
Solving the incomplete markets model in

parallel using GPU computing and the

Krusell-Smith algorithm

Michael C. Hatcher∗

&

Eric M. Scheffel†

November 27, 2014

Abstract

This paper demonstrates the potential of graphics processing units
(GPUs) in solving the incomplete markets model in parallel using the
Krusell-Smith algorithm. We illustrate the power of this approach using
the same exercise as in Den Haan et al (J Econ Dyn Control 34: 1-3, 2010).
We document a speed gain which increases sharply with the number of
agents. To reduce entry barriers, we explain our methodology and provide
some example algorithms.

Keywords: GPU computing, heterogeneous agents, incomplete mar-
kets, interpolation, Krusell-Smith algorithm

JEL Codes: C6, C63, D52

1 Introduction

Models with incomplete markets and heterogeneous agents are used widely in
macroeconomics. It is therefore important that researchers be able to solve
these models quickly. This is a non-trivial problem since the set of state vari-
ables includes the cross-sectional distribution of wealth – an infinite-dimensional
object. Krusell and Smith (1998) show that this problem can be circumvented
by approximating the cross-sectional distribution of wealth with a small number
of moments. This reduces the dimension of the state vector dramatically, mak-
ing numerical simulations of incomplete market models tractable. Nevertheless,
the Krusell-Smith algorithm is quite time-consuming, especially if the optimal

∗Department of Economics, Faculty of Social and Human Sciences, University of Southamp-
ton, Southampton, SO17 1BJ. Email: m.c.hatcher@soton.ac.uk. Tel:

†Corresponding author. Nottingham University Business School China. 199 Taikang
East Rd. Office AB478. 315100 Ningbo. People’s Republic of China. Email:
eric.scheffel@nottingham.edu.cn. Tel: +86(0)574 8818 2461

1

decisions of a large number of agents are computed sequentially or using only a
few processing cores in parallel.

In this paper, we demonstrate the potential of graphics processing units
(GPUs) in solving incomplete market models with heterogeneous agents and
aggregate uncertainty using the Krusell-Smith algorithm. We rely on the com-
pute unified device architecture (CUDA) of NVIDIA and show that using the
GPU delivers a speed gain over the central processing unit (CPU) which rises
sharply as the number of agents is increased. In particular, we document speed
gains in the panel simulation stage of the Krusell-Smith algorithm of between
40 and 4000 times as the number of agents is increased from a relatively small
number such as 10,000 to very large, but plausible, numbers such as 10 million
agents.1

As discussed by Aldrich (2014), GPUs are relatively inexpensive pieces of
hardware comprised of large numbers of individual processing cores capable of
parallelization. This makes them ideal for computational work that has a high
arithmetic intensity, that is, work which requires large numbers of computational
operations which are almost identical and can be computed independently of
one another. The Krusell-Smith algorithm fits this description because the
optimal capital choice must be computed for each agent conditional on the
mean of the wealth distribution, current capital holdings, the aggregate state
of the economy, and idiosyncratic shocks. As this algorithm has been used
widely in the heterogeneous-agent literature, our findings should be of use to
other researchers. Our paper also contributes to a recent strand of literature
that documents the potential of GPU computing in solving dynamic general
equilibrium models in economics.

The seminal paper in that literature is Aldrich et al. (2011). They show that
improvements in speed of up to 200 times are possible when solving a simple
real business cycle model using value function iteration and CUDA architecture.
Subsequently, Morozov and Mathur (2012) tackled a more complicated optimal
control problem using CUDA. They consider imperfect information dynamic
programming with a learning versus experimentation trade-off, so that the value
function need not be convex and the policy function need not be continuous. For
this problem, speed gains are 15-26 times are reported. Since GPU hardware
has developed rapidly over the past few years, even larger gains should be well
within reach.

A detailed survey of the current state of GPU computing in economics can
be found in Aldrich (2014). He simulates an exchange economy with complete
markets and agents with heterogeneous beliefs and documents speed gains of
more than 1,000 times. Our paper goes beyond this because we consider an
economy with incomplete markets and idiosyncratic shocks. In addition, our
analysis differs from the early GPU literature on optimal control because we
apply CUDA to the panel simulation stage of the Krusell-Smith algorithm.2

1Our results are compared against a central processing unit (CPU) where only a single
core was utilized. Utilizing all four (or more if available) hardware cores would reduce the
quantitative gains that we report, but our qualitative conclusions are unaffected.

2In other words, we do not apply CUDA to the Euler equation iteration stage. We choose

2

Consequently, we isolate the gains from CUDA in a context in which it has
not previously been applied. We also investigate the computation time versus
accuracy trade-off that arises with GPUs due to the choice between single- and
double-precision arithmetic. Here, we find that single-precision arithmetic is
roughly twice as fast as double-precision arithmetic but produces similar nu-
merical results. Given that substantial speed gains are available in both cases,
these results demonstrate the potential of GPU computing to make the trade-off
between speed and accuracy somewhat less severe. Table 3 reports the perfor-
mance of GPU and CPU used in this study.

The gains in computation time that we document are important for three
reasons. First, solving even simple incomplete market models is quite time-
consuming. Since this is likely to be a barrier to researchers entering the litera-
ture, it is important to lower solution times where possible. Second, non-trivial
reductions in computation time would make it feasible to simulate richer eco-
nomic models that include a larger state space, a task which might otherwise
be considered prohibitively time-consuming by many researchers. Finally, im-
provements in computation speed would enable researchers to focus more effort
on improving accuracy safe in the knowledge that total computation time could
be kept relatively low. As pointed out by Den Haan (2010, p. 5), it is desirable
to improve the accuracy of current algorithms for solving heterogeneous agent
models by at least an order of magnitude.

Our paper is related to several computational papers in the heterogeneous-
agent literature. Most directly, we solve the model in Krusell and Smith (1998)
using their simulation-based methodology. They consider an incomplete mar-
kets version of the neo-classical growth model with a lower bound on capital
holdings, aggregate productivity shocks, and idiosyncratic employment shocks.
Their algorithm has the advantage that it is simple and relatively easy to pro-
gram. In recent years, several alternative solution algorithms have been devel-
oped. These solution methods and their performance are documented in a 2010
special issue of the Journal of Economic Dynamics and Control. In that project
entitled ‘Computational Suite of Models with Heterogeneous Agents’ a version
of the Krusell-Smith model with unemployment benefits and 10,000 agents was
solved using several different algorithms. As discussed by Den Haan (2010),
the Krusell-Smith algorithm does relatively well in terms of accuracy, but it is
not one of the fastest solution methods. For example, the backward induction
algorithm of Reiter (2010) solves the model in less than 1 hour, while the ex-
plicit aggregation algorithm in Den Haan and Rendahl (2010) takes less than 10
minutes.3 By comparison, the Krusell-Smith algorithm takes over 5 hours. It
would therefore be desirable to speed up this method. We show how this can be
done using CUDA, and we document very large speed gains as the cross-section
of agents is increased to large but plausible numbers as 10 million.

not to because the value function iteration results reported in Aldrich et al. (2011) suggest
that significant gains from GPU simulation would not be available for relatively sparse grids
we.

3These alternative algorithms are, however, not as general and flexible as the Krusell-Smith
algorithm, so it may not always be feasible for researchers to adopt these faster approaches.

3

Our work is also closely related to the Maliar et al. (2010) paper in the Com-
putational Suite Project. They solve the model using the original Krusell-Smith
algorithm by employing a consumption Euler equation method that iterates on
a grid of pre-specified points. In a second stage they compute the aggregate
law of motion as in Krusell and Smith (1998), that is, by simulating a panel
for capital holdings and running regressions on the simulated data. Here, we
follow the same approach, except that we use CUDA architecture to speed up
the panel simulation stage.4

The paper proceeds as follows. Section 2 briefly sets out the model, intro-
duces parallel computation on GPUs and describes our approach of exploiting
this hardware in the context of the Krusell-Smith model. Section 3 reports
a time comparison between GPU and CPU and discusses solution accuracy.
Finally, Section 4 concludes.

2 Parallelizing the Krusell-Smith algorithm us-

ing GPU computing

This section presents an in-depth description of how we implemented our GPU
parallelization of the Krusell-Smith algorithm using NVIDIA CUDA. It also in-
cludes a brief description of the specific CUDA language and GPU hardware
features we exploited along the way, including any hardware and software limita-
tions we had to code around in order to arrive at an efficient solution. Wherever
possible, we followed the established best practices in GPU programming; see
e.g. NVIDIA’s supporting hardware documentation.

2.1 The Krusell-Smith model and algorithm

The basic model we consider was first solved by Krusell and Smith (1998), but
we work with the version of the model set out in Den Haan et al. (2010). The
model is a production economy with aggregate productivity shocks. Agents have
different employment histories and can partially insure themselves by investing
in capital. In addition, agents face a borrowing constraint which prevents them
from taking short positions in capital. Since capital is the only asset available,
markets are incomplete. In each period, agents face an idiosyncratic shock that
can take on two different values: employed and unemployed. An employed
agent receives an after-tax economy-wide wage rate; an unemployed agent re-
ceives unemployment benefits equal to a fraction of the economy-wide wage
rate. Investment in capital yields a return equal to the marginal product of
capital minus the depreciation rate. Both the economy-wide wage rate and the

4Our implementation of the individual policy function solution stage is almost identical to
Maliar et al. (2010)’s variant coded in Matlab. It differs only in that it is written and compiled
in C++, uses multi-threading on the CPU throughout, and employs a suite of industry-tested
Fortran routines FITPACK for interpolating the policy function in each iteration. During the
panel simulation, we instead rely on Catmull-Rom bi-cubic interpolation for both the GPU
and CPU variants of our code.

4

return on capital depend upon the aggregate productivity shock. All agents in
the economy have identical preferences and both aggregate and idiosyncratic
shocks follow Markov processes.

The aim of the Krusell-Smith algorithm is to compute an aggregate law of
motion (ALM) for economy-wide physical capital with which individual agents’
optimal capital choices are consistent at each date. The algorithm works by
using the individual-agent policy function, which we computed using an Eu-
ler equation iteration approach,5to simulate a panel of individual-agent capital
holdings from which an updated belief about the ALM is computed via an or-
dinary least squares (OLS) regression of the aggregate capital stock on its past
value. This process continues until the estimated OLS parameters settle down
to values for which perceived beliefs about aggregate capital and the actual evo-
lution of aggregate capital are consistent with each other. For each iteration of
the KS-algorithm, these two objects - the simulated panel of individual capital
holdings and the implied ALM, and the updated individual policy function -
are computed in a sequential manner.6

The panel simulation step starts from a predetermined vector of each agent’s
capital holdings. Conditional on these values, the capital holdings of each agent
are simulated for T periods using the current iterate of the policy function.
The key insight of Krusell and Smith (1998) was that individual agent capital
holdings could be computed accurately without full knowledge of the wealth dis-
tribution - an infinite dimensional object. Instead, it is sufficient to approximate
the wealth distribution with its first moment. This makes the simulation stage
of the Krusell-Smith algorithm an obvious candidate for parallelization because
it means that, in any given time period, each agent’s optimal capital holdings
can be computed without any knoweldge of the capital holdings of the other
agents, so that sequential computation is unnecessary. Given that we paral-
lelize only the panel simulation stage of the Krusell-Smith algorithm, the upper
bounds on the potential speed gains available are determined by Amdahl’s law,
which we now briefly discuss.

2.2 Amdahl’s Law

As noted above, the first stage of our algorithm (i.e. Euler equation iteration)
is not computed in parallel on the GPU and so should not solve any faster.
Therefore, we should expect the speed gain for the algorithm as a whole to
depend upon the fraction of total computation time that is spent in the panel
simulation stage. This intuition is formalized in Amdahl’s Law; see Aldrich
(2014) for a useful discussion. Amdahl’s law states that if a fraction P of an
algorithm can be executed in parallel, then the theoretical maximum speedup

5In the descriptions that follow we assume that the current update of the individual-agent
policy function has already been computed in a first step using Euler equation iteration (or
some other approach). In our application, we relied on the Euler equation iteration algorithm
available on Serguei Maliar’s webpage (seeMaliar et al. (2010)), which we translated from
Matlab to C++. We are grateful to Serguei Maliar for making his code available.

6We provide a full description of the two main stages of the Krusell-Smith algorithm and
our numerical implementation in the Appendix.

5

when using Ns processing cores is S = 1
(1−P)+P/Ns

. The intuition is as follows.

A fraction (1–P) of the algorithm will be run in the same time as in the serial
case, while the remaining fraction P of the algorithm will take P/Ns units of
time, because it can be run in parallel on Ns cores. Dividing one unit of time
by the total compute time in the parallel case yields the above expression for
S. The significance of the above equation is that large speed gains are likely to
be realized for our algorithm if the panel simulation stage is a sufficiently large
fraction of the overall algorithm and the number of CUDA cores on the GPU
is sufficiently high. As documented in Table 1, we use an NVIDIA Tesla K40
GPU with 2880 single-precision and 960 double-precision CUDA cores in this
study.

Before turning to implementation details we provide a brief discussion of the
current state of GPU hardware and best practices in GPU programming. We
focus on NVIDIA, the manufacturer of the GPU hardware we used in this study,
as this helps to explain several of our implementation choices discussed below.

2.3 GPU hardware and best-practice GPU programming

Despite recent efforts by both GPU hardware manufacturers and open-source
organisations, using GPUs for scientific purposes still involves a relatively steep
learning curve, with specially tailored solutions (such as solutions to non-trivial
economic problems) requiring some low-level coding effort for programmers to
tap peak performance levels.7 One important GPU hardware consideration
arises as a result of the translation process from double-precision accuracy par-
allel compute problems into a hardware domain (i.e. GPUs) that was originally
designed for single-precision accuracy. Translating a specific numerical algo-
rithm is a complicated task that can be done in several different ways, and it is
not always obvious (even to experencied programmers) which route will yield the
best results. More importantly, this translation process generates a significant
trade-off for scientific researchers because accuracy is a crucial consideration, yet
the slower computation speeds associated with using double-precision floating-
point arithmetic on GPUs can be substantial.8And although double-precision
arithmetic is now widely available on GPUs, many efficient and purpose-built
functions are limited to single-precision accuracy. Given the non-trivial trade-off
between using single-precision and double-precision arithmetic for computation
on GPUs, we chose to experiment with several different approaches.

The key difference between CPUs and GPUs is that GPUs specialize in

7Creel and Goffe (2008) argued that the diffusion of GPU technology had been relatively
low in economics and econometrics due to the relatively steep learning curve involved. How-
ever,Dziubinski and Grassi (2014) show that C++Accelerated Massive Parallelism (C++
AMP) lowers barriers to adoption of GPU due to its simplified programming style.

8For example, although the last three generations of CUDA-enabled GPUs (codenamed
Fermi, Keppler, and Maxwell) added hardware support for double-precision arithmetic, most
mainstream GPU models havce fewer CUDA cores capable of double-precision computation,
leading to speed ratios of double to single precision arithmetic as low as 1/32. Morozov
and Mathur (2012) show that double-precision arithmetic implies a substantial increase in
computation time in the context of a complex optimal control problem.

6

handling comparatively lightweight transformations of multiple data elements
massively in parallel. This approach is encapsulated by the SIMD (single-
instruction-multiple-data) paradigm of computation, which leverages the notion
of data parallelism as opposed to task parallelism. While CPUs typically possess
a fairly small number of very fast, heavily cached and comparatively complex
hardware cores which individually specialize in speeding up serial code, GPUs
group together a grid composed of a very large number (typically somewhere be-
tween 100-3000) of far less complex compute cores (CUDA cores), which need to
share resources such as memory and cache and are clocked at much lower speeds
than CPU cores. These CUDA cores excel at speeding up calculations involv-
ing a large number of single-precision accuracy operations which are executed
independently of one other, but they handle instructions with many conditional
and divergent “if-else” branches very poorly. Nevertheless, the sheer number of
hardware cores they can utilize in parallel is a major potential advantage. More
generally, GPUs fill the specific role of dedicated co-processors to which easily
paralellizable sub-tasks can be delegated from the CPU host system.

To solve the Krusell-Smith model on the GPU in an efficient manner, we
abided (insofar as possible) by the following principles of best practice GPU
programming. First, code for the GPU should exploit a language that over-
laps with the C programming language but which also supports some popular
constructs from C++, since three related activities are necessary in order to
efficiently exploit the power of GPU hardware: (i) allocating and copying data
between the host and the GPU’s on-board memory; (ii) writing one or several
so-called “kernel functions” which instruct GPUs how to transform multiple data
elements stored in the GPU’s memory in parallel; and (iii) grid launch expres-
sions which launch kernel functions from the host side. Secondly, any code needs
to be written in a way which minimizes data transfers between the host and the
GPU device, because these transfers are relatively slow and often (but not al-
ways) may freeze parallel computation on the GPU, leaving it idle for the period
of the data transfer. Therefore, programmers should aim to transfer all of the
required data to the GPU’s memory once-and-for-all upfront, so that hardware
utilization rates of close to 100% can be attained over long periods of run-time.
Thirdly, data accesses to the global memory of the GPU should be coalesced,
the availability of fast on-chip cache memory should be exploited, and divergent
“if-else” conditional branches in kernel functions should be avoided where possi-
ble. Since parallel tasks run on CUDA hardware are always executed in “warps”
of 32 threads processed in lock-step, the existence of only one divergent “if-else”
branch (i.e. where 31 threads in a warp evaluate to true, but only one evaluates
to false) will result in that divergent thread being processed twice (once for true
and once for false) in serial fashion. Thus, the higher the number of divergent
threads per warp, the larger the performance penalty incurred.9

9GPUs are typically known to be limited in their speed not by their compute power (which
is determined by the total number and speed of CUDA cores), but by the memory bandwidth
available in swapping data inside their memory hierarchy. This explains why fine-tuning GPU
code often involves giving priority to carrying out calculations in on-chip shared memory banks
which posses a large bandwidth advantage over the larger but much slower global memory.

7

Table 1: Performance characteristics of a selection of GPU and CPU models

Type of GPU/CPU Generation HW
(#Cores)

Freq.
(GHz)

SP
(GFlops)

DP
(GFlops)

Mem
(Gbs)

NVIDIA Tesla K40 Keppler 2880 0.75 4290 1430 12
INTEL I7-3770 Sandy Bridge 4 3.90 240 60 N/A

Note: Reported single-precision GFLOPS for the CPU are obtained by considering the
simultaneous processing power available from using all 4 CPU cores jointly. Our main results
are based on a comparison between the GPU and the CPU employing only one single core.

The GPU model we use in this paper is the Tesla K40. This combines a
Keppler GK110B GPU chip comprised of a total of 2880 SP CUDA cores and
12GB of global on-board memory. At the time of writing, this particular model
costs around $4,000 and represents one of NVIDIA’s leading GPUs targeted
at scientific users who require fast double-precision accuracy arithmetic.10 In
addition to the 2880 SP the Tesla K40 also houses another 960 DP CUDA
cores on the same chip, resulting in a double to single precision arithmetic
speed ratio of 960/2880=1/3 and a theoretical computational throughput of
4.29 TFlops for single precision and 1.43 TFlops for double-precision operations.
The performance characteristics of the GPU and CPU models used in this study
are reported in Table 1.

We installed the K40 GPU into a desktop PC equipped with an Intel i7
quad-core CPU and 16Gb of RAM running on a 64-bit Linux system and also
installed all required CUDA drivers as well as the most recent version of the
CUDA SDK 6.5 (software development kit) which is needed in order to write
and compile code using GPU parallelization. Our code was written and com-
piled using a combination of C++, C, Fortran and CUDA-C with additional
run-time dependencies on a small number of popular open-source libraries, in-
cluding Boost, GSL (Gnu Scientific library), and FITPACK. These libraries
were used, respectively, for general convenience, OLS estimation, and built-in
CPU-based interpolation functionality. Given that the task of building exe-
cutable files based on our code involves a series of complex compilation and
linking steps, we streamlined this build process in Linux using the automated
build system CMake.11

2.4 GPU implementation of the panel simulation

The computational problem we face in conducting the panel simulation step
in parallel is that of having to interpolate on the policy function grid a total

10We are grateful to NVIDIA corporation for donating the Tesla K40 GPU used for this
research.

11All of our source code for this project can be downloaded in the “Code” section at
http://www.ericscheffel.com.

8

of N × T times in order to compute optimal next-period capital choices for
each of the N agents over all T time periods, a necessary step for obtaining
updated OLS estimates from the simulated aggregate physical capital series.
However, these N × T interpolation calculations cannot be done out-of-order
since, for each time period, the mean of the wealth distribution needs to be
computed using agents’ optimal capital holdings, in order to provide an input
for computing the cross-section of agents’ optimal capital holdings in the next
period. This recursive property of the problem limits us to parallelizing code
only in the cross-section dimension N for each of the T time periods.

Our implementation starts from the host side where we first simulated N×T
idiosyncratic labour market shocks and T aggregate productivity shocks. Given
that the idiosyncratic shocks are binary and a large N will quickly increase
the memory requirement for the matrix of idiosyncratic shocks to prohibitive
levels, we chose to encode the labour market shocks using an (N/8)×T memory
block of 8-bit characters and employ bit-wise storage and operators inside the
GPU’s kernel functions (as well as on the host side). This data compression
work-around was necessary since we consider cross-sections of agents as large as
N = 10 million and set the simulation length at N = 1,000.12 The (N/8)× T
labour market shock matrix and the array of T aggregate productivity shocks
were loaded into the GPU’s memory, where they become accessible from within
kernel function calls.

Instead of declaring the optimal policy function grids as conventional ’buffer
memory’ in the GPU’s global memory pool - as we did with the shock matrices
- we instead declared them as texture memory. Given that only two state
dimensions of the policy function are near-continuous (individual and aggregate
capital), we proceeded by uploading a total of four 2D grids into the GPU’s
texture memory: one for each possible productivity-employment combination.
It is important to note that texture memory is special in that it is “read-only”,
limited to 32-bit single-precision storage, can be accessed in kernel functions
using fast hardware-based texture functions, and makes repeated fetches from
identical texture locations subject to very fast on-chip caching. However, some
important limitations arise in this context, to which we now turn.

2.4.1 A fast hardware-based bi-linear texture interpolation approach

At first glance, CUDA’s texture memory and the fast hardware-wired capabili-
ties would appear to be the perfect tool for parallelizing repeated interpolation
computations on a set of 2D grids. For instance, the various built-in 1D, 2D,
and 3D texture routines available during kernel function programming via the
CUDA-C language support various interpolation options directly in hardware.

12Had we not employed bit-wise storage in this particular case, storing the labour market
shock matrix alone would have exceeded 10GB of memory, whereas data compression lowers
the memory requirement to less than 1.5GB. We decided to keep memory requirements below
2GB because 32-bit operating systems cannot address memory larger than this threshold and
many GPUs possess only 2GB on-board memory. This makes our code compatible with as
many hardware platforms as possible, thus making it easier for other researchers to replicate
our results.

9

Algorithm 1 Single-precision hardware-based interpolation kernel (Cuda-C)

1
2 __global__ void panelsim2d_catmull_rom_kernel(
3 cudaTextureObject_t texObj_bad ,
4 cudaTextureObject_t texObj_good ,
5 f l o a t K, f l o a t ∗ inarr , unsigned char ∗ i d i o s ,
6 i n t N, i n t ngrid2 , i n t ngrid ,
7 f l o a t xmin , f l o a t xmax , f l o a t ymin , f l o a t ymax ,
8 f l o a t theta)
9 {

10 // Fetch the g l oba l index v a r i a b l e
11 unsigned in t x i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
12
13 i f (x i < N) {
14
15 // Compute the normal ized coo rd ina t e s f o r g iven k (t−1) and K(t−1)
16 f l o a t xv = ((K − xmin)/ (xmax − xmin)) ∗

17 (f l o a t) (ngr id2 − 1) + 0 . 5 f ;
18 f l o a t yv = (powf ((i n a r r [x i] − ymin)/ (ymax − ymin) , (1 . 0 f / theta)) ∗

19 (f l o a t) (ngr id − 1)) + 0 . 5 f ;
20 unsigned char empstatb = i d i o s [(x i / 8)] & (128>>(x i %8));
21
22
23 // Using coo rd ina t e s read optimal k (t) from tex tu r e and s t o r e
24 f l o a t va l = empstatb ? clamp (tex2D (texObj_good , xv , yv) ,
25 ymin , ymax) :
26 clamp (tex2D (texObj_bad , xv , yv) ,
27 ymin , ymax) ;
28 i n a r r [x i] = val ;
29 }
30 }

However, a careful study of CUDA documentation reveals two potentially impor-
tant drawbacks. First, standard methods employed in declaring and uploading
texture surfaces (i.e. 2D numerical grids) into the GPU’s memory only support
data represented with 32-bit (i.e. single-precision) accuracy. As a result of this
limitation, all the built-in interpolation routines only work at this reduced level
of numerical accuracy. Secondly, automated interpolation done entirely in GPU
hardware leads to an additional and more serious loss in numerical accuracy
because the computed weights used in interpolation are represented using as
little as 8-bit decimal point precision.13

A major potential advantage of this approach is its simplicity. Algorithm 1
shows that an extremely simple kernel function can be used to employ hardware-
based bi-linear interpolation on the 2D policy function grids in the texture mem-
ory. The kernel code consists of only one “global” function, which is callable
from the host where the normalized texture coordinates are computed on lines
16-19 (these points are corrected for grid point bunching along the individual-
agent capital dimension) before being passed to the built-in interpolation routine
“tex2D”, which computes and stores (subject to employment status) the inter-
polated values in parallel. However, given the potential accuracy drawbacks
associated with this fast hardware-based interpolation approach, we choose to

13Consequently, this potentially fast approach could be too inaccurate for our purposes,
especially for very sparse policy function grids.

10

also investigate two alternative approaches which deliver greater numerical ac-
curacy.

2.4.2 Two software-based bi-cubic texture interpolation approaches

Algorithm 2 demonstrates our first alternative approach used in coding the panel
simulation step, which is based on a kernel code that uses single-precision accu-
racy throughout.14 Employing a total of 16 function calls to “tex2D”, we then
hand-coded the interpolation in software using a more complicated, purpose-
built kernel function. Since the hand-coded interpolation method side-steps the
hardware-wired alternative (which uses interpolation points with only 8-bit dec-
imal point precision), it should lead to an improvement in accuracy and gives
us the flexibility to choose from a large number of candidate interpolation ap-
proaches. This hand-coded approach remains very fast for two reasons. First,
since we are still retrieving values from texture memory based on “tex2D” func-
tion calls, our code benefits from fast cache memory. Secondly, running the
panel simulation using single-precision arithmetic makes use of a total of 2880
hardware CUDA cores in parallel - i.e. three times the availability of double-
precision execution units on our GPU.

After some experimentation, we settled on a bi-cubic Catmull-Rom (Her-
mite) interpolation method. This method is 3rd-order accurate, preserves the
shape of the underlying function and is obtained using a total of 16 nearest
neighbours, as compared to 4 in the case of bi-linear interpolation. In this ker-
nel code (see algorithm 2), the first four GPU-only kernel functions denoted
“catrom_w0a”, “catrom_w1a”, “catrom_w2a”, and “catrom_w3a” are used to
compute and evaluate the four required Hermite basis functions, while the fifth
GPU-only kernel function denoted “CatRomFiltera” combines these functions
using a final convolution step.

The second implementation approach we consider is almost identical to the
first but uses double-precision arithmetic throughout (the algorithm A.2 is pro-
vided in the Appendix). Double-precision numerical accuracy was obtained
for both operations carried out on memory locations and general local variable
and texture storage using a ’work-around’ method that allows textures which
are otherwise 32-bit-only to hold elements with 64-bit double-precision accu-
racy. The trick employed by this method is to use double-layered 32-bit (i.e.
single-precision) textures to distribute the storage of 64-bit double-precision
elements across two 32-bit layers. In kernel functions the special procedure
“hiloint2double(x,y)” can then be used to ’stitch together’ at the bit-level the
two layered 32-bit memory locations and convert them back to the original 64-bit
value. Given that this interpolation approach proceeds using a hand-coded ker-
nel function in which all intermittent operations are done using double-precision
accuracy, only 960 hardware CUDA cores can be employed in this case, making
execution performance somewhat slower.

14In this and subsequent kernel code the behaviour of the “tex2D” function is altered to a
basic “point mode” under which any calls to it using 2D-indeces as arguments permit only the
retrieval of points residing exactly on the nodes comprising the 2D texture surface.

11

Algorithm 2 Single-precision Catmull-Rom interpolation kernel (Cuda-C)

1 __host__ __device__ f l o a t catrom_w0a(f l o a t a) {
2 re turn a∗(−0.5 f + a ∗ (1 . 0 f − 0 . 5 f ∗a)) ; }
3
4 __host__ __device__ f l o a t catrom_w1a(f l o a t a) {
5 re turn 1 . 0 f + a∗a∗(−2.5 f + 1 . 5 f ∗a) ; }
6
7 __host__ __device__ f l o a t catrom_w2a(f l o a t a) {
8 re turn a ∗ (0 . 5 f + a ∗ (2 . 0 f − 1 . 5 f ∗a)) ; }
9

10 __host__ __device__ f l o a t catrom_w3a(f l o a t a) {
11 re turn a∗a∗(−0.5 f + 0 . 5 f ∗a) ; }
12
13 __device__ f l o a t catRomFiltera (f l o a t x , f l o a t c0 ,
14 f l o a t c1 , f l o a t c2 , f l o a t c3) {
15 f l o a t r ;
16 r = c0 ∗ catrom_w0a(x) ;
17 r += c1 ∗ catrom_w1a(x) ;
18 r += c2 ∗ catrom_w2a(x) ;
19 r += c3 ∗ catrom_w3a(x) ;
20 re turn r ; }
21
22 __device__ f l o a t tex2DCatRoma (cudaTextureObject_t texObj ,
23 f l o a t x , f l o a t y) {
24 x −= 0.5 f ;
25 y −= 0.5 f ;
26 f l o a t px = f l o o r (x) ;
27 f l o a t py = f l o o r (y) ;
28 f l o a t fx = x − px ;
29 f l o a t fy = y − py ;
30 px += 0 .5 f ;
31 py += 0 .5 f ;
32
33 re turn catRomFiltera (fy ,
34 catRomFiltera (fx , tex2D (texObj , px−1,py−1) , tex2D (texObj , px , py−1) ,
35 tex2D (texObj , px+1,py−1) , tex2D (texObj , px+2,py−1)) ,
36 catRomFiltera (fx , tex2D (texObj , px−1,py) , tex2D (texObj , px , py) ,
37 tex2D (texObj , px+1,py) , tex2D (texObj , px+2,py)) ,
38 catRomFiltera (fx , tex2D (texObj , px−1,py+1) , tex2D (texObj , px , py+1) ,
39 tex2D (texObj , px+1,py+1) , tex2D (texObj , px+2,py+1)) ,
40 catRomFiltera (fx , tex2D (texObj , px−1,py+2) , tex2D (texObj , px , py+2) ,
41 tex2D (texObj , px+1,py+2) , tex2D (texObj , px+2,py+2))) ;
42 }
43
44 __global__ void panelsim2d_crk (cudaTextureObject_t texObj_bad ,
45 cudaTextureObject_t texObj_good , f l o a t K,
46 f l o a t ∗ inarr , unsigned char ∗ i d i o s , i n t N,
47 in t ngrid2 , i n t ngrid , f l o a t xmin , f l o a t xmax ,
48 f l o a t ymin , f l o a t ymax , f l o a t the ta)
49 {
50 unsigned in t x i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
51
52 i f (x i < N) {
53 f l o a t xv = ((K − xmin)/ (xmax − xmin)) ∗

54 (f l o a t) (ngr id2 − 1) + 0 . 5 f ;
55 f l o a t yv = (powf ((i n a r r [x i] − ymin)/ (ymax − ymin) , (1 . 0 f / theta)) ∗

56 (f l o a t) (ngr id − 1)) + 0 . 5 f ;
57 unsigned char empstatb = i d i o s [(x i / 8)] & (128>>(x i %8));
58
59 f l o a t va l = empstatb ? clamp (tex2DCatRoma (texObj_good , xv , yv) ,
60 ymin , ymax) :
61 clamp (tex2DCatRoma (texObj_bad , xv , yv) ,
62 ymin , ymax) ;
63 i n a r r [x i] = val ;
64 }
65 }

12

2.4.3 Description of host-side code

As illustrated in algorithm 3, we proceeded on the host side by executing our
candidate CUDA kernels repeatedly for T − 1 periods. In order to obtain the
updated first moment of the distribution of capital holdings between periods,
we instructed the GPU to execute a ’reduction’ on the current N -sized vector
of optimal individual-agent capital holdings, before launching a new kernel run
for the next period. The ’reduction’ (in this case a simple summation) over
all agents’ individual optimal capital holdings was done in parallel on the GPU
using one of NVIDIA’s abstraction libraries called “Thrust”, which carries out
basic tasks efficiently in parallel before copying the results back to the host
memory pool.

In order to make our three interpolation approaches directly comparable,
we employed the Catmull-Rom bi-cubic interpolation method on the CPU in
a serial fashion, by traversing individual agent capital holdings agent by agent
and period by period. This CPU-variant of the panel simulation was coded in
order to allow for the possibility of multi-threaded execution based on the use of
several CPU cores in parallel. However, as a benchmark, we compare the parallel
panel simulation on the GPU against a CPU utilizing only one hardware core.
One part of the Krusell-Smith algorithm - namely the individual-agent policy
function computation - was done entirely on the CPU without recourse to the
GPU hardware. Since the Euler equation iteration method requires repeated
interpolation sweeps carried out over the entire policy function grid, we used
the Fortran library FITPACK, which includes spline-based routines for bi-cubic
interpolation on 2D grids.15

By designing the host code of the GPU-assisted panel simulation in this way
we combined hundreds of synchronized GPU kernel calls with many intermittent
data transfer operations between the GPU and host memory. In general this
is inefficient, but since each intermittent data transfer involved copying only
one double-precision floating point value (i.e. the sum over all individual-agent
capital holdings), this had little impact upon performance. Indeed, diagnostic
output from NVIDIA’s profiler indicated that the executed code exhibited sus-
tained GPU utilization rates of around 98% and texture cache hit rates close to
100%. Such peak-level cache hit-rates are to be expected in the context of the
Krusell-Smith algorithm, given that a large number of agents possess similar
levels of capital. This high degree of “locality” in successive texture fetches (see
e.g. NVIDIA’s online CUDA API manuals) implies that reading optimal choices
off policy function grids stored in the GPU’s cached texture memory represents
an ideal implementation choice in the context of the Krusell-Smith algorithm,
because it plays to the strength of the cached texture memory architecture.

We also violated the rule that divergent “if-else” branches should be avoided.
We did so because populating the array of optimal next-period capital holdings
for each of the N agents requires the employment status (which is determined
by the idiosyncratic shock), which in turn determines which 2D policy grid

15In particular we employed a combination of the “regrid” and “bispeu” routines, which we
also coded to allow for multi-threaded execution using several CPU cores.

13

should used for interpolation. While the “if-else” branch is not explicit in our
kernel code, it creeps in implicitly through a C-style ternary operator, which for
the single-precision kernel appears on lines 59-62 and for the double-precision
kernel appears on lines 64-67. In practice, however, our profiling results exhibit
near peak performance levels, suggesting that there were few incidences of warp
divergence.16

3 Results

We report results for one converged simulation of the Krusell-Smith algorithm
for each of the three GPU-based approaches discussed above and the CPU-
only approach. Since these approaches differ only in the method and type
of hardware used to interpolate off the optimal policy grid during the panel
simulation stage of the Krusell-Smith algorithm, the equilibrium solution should
be essentially identical across the four simulations. We started by simulating a
panel of N = 10, 000 agents with the same initial distribution of wealth as in
the ‘Computational Suite’ project (see Den Haan, 2010).17 When simulating
larger panels, such as N = 500, 000 or N = 10, 000, 000, we constructed an
initial distribution of wealth with similar moments to the distribution when
N = 10, 000. We set the convergence tolerance at ǫ = 1E − 7. The results for
the CPU-only approach are reported in Table 2 and those under the three GPU
approaches in Table 3. As indicated we employ policy grids of varying denseness.
The coarsest grid specification we consider follows Krusell and Smith’s original
paper in which they employ 100 points in the individual agent and 4 points in
the economy-wide capital dimension. Following Horvath (2012), we also consider
policy grids a finely discretized as 500 points in the individual and 50 points in
the economy-wide capital dimension.

The CPU results show that as the number of grid points for capital is in-
creased, solution times increase at an exponential rate. This is simply a mani-
festation of the “curse of dimensionality”. For our chosen convergence tolerance
of ǫ = 1E − 7, the KS algorithm usually takes around 30 outer loop iterations
to converge when it is solved on the CPU only. By comparison, the GPU ap-
proaches usually take a similar number of iterations (with the exception of the
hardware-based single precision method) and solution times are usually much
lower. The speed gains are largest when relatively coarse capital grids are com-
bined with very large numbers of agents such as N = 10, 000, 000. For instance,
with the double precision method there is a speed gain of around 1,200 times in

16A significant performance degradation due to warp divergence should only be expected
in cases where, in a warp of 32 threads, one or several branches evaluate to, say, unemployed
status, while the others evaluate to employed status. This implies that “if-else” branches in
fact pose no performance problem, so long as parallelized threads executed within one warp
always simultaneously cascade down one and same branch. Given that around 10% of agents
are unemployed on average, the proportion of warps in which all 32 threads (i.e. agents)
evaluate to employed should be relatively high. This provides one explanation for the finding
that warp divergence did not pose a substantial performance penalty in our code.

17The initial distribution of wealth can be downloaded from Wouter Den Haan’s webpage.

14

Algorithm 3 Host side code for panel simulation step [C,C++]

1
2 // Dec lare and i n i t i a l i z e array o f cont inuous s t a t e boundar i e s
3 double bounds [4] = {K_min, K_max, k_min , k_max} ;
4
5 // Dec lare and i n i t i a l i z e array o f GPU block s i z e
6 i n t blockdim [3] = {512 ,1 ,1} ;
7
8
9 // Update the p o l i c y f unc t i on t ex tu r e ob j e c t s on the GPU

10 cudaMemcpyToArray (texo_bu−>cuArray ,0 ,0 ,& fckprime [0] ,
11 ngr id2∗ ngr id∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
12 cudaMemcpyToArray (texo_be−>cuArray ,0 ,0 ,& fckprime [ngr id2∗ ngr id] ,
13 ngr id2∗ ngr id∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
14 cudaMemcpyToArray (texo_gu−>cuArray ,0 ,0 ,& fckprime [2∗ ngr id2∗ngr id] ,
15 ngr id2∗ ngr id∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
16 cudaMemcpyToArray (texo_ge−>cuArray ,0 ,0 ,& fckprime [3∗ ngr id2∗ngr id] ,
17 ngr id2∗ ngr id∗ s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
18
19 // Cal l the N−s i z e d p a r a l l e l i z e d ke rn e l f unc t i on T pe r i od s o f time
20 f o r (i n t t=0; t<T−1; ++t) {
21
22 // For the good aggregate TFP s t a t e
23 i f (h_aggs [t /8] & 128>>t%8) {
24
25 // Kernel c a l l
26 panelsim2d_catmull_rom_kernel <<<dimGrid , dimBlock>>>(
27 texo_gu−>texObj , texo_ge−>texObj ,
28 k_mean [t] , t h ru s t : : raw_pointer_cast (&(∗ d_inarr) [0]) ,
29 th ru s t : : raw_pointer_cast (&(∗ d_idios) [t ∗(N/8)]) ,N, ngrid2 , ngrid ,
30 bounds [0] , bounds [1] , bounds [2] , bounds [3] , the ta
31) ;
32
33 // Synchronize (wait) f o r dev ice to f i n i s h p a r a l l e l compute task
34 cudaDeviceSynchronize () ;
35
36 // For the bad aggregate TFP s t a t e
37 } e l s e {
38
39 // Kernel c a l l
40 panelsim2d_catmull_rom_kernel <<<dimGrid , dimBlock>>>(
41 texo_bu−>texObj , texo_be−>texObj ,
42 k_mean [t] , t h ru s t : : raw_pointer_cast (&(∗ d_inarr) [0]) ,
43 th ru s t : : raw_pointer_cast (&(∗ d_idios) [t ∗(N/8)]) ,N, ngrid2 , ngrid ,
44 bounds [0] , bounds [1] , bounds [2] , bounds [3] , the ta
45) ;
46
47 // Synchronize (wait) f o r dev ice to f i n i s h p a r a l l e l compute task
48 cudaDeviceSynchronize () ;
49 }
50
51 // Update the aggregate K vector by sav ing current va lue
52 double sumor = th ru s t : : reduce ((∗ d_inarr) . begin () , (∗ d_inarr) . end ()) ;
53 double tva l = sumor/(double)N;
54
55 // Make sure the computed f i r s t moment s tay s wi th in p e rm i s s i b l e bounds
56 k_mean[t+1] = tva l ∗(tva l >= K_min && tva l <= K_max) +
57 K_min∗(tva l < K_min) + K_max∗(tva l > K_max) ;
58 }

15

Figure 1: Speed-up of double-precision GPU method

10
4

10
5

10
6

10
7

Number of agents (log-scaled)

0

200

400

600

800

1000

1200
S

p
e
e
d

-u
p

o
f

p
a
n

e
l

si
m

u
la

ti
o
n

100(4)

250(50)

500(50)

10
4

10
5

10
6

10
7

Number of agents (log-scaled)

10
0

10
1

10
2

10
3

S
p

e
e
d

-u
p

o
f

fu
ll

K
ru

se
ll

-S
m

it
h

a
lg

o
ri

th
m

(l
o
g
-s

ca
le

d
) 100(4)

250(50)

500(50)

Note: Figures show relative gain defined as G = TCPU/TGPU . Relative gains

are substantially higher for single-precision methods and are not plotted here.

16

the panel simualtion stage and almost 600 times for the algorithm as a whole
when there are 10 million agents and 100 grid points in the individual capi-
tal direction and 4 in the aggregate capital direction. By contrast, the gains
from parallelization are relatively small for fine capital grids and small panel
sizes, with gains in panel simulation stage of between 40 and 50 times and total
simulation times which are only slightly faster, and in a couple of cases higher.18

The gains in the panel simulation stage are lower in these cases because a
larger grid implies that the texture cache of the GPU is hit with a lower proba-
bility, while the overall solution times are fairly similar for the CPU and GPU
due to Amdahl’s law. In particular, both small panel sizes and fine capital grids
decrease the relative importance of the panel simulation stage of the algorithm
- the former because it means that fewer computations are run in parallel, and
the latter because the Euler equation iteration stage (which is carried out on
the CPU) is subject to the curse of dimensionality. It is important to note
that in the cases where the speed gains from GPU computation are substantial,
there are practically important reductions in computation times, since solving
the model on the CPU takes several hours in these cases. In practice, these
gains are likely to be magnified given that most researchers are interested in
simulating a model a large number of times and not just once as in our exper-
iments. Finally, it is worth noting that relative gains in computational speed
tend to diminish as we consider increasingly more sophisticated (and thus more
precise) interpolation schemes implemented on the GPU.

We provide a visual representation of the GPU results in Figure 1, which
plots the relative gain of the double-precision GPU approach in the panel sim-
ulation stage and for the algorithm as a whole. Even with this slower (and
more accurate) methodology the results are very impressive, with gains of over
700 times for N = 500, 000 and 1, 100 times for N = 10, 000, 000 in the panel
simulation stage. For the hardware-based single-precision method, the implied
speed-ups for the panel simulation can reach values as high as 3, 700, while the
software-based single precision method gives gains of almost 2,500 times. The
lower panel of 1 reports the relative gain for the algorithm as a whole as the
number of agents is varied. The results here clearly demonstrate the opera-
tion of Amdahl’s law: larger numbers of agents increase relative importance of
the panel simulation stage of the Krusell-Smith algorithm, raising the potential
gains from parallelizing using GPU computing.

In order to shed some light on the accuracy of our different methods, we
stored the average economy-wide physical capital series for T periods obtained
from the 5th outer loop iteration of each simulation. Since the transitional
state of this series can be interpreted as the outcome from a learning process
(Giusto, 2014), we computed the implied transitional “learning errors” using the

18Total solution times are higher for the hardware-based interpolation method because
the lower degree of arithmetical precision means that the algorithm takes longer to reach
convergence, as shown by the larger number of total iterations in Table 3. In some cases, the
outer loop did not converge within 50 iterations. In these cases we increased the tolerance
criterion by one order of magnitude to ǫ = 1E−6 and restarted the algorithm until convergence
was attained.

17

Table 2: Computational times for panel simulation step (CPU-only)

#CPU Threads 1 2 4

#Agents Mem(Gbs) 100(4) 250(50) 500(50) 100(4) 250(50) 500(50) 100(4) 250(50) 500(50)

10.000 0.00116

Panel Time 10.1 10.1 10.1 4.7 4.7 4.7 2.4 2.4 2.4
Polf. Time 7.6 380.5 1243.3 7.6 380.5 1243.3 7.6 380.5 1243.3
Iterations 30 32 27 30 32 27 30 32 27
Total Time 530.8 12499.2 33841.8 369.0 12326.4 33696.0 300.0 12252.8 33633.9

500.000 0.058

Panel Time 433.2 433.2 433.2 215.1 215.1 215.1 107.2 107.2 107.2
Polf. Time 7.4 385.3 1279.2 7.4 385.3 1279.2 7.4 385.3 1279.2
Iterations 23 31 30 23 31 30 23 31 30
Total Time 10133.8 35373.5 51372.0 5117.5 18612.4 44829.0 2635.8 15267.5 41592.0

10.000.000 1.164

Panel Time 8482.3 8482.3 8482.3 4241.4 4241.4 4241.4 2120.1 2120.1 2120.1
Polf. Time 7.37 381.1 1275.2 7.37 381.1 1275.2 7.37 381.1 1275.2
Iterations 27 32 33 27 32 33 27 32 33
Total Time 229221.1 283628.8 321997.5 114716.8 147920.0 182047.8 57441.7 80038.4 112044.9

Note: All figures indicate the total number of seconds elapsed until task completion in any iteration.
Also shown is the total amount of time it took for the KS algorithm to converge, including the total number of outer loop iterations.
Timings are reported for cases in which 1, 2 and 4 CPU hardware threads were employed. Memory storage requirements are also reported.
The convergence tolerance was set to ǫ = 1×E−7.

1
8

difference between the aggregate capital series obtained from GPU-based inter-
polation schemes and the one obtained via the CPU-only simulation approach.
To this end we compute and report the maximum absolute percentage devia-
tion of the GPU from the CPU series and report it in table 2 in the Appendix.
Based on this we immediately observe that simulation runs in which conver-
gence could not be attained after a total of 50 outer loop iterations usually also
exhibited the largest absolute errors in learning about the evolution of the aggre-
gate capital series. This finding confirms the intuition that the hardware-based
single-precision approach is the least accurate of the three GPU approaches we
considered and suggest that it may be unwise to use this approach in cases
where accurate numerical results are imperative. 19

Overall, these results suggest that 2 of the 3 approaches we investigated
perform well in terms of both accuracy and speed, implying that GPU comput-
ing can help to make the trade-off between accuracy and speed somewhat less
severe. For the other (hardware-based) approach, we are confident that this
could be useful in practice if combined with very densely parametrized policy
function grids, such as 1024 × 64 = 65, 536 capital grid points. In fact, the
results of Maliar et al. (2010) show that bi-linear interpolation is adequate in
the context of the Krusell-Smith algorithm for sufficiently dense policy grids.
However, given that the Euler equation approach employed in iterating on such
dense grids would lead to prohibitively slow convergence if executed serially on
the CPU, it is clear that only an overall computational strategy which paral-
lelizes both the panel simulation and policy function iteration on the GPU would
make this approach feasible. This is an interesting avenue which we consider
worthwhile exploring in future research.

4 Conclusion

In this paper, we have demonstrated the potential of graphics processing units
(GPUs) in solving models with heterogeneous agents and incomplete markets
using the Krusell-Smith algorithm. In particular, utilizing the compute unified
device architecture (CUDA) of Nvidia, we demonstrated that harnessing the
power of GPUs can deliver a substantial speed gain over a CPU-only approach
in the panel simulation stage of the algorithm. Notably, this gain increases
sharply as the number of agents is increased. The GPU code we make available
is optimized for speed by employing cached texture memory, an optimization
choice ideal for the panel simulation step of the Krusell-Smith algorithm because
of the highly concentrated mass of the wealth distribution.

To demonstrate the improvement in computation speed with GPU comput-
ing, we simulated a version of the Krusell-Smith model with a large number of

19It may be worth mentioning that in many cases convergence for the fast hardware-based
linear interpolation approach could have been attained within less than 50 outer loop iterations
had we relaxed the convergence tolerance only slightly to ǫ = 3.0E − 7 instead of lowering
it by an entire order of magnitude to ǫ = 1.0E − 6. In this sense the fast hardware-based
approach may still be a feasible option when a high degree of accuracy is not necessary.

19

Table 3: Computational times for panel simulation step (GPU/CPU comparison)

GPU Interp. Hardware Single Precision Software Single Precision Software Double Precision

#Agents Mem(Gbs) 100(4) 250(50) 500(50) 100(4) 250(50) 500(50) 100(4) 250(50) 500(50)

10.000 0.00116

Panel Time 0.19 0.20 0.23 0.19 0.24 0.25 0.20 0.24 0.24
Panel Speedup 53.20 50.51 43.90 53.20 42.11 40.41 50.51 42.11 42.11
Polf. Time 7.53 372.80 1284.80 7.70 388.20 1288.30 7.53 386.50 1286.70

Iterations 84† 71† 48 25 26 28 28 23 22
Total Speedup 1.78 0.45 0.56 1.88 1.24 1.00 2.48 1.42 1.23
K̄ Error 0.875 0.100 0.029 0.013 0.014 0.014 0.012 0.014 0.014

500.000 0.058

Panel Time 0.3 0.33 0.34 0.36 0.40 0.41 0.55 0.58 0.59
Panel Speedup 1444.00 1312.73 1274.12 1203.33 1083.00 1056.59 787.64 746.90 734.24
Polf. Time 7.80 385.20 1284.40 7.36 384.70 1288.80 7.36 383.90 1289.20

Iterations 76† 40 68† 29 25 26 26 26 31
Total Speedup 16.36 2.33 0.60 54.41 3.73 1.54 49.49 3.54 1.29
K̄ Error 0.861 0.098 0.021 0.003 0.001 0.001 0.004 0.001 0.001

10.000.000 1.164

Panel Time 2.28 2.29 2.31 3.42 3.61 3.78 7.09 7.35 7.70
Panel Speedup 3720.31 3704.06 3671.99 2480.20 2349.67 2243.99 1196.38 1154.05 1101.60
Polf. Time 7.75 384.3 1267.8 7.69 381.2 1282.3 7.57 386.5 1281.3

Iterations 65† 73† 71† 31 35 33 27 32 33
Total Speedup 195.04 10.05 3.62 666.36 21.25 8.02 582.00 23.26 7.98
K̄ Error 0.867 0.098 0.026 0.027 0.027 0.026 0.003 0.000 0.000

Note: Times are in seconds. K̄ error is defined as Kerr = max(abs(Kt,GPU −Kt,CPU)/Kt,CPU)× 100
Also shown is the time it took for the KS algorithm to converge, including the total number of outer loop iterations.
K̄ Error is the maximum absolute error between the CPU-based ALM and the GPU-variant in question, computed after the 5th outer-loop iteration.
Iterations superscripted with † indicate that convergence was not attained after 50 iterations, requiring a relaxation of ǫ by one order.

2
0

agents. We chose this model because it was recently simulated using several
different algorithms as part of a project reported in a 2010 special issue of the
Journal of Economic Dynamics and Control (see Den Haan, 2010) . Our main
finding was that for very large, but realistic, numbers of agents such as 10 mil-
lion, the panel simulation stage can be simulated more than 1,000 times faster
than on the CPU, leading to very large reductions in computation time from a
practical perspective.

It should be noted that since many GPUs are optimized for single-precision
floating point operations, they tend to be fastest when operated at this level
of precision. In the specific context of the Krusell-Smith algorithm, we found
that employing single-precision floating point arithmetic during the GPU-based
panel simulation was roughly twice as fast as double-precision but produced
similar numerical results. This finding suggests that single-precision arithmetic
may be adequate for some economic problems solved using GPUs. It should be
emphasised, however, that very substantial time gains are realized even under
double-precision arithmetic in our simulations. In this respect, GPUs have
the potential to make the trade-off between speed and accuracy somewhat less
severe. In similar fashion to Aldrich et al. (2011) we caution readers to interpret
our reported speed gains as conservative lower bounds, given that additional
speed gains are possible based on even more aggressively optimized code. To
reduce entry barriers for other researchers, we provided details of the algorithm
we used and explained its GPU implementation using key sections of source
code. We hope that future research will exploit the computational benefits of
GPUs that we have highlighted in this paper.

21

Bibliography

Aldrich, E. M., 2014. Gpu computing in economics. In: Judd, K. L., Schmedders,
K. (Eds.), Handbook of Computational Economics. Vol. 3. Elsevier, Ch. 10.

Aldrich, E. M., Fernández-Villaverde, J., Ronald Gallant, A., Rubio-Ramírez,
J. F., March 2011. Tapping the supercomputer under your desk: Solving
dynamic equilibrium models with graphics processors. Journal of Economic
Dynamics and Control 35 (3), 386–393.

Creel, M., Goffe, W., 2008. Multi-core cpus, clusters, and grid computing: A
tutorial. Computational Economics 32 (4), 353–382.

Den Haan, W. J., January 2010. Comparison of solutions to the incomplete
markets model with aggregate uncertainty. Journal of Economic Dynamics
and Control 34 (1), 4–27.

Den Haan, W. J., Judd, K. L., Juillard, M., January 2010. Computational
suite of models with heterogeneous agents: Incomplete markets and aggregate
uncertainty. Journal of Economic Dynamics and Control 34 (1), 1–3.

Den Haan, W. J., Rendahl, P., January 2010. Solving the incomplete markets
model with aggregate uncertainty using explicit aggregation. Journal of Eco-
nomic Dynamics and Control 34 (1), 69–78.

Dziubinski, M., Grassi, S., 2014. Heterogeneous computing in economics: A
simplified approach. Computational Economics 43 (4), 485–495.

Giusto, A., 2014. Adaptive learning and distributional dynamics in an incom-
plete markets model. Journal of Economic Dynamics and Control 40 (C),
317–333.

Horvath, M., 2012. Computational accuracy and distributional analysis in mod-
els with incomplete markets and aggregate uncertainty. Economics Letters
117 (1), 276–279.

Krusell, P., Smith, A. A., October 1998. Income and wealth heterogeneity in
the macroeconomy. Journal of Political Economy 106 (5), 867–896.

Maliar, L., Maliar, S., Valli, F., January 2010. Solving the incomplete markets
model with aggregate uncertainty using the krusell-smith algorithm. Journal
of Economic Dynamics and Control 34 (1), 42–49.

Morozov, S., Mathur, S., 2012. Massively parallel computation using graphics
processors with application to optimal experimentation in dynamic control.
Computational Economics 40 (2), 151–182.

Reiter, M., 2010. Solving the incomplete markets model with aggregate uncer-
tainty by backward induction. Journal of Economic Dynamics and Control
34 (1), 28–35.

22

Appendix

Algorithm A.1 Hybrid CPU/GPU implementation of KS algorithm

1. Specify initial values for the 4 ALM regression coefficients. We choose
B0 = [0.0, 1.0, 0.0, 1.0], i.e. setting all OLS intercepts to zero and all slope
coefficients to 1. Specify an initial guess of the individual-agent policy
function k′ = Φ0(k,K, a, ǫ); we simply set k′ = 0.9 × k for all k,K,a and
ǫ on the 4-dimensional discretized state space grid.

2. Conditional on current beliefs about K ′ implied by Bj for j ≥ 2, solve
the individual-agent policy function via Euler equation iteration on the
CPU. Use as a starting value for the policy function either k′ = Φ0(k,K)
(at the start of the simulation) or the last found policy function k′ =
Φj−1(k,K) for Bj−1. Convergence of this inner loop supplies the current
update of the policy function in the shape of the 4-dimensional matrix
k′ = Φj(k,K, a, ǫ).

3. Given that the aggregate (a) and idiosyncratic (ǫ) state variables are of
binary nature, we decompose and re-write the current k′ = Φj(k,K, a, ǫ)
in terms of a total of four 2-dimensional grids, k′ = Φ00,j(k,K), k′ =
Φ01,j(k,K), k′ = Φ10,j(k,K), and k′ = Φ11,j(k,K), and upload them into
the GPU’s texture memory.

4. Initialize N -dimensional vectors vt and vt+1 in the GPU’s memory; vt
holds the first-period cross-section of agents’ individual wealth, vt+1 is at

first zero-valued. Copy the current economy-wide capital Kt =
1
N

∑N
vt,

a matrix containing all agents’ idiosyncratic shocks for all t ∈ (1, T), and
a vector of all aggregate shocks for all t ∈ (1, T) into the GPU’s memory.
Given that each CUDA core can access these values, use fast interpolated
texture fetches from the 4 uploaded policy functions in texture memory to
populate vt+1 massively in parallel. Compute Kt+1 = 1

N

∑N vt+1 for the
next iteration at t+ 1 for which vt will now be initialized with the values
from vt+1copied over from the previous iteration.

5. From step 4 obtain and copy back to the CPU host’s memory the cur-
rent simulated time path of economy-wide (average) physical capital
[K0,K1, . . . ,KT]. Employ this in two separate regressions, one for each
aggregate TFP-state, in order to compute and update Bj+1. We compute
this update as a weighted average of the old Bj and the new Bj+1 using
Bj+1 = λBj+1 + (1− λ)Bj with some relaxation parameter λ.

6. Given our new Bj+1 we repeat steps 2-5 until convergence is achieved
based on some ||Bj+1 −Bj || < ǫ. We set ǫ = 1.0E − 7.

23

Algorithm A.2 Double precision Catmull-Rom interpolation kernel (Cuda-C)

1 __host__ __device__ double catrom_w0a(double a) {
2 re turn a∗(−0.5 + a ∗ (1 . 0 − 0 .5∗ a)) ; }
3 __host__ __device__ double catrom_w1a(double a) {
4 re turn 1 . 0 + a∗a∗(−2.5 + 1.5∗ a) ; }
5 __host__ __device__ double catrom_w2a(double a) {
6 re turn a ∗ (0 . 5 + a ∗ (2 . 0 − 1 .5∗ a)) ; }
7 __host__ __device__ double catrom_w3a(double a) {
8 re turn a∗a∗(−0.5 + 0.5∗ a) ; }
9

10 __device__ double catRomFiltera (double x , double c0 , double c1 ,
11 double c2 , double c3) {
12 double r ;
13 r = c0 ∗ catrom_w0a(x) ;
14 r += c1 ∗ catrom_w1a(x) ;
15 r += c2 ∗ catrom_w2a(x) ;
16 r += c3 ∗ catrom_w3a(x) ;
17 re turn r ; }
18
19 __device__ double tex2DCatRoma (cudaTextureObject_t texObj ,
20 double x , double y) {
21 x −= 0 . 5 ;
22 y −= 0 . 5 ;
23 double px = f l o o r (x) ;
24 double py = f l o o r (y) ;
25 double fx = x − px ;
26 double fy = y − py ;
27 px += 0 . 5 ;
28 py += 0 . 5 ;
29
30 in t2 vv1 = tex2D (texObj , px−1,py−1); i n t2 vv2 = tex2D (texObj , px , py−1);
31 in t2 vv3 = tex2D (texObj , px+1,py−1); i n t2 vv4 = tex2D (texObj , px+2,py−1);
32 in t2 vv5 = tex2D (texObj , px−1,py) ; i n t2 vv6 = tex2D (texObj , px , py) ;
33 in t2 vv7 = tex2D (texObj , px+1,py) ; i n t2 vv8 = tex2D (texObj , px+2,py) ;
34 in t2 vv9 = tex2D (texObj , px−1,py+1); i n t2 vv10 = tex2D (texObj , px , py+1);
35 in t2 vv11 = tex2D (texObj , px+1,py+1); i n t2 vv12 = tex2D (texObj , px+2,py+1);
36 in t2 vv13 = tex2D (texObj , px−1,py+2); i n t2 vv14 = tex2D (texObj , px , py+2);
37 in t2 vv15 = tex2D (texObj , px+1,py+2); i n t2 vv16 = tex2D (texObj , px+2,py+2);
38
39 re turn catRomFiltera (fy ,
40 catRomFiltera (fx , __hiloint2double (vv1 . y , vv1 . x) , __hiloint2double (vv2 . y , vv2 . x) ,
41 __hiloint2double (vv3 . y , vv3 . x) , __hiloint2double (vv4 . y , vv4 . x)) ,
42 catRomFiltera (fx , __hiloint2double (vv5 . y , vv5 . x) , __hiloint2double (vv6 . y , vv6 . x) ,
43 __hiloint2double (vv7 . y , vv7 . x) , __hiloint2double (vv8 . y , vv8 . x)) ,
44 catRomFiltera (fx , __hiloint2double (vv9 . y , vv9 . x) , __hiloint2double (vv10 . y , vv10 . x) ,
45 __hiloint2double (vv11 . y , vv11 . x) , __hiloint2double (vv12 . y , vv12 . x)) ,
46 catRomFiltera (fx , __hiloint2double (vv13 . y , vv13 . x) , __hiloint2double (vv14 . y , vv14 . x) ,
47 __hiloint2double (vv15 . y , vv15 . x) , __hiloint2double (vv16 . y , vv16 . x))) ; }
48
49 __global__ void panelsim2d_catmull_rom_kernel(cudaTextureObject_t texObj_bad ,
50 cudaTextureObject_t texObj_good , double K, double ∗ inarr ,
51 unsigned char ∗ i d i o s , i n t N, i n t ngrid2 ,
52 in t ngrid , double xmin , double xmax ,
53 double ymin , double ymax , double theta)
54 {
55 unsigned in t x i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
56
57 i f (x i < N) {
58 double xv = ((K − xmin)/ (xmax − xmin)) ∗

59 (double) (ngr id2 − 1) + 0 . 5 ;
60 double yv = (pow((i n a r r [x i] − ymin)/ (ymax − ymin) , (1 . 0 / theta)) ∗

61 (double) (ngr id − 1)) + 0 . 5 ;
62 unsigned char empstatb = i d i o s [(x i / 8)] & (128>>(x i %8));
63
64 double va l = empstatb ? clampd (tex2DCatRoma (texObj_good , xv , yv) ,
65 ymin , ymax) :
66 clampd (tex2DCatRoma (texObj_bad , xv , yv) ,
67 ymin , ymax) ;
68 i n a r r [x i] = val ;
69 }
70 } 24

Supplementary Appendix (Online publication only)

B.1 Model description and calibration

The economy consists of a large number of households indexed by i. Agents
face an idiosyncratic shock ǫ which can take on two different values: ǫ = 1
(employed) and ǫ = 0 (unemployed). An employed agent receives an after-tax
wage (1 − τt)wt. An unemployed agent receives unemployment benefits µwt.
Investment in capital yields a return rt−δ, where rt is the rental rate on capital
and δ is the depreciation rate. The utility maximization problem of agent i is

max
ci
t
,ki

t

U i = E

∞
∑

t=0

βt (c
i
t)

1−γ − 1

1− γ
(1)

subject to:

cit + kit = rtk
i
t−1 +

[

(1 − τt)l̄ǫ
i
t + µ(1 − ǫit)

]

wt + (1 − δ)kit−1 (2)

kit ≥ 0 (3)

where cit is consumption, kit is end-of-period capital, and l̄ is the time endow-
ment. The first-order condition for this problem is

Uc(c
i
t) = βEt

[

Uc(c
i
t+1)(1 + rt+1 − δ)

]

(4)

A perfectly competitive firm uses capital and labour to produce output using
a Cobb-Douglas production function. Let Kt and Lt denote capital per capita
and the employment rate, respectively. Output per capita is given by

Yt = atK
α
t−1(l̄Lt)

1−α (5)

where at is an aggregate productivity shock, which takes on two different
values: 1−∆a (bad state) and 1 + ∆a (good state).

The firm maximizes profits, so the wage rate paid to labour and rental rate
on capital are equal to their marginal products:

wt = (1− α)at

(

Kt−1

l̄Lt

)α

rt = αat

(

Kt−1

l̄Lt

)α−1

(6)

Since these factor prices are functions of economy-wide capital and labour
and the aggregate state, they are treated as given by individual agents.

The government taxes the wage income of employed agents and distributes
the proceeds to the unemployed. Accordingly, the tax rate is

τt =
µut

l̄Lt
(7)

where ut = 1− Lt is the unemployment rate.

25

The aggregate productivity shock a and the idiosyncratic employment shock
ǫ follow first-order Markov processes. As in Den Haan and Rendahl (2010),
transition probabilities are calibrated so that the unemployment rate takes on
only two values:: ub = u(1 −∆a) (bad state) and ug = u(1 + ∆a) < ub (good
state).

If we define yit ≡ rtk
i
t−1 +

[

(1− τt)l̄ǫ
i
t + µ(1 − ǫit)

]

wt + (1 − δ)kit−1and use
(2), the first-order condition for the individual-agent problem, (4), becomes

Uc(y
i
t − kit) = βEt

[

Uc(y
i
t+1 − kit+1)(1 + rt+1 − δ)

]

(8)

The individual-agent policy function will take the form kit = g(kit−1,Kt−1, ǫ
i
t, at).

Individual income can be represented as yit(k
i
t,Kt, ǫ

i
t, at) and the return on cap-

ital as rt(Kt, at). It follows that (8) can be written in the following form where
dependence on shocks is suppressed for simplicity:

Uc

(

yit(k
i
t−1,Kt−1)− g(kit−1,Kt−1)

)

=

βEt

[

Uc

(

yit+1(k
i
t,Kt)− g(kit,Kt)

)

(1 + rt+1(Kt)− δ)
]

(9)

Equation (9) shows that the optimal capital choices of agents depend on two
endogenous state variables: aggregate and individual capital. Consequently,
standard 2-dimensional grid-based techniques can be used to solve this problem.

We follow Maliar et al. (2010) in using Euler equation iteration to solve for
the individual agent policy function with a uniform grid for aggregate capital
and an individual capital grid that follows a simple polynomial rule. We use
the same calibration as in Den Haan and Rendahl (2010):

Table B.1: Calibration of KS economy

Parameters β γ α δ l̄ µ ∆a

Values 0.99 1.0 0.36 0.025 1.0/0.90.15 0.01

s,ǫ/s’,ǫ’ 1−∆a, 0 1−∆a, 1 1 + ∆a, 0 1 + ∆a, 1

1−∆a, 0 0.525 0.35 0.0.3125 0.09375
1−∆a, 1 0.03889 0.836111 0.002083 0.122917
1 +∆a, 0 0.09375 0.03125 0.291667 0.583333
1 +∆a, 1 0.009115 0.115885 0.024306 0.859604

Note: Calibration matches that in Den Haan et al. (2010).

26

Figure B.1: Optimal individual agent policy function surfaces (k′ − k) = h(k,K)

Low TFP, Unemployed Low TFP, Employed

High TFP, Unemployed High TFP, Employed

Note: The optimal policy function surfaces plotted here replicate the results presented in Horvath (2012). The optimal policy surfaces shown here
are based on a discretization scheme employing 500 grid points in the individual agent and 50 grid points in the economy-wide capital dimension.

2
7

Figure B.2: (k′ − k) = h(k,K = 39) for k ∈ (10.0, 50.0)(poor)

Low TFP, Unemployed Low TFP, Employed

High TFP, Unemployed High TFP, Employed

Note: The optimal policy functions plotted here replicate the results presented in Horvath (2012).

2
8

Figure B.3: (k′ − k) = h(k,K = 39) for k ∈ (100.0, 800.0)(wealthy)

Low TFP, Unemployed Low TFP, Employed

High TFP, Unemployed High TFP, Employed

Note: The optimal policy functions plotted here replicate the results presented in Horvath (2012).

2
9

