The University of Southampton
University of Southampton Institutional Repository

Multidimensional extension of the continuity equation method for debris clouds evolution

Multidimensional extension of the continuity equation method for debris clouds evolution
Multidimensional extension of the continuity equation method for debris clouds evolution
As the debris spatial density increases due to recent collisions and inoperative spacecraft, the probability of collisions in space grows. Even a collision involving small objects may produce thousands of fragments due to the high orbital velocity and the high energy released. The propagation of the trajectories of all the objects produced by a breakup would be prohibitive in terms of computational time; therefore, simplified models are needed to describe the consequences of a collision with a reasonable computational effort. The continuity approach can be applied to this purpose as it allows switching the point of view from the analysis of each single fragment to the study of the evolution of the debris cloud globally. Previous formulations of the continuity equation approach focussed on the representation of the drag effect on the fragment spatial density. This work proposes how the continuity equation approach can be extended to multiple dimensions in the phase space defined by the relevant orbital parameters. This novel approach allows including in the propagation also the effect of the Earth’s oblateness and improving the description of the drag effect by considering the distribution of area-to-mass ratio and eccentricity among the fragments. Results for these three applications are shown and discussed in terms of accuracy compared to the numerical propagation and to the one-dimensional approach.
space debris, continuity equation, debris cloud, fragments propagation
0273-1177
1-17
Letizia, Francesca
5f9f7e3f-0bf0-4731-9660-2d025def8392
Colombo, Camilla
595ced96-9494-40f2-9763-ad4a0f96bc86
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a
Letizia, Francesca
5f9f7e3f-0bf0-4731-9660-2d025def8392
Colombo, Camilla
595ced96-9494-40f2-9763-ad4a0f96bc86
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a

Letizia, Francesca, Colombo, Camilla and Lewis, Hugh (2015) Multidimensional extension of the continuity equation method for debris clouds evolution. Advances in Space Research, 57 (8), 1-17. (doi:10.1016/j.asr.2015.11.035).

Record type: Article

Abstract

As the debris spatial density increases due to recent collisions and inoperative spacecraft, the probability of collisions in space grows. Even a collision involving small objects may produce thousands of fragments due to the high orbital velocity and the high energy released. The propagation of the trajectories of all the objects produced by a breakup would be prohibitive in terms of computational time; therefore, simplified models are needed to describe the consequences of a collision with a reasonable computational effort. The continuity approach can be applied to this purpose as it allows switching the point of view from the analysis of each single fragment to the study of the evolution of the debris cloud globally. Previous formulations of the continuity equation approach focussed on the representation of the drag effect on the fragment spatial density. This work proposes how the continuity equation approach can be extended to multiple dimensions in the phase space defined by the relevant orbital parameters. This novel approach allows including in the propagation also the effect of the Earth’s oblateness and improving the description of the drag effect by considering the distribution of area-to-mass ratio and eccentricity among the fragments. Results for these three applications are shown and discussed in terms of accuracy compared to the numerical propagation and to the one-dimensional approach.

Text
Letizia_ASR2015_acc.pdf - Accepted Manuscript
Download (1MB)

More information

Submitted date: 31 October 2014
Accepted/In Press date: 27 November 2015
e-pub ahead of print date: 8 December 2015
Keywords: space debris, continuity equation, debris cloud, fragments propagation
Organisations: Astronautics Group

Identifiers

Local EPrints ID: 384947
URI: http://eprints.soton.ac.uk/id/eprint/384947
ISSN: 0273-1177
PURE UUID: fe53e965-0c17-4689-8b2f-d5f1699f897d
ORCID for Camilla Colombo: ORCID iD orcid.org/0000-0001-9636-9360
ORCID for Hugh Lewis: ORCID iD orcid.org/0000-0002-3946-8757

Catalogue record

Date deposited: 14 Jan 2016 10:11
Last modified: 15 Mar 2024 02:54

Export record

Altmetrics

Contributors

Author: Francesca Letizia
Author: Camilla Colombo ORCID iD
Author: Hugh Lewis ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×