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Abstract

We construct analytically an asymptotically Lifshitz black brane

with dynamical exponent z = 1 + ǫ
2 in an Einstein-Proca model,

where ǫ is a small parameter. In previous work we showed that the

holographic dual QFT is a deformation of a CFT by the time com-

ponent of a vector operator and the parameter ǫ is the corresponding

deformation parameter. In the black brane background this operator

additionally acquires a vacuum expectation value. We explain how the

QFT Ward identity associated with Lifshitz invariance leads to a con-

served mass and compute analytically the thermodynamic quantities

showing that they indeed take the form implied by Lifshitz invariance.

In the second part of the paper we consider top down Lifshitz mod-

els with dynamical exponent close to one and show that they can be

understood in terms of vector deformations of conformal field theo-

ries. However, in all known cases, both the conformal field theory and

its Lifshitz deformations have modes that violate the Breitenlohner-

Freedman bound.
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1 Introduction

In recent years there has been considerable work on the use of holographic
models to gain insights into strong coupling physics in condensed matter sys-
tems (see [1–5] for reviews). Gauge/gravity duality may be an important tool
in understanding strongly interacting non-relativistic scale invariant systems
and gravity solutions exhibiting Schrödinger [6,7] and Lifshitz symmetry [8]
have been constructed.

While simple models can capture interesting phenomenology, it is im-
portant to understand the nature of the corresponding dual non-relativistic
theories better, from first principles. In [9] (see also [10, 11]) it was shown
that the field theories dual to Schrödinger geometries can be understood
as specific deformations of relativistic conformal field theories by operators
which are exactly marginal from the perspective of the Schrödinger group,
but are irrelevant from the perspective of the conformal symmetry group and
moreover break the relativistic symmetry.

Recently an analogous interpretation for Lifshitz spacetimes with dynam-
ical exponent z close to one was developed in [12]: a specific deformation of
a d-dimensional CFT by a dimension d vector operator generically leads to a
theory with Lifshitz scaling invariance. For both Schrödinger and Lifshitz du-
alities, this perspective not only elucidates the nature of the non-relativistic
theories realised holographically but also demonstrates that new classes of
theories with non-relativistic symmetries can be obtained as deformations
of relativistic conformal field theories. Since such deformations do not need
to be realized holographically, these results are interesting for field theory in
their own right and moreover could lead to interesting new weakly interacting
non-relativistic theories.

In this paper we consider the finite temperature behaviour of Lifshitz
theories in this class, i.e. theories with dynamical exponent z close to one
which can be viewed as vector deformations of CFTs, and we also show that
top down models in string theory with dynamical exponents close to one
indeed lie in this universality class.

From the bulk perspective, the simplest realization of Lifshitz is the bot-
tom up Einstein-Proca model introduced in [13]. Black hole/brane solutions
with Lifshitz asymptotics are needed to study the corresponding dual field
theories at non-zero temperature. However, only numerical black hole solu-
tions are available for generic values of z [14–28].

Note that analytic asymptotically Lifshitz black hole solutions are readily
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available in Einstein-Dilaton-Maxwell (EDM) theories, see the earliest exam-
ples in [13,29], with the interpretation of the running scalar being discussed
in [30]. More recently there has been considerable interest in solutions of
EDM theories exhibiting hyperscaling violation, see for example [30–36]. In
this paper we will focus on pure Lifshitz solutions although it would certainly
be interesting to understand whether EDM solutions can admit analogous
dual interpretations in terms of deformations of relativistic theories and in-
deed whether EDM solutions can be related to Lifshitz solutions through
generalized dimensional reduction [37–39]. Note that issues and open ques-
tions involving the IR behaviour of the Lifshitz theory, see [40] and [41], do
not play a role here.

In the first part of this paper we consider Einstein-Proca models and
construct black brane solutions with Lifshitz asymptotics for dynamical ex-
ponent z = 1 + ǫ2, with ǫ being a small expansion parameter. Our solutions
are constructed analytically, working perturbatively in ǫ. Applying the holo-
graphic dictionary developed in [12] we obtain the one-point function of the
dual energy-momentum tensor and check the various thermodynamic rela-
tions expected for Lifshitz invariant theories [42–44]. In particular we show
how the Ward identity due to Lifshitz invariance implies the existence of a
conserved mass and we show that the entropy scales with temperature as

S ∝ T
d−1

z . (1)

The thermodynamic quantities are obtained analytically and the analytic
solutions could be useful in extracting quasi-normal modes, studying corre-
lation functions etc.

While it is a useful bottom up model, the Einstein-Proca model has a
disadvantage: string theory embeddings are known only for specific values of
the dynamical exponent z, see for example [45], none of which are close to one.
There are two main classes of string theory embeddings of Lifshitz solutions
known. The first is that of z = 2 Lifshitz which can be obtained from reducing
z = 0 Schrödinger over a circle [10, 23, 46]. This system can be embedded
in supergravity [47–50] and the detailed holographic dictionary was obtained
in [26,51], reducing the results obtained in [52]. However the reduction circle
becomes null at infinity which implies the dual theory should be related
to the Discretized Light Cone Quantization (DLCQ) of the deformed CFT
corresponding to the z = 0 Schrödinger solution, and thus this approach
suffers from the well-known subtleties associated with DLCQ. These z =
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2 Lifshitz solutions are not in the same universality class as the solutions
discussed in this paper.

The second class of top down embeddings of Lifshitz solutions consist
of uplifts of solutions to Romans gauged supergravity theories [53]. Lifshitz
geometries LiD(z) in D = d + 1 bulk dimensions with generic dynamical
exponent z can be realized in this way. The structure of these solutions is
as follows: products of LiD(z) with two-dimensional hyperboloids solve the
equations of Romans gauged supergravity theories in (D+2) dimensions, for
specific choices of the masses and couplings in these theories.

Since there are Lifshitz solutions with z ∼ 1 in these top down models,
it is interesting to explore whether these can also be understood in terms
of deformations of conformal field theories. In section 5 we show that these
solutions are indeed in the same universality class as the Einstein-Proca
model: i.e. to leading order in the parameter ǫ the dual field theory is a
deformation of a CFT by a vector operator. However, unlike the Einstein-
Proca model, other CFT operators (which preserve Lifshitz symmetry) are
induced at higher orders in ǫ. The bulk theories in this case therefore realize
one of the field theory scenarios discussed in section 5 of [12].

Unfortunately not just the Lifshitz solutions but also the z = 1 AdS solu-
tions in these models break supersymmetry and are unstable. We show this
explicitly in section 5 by demonstrating that scalar modes around AdS vio-
late the Breitenlohner-Freedman (BF) bound. The operators dual to these
(unstable) scalar modes arise in the operator product expansions of the vec-
tor operators associated with the Lifshitz deformations and correspondingly
are necessarily part of the consistent truncation of the bulk theory to D di-
mensions, see section 5.2. Therefore the z ∼ 1 Lifshitz solutions in these
top down models are unstable. It would be interesting to find analogous
top down solutions which are obtained from deformations of supersymmetric
AdS critical points and which do not suffer from BF instabilities.

For the four-dimensional Lifshitz geometries, which are realized as so-
lutions of the six-dimensional Romans theory, there is a second branch of
solutions for which the dynamical exponent z > 4.29. These solutions are
not connected to the unstable critical point and therefore cannot be under-
stood in terms of marginal Lifshitz deformations. It would be interesting to
understand this branch of the solutions further.

The plan of this paper is as follows. In the next section we summarise the
key results from [12]. Assuming that the sources are position independent we
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extend the previous analysis to generic dimension. In section 3 we develop
the perturbation theory in ǫ and obtain the black brane solutions in generic
dimensions. In section 4 we discuss the thermodynamics of our solutions,
given an argument for and verifying the Lifshitz scaling behaviour. In section
5 we demonstrate that the Lifshitz solutions and the corresponding black
holes [44] of the top-down model [53] are in the same universality class as
those considered in the present paper, i.e. they can be viewed as describing
the ground state and a thermal state, respectively, of a relativistic CFT
deformed by a vector of dimension d.

2 Summary of holographic dictionary

In this section we briefly review the holographic dictionary between bulk
Lifshitz spacetimes with dynamical exponent z = 1+ ǫ2 and the dual Lifshitz
invariant field theory. We will follow the discussion in [12] to which we
refer the reader for more details. For use in subsequent sections, we give
the renormalised action, the holographic one point functions and their Ward
identities.

Note that holographic renormalization for Lifshitz solutions was also stud-
ied previously in [54–59]. In particular, it was shown in [55], using the radial
Hamiltonian formalism [60, 61], that Lifshitz models can be holographically
renormalized for any z. Since these models are non-relativistic it is natural to
work in the vielbein formalism [54](see also [9]) and this is indeed what was
done in [55]. In the current context we use instead the metric formalism [62]
as this is more natural when studying the theory from the perspective of the
AdS critical point.

The action under consideration is

Sbare =
1

16πGd+1

∫

dd+1x
√

−G
(

R + d(d− 1) − 1

4
FµνF

µν − 1

2
M2AµA

µ
)

+
1

8πGd+1

∫

ddx
√−γK, (2)

with M2 = d − 1 + O(ǫ2), γ the induced boundary metric and K the trace
of the second fundamental form. The associated field equations are

DµF
µν = M2Aν , (3)

Rµν = −dGµν +
M2

2
AµAν +

1

2
GρσFµρFνσ +

1

4(1 − d)
F σλFσλGµν . (4)
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Taking the trace of the Einstein equations and plugging back into (2) the
onshell action becomes

Sonshell =
1

16πGd+1

∫

dd+1x
√

−G(−2d− 1

2(d− 1)
FµνF

µν) (5)

+
1

8πGd+1

∫

ddx
√−γK.

It is useful to parametrize the metric and the vector field as

ds2 = dr2 + e2rgijdx
idxj ,

gij(x, r; ǫ) = g[0]ij(x, r) + ǫ2g[2]ij(x, r) + . . . (6)

Ai(x, r; ǫ) = ǫerA(0)i(x) + . . . .

For the metric, the notation g[a]ij captures the order in ǫ. When one considers
the asymptotic behaviour near the conformal boundary, each of these coef-
ficients admits a radial expansion as well and the order in radial expansion
will be denoted (as usual) by curved parentheses. For example,

g[0]ij(x, r) = g[0](0)ij(x) + e−2rg[0](2)ij(x) + · · · (7)

is the asymptotic radial expansion of the metric to leading order in ǫ. Below
we summarize the most general asymptotic solution given g[0](0)ij and A(0)i

as Dirichlet data.

2.1 Asymptotic expansions

Throughout this paper we will be interested in the case in which the back-
ground sources g[0](0) and A(0) are constant. This allows us to drop non-
radial derivatives in the subsequent analysis and simplify many formulae
from the [12]. In particular the radial component of the vector field vanishes,
Ar = 0.

The results provided below hold for any dimension d. The near boundary
expansions of the vector field and the metric up to order ǫ2 are as follows.
For the vector the asymptotic expansion takes the form

Ai = er(A(0)i + e−dr(rÃ(d)i(x) + A(d)i(x)) + . . .), (8)

where we will define A(0)i = ǫA(0)i and work perturbatively in ǫ. It is also
useful to define A(d)i = ǫA(d)i and let Ãi

(d) = ǫai
(d). The logarithmic expansion

coefficient is given by
a(d)i = g[0](d)ijA

j
(0), (9)
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where g[0](a)ij is defined below. Here and later, whenever we present asymp-

totic solutions, indices are raised to this order using the metric gij
[0](0), which

we set to be the Minkowski metric: g[0](0)ij = ηij .
The coefficient A(d)i is left undetermined by the asymptotic analysis and is

related to the expectation value of the dual operator. Note that the expansion
coefficients depend locally on the zeroth order expectation value of the dual
stress energy tensor 〈Tij〉[0] (which is related to g[0](d)ij as in (17)). At first
sight this might appear problematic since this coefficient is in general non-
locally related to g[0](0) which might lead to non-local divergences but as we
review below there are in fact no non-local divergences: the counterterm
action is local.

For the metric the asymptotic expansion is as follows [12, 62, 63]:

gij = ηij + ǫ2rh[2](0)ij + e−dr
(

ǫ2rh[2](d)ij + (g[0](d)ij + ǫ2g[2](d)ij)
)

, (10)

where the metric g[0](0)ij is chosen to be flat and

h[2](0)ij = −A(0)iA(0)j +
1

2(d− 1)
A(0)kA

k
(0)ηij . (11)

g[0](d)ij is traceless and divergenceless, while

h[2](d)ij =
d

4(d− 1)
A(0)kA

k
(0)g[0](d)ij +

1

d
Ak

(0)g[0](d)klA
l
(0)ηij (12)

− d− 1

d
(A(0)ig[0](d)jk + A(0)jg[0](d)ik)Ak

(0),

tr(g[2](d)) =
2

d
A(0)iA

i
(d) − d2 − 2d+ 2

d2(d− 1)
Ai

(0)g[0](d)ijA
j
(0), (13)

and the divergence of g[2](d) vanishes.The part of g[2](d)ij which is undeter-
mined by the asymptotic analysis is related to the expectation value of Tij

at order ǫ2.

2.2 Counterterms and renormalized one-point functions

The counterterm action, restricted to the case where the boundary metric is
flat and so is A(0), becomes

Sct = Sct[0] + Sct[2] = − 1

32πGd+1

∫

ddx
√−γ

(

4(d− 1) − γijAiAj

)

. (14)
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These counterterms suffice to render the action finite to order ǫ2, under the
above restrictions. For non-constant sources there are also other countert-
erms (see [12]) but these do not play a role here.

The vector one-point function is

〈J i〉 = − 1√−g[0](0)

δSren

δA(0)i

= − 1

16πGd+1
(dAi

(d) − gij
[0](d)A(0)j). (15)

The part of the asymptotic expansion, Ai
(d), undetermined by asymptotics is

directly related to the one-point function of the dual operator.
Now let us give the 1-point function of the stress-energy tensor:

〈Tij〉 = 〈Tij〉[0] + ǫ2〈Tij〉[2] + · · · (16)

with [62, 63]

〈Tij〉[0] = − 2√−g[0](0)

δS[0]ren

δgij
[0](0)

=
d

16πGd+1
g[0](d)ij (17)

and

〈Tij〉[2] =
1

16πGd+1

[

dg[2](d)ij −(A(0)iA(d)j +A(0)jA(d)i) −A(0)kA
k
(d)ηij (18)

+
d− 1

d
(A(0)ig[0](d)jk + A(0)jg[0](d)ik)Ak

(0)

+
d2−d+2

2d(d− 1)
Ak

(0)g[0](d)klA
l
(0)ηij − d−2

4(d−1)
A(0)kA

k
(0)g[0](d)ij

]

.

Again, as expected, the expectation value of Tij is directly related to the
undetermined coefficient, g(d)ij .

2.3 Ward identities

The holographic energy momentum tensor satisfies

∇j 〈Tij〉 = Ai∇j

〈

J j
〉

−
〈

J j
〉

Fij. (19)

Computing the trace of the second order stress energy tensor gives the com-
plete anomaly through order ǫ2

〈T i
i 〉 − 1

2
Ai

(0)〈Tij〉Aj
(0) = A(0)i〈J i〉. (20)

The terms quadratic in A(0)i can be thought of as a beta function contribution
to the trace Ward identity [12].
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3 A Lifshitz black brane solution

In this section we construct a Lifshitz black brane solution analytically, work-
ing perturbatively in ǫ around the AdS neutral black brane. Working up to
second order in ǫ, the resulting black brane solution has Lifshitz asymptotics
with dynamical exponent z = 1 + ǫ2.

The leading order metric in (d+ 1) dimensions can be expressed as

ds2 =
dy2

c0

− c0dt
2 + y2dx · dx, (21)

with y → ∞ at the boundary and y = yh at the horizon. The metric function
c0 is given by

c0 = y2(1 − yd
h/y

d). (22)

If a source for the vector field ǫA(0)t is switched on, then at order ǫ the bulk
solution is given by the black hole metric together with a vector field At(y)
satisfying

1

d− 1
∂2

yAt + y−1∂yAt − 1

c0
At = 0, (23)

subject to the condition that At → 0 on the horizon y = yh and At → ǫA(0)ty
as y → ∞. The solution that satisfies these boundary conditions is

At = ǫA(0)ta(y); (24)

a(y) =
π

sin π
d

d− 1

d2
y(1 − yd

h

yd
) 2F1(

1

d
,
d− 1

d
; 2; 1 − yd

h

yd
),

where the normalization has been fixed for future convenience. As y → ∞
this solution behaves as

a(y) = y
[

1 − d− 1

d

yd
h

yd
log

y

yh
− yd

h

yd

(

1 +
d− 1

d2
− (d− 1)

d2
k(d)

)

+ . . .
]

, (25)

where we have introduced

k(d) = 2γ + ψ(
d+ 1

d
) + ψ(

2d− 1

d
) (26)

to shorten formulae; γ is the Euler-Mascheroni constant, and ψ denotes the
digamma function.
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The coordinate y can be changed to a domain-wall type radial coordinate
as

r =
∫

dy√
c0

. (27)

Near the boundary y = ∞ this can be integrated to give the following asymp-
totic expansion

r = log y − 1

2d

yd
h

yd
+ . . . . (28)

In the new coordinates the metric (21) is

ds2 = dr2 −e2r(1+
1 − d

d
yd

he
−dr + . . .)dt2 +e2r(1+

1

d
yd

he
−dr + . . .)dx ·dx. (29)

Thus at zeroth order in ǫ we recover the well-known result

〈Ttt〉[0] =
d− 1

16πGd+1

yd
h, (30)

〈Tij〉[0] =
δij

16πGd+1

yd
h. (31)

and the stress-energy tensor is manifestly traceless. Also in the new variable

a(r)=er
[

1−d−1

d
yd

hre
−dr −d−1

d2

(

2d2+d−2

2(d− 1)
−k(d)−d log yh

)

yd
he

−dr
]

. (32)

The expansion (32) agrees with the earlier result from solving the field equa-
tions asymptotically; a nontrivial check is provided by the ratio of a(d)i and
A(0)i coefficients in the asymptotic expansion. They are related to each other
by (9). It is easy to see that this relation is in agreement with (32). Moreover,
we can extract the one-point functions 〈J t〉 using (15)

〈

J t
〉

= yd
h

ǫA(0)t

16πGd+1

(

− 2d− 1

2
+
d− 1

d
k(d) + (d− 1) log yh

)

. (33)

Next let us consider the backreaction of the vector field onto the metric
at order ǫ2. It is convenient to parameterize the metric as follows

ds2 =
dy2

c(y)
− dt2c(y)b(y)2 + y2dx · dx, (34)
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letting
c(y) = c0 + ǫ2A2

(0)t∆c(y); b(y) = 1 + ǫ2A2
(0)∆b(y). (35)

With this parametrization the Einstein equations give the change in the Ricci
tensor as

ǫ−2A−2
(0)t∆Ryy =

d

c2
0

∆c(y) +
(2 − d)

2(d− 1)

(∂ya(y))2

c0
; (36)

ǫ−2A−2
(0)t∆Rtt = d(∆c(y)+2c0∆b(y))+

1

2
M2a(y)2+

(d−2)

2(d−1)
c0(∂ya(y))2; (37)

ǫ−2A−2
(0)t∆Rij = δij

1

2(d− 1)
y2(∂ya(y))2. (38)

The perturbation in the Ricci tensor computed from the metric gives

ǫ−2A−2
(0)t∆Ryy = − 3

2
∂y ln(c0)∂y∆b(y) − ∂2

y∆b(y) (39)

− ∂2
y∆c(y)

2c0
− (d− 1)∂y∆c(y)

2yc0
+
d∆c(y)

c2
0

;

ǫ−2A−2
(0)t∆Rtt =d(∆c(y) + 2c0∆b(y))+

d−1

2

c0

y
∂y∆c(y)+

1

2
c0∂

2
y∆c(y) (40)

+ yc0

(

(d+ 2) − (
d− 4

2
)
yd

h

yd

)

∂y∆b(y) + c2
0∂

2
y∆b(y);

ǫ−2A−2
(0)t∆Rij =δij

(

− y∂y∆c(y)−yc0∂y∆b(y) − (d−2)∆c(y)
)

. (41)

It is convenient to consider the following combination of equations:

c0∆Ryy +
1

c0
∆Rtt + gij∆Rij , (42)

which leads to a decoupled equation

∂y(yd−2∆c) = −1

2

yd−1

c0

(

a2 +
c0(∂ya)2

(d− 1)

)

. (43)

Using the differential equation satisfied by a(y) in the form

∂y(yd−1∂ya) =
(d− 1)yd−1

c0
a (44)
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the righthandside of the above equation can be simplified to give

∂y(yd−2∆c) = − 1

2(d− 1)
∂y

(

a∂yay
d−1
)

. (45)

This equation can be integrated to

∆c(y) = − (d− 1)π2

4d5 sin2(π
d
)

c0

yd 2F1(
1

d
,
d− 1

d
; 2; 1 − yd

h

yd
)× (46)

×
[

2d(yd + (d− 1)yd
h) 2F1(

1

d
,
d− 1

d
; 2; 1 − yd

h

yd
)

+ (d− 1)yd
h(1 − yd

h

yd
) 2F1(

2d− 1

d
,
d+ 1

d
; 3; 1 − yd

h

yd
)
]

+ chy
d−2
h

y2

yd
,

where ch is integration constant chosen such that ∆c(yh) = ch.
The asymptotic expansion for ∆c(y) is

∆c(y) = y2
[

1

2(1 − d)
− (d− 2)

2d

yd
h

yd
log(

y

yh

) (47)

+
yd

h

yd

(

d− 2

2d2
k(d) − d3 − 2d2 − 2d+ 2

2d2(d− 1)
+
ch

y2
h

)

. . .
]

.

Therefore,

c(y) = y2
(

1 −
ǫ2A2

(0)t

2(d− 1)
−

(d− 2)ǫ2A2
(0)t

2d

yd
h

yd
log(

y

yh
) − yd

h

yd
(48)

+ ǫ2A2
(0)t

yd
h

yd

(

d− 2

2d2
k(d) − d3 − 2d2 − 2d+ 2

2d2(d− 1)
+
ch

y2
h

)

. . .
)

.

In the backreacted geometry the domain-wall type radial coordinate differs
from that in the original asymptotically AdS black brane spacetime. The
radial coordinate is now given by

r =
∫

dy
1

√

c0 + ǫ2A2
(0)t∆c

(49)

=
(

1 +
ǫ2A2

(0)t

4(d− 1)

)

log(y) − ǫ2A2
(0)t

d− 2

4d2

yd
h

yd
log(

y

yh
) − 1

2d

yd
h

yd

+
ǫ2A2

(0)t

4d3

(

(d− 2)k(d) − 2d3 + d2 − 10d+ 8

2(d− 1)
+ 2d2 ch

y2
h

)

yd
h

yd
+ . . . .
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The integration constant is fixed by the requirement that there is no contri-
bution to the source at order ǫ2, i.e. g[2](0)xx = 0. Inverting this relation we
get

y = er
[

1 +
1

2d
yd

he
−dr + . . .+ ǫ2A2

(0)t

(

− r

4(d− 1)
+

(3d− 4)

8d2
yd

hre
−dr (50)

+ (
d2 + d− 4 − (d− 2)k(d)

4d3
− ch

2dy2
h

− d− 2

4d2
log yh)yd

he
−dr + . . .

)]

and hence

gxx =e2r
[

1+
1

d
yd

he
−dr +. . .+ ǫ2A2

(0)t

(

− r

2(d−1)
+

(3d−2)(d−2)

4d2(d− 1)
yd

hre
−dr (51)

+ (
d2 + d− 4 − (d− 2)k(d)

2d3
− ch

dy2
h

− d− 2

2d2
log yh)yd

he
−dr + . . .

)]

.

Now we can check that

h[2](0)xx =
1

2(d− 1)
A(0)tA(0)tg

tt
[0](0)g[0](0)xx, (52)

and

h[2](d)xx = yd
h

(3d−2)(d−2)

4d2(d− 1)
A(0)tA(0)t, (53)

in agreement with (11) and (12) respectively.
Next, we solve for ∆b(y):

c0∂y∆b(y) = −∂y∆c(y) − d− 2

y
∆c(y) − 1

2(d− 1)
y(∂ya(y))2, (54)

or

∂y∆b(y) =
ya2(y)

2c2
0

. (55)

Integrating this equation close to the boundary we find

∆b(y) =
[

1

2
log y +

d− 1

d2

yd
h

yd
log(

y

yh
) + b̃+

d− 1

d3
(2 − k(d))

yd
h

yd
+ . . .

]

, (56)

13



where b̃ is an integration constant. This gives the time component of the
metric in domain-wall coordinates

gtt = −c0 − ǫ2A2
(0)t(∆c+ 2c0∆b) (57)

= −e2r +
d− 1

d
yd

he
(2−d)r + ǫ2A2

(0)te
2r
[

(−1 +
1

2(d− 1)
)r

+
(d− 2)(7d− 6)

4d2
yd

hre
−dr +

(

− (d− 1)(d− 6)

2d2
log yh

− (d− 1)(d− 6)k(d)

2d3
+

(d− 1)(d− 4)(d+ 3)

2d3
− d− 1

d

ch

y2
h

)

yd
he

−dr
]

+ . . . .

Again the source should not be modified and therefore b̃ = 1/(4(d− 1)). We
see that

h[2](0)tt = (−1 +
1

2(d− 1)
)A(0)tA(0)t, (58)

h[2](d)tt = yd
h

(d− 2)(7d− 6)

4d2
A(0)tA(0)t, (59)

both in agreement with (11) and (12) correspondingly.
Using (18) we compute

〈Ttt〉[2] =yd
h

A(0)tA(0)t

16πGd+1

(

2d− 1

4
− d− 1

2

(

log yh+
k(d)

d
+

2ch

y2
h

))

, (60)

〈Tij〉[2] =yd
h

A(0)tA(0)t

16πGd+1

(

− 1

4(d− 1)
+

log yh

2
+
k(d)

2d
− ch

y2
h

)

δij. (61)

It is straightforward to check that the Ward identities (20) are satisfied.

4 Thermodynamics

In this section we will discuss the thermodynamics of the black brane solution,
working in Euclidean signature for convenience. To define the mass we need
to take into account the fact that the stress-energy tensor is not conserved
by itself, but satisfies a non-trivial Ward identity (19). Consider the current

Qj = (〈Tij〉 − Ai 〈Jj〉)ξi, (62)

14



where ξi is such that ∇0ξ0 = z, ∇aξb = δab, ∇aξ0 = ∇0ξa = 0. Using the
Ward identity we get

∇jQj = −
〈

J j
〉

(ξi∇iAj + Ai∇jξ
i) + 〈Tij〉 ∇jξi (63)

= −z
〈

J t
〉

At + z
〈

T t
t

〉

+
〈

T i
i

〉

,

which is precisely the Ward trace identity.
Therefore the current Qi is conserved and following [64] we can define the

conserved mass as

M =
∫

t=const

√
g(〈Ttt〉 − At 〈Jt〉). (64)

Note that expressions for the one-point functions (15) and (18) remain the
same upon analytic continuation to Euclidean signature as explained in [65].

The horizon location at order ǫ2 is shifted to

y0 = yh(1 − 1

dy2
h

ǫ2A2
(0)tch). (65)

The Hawking temperature obtained from the requirement of no conical sin-
gularity in Euclidean signature is shifted to

T =
dyh

4π

(

1 + ǫ2A2
(0)t

[

(d− 3)

d

ch

y2
h

+
1

d

∂y∆c(yh)

yh

+ bh

])

(66)

with bh = ∆b(y = yh) and the entropy defined as the area of the horizon
becomes

S =
V yd−1

h

4Gd+1
(1 − ǫ2A2

(0)t

(d− 1)

d

ch

y2
h

), (67)

with V being the regulated volume of the horizon. The constant ch is di-
rectly related to the position of the horizon, which is the only independent
parameter characterizing the thermodynamic properties of the black brane.
The derivative of ∆c at the horizon is

∂y∆c(yh) = −(d− 1)π2yh

2d2 sin2(π
d
)

+ (2 − d)
ch

yh

. (68)

We compute bh using equation (55) in integrated form

∆b(y)

∣

∣

∣

∣

y0

yh

=
∫ y0

yh

ya2(y)

2c2
0

dy, (69)
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where y0 is a near-boundary cut-off. Using the expansion (56) we find

bh =
1

4(d− 1)
+ lim

y→∞

(

1

2
log y −

∫ y

yh

y′a2(y′)

2c2
0(y

′)
dy′
)

(70)

=
1

4(d− 1)
+

1

2
log yh + lim

y→∞

∫ y

yh

(

1

2y′ − y′a2(y′)

2c2
0(y

′)

)

dy′.

The limit on the right hand side of the last line is finite and independent of
yh. We evaluate it numerically and get in d = 2

bh =
1

2
log yh + 0.42370309... ∼ π2

16
− log 2 +

1

2
+

1

2
log yh (71)

and in d = 3

bh =
1

2
log yh + 0.22974839.... ∼ −1

2
log 3 +

4π2

81
+

7

24
+

1

2
log yh. (72)

More generally, the first law of thermodynamics allow us to fix that for
any d

bh =
(d− 1)π2

2d3 sin2(π/d)
+
k(d)

2d
+

log yh

2
− 2d2 − 3d+ 2

4d(d− 1)
, (73)

which agrees with the above expressions in d = 2 and d = 3.
Up to order ǫ2 we get the following results for the thermodynamic quan-

tities:

M =
(d−1)V yd

0

16πGd+1

[

1 + ǫ2A2
(0)t

(

− 2d− 1

4(d− 1)
+
k(d)

2d
+

1

2
log y0

)]

, (74)

S =
V yd−1

0

4Gd+1
, (75)

T =
dy0

4π

[

1 + ǫ2A2
(0)t

(

bh − (d− 1)π2

2d3 sin2(π/d)

)]

. (76)

As a non-trivial check one can verify that the relation

M =
d− 1

d+ z − 1
TS (77)

is satisfied. Such a relation must hold in any Lifshitz invariant theory on
general grounds: in equlibrium we have Tµν = diag(e,−p, . . . ,−p), where p
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is pressure and e = dM
dV

is energy density. The fundamental thermodynamic
relation implies that

e+ p = Ts, (78)

where s = dS
dV

is the entropy density. Invariance under Lifshitz scaling yields

ze = (d− 1)p. (79)

These together imply (77).
Let us make another important observation. Recall that this black brane

is asymptotically Lifshitz with z = 1 + ǫ2A2
(0)t/2. From (76) we can read off

the scaling relation between temperature and entropy (recall that y0 is the
independent parameter) [42–44]

T ∼ S
z

d−1 . (80)

This relation together with (74) implies the first law of thermodynamics

dM = TdS. (81)

4.1 On-shell action

In this section we evaluate the Euclidean on-shell action. (Note that under
the Wick rotation t → −iτ all the terms in the action change their sign. )

The on-shell action for the Lifshitz black brane can be expressed as a sum
of terms:

Son-shell = Sbulk + SGH + Sct. (82)

We begin by computing Sbulk:

Sbulk = − 1

16πG

∫

ddx
∫ yc

y0

dy
√
G(−2d− 1

2(d− 1)
FµνF

µν) (83)

where yc is a radial cutoff and y0 is the position of the horizon. Noting that√
G = yd−1b(y) we compute

Sbulk =− 1

16πG

∫

ddx
∫ yc

y0

dyyd−1
(

−2d+ ǫ2A2
(0)t

(

(∂ya)2

(d− 1)
−2d∆b(y)

))

(84)

= − 1

16πG

∫

ddx
[

− 2yd(1 + ǫ2A2
(0)t∆b(y))

∣

∣

∣

∣

yc

y0

+ ǫ2A2
(0)t

yd−1a∂ya

d− 1

∣

∣

∣

∣

yc

y0

+ ǫ2A2
(0)ty

d
0

(

1

2(d− 1)
+ log yc

)

− 2ǫ2A2
(0)ty

d
0bh

]

.
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Here we have integrated by parts, used the field equation (55) for ∆b(y) along
with the defining equation (23) for a(y).

Now we move on to evaluate the Gibbons-Hawking term and the coun-
terterms. Working in the y coordinate, the induced metric at the regulated
surface satisfies

√
γ = (yd

c − yd
h

2
)
(

1 + ǫ2A2
(0)t∆b(yc) +

1 + (yh/yc)
d

2y2
c

ǫ2A2
(0)t∆c(yc)

)

. (85)

The Gibbons-Hawking term can be combined with the leading order coun-
terterm to give

K−(d−1) = 1+ǫ2A2
(0)t

(

tr(h[2](0))

2
−y

−d
c

2
tr(h[2](d)−dg[2](d)−g[0](d)h[2](0))

)

. (86)

Thus we obtain

− 1

8πG3

∫

d2x
√
γ(K − d+ 1) (87)

= − 1

8πGd+1

∫

ddxyd
c

[

1 − yd
0

2yd
c

+ ǫ2A2
(0)t

(

∆b(yc) +
d− 3

4(d− 1)

−d−1

2d

(

y0

yc

)d

log yc+
(

y0

yc

)d(5d−6

4d
(
k(d)

d
+ log y0)− 7d3−4d2−16d+12

8d2(d− 1)

))]

.

Now we compute the on-shell action term by term by plugging in asymptotic
expansions for a, ∆c and ∆b:

Sbulk = − 1

8πGd+1

∫

ddx
[

− yd
c + yd

0 − ǫ2A2
(0)ty

d
c

(

∆b(yc) +
1

2(1 − d)
(88)

+
1−d
d

(

y0

yc

)d

log yc+(d−2)
(

y0

yc

)d(k(d)

2d2
− (2d2 + d− 2)

4d2(d− 1)
+

log y0

2d

))]

.

(89)

The remaining contributing counterterm is

− 1

32πGd+1

∫

ddx
√
γAiA

i =
1

32πGd+1

∫

ddxǫ2A2
(0)t

[

yd
c − 2(d−1)

d
yd

0 log yc (90)

− 2yd
0

(

3d2 + 4d− 4

4d2
− d− 1

d
(
k(d)

d
+ log y0)

)]

.

Putting all these terms together gives the free energy

Son-shell = βF = −β V yd
0

16πGd+1

[

1 + ǫ2A2
(0)t

(

k(d)

2d
+

log y0

2
− 1

4(d− 1)

)]

, (91)

where β = 1/T . It is a simple check that F = M − TS.
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5 Relation to top down solutions

In [44,53,66] Lifshitz solutions of Romans gauged supergravity theories were
constructed and then uplifted to ten dimensional supergravities1. General
dynamical exponents with z ≥ 1 were obtained. Here we will consider the
limit of these solutions as z → 1 and interpret them from the perspective of
the dual conformal field theory of the AdS z = 1 solution. Recently uplifts
of the six-dimensional Romans theory to type IIB were found [67] and thus
these solutions may also be viewed as solutions of type IIB.

Here we will discuss mostly the Lifshitz solutions in four bulk dimen-
sions (henceforth denoted Li4) which are obtained as solutions of the Ro-
mans gauged supergravity in six dimensions since the four-dimensional case
is phenomenologically more interesting and moreover corresponding finite
temperature solutions were constructed in [44]. An analogous discussion
holds for the Lifshitz solutions in three bulk dimensions found in [53] and we
will summarise the properties of these solutions at the end of this section.

We begin by reviewing the equations of motion for the six-dimensional
Romans theory [68]. The bosonic field content of 6D Romans’ supergravity
consists of the metric, gAB, a dilaton, φ, an anti-symmetric two-form field,
BAB, and a set of gauge vectors, (A

(i)
A ,AA) for the gauge group SU(2)×U(1).

The bosonic part of the action for this theory is

S =
∫

d6x
√−g6





1

4
R6−1

2
(∂φ)2 − e−

√
2φ

4

(

H2 + F (i)2
)

−e2
√

2φ

12
G2 (92)

−1

8
εABCDEF BAB

(

FCDFEF +mBCDFEF +
m2

3
BCDBEF + F

(i)
CDF

(i)
EF

)

+
1

8

(

g2e
√

2φ + 4gme−
√

2φ −m2e−3
√

2φ
)



,

where g is the gauge coupling, m is the mass of the two-form field BAB,
FAB is a U(1) gauge field strength, F

(i)
AB is a nonabelian SU(2) gauge field

strength, GABC is the field strength of the two-form and HAB = FAB+mBAB.
Spacetime indices A,B, ... run from 0 to 5, and ε is the Levi-Civita tensor
density.

1Note however that the uplifts from six dimensions to massive IIA given in [53] have
typos in the Bianchi identities.
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Varying the action gives the Einstein equation

RAB = 2∂Aφ∂Bφ− 1

2
gABV (φ)+e2

√
2φ
(

G CD
A GBCD − 1

6
gABG

2
)

+ e−
√

2φ
(

2H C
A HBC + 2F iC

A F i
BC − 1

4
gAB

(

H2 + (F i)2
)

)

,
(93)

and the following matter equations of motion

�φ = −1

2

∂V

∂φ
+

1

3

√

1

2
e2

√
2φG2 − 1

2

√

1

2
e−

√
2φ
(

H2 + (F (i))2
)

(94)

∇B

(

e−
√

2φHBA
)

=
1

6
ǫABCDEF HBCGDEF

∇B

(

e−
√

2φF (i)BA
)

=
1

6
ǫABCDEFF

(i)
BCGDEF

∇C

(

e2
√

2φGCAB
)

=me−
√

2φHAB+
1

4
ǫABCDEF

(

HCDHEF +F
(i)
CDF

(i)
EF

)

,

where we have defined the scalar potential function as

V (φ) =
1

4

(

g2e
√

2φ + 4mge−
√

2φ −m2e−3
√

2φ
)

. (95)

The equations of motion admit a solution which is Li4 × H2, with H2 a
hyperboloid

ds2 = L2

(

−y2zdt2 + y2dx · dx+
dy2

y2

)

+ a2ds2(H2), (96)

where L is the curvature radius of Li4 and a is the curvature radius of the
hyperboloid, with ds2(H2) denoting the unit radius metric. Relative to [44]
the signature has been changed to mostly plus, to fit the conventions of this
paper, and the radial coordinate is denoted y in accordance with the earlier
sections. In the Lifshitz solutions, the scalar field is constant, φ = φ0, and
the field configurations are

F
(3)
ty = qBL3e

√
2φ0yz−1; F

(3)
H2

= qηH2
, (97)

Bx1x2
=

B

2
L3y2.

Here ηH2
is the volume form of the hyperboloid. The Lifshitz solutions exist

only if the parameters are related by algebraic equations which are expressed
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in terms of the following quantities

B̂ = LBe
√

2φ0 Q = Le−φ0/
√

2q/a2

ĝ = Lgeφ0/
√

2 â = a/L m̂ = Lme−3φ0/
√

2 .
(98)

and hence one gets

B̂2 = z − 1 ĝ2 = 2z(4 + z)
m̂2

2
=

6 + z ∓ 2
√

2(z + 4)

z

Q2 =
(2 + z)(z − 3) ± 2

√

2(z + 4)

2z

1

â2
= 6 + 3z ∓ 2

√

2(z + 4) .

(99)

From here onwards we will set the curvature radius L to be one and the
integration constant φ0 to be zero, in which case the hatted quantities are the
same as those without hats. Note however that Q = q/a2. Flux quantization
may impose restrictions on the allowed values of z, forcing z to take discrete
values but in what follows we will not discuss these restrictions.

5.1 Lifshitz with z ∼ 1

There are two branches of Lifshitz solutions, but only the upper sign solutions
are connected to the AdS solution with z = 1 and it is this branch that we
will focus on here. When z = 1, B = 0 and

m =
√

10 − 2; Q2 =
√

10 − 3; (100)

g2 = 10;
1

a2
= 9 − 2

√
10.

At this critical point
V (0) = 9 −

√
10. (101)

Now letting
B2 ≡ ǫ2 = z − 1, (102)

with ǫ small, we note that at order ǫ the solution is the leading order AdS4 ×
H2 together with an F

(3)
ty flux of order ǫ and a Bx1x2

flux also of order ǫ. At
order ǫ2 both parts of the six dimensional metric are changed (note that the
radius of the hyperboloid is corrected) and the flux along the hyperboloid is
also corrected at this order.
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To interpret this limit, it is useful to look at the spectrum around the
AdS4 × H2 background. We will not need the complete spectrum in what
follows; it suffices to look at the following decoupled modes. Switch on
perturbations around the background

A(3)
µ = aµ(xρ); Bµν = bµν(xρ), (103)

where xµ denote the AdS4 coordinates. Such perturbations do not depend
on the H2 coordinates and are therefore singlet modes from the perspective
of the Kaluza-Klein reduction over this (compact) space. Linearising the
equations of motion around the background these modes decouple from all
other linear perturbations but are coupled to each other via the equations

∇̄µf
µν =

1

3
Qǫνρστgρστ ; (104)

∇̄ρg
ρµν = m2bµν +Qǫµνστfστ .

Here ∇̄ denotes the AdS4 covariant derivative, ǫµνρσ is the covariant epsilon
on AdS4 and (fµν , gµνρ) are the curvatures of the vector and tensor field
perturbations, respectively. These equations should be supplemented by the
divergence constraint on the tensor field, ∇̄µb

µν = 0. This system of equa-
tions has the degrees of freedom of a massive vector field: define

cµ =
1

3!
ǫµνρσg

νρσ. (105)

Closure of the three form g implies that cµ is divergenceless. Denoting the
curvature of c as fµν

c the coupled equations of motion reduce to

∇̄µf
µν
c = 2cν ; (106)

with this massive vector field strength being related to the gauge field strength
and the tensor field as

fµν
c = 2Qfµν − 1

2
m2ǫµνρσbρσ. (107)

Comparing with (3), we note that such an equation describes a massive
vector field with M2 = 2 = d− 1 and thus this mode is precisely the vector
mode considered in earlier sections. Working to order ǫ, the Lifshitz solution
is therefore indeed a deformation of the dual conformal field by the time
component of a massive vector operator of dimension three: expanding (97)
to first order in ǫ one can extract

ct = −ǫy. (108)

(Note that with our conventions ǫty12 = −y2.)
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5.2 Backreaction of massive vector field

Working perturbatively around z = 1, the backreaction of the massive vector
preserves Lifshitz invariance with z = 1 + ǫ2 when evaluated on the AdS
background. If one adds a massive vector perturbation to an asymptotically
AdS background, such as a black brane, the resulting solution will only be
asymptotically Lifshitz. Moreover, the backreaction of the massive vector
will be non-trivial not just on the four-dimensional metric, but also on the
two scalar fields, which will now run.

To analyse the backreaction of the massive vector field at order ǫ2 it is use-
ful to first reduce the six-dimensional equations to a set of four-dimensional
equations using the following ansatz for the fields [66]. The six-dimensional
Einstein frame metric is expressed as

ds2 = e
1

2
χgµνdx

µdxν + e− 1

2
χa2ds2(H2), (109)

where the factors are chosen such that gµν is an Einstein frame metric in four
dimensions. For the other six-dimensional fields,

φ = φ(x); BAB = bµν(x) + b(x)η(H2)ab; (110)

F
(3)
AB = fµν(x) + γη(H2)ab.

Here b(x) is a scalar field but γ is a constant and F = 0. The reduced action
is then [66]:

S = a2
∫

d4x
√−g

[

1

4
R− e−

√
2φ−χ/2

4
(fµνf

µν +m2bµνb
µν) (111)

− e2
√

2φ−χ

12
gµνρg

µνρ− 1

16
(∇χ)2− 1

2
(∇φ)2− e2

√
2φ+χ

2a4
(∇b)2− eχ

2a2
+
eχ/2

2
V (φ)

− 1

2a4
e−

√
2φ+3χ/2(m2b2 + γ2)− ǫµνρσ

8a2
(2m2bbµνbρσ +2bfµνfρσ + 4γbµνfρσ)

]

.

The interactions in the action above imply that the backreaction of the mas-
sive vector will be non-trivial not just on the four-dimensional metric, but
also on the two scalar fields, which will run. At order ǫ2 Lifshitz invariance is
preserved but at this order other operators, as well as the stress energy tensor,
are affected. As discussed in [12], the extra fields in the consistent truncation,
beyond the metric and massive vector, relate to additional terms occurring
in the OPE between the vector operator and the stress energy tensor. One
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could analyse a more general system of this type using the techniques of [12]
and this paper.

However, for the specific system under consideration, analysing the ex-
pansion in ǫ in detail is less interesting for the following reason. Linearizing
the equations of motion for the scalars φ and χ around the AdS solution one
obtains

�φ = −1

4
(g2 + 4mg − 9m2)φ+Q2φ− 3Q2

2
√

2
χ (112)

= (16 − 6
√

10)φ− 3(
√

10 − 3)

2
√

2
χ;

�χ = (
4

a2
− V (0) + 9Q2)χ− (2V ′(0) + 6

√
2Q2)φ (113)

= 2
√

10χ− 4
√

2(
√

10 − 3)φ.

Diagonalizing this system we find that the masses of the two independent
scalar modes are

m2
1 = −2.99...; m2

2 = 6.34... (114)

and thus the eigenmodes do not satisfy the Breitenlohner-Freedman bound
m2 ≥ −9/4; this was also observed in [44, 66]. Therefore these scalars cor-
respond to instabilities of the system: the original AdS critical point is not
supersymmetric and it is not stable.

Turning now to the Lifshitz solution, we note that these unstable scalars
run in the finite temperature solution. Although these unstable modes pre-
vent us from giving clear dual interpretation of this particular system, we
have shown that it belongs to the same universality class of models discussed
in [12]. It would be interesting to find z ∼ 1 Lifshitz solutions in string
theory which are obtained from deformations of supersymmetric CFTs and
which do not suffer from such instabilities. Note that the second branch of
Lifshitz solutions found in [53] have dynamical exponents z > 1 and are not
connected to the unstable z = 1 critical point; these have been argued to be
the stable branch [44, 66].

5.3 Three-dimensional Lifshitz geometries

In this section we briefly summarize the interpretation of the Li3 ×H2 solu-
tions of Romans N = 4 gauged supergravity in five dimensions found in [53].
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The bosonic field content of the Romans theory [69] consists of the metric,
gAB, a dilaton, φ, two antisymmetric tensors Bα

AB, and a set of gauge vectors,

(A
(i)
A ,AA) for the gauge group SU(2) ×U(1). The bosonic part of the action

for this theory is

S =
∫

d5x
√−g5





1

4
R5−1

2
(∂φ)2 − ξ2

4

(

Bα2 + F (i)2
)

−ξ−4

4
F2 (115)

−1

4
εABCDE

(

1

g1
ǫαβB

α
AB∇CB

β
DE − F

(i)
ABF

(i)
CDAE

)

+
1

8
g2

(

g2ξ
−2 + 2

√
2g1ξ

)



,

where we have defined ξ = e
√

2φ/
√

3. Here g1 and g2 are the gauge couplings
for U(1) and SU(2) respectively. FAB is a U(1) gauge field strength and F

(i)
AB

is a nonabelian SU(2) gauge field strength. Spacetime indices A,B, ... run
from 0 to 4, and ε is the Levi-Civita tensor density.

Just as in the six-dimensional case there exist Lifshitz solutions

ds2 = L2(−y2zdt2 + y2dx2 +
dy2

y2
) + a2ds2(H2), (116)

where L is the curvature radius of Li3 and a is the curvature radius of the
hyperboloid, with ds2(H2) denoting the unit radius metric. In the Lifshitz
solutions, the scalar field is constant and can be set to zero; for notational
simplicity we will also set the curvature radius L to one in the metric above.
There are two distinct classes of Lifshitz solutions. The first has the following
fluxes

Fty = −α1y
z−1; F

(3)
H2

= a2γηH2
, F (3)

yx = β2. (117)

Here ηH2
is the volume form of the hyperboloid. This Lifshitz solution re-

quires2

α2
1 =

1

2
z(z − 1); β2

2 =
1

2
(z − 1); γ2 =

z

4
; (118)

g2
2 = −2z2 + 3z + 2; g1g2 =

1√
2

(2z2 + z + 1); a2 =
2

3z
.

2Note that there are typos in equations (3.32) and (3.39) of [53]: ĝ
2

1
should read ĝ1ĝ2.
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In the second class of Lifshitz solutions the fluxes are

F
(3)
ty = −α2y

z−1; F
(3)
H2

= a2γηH2
, Fyx = β1. (119)

Here ηH2
is the volume form of the hyperboloid. This Lifshitz solution re-

quires

α2
2 =

1

2
z(z − 1); β2

1 =
1

2
(z − 1); γ2 =

z

4
; (120)

g2
2 = 2z2 + 3z − 2; g1g2 =

√
2(1 + z); a2 =

2

3z
.

Both solutions reduce in the z = 1 limit to the same AdS critical point.
Reality of the gauge couplings requires that 1 ≤ z ≤ 2.

Linearizing around the AdS solution the following fluctuations form a
decoupled system:

δFµν = fµν(xρ); δF (3)
µν = f (3)

µν (xρ), (121)

where xµ denote AdS coordinates, with the linearised equations of motion
being

∇̄νf
νµ = −ǫµρσf (3)

ρσ ; ∇̄νf
(3)νµ = −ǫµρσfρσ, (122)

with ∇̄µ the AdS3 covariant derivative and ǫµνρ the three-dimensional covari-
ant Levi-Civita. As previously, we can define

cµ =
1

2
ǫµνρf

νρ (123)

such that cµ is divergenceless and is a massive vector

∇̄µf
µν
(c) = cν , (124)

where f(c)µν ≡ −2f (3)
µν is the curvature of cµ. This is precisely the mass given

above (3). Looking now at the Lifshitz solutions, we see that when z = 1+ǫ2

the two classes of solutions reduce to the following perturbations about the
AdS3 background, respectively:

ct =
1√
2
ǫy; cx =

1√
2
ǫy. (125)

Therefore, the first class corresponds to a deformation by the time component
of the massive vector while the second class corresponds to a deformation
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by the spatial component of the massive vector. Note that only in three
dimensions a deformation by the special component of the massive vector is
consistent with Lifshitz symmetry – in higher dimensions such deformation
breaks the rotational symmetry.

As in the six-dimensional models, the backreaction at order ǫ2 generically
induces other fields in addition the metric and massive vector system, since
the consistent truncation to three dimensions involves additional scalar fields.
However, working out this backreaction in detail is not necessary because one
can already show that the system has BF instabilities. Perturbing around
AdS, the dilaton together with the following breathing mode of the metric

ds2 = e2χ(xµ)

(

−y2dt2 + y2dx2 +
dy2

y2

)

+ e−χ(xµ)ds2(H2) (126)

form a decoupled system. The diagonalized masses of these scalar modes are

m2
± =

3

2
±

√
33

2
, (127)

with the mode such that m2
− < −1 violating the BF bound. Therefore just

as in the six-dimensional models the AdS critical point is unstable.

6 Conclusions

In this paper we have constructed analytically asymptotically Lifshitz black
branes with dynamical exponentsz = 1+ǫ2. Using the holographic dictionary
developed in [12] and extended here to arbitrary dimension we obtained the
thermodynamic properties of these neutral black branes analytically. In par-
ticular, we argued for and verified the scaling relation between temperature
and entropy: T ∼ S

z
d−1 . In the non-relativistic theory care must be taken to

identify the correct conserved quantity needed to define the mass M .
We showed that the z ∼ 1 solutions in the top-down models of [44, 53]

belong to the same universality class as those analysed in [12] and in the
present paper, i.e. they can be viewed as deformations of relativistic fixed
points by a dimension d vector operator Jt. Unfortunately, these models
suffer from Breitenlohner-Freedman type instabilities, which makes the study
of these systems challenging. It would be interesting to look for other string
theory embeddings of z ∼ 1 Lifshitz geometries which do not have such
instabilities.
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