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Abstract

Recently a number of authors have questioned both the validity and utility
of inclusive fitness. One particular claim is that Hamilton's rule applies only
to additive games. Additive games represent a vanishingly small subset of
all games and do not capture a number of interesting qualitative behaviours
which are present in non-additive games. Thus, if these criticisms were cor-
rect, inclusive fitness would be a severely limited theoretical tool. We show
these criticisms are not valid by demonstrating that any symmetric game can
be transformed into an additive payoff matrix in such a way that the action
of selection remains unchanged. The result comes with a caveat, however,
which is that terms in the payoff matrix must themselves be frequency depen-
dent. Despite this, we demonstrate the utility of inclusive fitness by means of
applying Hamilton’s rule to two such non-additive games. The central claim
of inclusive fitness is that relatedness is the key to cooperation, we show that
this remains true even for non-additive games.
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Highlights

e We review the notion of an additive game in the context of evolutionary game
theory.

e We show how inclusive fitness can be applied to additive games.

e We show how any non-additive evolutionary game can be transformed into
an additive one without altering the dynamics of selection.



e We apply the notion of inclusive fitness to two general classes of non-additive
games.

1 Social Evolution and Inclusive Fitness

A social trait is any trait which has a fitness altering effect on other members of
the population in question. Typical examples might include: fighting behaviour,
sexual strategies or signaling (see for example [10, 22]). In the case of social
evolution the fitness of a particular trait is not an absolute (or a function of a
static environment) but is dependent on the frequencies with which other types of
individuals are present in the population. Thus, it seems that the problem of social
evolution is a fundamentally more difficult task for theorists than the more basic
problem of frequency-independent selection.

The problem of the evolution of cooperation has been a particularly prominent
research question within the field of social evolution. The research program at-
tempts to explain the seemingly paradoxical observation that some organisms forgo
reproductive potential in order to increase the fitness of others. Prominent examples
of this are sterile castes in the eusocial insects [8], stalk cells in slime moulds [19]
and somatic cells in multicellular organisms [11]. Many very plausible explanations
and well developed theories exist which can explain cooperation in the biological
world; the most prominent of which is inclusive fitness (I.F.) theory [7, 6]. This
paper is primarily concerned with IF and how this interpretation can be arrived at
starting from the assumptions typically made in evolutionary game theory.

I.F. partitions fitness into two terms, the first being cost and the second being
benefit weighted by the relatedness between the donor and the recipient. The
inclusive fitness of an individual is b — ¢ (see Grafen [5] for potential pitfalls in this
approach). The meaning of each symbol is summarised as follows:

1. Relatedness, r, which measures the extent to which interactions are correlated
between social strategies.

2. Cost, ¢, which measures the extent to which that certain behaviour decreases
the actor’s expected number of offspring.

3. Benefit, b, which measures the extent to which the expected number of off-
spring of the recipient of the behaviour increases.

One major cause of controversy of late has been over the nature of the cost and
benefit terms. Some authors, most prominently Nowak et. al. [15], have claimed
that such a decomposition of fitness is hardly ever valid. This is because in many
instances there are no appropriate quantities in their models to equate with Hamil-
ton's ¢ and b. Particularly, if interactions are synergistic, costs and benefits by their
very nature cannot be ascribed to any one action but are the combined outcome
of two (or more) actions being performed together [16]. Games which are addi-
tive describe straightforward interactions in the absence of synergy, such that each
strategy or behaviour can be construed of as a behaviour which incurs a constant
cost and donates a constant benefit to any other individual with which it interacts.



In other words the incurred cost and donated benefit are independent of the phe-
notype of the recipient of the action. Clearly this is a very specific assumption to
make and there is no a prior reason to think that many real life systems would
have this property. In such a situation the application of IF is straightforward and
uncontroversial, however, such games represent a vanishingly small proportion of all
possible games.

The central result of this paper is that any payoff matrix (additive or otherwise)
can be transformed into a payoff matrix which is additive, in such a way that the
action of selection remains unchanged. Due to this transformation the |.F. approach
remains valid even for non-additive games. The bottom line results are two simple
formulae for the appropriate costs and benefits to use in an |.F. decomposition.
These formulae are presented in terms of simple matrix operations of the original
payoff matrix and are valid for an arbitrary number of strategies.

We will briefly review the key assumptions of evolutionary game theory. We
will then show how this formalism can be neatly extended to include population
structure. We then review the meaning of an additive game and show how a notion
of inclusive fitness can very easily be arrived at in such a case. The main result of
the paper then follows, which shows how any non-additive game can be transformed
into an additive one so that the inclusive fitness decomposition remains valid. We
apply this formalism to both the stag hunt and snowdrift game, which are both non-
additive games, in order to demonstrate the utility of inclusive fitness. The central
claim of inclusive fitness is that relatedness facilitates the evolution of cooperation,
we show that this remains true in general.

2 Payoff and Assortment

Evolutionary game theory is often coupled with equations of motion such as the
replicator equation [20] to give a dynamic account of selection. However, for our
purposes we do not need a full dynamic account of selection, we are simply in-
terested in whether or not a given strategy will increase or decrease in frequency.
By assumption a strategy will increase in frequency if it has a higher than average
fitness and it is present in non-zero frequencies in the population. A strategy ¢ has
a payoff m; and a relative frequency x; (such that frequencies sum to one). The
average payoff is denoted by 7. In a well-mixed population individuals play a game
with a random member of the population, in which case payoff can be calculated
via:

m; = ijMij (1)
J

Where M;; is the payoff i receives upon encountering a j.

In all cases average payoff is calculated via 7 = ), x;7;.

It has often been remarked upon that structuring of interactions is the key to the
evolution of cooperation. Specifically positive assortment facilitates the evolution
of cooperation and altruism [1, 18, 2, 4, 12]. One particular way of seeing this is
to realise that in a positively assorted population the benefits of cooperation fall



disproportionately upon those who cooperate and thus it may become rational to
do so. Equation (1) does not take into account any structuring of interactions
and therefore lacks some generality. More recently attempts have been made to
incorporate population structure into the framework of evolutionary game theory
(in particular Van Veelen [21] whose approach we build on here).

More generally than equation (1) the payoff to an individual 4 is given by the
probability that it meets an individual j, multiplied by the payoff received against a
j summed over all possible js. That is:

T = ZPZJM” (2)
J

where P;; should be read as the probability that an individual meets a j given that it
is of type 7. The calculation of average payoff is unaltered. The well-mixed condition
is a special case of the above in which P;; = z; and is therefore independent of
i. Of particular interest to social evolution theory is positive assortment; whereby
strategies meet their own types more often than would be expected from random
interactions.

A simple model captures the key features of assortment. Consider a focal indi-
vidual of type 7, with probability « it is paired with a clonally related individual and
with probability 1 — « it is paired with an individual chosen at random from the
population. Under this formulation of assortment the parameter « is equivalent to
Hamilton's r (see [3] for a proof). The matrix P can thus be written as:

o l1-a)zj+a j=i
Fiy {(1 —a)z; jFi 3

This can be expressed more concisely using the delta matrix: § for which ¢;; =1 if
i=yjand 6;; =0 if i # j. Thus we may write:

P = (1 — Oé).’Bj + aéij (4)

2.1 Additivity

One of the main charges Nowak et al. bring against Hamilton's rule is that it only
applies to additive games; we show here that this is not true. Additive games have
a feature known as equal gains from switching [13]. Given a particular pairwise
interaction if we were to hypothetically change the strategy of a focal player then
the resulting change in payoff for that player would be independent of the strategy
of its partner.

Formally the payoff matrix must satisfy:

M, — My = My, — My, Vi,5,k,1 (5)

A general two-player game is given by the payoff matrix:

w2 3)



For this payoff matrix to be additive it is necessary that: R —S =T — P. One can
see that this is a rather special condition and is not likely to be met for a random
payoff matrix.

Any additive game can be represented as a donation game in which an individual
may pay a certain cost to bestow a benefit upon another individual (Crucially the
benefit may outweigh the cost). If strategy i costs an individual ¢; units of fitness
to perform, and donates b; units of fitness to its partner then such a game can be
written as:

Mij =bj —ci (7)

this satisfies equation (5) and is therefore additive. Furthermore, it will always be
possible to arbitrarily choose one strategy to have zero cost and benefit. This is
because payoffs are relative, and the direction of selection is unaltered upon addition
of a constant to the payoff matrix.. By subtracting by —c; from M we are left with
a payoff matrix in which the top left corner is zero (or any other diagonal element
of our choosing). Then all other cost and benefit terms can be considered as being
relative to strategy one.

In the case of an assorted population it is possible to arrive at the notion of
inclusive fitness and hence to Hamilton's rule.

Payoff to individual i is:

e

Z Py M (8)

Z {1 — )z +ady} (b — ) 9)
= (1-a)bztab —¢ (10)

As payoff is an inherently relative concept it may be defined up to an arbitrary
constant. We therefore subtract the constant term and arrive at: m;, = ab; — ¢
which is exactly the inclusive fitness of individual 7. Hamilton's rule, in its simplified
form, simply asks when cooperators increases in frequency with respect to defectors,
where a cooperator donates a fitness benefit b at a cost of ¢ to itself and the
defective strategy donates no benefit at no cost. Thus, the payoff of a cooperator
is m. = ab — ¢ and the defector w4y = 0 and thus cooperation increases in frequency
if: ab — ¢ > 0, which is Hamilton's rule if one equates « with r.

2.2 ST Space

Santos et. al. [17] introduced a powerful tool for considering two-by-two games
by showing that we may set R = 1 and P = 0 without loss of generality. Thus
the space of all possible two-player games is two-dimensional (named ST space).
They were able to show how the space is composed of 4 games with qualitatively
different behaviour (prisoner’s dilemma, harmony game, snowdrift game and stag
hunt game). In ST space additive games satisfy the constraint T = 1-S and thus lie
on a line through the space of all two-player games which passes through the pris-
oner’s dilemma and the harmony game only (see figure 1). The prisoner’s dilemma
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Figure 1: ST space: the space of all possible two player games. The four quadrants
correspond to 4 qualitatively different types of dynamics. The principle diagonal,
represented with the dashed line, is the one-dimensional subset of games which are
additive, and can hence be described in terms of constant costs and benefits.

and harmony game both have pure equilibria. The snowdrift game has a mixed
equilibrium and the stag hunt game is bistable. These two more interesting types
of behaviour are features of the non-additive nature of the payoff matrix.

3 Non-Additive Games

The central result of this paper is that any possible payoff matrix can be transformed
into an additive matrix in such a way that the direction of selection is unaltered.
This is in agreement with the inclusive fitness research programme, which claims
that Hamilton's rule is general. The caveat in this approach is that the cost and
benefit terms are now frequency dependent, that is they can in general depend upon
the state of the population z. What follows is a simple procedure for determining
the appropriate costs and benefits:

mo= Z [(1 = @)z + dij0] My, (11)
= (M), +a(M; — (M.x),) (13)
aB;(x) — Cy(x) (14)



with Cj(z) = — (M.z), and B;(xz) = M;; — (M.x),. The cost and benefit terms
are chosen in such a way so that they fit the appropriate form for inclusive fitness.
For some intuition it is instructive to look again at the general form of the two
player game in equation (6). We define all costs and benefits relative to that of the
second player, so that: C(z) =¢1 —c2. Mz = (Re+ S(1 —xz), Tz + P(1 —x))
and hence C(z) = (T — R) + (1 — z)(P — S). This term is the expected gains
from switching in the well-mixed case. That is, given that ones partner is chosen
at random what is the average change in payoff upon changing from strategy 2
to strategy 1. In a similar manner we define B(z) = b; — by. Then: B(x) =
R—P+z(T—R)+ (1 —x)(P—S), the intuition behind this term is less straight-
forward. R— P is the difference between strategy one and strategy two both playing
against themselves. The remainder of the term is again the expected gains from
switching in the well-mixed case. The benefit term therefore represents the gains
from self interactions minus the gains from switching assuming random interactions.
More generally the cost in Hamilton's rule is simply the expected payoff in the
well-mixed case, the benefit is the difference between the self payoff and the expected
well-mixed payoff. Relatedness simply measure the extent to which one is likely to
meet a like type above that which would be expected from random interactions.

3.1 Inclusive Fitness in the Snowdrift and Stag Hunt Games

To rescue the notion of inclusive fitness it is not only necessary to show that it
remains technically valid, but also to demonstrate its utility. To that end we show
how the notion of inclusive fitness can be used to analyse two simple classes of non-
additive games: the snowdrift and stag hunt games. Both games are cooperative
dilemmas in that the population would be best served by everyone cooperating, but
selection does not always reach this state [9]. In the snowdrift game there is a
single stable fixed point with an intermediate level of cooperation. In the stag hunt
game, whilst all cooperate is indeed stable, so is all defect, which particular state
is reached depends on the initial conditions. The central claim of inclusive fitness
is that relatedness facilitates the evolution of cooperation; here we show that this
remains true even in these two non-additive games. In the case of the snowdrift game
relatedness increases the level of cooperation at the mixed equilibrium. Furthermore,
there exists a level of relatedness which is sufficient for the fixation of cooperation.
In the case of the stag hunt game relatedness increases the size of the basin of
attraction for the cooperative state, and likewise, there is a level of relatedness which
is sufficient to increase the basin of attraction to all initial conditions (provided of
course that there is a non-zero level of cooperation to begin with).

The snowdrift game is a game in which S > P and T' > R (see fig. 1). Even
in the absence of relatedness an intermediate level of cooperation is stable. The
stable polymorphic equilibrium is given by [14]:

B S—P
T S+T-P-R

*

(15)

This result can be arrived at from our inclusive fitness formalism. A level of co-
operation, x, will be stable if rB(x) = C(x). In the well-mixed case » = 0 and



thus the fixed point can be found by setting C(xz) = 0. Recall that C(z) =
(T —R)+ (1 —z)(P —S5). Setting equal to zero and solving for x:

(T —R)+(1-2z)(P-8) = 0 (16)
= 2(T-R+S-P)+P—-S  (17)

S—P
* T SiT- PR (19)

which is equation (15).

— C(x) — Cx)

- rB(x) (r=0.00) - - rB(x) (r=0.00)
- rB(x) (r=0.25) -~ rB(x) (r=0.25)
rB(x) (r=0.50) rB(x) (r=0.50)

(a) Snowdrift Game (b) Stag Hunt Game

Figure 2: Determination of fixed points with frequency dependent costs and benefits.
Left: snowdrift game with (P, R, S,T) = (0,1,0.5,1.5) and right: stag hunt game
with (P, R, S,T) = (0,1,—0.5,0.5). Solid line is C(z) and dashed lines are rB(x)
for » = 0,0.25 and 0.5 respectively. A fixed point occurs where the dashed line
intercepts the solid line, and furthermore the fixed point is stable if the dashed line
crosses from above to below the solid line (in the direction of increasing x). The
r = 0.5 line does not cross the solid line within the interval which indicates that
this level of relatedness is sufficient for cooperation to fixate (in both cases).

One can investigate the effects of relatedness on the snowdrift game by analysing
the more general equation: rB(x) = C(x). Substituting our formulae for C' and B
and rearranging leads to:

. P—rR+rS-S

T U-n(P+R-5-T) (19)

this quantity is greater than 1 if » > (T—R)/(T—P), which gives us the level of
relatedness required for the fixation of cooperation in the snowdrift game.

The stag hunt game occurs when T' < R and S < P (see fig. 1). This game
also has a fixed point given by equation (15); however, in this case the fixed point is
unstable. It therefore defines the basin of attraction for the pure cooperative state.

The effects of increasing relatedness can be studied by looking at the sign of



dm*/dr.
"
da* _ 1 P—-R (20)
dr - 1-r2?2P+R-S-T
This is an increasing function of r if: S+ T > P + R. This is exactly the region
of game space above the principle diagonal of figure 1 which includes the snowdrift
game.

This situation is represented graphically in figure 2, which shows a gradual
increase of cooperation at the stable polymorphic equilibrium in the snowdrift game
which reaches 100% for sufficiently high r. For the stag hunt game the figure
illustrates an increase of the size of the basin of attraction for the pure cooperative
state until the basin covers the whole region for sufficiently high .

4 Discussion

The inclusive fitness approach to social evolution depends on three terms. Firstly,
the coefficient of relatedness which measures the extent to which interactions are
correlated between like social strategies. Secondly, cost, which characterises the ex-
pected decrease in the number of offspring a certain strategy is likely to incur, and
finally benefit, which measures the additional expected number of offspring that a
partner of the focal individual can expect on account of that interaction. The first
of these three terms has been the one which has attracted the most attention and
discussion since the original formulation of inclusive fitness in the 1960s. However,
judging by recent debate, the other two terms have caused just as much, if not
more, confusion and controversy in the literature. One point, however, which all
parties seem to agree with is that for additive games the decomposition is always
valid. However, additive games form a vanishing small subset of all possible games
and therefore the assumption of additivety is unacceptably restrictive. Furthermore,
interesting qualitative phenomena, such as stable polymorphic equlibria, or multiple
stable states, can only occur if a game is non-additive. On the face of it this is a
fatal blow to the formalism of inclusive fitness. However, this paper has shown that
for any possible (pair-wise) game, with any number of strategies there exists an
additive payoff matrix for which the direction of selection is the same as the original
payoff matrix. Furthermore, we show exactly how to calculate such terms using sim-
ple matrix operations. This equivalence comes at a cost, however, which negates
some of the simple intuition which inclusive fitness offers. That is that in such a
non-additive game the costs and benefits must depend upon the state of the pop-
ulation, and can potentially change from one generation to the next. This may not
necessarily be a weakness of any particular formalism itself, but merely a reflection of
the fact that non-additive games are inherently more complex systems than additive
ones and that any formalism which tackles them must be somewhat less simple and
elegant than the simplified version of Hamilton's rule. Nonetheless, we have shown
that the central claim of inclusive fitness, namely that relatedness facilitates the
evolution of cooperation, remains true. This happens either by increasing the level
of cooperation at the stable polymorphic equilibrium (until fixation, for sufficiently



large ) or by increasing the size of the basin of attraction of the cooperative state
(likewise to cover the whole interval for sufficiently large r).
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