

mean error and relative RMSE. 

 

Figure 3 summarizes region-specific variation in the nominal 95 percent confidence interval 

coverage rates generated by EBLUP and MBD0. If we ignore the outlier driven results for 

regions 3 and 21, the results displayed in Figure 5 show that MBD0 approach gives 

marginally better coverage rates under Models I and II. A close look at these results also 

indicates that in the event of model misspecification (e.g. under Models III and IV) the MBD0 

coverage rate is more robust. 

 

In the second stage of the simulation study, we compared the two variable specific estimators 

EBLUP and MBD0 with the two multi-purpose estimators MBD1 and MBD2. Table 4 

presents the average and median relative mean errors and relative RMSEs, as well as the 

average coverage rates, generated by these four estimators for the five variables TCC, TCR, 

FCI, Cattle and Sheep under the ‘reasonably specified’ Models I and II. These results show 

that under the better fitting Model II, there is little, if any, difference in the average relative 

mean errors of the multi-purpose estimators MBD1 and MBD2 compared with the average 

relative mean error of the variable specific estimator MBD0, with all three often substantially 

better than EBLUP. Under Model I, the two multipurpose estimators MBD1 and MBD2 are 
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substantially better than MBD0 and EBLUP. In terms of relative RMSE, the results are more 

equivocal. Under Model I there is little to choose between MBD0, MBD1 and MBD2 in terms 

of average relative RMSE, with the corresponding performance of EBLUP rather more 

fragile. When one turns to the better fitting Model II, however, it is clear that the better 

multipurpose approach is MBD1. By considering median, rather than average, values of 

relative mean error and relative RMSE, we also see that the estimation performances of the 

multipurpose estimators MBD1 and MBD2 appear to be more robust than those of the 

variable specific estimators MBD0 and EBLUP. Finally, we note that the average coverage 

rates of all three direct estimators are quite similar under both Models I and II and dominate 

the corresponding average coverage performance of EBLUP. Overall it seems clear that for 

our data set the multi-purpose estimator MBD1 is the estimator of choice for these five 

variables. 

 

Figure 4 shows the region-specific relative mean errors, relative RMSEs and coverage rates 

for TCC under Models I and II for EBLUP, MBD0, MBD1 and MBD2. The superior 

efficiency of all estimators under Model II (after allowing for the outliers in regions 3 and 21) 

is evident, as is the superior performance of MBD2. A similar pattern of results was observed 

for TCR, FCI, Cattle and Sheep. 

 

The unstable performance of EBLUP for the Cattle and Sheep variables in Table 4 is 

noteworthy. Upon investigation we found that the anomalous results for Cattle were caused 

by the presence of negative estimates for this variable in two regions (11 and 14), which were 

themselves the result of zero values in the data. In particular, in region 11 there were 1283 

zeros in the simulated population of 1586 values. This resulted in 185 negative estimates out 

of the 1000 simulated for this region. Similarly in the region 14, there were 1972 zeros in the 

2182 values in the simulated population, leading to 354 negative estimates. A similar reason 

lay behind the EBLUP results for Sheep. In this case, however, in region 3 there were only 11 

non-zero values for Sheep in a simulated population of size 189, leading to 223 negative 

estimates, while in region 18 a majority of zero values for Sheep lead to 323 negative 

estimates. 

 

As noted earlier, our results indicate that multi-purpose estimation based on MBD1 is 

preferable to that based on MBD2. Consequently, in Table 5 we contrast the performances of 

the variable specific estimators EBLUP and MBD0 with the multi-purpose estimator MBD1 
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for the three variables (Crops, Equity and Debt) that contain a large number of zeros. The 

superior performance of MBD1 is obvious, as is the poor performance of EBLUP for these 

variables. Note that these results are based on Model I, since Model II cannot be fitted to 

these variables. In Table 6 we show that there is little change in the average performance of 

MBD1 when the set of variables determining the multi-purpose weights used by this estimator 

is extended from the original K = 5 variable set (TCC, TCR, FCI, Cattle, Sheep) to the entire 

K = 8 variable set (TCC, TCR, FCI, Cattle, Sheep, Crops, Equity, Debt). Again, note that this 

extension is only possible under Model I. Finally, in Figure 5 we show the overall region-

specific superior performance of MBD1 (under either K = 5 or K = 8) for the variable Debt. 

Similar region-specific performances (not shown here) were observed for Crops and Equity. 

 

6. Discussion and Further Research 

The empirical results reported in the previous section are evidence that the MBD estimator 

(14), particularly when combined with the multipurpose weights (19), can perform well and 

represents a real alternative to the EBLUP, with the associated easy to calculate MSE 

estimator (18) providing good coverage performance. Furthermore, they indicate that the 

MBD approach may be more robust than EBLUP in the realistic situation where (10) is a 

working model, rather than the (unknown) true model. 

 

These results should not be taken as a blanket recommendation for MBD over EBLUP, 

however. As noted in section 4, if one sets practical considerations aside, then EBLUP must 

be the estimation method of choice when (9) actually holds. In such a case, the extent of the 

efficiency gain over MBD will depend on both the distribution of the auxiliary variables as 

well as the sample distribution across the small areas. To illustrate this, we return to the 

Australian broadacre farm population used in the previous section, but this time carry out a 

model-based simulation, first generating population values for TCC under the random 

intercepts model (Model 1 in Table 2) with !  and !
e

2  set at their fitted population values and 

with different values of !
u

2  chosen in order to obtain a range of values for the intra area 

correlation   ! = " u
2 / (" e

2
+" u

2 ) , and then sampling from this simulated population using the 

same regionally stratified design as used in the simulation study reported in the previous 

section. Table 7 sets out the results of this simulation, in terms of the square root of the ratio 

of the average empirical MSE of the Horvitz-Thompson estimator (HTE) of a regional total to 

that of the corresponding EBLUP under the model used to generate the data (denoted 
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HTE/EBLUP), and the corresponding ratio (denoted MBD/EBLUP) of the average empirical 

MSE of the MBD estimator of a regional total to that of the same EBLUP. Note that values of 

these ratios for averages over all 29 regions as well as over regions with smaller sample sizes 

and those with larger sample sizes are given. These clearly show that in the case where all 

model assumptions are valid, the EBLUP, as one would expect, dominates both the MBD as 

well as the conventional direct estimator (HTE). However, the extent of this dominance 

decreases significantly as the strength of the regional effect increases, particular for regions 

with larger sample sizes. The MBD in turn dominates the HTE except where the regional 

effect is small, in which case we see that the EBLUP weights used in the MBD introduce 

slightly more variance than they eliminate bias. 

 

Before closing, we also mention a number of issues that impact on the utility of the MBD 

estimator that remain unresolved. For example, negative weights, which occurred in some 

regions in the simulation study reported in the previous section, can lead to impossible (i.e. 

negative) estimates. Since such values are easily identified, they should not cause problems in 

real life. However, the problem remains of how to modify the weights (13) to ensure they are 

strictly positive. A related issue that has already been noted is the impact of outlier Y-values 

on (14). Certainly this estimator, because it is a linear combination of just the small area data 

values, is more susceptible to outliers in these values than the EBLUP estimator (11). 

Methods for dealing with negative weights under ‘standard’ regression models have been 

discussed in the literature (Huang and Fuller, 1978; Bardsley and Chambers, 1984; Deville 

and Sarndal, 1992; Chambers, 1996) but their application in the context of mixed models 

remains to be explored. Further, the data set used in section 5 involved skewed data as well as 

a potential nonlinear relationship between the survey and auxiliary variables. It is possible to 

adapt the MBD approach for small area estimation when variables are linear on a transformed 

scale. The authors will report on this research in another paper. 
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Table 1 Regional population and sample sizes 
 

Region N n  Region N n 
1 79 6  16 2683 60 
2 115 10  17 2689 60 
3 189 30  18 2847 34 
4 330 25  19 3056 74 
5 388 36  20 3139 51 
6 465 19  21 3910 73 
7 604 36  22 4486 117 
8 729 40  23 4550 80 
9 737 30  24 4587 95 
10 964 30  25 5368 83 
11 1586 51  26 5528 103 
12 1778 62  27 6489 108 
13 1984 55  28 6980 81 
14 2182 47  29 10933 77 
15 2607 79     

 
Table 2 Different mixed model specifications considered in the simulations 
 

Model Model Type X Z 
I Random Intercepts  Intercept included Intercept only 
II Random Slopes  Intercept included Intercept + Size 
III Random Slopes with 

fixed intercept 
Intercept included Size only 

IV Random Slopes with 
zero intercept 

Intercept excluded Size only 

 
Table 3 Average (ARME) and median (MRME) values of relative mean error, average 
(ARRMSE) and median (MRRMSE) values of relative RMSE and average (ACR) coverage 
rates for TCC 
 

Model Method ARME MRME ARRMSE MRRMSE ACR 
EBLUP  4.24  1.55 19.92 15.74 0.90 I 

 MBD0 -2.49 -0.82 20.56 14.45 0.92 
EBLUP  2.98  0.61 19.87 16.40 0.85 II 

 MBD0 -2.13 -0.47 20.15 13.16 0.93 
EBLUP  4.52  1.95 23.89 19.94 0.69 III 

 MBD0 -3.84  0.13 21.14 14.44 0.94 
IV EBLUP  1.17 -2.63 23.38 19.73 0.65 
 MBD0  2.20  2.06 22.35 20.61 0.97 
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Table 4 Average and median relative mean error (ARME, MRME), average and median 
relative RMSE (ARRMSE, MRRMSE) and average coverage rate (ACR) for five variables 
best suited to linear mixed modelling 
 
Model Criterion Method TCC TCR FCI Beef Sheep 
I ARME EBLUP 4.24 5.48 6.93 138.48 304.24 
  MBD0 -2.49 -9.25 -13.80 -15.05 -7.33 
  MBD1 -1.54 -1.30 -0.50 -1.78 0.69 
  MBD2 -1.29 -1.02 -0.04 -1.35 0.98 
 MRME EBLUP 1.55 0.55 -2.08 0.95 -0.23 
  MBD0 -0.82 -3.87 -2.83 -4.79 -4.48 
  MBD1 -0.61 -0.42 -0.56 -0.97 -0.35 
  MBD2 -0.52 -0.39 -0.54 -0.75 -0.30 
 ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18 
  MBD0 20.56 23.34 54.42 37.45 24.88 
  MBD1 20.86 21.77 59.72 33.29 30.24 
  MBD2 20.85 21.77 60.07 33.36 30.64 
 MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00 
  MBD0 14.45 16.20 35.85 30.34 15.50 
  MBD1 14.69 13.41 42.09 30.55 14.67 
  MBD2 14.74 13.46 42.45 30.56 14.67 
 ACR EBLUP 0.90 0.88 0.87 0.86 0.91 
  MBD0 0.92 0.91 0.94 0.93 0.94 
  MBD1 0.92 0.92 0.94 0.95 0.96 
  MBD2 0.92 0.92 0.94 0.95 0.96 
II ARME EBLUP 2.98 2.85 16.70 131.66 2.63 
  MBD0 -2.13 -1.25 0.50 -0.29 3.66 
  MBD1 -1.67 -1.29 0.74 -1.95 1.10 
  MBD2 -1.30 -0.72 3.17 -1.29 0.93 
 MRME EBLUP 0.61 1.37 3.98 0.62 0.00 
  MBD0 -0.47 -0.51 0.35 -0.31 0.00 
  MBD1 -0.65 -0.50 0.24 -0.30 -0.15 
  MBD2 -0.52 0.01 0.53 -0.22 -0.09 
 ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01 
  MBD0 20.15 21.46 65.43 30.80 37.82 
  MBD1 19.06 21.03 64.03 30.09 32.04 
  MBD2 27.13 34.84 129.29 45.16 34.99 
 MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73 
  MBD0 13.16 12.39 37.64 28.79 14.68 
  MBD1 12.84 12.18 37.92 24.84 14.77 
  MBD2 12.84 12.71 37.62 24.93 14.72 
 ACR EBLUP 0.85 0.86 0.84 0.86 0.89 
  MBD0 0.93 0.93 0.90 0.95 0.96 
  MBD1 0.93 0.93 0.94 0.95 0.96 
  MBD2 0.93 0.93 0.94 0.95 0.96 
 



 22 

Table 5 Average relative mean error (ARME), average relative RMSE (ARRMSE) and 
average coverage rate (ACR) for EBLUP, MBD0 and MBD1 for variables with many zeros. 
Model I is assumed. 
 
Variable ARME ARRMSE ACR 
 EBLUP MBD0 MBD1 EBLUP MBD0 MBD1 EBLUP MBD0 MBD1 
Crops 90.31 0.003 -0.21 123.96 23.53 22.92 0.95 0.96 0.96 
Equity 4.36 -9.32 -1.20 18.51 19.14 17.05 0.88 0.92 0.94 
Debt 8.39 -4.94 -0.96 29.02 27.71 28.57 0.91 0.93 0.93 
 
Table 6 Average relative mean error (ARME), average relative RMSE (ARRMSE) and 
average coverage rate (ACR) for multi-purpose weighting (MBD1) based on original K = 5 
and extended K = 8 variable sets. Model I is assumed. 
 

Variable K = 5 K = 8 
 ARME ARRMSE ACR ARME ARRMSE ACR 
TCC -1.54 20.86 0.92 -1.08 20.91 0.92 
TCR -1.30 21.77 0.92 -0.80 21.83 0.92 
FCI -0.50 59.72 0.94 0.21 60.22 0.94 
Cattle -1.78 33.29 0.95 -1.05 33.49 0.95 
Sheep  0.69 30.24 0.96 1.24 31.06 0.96 
Crops -0.21 22.92 0.96 -0.20 22.97 0.96 
Equity -1.20 17.05 0.94 -0.72 17.14 0.94 
Debt -0.96 28.57 0.93 -0.68 28.74 0.93 

 
Table 7 Ratio of the square root of the average mean squared errors of Horvitz-Thompson 
(HTE) and MBD estimates of regional totals to EBLUP-based estimates of the same totals. 
Sample design is stratified by region, with SRSWOR within regions and sample allocations as 
in Table 1. The data were generated using Model 1 of Table 4, and this model was also 
assumed by both the EBLUP and MBD methods. 
 

  ! = " u
2 / (" e

2
+" u

2 )  Average over RMSE Ratio 

0.1 0.2 0.3 0.4 0.5 
HTE/EBLUP 2.10 1.58 1.41 1.36 1.36 All 29 regions 
MBD/EBLUP 2.27 1.56 1.31 1.19 1.14 
HTE/EBLUP 3.14 2.54 2.29 2.22 2.22 7 smaller regions 

  (n ! 30)  MBD/EBLUP 3.84 2.40 1.81 1.52 1.39 
HTE/EBLUP 1.39 1.17 1.12 1.10 1.08 22 larger regions 

  (n > 30)  MBD/EBLUP 1.44 1.18 1.10 1.06 1.04 
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Figure 1 Regional relative mean errors for EBLUP (dashed line) and MBD0 (solid line) for 
TCC under models I (top left), II (top right), III (bottom left) and IV (bottom right). 
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Figure 2 Regional relative RMSEs for EBLUP (dashed line) and MBD0 (solid line) for TCC 
under models I (top left), II (top right), III (bottom left) and IV (bottom right). 
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Figure 3 Regional coverage rates for EBLUP (dashed line) and MBD0 (solid line) for TCC 
under models I (top left), II (top right), III (bottom left) and IV (bottom right). 
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Figure 4 Regional performances of EBLUP (dashed line), MBD0 (thin line), MBD1 (thick 
line) and MBD2 (dotted line) for TCC under models I (left) and II (right). 
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Figure 5 Regional performances of EBLUP (dashed line), MBD0 (thin line), MBD1 under K 
= 5 (thick line) and MBD1 under K = 8 (dotted line) for Debt under model I. 
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