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The ability to use digital remotely sensed data for forest inventory is often limited by the nature of themeasures,
which,with the exception ofmulti-angular or stereo observations, are largely insensitive to vertically distributed
attributes. As a result, empirical estimates are typicallymade to characterize attributes such as height, volume, or
biomass,with knownasymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has
emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has
been established as an appropriate data source for forest inventory purposes; however, large area monitoring
and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved.
The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A num-
ber of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar
systems as sampling tools for measuring and monitoring forest resources across areas that range in size from
tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sam-
pling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of dif-
ferent lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling.
Current applications are presented and the future potential of using lidar in an integrated sampling framework
for large area ecosystem characterization and monitoring is presented. We also include recommendations re-
garding statistics, lidar sampling schemes, applications (including data integration and stratification), and sub-
sequent information generation.

Crown Copyright © 2012 Published by Elsevier Inc. Open access under CC BY-NC-ND license.
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1. Introduction

Timely and accurate measurements of vegetation structure are in-
creasingly needed across large areas to support a wide range of activi-
ties related to sustainable forest management and carbon accounting
(Rosenqvist et al., 2003). Remote sensing has provided ameans tomea-
sure vegetation structure across large areas (Kerr & Ostrovsky, 2003);
however, because the spatial extent and spatial resolution of a given
sensor are inversely related (Franklin et al., 2002), large area character-
izations of vegetation structure based upon remotely sensed data often
have sub-optimal precision for many applications (Xie et al., 2008). In-
tegrating information from sensors that acquire data with different
levels of detail in a multi-phase sampling framework can provide a
means to obtain large-area estimates of forest structure with a level of
precision sufficient for many applications. Airborne or space lidars can
be incorporated in such frameworks to supply height measurements
(e.g., Goetz et al., 2010; Hyde et al., 2006; Ni-Meister et al., 2010;
Popescu et al., 2004). The use of lidar for large-area monitoring and
characterization will enable additional capture of vertical structural
conditions.

To accommodate the needs of industrial forestry and in an effort to
better understand how lidar can be used to produce relevant manage-
ment and reporting information, much research has emphasized the
importance of wall-to-wall characterizations of forests. Building
upon an increased understanding of lidar measures and on-going
needs for the characterization of large areas as well as to control
data acquisition costs, opportunities for the development of sampling
frameworks that integrate lidar measures following statistically sup-
ported monitoring practices show increasing potential, particularly
for those applications that do not require spatially explicit wall-to-
wall information. Under the latter scenario, a series of lidar transects
would be acquired over an area of interest, and established proce-
dures from sample-based forest inventories could be adapted and ap-
plied to these lidar samples. As an example, lidar samples may be
used in a manner similar to field plots, wherein the information gen-
erated is used in combination with other spatial data (such as classi-
fied optical satellite data) in order to facilitate stratification, thereby
enabling the extension of attributes (e.g., height) across large areas.
Alternatively, with forethought and careful planning, lidar data can
be employed in a sampling design to infer or estimate characteristics
of interest (e.g., volume, biomass, carbon) across a larger area or pop-
ulation. The presence of strata within a given population enables the
representation of conditions over smaller sub-areas and provides spa-
tial context to aid in model development. The former case, attributing
strata, is more flexible to the actual layout of lidar samples than when
statistical inference is planned (as in the latter case).

The overall goal of this communication is to present the case for
lidar sampling as a means to enable timely and robust large-area
characterizations of vertically distributed forest attributes (e.g.,
height, volume, biomass, etcetera). In support of this goal, we review
the potential of airborne profiling, scanning (discrete and waveform
recording) lidars, and spaceborne lidar, for large-area sampling of for-
est conditions. Based upon data availability and application examples,
we then principally focus on airborne profiling and scanning systems
as sampling tools. With these data sources in mind, we address sam-
ple design options, including theoretical and statistical considerations
such as model-based versus design-based approaches, and issues as-
sociated with estimation. We also consider data integration, which
enables biophysical estimates from the lidar to be extended over larger
areas, as well as the opportunities afforded by repeated acquisitions
of lidar over the same area. Finally, we discuss implementation oppor-
tunities and considerations, and make recommendations, based on
our own collective experience, for lidar sampling surveys.

2. Lidar fundamentals

Lidar systems are based on laser ranging, which measures the dis-
tance between a sensor and target based on half the elapsed time be-
tween the emission of a pulse and the detection of a reflected return
(Baltsavias, 1999). Critical to the adoption of lidar as a survey tool,
however, is the capacity to simultaneously measure both vertical
and horizontal vegetation structure and terrain morphology in detail
and with high accuracy.

Lidar systems are classified as either discrete return or full waveform
recording, and may be further divided into profiling (recording only
along a narrow line directly below the sensor) or scanning systems (re-
cording across a wide swath on either side of the sensor) (Dubayah &
Drake, 2000; Lefsky et al., 2002; Lim et al., 2003). Full waveform record-
ing lidar systems digitize the entire reflected energy from a return,
resulting in complete sub-meter vertical vegetation profiles. In contrast,
discrete return systems record single or multiple returns from a given
laser pulse. As the laser signal is reflected back to the sensor, large
peaks, (i.e., bright returns), are interpreted to represent discrete objects
in the path of the beamand are recorded as discrete points. Thus,within
a forest environment, full waveform systems record the entire wave-
form for analysis, while discrete return systems record clouds of points
representing intercepted features.

Waveform recording instruments have been considered as large-
footprint profilers, with a circle of illumination on the ground that is
typically 10 m in diameter or greater; however, recent advances
have seen full waveform instruments with increasingly smaller foot-
print sizes (Wagner et al., 2006, 2008). Examples include SLICER
(Scanning Lidar Imager of Canopies by Echo Recovery), and early ac-
quisitions by the airborne Laser Vegetation Imaging Sensor (LVIS)
(Blair et al., 1999), and the spaceborne Geosciences Laser Altimeter
System (GLAS) (Schutz et al., 2005). The three above-mentioned sys-
tems, the first and last of which no longer collect data, are research
tools.

Currently, the majority of operational system providers offer an
optional waveform digitizing capability for their small footprint lidars
sensors. However, small footprint discrete return sensors are used for
virtually all operational applications (Lim et al., 2003; Næsset, 2004a;
Wulder et al., 2008a) although full waveform small footprint systems
are becoming more available. At typical operating altitudes, these dis-
crete return systems generally have footprints of up to several deci-
meters in diameter. Examples of commonly used sensors include
those developed by Optech1, TopoSys2, Leica3, and Riegl4. Depending
on the desired footprint size and density of returns, a variety of
platform- and sensor-dependent parameters must be considered
when planning a survey, including flying height and speed, mirror
scan frequency, pulse repetition frequency, maximum scan angle,

http://www.optech.ca
http://www.toposys.com
http://www.leica-geosystems.us
http://www.riegl.com


Table 1
Typical parameterization of a lidar survey for forest applications.

Platform Fixed wing aircraft Fixed wing aircraft Helicopter

Sensor Optech ALTM 3100C Leica ALS50-II Riegl LMS-Q140i-60
Sensor model year 2004 2004 Not reported
Maximum number of returns
per emitted pulse

4 4 Not reported

Wavelength (nm) 1064 1064 900
Flying height (m) 700 930 150
Footprint diameter (m) 0.18 0.16–0.18 0.45
Maximum scan angle (°) 14 15 30
Swath width (m) 350a 500a 173
Pulse return frequency (kHz) 100 115.8 30
Scan frequency
(Hz)

70 52 Not reported

Resulting laser pulse density (m−2) 7.7 6–8 Up to 4
Information gathered from Næsset (2009b) Korpela et al. (2010) Barbier et al. (2011)
Application, information need Detect small trees in the alpine tree

line and estimate their heights
Vegetation classification Characterizing the structure

of tropical forests

a Not reported by the authors, calculated using the swath width equation found in Baltsavias (1999, p. 204): SW=2h tan (θ/2), where SW is swath width, h is flying height, and θ
the scan angle.

198 M.A. Wulder et al. / Remote Sensing of Environment 121 (2012) 196–209
and in the case of wall-to-wall coverage, the desired amount of over-
lap between swaths (Reutebuch & McGaughey, 2008). Table 1 pro-
vides an example of a typical lidar survey configuration. The basic
relationships between these parameters are described in Baltsavias
(1999), while the implications of varying flight and survey configura-
tions on vegetation metrics and biophysical estimates have also been
previously examined (Gobakken & Næsset, 2008; Goodwin et al.,
2006; Hopkinson, 2007; Magnusson et al., 2007; Næsset, 2004b,
2005, 2009a; Ørka et al., 2010a), including the capture of small trees
(Næsset, 2009b). The examples presented in Table 1 show the various
trade-offs made when configuring an instrument for a given survey.
From a sampling and transect collection perspective, Table 1 also
shows the in-built limitation in swath width as a function of scan
angle. The instruments presented in Table 1, while commonly used,
have been superseded by newer instruments and models (Table 2).
In Table 2 instruments from different companies representing the
model years 2010/11 show the impact of increased scan angles. For
instance, for the Optech and Leica instruments presented, the in-
crease in scan angles with the newer generation instruments has ef-
fectively doubled the swath width possible from a similar flying
Table 2
Examples of state-of-the-art lidar survey systems.

Sensor Optech ALTM Orion
(M/C 200)a

Optech ALTM G

Sensor model year 2011 2011
Maximum number of
returns per emitted pulse

4 4

Maximum flying height (m) 2500 (M), 1000 (C) 4000

Laser beam divergence
(mrad)

0.25 0.25 and 0.8

Footprint size (m) 0.25 increase per 1000 m
distance and 0.25 mrad

0.25 increase p
distance and 0
0.8 increase pe
distance and 0

Maximum scan angle (°) 25 50
Maximum swath width
(m)e

2332 (M), 933 (C) 1068

Wavelength (nm) 1064 (M), 1541 (C) 1064
Intensity 12-bit 12-bit
Pulse return frequency
(kHz)

50–200, 100–200
(based on model)

33–167

Scan frequency (Hz) 0 to 70 0 to 70

a http://www.optech.ca/pdf/ALTM_Orion_SpecSheet_110708web.pdf.
b http://www.optech.ca/pdf/ALTM_Gemini_SpecSheet_110309_Web.pdf.
c http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_LMS-Q680i_20-09
d http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/brochures/Leica_A
e Not reported, calculated using the equations found in Baltsavias (1999, p. 204): SW=2
height. Generally, forest applications necessitate scan angles that are
less than 15° (Reutebuch & McGaughey, 2008). It is also worth noting
that the swath width values presented are calculated based on flying
height and scan angle only, considerations of pulse rates and desired
posting for instance, also need to be considered prior to the opera-
tional realization of these actual swath widths. Furthermore, each of
these systems is commercially available and based upon proprietary
technology.

Regardless of type, an airborne lidar system consists of three com-
plementary technologies: a laser to measure distance to target; an in-
ertial navigation system (INS), also referred to as an inertial
measurement unit (IMU), to record the pitch, roll and yaw of the plat-
form; and a kinematic global satellite positioning system (e.g., the
U.S. GPS — Global Positioning System, the Russian GLONASS — Global
Navigation Satellite System) to record position. By combining infor-
mation from each of these technologies using accurate time referen-
cing, the absolute position of a reflecting surface can be solved
(Lefsky et al., 2002). Indeed, it is the parallel advances of these tech-
nologies that have provided the impetus for the increasing number
of applications for lidar technology (Lim et al., 2003).
eminib RIEGL LMS-Q680ic Leica ALS70 (HA/HP/CM)d

2010 2011
Unlimited (full waveform) Unlimited (full waveform)

5500 5000 (HA), 3500 (HP),
1600 (CM)

≤0.5 ~0.15

er 1000 m
.25 mrad;
r 1000 m
.8 mrad

0.5 increase per 1000 m
distance and 0.5 mrad

0.15 increase per 1000 m
distance and 0.15 mrad

30 37.5
6350 7673 (HA), 5371 (HP),

2455 (CM)
1550 1064
16-bit 16-bit
Up to 400 Up to 250, 500

(based on model)
10–200 60–200 (based on scan

pattern and model)

-2010.pdf.
LS70_6P_BRO_en.pdf.
h tan (θ/2), where SW is swath width, h is flying height, and θ the scan angle.

http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/brochures/Leica_ALS70_6P_BRO_en.pdf
http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/brochures/Leica_ALS70_6P_BRO_en.pdf
http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/brochures/Leica_ALS70_6P_BRO_en.pdf
http://www.leica-geosystems.com/downloads123/zz/airborne/ALS70/brochures/Leica_ALS70_6P_BRO_en.pdf
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3. Overview of lidar for large-area sampling of forest characteristics
by sensor type

Given the complexity of sampling theory, it may be helpful to the
reader to briefly clarify some key concepts that emerge in the following
sections. First is the distinction between multi-phase and multi-stage
sampling. In a multi-phase sampling design, information is acquired
from some or all sample units in the first phase, and then in the second
(and subsequent) phase(s) more detailed information is acquired from
a sub-set of sample units. Information from the first phase may be used
to stratify the population, or serve as supplementary information at the
second phase. For example, a two phase design might be employed in a
situationwhere two variables are related (e.g., tree height and biomass)
and the first, variable 1, is easy to measure and the second, variable 2,
more difficult or expensive to measure. A model relating the two is
employed (e.g. a ratio estimator or a predictive equation); a large
first-phase sample or census of variable 1 is acquired, and a smaller
sample of variable 2 is acquired on a subset of the 1st phase measure-
ments. If only a portion of the entire population of interest is sampled
at the first phase, the two-phase sample design is often referred to as
a double sample. In a multi-stage sampling design, the sample units at
each stage are sub-sampled from the sample units selected at the previ-
ous stage (Dodge, 2006). First-stage units are commonly referred to as
primary sample units, second-stage units as secondary sample units,
and so on.With amultistage sample, nomodel or quantitative relation-
ship is required to develop regional estimates. Rather, the information
of interest is collected on observations selected in the secondary sample
units in a two-stage design or in the tertiary sample units of a three-
stage design. These measurements are then “blown-up” or expanded
to the region of interest based on the probability of inclusion of a
given observation in the sample.

Second is the distinction between two approaches to statistical
inference: design-based and model-based approaches. Statistical in-
ference involves generalizing sample information to characterize a
larger unknown population and determining the level of uncertain-
ty associated with that characterization. Design-based inference is
commonly associated with traditional sampling theory (Cochran,
1977) and assumes that a population is finite and fixed in time,
while model-based inference assumes that a population is infinite
and fixed in time. In design-based inference, the sample is consid-
ered just one realization of a random process, i.e., the sample select-
ed is just one of many possible samples that could have been
selected. Conversely, in model-based inference, the population
(not the sample) is considered just one realization of a random pro-
cess, i.e., the population being measured is just one realization
drawn from an infinite number of populations called a superpopula-
tion. In design-based inference, the reference distribution is estab-
lished by the sample design, and the variability of this reference
distribution is described by the variance or standard error of the es-
timator, thus the estimator must match the sampling design in order
to be unbiased. In a model-based approach, the sample design plays
a minimal role in inference—the sample itself is assumed to be a true
representation of the population, and the reference distribution is
defined by the limitless realizations of the population (Gregoire,
1998). In short, design-based inference is conditioned on the sam-
ple, while model-based inference is conditioned on the population.
One simple way to tell the two approaches apart is to look for inclu-
sion probabilities in the statistical formulations. These inclusion
probabilities, often denoted by the symbol, pi, or their reciprocals,
sometimes called expansion factors or blow-up factors, are fundamen-
tal to a design-based approach. Inclusion probabilities play no essential
role in model-based approaches.

In each of the following sub-sections, we highlight the application of
four different groups of lidar instruments for large-area sampling and
characterization of forests: airborne profiling lidar, airborne scanning
lidar, airborne full waveform recording lidar, and lastly, spaceborne
lidar. The goal is to demonstrate how these different lidar instruments
may be used as sampling tools in a forestry context.

3.1. Airborne profiling lidar

Profiling lidar instruments are well suited to applications that seek
to characterize forest attributes over large areas by means of sam-
pling (Boudreau et al., 2008; Nelson et al., 2003a, 2004), or that
seek to characterize changes in these attributes over time (Wulder
et al., 2007). One of the main advantages of lidar (either profiling or
scanning) is a significant reduction in fieldwork, since ground data
is only required to calibrate models—at least when following a
model-based approach; once the models are established, additional
field data are then not necessary to support subsequent, similar
lidar acquisitions for the same site, providing a similar sensor and sur-
vey configuration are used (Nelson et al., 2003a). In some cases how-
ever, the acquisition of additional field samples coincident with the
lidar coverage may be preferable in subsequent years. Such ground
measures can be used to capture growth and revise models, or in-
crease the representativeness of the sample. Fig. 1 illustrates the link-
age between the sensor and the data collection mode, and the nature
of the information captured.

The Portable Airborne Laser System (PALS, Nelson et al., 2003b) is
a profiling lidar system, built from off-the-shelf components, which
have been deployed in research studies over a wide range of forest
types and in a number of large area sampling applications. Other pro-
filing lidar systems have been used in a forestry context (e.g., Sweda,
1998); however, commercial systems are primarily designed for ter-
rain mapping applications. For example, Nelson et al. (2003a, 2004)
used transects of profiling lidar to estimate forest merchantable vol-
ume, biomass, and above-ground carbon for the state of Delaware
(5205 km2). Profiling lidar transects covering a total of 1300 km
were spaced 4 km apart, resulting in a sampling intensity of 0.15 km
per km2. Estimates of merchantable volume and above-ground dry
biomass for the state were within 15 and 16% respectively of USDA
Forest Service estimates. In a similar study, Nelson et al. (2005)
used 2539 km of PALS data to estimate the areal extent of various
canopy height and crown closure classes in Delaware and then used
these outputs to predict for suitable Delmarva fox squirrel (Sciurus
niger cinereus) habitat.

Profiling lidar systems have afforded the exploration of many re-
search questions that impact the use of lidar as a sampling tool for
large-area forest characterization. For example, Nelson et al. (1988)
examined the repeatability of near-coincident laser flight line height
measurements and modeled volume and biomass estimates. They
found that comparable flight-line height, biomass, and volume
means varied 3–6% and documented the fact that laser heights tend
to underestimate field-measured heights by ~28%. As part of the
same study, the authors examined the spatial autocorrelation of
laser pulses along a transect and determined that the adjacency bias
inherent in laser pulses (and in the resulting estimates of biomass
and volume) could be removed by using semivariograms to account
for the average size of trees or stands (and thereby reducing the num-
ber of pulses used in estimation). Information such as this can be use-
ful for determining the lidar instrument parameters required by a
particular application and for establishing a suitable sampling
strategy.

Nelson et al. (2003a) posited that an appropriate sampling inten-
sity (measured in kilometers of flight line) to use with a profiling lidar
instrument will be a function of the prevalence of the forest type on
the landscape, the spatial distribution of the forest (random versus
clustered), and the intrinsic variability of the forests (homogenous
versus mixed stands). Nelson et al. (2003a, 2008) provide a number
of sampling intensity guidelines in this paper, accounting for the in-
formation need (e.g., biomass estimates for all cover types or only
one cover type) and the characteristics of the area being surveyed.



Fig. 1. Illustration of differing lidar sensors, presenting the relationship between footprint size and general recording mode (e.g., waveform or describe return). A) spaceborne lidar
footprint (e.g., GLAS, ~60 m in diameter) and waveform; (B) airborne large-footprint waveform-recording lidar footprints (e.g., LVIS, ~20 m in diameter) and multiple waveforms;
(C) small footprint, discrete-return scanning lidar returns and point cloud; and (D) small footprint, discrete-return profiling lidar returns and data. The base image is a 0.50 m true
color digital aerial image of a forest stand taken in central British Columbia, Canada.
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Nelson et al. (1988) also assessed the precision of lidar-derived es-
timates of mean canopy height, volume, and biomass by collecting
profiling data for two overpasses of three different flight lines. Esti-
mates of mean canopy height, volume, and biomass for all three attri-
butes were found to vary by 3–6% between different overpasses of the
same flight line and by less than 1.5% when data from flight lines of
individual overpasses were grouped to provide overall estimates.
Similarly, Nelson et al. (2003a) found that statewide estimates of
aboveground biomass could be repeatedly estimated to within 7metric
tons of biomass per hectare. Finally, Nelson et al. (2008) investigated
the use of different variance estimators to mitigate inflationary tenden-
cies associated with the treatment of a systematic sample as a random
sample.

Profiling lidar has demonstrated utility for enabling a sample-
based approach to monitoring forest structure, volume, biomass, car-
bon stocks, and habitat over large areas. These data are cost effective
(Petrie & Toth, 2009), and may be particularly useful in areas where
there is little or no pre-existing inventory data, in areas that are inac-
cessible or difficult to survey by other methods, or in areas that expe-
rience rapid changes in forest cover (Nelson et al., 2003b). In such
cases, the acquisition of conventional ground data may be precluded
by logistics or costs. Estimates generated from profiling lidar may be
provided for large areas, either through the integration of the lidar
with other data sources as in Boudreau et al. (2008) and Wulder
et al. (2007, 2009), or through the use of line intercept sampling tech-
niques (Nelson et al., 2005).

Nelson et al. (in press) used a profiling lidar to sample a
27,390 km2 area in southeastern Norway, Hedmark County. They ac-
quired 105 parallel flight lines spaced 3 km apart, a total of 8309 linear
km, and used these first/last returns to estimate forest aboveground dry
biomass for the entire County. A map of Hedmark was produced using
Landsat ETM+ and DTM data, dividing the County into four forest and
four non-forest cover types. The profiling data were used to attribute
these eight strata. Using a model-based approach, the laser-based esti-
mate (38.9±1.1 Mg ha−1, 1 SE (standard error)) was within 3.3% of
the ground-based estimate (37.6±0.9 Mg ha−1) across all cover
types, and within 8.2%, on average, at the stratum level. The Hedmark
profiling study was conducted jointly with a companion airborne laser
scanning sampling study in Hedmark reported by Gobakken et al. (in
press) and discussed in the following section. The sampling capabilities
of profiling versus ALS systems may bemade by directly comparing the
results reported in these two studies.

mprovements in technology have resulted in more powerful lasers
that increase the potential utility of these instruments, allowing air-
borne platforms to collect lidar data from higher altitudes, increasing
the likelihood of lidar penetration of dense canopies, and improving
positional accuracy. Notwithstanding the demonstrated usefulness
of profiling lidar, their use in forestry applications continues to be
overshadowed by the proliferation of scanning lidar instruments
and applications.

3.2. Airborne scanning lidar

Airborne laser scanning (ALS) systems are the most common type
of lidar sensors, with a number of system developers and an increas-
ing pool of commercial vendors supporting acquisition and analysis.
While profiling systems essentially collect a swath with a width
equal to the diameter at target of a single lidar pulse, airborne scan-
ning systems distribute these pulses across a width (determined by
factors such as desired pulse density, scan angle, and flying height).
A swath width of 500 to 1000 m is common for typical applications
in forestry. As such, a single transect of scanning lidar data will
yield vertical structural information across a specified swath width,
with stand-level characterizations possible, and an increased attri-
bute suite compared to profiling lidar systems. Lidar applications in
forestry typically summarize data using a rasterized grid with cells
sized to enable the vertical structure of a number of trees to be cap-
tured. Thus, each cell within the grid is populated with a range of
metrics (such as mean height, height percentiles, height coefficient
of variation, and so on), enabling model development (with field
plots encompassed) and later extension using other spatial data
layers or statistical models. Further, each cell on the grid can be
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considered as a lidar plot, conferring unique, locally detailed informa-
tion. Lidar-plots can be used to support large-area mapping and mon-
itoring activities as well as providing detailed information on forest
structure over remote areas in a systematic fashion to support re-
search activities.

Næsset et al. (2004a) summarized a number of different research
trials in which ALS had been used to inventory forests over large
areas, particularly if the forest was dominated by coniferous species.
In these studies, wall-to-wall lidar coverage was acquired and a
two-step process was followed: first, a sample of field plots was
used to develop empirical relationships between the lidar data and
biophysical variables measured in the field; second, the developed re-
lationships were used to predict stand-level attributes for all forest
stands in the area of interest. When estimating stand-level attributes,
the studies cited by Næsset et al. (2004) indicate that variability in to-
pographic and laser sampling density has limited impact on variable
estimation results, and that the lidar data produced estimates with
an acceptable level of bias, and with a level of precision that was
higher for most of the stand-level attributes than those obtained by
traditional inventory methods.

Recently, the use of scanning lidars as sampling tools has drawn
the attention of researchers. Asner et al. (2010) describe a procedure
wherein they develop regressions to predict biomass and carbon by
overflying recently measured ground plots on a 43,000 km2 area in
Peru. The authors then spatially extend those ground observations
by acquiring a sample of linear flight transects across their area of in-
terest (AOI), developing a wall-to-wall map of the area using ancillary
optical data, and then attributing the land cover types identified with
the optical data with biomass estimates wherever their lidar transects
intersect land cover polygons.

Andersen et al. (2009) used a design-based approach and sampled
the western Kenai Peninsula south of Anchorage, Alaska, incorporat-
ing both lidar and all Forest Inventory and Analysis (FIA) plots in
the area. They found that the variance of the estimate of biomass for
the Kenai obtained using the lidar and the design-based approach
was larger than the variance of the estimate based on the entire sam-
ple grid of FIA ground plots alone. The somewhat higher estimated
error for the two-stage design may be due to the fact that the sample
was assumed to be random while it truly was a systematic sample in
both stages (ground plots and ALS strips).

Gobakken et al. (in press) systematically collected 53 parallel ALS
flight lines 6 km apart to inventory Hedmark County, Norway. They
overflew national forest inventory ground plots systematically spaced
along these flight lines, developed biomass models, and used these
models to estimate biomass on eight land cover strata mapped
using optical and DTM data. They employed both a design-based
and a model-based approach. Employing a model-based approach,
their estimates of aboveground dry biomass (40.8±1.2 Mg ha−1, 1
SE) were within 8.5% of the ground-based national forest inventory
(37.6±0.9 Mg ha−1). Estimates of biomass based on the design-
based approach (36.7±1.2 Mg ha−1) were within 2.4% of the
county-wide ground estimates. Research towards the use of lidar as
both a stand-alone sampling tool (e.g., Næsset et al., 2009), and as a
source of calibration/validation data to augment mapping initiatives
that use other remotely sensed data (e.g., radar; Solberg et al.,
2010), is currently underway in many countries. The incorporation
of these data into new or existing monitoring programs promises to
improve our capacity to generate information on a variety of biophys-
ical variables in a manner that is not only economically viable, but
also accurate and spatially explicit.

Parker and Evans (2007) present an interesting alternative to all of
the research reported above by utilizing only that ALS data immedi-
ately adjacent to existing ground plots. They compared the precision
of a lidar and ground double-sample inventory to a strictly ground-
based inventory of 23 age classes of southern pine in Louisiana.
They allocated nine airborne lidar plots to each ground plot, with
one of the nine coincident with the ground plot to facilitate develop-
ment of regressions to predict basal area and volume and to serve as a
correction term in the calculation of the mean per-hectare estimates.
They concluded that, although the inclusion of the ALS plots reduced
overall sampling error from 2.7% to 2.2%, “…there was not much sta-
tistical gain for the additional expense of the lidar data.” However,
significant statistical gains were noted when smaller numbers of
ground plots per stratum were considered both in ground-only and
ground-lidar surveys. This research suggests that lidar acquisitions
specifically targeted at existing ground plots, as opposed to ap-
proaches which handle long, continuous flight lines, may result in
variance reductions while also reducing data acquisition and data
post-processing costs. For instance, could the precision and accuracy
of USFS-FIA county-level estimates be greatly improved by acquiring
ALS observations on and around the FIA plots? More work is needed
to answer this type of question.

New Zealand is one of the first jurisdictions to use lidar sampling
in an operational context, having developed a plot-based forest car-
bon inventory system that relies on the use of ALS. By means of circu-
lar plots that are 0.06 ha in size located on a systematic 4 km grid,
lidar measures are used to estimate carbon stock exchange for the
first commitment period of the Kyoto Protocol (Beets et al., 2010;
Stephens et al., 2012). Hilker et al. (2008) demonstrated the feasibility
of employing lidar transects and high spatial resolution optical data to up-
date a forest inventory. At a 400 ha study site on Vancouver Island, British
Columbia, Canada, Hilker et al. (2008) demonstrated the feasibility of
employing lidar transects and high spatial resolution optical data to up-
date a forest inventory. No significant difference (r=0.89, pb0.001)
was found between lidar-derived standheights obtained froma complete
lidar coverage and stand heights obtained from a single 400 mwide tran-
sect of lidar. The authors conclude that further investigation in different
stand conditionswith different forest types is required in order to validate
these results.

Moffiet et al. (2010) and Armston et al. (2009) describe the use of
ALS data in a sample-based approach to validating Landsat-based
vegetation indices using sampled field plots and lidar transects in
Queensland, Australia. ALS data were collected along 19 transects
where each transect was between 10 and 20 km long and approxi-
mately 300 m wide. Limited by vehicle access to field sites, the tran-
sects were not randomly established; the acquisitions were,
however, stratified to capture the range of dominant structural for-
mations and vegetation communities found in the state (Armston
et al., 2009). For example, using field measured stand basal area as
calibration data, the authors developed a variety of state-wide,
Landsat-derived models based on parametric and machine learning
algorithms to predict overstorey foliage projective cover (FPC). Inde-
pendent FPC estimates were then derived using field and lidar data to
compare the accuracy and precision of the various models. Armston
et al. (2009) highlighted the fact that employing lidar as a large
area sampling tool was not only cost-effective strategy, but also
avoided the need to rely solely on field-based allometric estimates
of FPC.

Andersen et al. (2011) used a model-based approach and a combi-
nation of 27 systematic lidar transects spaced 2.5 km apart and 79 co-
located ground plots to estimate total aboveground tree biomass over a
201,226 ha area in the Tanana Valley, Alaska. Biomass was estimated
with a relative standard error of 8%, with 4.6% of this error attributed to
the sample design (i.e., transects of lidar versus wall-to-wall coverage),
and the remaining 3.4% of error attributed to model selection.

3.3. Airborne full waveform recording lidar

Large area forest characterization is limited by the availability of
large-footprint waveform instruments, as currently only LVIS is oper-
ational, and as an experimental system developed and operated by
NASA, LVIS has limited availability to the scientific community at
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large. As a result, literature describing applications of waveform lidar
for large area sampling and monitoring is limited. Studies are gener-
ally conducted on a small number of plots in relatively small study
areas; however, some attempts have been made to determine the
portability of biophysical parameters and metrics derived from
large-footprint waveform lidar over different ecological regions or bi-
omes. Lefsky et al. (2002) established a model from SLICER measure-
ments that explained 84% of the variance in above-ground biomass in
three different biomes, specifically: boreal coniferous, temperate co-
niferous, and temperate deciduous forest. These results indicate that
a single equation can describe the relationship between biomass
and lidar measurements in distinctly different forest communities.
Anderson et al. (2006) tested the model developed by Lefsky et al.
(2002) with SLICER measurements from a northern temperate
mixed forest, finding that only 55% of the variance in above-ground
biomass was explained (RMSE=28.0%). However, the results
obtained with the model developed by Lefsky et al. (2002) were
only slightly weaker than those obtained with the most accurate
single-term model (Anderson et al., 2006). Drake et al. (2003) con-
ducted similar research with LVIS in tropical wet (R2=0.89 and
RMSE=22.54 Mg/ha) and tropical moist forest (R2=0.82 and
RMSE=39.10) sites in Costa Rica and Panama.

Only a few studies have used waveform lidar for forest character-
ization (e.g., Höfle et al., 2008; Reitberger et al., 2008). The waveform
signal in small footprint lidar is typically decomposed into discrete x,
y, and z points. These points are used in a similar manner as discrete
return small-footprint data. The main advantages of waveform de-
composition over the use of discrete return data are the increase in
the number of echoes for each pulse (Persson et al., 2005;
Reitberger et al., 2008) and knowledge of the algorithms used to ex-
tract the echoes (recall that commercial discrete return systems use
proprietary echo trigger mechanisms that are not known to the scien-
tific community). Wagner et al. (2004) tested different standard de-
tection methods likely being used in the currently available lidar
discrete-return sensors and found that different detection algorithms
would provide different point clouds, with range values varying by
~0.4 m for a 1 m footprint. Therefore, decomposing the waveform
data may allow for some control over the trigger mechanism “error”
that is inherent in discrete return data, which may be particularly rel-
evant for large area monitoring applications, where multiple (differ-
ent) sensors may be necessary to complete a survey in a timely
manner.

3.4. Spaceborne lidar

The Geoscience Laser Altimeter System (GLAS) was a large-
footprint spaceborne full waveform profiling lidar carried on the Ice,
Cloud, and land Elevation Satellite (ICESat). GLAS was the first space-
borne lidar and the global measurement of canopy height was one of
the science objectives of the ICESat mission (Zwally et al., 2002). The
size and shape of the GLAS footprints vary from 50 to 65 m in diame-
ter and from elliptical to circular, depending on the date of the acqui-
sition (Abshire et al., 2005). The pulses are spaced approximately
172 m apart (Schutz et al., 2005).

Forest canopy metrics can be generated from the GLAS waveforms
(Duncanson et al., 2010; Lefsky, 2010; Lefsky et al., 2007; Rosette
et al., 2008; Xing et al., 2010) and these metrics can, in turn, be
used to generate estimates of aboveground biomass (Baccini et al.,
2008; Boudreau et al., 2008; Helmer et al., 2009; Lefsky et al., 2005)
and carbon (Nelson, 2010). Several recent studies have used GLAS
data in a sample-based approach to generate large-area estimates of
biomass (Boudreau et al., 2008; Nelson et al., 2009a) and volume
(Nelson et al., 2009b).

Slopes are known to broaden the waveform response of large foot-
print sensors (Nelson, 2010) and convolve the forest-canopy struc-
ture with the underlying topography, thereby reducing the accuracy
of forest height estimates (Lefsky et al., 2005, 2007; Nelson et al.,
2009b; Rosette et al., 2008). To mitigate this problem, researchers
have limited their analyses to areas with b10° slope (Nelson, 2010)
or have used Shuttle Radar Topography Mission (SRTM) data to cor-
rect for the broadening effect (Lefsky et al., 2007). In October 2008,
the final laser on ICESat-I failed, limiting the utility of GLAS data for
vegetation assessment to those data acquired between 2003 and
2008 (Lee et al., 2011; Nelson, 2010).

Boudreau et al. (2008) and Nelson et al. (2009a) report on a
design-based, two-phase approach to estimate forest volume, bio-
mass, and carbon in Quebec, Canada, an area of 1.27 million km2,
using GLAS waveforms, an airborne profiling lidar, and ground plots
measured by the Ministry of Natural Resources, Quebec. Regression
equations were developed to estimate ground-measured biomass as
a function of airborne profiling metrics. The profiler was then flown
along GLAS orbital transects and used to estimate biomass on individ-
ual GLAS pulses. A second model was then formulated that predicted
biomass as a function of GLAS measurements. Thus, GLAS becomes
the regional/sub-continental sampling tool used to estimate forest
biomass on land cover strata that tessellate the province of Quebec.
Results indicated that GLAS estimates of volume and biomass were
within 10% of ground-based estimates when compared in the south-
ern half of the province.

Nelson et al. (2009b) employed a two-phase sampling design in
Siberia where 51 GLAS shots were sampled on the ground to accumu-
late the ground-satellite observations needed to develop a GLAS-
based equation to predict timber volume. Though the ground sample
was extremely sparse, regional volume estimates on the 811,400 km2

area were within 1.1% of an independent, ground-based study. All
three studies discussed in this paragraph included covariance terms
in the error estimators to account for the fact that samples in adjacent
and near-adjacent cover types acquired along linear transects (orbits)
were not independently selected. But as Nelson et al. (2009a) sug-
gests, this may not be an optimal solution. The authors infrequently
encountered situations where a negative covariance term over-
whelmed the between-orbit variance component, driving the overall
variance term negative. These findings pointed to a need for the de-
velopment of new variance estimators and/or new airborne lidar
sampling procedures that pay more strict attention to assumptions
underlying the acquisition of the ground and airborne lidar data sets.

Full waveform instruments such as GLAS (and LVIS and SLICER)must
use high pulse energies in order to penetrate dense canopy and detect
the ground surface. As a result of the high pulse energies, the pulse rate
must be low,which limits the spatial sampling and resolution of these in-
struments. Furthermore, the width of the pulse “acts as a low pass filter,
thereby smoothing the waveform and limiting the vertical resolution of
the canopy features. This also broadens the return from the ground,
and reduces its amplitude thus making its detection more difficult”
(Harding et al., 2011). Slope Imaging Multi-polarization Photon-
counting Lidar (SIMPL) is a high repetition rate, low pulse energy, single
photon laser ranging instrument, designed as a test instrument to inform
future spaceborne laser altimeters. Through combining high vertical and
spatial resolution, it is believed that photon-counting systems can over-
come the limitations of full waveform low detector sensitivity and re-
stricted vertical and spatial resolution. However, initial investigations
using photon counting lidars with two different wavelengths and two
different polarization rates to measure canopy structure have found no
significant differences in height distributions arising from these different
parameters (Harding et al., 2011).

In terms of future spaceborne lidar missions, ICESat-II, a follow on to
ICESat-I that will have a 10 kHz, 532 nm micropulse photon counting
laser altimeter, is scheduled to launch in 2016–2018 (Nelson, 2010).
Another system that was under development – Deformation, Ecosys-
tem Structure, and Dynamics of Ice (DESDynI) –was postponed indefi-
nitely in February 2011, much to the disappointment of the scientific
community (Goetz, 2011).
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4. Sample design

Selection of an appropriate sample design will depend on the in-
formation needs of a particular application, available resources, statis-
tical considerations, and the type of lidar data to be collected. Due to
the myriad of sample design options available, the desired level of
precision, and the specific circumstances of any given application
and/or study area, the input of a statistician to aid in the determina-
tion of sample design, sample size,, and statistical power is recom-
mended (Curran-Everett & Benos, 2004; Hudak et al., 2002).

In the context of lidar, sample design is somewhat limited by the
nature of the platform on which the instrument is mounted (i.e., air-
craft or satellite) and as a result, is always linear. While orbits of
spacecraft are somewhat fixed, lidar transects acquired from aircraft
may be collected as simple random, systematic, stratified, or clustered
samples. In Fig. 2, we present a selection of common transect-based
Fig. 2. Lidar sample survey design and implementation considerations. For a given populatio
proportional to size or length (e.g., where the study area is irregular in shape, the probabili
based upon D) panels, whereby transects are spatially constrained and randomized by panel
(e.g., forest) of interest. Combinations of the above scenarios are also possible. Further, the y
measures precludes the need for the use of all measures.
survey options. In a multi-stage design, the flight line is often used
as the primary sampling unit, while some sub-unit of the flight line,
either defined by a regularized grid for scanner data (Næsset et al.,
2009), by equal-length units for profiling, or by some other means,
is used as the secondary sampling unit (Gregoire et al., 2011).

Nelson et al. (2003a), describing the use of profiling lidar as a sam-
pling tool for regional forest inventory, include a discussion on sampling
intensity that is equally relevant to ALS surveys. For a given forest type,
an optimal sampling intensitywill be a function of that forest type's spa-
tial extent, spatial distribution, and within-type variability. First, the
more ubiquitous the forest type is within an area of interest, the more
likely transects are to intercept it. Second, themore randomly arranged
the forest type is, the more likely it is to be intercepted by systematic
transects. Finally, the smaller the variability of biophysical variables of
interest (e.g., height, biomass) the fewer the number of times a forest
type must be intercepted to be adequately characterized.
n (gray), transects may be selected: A) randomly, B) systematically, C) with probability
ty of selecting a line is proportional to its length); Stratification strategies may also be
, or E) using land cover to guide the transect layout to maximize capture of the attribute
ield of data along the transects may also be modulated, as the spatial autocorrelation of

image of Fig.�2
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Næsset et al. (2009) reports on the motivation behind the Hedmark
County, Norway study (previously discussed in Sections 3.1 and 3.2),
an investigation which ultimately resulted in the development of two
laser-based sampling designs described by Gregoire et al. (2011) and
Ståhl et al. (2011). The two approaches are similar in that they both in-
corporate ground plot data and airborne profiling or ALS transect sam-
ples, but they differ markedly with respect to requirements placed on
the attributes of the ground data set and how these ground data are
used in conjunction with the airborne lidar data for inference. As men-
tioned previously, both ALS and profiling datawere acquired for this pro-
ject to augment a systematic sample of National Forest Inventory (NFI)
ground plots. Parallel flight lines were flown along the grid of systemat-
ically distributed NFI field plots. The area was stratified into eight cover
classes and independent regression models were developed to predict
above-ground dry biomass (Gobakken et al., in press; Gregoire et al.,
2011; Nelson et al., in press; Ståhl et al., 2011).

Ståhl et al. (2011) take a model-based approach, which has an un-
derlying assumption that the model(s) developed to predict biomass
as a function of lidar data are correct, that is, the model(s) does not
deviate from the true but unknownmodel(s) for the AOI. An assump-
tion is made that the ground plots overflown by the airborne lidar
that are used to train the predictive models represent the full range
of conditions expected on the AOI. These ground plots can be selected
in any manner deemed appropriate (including purposeful selection)
as long as the resultant models are believed to be close to the true
models for the study area. In the same study area, Gregoire et al.
(2011) reports on a design-based approach, which requires that the
ground plots be allocated across the landscape as a probability sample
(e.g., a county, state, provincial, or national forest inventory). In this
approach, the models used to predict biomass are not assumed to
be identical to the true models, rather the ground plot estimates are
used to correct coincident lidar predictions in order to adjust
stratum-level estimates. In fact, any model can be used — it need
not even be developed within the AOI, but the magnitude of the
error will depend on the deviation between biomass predicted for
the plots with the applied model and the ground-based biomass
estimate.

In the Hedmark ALS work reported by Gobakken et al. (in press)
and the Hedmark profiling work reported by Nelson et al. (in press),
the model-based design provided more statistically robust estimates
of land cover means and variances. The estimates based on the
design-based approach were more unstable, a characteristic that
was exacerbated as the AOI decreased in areal extent. The instability
of the design-based approach manifests itself in the form of occasion-
ally negative cover class variances and, rarely, negative mean esti-
mates of biomass. The negative estimates arise because the design-
based approach requires ground plot sample sizes large enough to
calculate realistic correction terms to adjust laser estimates to ground.
When sample sizes, within a flight line for a given stratum, fall below
a certain threshold, the correction term can fluctuate markedly. The
size of that threshold varies, with Thompson (2002, pg. 159) suggesting
that stratum/flight line sample sizes should be ≥5 and Särndal et al.
(1992, pg. 407) suggesting that they should be≥10. These fluctuations
greatly increase within-flight line variances and can overwhelm the
mean estimates of biomass, resulting in the negative estimates noted
above.

Research conducted by Ene et al. (under revision) with a Hedmark
County Monte Carlo simulator has shown that Gregoire et al. (2011),
Gobakken et al. (in press), and Ståhl et al. (2011) for this particular
study area may have reported biomass standard errors>4 times larg-
er than what would have been the case had flight lines been random-
ly instead of systematically allocated. We hypothesize that, given a
systematic lidar acquisition, one way to mitigate this inflationary ef-
fect is to actually treat a systematic sample as a true systematic sam-
ple instead of assuming a random allocation. For this purpose Nelson
et al. (2008) proposed using the so-called Newton's Method
estimator (NM) and a Successive Differences estimator (SD). Simula-
tion studies with these estimators suggest that for Hedmark County the
mentioned estimators may produce standard error estimates quite close
to the true errors (Ene et al., under revision).

5. Theoretical and statistical considerations and recommendations

Sampling theory and practical experience suggest that a number
of factors should be considered when selecting an appropriate sam-
pling design and variance estimator for an airborne- or space-based
lidar survey. Based on the collective experience of the authors, the fol-
lowing considerations and recommendations are made. They are not
intended to be prescriptive, as circumstances (i.e., information needs
of a particular application, available resources, statistical considerations,
and the type of lidar data to be collected) will vary.

(1) Individual flight lines or, in the case of satellite lidar acquisi-
tions, orbital transects, should be considered as a basic sam-
pling construct or unit of observation. This approach
overcomes two significant problems: (a) it obviates the need
to consider and account for within-flight-line spatial autocor-
relation among adjacent and nearby lidar pulse returns
(Nelson et al., 2009a, 2009b); (b) it recognizes the fact that a
flight line or orbital transect is a cluster sample, that is, an ob-
servation with an inclusion probability assigned to the flight
line (Ståhl et al., 2011).

(2) If the study area is stratified, then the sampling unit becomes a
stratum within the flight line. If a flight line does not intercept
a given stratum, then the lidar-based estimate of, for instance,
biomass for that stratum in that flight line, is zero. In other
words, for a given flight line, a non-intercepted stratum should
be treated as an estimate of zero biomass; it should not be trea-
ted as “no information”, nor should the flight line be dropped
from consideration with respect to the calculation of stratum
estimates of means, totals, or variance (Gregoire et al., 2011).

(3) Flight lines may be spatially autocorrelated, especially in situa-
tions where ecotones are sampled and the flight lines run per-
pendicular to the regional gradient. With respect to spaceborne
lidars, e.g., ICESat/GLAS and the upcoming ICESat-II launch, adja-
cent and near-adjacent orbital tracks may be spatially autocorre-
lated. Given the near-polar orbits of the ICESat platforms, the
likelihood of autocorrelated orbital observations will increase
as latitude increases and as the distance between orbits de-
creases as a function of the cosine of the latitude (Nelson et al.,
2009b).

(4) Systematic flight lines are, in general, logistically easier to plan
and cheaper to fly, so some consideration must be given to limi-
tations imposed by acquisition of systematic samples. It is a com-
mon practice to treat a systematic sample as a random sample,
however, in some situations, this practice can result in inflated
variance estimates relative to the variance that would have
been calculated had the sample been acquired randomly
(Gregoire et al., 2011). If a regional gradient exists and if it is de-
sirable to collect systematic flight lines and process these data as-
suming that they were randomly sampled, then flight lines
should be run across the gradient. For instance, if you have a
marked biomass gradient south to north, where forests are
large in the south and small/nonexistent in the north, run the
lines north–south. The aim should be to capture as much bio-
mass variation as possible within a given flight line so as to de-
crease between-flight line variability.

(5) The potential for variance inflation associatedwith the treatment
of a systematic sample as random (see (4) directly above) can be
mitigated by considering alternative variance estimators. Work
by Nelson et al. (2008) (profiling lidar in Delaware, USA) and
Ene et al. (under revision) (scanning lidar in Hedmark County,
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Norway) suggested that the NM and SD estimators, which accu-
mulate squared differences between adjacent flight lines rather
than between individual flight lines and the mean, tend to miti-
gate the inflationary characteristics of the variance estimator
employed for simple random sampling (Ståhl et al., 2011).

(6) Given the current uncertainty associated with the location of
profiling lidar flight lines, ALS swaths, and satellite orbits,
most laser sample data should be treated as a post-stratified
sample. The uncertainty considered here does not have to do
with pointing knowledge. The locations of ALS pulses, for in-
stance, are typically known to within decimeters of the loca-
tion actually illuminated by a given pulse. The uncertainty
associated with airborne acquisitions therefore stems from
the lack of prior knowledge of exactly where the aircraft will
fly and where the profiling line or ALS scan will track as the air-
craft attitude and altitude above terrain changes. As an exam-
ple, the uncertainty associated with a satellite acquisition has
to do with the lack of prior knowledge of exactly where a par-
ticular GLAS orbit will track on the Earth's surface. Sequential
orbits can wander up to a kilometer off the nominal orbital
track (Nelson et al., 2009b). Stratum identifiers, then, must be
assigned to lidar observations after the acquisition and after
the actual positions of the flight lines (or orbits) are known
(Ståhl et al., 2011).

(7) An appreciable amount ofwork has been done exercising design-
based approaches, and the trends so far indicate that this type of
approach (Section 7.1) must be employed in a ground-data rich
environment and (Section 7.2) should be used only in situations
where adequate sample sizes within stratum within flight line
can be maintained. The ground plots must be distributed across
the landscape as a probability sample where an inclusion proba-
bility can be assigned to each ground plot intercepted by the lidar
(Gregoire et al., 2011; Ståhl et al., 2011).

Over the past decade, notable progress has been made with re-
spect to developing sampling designs and variance estimators that
more truly represent the actual error associated with a lidar sample;
however, other error sources exist that have not been characterized
and incorporated into variance estimators. Nelson et al. (2004, pg
508) list these error sources, one of which, ground-laser regression
error, has already been addressed implicitly in the design-based,
two-phase approaches taken by Parker and Evans (2004), Andersen
et al. (2009), and Gregoire et al. (2011) and explicitly in the model-
based approach taken by Ståhl et al. (2011).

The impact of system characteristics on sampling and estimation
is difficult to quantify, particularly because some of the characteris-
tics, such as platform altitude, lidar point spacing, and footprint size,
are interdependent (Disney et al., 2010; Næsset, 2009a). Further-
more, many of these characteristics are also influenced by canopy
structure (Hopkinson, 2007). There is some uncertainty associated
with the impact of footprint size on height estimation. While some
studies have reported an increase in height with increasing footprint
size (Goodwin et al., 2006; Hyyppä et al., 2009), other studies have
reported a decrease in height with increasing footprint size (e.g.,
Hopkinson, 2007).

Assessing the validity of inference is not straightforward when
complex designs are involved. A possible approach would be using a
sampling simulator where an artificial population represents the
‘ground truth’ and the properties of the estimators are investigated
using simulated sampling. As mentioned previously, Ene et al.
(under revision) created an artificial population based on a large mul-
tivariate dataset containing field observations and ALS metrics taken
from Hedmark County, Norway. The aim was to create an artificial
population that at least mimicked the main geographical trends of
Hedmark County, which was the target area in the studies by
Gobakken et al. (in press), Gregoire et al. (2011), Nelson et al. (in
press), and Ståhl et al. (2011). A copula function was fitted to the em-
pirical observations, and then it was generalized over the study area
using satellite imagery and nearest-neighbor imputations. The
properties of several design-based and model-based variance estima-
tors—among them are those derived by Gregoire et al. (2011) and
Ståhl et al. (2011), were investigated using simulated sampling and
the accuracy of ALS-based and ground-based estimates was compared.
Themain results indicated that the ALS-based survey produced valid in-
ference under both the design-based and model-based frameworks.
The variance estimators performedwell under simple random sampling
without replacement, but they overestimated true standard errors by a
factor of 4 under systematic sampling. Of note, the true precision of ALS
estimation was approximately 2.4 times better in terms of standard
error compared to that of the field survey.

The most obvious error source not yet considered or incorporated
into the variance estimators deals with ground allometry. In order to
estimate aboveground biomass and carbon, laser metrics must be
tied, via parametric or nonparametric methods, to these ground mea-
surements of interest. Short of destructive sampling, these ground
measurements are themselves estimates derived from ground-
measurements of tree diameter at breast height (dbh) and perhaps,
tree height. There are, then, errors associated with the use of these
ground models that should be incorporated into the final estimate
of the error of a lidar-based sample mean or total. This allometric
error can be appreciable, especially in situations (such as in large-
area implementations) where national-level equations are used to
derive the ground measurements used in a regional, national, or
(sub-) continental survey (Van Breugel et al., 2011). The magni-
tude of this error is illustrated for the USA in Figs. 2 and 3 of
Jenkins et al. (2003) and for Canada in Lambert et al. (2005), Figs.
4 and 5.

Finally, additional work is needed to incorporate model error asso-
ciated with three-stage or three-phase lidar sampling, analogous to
the design-based, two-stage work of Gregoire et al. (2011) and
model-based two-phase work reported by Ståhl et al. (2011). The
challenge here is to include error due to the use of two regression
models in those situations where ground measurements are related
to airborne lidar observations and then airborne estimates of, for in-
stance, biomass, are subsequently modeled as a function of satellite
observations. Attempts have been made to deduce such a variance es-
timator from first principles, but the problemmay well be intractable.
One alternative may be to use bootstrapping techniques to develop
empirical estimates of means and/or totals to determine how they
vary with repeated sampling.
6. Estimation

Thompson (2002) suggests that design-based inference is advan-
tageous for obtaining unbiased estimators that are acceptable to a
wide-range of users and for avoiding bias in sample selection.
Model-based inference, on the other hand, is useful for assessing the
efficiency of both sampling designs and estimators under different as-
sumptions concerning the population, deriving estimators that make
the most efficient use of sample and auxiliary data, and managing
sample data collected in the absence of a proper sampling design.

Nelson et al. (2009a) use a sampling framework that combines
certain aspects of design-based and model-based inference, but sug-
gest that a purely model-based framework that uses mixed models
with random effects to account for interactions between pulses
(GLAS), segments (airborne profiling lidar) or plots (airborne scan-
ning lidar), and fixed effects to account for differences in cover-
type, would be preferable for regional, lidar-based inventories. As
per Nelson et al. (2008), the authors compared three variance estima-
tors (simple random sample, successive differences, and Newton's
method) to test for stability of estimates in the absence of truth.
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Næsset (2002) applied a double sampling approach with a leave-
one-out cross validation procedure to assess the predictive value of
developed models. Estimated attributes included mean tree height,
dominant height, mean diameter, stem number, basal area, and tim-
ber volume. The majority of stand-level predictions were unbiased
(p>0.05). Parker and Evans (2004) make the case for a double-
sample design using ALS and traditional ground sampling methods,
indicating that the strength of lidar lies in the precision with which
lidar can produce reliable estimates of stem density and tree height.
By using ground samples in a double-sampling approach, biases in
lidar heights (and subsequently biases in volume or basal area) are
adjusted by the regression estimator in a double-sample model, ne-
gating the need to define the nature or direction of the bias.

The implications of ground plot size in a double-sampling context
have also been investigated (see Frazer et al., 2011; Gobakken &
Næsset, 2008). In general, smaller plots are impacted more by geolo-
cation error and edge-effects. A small plot moved slightly, based upon
differing position information, will relate with a unique set of lidar
returns. Small plots also have more opportunity for a greater propor-
tion of trees (relative to larger plots) to be only partially within the
plot. Partial crowns incorporated in the lidar that are not measured
on the ground will also impact regression model development.
Using a simulated lidar data set, Frazer et al. (2011) demonstrate
the impacts of geolocation and plot size upon equation development,
with biomass as the example attribute of interest. Key findings indi-
cated that larger plots (25 m versus 10 m) provided improved bio-
mass prediction accuracy, and that larger plots were found to
maintain a higher degree of spatial overlap over a range of GPS
error simulations.

7. Implementation: considerations and recommendations

7.1. Ground data for calibration

One of the challenges for large-area forest characterization with
lidar is the need for the simultaneous acquisition of a large number
of ground sample plots that can be used for model development;
however, accessibility and cost often preclude the collection of exten-
sive ground samples, particularly for large areas. Junttila et al. (2010)
present an approach whereby ground plots collected in association
with previous lidar surveys in different, but similar forests, may be
used in the development of Bayesian models. The approach presented
by Junttila et al. (2010) addresses two problems: how to reconcile dif-
ferences between diverse lidar instruments that have acquired data
under varying conditions, and how to avoid bias in the estimation of for-
est stand parameters. Although the approach presented by Junttila et al.
(2010) is promising, it perpetuates reliance on the availability of ground
data for model calibration and validation. In some remote and inacces-
sible forest areas, the collection of ground data is not possible, and
even in managed forest areas, the acquisition of ground data may be
precluded by time or cost constraints.

Additionally, the capacity of an aircraft pilot to remain on a pre-
specified flight line can be difficult for long transects as well, with fa-
tigue and atmospheric conditions (especially wind and avoidance of
smoke) chief among the considerations. Newer generation lidar in-
struments offer the potential to acquire wider swaths while main-
taining scan angles suitable for forest applications (±15°). Wider
swaths offer a greater opportunity to intersect with ground plots
and to concurrently enable larger plots (as recommended by
Gobakken and Næsset, 2008 and Frazer et al., 2011) or cluster plot
configurations (that are often collected in support of National Forest
Inventories). The ability to fly a single transect once to intersect
with a given ground plot configuration will mitigate costs, as an in-
strument with a narrow swath may require two overpasses to cap-
ture, or ensure capture, of ground plots. Not only are flying costs
mitigated by the single overpass enabling plot intersection, but data
processing is also reduced, with no need to incorporate points from
multiple flight lines.

Another related issue has to do with the use of allometric equa-
tions (developed from ground measures) for predicting certain attri-
butes such as volume and biomass. The lidar are used to predict
heights, which are then input to allometric equations to predict volume
and biomass. Not only will the lidar predicted heights have an error as-
sociated with them, but also the allometric equations will have an asso-
ciated error as well. Van Breugel et al. (2011) considered the impact of
uncertainties associated with allometric biomass equations, concluding
that “local models may provide more accurate AGB estimates than for-
eign models, but because carbon stocks are highly variable across rural
landscapes, developing local models is only justified when landscape
[ground] sampling is sufficiently intensive.” Hence, large-area studies
may be forced to use generic or national allometric equations, which
may have greater uncertainty associated with them. Further research
is required to determine the impact of large-area implementations of
these allometric equations.

7.2. Data integration

It is important to acknowledge that not all applications involving
large areas can be satisfied with a sample-based statistical character-
ization of forest vertical structure. For example, certain applications,
such as carbon flux modeling, require spatially explicit wall-to-wall
mapping of vertical structure at a spatial resolution of less than one
hectare (Hurtt et al., 2010). However, given the current costs associ-
ated with lidar acquisition and processing, it is unlikely (at least in
the short-term), or atypical, that lidar data would be used to provide
such a wall-to-wall product. Rather, an optical remotely sensed data
source with an appropriate spatial resolution, such as Landsat, or
some other modeling approach, could be used to model forest vertical
structure, with samples of lidar providing critical calibration and valida-
tion data for the model (Gonzalez et al., 2010; Helmer et al., 2010;
Hudak et al., 2002).

Previous studies have demonstrated that sample-based scanning
lidar data may be used to extend estimates of biophysical variables
to larger areas using synoptic optical imagery or radar. Furthermore,
the incorporation of additional data sources, such as optical remotely
sensed data, may improve the accuracy and reduce the bias of lidar-
based estimates. For example, Ørka et al. (2010b) demonstrate how
the inclusion of ancillary data can improve the robustness of lidar-
based estimates and enable large-area coverage. Using a combination
of a sample of ALS transects, which covered approximately 8% of the
study area, as well as Landsat (NDVI and tasseled cap transformation
(TCT) brightness and wetness), and DEM (elevation and slope) data,
both of which covered the entire study area, the area of the boreal-
alpine transition zone was delineated. Lidar plots were generated
from the ALS transects, with the same size as the Landsat image
pixel, spaced every 3 km along the transect. The canopy cover propor-
tion was computed from the ALS data and was input, along with the
Landsat and DEM derivatives, into a random forest, non-parametric
classifier (Breiman, 2001). The lidar plots were assigned to one of
three classes: boreal, alpine, or transition zone; the wall-to-wall
coverage of the Landsat and DEM allowed the classification to be ex-
tended across the study area as awhole. The lidar classificationwas val-
idated with ground data; however, no ground data were used for
calibration or in the development of themodel. Such an approach is par-
ticularly necessary in those remote forest areas that are not included in
the national forest inventory or in any other national monitoring sys-
tems (Næsset et al., 2009).

Goetz et al. (2010) used GLAS data, combined with MODIS and
Landsat data, to assess post-fire disturbance and recovery in Alaska.
In their study, MODIS reflectance data was used to generate strata
of different vegetation cover types and densities, while burn severity
maps, generated from Landsat data, were used to further stratify the
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lidar measures. Dolan et al. (2009) used GLAS data, combined with
Landsat-based disturbance history maps to assess forest regeneration
rates in three regions of the eastern United States, concluding that
spaceborne large footprint lidar data can be used to measure vertical
growth rates when averaged spatially. Lefsky (2010) used MODIS and
GLAS data to generate a map of global forest canopy height. The
MODIS data were used to generate forest patches and the 90th per-
centile patch height was calculated directly from the GLAS data
when the GLAS transect intersected a patch. For those forest patches
without any corresponding GLAS observations, regression analysis
was used. The 90th percentile patch height was estimated with a mean
R2 of 0.67 and a mean RMSE of 5.9 m. Baccini et al. (2008) generated
above-ground biomass estimates of tropical Africa from MODIS data
using GLAS height metrics (average height and height of median energy
or HOME metrics). They note that “… there are currently limited high
quality field biomass estimates available at sufficient spatial extent to de-
velop and independently validatemaps of AGB across tropical regions…”

and that alternate data sources, such as lidar, may be required to enable
the extension of estimates across larger areas. Helmer et al. (2009) esti-
mated a landscape-level rate of aboveground woody biomass accumula-
tion in secondary humid lowland tropical forests in Amazonia by
combining a dense time series of Landsat imagery to estimate forest age
combined with biomass estimates generated from GLAS.

Simard et al. (2006) employed C-band data collected by the Shuttle
Radar Topography Mission (SRTM) to map tree height and biomass in
the Everglades National Park (ENP), located in Florida, USA. The SRTM
data were calibrated using a high resolution DEM developed by the
United States Geological Survey (USGS), sampled lidar data, and field
data. A 30 by 30 mmean filter was applied to the lidar data, which con-
sisted of four 360 m-wide transects, to conform to the spatial resolution
of the SRTM data. First, the SRTM ground elevation estimates were
leveled using the USGS DEM. The raw SRTM vegetation height esti-
mates, which correspond to the interferometric phase center located
within the canopy, were then calibrated to top of canopy estimates
using the lidar data and a quadratic regression model. The result was
a 30 m spatial resolution map of mean tree height with an RMSE of
2.0 m. Finally, field data were used to derive a relationship between
mean height and biomass. Simard et al. (2006) then applied this equa-
tion directly to the SRTM/lidar-derived mean tree height estimates to
map the spatial distribution of mangrove biomass across the ENP.
Through provision of large-area image coverage of forest structural in-
formation SAR and InSAR data are a natural match for integration
with lidar data. Radar data will typically provide a more generalized,
mid-canopy response, with lidar offering a complementary data source
to calibrate and refine the SAR or InSARmeasures. Additional data inte-
gration examples for lidar and SAR can be found in Solberg et al. (2010),
Breidenbach et al. (2008), and Hyde et al. (2006). It is through the inte-
gration of optical and samples of lidar data, based upon the above find-
ings, that measures in support of REDD+ programs may be generated.

7.3. Repeat pass

To determine the capacity of lidar in a monitoring capacity, Bater
et al. (2011) evaluated data flown over the same forest stands four
times during the same day. A transect was provided to a commercial
data provider with the goal of flying the same line, allowing for in-
variant stand conditions to be captured enabling an exploration of re-
sultant lidar data and derived metrics. Chief amongst the findings was
the capacity to capture the same vertical structural characteristics
with differing scan angles and hit densities. Flying the exact same
transect proved difficult, as expected. The ability to take advantage
of the overlap possible through the use of a scanning lidar system in-
dicates a scientific and operational data collection andmonitoring op-
portunity. Further, these results support those found using a large
footprint waveform system by Wulder et al. (2008b).
8. Conclusions

The use of lidar instruments has become an operational data collec-
tion option for detailed forest characterizations. Various types of lidar
systems have demonstrated a capacity to capture an increasingly
broad range of vegetation characteristics in a consistent and transparent
manner. While additional research can provide improvements, best
practices are currently well communicated, enabling the application of
lidar to address a range of operational and research information
needs. Sample-based approaches arewell established for large-area (in-
cluding national) inventories utilizing ground plot data. The primary
motivation for using lidar sampling is to emulate ground plots, ac-
knowledging that some ground data is needed to calibrate the lidar
measures. Regional and national monitoring programs can be informed
using sample based applications of lidar in a statistically robust and re-
liable manner. Further, lidar measures can be combined with wall-to-
wall image data source to capture change and enable the use of lidar
as an integral component of a monitoring system. As demonstrated in
this communication, transect-based applications of lidar can be used
to represent in a timely and increasingly cost effective manner the for-
est conditions present over large regions. Alternately, lidar data can be
treated as independent measures to generate estimates of forest attri-
butes or to provide independent structural measures in scientific
studies.
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