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ABSTRACT

Unbiased direct estimators for small area quantities are usually considered too variable to
be of any practical use. In this paper we propose a class of model-based direct estimators
for small area quantities that appears to overcome this objection, in the sense that these
estimators are comparable in efficiency to the indirect model-based small area estimators
(e.g. empirical best linear unbiased predictors, or EBLUPS) that are now widely used.
There are many practical advantages associated with such model-based direct (MBD)
estimators, arising from the fact that they are computed as weighted linear combinations
of the actual sample data from the small areas of interest. Note that in this case the
weights ‘borrow strength’ via a model that explicitly allows for small area effects. One
particular advantage that we explore in this paper is that estimation of mean squared
error (MSE) is then straightforward, using well-known methods that are in common use
for population level estimates. Empirical results reported in this paper show that the
MBD estimator represents a real alternative to the EBLUP, with the simple MSE
estimator associated with the MBD estimator providing good coverage performance. We
also report results that indicate that the MBD estimator may be more robust than the
EBLUP when the small area model is incorrectly specified. Furthermore, the MBD
approach is easily extended to provide multi-purpose weights that are efficient across a
range of variables, including variables that are unsuitable for EBLUP, e.g. variables that

contain a significant proportion of zeros.
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ABSTRACT

Unbiased direct estimators for small area quantities are usually considered too variable to be
of any practical use. In this paper we propose a class of model-based direct estimators for
small area quantities that appears to overcome this objection, in the sense that these estimators
are comparable in efficiency to the indirect model-based small area estimators (e.g. empirical
best linear unbiased predictors, or EBLUPS) that are now widely used. There are many
practical advantages associated with such model-based direct (MBD) estimators, arising from
the fact that they are computed as weighted linear combinations of the actual sample data
from the small areas of interest. Note that in this case the weights ‘borrow strength’ via a
model that explicitly allows for small area effects. One particular advantage that we explore
in this paper is that estimation of mean squared error (MSE) is then straightforward, using
well-known methods that are in common use for population level estimates. Empirical results
reported in this paper show that the MBD estimator represents a real alternative to the
EBLUP, with the simple MSE estimator associated with the MBD estimator providing good
coverage performance. We also report results that indicate that the MBD estimator may be
more robust than the EBLUP when the small area model is incorrectly specified. Furthermore,
the MBD approach is easily extended to provide multi-purpose weights that are efficient
across a range of variables, including variables that are unsuitable for EBLUP, e.g. variables
that contain a significant proportion of zeros.
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MSE estimation, Mixed model, EBLUP.



1. Introduction

The dominant paradigm in survey estimation for populations is weighted linear estimation,
typically based on linear regression models, while the rapidly expanding field of small area
estimation is currently dominated by a model-based predictive approach (EBLUP) where the
survey weights have little or no relevance. See Rao (2003). Many of the practical advantages
of weighted linear estimation are lost when one adopts EBLUP. Perhaps the most important
of these are the simplicity of both the estimation process and estimation of mean squared
error, and the fact that one can use multi-purpose weights for straightforward analysis of
survey data sets that contain many variables (Chambers, 1996). A further advantage is that
calibration constraints are readily included in an estimation method that uses weights,
allowing survey analysts who prefer a design-based approach to inference to obtain estimates
that have good design-based properties (Hidiroglou et al, 2000).

In the following section we review the use of regression-based survey weighting for
population level quantities. In Section 3 we discuss issues that arise when survey weights that
also reflect small area or local characteristics are required. Section 4 introduces survey
weights based on the linear mixed model used in many small area estimation applications.
These weights lead naturally to the model-based direct estimator (MBD) for small areas,
which is then contrasted with the EBLUP under the same model. In section 5 we provide
illustrative empirical results that compare the EBLUP and MBD approaches. Finally, in
Section 6 we discuss some important issues that arise when a weighting approach is used in

small area estimation and identify related topics that require further attention.

2. Regression-Based Sample Weighting for Population Estimation
In this section we briefly review regression-based sample weighting for estimation of
population level quantities. To start, we fix our notation. Let Y, denote an N-vector of

population values of a characteristic of interest, and suppose that our primary aim is
estimation of the total 7, of the values in Y, (or their mean M ). In order to assist us in this
objective, we shall assume that we have ‘access’ to X,, an N x p matrix of values of p
auxiliary variables that are related, in some sense, to the values in Y. In particular, we
assume that the individual sample values in X,, are known. The non-sample values in X,

may not be individually known, but are assumed known at some aggregate level. At a



minimum, we know the population totals 7 of the columns of X, . Given this set up, it is

standard to estimate the total and mean of the values in Y,, by

T, =2, W, (1)
and

MW}, = zswiyl. /stl. (2
respectively. Here s is a sample of size n from a population of size N and the weights
{w;i e s} are O(Nn™"). Many survey applications require weights that are calibrated on X, in
the sense that they exactly reproduce the known population totals defined by the columns of

X

Uy e

zswi'xi = j—\'wx = Tx - (3)

Weights that satisfy (3) can be constructed under the assumption that ¥,, and X, are related
by the linear regression model

Y,=X,B+g (4)
where g, is random error vector of dimension N with E(e,)=0 and Var(g,)= o’V , where

V is a known positive definite matrix of order N. Without loss of generality, we arrange the
vector Y, so that its first n elements correspond to the sample units. We can then

conformably partition Y,,, X, and V according to sample and non-sample units as

Y X, Ve Ve
Y, = , Xy, = and V = ,
Y, X, Ve Vo
Here Y, is the nx1 vector defined by the sample values in Y, X_ is the corresponding

nx p matrix of sample values of the auxiliary variable and V_ is the nxn component of V

associated with Y, . A subscript of r is used to denote corresponding quantities defined by the
N —n non-sample units, e.g. V. is the (N —n)x n matrix defined by Cov(Y,,Y,)=07V, .
Given this set-up, and assuming (4) holds, the Best Linear Unbiased Predictor (BLUP) of the
population total of Y is given by (1) with weights defined by

Wergp =1, + H,(Xl,l 1y - Xgln)+ (In - H,X;)Vs;lvsrlzv—n (5)

where [, is the identity matrix of order n, 1,,, 1,, 1, are vectors of one’s with dimensions N,

n!

nand N - n respectively, and H = (X’.V‘,'XS )_1 X’V'. See Royall (1976).
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It is easy to see that the BLUP weights (5) are calibrated on the variables defining the

columns of X, i.e. Xwy, =X, 1, =T, . Furthermore, this calibration property is equivalent

to unbiased prediction under the linear regression model (4), since for any vector of weights
w that satisfies the calibration constraints (3) we have

A

E(T

w—T)=EWY —1,Y,)=EWX —1,X,)3=0.

3. Sample Weighting for Small Area Estimation

The primary target of most surveys is estimation of population level quantities, and so sample
weights are usually calculated so that they lead to efficient population level inference. We
refer to this as population weighting. In particular, small area and individual level variation

are assumed to ‘average out’ over the population, in the sense that if in fact Y = X+ Zu +e
where X denotes the contribution from population level effects, Zu denotes the

contribution from small area effects and e denotes the contribution from individual effects,

then 1"XB >>1"(Zu+e) so that weights based on the model y=XS+¢ (i.e. population

weighting) will still give almost unbiased estimates at population level. However, estimation
at small area level is typically an increasingly important secondary objective of many sample
surveys, and in this context the above argument fails. This is because small area effects do not

average out at small area level. For example, using population weights {w;ies} for
estimating the mean M, of the survey variable Y in small area j via the weighted mean of the
survey values in area j will be inefficient, maybe even biased. Here s; denotes the sampled

units in small area j. This estimator is often referred to as the (weighted) direct estimator of
M

/A

An immediate consequence is that some form of local weighting is required if survey weights
are used to construct small area estimates, where we define local weighting as weights that
reflect the local characteristics of the small areas that make up the population. This
requirement is in addition to the calibration constraints typically imposed for population
estimation, resulting in more variable sample weights and leading to greater mean squared

errors when the resulting small area estimates are aggregated to the population level.



The simplest way to take account of differences in the distribution of Y across the J small
areas of interest is to assume that area effects are constant within a small area. This suggests
we extend (4) to

Y,=X,B+Z1, +¢, (7)

where a subscript of j denotes restriction to small area j. It is easy to see that unbiased
estimation under this model requires weights that are calibrated both on X and on the small
area population counts N ;. Assuming X contains an intercept term, this equates to p+J -1

calibration constraints, i.e. an additional J —1 constraints.

There are two problems with (7). The first is that it implicitly contains the assumption that the
relationship between Y and X is essentially the same in each small area. The second is that J is
sometimes so large that fitting (7) becomes difficult using the sample data. If we believe that
the relationship between Y and X varies between areas we could consider extending (7) (again
assuming X contains an intercept term) to

Y;=XB;+e¢;. (8)

This is the small area post-stratification model, and is equivalent to calibrating on X at small
area, rather than population, level (i.e. pJ constraints). It can only be used if we know the area
level values of the calibration constraints and is clearly even more problematic than (7) when
J is large.

However, we can also build small area effects into survey weights by basing them on mixed
models. That is, we use the BLUP specification (5), with V defined by an appropriate model
that allows for the possibility of correlations between individuals, both within small areas and

between small areas.

4. Small Area Estimation Based on a Linear Mixed Model
The most commonly used class of models in small area inference is the class of linear mixed

models. Let ¥, be the N, x1 vector of values of variable of interest in small area j and let X,
be the N, x p matrix of values of the auxiliary variables associated with. We consider the
following specification for the distribution of Y, given X :

Yj = Xjﬁ + Zjuj +e;. 9



Here B is a px1 vector of fixed effects, Z, is a N,xqg matrix of known covariates
characterising differences between the J small areas, u; is a random area effect associated
with the j™ small area and e; isa N, x1 vector of individual level random errors. The random

vectors u; and e; are assumed to be independently distributed, with zero means and with
variances Var(u;)=ZX and Var(e;)= o’l N, respectively, so that the covariance matrix of Y,
is then Var(Y;)=V, = crjIN] +Z,2Z, which depends on a k x 1 vector of parameters 6, and

which together with ¢ are usually called the variance components of the model. Finally, it is

usually assumed that sampling is uninformative given the values of the auxiliary variables, so

the sample data also follow the population model (9).

By aggregating the area-specific models (9) over the J small areas, we are led to the
population level model

Y=XB+Zu+e (10)
where Y =(,....Y))Y, X=(X{,....X}), Z=diag(Z;1<j<J), u=(uj,.. ,uy) and
e=(e,.....e;) . The variance-covariance matrix of Y is V =diag(V;;1< j<J). We assume

that X has full column rank p. This is the general linear mixed model, which includes most of
the small area models used in practice (Rao, 2003, page 107). Again, we consider the
decomposition of Y, X, Z and V into sample and non-sample components as mentioned after
(4). We use similar notation at the small area level by introducing an extra subscript j to

denote small area. For example, we denote by s, the set of n; sample units in area j, r; the

corresponding N; —n; non-sampled units in the area and put V,

ANy

=o0,1, +Z,XZ} and

Vv

Jsr

=Z,27’, . In practice the variance components that define V are unknown and must be

estimated from the sample data using suitable estimation methods such as maximum

likelihood (ML), restricted maximum likelihood (REML) or method of moments. We use a

‘hat’ to denote an estimate and put V = diag(V,;1< j <J), with V, = 621, +Z,5Z,.

Given this notation, and assuming (9) holds, we first note that the EBLUP for the j™ small

areamean M, is

MP = £Y + (- X, B+Z,EZ, VY, - X, B (11)

Y]



where f,=n;/N, and )_(j, and Zj, are vectors of means for the N, —n; non-sampled units in
small area j. An approximately unbiased estimator of the MSE of (11) is

VM) = (1= £, ] 8,0)+ 2,,(0)+2,,0) |+ N} (1= £)8? (12)
where

$,0=2,(2-22,v,2,3)Z,,

gZJ(é) (X’ _bJXJS)(Z X; VJSSXJS) (X, _bJXJS)
g,,@)=1r{(VE))V,,(Vb,)v(6)}

with =237/ V', Vb, =0b//d60 and where v() is the estimate of the asymptotic

Jjss !

covariance matrix of @ defined by the inverse of the relevant observed information matrix.
See Prasad and Rao (1990) and Rao (2003, pp. 107-110).

In contrast, under the population level linear mixed model (10), the sample weights that define
the EBLUP for the population total of Y are

WEBLUP = ln + FAI,(X,lN - Xs’ln)+ (In - PAIX:)‘}Y;]‘}er (13)

where H = (XV ‘X) X! (Z X’ VMX]S) (Z X', A]S‘). It is easy to see that these

s Ss s Ss A

‘EBLUP’ weights are the empirical version of the BLUP weights (5) under (10). Furthermore,
since they only depend on the random area effects structure of the mixed model (10) via the

covariance structure in the sample/population, extension to more complex covariance
structures (e.g. spatial correlation between population units) only requires V' and V. to be

computed under these more complex models. We do not pursue this extension in this paper

however.

th

The model-based direct (MBD) estimator of the j= small area mean M, is the direct

estimator of this quantity based on the EBLUP weights (13). That is, it is defined as
Z\;I;;IBD = Zs wiyi/zs_wl. (14)

where the weights used in (14) are those associated with the sample units in small area j in
(13). Note that we refer to (14) as a direct estimator because it is a weighted mean of the
sample data from the small area of interest. However, this does not mean that it can be
calculated just using these data. The EBLUP sample weights (13) will be a function of the



data from the entire sample. That is, they ‘borrow strength’ from other areas through the
model (10). Another important point that needs be made at this stage is that the MBD
estimator (14) is not the same as EBLUP (11), even though both sum to the same population
level EBLUP. This is because there is no unique representation of (11) as a weighted mean of
the sample data values from small area j.

An important consideration in small area estimation is estimation of the mean squared error
(MSE) of the small area estimator. We can easily adapt straightforward methods of MSE
estimation for population level estimators to estimation of the MSE of (14). To start, observe
that when small area effects are part of the mean structure of a linear model for Y, e.g. via
fixed area effects, see (8) and (9), MSE estimation is relatively straightforward. Well known
results indicate that robust model-based methods as well as appropriately conditioned design-

based methods lead to MSE estimators v(M,)= Y w; (y, - 5,)° + lower order terms, where

y, denotes the fitted value for y, under the linear model implied by the calibration

constraints.

In order to estimate the mean squared error of (15), we note that the implied population level
model (10) includes random area effects and so one needs to consider whether it is
appropriate to condition on these effects when estimating this MSE. For example, the rather
complicated MSE estimator (12) of the EBLUP does involve this conditioning. On the other
hand, estimation of the MSE of (15) is straightforward if we do not condition on random area
effects, treat the EBLUP weights (13) as fixed and use standard methods for estimating the
MSE of a weighted linear estimator of a domain mean under the population model (4). See
Royall and Cumberland (1978). The choice between these two approaches is largely
philosophical and depends on how much one ‘believes’ the linear mixed model (10). In
particular, in this paper we treat this model as a vehicle for generating estimation weights, but
then base inference on (4), which is consistent with the way mean squared errors are
estimated at population level. Thus, we write down a first order approximation to prediction
variance for the area j weighted mean (14) as

Var(M;;.lBD -M )=Var {(zsj wl.) (Zsj wl.y[)— N;l (zs_,, v + zrj yl.)}

= N;Z (Z.;,. a’Var(y,)+ 2,-/ Var(y, )) (15)



-1
where a, = (23_%) (Njw,. - ZS_wk). A robust model-based estimate of (15) is obtained by

substituting the squared residual (y, — x{ﬁ)2 for Var(y,) in the first (leading) term on the right

hand side of (15). If these squared sample residuals are also used to estimate the second term,
the resulting estimator of (15) is

VM) = 3 Ay =y (16)
where A, = Nf(af +(N,—n,)/(n; —1)). Using (16) to estimate the prediction mean squared
error of M i implicitly assumes that this weighted mean is unbiased for M . However, this

is not generally the case, since E(M;].”D -M,)= (1\71;73[’ — M .Y B under (10), where A?ijBD

denotes the weighted average of the sample values of the auxiliary variables in area j.
Calibration on X ensures that this term vanishes at population level, but not necessarily at

small area level. A simple estimate of this bias is

b(M ™y = (M"™ — M Y. (17)
Our suggested estimator of the mean squared error of (14) is therefore

mSe(M ™) = (M 1) + (b)) (18)
Note that one could alternatively ‘bias correct’ A?Ijjm’ directly using b(MffBD). However, this

is not recommended since this correction increases the variability of our estimator much more

than it reduces its bias. Using it in (18) is a more conservative, and safer, approach.

Like the EBLUP (11), the EBLUP weights (13) are variable specific since they depend on the
estimated variance components for Y via the matrices V,, and V. . This can be a limitation if a

true ‘multipurpose’ approach to small area estimation is required. In the context of weighted
linear estimation via (14), this translates into the use of the same sample weights across a
wide range of variable types. In this paper we investigate two approaches to deriving multi-
purpose weights based on (13), the first based on averaging the variance components
associated with a select group of variables and the second based on averaging the sample
weights (13) generated for these variables. We also investigated a third approach based on
averaging the intra-area correlations associated with these variables. However, this led to
rather unstable results, and so was not pursued further.

10



In what follows we use a subscript of k to index the group of K variables that define the

multipurpose weights. In our first approach, we average the estimated covariance matrices

V,; for each variable and each small area

M=

-~

V.:lix? -1 (62,04, +2,,5.2 )
Kk:l k,j K ek Nj k,j=k“k,j )"

The corresponding multipurpose version of the EBLUP sample weights (13) is then

wi =1 +H (X1, - X1 )+, —HX)V.'V, 1, (19)

Sr 7

~
1l

1

_ _ -1 _ _ _
where H =(2AIAX§SVJ.;‘XJ.S) (ZA,«X}SVJS) and V,, V, are defined by the sample/non-sample

ss Jjsr
decomposition of V] Our second approach simply defines the multipurpose weights as the

average of the variable specific weights (13) across the group of K variables. That is

1 K
uan - _
WEBLUP - zwk,EBLUP ' (20)
KD

Under either (19) or (20), the MBD estimator (14) of the jth small area mean for a variable of
interest Y is then calculated using these multi-purpose sample weights. Similarly, when using

(18) to estimate the MSE of this estimator we use these weights to define g, (and hence 4,)
in (16). Note, however, that implementation of this formula requires calculation of [§ which
depends on the particular variable of interest. Under (19) we have the option of either using

the ‘average’ ‘7/ in this calculation or using the actual Vjss for this variable. For (20), there is

no alternative but to use a variable specific [§ The empirical investigations reported in the

next section indicated that there was almost no difference in MSE estimation performance for
the MBD estimator defined by (19) depending on which of these alternative ways of defining

[§ was used. Our empirical study therefore used variable specific values of [§ to define the

residuals underpinning MSE estimation for the MBD estimators based on both (19) and (20).

The MBD estimator (14) is easy to interpret and to build into a survey processing system.
Furthermore, its mean squared error is easily estimated via a straightforward generalisation of
the standard robust estimator of the mean squared error of the EBLUP for the population
mean of Y. This is in contrast to the rather complicated estimator (12) of the conditional
prediction variance of the area j EBLUP (11). However, this does not mean that the MBD
estimator (14) is superior to the EBLUP (11). As noted earlier, both (11) and (14) sum to the
population EBLUP under the linear mixed model (10). Furthermore, under this model it is

11



clear that the EBLUP must be more efficient asymptotically, since it approximates the best

linear predictor when (10) actually holds. For example, in the special case where X=Z=1,,,

the weight associated with sampled unit i in area j under the MBD approach is

N 1 ~ N-n
w.:;{1+1+njé[(Nj—nj)¢+ = }}

l

where ¢=3%/62, N= ZJ,NJ(Hnqu))’1 /Zj(1+njq3)’l and 7 is defined similarly. That is,

(14) reduces to the area j sample mean, which is well known to have high variability in small
samples. In contrast, (11) is then a linear combination of the overall sample mean and the area
j sample mean, and has much less variability. In the next section we provide some simulation
results that illustrate the loss of efficiency when the linear mixed model (9) holds for the
small areas of interest and the MBD rather than the EBLUP is used to predict the small area

means.

It is sometimes claimed that a disadvantage of any direct estimator (including the MBD
estimator) is that it is not defined when there is no sample in small area j. In contrast, the

EBLUP (11) then equals the synthetic estimator M;jﬁ. However, no sample data in an area

also means that the validity of any estimator for that area is completely model-dependent. In
particular, we cannot check to see if (9) holds. There is also the problem that different areas
are then treated unequally in estimation. Areas with sample data have their means estimated
via EBLUP, while those without have their means estimated via synthetic estimators.
Furthermore, in such a case the weighted average of these estimates across all small areas
does not equal the EBLUP of the population mean (a property of the MBD estimators). A
standard work-around when this occurs is to rescale all the small area estimates to sum to this
population estimate (or some other acceptable value). However, this is rather arbitrary. For
example, if most of the small areas have no sample, then such a rescaling exercise could
substantially change the final predicted value of the area ] mean of Y for a ‘sample area’
relative to its EBLUP value (11), in which case one has to wonder about the efficiency of the

final result.
5. Some Empirical Results

In this section we illustrate the performance of small area estimation based on the MBD
approach via design-based simulation. Our basic data come from the same sample of 1652

12



Australian broadacre farms that were used in the simulation study reported in Chambers
(1996). Here however we used these sample farms to generate a target population of 81982
farms by sampling with replacement from them with probabilities proportional to their sample
weights. We then drew 1000 independent stratified random samples from this (fixed)
population, with total sample size in each simulation equal to the original sample size (1652)
and with strata defined by the 29 different Australian broadacre agricultural regions. Sample
sizes within these strata were fixed to be the same as in the original sample. Note that these
varied from a low of 6 to a high of 117, allowing an evaluation of the performance of
different small area estimation methods across a range of realistic small area sample sizes.

Table 1 shows the stratum population and sample sizes for this population.

We considered the 29 regions as small areas, with 8 variables of interest. These are (i) TCC =
total cash costs (A$) of the farm business over the surveyed year, (ii) TCR = total cash
receipts (A3) of the farm business over the surveyed year, (iii) FCI = farm cash income (A$),
defined as TCR — TCC, (iv) Crops = area under crops (in hectares), (v) Cattle = number of
beef cattle on the farm, (vi) Sheep = number of sheep on the farm, (vii) Equity = total farm
equity (A$), and (viii) Debt = total farm debt (A$). Our aim was to estimate the average of
these variables in each of the 29 different regions. In doing so, we used the fact that these
regions can be grouped into three zones (Pastoral, Mixed Farming, and Coastal), with farm
area (hectares) known for each farm in the population. This auxiliary variable is referred to as

Size in what follows.

Although the linear relationship between the eight target variables and Size is rather weak in
the original sample data, this improves when separate linear models are fitted within six post
strata. These post-strata are defined by splitting each zone into small farms (farm area less
than zone median) and large farms (farm area greater than or equal to zone median). The
matrix X of auxiliary variable values in (10) was then defined so as to include an effect for
Size, effects for the post-strata and effects for interactions between Size and the post strata.
Two different specification for X (corresponding to whether an intercept was included or not)
and two different specifications for Z (corresponding to whether a random slope on Size was
included or not) were then used to specify (10) and hence the EBLUP and MBD estimators
based on this model. These four specifications are set out in Table 2.

13



For the farm data, models | and Il are appropriate (with Il fitting marginally better) while
models I11 and IV are badly specified. We use REML estimates of random effects parameters
throughout, obtained via the Ime function in R (Bates and Pinheiro, 1998). For each model,
four different estimators of the 29 regional means were computed, along with corresponding
estimators of their mean squared error. These were the EBLUP (11) with MSE estimator (12),
referred to as EBLUP below; the MBD estimator (14) based on variable specific weights (13)
and with MSE estimator (18), referred to as MBDO below; the MBD estimator (14) based on
multipurpose weights (19) and with MSE estimator (18), referred to as MBD1 below; and the
MBD estimator (14) based on multipurpose weights (20) and with MSE estimator (18),
referred to as MBD2 below. Note that three of the eight target variables in the study (Crops,
Equity and Debt) were not suited to linear modelling via (10) because of large numbers of
zeros, so the weights used in MBD1 and MBD2 were based on the K =5 remaining variables
(TCC, TCR, FCI, Cattle and Sheep).

The simulation study was carried out in two stages. In the first, we contrasted the performance
of MBDO with EBLUP under models | to IV using TCC as the variable of interest. Results
from this stage are set out in Table 3 and in Figures 1 — 3. In the second stage of the study we
investigated the performance all four methods for all eight response variables under the
‘reasonably specified” models I and 11. Results from this stage are set out in Tables 4 — 6 and
in Figures 4 — 5.

Three measures of estimation performance were computed using the estimates generated in
the simulation study. These were the relative mean error and the relative root mean squared
error (RMSE), both expressed as percentages, of regional mean estimates and the coverage
rate of nominal 95 per cent confidence intervals for regional means. Table 3 presents the
average and median values of these measures (all computed over the 29 regions) generated by
EBLUP and MBDO under models | — IV for the variable TCC. We note that the average
relative mean errors under MBDO are smaller than those under EBLUP for all models except
model 1V. However, the average relative RMSEs for MBDO are marginally higher than those
for EBLUP under models I and Il and smaller for models I11 and V. Average coverage rates
for MBDO are relatively higher than those for EBLUP under all models. Although neither
dominates, it seems clear that for TCC, MBDO is more robust to model misspecification than
EBLUP.

14



Figures 1 — 3 show the region-specific performances generated by EBLUP and MBDO
(ordered by increasing population size). Figure 1 shows the better relative mean error
performances of both EBLUP and MBDO under models I and Il and their worse relative mean
error performance under model IV. Figure 2 shows that the relative RMSEs of regional
estimates generated by MBDO are comparable with those generated under EBLUP, with
neither approach dominating. Overall, with the exception of two regions (3 and 21), it seems
that MBDO under model 11 performs marginally better overall.

In the two regions (3 and 21) where MBDO fails, inspection of the population and sample data
indicated that this is because of a few outlying estimates. In fact, the outlying values of
MBDO for region 21 are all caused by the presence of a single massive outlier (TCC >
A$30,000,000) in the original sample. This outlier was included in the simulation population
(twice) and then selected (in one case, twice) in 37 of the 1000 simulation samples. If we
discard the outlier driven estimates in regions 3 and 21 then the MBD approach seems the
method of choice for regional estimation in our simulation study. This is confirmed when we
return to Table 3 and now consider the columns containing the median values of relative

mean error and relative RMSE.

Figure 3 summarizes region-specific variation in the nominal 95 percent confidence interval
coverage rates generated by EBLUP and MBDO. If we ignore the outlier driven results for
regions 3 and 21, the results displayed in Figure 5 show that MBDO approach gives
marginally better coverage rates under Models | and Il. A close look at these results also
indicates that in the event of model misspecification (e.g. under Models 111 and 1) the MBDO

coverage rate is more robust.

In the second stage of the simulation study, we compared the two variable specific estimators
EBLUP and MBDO with the two multi-purpose estimators MBD1 and MBD2. Table 4
presents the average and median relative mean errors and relative RMSEs, as well as the
average coverage rates, generated by these four estimators for the five variables TCC, TCR,
FCI, Cattle and Sheep under the ‘reasonably specified” Models | and Il. These results show
that under the better fitting Model I, there is little, if any, difference in the average relative
mean errors of the multi-purpose estimators MBD1 and MBD2 compared with the average
relative mean error of the variable specific estimator MBDO, with all three often substantially
better than EBLUP. Under Model I, the two multipurpose estimators MBD1 and MBD2 are
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substantially better than MBDO and EBLUP. In terms of relative RMSE, the results are more
equivocal. Under Model I there is little to choose between MBDO, MBD1 and MBD2 in terms
of average relative RMSE, with the corresponding performance of EBLUP rather more
fragile. When one turns to the better fitting Model II, however, it is clear that the better
multipurpose approach is MBD1. By considering median, rather than average, values of
relative mean error and relative RMSE, we also see that the estimation performances of the
multipurpose estimators MBD1 and MBD2 appear to be more robust than those of the
variable specific estimators MBDO and EBLUP. Finally, we note that the average coverage
rates of all three direct estimators are quite similar under both Models | and Il and dominate
the corresponding average coverage performance of EBLUP. Overall it seems clear that for
our data set the multi-purpose estimator MBDL1 is the estimator of choice for these five

variables.

Figure 4 shows the region-specific relative mean errors, relative RMSEs and coverage rates
for TCC under Models | and Il for EBLUP, MBDO, MBD1 and MBD2. The superior
efficiency of all estimators under Model 11 (after allowing for the outliers in regions 3 and 21)
is evident, as is the superior performance of MBD2. A similar pattern of results was observed
for TCR, FCI, Cattle and Sheep.

The unstable performance of EBLUP for the Cattle and Sheep variables in Table 4 is
noteworthy. Upon investigation we found that the anomalous results for Cattle were caused
by the presence of negative estimates for this variable in two regions (11 and 14), which were
themselves the result of zero values in the data. In particular, in region 11 there were 1283
zeros in the simulated population of 1586 values. This resulted in 185 negative estimates out
of the 1000 simulated for this region. Similarly in the region 14, there were 1972 zeros in the
2182 values in the simulated population, leading to 354 negative estimates. A similar reason
lay behind the EBLUP results for Sheep. In this case, however, in region 3 there were only 11
non-zero values for Sheep in a simulated population of size 189, leading to 223 negative
estimates, while in region 18 a majority of zero values for Sheep lead to 323 negative

estimates.

As noted earlier, our results indicate that multi-purpose estimation based on MBD1 is
preferable to that based on MBD2. Consequently, in Table 5 we contrast the performances of
the variable specific estimators EBLUP and MBDO with the multi-purpose estimator MBD1
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for the three variables (Crops, Equity and Debt) that contain a large number of zeros. The
superior performance of MBD1 is obvious, as is the poor performance of EBLUP for these
variables. Note that these results are based on Model I, since Model Il cannot be fitted to
these variables. In Table 6 we show that there is little change in the average performance of
MBD1 when the set of variables determining the multi-purpose weights used by this estimator
is extended from the original K = 5 variable set (TCC, TCR, FCI, Cattle, Sheep) to the entire
K = 8 variable set (TCC, TCR, FCI, Cattle, Sheep, Crops, Equity, Debt). Again, note that this
extension is only possible under Model 1. Finally, in Figure 5 we show the overall region-
specific superior performance of MBD1 (under either K = 5 or K = 8) for the variable Debt.

Similar region-specific performances (not shown here) were observed for Crops and Equity.

6. Discussion and Further Research

The empirical results reported in the previous section are evidence that the MBD estimator
(14), particularly when combined with the multipurpose weights (19), can perform well and
represents a real alternative to the EBLUP, with the associated easy to calculate MSE
estimator (18) providing good coverage performance. Furthermore, they indicate that the
MBD approach may be more robust than EBLUP in the realistic situation where (10) is a

working model, rather than the (unknown) true model.

These results should not be taken as a blanket recommendation for MBD over EBLUP,
however. As noted in section 4, if one sets practical considerations aside, then EBLUP must
be the estimation method of choice when (9) actually holds. In such a case, the extent of the
efficiency gain over MBD will depend on both the distribution of the auxiliary variables as
well as the sample distribution across the small areas. To illustrate this, we return to the
Australian broadacre farm population used in the previous section, but this time carry out a

model-based simulation, first generating population values for TCC under the random

intercepts model (Model 1 in Table 2) with 8 and o set at their fitted population values and
with different values of o chosen in order to obtain a range of values for the intra area

correlation y =0’ /(0> +07), and then sampling from this simulated population using the

same regionally stratified design as used in the simulation study reported in the previous
section. Table 7 sets out the results of this simulation, in terms of the square root of the ratio
of the average empirical MSE of the Horvitz-Thompson estimator (HTE) of a regional total to
that of the corresponding EBLUP under the model used to generate the data (denoted

17



HTE/EBLUP), and the corresponding ratio (denoted MBD/EBLUP) of the average empirical
MSE of the MBD estimator of a regional total to that of the same EBLUP. Note that values of
these ratios for averages over all 29 regions as well as over regions with smaller sample sizes
and those with larger sample sizes are given. These clearly show that in the case where all
model assumptions are valid, the EBLUP, as one would expect, dominates both the MBD as
well as the conventional direct estimator (HTE). However, the extent of this dominance
decreases significantly as the strength of the regional effect increases, particular for regions
with larger sample sizes. The MBD in turn dominates the HTE except where the regional
effect is small, in which case we see that the EBLUP weights used in the MBD introduce

slightly more variance than they eliminate bias.

Before closing, we also mention a number of issues that impact on the utility of the MBD
estimator that remain unresolved. For example, negative weights, which occurred in some
regions in the simulation study reported in the previous section, can lead to impossible (i.e.
negative) estimates. Since such values are easily identified, they should not cause problems in
real life. However, the problem remains of how to modify the weights (13) to ensure they are
strictly positive. A related issue that has already been noted is the impact of outlier Y-values
on (14). Certainly this estimator, because it is a linear combination of just the small area data
values, is more susceptible to outliers in these values than the EBLUP estimator (11).
Methods for dealing with negative weights under ‘standard’ regression models have been
discussed in the literature (Huang and Fuller, 1978; Bardsley and Chambers, 1984; Deville
and Sarndal, 1992; Chambers, 1996) but their application in the context of mixed models
remains to be explored. Further, the data set used in section 5 involved skewed data as well as
a potential nonlinear relationship between the survey and auxiliary variables. It is possible to
adapt the MBD approach for small area estimation when variables are linear on a transformed
scale. The authors will report on this research in another paper.
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Table 1 Regional population and sample sizes

Region N n Region N n
1 79 6 16 2683 60
2 115 10 17 2689 60
3 189 30 18 2847 34
4 330 25 19 3056 74
5 388 36 20 3139 51
6 465 19 21 3910 73
7 604 36 22 4486 117
8 729 40 23 4550 80
9 737 30 24 4587 95
10 964 30 25 5368 83
11 1586 51 26 5528 103
12 1778 62 27 6489 108
13 1984 55 28 6980 81
14 2182 47 29 10933 77
15 2607 79

Table 2 Different mixed model specifications considered in the simulations

Model  Model Type X Z
I Random Intercepts Intercept included Intercept only
I Random Slopes Intercept included Intercept + Size
Il Random Slopes with  Intercept included Size only

fixed intercept
Vv Random Slopes with  Intercept excluded Size only

zero intercept

Table 3 Average (ARME) and median (MRME) values of relative mean error, average
(ARRMSE) and median (MRRMSE) values of relative RMSE and average (ACR) coverage

rates for TCC
Model Method ARME MRME ARRMSE MRRMSE ACR
| EBLUP 4.24 1.55 19.92 15.74 0.90
MBDO -2.49 -0.82 20.56 14.45 0.92
1 EBLUP 2.98 0.61 19.87 16.40 0.85
MBDO -2.13 -0.47 20.15 13.16 0.93
11 EBLUP 452 1.95 23.89 19.94 0.69
MBDO -3.84 0.13 21.14 14.44 0.94
v EBLUP 1.17 -2.63 23.38 19.73 0.65
MBDO 2.20 2.06 22.35 20.61 0.97
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Table 4 Average and median relative mean error (ARME, MRME), average and median
relative RMSE (ARRMSE, MRRMSE) and average coverage rate (ACR) for five variables
best suited to linear mixed modelling

Model  Criterion Method TCC TCR FCI Beef Sheep
| ARME EBLUP 4.24 5.48 6.93 138.48 304.24
MBDO -2.49 -9.25 -13.80 -15.05 -7.33

MBD1 -1.54 -1.30 -0.50 -1.78 0.69

MBD?2 -1.29 -1.02 -0.04 -1.35 0.98

MRME EBLUP 1.55 0.55 -2.08 0.95 -0.23
MBDO -0.82 -3.87 -2.83 -4.79 -4.48

MBD1 -0.61 -0.42 -0.56 -0.97 -0.35

MBD?2 -0.52 -0.39 -0.54 -0.75 -0.30

ARRMSE EBLUP 19.92 21.76 63.93 304.74 906.18
MBDO 20.56 23.34 54.42 37.45 24.88

MBD1 20.86 21.77 59.72 33.29 30.24

MBD?2 20.85 21.77 60.07 33.36 30.64

MRRMSE EBLUP 15.74 14.83 40.41 25.97 13.00
MBDO 14.45 16.20 35.85 30.34 15.50

MBD1 14.69 13.41 42.09 30.55 14.67

MBD2 14.74 13.46 42.45 30.56 14.67

ACR EBLUP 0.90 0.88 0.87 0.86 0.91
MBDO 0.92 0.91 0.94 0.93 0.94

MBD1 0.92 0.92 0.94 0.95 0.96

MBD?2 0.92 0.92 0.94 0.95 0.96

11 ARME EBLUP 2.98 2.85 16.70 131.66 2.63
MBDO -2.13 -1.25 0.50 -0.29 3.66

MBD1 -1.67 -1.29 0.74 -1.95 1.10

MBD?2 -1.30 -0.72 3.17 -1.29 0.93

MRME EBLUP 0.61 1.37 3.98 0.62 0.00
MBDO -0.47 -0.51 0.35 -0.31 0.00

MBD1 -0.65 -0.50 0.24 -0.30 -0.15

MBD?2 -0.52 0.01 0.53 -0.22 -0.09

ARRMSE EBLUP 19.87 20.28 68.85 231.08 630.01
MBDO 20.15 21.46 65.43 30.80 37.82

MBD1 19.06 21.03 64.03 30.09 32.04

MBD?2 27.13 34.84 129.29 45.16 34.99

MRRMSE EBLUP 16.40 15.61 33.89 22.64 11.73
MBDO 13.16 12.39 37.64 28.79 14.68

MBD1 12.84 12.18 37.92 24.84 14.77

MBD2 12.84 12.71 37.62 24.93 14.72

ACR EBLUP 0.85 0.86 0.84 0.86 0.89
MBDO 0.93 0.93 0.90 0.95 0.96

MBD1 0.93 0.93 0.94 0.95 0.96

MBD2 0.93 0.93 0.94 0.95 0.96
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Table 5 Average relative mean error (ARME), average relative RMSE (ARRMSE) and
average coverage rate (ACR) for EBLUP, MBDO0 and MBDL1 for variables with many zeros.

Model I is assumed.

Variable ARME ARRMSE ACR

EBLUP MBDO MBD1 EBLUP MBDO MBD1 EBLUP MBD0 MBD1
Crops 90.31 0.003 -0.21 12396 23.53 22.92 0.95 0.96 0.96
Equity 436 -9.32 -1.20 18,51 19.14 17.05 0.88 0.92 0.94
Debt 839 -494 -0.96 29.02 27.71  28.57 0.91 0.93 0.93

Table 6 Average relative mean error (ARME), average relative RMSE (ARRMSE) and
average coverage rate (ACR) for multi-purpose weighting (MBD1) based on original K = 5

and extended K = 8 variable sets. Model | is assumed.

Variable K=5 K=8

ARME ARRMSE ACR ARME ARRMSE ACR
TCC -1.54 20.86 0.92 -1.08 20.91 0.92
TCR -1.30 21.77 0.92 -0.80 21.83 0.92
FCI -0.50 59.72 0.94 0.21 60.22 0.94
Cattle -1.78 33.29 0.95 -1.05 33.49 0.95
Sheep 0.69 30.24 0.96 1.24 31.06 0.96
Crops -0.21 22.92 0.96 -0.20 22.97 0.96
Equity -1.20 17.05 0.94 -0.72 17.14 0.94
Debt -0.96 28.57 0.93 -0.68 28.74 0.93

Table 7 Ratio of the square root of the average mean squared errors of Horvitz-Thompson
(HTE) and MBD estimates of regional totals to EBLUP-based estimates of the same totals.
Sample design is stratified by region, with SRSWOR within regions and sample allocations as
in Table 1. The data were generated using Model 1 of Table 4, and this model was also
assumed by both the EBLUP and MBD methods.

Average over RMSE Ratio y=0"1(c?+0?)
0.1 0.2 0.3 0.4 0.5
All 29 regions HTE/EBLUP 2.10 1.58 1.41 1.36 1.36
MBD/EBLUP 2.27 1.56 1.31 1.19 1.14
7 smaller regions HTE/EBLUP 3.14 2.54 2.29 2.22 2.22
(n<30) MBD/EBLUP 3.84 2.40 1.81 1.52 1.39
22 larger regions HTE/EBLUP 1.39 1.17 1.12 1.10 1.08
(n>30) MBD/EBLUP 1.44 1.18 1.10 1.06 1.04
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Figure 1 Regional relative mean errors for EBLUP (dashed line) and MBDO (solid line) for
TCC under models I (top left), Il (top right), 111 (bottom left) and 1V (bottom right).
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Figure 2 Regional relative RMSEs for EBLUP (dashed line) and MBDO (solid line) for TCC
under models | (top left), 11 (top right), 111 (bottom left) and IV (bottom right).
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Figure 3 Regional coverage rates for EBLUP (dashed line) and MBDO (solid line) for TCC
under models | (top left), 11 (top right), 111 (bottom left) and IV (bottom right).
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Figure 4 Regional performances of EBLUP (dashed line), MBDO (thin line), MBD1 (thick
line) and MBD?2 (dotted line) for TCC under models I (left) and 11 (right).
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Figure 5 Regional performances of EBLUP (dashed line), MBDO (thin line), MBD1 under K
=5 (thick line) and MBD1 under K = 8 (dotted line) for Debt under model 1.
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