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Abstract: In estimating aboveground forest biomass (AGB), three sources of 15 

error that interact and propagate include: (1) measurement error, the quality of the 16 

tree-level measurement data used as inputs for the individual-tree equations; (2) 17 

model error, the uncertainty about the equations of the individual trees; and (3) 18 

sampling error, the uncertainty due to having obtained a probabilistic or 19 

purposive sample, rather than a census, of the trees on a given area of forest land. 20 

Monte Carlo simulations were used to examine measurement, model and 21 

sampling error, and to compare total uncertainty between models, and between a 22 

phase-based terrestrial laser scanner (TLS) and traditional forest inventory 23 

instruments. Input variables for the equations were diameter at breast height, total 24 

tree height (defined the height from the uphill side of the tree to the tree top) and 25 

height to crown base; these were extracted from the terrestrial LiDAR data. 26 

Relative contributions for measurement, model and sampling error were 5%, 70% 27 

and 25%, respectively when using TLS, and 11%, 66% and 23%, respectively 28 

when using the traditional inventory measurements as inputs into the models. We 29 

conclude that the use of TLS can reduce measurement errors of AGB compared 30 

to traditional measurement approaches. 31 

Keywords: Model error; sampling error; measurement error; Pacific Northwest  32 
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1. Introduction 34 

Forest inventory and monitoring programs such as the United States Department of 35 

Agriculture (USDA) Forest Inventory and Analysis Program (FIA) produce estimates and 36 

reports of forest resources that bear increasing utility for agencies and other users alike. 37 

Inventory attributes derived from such estimates often lack a defensible magnitude of 38 

certainty to support forest management decisions that satisfy an array of ecological, economic 39 

and social requirements. An accurate depiction of the precision of such estimates would serve 40 

to guide and support such decisions. With the growing use of FIA inventory data for 41 

attributes such as aboveground biomass (AGB), gains in precision made by addressing 42 

specific sources of uncertainty could benefit forest managers and planners, as well as 43 

scientists drawing inference and making decisions from their AGB estimates (Temesgen et al. 44 

2015).   45 

The reliability of AGB estimates produced using sampling approaches such as FIA depends 46 

on three primary sources of uncertainty that interact and propagate: (1) the quality of the tree-47 

level measurements used as inputs for estimating biomass of individual trees; (2) the 48 

uncertainty about the models used for predictions; and (3) the uncertainty due to having 49 

obtained a probabilistic sample, rather than a census, of the trees on a given area of forest 50 

land (Cunia 1965). Increasing emphasis on acquiring highly accurate estimates of AGB for 51 

management and policy decision making also requires transparent characterizations of 52 

associated uncertainty stemming from the three sources of error mentioned above. Accurate 53 

estimation of these uncertainties requires accounting for all three of the aforementioned 54 

sources of uncertainty when constructing reliability statements for AGB. However, many 55 

forest inventory operations currently only account for sampling uncertainties, as the first two 56 

uncertainties listed are more difficult to estimate from field-based measures alone, and are 57 

often assumed to be of less importance. Besides allowing more confidence in landscape level 58 

Page 3 of 44
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

 o
n 

04
/1

1/
16

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



4 

 

predictions, estimation of all three sources of uncertainty may also provide an opportunity to 59 

observe possible gains in precision to be had by addressing uncertainty that arises due to 60 

issues with tree-level explanatory measurement data. These have practical implications for 61 

instance in terms of the choice of instrument, calibration and standardized training and 62 

implementation procedures for data collection (Weiskittel et al. 2011, p.277 and Temesgen et 63 

al. 2007).   64 

Difficulties in estimating accuracy of tree-level measurements include the collection of 65 

suitable ground truth data to base uncertainty estimates on. Henning and Radtke (2006) 66 

compared diameter outside bark (DOB) measurements of nine destructively sampled loblolly 67 

pine (Pinus taeda) trees to the same DOB measurements obtained using a terrestrial laser 68 

scanner (TLS). DOBs, measured in 1m intervals, were reported to be within 1-2cm, with 69 

greater accuracy achieved for stem portions below the base of live crown. Bienert et al. 70 

(2006) and Maas et al. (2008) reviewed and compared work flow and data processing 71 

procedures for extracting common inventory attributes such as DOBs and total tree height 72 

(HT). As an alternative to these destructive methods, TLS may provide new opportunities to 73 

provide ground truthing estimates for current inventory approaches, which typically predict 74 

tree metrics based upon a few easily acquired measurements, such as diameter at breast 75 

height (DBH) and height.  TLS may help us to improve upon these estimates by providing 76 

high density point clouds, useful for accurately depicting stem properties, including taper, as 77 

well as crown metrics, including crown density and leaf area. For instance, TLS has been 78 

used for measuring tree-level metrics such as DOBs and bole heights (Simonse et al. 2003, 79 

Hopkinson et al. 2004, Henning and Radtke 2006, Bienert et al. 2006, Maas et al. 2008, Weiß 80 

2009, Pueschel et al. 2013, Liang et al. 2014) as well as crown metrics such as height to 81 

crown base and crown volume (Chasmer at al. 2006, Jung et al. 2011).  82 
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Hauglin et al., (2013) determined the biomass of Norway spruce with TLS using voxel-based 83 

approaches and crown dimension features. Other techniques include stem reconstruction (Yu 84 

et al., 2013), as well as total tree reconstruction (Calders et al., 2014 and Hackenberg et al., 85 

2014). The performance of TLS in obtaining specific individual-tree variables has been 86 

demonstrated, including taper (Thies et al. 2004), DOB (Simonse et al. 2003, Hopkinson et 87 

al. 2004, Henning and Radtke 2006, Bienert et al. 2006, Maas et al. 2008, Weiß 2009, 88 

Pueschel et al. 2013), canopy metrics such as crown area, crown volume and height to crown 89 

base (HTCB) (Chasmer at al. 2006, Jung et al. 2011), and bole reconstruction for stem 90 

volume calculation (Yu et al. 2013). Chasmer et al. (2006) used coinciding ALS and TLS 91 

data to compare against field-based plot measurements of HT, HTCB and maximum crown 92 

width. Average height estimate biases were similar for both ALS and TLS at 1.1m and 1.2m, 93 

respectively. ALS overestimated HTCB by an average of 1.4m due to point density 94 

distributions being weighted toward the top of the tree, whereas TLS underestimated HTCB 95 

by 6.4m, not only resulting from the inverse of the aforementioned distribution due to an 96 

inverted perspective, but largely due to not accounting for the occurrence of dead branches. 97 

Unique to this study is the depiction of how the measurement performance of TLS in 98 

extracting these tree-level variables translates into differences in per unit area estimates of 99 

forest-related parameters, specifically AGB. We investigate how the total propagated error of 100 

AGB associated with using a TLS compares to that associated with using common forest 101 

inventory instruments used for standing tree measurements.  To do so, we used data from 102 

three types of measurements performed on 25 lodgepole pine (Pinus contorta Douglas) trees 103 

as the basis for making these comparisons. We validate the estimates obtained from TLS and 104 

traditional forest inventory instruments against estimates obtained by destructive sampling 105 

methods. Using a newly developed set of Component Ratio Method (CRM) equations for 106 

predicting lodgepole pine AGB, a Monte Carlo simulation approach was employed for 107 
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making comparisons between associated uncertainties of per unit area estimates of AGB for 108 

each measurement method.  109 

2. Methods 110 

2.1. Study locations 111 

In order to capture some regional differences in tree form, the data for this study were 112 

collected from both the Willamette National Forest (WNF) and the Deschutes National Forest 113 

(DNF) in western and central Oregon, USA, respectively. All locations were within an 114 

intermediate-elevation range, with the WNF locations spanning from 1,160-1,340 meters 115 

above sea level and the DNF locations from 1,280 to 1,340 meters. The WNF locations 116 

encompassed two forest types: (1) a diverse mixed-species coniferous forest, with observed 117 

species being Douglas-fir (Pseudotsuga menziesii var. menziesii), western hemlock (Tsuga 118 

heterophylla (Raf.) Sarg.), lodgepole pine, mountain hemlock (Tsuga mertensiana (Bong.) 119 

Carr.), noble fir (Abies procera Rehder), Engelmann spruce (Picea engelmannii 120 

Parry ex Engelm. ), and western white pine (Pinus monticola Douglas ex D. Don); and (2) a 121 

homogenous coniferous forest composed of primarily lodgepole pine and with a small 122 

element of grand fir (Abies grandis (Douglas ex D. Don) Lindley). The DNF locations also 123 

included one forest type of homogenous coniferous species composition, with observed 124 

species being lodgepole pine and ponderosa pine (Pinus ponderosa Douglas ex C.Lawson). 125 

2.2. Field measurement approach 126 

Trees were selected via subjectively and common forest inventory variables including DBH, 127 

HT and crown ratio (CR) were recorded. While the requirement for accessibility for felling 128 

limited our ability to select trees randomly, efforts were taken to select sample trees either 129 

located in different forest stands, or sufficiently distanced apart to avoid issues of spatial 130 
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autocorrelation.  A total of 25 trees were destructively measured over a four week period 131 

during July and August 2013. DBH, HT and CR ranged from 13.5 to 42.9 cm, 9.2 to 31.9 m 132 

and 0.30 to 0.948, respectively. Standing-tree measurements (STM) were conducted prior to 133 

felling, with DBH being measured using a Spencer combination tape and with both HT and 134 

HTCB being measured using a Trupulse Laser Rangefinder 360R. For this study, HTCB was 135 

defined as the bole height of the first live limb (i.e., the lowest branch with green needles on 136 

it). Among the measurements taken to obtain reference values of AGB, downed-tree 137 

estimates of HT and HTCB were measured with an open reel fiberglass tape.  138 

For estimation of component biomass per unit area, ground plot data were collected from 139 

those forest stands from which the 25 sample trees were sourced. This ground plot data 140 

consisted of 25 cluster plots, each comprised of four circular fixed area subplots arranged 141 

around each sample tree. A 0.017 hectare plot was the primary subplot (radius 7.33 m), with 142 

the pith of the sample tree as the center. The centers of the other three circular subplots were 143 

located 36.58 m at azimuths of 120, 240 and 360° from the pith of the sample tree. The area 144 

of these other three subplots was 0.008 hectares (radius 5.18 m). Within each subplot, all 145 

trees (> 10.16 cm diameter) were measured and/or recorded for attributes such as species, 146 

DBH, HT and HTCB, among others.  147 

 148 

2.3. TLS Field Scanning Protocol 149 

In addition to the standing tree measurements, sample trees were scanned with a tripod-150 

mounted FARO Focus
3D 

120 TLS prior to felling. As opposed to the more common time-of-151 

flight TLS technology the FARO scanner uses phase shift technology which uses the shifts of 152 

modulated waves of returned infrared light pulses to calculate distances traveled (FARO 153 

2014). Maximum ranges of phase-based scanners are less than those of time-of-flight 154 
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scanners; however, measurement rates (pulses per second emitted) are usually much higher 155 

with greater distance accuracies realized than for time-of-flight scanners. See Table 1 for the 156 

technical data of the FARO Focus
3D 

120.  157 

Each sample tree was scanned from three locations around its periphery at distances ranging 158 

from approximately 3-8m away from the tree. Scan positions were placed at 120° apart from 159 

each other to maximize the information gathered for characterizing the geometric shape of 160 

the tree. For automatic co-registration, four manually placed targets were positioned near the 161 

sample tree with a minimum of three targets being visible from each scan position. Target 162 

construction consisted of printed checkerboard signs affixed to wooden staked panel boards. 163 

Because it was desired to maximize information gathered in this study, minimal amounts of 164 

understory vegetation deemed obstructive were manually removed.  165 

Scanning was conducted at a speed of 122,000 pulses per second, resulting in approximately 166 

seven minutes duration per scan. With transport and setup time between scan positions taking 167 

an average of 2-3 minutes, scanning each tree from all three angles took on average 25-30 168 

minutes.  169 

The scan data were collected in a local coordinate system using the scanner location as the 170 

origin. Registration was done automatically using SCENE v4.8 software (FARO 2014) based 171 

on printed checkerboard targets placed within each scan image. Quality of registration was 172 

reported as average discrepancy in distance between a given pair of reference objects or 173 

tension (ranging between 1mm to 8mm). For each registered scan, TLS returns belonging to 174 

an individual sample tree were selected visually from the 3D representation of the 175 

surrounding forest. This process was done by displaying the registered scan and using the 176 

visible scan positions to deduce which was the sample tree (Figures 2 and 3). Prior to 177 

scanning, boles of the sample trees were wrapped with very thin striped plastic flagging, 178 

intentionally placed well above DBH, that proved visible as a final confirmation the correct 179 
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tree was to be selected from the registered point cloud. These selected points were then 180 

exported for later use in extracting DBH, HT and HTCB using Matlab 2013b (The 181 

MathWorks, http://www.mathworks.com, USA). 182 

2.4. Tree Parameter Extraction from Selected Scan Data 183 

TLS based height measurements were normalized to the surface elevation by means of a 184 

digital terrain model (DTM) derived from the TLS data. Ground and non-ground returns were 185 

separated using a grid based approach to select the lowest return within a 0.3048m × 0.3048m 186 

sampling grid placed over the plot area.  187 

2.4.1. Tree Detection 188 

With the ground model complete the next step before obtaining tree parameters was to 189 

estimate the center of the sample tree at approximately 1.37m (diameter at breast height) 190 

above the ground. This estimated location served as a control point from which all 191 

measurement algorithms originated from. Similar to Mass et al. (2008) a thin 5-10cm 192 

horizontal slice was selected from the point cloud for stem detection (Figure 2). This 193 

horizontal slice often included many points representing branches and foliage at that height. 194 

To expedite the estimation process only a subset of the points in the slice was used (Figure 3).  195 

A nonlinear least squares circle-fitting procedure, similar to that described by Henning and 196 

Radtke (2006), was used for estimating the diameter and XY center of each tree. The means 197 

of the XY coordinates of all subset points were used as initial estimates, or starting values, for 198 

the nonlinear procedure, provided there were no large outliers in the point cloud (Maisonobe 199 

2007). Restriction of the subset to the XY range of the main bole additionally addresses any 200 

outliers associated with branches or foliage. The starting value for the diameter of the sample 201 

tree consisted of using the following equation to solve for a diameter for each of the subset 202 
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points, and then using the mean of all calculated diameters, produced using the following 203 

equation (Henning and Radtke 2006): 204 

 

 

(1) 

 205 

where  is estimated diameter for the i
th

 subset point, the  pair are the means of the 206 

(x,y) coordinates for all subset points and the  pair are the (x,y) coordinates of the i
th 

207 

subset point. With these three starting values and the following equation as the objective 208 

function, the three unknowns were solved for by minimizing the sum of squares for all subset 209 

points:  210 

 

 

 

(2) 

where  is the value of the objective function for the i
th

 subset point and ,  and  are the 211 

three unknowns. With the spatial location of the center of the tree and its diameter 212 

approximated, subsequent measurements stemmed from this information. 213 

2.4.2. Uphill Side of the Tree and Total Height 214 

To conform to forest inventory practices, all heights up the bole to the tip of the sample trees 215 

were measured relative to the ground adjacent to the tree with the highest elevation (Avery 216 

and Burkhart 2002, p.144). Thus, it was necessary to identify the uphill-side of the tree and 217 

determine the elevation of that side relative to the rest of the point cloud. Using the 218 

approximated center and diameter, all DTM cells determined to be spatially adjacent to the 219 

base of the sample tree were selected. The selected DTM cell with the highest elevation value 220 

was determined to be the uphill-side of the tree. The corresponding elevation value of that 221 
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cell, heretofore referred to as the reference z-value, was used as the minimum reference 222 

height for extracting DBH, HT and HTCB.  223 

A statistical quality control was implemented in order to ensure the reference z-value was not 224 

a far outlier representing anomalies such as nearby rocks or protruding tree roots. Whereby, if 225 

the coefficient of variation (CV) of the elevation values of all the selected adjacent DTM 226 

cells was above a defined percentage, the adjacent cell with the next highest elevation value 227 

was chosen from the eight cells that bordered the stem center grid cell. For the purpose of this 228 

study a subjectively chosen CV of 60% was used to remove outlier values. HT was then 229 

simply calculated as the difference between the highest point in the point cloud and the 230 

reference z-value. Stray points above the tip of the tree were not observed to be a problem 231 

due to the prior filtering using the SCENE software.  232 

2.4.3. Diameter at Breast Height 233 

While the approximated diameter from the previously-described detection slice at breast 234 

height could potentially serve as an estimate of DBH, the height at which the slice was taken 235 

was 1.37m above the minimum elevation of the entire point cloud, rather than the uphill side 236 

of the tree. On steeply sloping terrain, differences in relative bole heights could be 237 

substantial. To avoid this issue, an improved DBH was extracted 1.37m above the reference 238 

z-value using the previously described procedure of subsetting followed by the non-linear 239 

least squares circle-fitting. However, an additional precision constraint was added to 240 

maximize the reliability of the DBH measurement. If the root mean square error (RMSE) of 241 

the non-linear least squares procedure was above a defined threshold of 5mm, a recursive 242 

“noise reduction” method, similar to Henning and Radtke (2006), was invoked. The main 243 

purpose of this procedure was to reduce TLS observations originating from nearby branches 244 

or understorey. Henning and Radtke (2006) showed the removal of these outliers greatly 245 
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improved our estimates of DBH. The filtering process involved continually removing the 246 

points  whose coordinates produced estimated diameters that were the maximum absolute 247 

distance from the mean of all estimated diameters until the standard deviation of the 248 

estimated diameters was below the same defined threshold. It was observed that using 5mm 249 

for this threshold was sufficient for minimizing the measurement error, while also removing 250 

stray points around, and not belonging to, the main bole.  251 

2.4.4. Height to Crown Base 252 

Estimation of HTCB was based on analysis of point intensity and percentiles of return height. 253 

Point intensity is a measure of the returned energy of an emitted pulse. While intensity values 254 

cannot directly be used as a surrogate to optical measures of surface reflectance (as these 255 

uncalibrated measurements depend on environmental conditions, scanner properties and 256 

location) LiDAR based intensity measures have been successfully used to distinguish 257 

between green foliage and non-photosynthetically active tree elements (Popescu et al. 2007, 258 

Pesonen et al. 2008 and Kim et al. 2009), due to the large differences in NIR reflectance of 259 

these vegetation components. As a result, we used intensity measures to classify between 260 

foliage and woody surfaces for the purpose of estimating HTCB. By plotting intensity versus 261 

height, an empirical threshold could be determined, below which the intensity values for 262 

points returned from foliage would theoretically occur (Figure 4). The subset of points below 263 

this threshold served as a representation of the live crown profiles. We then used different 264 

percentile heights within this subset of points for different age classes of the trees. 265 

Specifically, the 5th, 10th and 25th percentile height of this subset were used to measure 266 

HTCB for the 20-40yr, 40-80yr and >80yr age classes of sample trees selected, respectively. 267 

2.5. Modeling biomass 268 
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The biomass equations used for this study predict the proportion of AGB for the bole, bark, 269 

branch and foliage component (Poudel and Temesgen 2016 and Poudel et al. 2015). These 270 

proportions can then be multiplied by an estimate of total tree AGB to obtain the AGB of 271 

each tree component. Both the component equations and the total tree biomass equation were 272 

fit in separate systems of equations using the seemingly unrelated regression method (SUR) 273 

in SAS statistical software (SAS Institute Inc., v9.4). The four CRM component equations 274 

and the total tree equation used in our study are of the form (Poudel and Temesgen 2016 and 275 

Poudel et al. 2015): 276 

 
] 

 

(3) 

  

 = exp[ ]   

 

 

 

(4) 

 
] 

 

(5) 

 
] 

 

(6) 

 
 = exp[ ] 

 

(7) 
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where , ,  and  are the estimated proportions of  component 277 

AGB  for bole wood, bark, branches and foliage, respectively, exp(.) is the exponential 278 

function, ln(.) is the natural logarithm function and the  are the estimated parameters from 279 

the SUR procedure. The  is the correction factor for the resulting bias when back-280 

transforming model predictions from the logarithmic to the initial scale of interest, where  281 

is the estimated mean squared error, or residual variance (Baskerville, 1972, McRoberts and 282 

Westfall 2014). 283 

2.6. Measurement Error Variability 284 

For DBH, HT and HTCB, the differences between the measured values and the downed-tree 285 

measurements were calculated for both the TLS and traditional forest inventory instruments. 286 

In this study, the downed-tree measurements were considered to be the known “true” values 287 

due to the ease with which measurements could be taken as accurately as possible. The 288 

summary data for these differences were subsequently calculated for each input variable for 289 

the models (Table 2). 290 

It is known that standard deviation of the measurement error is zero when HT is zero. Hence, 291 

to stay consistent with the methodologies of Berger et al. (2014) and Shettles et al. (2015)a 292 

simple linear regression model through the origin was constructed to predict the standard 293 

deviation of the measurement errors. In order to conduct regressions of standard deviation of 294 

measurement errors on input variables, HT values were sorted in ascending order and 295 

grouped into groups of size 3, with the last group including the remainder of the HT values. 296 

With an aim to maximize the number of possible groups, the group size of 3 was 297 

symptomatic of a sample size of 25 trees. For every g
th

 group, the means of the HT values 298 

and  were estimated, where     is the 299 

Page 14 of 44
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

 o
n 

04
/1

1/
16

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



15 

 

standard deviation of the measurement errors for HT and   are the HT 300 

measurement errors, where  is the downed-tree height measurement, n is the group size 301 

and  is the standing-tree height measurement. The following model form was fit to the 302 

grouped data for HT using the method of ordinary least squares: 303 

  

 

(8) 

where  is the estimated standard deviation of the measurement errors for HT and  304 

is the model parameter estimate.   305 

2.7. Integrating Simulated Measurement Errors into Model Uncertainty 306 

Using the standard deviations from Table 2 and equation 8, Monte Carlo simulations (>5000 307 

iterations), were used to approximate model uncertainties reflective of the additional 308 

uncertainty due to measurement error (Berger et al. 2014). Input variable contamination was 309 

implemented as a two part process: First, for the k
th

 component model, a multiplicative factor 310 

~N(1, ²) was randomly generated and multiplied together with the input variables, where 311 

 is the standard deviation of the height measurement errors; and second, an additive 312 

factor ~N(0, ²) was randomly generated and added to the input variables, where 313 

 is the predicted standard deviation from equation 8 (Berger et al. 2014). 314 

The impact of the additional uncertainty was assessed by calculating the mean prediction and 315 

RMSE and the relative RMSE (RRMSE) over all iterations with the following formulas: 316 

  

 

(9) 
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(10) 

where  is the observed value and  is the fit for the i
th 

tree. RRMSE is calculated by simply 317 

dividing RMSE by the mean. 318 

To convert the predicted proportions and RMSEs to tree-level units (oven-dry kg), the 319 

predicted proportions were multiplied by the fitted value for total tree biomass to obtain tree-320 

level fitted values of component AGB (Eq. 7), and multiplied with the absolute RMSEs 321 

produced as the square root of the sum of the squared relative RMSEs: 322 

 

 

(11) 

Where  is the combined RMSE in tree-level units,  is the RMSE for the 323 

CRM component ratios and  is the RMSE for Total Tree AGB (equation 7). 324 

2.8. Integrating Model Error into Sampling Uncertainty 325 

In order to integrate the model errors into the sampling uncertainty, the magnitude of the 326 

model errors integrated needed to be contingent upon the magnitude of the model predictions. 327 

Using the previously described grouping approach with respect to the model errors, a simple 328 

linear regression model (also forced through the origin) was constructed to predict the 329 

magnitude of the model errors. Following the notation and general methodology of 330 

McRoberts and Westfall (2014): (1) for the k
th

 component model, a joined list of  and  331 

was created and sorted in ascending order with respect to , where ; (2) the sorted 332 

triads of observations were grouped into groups of size 3, with the last group including the 333 

remainder of the observations; (3) for every g
th

  group, the mean observation  , 334 
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the mean fitted value    and the mean square error    were 335 

calculated, where  is the number of trees in the g
th

 group; (4) the following model form was 336 

fit to the grouped data for each component model using the method of ordinary least squares 337 

 

 

 

 

 

(12) 

Where  is the predicted model error for the i
th 

tree,  is the model parameter estimate and 338 

 is the model fitted value for the i
th 

tree. It should be noted that with measurement error 339 

integrated into the model errors, the value of  is expected to increase, reflecting this 340 

additionally accounted for source of uncertainty. 341 

A bootstrapping technique, in conjunction with equation 12, was used to simulate the effects 342 

of model errors on the uncertainty of per unit area estimates of component AGB for all 343 

models. A similar Monte Carlo simulation sequence and notation described by McRoberts 344 

and Westfall (2014) was used for each component model. 345 

First, the data set containing the “true” values of the 25 sample trees was randomly sampled 346 

with replacement to produce a bootstrapped-sample of size 25. Similar to the previously 347 

described method of simulating measurement errors, contaminated model predictions for all  348 

25  bootstrapped-sampled trees were produced by adding a randomly generated residual,  349 

~N(0, ), to the prediction for the i
th

 pseudo-sampled tree produced using the k
th

 component 350 

model, where  is estimated using equation 12. Using the contaminated predictions and the 351 

pseudo sample data, a new model, of the same form as the k
th

 component model, was refit. 352 

For equations 3, 4, 5, 6 and 7, due to their original model form, the contaminated predictions 353 
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and the pseudo sample data required transformation to the  and ln-ln scale, 354 

respectively, prior to refitting.  355 

Second, the refit equations were applied to the ground plot data set. For the i
th 

tree in the j
th 

356 

plot, predictions of tree-level component AGB were produced by adding the model 357 

predictions to a randomly generated constrained residual,  where  is the randomly 358 

generated residual ~N(0, ), and λ is a multiplicative constraining factor that yields model 359 

efficiency values of 0.95. Model efficiency, calculated as 360 

 

 

(13) 

  where  is the number of trees in the ground plot data set, is a goodness-of-fit statistics 361 

similar to the coefficient of determination from the ordinary least squares procedure, where 362 

the higher the value the better the fit of the model to a given data set (Vanclay and 363 

Skovsgaard 1997, McRoberts and Westfall 2014). This multiplicative factor constraint was 364 

implemented in order to have a standardized quality of fit of the model to the ground plot 365 

data for purposes of comparing the standard errors of the mean for all component models. 366 

Due to recent published findings illustrating the minimal effect  correlation among trees 367 

within plots has on the standard error of the estimates, correlation among residuals was not 368 

integrated into the analysis of this study (Berger et al. 2014, Breidenbach et al. 2014, 369 

McRoberts et al. 2014).  370 

Third, to obtain the estimated per hectare values of component AGB on the j
th

 cluster plot, the 371 

summation of all subplot-level per unit area component AGB predictions on the l
th

 subplot 372 

were calculated as 373 

 

 

(14) 
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with 374 

 

 

(15) 

Where  is the number of trees observed in the l
th

 subplot and  is the i
th 

tree on the l
th

 375 

subplot. Fourth, for each simulation cycle the mean and variance of the mean across all 376 

cluster plots were calculated as  377 

 

 

(16) 

 

 

(17) 

 378 

Where  is the number of cluster plots (25 in this study). Finally, the mean prediction and 379 

mean within-simulation variance over 5000 simulation cycles were calculated as 380 

 

 

(18) 

 

 

 

(19) 

Comparisons of the mean predictions as well as final propagated error were compared for all 381 

component models for both approaches. Metrics used for comparison included RMSE, 382 

RRMSE, standard error of the mean (SE) from equation 19 and relative SE (RSE). 383 

3. Results and Discussion 384 
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3.1. Measurement Errors 385 

Table 2 shows the measurement error summary statistics for input variable measurements 386 

using the TLS and the STM. The circle-fitting procedure for measuring DBH resulted in 6 of 387 

the 25 trees showing agreement with the downed tree measurements, and 9 being within 3cm. 388 

These results are comparably better than previous studies assessing the quality of TLS-389 

derived diameter measurements. Simonse et al. (2003) used a Hough-transformation to obtain 390 

DBH for 23 trees, reporting minimum, maximum, mean and standard deviation of 391 

measurement error values as -5.8cm, 5.6cm, 1.7cm and 2.8cm, respectively. Hopkinson et al. 392 

(2004) reported an average difference of 10cm for plot-level comparison of DBH between 393 

TLS and manual measurement techniques. Thies et al. (2004) used a stem reconstruction 394 

method involving the fitting of a series of cylinders up the main stem of two scanned 395 

deciduous trees of different species. DBH was calculated as the diameter of the 396 

corresponding cylinder at breast height. Deviations in TLS-derived DBH measurements from 397 

standing tree measurements were -1.3cm and 0.6cm for European beech and wild cherry, 398 

respectively. Henning and Radtke (2006) reported errors of less than 1cm (0.3in) using a 399 

similar circle-fitting procedure as the one described here when comparing TLS diameters to 400 

known values from felled trees. In a separate study attempting to model 3D plot-level forest 401 

structure, Henning and Radtke (2006) reported an average DBH difference of 4.8cm when 402 

comparing TLS measurements to standing tree measurements. Most likely, the quality of our 403 

TLS-derived DBH results compared to other studies is largely attributable to our multi-scan 404 

approach, which has been shown to reduce the variability TLS-derived DBH measurements 405 

by drastically increasing the cover of point clouds (Pueschel et al. 2013). Using a multi-scan 406 

dataset and quantitative structure models to obtain inferred ABG through estimated total 407 

height and DBH, Calders et al, 2014 reported a concordance correlation coefficient of 0.98. A 408 

RMSE threshold below 5mm often resulted in underestimations of DBH. Presumably, this 409 
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was due to points on the outside of the fissures of the bark being the points removed first 410 

during this point removal process. Because the true values of DBH were measured on the 411 

outside of these fissures, stricter thresholds were not used. Hence, if this procedure is to be 412 

used for older trees of a species with deeply fissured bark characteristics, this process may 413 

require allowing for higher RMSE thresholds. Average RMSE observed for the fitting of all 414 

25 DBHs was 3.99 mm. This process holds promise for obtaining upper stem diameters 415 

outside bark for purposes of taper determination, form factor calculation and possible 416 

merchantable height identification as well. While more robust methods exist for stem 417 

detection and outlier determination that do not rely on a circularity tolerance, these results are 418 

still relevant to assessing uncertainty in AGB estimates obtained through TLS, a topic studied 419 

little up to this point. 420 

HT measurement error results for TLS showed lower average bias than the STM HT 421 

measurements at -0.1m and -1.0m for TLS and STM, respectively. Encouragingly, the 422 

standard deviation of these measurement errors for HT was also lower for TLS, at 0.3m and 423 

0.7m for TLS and STM, respectively. These estimates are lower than those reported by 424 

Hopkinson et al. (2004), who reported an average difference of 1.5m for plot-level HT 425 

comparisons between TLS and manual measurement techniques. Their reported difference in 426 

standard deviations of HT measurements was lower at 0.2m. Chasmer et al (2006) reported 427 

an average underestimation of HT of 1.2m for 15 trees within a closed-canopy stand of red 428 

pine (Pinus resinosa) scanned from five different locations. The comparative improvement 429 

upon these studies suggests this method of identifying a reference z-value from which to 430 

subtract from the maximum z-value is superior to other methods. However, with stand 431 

density and tree size being limiting factors in the accuracy of TLS-derived-HT 432 

measurements, the quality of the results we present here for HT could also likely be a result 433 

of several of the sample trees being from stands with lower stand densities, and lodgepole 434 
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pine being a relatively shorter tree species. The capability of the FARO Focus
3D 

120 to scan 435 

at the point density chosen for this study also likely furthered this improvement.  436 

In contrast to HT, HTCB results for the TLS exhibited a larger mean and standard deviation 437 

of the measurement errors compared to the STM. However, this variable has typically been a 438 

point of imprecision for TLS extraction procedures. Thies et al. (2004) reported differences in 439 

HTCB values of -0.12m and -0.11m for the two aforementioned sample trees. With the 440 

sample trees being relatively large, forked and deciduous, HTCB was measured as the height 441 

to the first fork. Jung et al. (2011) compared HTCB measurements from coincident ALS and 442 

TLS data, where the TLS measurements were considered to be the actual values. ALS HTCB 443 

values were obtained using k-means clustering technique which groups the point cloud into a 444 

user-defined number of classes based upon differences in the spatial distribution of points 445 

within the point cloud. The authors chose three classifications to represent ground cover, 446 

understory vegetation and canopy cover. ALS HTCB was determined from the lowest point 447 

in the canopy cover classification.  Because differences in the point density distribution were 448 

deemed too small with the TLS data, k-means clustering was not used, replaced by manual 449 

identification of the lowest crown return via a monitor display. The difference in mean HTCB 450 

values was reported as 0.2m. 451 

Using the height of the lowest point in this subset as a measure of HTCB resulted in 452 

consistent underestimation, similar to the results observed by Chasmer et al. (2006). This was 453 

likely due to: (1) the presence of dead branches interspersed within the lower portion of the 454 

live crown, as is common for lodgepole pine; and (2) the definition of HTCB used in this 455 

study being the height to the lowest live limb rather than the height to the lower margin of the 456 

main live crown. Thus, HTCB was then estimated as the 5
th

, 10
th

 and 25
th

 percentile height of 457 

this subset for the 20-40yr, 40-80yr and >80yr age classes of sample trees selected, 458 

respectively. Selection of this threshold was based upon: (1) empirical observation; and (2) 459 
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the knowledge that younger lodgepole pine trees typically have lower HTCB values and 460 

fewer dead branches. Due to this method yielding the lowest average measurement error, the 461 

measurements resulting from this approach were ultimately selected for use in the subsequent 462 

error propagation analysis. 463 

Our results show that applying the TLS inventory parameter extraction techniques to 464 

inventory applications could be a useful approach to complement conventional data 465 

acquisition techniques; however, further validation will be needed for broader scale 466 

applications across different forest types/larger areas. We acknowledge that sampling 467 

conditions and sample size of 25 destructively measured trees is not sufficiently 468 

representative to extrapolate our findings across larger areas or different vegetation types. 469 

Our approach should therefore be understood as a first demonstration of error and error 470 

propagation obtainable from terrestrial laser scanning using ground data in PNW forests.   471 

Future improvements would further bolster the applicability of TLS to larger operations. 472 

First, rather than the manual graphical method for tree detection employed here, more 473 

sophisticated automatic tree detection procedures that omit non-bole points from branches 474 

and foliage, would be necessary. Secondly, for the subsetted percentile approach for HTCB, 475 

the tree size to percentile relationship may need to be more generalized by diameter classes, 476 

or calibrated to the specific operation.   477 

3.2. Model Predictions and Uncertainty 478 

When the measurement error was integrated into the CRM equations, mean predictions of 479 

AGB for all components were similar between instruments (Table 4). The TLS RMSE values 480 

for the CRM ratios were lower for all components compared to the STM RMSE values 481 

(Table 5). However, the RMSE values were larger for the TLS, primarily due to the Total 482 

Tree SUR equation having a 147% larger RMSE. This can be attributed to the assumption 483 
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that the STM measurement of DBH, the only input variable for the SUR equation, was 484 

measured without error, hence the STM simulation procedure did not involve the 485 

contamination of DBH values. Had the measurement error in DBH been assessed, it is 486 

feasible to reason that the uncertainty value for the STM SUR equation would have been 487 

greater than the 70.59kg value reported in this study. Also worthy of noting, the magnitude of 488 

the difference between STM and TLS may have been less dramatic when the total tree 489 

equation would have been fit in a common system of equations. Nevertheless, the tree-level 490 

uncertainty in predicted component AGB associated with using the TLS for extracting input 491 

variables for the CRM equations is likely greater than estimates using a spencer tape by 492 

trained individuals.    493 

3.3. Per Unit Area Estimates and Uncertainty 494 

With model errors incorporated into the simulations for per unit area estimation, the 495 

uncertainty increased markedly (Tables 6 & 7). This notable increase is further illustrated in 496 

Table 9, which shows that the RSE values for all components increased two to three-fold. 497 

Encouraging, however, was the notable difference in per unit area precision between 498 

instruments when measurement error was integrated. (Table 9). The relative proportions of 499 

SE due to measurement, model and sampling error using SRM were 11%, 66% and 23%, 500 

respectively. The relative proportions of SE due to measurement, model and sampling error 501 

using the TLS were 5%, 70% and 25%, respectively. Improvements in the measurement error 502 

from TLS were largely the result of increased accuracy of tree height as well as height to 503 

crown base. We acknowledge that the manual nature of the vegetation removal and the 504 

extraction of individual trees from co-registered scans possibly resulted in optimistic values 505 

of error contribution from the TLS.  Nonetheless, our findings suggest using the TLS can 506 
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result in a lower propagated error, primarily due to a smaller contribution to the total 507 

uncertainty from measurement error. 508 

4. Conclusion 509 

With broad-scale inventories, such as FIA and others likely to face an increased demand for 510 

defensible AGB uncertainty estimates, accounting for and addressing all primary sources of 511 

error becomes paramount. Taking the Monte Carlo approach shown here, measurement and 512 

model error have been successfully integrated and accounted for. With only 25 subjectively 513 

selected trees for use in comparison, the inference made here is an approximation. However, 514 

not only were the general contributions for all three sources of error illustrated, the addressal 515 

of measurement error was made by showing that the use of the TLS indeed can improve 516 

precision of per unit area estimation of lodgepole pine AGB using the component equations 517 

presented here. 518 

Future research into this matter could also be best directed at similarly assessing the 519 

propagated error from using the TLS with other AGB models, as well as models for other 520 

parameters of interests, both point-in-time and growth-related. The TLS data analysis 521 

techniques shown here hold value in reducing uncertainty attributed to measurement error, 522 

which has been shown to contribute a potentially serious amount to the total per unit area 523 

uncertainty AGB estimates. Investigations into using the same multi-scan approach for plot-524 

level analysis would add credence to the work done here, as that is likely the more applicable 525 

inventory scenario forest managers would be utilizing the TLS, rather than for single trees, as 526 

was done in this study. Extraction of additional tree-level input variables, such as upper stem 527 

diameters, merchantable top height and crown width would provide additional information 528 

about how the performance of the TLS in extracting these variables propagates up to per unit 529 

estimates of AGB. All of these future research efforts are likely to increase the defensibility 530 
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of reported precision estimates for AGB derived using individual-tree equations, while also 531 

helping determine under which scanning scenarios, and for which input variables, does the 532 

use of the TLS translate into quantifiable gains in precision for broad-scale estimates of 533 

AGB. 534 

 535 

 536 

 537 
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 661 

Table 1: TLS technical data 662 

Specification Focus
3D 

120 

Range Finder Phase shift 

Field of view (horizontal x vertical) 360° x 305° 

Measurement range 0.6m – 120m 

Distance accuracy ± 2mm at 25m 

Sampling Rate Up to 976k/sec 

Beam radius at discharge 3.0mm 

Beam divergence 0.19mrad (0.011°) 

Weight 5.0kg 

 663 

664 
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Table 2: Summary statistics of the measurements errors for STM and TLS 665 

  Standing Tree Measurements (STM)   

n Min. Mean Max. SD 

HT (m) 25 -2.56 -0.98 0.12 0.67 

HTCB 

(m) 25 -1.04 -0.06 1.37 0.52 

Terrestrial LiDAR (TLS) 

  n Min. Mean Max. SD 

DBH 

(cm) 25 -1.27 -0.25 1.52 0.51 

HT (m) 25 -0.79 -0.06 0.55 0.27 

HTCB 

(m) 25 -3.29 0.49 3.90 1.68 

 666 

 667 

 668 
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Table 3: Model predictions and RMSE values for CRM ratios and CRM tree-level estimates without measurement error. Tree-levels units are in kilograms of 669 

dry biomass.  670 

Model Means-Without Measurement Error Model RMSEs-Without Measurement Error 

Total Tree (SUR) 287.11 Total Tree (SUR) 70.59 

Component 

CRM 

Ratios 

CRM Tree-

Level Component CRM Ratios CRM Tree-Level 

Bole 0.672 193.07 Bole 0.067 51.24 

Bark 0.055 15.66 Bark 0.034 10.62 

Branch 0.195 56.04 Branch 0.055 21.02 

Foliage 0.082 23.40 Foliage 0.022 8.63 

 671 

672 
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Table 4: Model predictions for CRM ratios and CRM tree-level estimates with measurement error, for STM and TLS. Tree-levels units are in kilograms of dry 673 

biomass.  674 

Model Means-With Measurement Error 

Total Tree (SUR)-STM 287.11 

Total Tree (SUR)-TLS 296.57 

STM TLS STM TLS 

Component 

CRM 

Ratios 

CRM 

Ratios 

CRM Tree-

Level 

CRM Tree-

Level 

Bole 0.599 0.620 172.03 177.97 

Bark 0.061 0.061 17.45 17.47 

Branch 0.209 0.208 60.11 59.80 

Foliage 0.091 0.091 26.19 26.21 

 675 

 676 

 677 

 678 
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Table 5: Model RMSE values for CRM ratios and CRM tree-level estimates with measurement error, for STM and TLS. Tree-levels units are in kilograms of 679 

dry biomass. 680 

Model RMSEs-With Measurement Error 

Total Tree (SUR)-STM 70.59 

Total Tree (SUR)-TLS 174.70 

STM TLS STM TLS 

Component 

CRM 

Ratios 

CRM 

Ratios 

CRM Tree-

Level 

CRM Tree-

Level 

Bole 0.297 0.067 95.30 123.09 

Bark 0.047 0.034 14.04 15.16 

Branch 0.074 0.055 25.81 43.16 

Foliage 0.037 0.022 12.46 19.19 

 681 

682 
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Table 6: Per hectare estimates and SE values for CRM equations, without accounting for measurement or model error. Units are in kilograms of dry biomass 683 

per hectare. 684 

Sampling Error Only 

Component Mean SE 

Bole 23,270.38 4,945.90 

Bark 1,842.11 357.83 

Branch 6,414.97 1,234.54 

Foliage 2,544.31 463.86 
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Table 7: Per hectare estimates and SE values for CRM equations accounting for model error. Units are 685 

in dry kilograms of biomass per hectare. 686 

Sampling Error (With Model Error) 

Component Mean SE 

Bole 37,062.80 17,659.36 

Bark 4,947.56 3,317.42 

Branch 9,275.29 4,043.61 

Foliage 3,425.94 1,234.22 

 687 

Table 8: Per hectare estimates and SE values for CRM equations accounting for model error. Units are 688 

in dry kilograms of biomass per hectare. 689 

Sampling Error (With Model and Measurement Error) 

 Mean  SE 

Component STM TLS Component STM TLS 

Bole 37,819.12 37,442.94 Bole 19,201.47 18,583.77 

Bark 3,984.19 3,740.49 Bark 4,502.45 3,429.02 

Branch 9,475.49 9,475.52 Branch 4,266.80 4,363.27 

Foliage 3,512.56 3,547.24 Foliage 1,316.67 1,355.31 

 690 

 691 

 692 

 693 

 694 

 695 
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Table 9: RSE values for CRM equations accounting for model and measurement error.  696 

Sampling Error (RSEs) 

 

Sampling 

Only 

Model 

Errors 

Model and Measurement  Errors 

Component 

  

STM TLS 

Bole 21.3% 47.6% 50.8% 49.6% 

Bark 19.4% 67.1% 113.0% 91.7% 

Branch 19.2% 43.6% 45.0% 46.0% 

Foliage 18.2% 36.0% 37.5% 38.2% 

 697 

698 
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List of Figures 699 

Figure 1: Filtered overhead 3D view of registered point cloud. Black circles denote scan locations 700 

around the sample tree, located right center.  701 

Figure 2: Birds eye view of detection slice taken at 1.37m above the lowest point in the point cloud. 702 

Unrestricted subset included branches and foliage located within the height range of the slice. 703 

Figure 3: Birds eye view of detection slice taken at 1.37m above the lowest point in the point cloud. 704 

Unrestricted subset included branches and foliage located within the height range of the slice. 705 

Figure 4: Graph of intensity values versus elevation for 0.1m height bins. Subjectively determined 706 

subset threshold is shown in red. 707 

 708 

 709 

Page 40 of 44
C

an
. J

. F
or

. R
es

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

 o
n 

04
/1

1/
16

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 T

hi
s 

Ju
st

-I
N

 m
an

us
cr

ip
t i

s 
th

e 
ac

ce
pt

ed
 m

an
us

cr
ip

t p
ri

or
 to

 c
op

y 
ed

iti
ng

 a
nd

 p
ag

e 
co

m
po

si
tio

n.
 I

t m
ay

 d
if

fe
r 

fr
om

 th
e 

fi
na

l o
ff

ic
ia

l v
er

si
on

 o
f 

re
co

rd
. 



  

 

 

Filtered overhead 3D view of registered point cloud. Black circles denote scan locations around the sample 
tree, located right center.  
839x469mm (72 x 72 DPI)  
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Birds eye view of detection slice taken at 1.37m above the lowest point in the point cloud. Unrestricted 
subset included branches and foliage located within the height range of the slice.  

769x552mm (72 x 72 DPI)  
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Birds eye view of detection slice taken at 1.37m above the lowest point in the point cloud. Unrestricted 
subset included branches and foliage located within the height range of the slice.  

778x542mm (72 x 72 DPI)  
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Graph of intensity values versus elevation for 0.1m height bins. Subjectively determined subset threshold is 
shown in red.  

744x371mm (72 x 72 DPI)  
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