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ABSTRACT
Smart energy systems that leverage machine learning tech-
niques are increasingly integrated in all aspects of our lives.
To better understand how to design user interaction with such
systems, we implemented three different smart thermostats
that automate heating based on users’ heating preferences and
real-time price variations. We evaluated our designs through
a field study, where 30 UK households used our thermostats
to heat their homes over a month. Our findings through the-
matic analysis show that the participants formed different un-
derstandings and expectations of our smart thermostat, and
used it in various ways to effectively respond to real-time
prices while maintaining their thermal comfort. Based on the
findings, we present a number of design and research implica-
tions, specifically for designing future smart thermostats that
will assist us in controlling home heating with real-time pric-
ing, and for future intelligent autonomous systems.
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INTRODUCTION
We live in a world where smart energy systems form an im-
portant part of our lives, not only within workplaces, but also
at home [9]. These systems sense information about their
users, learn from this information, and exploit what they have
learned to make decisions on their users’ behalf. Examples
include smart thermostats that learn households’ occupancy
behaviour for automating heating of their house (e.g., Nest).
Consistent with the improvements in these technologies, our
ways of consuming energy change day by day.

Meanwhile, the energy market is undergoing significant
changes with penetration of renewables, including wind tur-
bines and solar farms [23]. Energy production from these re-
newables fluctuates depending on the weather. Such variable
energy generation puts more strain on the energy market to
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Figure 1. One of our smart thermostat designs running on a tablet.

balance supply with demand. One way to overcome this issue
is to use real-time pricing schemes, where energy prices vary
over short time intervals, typically hourly [3]. These real-
time prices significantly change the role of consumers and
offer lower energy bills. However, consumers are required to
continuously monitor the changing prices to take the advan-
tage of them. While this task might be daunting for people,
it is well-suited for a smart system that can learn user prefer-
ences, monitor the prices, and respond to them autonomously.
Prior HCI studies about renewable resources [4] and real-time
pricing [8] have shown that autonomous computing systems
can help people shift their loads by providing them with rec-
ommendations. However, in these studies the tasks were not
fully automated by the systems, therefore user reactions to-
wards agency was limited to the only suggestions received.

Against this background, in this study we aim to explore how
households adopt to and interact with a home smart thermo-
stat designed to help them manage heating given real-time
energy prices. To do so we developed and deployed three
different smart thermostats: a manual one through which par-
ticipants explicitly specify how the heating should respond to
price changes, and two learning-based ones that employ an
artificial intelligence (AI) algorithm to automate the temper-
ature settings based on learned households’ preferences. We
conducted a field study with 30 UK households over a month.
As the smart thermostat responded to the varying prices on
the households’ behalf, it caused a real impact on the com-
fort of its users. More specifically, in this study, we aim to
observe people’s feelings and expectations towards a smart
thermostat that controls their home heating given real-time
prices, and how they interact with such a thermostat in their
everyday lives.



BACKGROUND
Interdisciplinary knowledge and research is vital to facilitate
a better understanding of how user interactions can be de-
signed for smart energy systems. The work we present in
this paper lies at the boundary of AI and HCI. Hence, in this
section, we briefly review prior literature on models and algo-
rithms for smart heating, field studies of autonomous systems,
and interaction with machine learning.

Models and Algorithms for Smart Heating
The combination of mathematical models and computer al-
gorithms form the backbone of making systems smart. The
literature includes numerous models and algorithms devel-
oped with different approaches for energy efficient heating.
Some approaches focused on the models of the environment
(e.g., the weather) to create an efficient heating schedule [30,
14]. Other approaches used motion sensing to detect peo-
ple’s presence, and control the heating based on the occu-
pancy models of buildings [21, 11, 15].1

Shann and Seuken [22] presented a learning algorithm that
elicits users’ preferred temperatures for different energy
prices and creates a comfort-cost trade-off model for each
user. Lam et al. [10] introduced a thermal comfort model that
updates based on the user’s comfort feedbacks. However, all
these studies have simulation based results. They do not have
a real smart thermostat that is physically deployed to enable
its users to interact with it to control their actual heating.2

Field Studies with Autonomous Systems
Conducting field studies has been considered a significant
way of evaluating computing systems to better understand
the social context and user experience [19]. Increasingly, re-
searchers are taking AI technologies from labs to field de-
ployments, where algorithms are used to bring autonomous
systems to life in different forms, such as social robots, vir-
tual agents and software agents. In this respect, Sauppé and
Mutlu [20] conducted an ethnographic field study with robots
in manufacturing sites, and showed that human workers ap-
proached the robot co-workers as social entities.

Yang and Newman [28] examined the real-world uptake of a
smart thermostat with 23 participants. They highlighted how
sub-optimal decisions taken by a smart thermostat are likely
to cause frustration for users and may lead them to abandon
the technology. Their follow-up study [29] has investigated
users’ long term interactions with the smart thermostat. Their
findings suggest that users’ interactions faded over time and
resulted in unrealised energy saving opportunities. They also
propose that an alternative design (i.e., a mixed-initiative sys-
tem) might improve the sustainability of user engagement and
the system’s usefulness.

Bourgeois et al. [4] deployed energy-aware washing ma-
chines that provide users with suggestions on when to do their
laundry based on the availability of green energy. They stud-
ied various intervention techniques with 18 households for
1Indeed, there are commercial thermostats that utilise occupancy de-
tection (e.g., tado.com).)
2We note that Lam et al. deployed a mobile system but it was only
for getting users’ comfort feedbacks.

8 months, and showed that proactive suggestions sent by a
software agent via text messages are more effective than the
agent’s email interventions. Similarly, Costanza et al. [8] pro-
posed ‘Agent B’, a software agent that also helps users book
their washing machine in a scenario where electricity prices
change every 15 minutes. In a field experiment, 10 partici-
pants used Agent B for one month. The results suggest that
Agent B helped users defer their laundry in response to real-
time prices.

Alan et al. [1] proposed ‘Tariff Agent’, an agent that
helps users select electricity tariffs on a daily basis. It pro-
vides three levels of autonomy (fully autonomous, semi-
autonomous, and manual), and users can change the level at
any time. In a field experiment with 10 users, Tariff Agent
was used over a period of 12 days. The results indicate that
people are willing to delegate some decisions to an agent but
at the same time there is also a desire to stay in control. In a
6-week follow-up study with 12 users, they showed that the
users took responsibility for undesired outcomes if the sys-
tem’s autonomy level could be adjusted flexibly [2].

Our study builds on this literature, but extends it in two key
ways. First, while prior studies only made the autonomous
operation of the systems tangible to participants only through
financial rewards, in our study the system also directly in-
fluences the participants’ thermal comfort by controlling the
heating setpoint given real-time prices. Second, we evaluate
three different UI designs for smart thermostats in the wild.

Interaction with Machine Learning
HCI researchers have long been using machine learning tech-
niques in their studies [13]. The main area of these studies has
focused on classification methods, and visualisation of ma-
chine learning algorithms. The underlying aim is to improve
accuracy of classifiers through enabling users to explore data
and interact with machine learning algorithms [26]. How-
ever, even though machine learning is becoming an important
part of our everyday lives, and significantly changing the way
we live (e.g., smart thermostats), there have been few studies
that examine how users could interact with machine learning
systems, beyond accuracy judgements [25].

In fact, to date no studies have examined how different de-
signs of learning systems may impact people’s perceptions.
There is a significant gap in our understanding of how we
should design interactions with machine learning systems, es-
pecially for the ones that might possibly intrude upon our
daily activities. In this paper, we present a field study that
aims to close this gap by focusing on households’ percep-
tions of and interactions with two designs of a smart thermo-
stat exploiting machine learning, and draw implications for
the design of future smart energy systems.

SMARTTHERMO IN THE WILD
We aim to explore how to best design user interactions with
a smart thermostat that is designed to automate home heat-
ing control when energy price varies in real-time. To do so
we prototyped a smart thermostat based on envisioning [17],
and evaluated it with a field study. To make the experience
of the smart thermostat relevant to the participants of our



study, we defined a real-time pricing scenario, based on ac-
tual historical spot prices in the UK electricity market in Jan-
uary 2014.3 Following a study design proposed in prior work
[8], this scenario was made tangible to participants through
financial rewards, as detailed further below. For convenience,
we removed extreme outliers from the historical pricing data
making the prices range from 5 pence to 35 pence. During
our field study the energy price was changed every 30 min-
utes, similarly to the UK market. In the following sections,
we present the details of our study, including our study proce-
dure and participants, descriptions of the thermostat designs,
and the data collection and analysis methods we used.

Study Design
In order to gain an understanding of how to best design a
smart thermostat for real-time prices, we decided to explore
three thermostat designs:

1. Manual: This design aims to provide manual operation and
involves no machine learning algorithm. Hence, in this de-
sign, users are required to manually specify how the tem-
perature is going to be set at different prices through ad-
justing a number of setpoint sliders.

2. Direct Learning: This design uses the machine learning
algorithm introduced in a prior work [22],4 and aims to
automate users’ temperature decisions for different prices.
When users make changes in the temperature, the learn-
ing algorithm correlates these changes with the prices and
generates a user model. Thus, rather than requiring the user
to manually specify the setpoint sliders, the learning algo-
rithm automatically arranges them. Each time the user sub-
mits a temperature, the algorithm updates the user’s model
and the thermostat directly heats to the optimal tempera-
ture of the user model based on the current price. The aim
of this design is to help users understand that the setpoints
that they save are being learned by the smart thermostat
for future use to determine the setpoint based on varying
prices.

3. Indirect Learning: Similar to the direct learning thermo-
stat, the same learning algorithm is used in this design.
However, the rationale behind this design is to enable users
to temporarily override the learning, and in this way hide
from the users the complexity of the algorithm. Thus, in
this design, each time the user submits a temperature, the
algorithm updates the user model but the thermostat first
heats to the inputted temperature - rather than heating to
the optimal temperature of the model. Though, after one
hour it goes back to auto-mode and sets the setpoint to the
optimal temperature of the user model based on the then
current price.

We conducted a study with 30 UK households (see Table 1)
over a period of four weeks during February-March 2015. To
recruit participants we distributed approximately 3000 study
invitation letters around the city. We recruited households
3For practicality we recorded the prices about a year earlier than our
study took place, that is in February-March 2015.
4There might be more advanced algorithms giving better results. We
chose this algorithm due to its simplicity and robustness.

Table 1. Participants’ profiles.
Thermostat Age Occupation Others

P1 Indirect L. 40 PhD Student 1 Child
P2 Manual 63 Maintenance Eng. 1 Adult
P3 Direct L. 37 Antiques Dealer 1 Ad., 2 Ch.
P4 Direct L. 43 PhD Student 1 Ad., 2 Ch.
P5 Manual 50 Estate Mng. 1 Ad., 1 Ch.
P6 Manual 36 Nanny 1 Ad., 1 Ch.
P7 Indirect L. 76 Retired 1 Adult
P8 Indirect L. 32 Radiographer 2 Ad., 1 Ch.
P9 Direct L. 44 Teacher 1 Ad., 2 Ch.
P10 Direct L. 62 Retired 2 Adults
P11 Manual 44 Teacher 1 Ad., 2 Ch.
P12 Indirect L. 50 Office Mng. 1 Adult
P13 Manual 40 Education 2 Ad., 1 Ch.
P14 Indirect L. 60 Lecturer 1 Adult
P15 Manual 53 Photographer 2 Ad., 1 Ch.
P16 Direct L. 60 Self Employed 1 Adult
P17 Indirect L. 58 Charity Mng. 1 Adult
P18 Manual 40 Accountant 1 Ad., 4 Ch.
P19 Direct L. 71 Retired 1 Ad.
P20 Indirect L. 56 Database Admin. 2 Adults
P21 Indirect L. 26 Contract Mng. 1 Ad., 1 Ch.
P22 Direct L. 22 Student 1 Adult
P23 Indirect L. 28 Sport Mng. 2 Adults
P24 Direct L. 69 Retired 1 Adult
P25 Direct L. 49 Gas Engineer 1 Adult
P26 Manual 64 Engineer 1 Adult
P27 Manual 91 Retired 1 Adult
P28 Direct L. 73 Retired 1 Adult
P29 Manual 75 Retired Na
P30 Indirect L. 28 PhD Student 1 Ad. , 1 Ch.

who had a broadband Internet connection and a central heat-
ing control, based on a first-come first-served basis. Partic-
ipants were assigned to three groups, each corresponding to
one thermostat design, one by one in the order 1, 2, 3. An on-
line budget of £100 was then allocated to each household and
participants started to use our system for heating their house.
Their heating cost is calculated based on the number of hours
their boiler was on, and subtracted from their online budget
on each day. After four weeks, when the study ended, they re-
ceived the amount left in their budget as experimental reward.
By so doing, we aimed to encourage participants to respond
to the prices, and make savings have a tangible impact. The
idea of using monetary incentives to simulate real-time pric-
ing is inspired by an early study where participants received
payments of the value of electricity saved [24].

Technology
We equipped each household with a Horstmann HRT4-ZW
thermostat, a Raspberry Pi (RPi) and an Android 4.4 tablet.
Figure 2 shows the connections among different entities. The
Horstmann thermostat is a standard room thermostat but can

Figure 2. Overall system diagram.



Figure 3. Manual - home page.

Figure 4. Manual - schedule page.

be wirelessly controlled over the Z-Wave communication
protocol from the RPi (through a RaZberry daughter card5).
The RPi also connects through the home wireless broadband
router to our web server, where the smart thermostat algo-
rithm and UIs run. The RPi regularly pulls the indoor temper-
ature from the thermostat (every 5 minutes), sends the tem-
perature data to our server, and receives the latest individual
heating plan. Based on the plan the RPi then controls the set-
point of the thermostat. The tablet allows participants to ac-
cess our web application through the broadband connection,
and to manipulate their own heating plan. Each tablet was in-
stalled with a software called Kiosk Browser Lockdown and
our web application was set as the default one. We also added
the application as a bookmark on the home screen of partici-
pants own devices (tablet or smart phone), if they wished.

Design Variations
Manual Thermostat
On the home page (Figure 3), users can see the current
energy price and indoor temperature, and adjust the set-
point by pressing the +/- buttons next to it. Each press in-
creases/decreases the setpoint by half a degree. To provide
context for the current value, a label indicates whether the
price is normal (bottom of the range), high (mid-range) or
very high (top of the range). The price value and the label are
color coded green, yellow or red for emphasis. At the bottom
left of the home page users can find the boost button, which
allows them to turn the heating on continuously for 1 hour,
temporarily overriding the setpoint.

On the right side of the page, four setpoint sliders enable
users to specify how the setpoint should be changed at dif-
ferent prices. In other words, these sliders allow users to di-
rectly specify how to trade off comfort and cost. These are
positioned on the home page to make them easily visible and

5http://razberry.z-wave.me/

Figure 5. Direct learning - home page.

Figure 6. Direct learning - setting page.

accesible, even at the risk of increasing the complexity of the
page.

The schedule page (Figure 4) is another page that the manual
thermostat users could access. This page allows the users to
program the heating schedule that defines the boiler’s on and
off times. Due to the screen size of our tablets we decided
to divide the schedule of a day into hourly-based time slots
and group the days as weekdays and weekend. To change
the boiler’s status for a period of time the user only needs
to touch on the time slots corresponding to the period. We
provided this schedule page since we anticipated that users
would expect such a functionality from a smart thermostat.

Both the home and the schedule pages display the ‘Estimated
30 days cost’ that reflects how the current settings on the set-
point sliders and the schedule impact the monthly cost of
heating. When users make a change in the sliders or in the
schedule, the estimated cost updates accordingly. Also it is
important to note that users need to save any changes that
they make in order to register that change into the system.

Direct Learning Thermostat
In this thermostat design (Figure 5), users directly interact
with the machine learning algorithm. When the user presses
the +/− buttons, the learning algorithm updates the user’s
model and displays the optimal setpoint based on the model.
The algorithm uses Bayesian inference to update the model,
which means it considers the user’s individual temperature
inputs as noisy data. Thus, the user might need to press the
+/− buttons several times to change the setpoint a half de-
gree, depending on the model’s prior knowledge. However,
to visualise the impact of each press, a pop-up message ap-
pears with two buttons, by which users can save or undo the
setpoint change. Additionally, each press synchronously af-
fects the ‘Estimated 30 days cost’ as well as a table called
‘Predicted Heating Program’. This table shows the average
temperatures that will be set by the thermostat, based on the

http://razberry.z-wave.me/


Figure 7. Indirect learning - home page.

predicted average prices at four time periods. The setpoint
displayed for each time period changes dynamically accord-
ing to the updates in the user model. Similar to the man-
ual thermostat, the home page also contains the boost button,
which turns the heating on continuously for 1 hour. The boost
button does not influence the learning: it was designed as a
way to define exceptions to the preferences.

With this thermostat design, users also have one additional
page called settings. The settings page (Figure 6) aims to pro-
vide users an additional level of control and transparency on
the learning algorithm. Similar to the home page of the man-
ual design, there are four sliders representing the user’s learnt
temperature preferences for each price band. We moved the
sliders into the settings page because the focus of the learn-
ing thermostat is simplicity of use. The user can see how
these sliders are arranged by the thermostat by looking at a
history table. The table lists the user’s previous temperature
inputs together with correlated prices. The user can adjust the
sliders to specify his own preferences. By so doing, the user
resets the learning algorithm and clears the table of previous
inputs. Therefore, a confirmation pop-up is shown before the
user saves any changes made in the sliders. The schedule
page provided in the manual thermostat is also accessible by
the users of the direct learning thermostat.

Indirect Learning Thermostat
In this design, the temperature input that users provide tem-
porarily overrides the setpoint that the algorithm would set
based on the user’s model and the current price. Thus, the
+/− buttons work exactly in the same way as in the man-
ual thermostat (each press increases/decreases the setpoint by
half a degree). Once the user saves the new setpoint, the algo-
rithm updates the user model based on the new input. Then, it
waits for an hour to take the control back and change the set-
point to the learned one according to the then current price.
Meanwhile, the thermostat heats to the inputted temperature.
This process was explained with a pop-up message includ-
ing a countdown timer, starting from 60 minutes, in the UI
(Figure 7). Users can still change the setpoint and save it
before the countdown finishes, which will restart the count
down with the new setpoint. As in the direct learning thermo-
stat, the home page also contains a boost button, which does
not influence the learning. The settings and schedule pages
are also provided for the indirect learning thermostats.

Method
During the course of the study, we recorded all users’ in-
teractions with the thermostat application. For instance, we

recorded when participants changed the setpoint or the heat-
ing schedule, or when they used the boost button. Addition-
ally, we collected detailed quantitative data about the heat-
ing habits of each household, including the temperatures the
users set in response to real-time prices and how indoor tem-
peratures varied over the course of the study. However, it was
difficult to derive conclusions about the impact of the differ-
ent thermostat designs on these data, since there are other fac-
tors affecting people’s heating preferences (e.g., weather and
home insulation) [16]. Therefore, in this paper, we focused
on the qualitative data collected during the interviews.

Interviews
We conducted semi-structured exit interviews with family
members at their homes. We interviewed 26 households.6
The interviews were mostly held with the participant that
signed the consent form at the beginning of the study, how-
ever some interviews also involved the participant’s partner.
In the interviews we asked participants open questions about
their use, adoption and understanding of the thermostat. All
interviews were audio-recorded, and lasted on average of 34
minutes (SD: 8 minutes, min: 18 minutes, max: 52 minutes).

Analysis
The interviews were fully transcribed and analysed through
thematic analysis [5]. Four researchers were involved in this,
while the coding was performed by two researchers. The
analysis started by categorising the material at the sentence
level through open codes. Initially 93 open codes were used,
later grouped in broader categories that we discuss in the fol-
lowing section.

FINDINGS
In this section we first present an overview of the quantitative
analysis we performed on the overall system usage, based on
the automatic interaction logs. Secondly, we report the major
findings of our thematic analysis. The analysis revealed six
key themes: (1) orientation towards the thermostat’s agency,
(2) reactions to different UI features, (3) managing the home
heating with real-time prices, (4) mental models of the ther-
mostat’s learning feature, (5) balancing cost and thermal com-
fort, and (6) limitations of the thermostat’s learning model.
We present the categories that revealed these themes in the
following subsections. In excerpts, we use “F” for female and
“M” for male to denote the gender of the household member.

Overview of Quantitative Analysis
Users of each thermostat design heated their home using our
system for a month. They mostly interacted with the sys-
tem via the tablet we provided or the tablet they already
had. Some of these participants additionally used their mo-
bile phones to access the system. Table 2 includes the overall
data of system usage. We performed one-way ANOVA tests
on the quantitative data. However, we could not find any sig-
nificant differences or long-term effects in user interactions
across the three deployed designs. This was also the case
for the analysis of other quantitative data collected (i.e., set-
points and indoor temperatures). The analysis did not reveal
6Other 4 participants were not available for the interview.



Table 2. Overall quantitative data analysis.
Manual Direct L. Indirect L

M SD M SD M SD
Setpoint Changes
from Home Page 36.7 52.8 13.3 14.4 18.5 22.8

Setpoint Changes
from Settings Page - - 6.4 7.4 2.5 3

Schedule Changes 18.2 14.8 47.8 51.3 21.8 19.4

Boost Activations 17.5 14.1 7.3 4.3 14.2 11.3

Spent from Budget £55 £22 £55 £33 £30 £15

Demand Response 36% 19% 34% 17% 47% 24%
Note. M = Mean. SD = Standard Deviation.

any significant differences in users’ demand-responses or sav-
ings, which might be understandable given the interpersonal,
contextual, and environmental differences of the users.

Orientation towards the Thermostat’s Agency
All participants commented that they were happy with the
thermostat autonomously responding to real-time prices on
their behalf. The following is a typical response that we re-
ceived in the interviews, when we asked participants about
their feelings towards the agency of the system.

P18 (M): “I’m happy with that if the thermostat under-
stands that at this price I would rather avoid heating the
house, and at this price I would like to heat the house,
then I’m happy for it to take over that control, as long as
it’s very straightforward for me to override.”

We observed that they felt in control overall and were also
mostly confident with the way the thermostat was working.

Analyst: “To what degree did you feel like the system
worked for you, or it required you to do the work?”

P13 (F): “So basically I just order the system to do the
things for me and the system does the whole thing. ”

Reactions to Different UI Features
In the interviews we observed that most participants under-
stood well how to use the UI elements (e.g., the +/− buttons)
of each thermostat design. Nearly all participants commented
that the thermostat was easy to understand and use. All partic-
ipants appeared to understand the functionality of the setpoint
sliders and mostly appreciated their use.

The users of the direct learning thermostat were mostly aware
of the fact that sometimes they were required to press the +/−
buttons multiple times to achieve the desired setpoint value.
However, they did not explicitly state that this was due to the
learning feature.

P3 (F): “The estimated cost would change before the
degree thing changed. So, you press it. Sort of, like,
Wow it needs four presses per half degree or something,
and I was like, because I could see this number here was
changed. It was doing something. Then I thought it must
be incremental, must be in tenths rather than in halves.”

The indirect learning thermostat users mostly explained the
way the 60 minutes countdown works as though it goes back

to the previously saved setpoint rather than the learned set-
point based on the price at the time after 60 minutes.

P23 (F): “So then there’s a countdown for 60 minutes
and after that the temperature will resume to what was
set previously. Occasionally I would reset the tempera-
ture again within those 60 minutes.”

Managing the Home Heating with Real-time Prices
Here we detail how and why participants used the thermostat
in different ways to heat their house with real-time prices.

Setpoint Preferences
Most participants of all three thermostat designs reported pre-
ferring to change ‘setpoint now’ from home page to control
the indoor temperature with real-time prices. They also fid-
dled with the setpoint sliders, but the number of times was
relatively low compared to the changes made in the ‘setpoint
now’. Interviews revealed that most participants were happy
with the arrangement of the sliders and therefore they did not
feel the need to alter them often. Also a few participants
found the sliders complex, which led them to play with the
‘setpoint now’ more.

We had constrained the setpoint sliders to present a straight
line corresponding to users’ heating preferences. Therefore,
changes made to one of the sliders affected the values of oth-
ers. Overall the participants who interacted with the sliders
found them easy to adjust and appreciated their use. In the
interviews, only one participant griped about this linear rela-
tionship among the sliders. However, we noticed that this user
only played with the first slider throughout the study, there-
fore they could make only parallel shift on the slider values
without being able to change the slope of the line.

P15 (F): “If we could’ve adjusted them differently and
made our own decisions on these rather than they just go
up automatically when you change one of the others, we
would’ve preferred that.”

Most participants kept the configuration of the sliders in de-
scending order, starting with higher temperature at lower
price and lowering the setpoint as the price increases. Two
users calibrated the four sliders to have the same setpoint. In
other words, they opted for a specific temperature setpoint to
heat their house over the course of the study regardless of the
heating cost.

P29 (M): “You should be prepared to pay more, a higher
rate, if you wanted to be more comfortable. I could
change it as when I wanted it, but if I wanted to go to
a higher temperature, it could cost me more. But, be-
cause I had set it at a flat rate, I wasn’t bothered.”

Also, participants reported that they did not need to change
the sliders once they found their limit for how much comfort
they could sacrifice to save money. The process of finding
such a limit was generally a matter of trial and error:

P11 (F): “It was freezing cold and it must’ve broken. I
checked and that’s when I saw it was on 35p and that’s
when I changed the lowest set point.”



Some participants were more conscious of and certain about
their tolerance limit for temperature even in the early stages
of the field study. Therefore, once these participants arranged
the sliders early on in the study, they stopped interacting
with the sliders, and used other interface features, such as the
schedule, to adjust the heating.

P16 (M): “When we first got it, we looked at the pricing
bands and made some decisions at that stage. We did it
once and I don’t think we revisited it. What we did visit,
then, pretty regularly, probably every day, and maybe
more often than once a day, we did revisit the schedule.”

Schedule
Most participants told us how it was easier to access and
change the heating program through our system compared
to their previous programmable heating controls. Being able
to easily turn on and off the heating by touching on the dis-
played hourly time slots, and being able to have different pro-
grams for weekdays and weekends, seemed to meet partici-
pant’s favour.

P21 (F): “We changed it most days because it was so
easy to access. If I was going out and I knew that we
wouldn’t be home until five, I’d set it to come on at four.
Whereas previously, we wouldn’t even touch it on a nor-
mal one.”

Here she refers to the “normal one” as a wall-mounted pro-
grammable thermostat that she had before taking part in our
study. Her comment suggests that people may engage more
with their heating systems when the systems are easy to con-
trol and access. Specifically, among the users of all UI de-
signs, most participants liked being able to control the heat-
ing remotely from anywhere in the house or anywhere outside
via their Internet-connected devices - rather than walking to a
wall-mounted thermostat each time.

P23 (F): “It was just useful to be able to change the tem-
perature from wherever I was really. I could do it from
work and quite often did or if I went from work to the
supermarket and then came home, you could do it from
the supermarket. So yes, it was really clever.”

In the interviews, we observed that occupancy was the major
factor affecting the way participants modified the schedule.
They mostly tended to turn off the heating when no one was
around, and turn it on if someone was at home. Participants
who had regular lifestyles reported that they didn’t need to
change the schedule often, whereas some participants altered
the schedule quite often due to their irregular lifestyles.

P28 (M): “I did change this one [schedule] at the very
beginning, but other than that I haven’t touched it at all
because, I’ve been working with this time limits for the
boiler on and off for 25 years. It’s suited my lifestyle.
I’m a creature of habit really.”

P10 (F): “I’m retired so could be at home all day but
at the last minute suddenly go off somewhere and we’re
three adults. So it’s three people leading separate lives in
a way rather than if we were a family with children and
you’d know you would be in the house until half past

eight go to school picking up. So our lifestyle is quite
erratic.”

We also observed that some participants used the schedule as
a medium to respond to changing energy prices. For example,
in the following quote, P9 (F) indicates that she moved the
time that the thermostat normally comes on in the mornings
nearly one hour earlier to benefit from lower prices.

Analyst: “How do you feel about the real-time prices
for heating energy?”

P9 (F): “I noticed that it [price] was cheaper before 7am.
Previously, I’d been putting the heating on like maybe
6:45 because we get up about 7:00, then leaving it on
while we’re getting ready for work and school and then
turning it off. I changed that and started putting it on
earlier, putting it on at 6:00 and then having it go off at
7:00, and it still kept the house warm enough until we
went out sort of an hour or so later.”

There were other factors that influenced participants’ heat-
ing program, such as their daily activities or weather condi-
tions. Participants mostly turned the heating on at times that
they usually took showers, or turned it off when they used the
oven. While on cold days participants arranged the schedule
to make the thermostat come on for more time slots, they had
fewer time slots on for milder days.

Boost
After deciding how to balance comfort and cost, participants
tended to use the “boost” button for exceptional situations to
turn the heating on instead of changing the setpoints on the
sliders.

P2 (M): “I tended to be comfortable with the settings
that I had on it and sort of left it. The only time if it was
really cold in the mornings when we got up, I’d press
the boost to boost it and it probably only went on for an
hour or two.”

Some participants also commented that they used the boost
button just to heat their home a bit more when the prices were
lower.

P21 (F): “I liked when it said £0.05 and I was like; yes,
put the heating on, boost it!”

Mental Models of the Thermostat’s Learning Feature
Only the users of direct and indirect thermostats were ex-
posed to the machine learning algorithm. These users were
required to click the save and learn button that appears every
time they make a change in the setpoint from home page in
order to register their preferred temperature into the thermo-
stat. Including the text ‘learn’ in the save button seemed to be
successful at conveying the fact that the thermostat was learn-
ing. However, when we asked the users’ opinion about what
the thermostat was learning in the interviews, three users re-
ported that they had not thought about it before and therefore
that they had no comment.

Among the participants who formed opinions about the learn-
ing feature, most participants appeared to have an understand-



ing that is well-matched with the actual underpinnings of the
thermostat’s learning feature. Most participants were aware
of the fact that the thermostat was trying to correlate their
preferred setpoints to varying prices. It seemed that the dis-
play of previous inputs in the settings page supported their
comprehension. Though, conceivably, no one seemed to be
interested in how the thermostat was actually calculating the
setpoint based on their previous inputs

Analyst: “If you had to explain the learning feature to
one of your friends, how would you explain it?”

P3 (F): “It [thermostat] learns your tolerance for an in-
crease in price. It learns your habits and your behaviours
in terms of the price versus the temperature, and then it
applies those, reapplies them for future events when the
unit price goes up.”

P23 (M): “As you input your set point changes accord-
ing to the prices and then the system starts to under-
stand what your views are of that cost I suppose. That is
what you think is expensive and that is what you think is
cheap, and then make changes.”

In these quotes, the participants are very clear about what the
thermostat was trying to learn. They explain that the thermo-
stat was learning their temperature preferences for different
prices based on their previous inputs. Also, the participants
express that the thermostat was learning in order to be able to
autonomously respond to the changing prices on their behalf.

On the other hand, some participants had another interest-
ing mental model description of the learning feature, which
was neglecting the effect of the prices. These participants
described the thermostat as though it was matching their pre-
ferred temperatures with the times and the days of the previ-
ous temperature inputs that they provided.

Analyst: “So can you tell me what happens when you
click to the save and learn button after you change the
setpoint?”

P21 (M): “Well, it [thermostat] updates and it changes
the kind of the setpoint to what it is going to heat to, but
it also learns what you have done. So, I am guessing that
later on, if you are doing that at a certain point every day
then it’s going to learn that.”

P30 (M): “If I play a particular temperature as the set-
point and then click on save and learn, from what I un-
derstand is the system will take this reading to consider-
ation for whether to turn the boiler on or off but at the
same time try to see that at this particular time of the
day, whether it’s weekday or weekend and then try to
replicate that during other days.”

This misinterpretation of the learning feature was more preva-
lent among the indirect learning thermostat users than among
the users of the Direct Learning Thermostat. Further explo-
ration also revealed that none of the participants having the
misinterpretation was familiar with the Nest thermostat, or in
fact any other smart thermostats that exist in the energy mar-
ket. We can therefore assume that they were not biased.

Balancing Cost and Thermal Comfort
Even though seeing the current price of energy had mostly
impacted on how our participants heated their home over the
course of the study, there were other significant factors that
played key roles in the decisions of the participants for main-
taining their thermal comfort at home. One of these key fac-
tors was occupancy. Most of our participants commented that
they tended to turn off the heating for the times that no one
was at home. Another important factor was outside weather
as opposed to the indoor temperature: the colder the weather
was, the longer the heating was on. Lastly, daily activities at
home seemed to substantially influence the participants’ heat-
ing preferences. While sitting still or having a shower caused
participants to turn on the heating, cooking or other physical
activities led them to keep the heating off.

P2 (M): “I generally go out by nine o’clock I had the
heating going off at eight o’clock in the morning. So
it sort of warmed us up to have our showers and be
comfortable in the morning, and weekends it depended
whether we were in or out as to whether we left it on or
knocked it off. So it revolved around our lifestyle and
work patterns and things. And the temperature outside.
If it was really cold outside then we would have it on
longer.”

P1 (M): “Most of the time I tried to connect the sched-
ule with my daily activities. For instance, I take shower
in the morning, and sometimes I work here at home be-
tween 9 and 11. So these are the times that I turn on the
heating. Most of the time between 12 and 3, I cook and
turn off the heating, because it really doesn’t feel cold.”

Another interesting finding that emerged from the interviews
was the ways participants attempted to maintain their thermal
comfort at home without using our heating system. The most
prevalent attempt was putting on one more layer of cloth-
ing (generally a jumper), or using a blanket when the energy
prices are high. Also some participants took the advantage
of their other heating sources such as wood-burning stoves,
which is typical in small town houses in the UK.

P8 (M): “I think we have probably spent less on our
heating in general than we would have done normally.
Normally we heat the house pretty much all the time in
the winter. We did at times just put another jumper on.”

Limitations of the Thermostat’s Learning Model
As it is clear in the previous excerpts, the price was not the
only factor affecting our participant’s setpoint preferences.
However, the learning algorithm used in both direct and in-
direct learning thermostats was only considering two inputs:
the setpoint registered and the price at that current time.
Therefore, the thermostat was automating the setpoint con-
trol only based on the price. This limited learning capability
resulted in dissatisfaction among a few participants since the
setpoint automatically set by the thermostat was not always
the right temperature for its owner. The following quotes are
the only ones from which we received such feedback from the
participants.



P3 (F): “There were times when I came in and I was
like. Hang on a sec. My house is really warm and it
must have been because it had learned something that.
To do with the temperature. So, it must have said all the
prices are this, so they like it warm when it’s like this.
It’s like. Hell no. It’s too hot!”

P9 (F): “Well, if I understood the intention that it was
trying to set my temperature according to the price, that
didn’t really work for me. I kind of wanted a combi-
nation. I kind of could see the point of that. But like
I said, at night, I didn’t want it so warm, though per-
haps I quite sort of would like it to keep it a degree or
two cooler when the temperature’s high to save money
or something like that. But I also wanted it to let me
decide more and not decide for me all the time.”

DISCUSSION
In this section, we revisit the major findings of our study, and
discuss them in light of prior literature. We also present im-
plications for interaction design of smart energy systems and
for future research.

Designing a Thermostat for Real-Time Prices
Any thermostat designed for real-time prices will need to
automate the heating at some level, as otherwise it would
be a very difficult task for a human to monitor every price
change and alter the heating accordingly. Prior research on
autonomous systems suggests that these systems should allow
their users to easily override the automated decisions at any
point in time, without completely disabling the system’s au-
tonomy [1]. In this vein, in our study we observed that some
participants used the boost button as a means to temporarily
override their temperature preferences for exceptional situ-
ations, rather than resetting the learned preferences. These
exceptional situations not only occurred when users felt cold
and wanted to heat the house despite the high prices, but also
happened when users wanted to heat the house a bit more than
they would do normally in order to benefit from low prices
(typically termed the rebound effect).

One of the most-liked features was the display of ‘Estimated
30 days cost’. As P28-m said, “I’ve watched also my esti-
mated cost each day, to see whether it varied at all. I had taken
an interest in it, every day really, I’ve become almost fixated
by it.” We observed that the participants used it as a ‘sand-
box’ area [12], by which they could view the consequences of
different settings on the cost before approving them. Another
well-liked feature was the ability to control the thermostat re-
motely. Participants commented that this feature affords them
a high degree of convenience for heating their home. Most of
them reported that they monitored their house (whether the
heating was on or off) while they were away, or turned the
heating on just before coming home. Furthermore, they found
the use of it handy even within the house. For instance, one of
our participants commented that she liked being able to take
the tablet with her to bed so that she could turn the heating on
in cold mornings without having to leave the bed.

Most participants found the thermostat’s heating schedule
easy to access and program. However, some participants per-

ceived its hourly time slots as limiting their scheduling plan.
This is understandable when one considers that today most
heating controls provide finer resolutions (e.g., 10 to 30 min-
utes). Additionally, grouping the daily heating program by
weekdays and weekend was not convenient for all partici-
pants to accommodate their occupancy patterns. As an exam-
ple, one participant said her Saturdays and Sundays are totally
different. We also had some participants who did not have any
occupancy patterns at all and had to adjust the schedule quite
a few times in a day. Therefore, further research is needed to
address how to best design heating programs for people with
unpredictable lifestyles.

Our field study showed that participants could use our ther-
mostats to effectively manage their home heating and create
temperature preferences based on real-time prices. As we
expected these temperature preferences varied for different
individuals. While most participants set lower temperatures
at peak prices compared to lower price periods, two house-
holds kept the same temperature for all price bands. Further-
more, our participants adopted different strategies to respond
to real-time prices. While most participants used the setpoint
and the setpoint sliders for reacting to changing prices, some
participants interestingly used the boost and the schedule fea-
tures more than adjusting the setpoint for heating their home
with real-time prices. This is in line with a previous study
that examined people’s use and mental model of their heat-
ing system [18], and revealed that setpoint adjustment was
less prevalent among their participants compared to the ad-
justments of other devices, such as the programmer, override
button and radiator valves.

Finally, we noted the several ways that our participants used
to maintain their thermal comfort, especially when the prices
were high, without using our heating systems, such as putting
on one more layer of clothing or using a blanket. These ob-
servations show similarity to the findings of previous work
[7, 6], which examine students’ daily heating habits and re-
port the similar activities without any financial benefits.

Expectations from Smart Home Heating Systems
While most participants perceived the thermostat as “smart”
because of its learning capability of preferred temperatures
and its ability to automate home heating based on changing
prices, for some participants it was enough to describe the
thermostat as smart just because of its remote control capa-
bility and its programmable schedule. This perception was
due to the fact that these functionalities were mostly new to
the participants. More importantly they experienced improve-
ment in their quality of life as these functionalities assisted
and facilitated their heating task. This finding is in line with
prior research suggesting that computing technologies would
be perceived to be “smart” if they offer an advantage for the
users’ daily tasks [12].

Regarding the learning feature of the thermostats, partici-
pants had different explanations and mental models. While
some participants described the system as one that was trying
to match their temperature preferences with changing prices,
other participants thought that the system was learning the



times of days that they set temperatures. Interestingly, par-
ticipants who used the direct learning thermostat and had no
technical background (e.g., P3, an antiques dealer) described
more accurate mental models compared to the participants
of the indirect learning thermostat with more technical back-
ground (e.g., P1-m and P30-m, both computer science PhD
students). A previous study examining non-technical users’
understandings of an intelligent system suggests that people’s
initial mental models and misconceptions stayed relatively
constant over their study [27]. Therefore, we asked our partic-
ipants, who had this misconception, if they were aware of any
commercial smart thermostats, such as Nest that learns your
schedule, in order to see if they had any initial knowledge that
would have affected their mental models. However, they all
reported that they had not heard of any smart thermostat be-
fore. This then may suggest that exposing users directly to
the outcomes of learning algorithms may help users to create
better mental models. Furthermore, while showing the cor-
relation between previous temperature inputs and prices sup-
ported the users’ understanding, a more useful method could
be a notification system that periodically states what has been
learned by the system. We believe these results highlight an
important implication for future research in interaction with
“smart” energy systems to try and discover the source of peo-
ple’s mental models and learning expectations.

Our system learns users’ preferred temperatures at different
prices to automate home heating. However, from the inter-
views, it was clear that the price was not only the factor that
our users considered for heating their home. Other key factors
were outside weather, occupancy and daily activities within
the house. Some participants explicitly stated that the use of
the thermostat could be more convenient if it could learn their
occupancy patterns. Also, outside weather and the activities
that they perform during a day within the house have a signif-
icant impact on how people feel the indoor temperature. For
instance, most of our participants preferred to have the heat-
ing on when they shower and have the heating off when they
use their oven or perform physical activities. Therefore, fu-
ture design of learning thermostats should not only take into
account occupancy patterns and outdoor temperatures [16], in
addition to people’s price preferences, but also people’s daily
routines (e.g., times that they shower and cook).

Studying Future Smart Energy Systems
In order to let participants experience a future scenario, we
prototyped our system based on envisioning [17]. Our sce-
nario depicts an energy market in which consumers can re-
spond to real-time prices by using a smart thermostat that
automatically controls heating on their behalf. Participants’
statements about their perception and adoption of the smart
thermostat indicate that combining experimental reward with
a deployed prototype is an effective way to convey a future
scenario to participants and allow them to obtain real life ex-
perience, echoing recent studies of future scenarios [1, 2, 8].
Extending these recent studies, our participants experienced
the autonomous actions of the smart energy system not only
through financial incentives, but also through the thermostat’s
automatic temperature changes. Such changes could directly
influence our participants’ comfort. Yet, similar to the results

of previous studies, our participants mostly felt in control of
their heating system and demonstrated a generally positive
attitude towards the thermostat. Hence, we believe this find-
ing reinforces those from those previous studies, revealing the
potential of future autonomous smart energy systems.

One of the prerequisites for taking part in our study was to
have a central heating system with a single boiler. How-
ever, we did not define any requirements on the type of ther-
mostat previously installed, such as programmable or non-
programmable, digital or analog. Our findings revealed that
the type of thermostat familiar to our participants influenced
their perception and use of our system. In particular, partici-
pants not used to a programmable thermostat focused mostly
on the schedule feature of our system, since this was a new
and significant feature for them. This circumstance turned
out to steer attention away from our primary interest: the
ability of our thermostats to automatically react to real-time
prices. Hence, future research should take user fragmentation
into account in the recruiting process of participants in order
to improve the effectiveness of system designs and to obtain
more focused results.

CONCLUSION
Smart energy systems that leverage machine learning tech-
niques are increasingly integrated in all aspects of our lives,
and they are changing the way that we perform our daily ac-
tivities. The design of these systems plays a key role in how
we adapt to and interact with them. To better understand how
to design user interaction with such systems, we implemented
three different smart thermostats that automate heating based
on users’ heating preferences and real-time prices. We eval-
uated our designs through a field study, where 30 UK house-
holds used our thermostats to heat their homes over a month.

Our findings through thematic analysis show that the partici-
pants formed different understandings and expectations of our
smart thermostat, and used it in various ways to effectively
respond to real-time prices while maintaining their thermal
comfort. Based on the findings, we provided a number of de-
sign and research implications, specifically for designing fu-
ture smart thermostats that will assist us in controlling home
heating with real-time pricing, and for future intelligent au-
tonomous systems. These recommendations will assist de-
signers in improving user experience with smart energy sys-
tems, which in return will help us to more smoothly integrate
them into our everyday lives and actually benefit from them.
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