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Of the approximately 35 million people living with HIV in sub-Saharan Africa in 2013, over 1.9 
million were in Zambia. The country is among the hardest hit by what is described as a 
generalised HIV epidemic with a prevalence of 14.3 percent of the sexually active population 
living with the virus.  Limited information on the long–term survival and related economic 
costs of providing Antiretroviral Therapy (ART) to the needy population is a challenge to 
planners and others interested in mitigating the effect of this problem.  
 
A two-pronged study has been undertaken to address this paucity of information whose 
objectives are: 1) To provide better estimates of long term survival estimates of people on 
ART; and 2) Estimate the number of people on ART in the future and the related economic 
cost of providing them with ART over the next decade.  Survival analysis techniques were 
employed to estimate distributions of time each patient spent on ART before exiting the 
system for one reason or the other. These distributions served as input parameters in the 
Discrete Event Simulation (DES) model which was used to model the number of people on 
ART in Zambia and provide projections for the cost of providing ART in the future. HIV-infected 
patients enter the model when they commence ART and then change their health states 
stochastically until they exit the system due to death or stopping treatment. Economic costs 
are calculated from the public sector perspective and we anticipate the tool being used for 
planning purposes in Zambia. The development of the model was with extensive consultation 
of different staff involved in the running of the ART program in Zambia from clinicians and 
support staff managing the patients at the clinics to provincial and national ART coordination 
staff who are involved in managing and planning of the interventions at the macro level. 
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1 Introduction 

Like many countries in sub-Saharan Africa which are affected by the human 

immunodeficiency virus (HIV) epidemic, Zambia faces the growing challenge of providing the 

various clinical care and other services for people infected with the HIV virus. With a 14.3 

percent HIV prevalence in the general population, more than 1.9 million out of the country’s 

13 million people at the last population count in 2010 live with the virus. Zambia is classified 

as a lower middle income country (LMIC) (World Bank, 2011) by the World Bank. 

 

1.1 Statement of the problem 

As the HIV infection matures into acquired immune deficiency syndrome (AIDS) in each of the 

infected individuals, treatment with antiretroviral therapy (ART) is the only known and 

acceptable mitigation which can be provided to these people in order to enable them lead 

close to normal lives while remaining economically productive in society. The number of these 

HIV-infected citizens who need ART (referred to as the disease burden of AIDS) is large. It has 

been growing year on year in Zambia over the last decade and planning how to meet this 

disease burden is a national challenge. A critical aspect of this challenge is estimating the 

disease burden and its economic cost in the long term from the public sector standpoint since 

over 90 percent of infected patients receive treatment from public health facilities which are 

government funded. 

   

1.2 Research objectives and questions 

The aim of the study is to provide a planning tool and reference for health intervention 

planners and financiers on the long term ART outcomes and economic costs. The two 

objectives to achieve this are: 

 

1. To develop a simulation model of the time intervals from ART initiation to exiting the 

ART program in Zambia  

2. To generate long term program level estimates of the economic cost of providing ART 

from patient initiation to exit in Zambia 

 

The research questions in the study are: 
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1. What is the survival estimate of the time intervals from initiation to drop out among 

patients who commence ART in a LMIC such as Zambia? 

2. What is the total economic cost of the provision of ART in Zambia from enrolment to 

drop out? 

 

1.3 Ethical approval 

In order to conduct the research, ethical approval was obtained from necessary institutions 

even though there was no contact with any of the people on ART during or after the study. 

The use of patient-level data for this research made it obligatory to obtain necessary ethical 

clearance. Ethical approval for this research was therefore obtained from the SSEGM Ethics 

Sub-committee in the Faculty of Social and Human Sciences at the University of Southampton 

and the ERES Converge Ethics Committee in Zambia. In addition, permission to conduct the 

research in Zambia was obtained from the Ministry of Health, Zambia as per relevant 

statutory requirements. This ensured that no violations or infringements on individuals’ 

privacy or rights were committed during the research undertaking according to both the laws 

of the Republic of Zambia and the United Kingdom. 

 

1.4 Chapter summary 

This chapter has provided the following: 

• An introduction of the HIV/AIDS situation in Zambia followed by a statement of the 

problem investigated in this thesis 

• An outline of the research objectives and questions 



 
 

3 
 

2 Background 

2.1 Human Immunodeficiency Virus 

First reported in the USA in 1981 (Centers for Disease Control and Prevention, 1981), Human 

immunodeficiency virus (HIV) is a virus which attacks the human immune system by impairing 

or destroying CD4 cells which make up key components of the cellular immune system 

(UNAIDS, 2008). CD4 cells (also known as CD4+ cells) are a type of white blood cells 

(lymphocytes) which lead the fight against HIV. HIV can be transmitted from an infected 

person to an uninfected person through a number of ways including unprotected 

heterosexual or homosexual sex; sharing contaminated syringes or needles; from mother to 

child during pregnancy, childbirth or breastfeeding and through blood transfusion (FPA, 2008; 

UNAIDS, 2009).  

 

Globally, the transmission patterns of HIV are categorized in two groups which also roughly 

define the pandemic geographically (Kilmarx, 2009). Sub-Saharan Africa, which accounted for 

approximately 71% of the 35 million people living with the virus at the end of 2013, mainly 

has a generalized epidemic driven by unprotected heterosexual intercourse as well as vertical 

transmission from mother to child (UNAIDS, 2011, 2012, 2013, 2014). In addition, the 

Caribbean can also be classified in the same category as Sub-Saharan Africa in terms of the 

drivers for transmission although the prevalence and number of people living with the virus 

is significantly smaller. The remainder of the world has concentrated epidemics chiefly made 

up of Injection Drug Users (IDU) and men who have sex with men (MSM). Paid sex work is 

also a driver to a lesser extent in this category (UNAIDS, 2012).  

 

Figure 1 shows the trends of the number of people living with HIV and new infections globally 

from 2001 to 2011. The number of people living with the HIV virus increased consistently from 

2001 to 2011 at an average rate of about 1.5 percent per year. This growth rate is much more 

favourable than the rate at which this number was growing in the decade before (1990 to 

2000) when it averaged over 10 percent per annum (data not in the graph). Much of this 

decline is attributable to a mixture of factors; behaviour change (mainly the reduction of the 

number of sexual partners, condom use and delayed age of first sex), expanded coverage of 
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antiretroviral therapy and the natural trend of the epidemic has been reached (Bongaarts, 

Pelletier, & Gerland, 2009; UNAIDS, 2011; WHO UNAIDS UNICEF, 2011). 

 

 

 
Figure 2.1: People living with HIV and New HIV infections, worldwide, 1990 to 2011 (Source: UNAIDS ) 

 

The UNAIDS World AIDS Day report for 2010 (UNAIDS, 2011) reports that 50% of the global 

number of people living with HIV are female, recording a reduction of 2 percentage points 

compared to 2009. However, in Sub-Saharan Africa, 59 percent of the HIV cases are female 

followed by the Caribbean at 53 percent. By contrast, out of all the HIV+ cases in Europe 

during the same year, 29 percent were women versus 71 percent in men (European Centre 

for Disease Prevention and Control, 2011; UNAIDS, 2010)  During 2010, the UNAIDS estimated 

the number of children living with HV to be about 3.4 million representing 10% of the world 

total. Of the estimated 2.7 million new HIV infections for the year 2010, about 390,000 were 

children (WHO UNAIDS UNICEF, 2011).  
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2.1.1 Acquired Immunodeficiency Syndrome  

Persons infected with HIV are said to have developed Acquired Immunodeficiency Syndrome 

(AIDS) if their immune systems become compromised by the virus to the extent that the 

body’s immune system fails to fight off diseases. The term AIDS refers to advanced levels of 

HIV infection (and therefore immune suppression) in which a number of otherwise easy to 

fight off diseases manifest in the infected person. These diseases are known as opportunistic 

infections since they take the weakened immunity of the person as an opportunity to manifest 

(American Cancer Society, 2012).  

 

Formally, the United States government’s Centers for Disease Control and Prevention (CDC), 

defines AIDS as having a positive HIV blood test coupled with the occurrence of any one of 

more than 20 opportunistic infections including certain infections, cancers, and syndromes 

that are AIDS-related. Additionally, an HIV positive test result and a CD4 counts of less than 

200 cells per micro-liter (µL) of blood is also applied to indicate that a person has AIDS. A 

normal CD4 count is between 500 and 1,500 cells per micro litre of blood in adults and can 

reach 2,500 cells in children below 15 years (Centers for Disease Control and Prevention, 

1992; UNAIDS, 2008) 

 

2.1.2 AIDS-related Opportunistic Infections 

As a result of HIV infection, a person’s immune system is suppressed making it susceptible to 

infections which it would have otherwise fought off naturally. Such intercurrent infections are 

known as Opportunistic Infections (OI) since they take the immune suppression as an 

opportunity to infect a person. Opportunistic infections are caused by a wide range of 

pathogens (Ioannidis & Wilkinson, 2003). Some of the common OIs include tuberculosis (both 

pulmonary and extra-pulmonary), oral candidiasis, herpes zoster, cryptococcal meningitis and 

pneumonia (Egger et al., 2002; Ghate et al., 2009; Gona et al., 2006).  

 

2.1.3 AIDS-related mortality 

As many as 24 million people had been estimated to have died from AIDS worldwide by the 

United Nations Population Division between 1980 and 2007 (Bongaarts et al., 2009). The 

Population Division based these estimates on data collected by UNAIDS on prevalence of HIV 

in the population for persons aged between 15 and 49 years. Projections of both prevalence 
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of HIV and AIDS mortality were generated by using a model developed by UNAIDS for the 

period through to 2030. By the year 2030, the pandemic is projected to have claimed 75 

million lives. The World Health Organization (WHO), UNAIDS and UNICEF estimate that 1.8 

million and 10.7 million people died from AIDS in 2010 and 2011 respectively. This trend 

indicates a consistent reduction in mortality from a peak 2.0 million AIDS deaths in 2008 

(UNAIDS, 2012; WHO UNAIDS UNICEF, 2011). Figure below shows the distribution of AIDS 

deaths by region for 2011. Africa continues to bear the largest burden of AIDS-related deaths 

accounting for 70 percent of the global total. The regions experiencing AIDS mortality the 

most after Africa are South East Asia as well as Eastern Europe and Central Asia accounting 

for 15 percent and 5 percent of the reported global mortality respectively. 

 

 
Figure 2.2: AIDS-related deaths by region, 2011 (Source: WHO UNAIDS ) 

 
2.2 The HIV and AIDS epidemic in Zambia 

The first documented case of HIV infection in Zambia was in 1984. Monitoring HIV prevalence 

thereafter was by use of HIV prevalence rates among pregnant women attending a sample of 

21 clinics in a routine survey known as the Antenatal Clinic Sentinel Surveillance Surveys 

(ANCSS). Using ANCSS data, population level estimates of HIV prevalence were extrapolated. 
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The ANCSS provided estimates for the years 1994, 1998, 2002 and 2006 (Fylkesnes, Ndhlovu, 

Kasumba, Mubanga Musonda, & Sichone, 1998; Ministry of Health Zambia (MOH), 2007).  This 

was not perfect but was a good indicator of the situation in the general population. From 

2002, however, nationally-representative population-level estimates of HIV have been 

obtained from Demographic and Health Surveys (Central Statistical Office (CSO) & Ministry of 

Health Zambia (MOH), 2003, 2009). 

 

From those early years, HIV infections have spread throughout the country to epidemic levels. 

Nationally, the HIV prevalence in 2007 was 14.3 percent of adults aged 15 to 49 years (Central 

Statistical Office (CSO) & Ministry of Health Zambia (MOH), 2009). This prevalence level is 

considered a stable level at which the epidemic has reached after what epidemiologists 

contend was a peak prevalence of about 16 percent during the mid-1990s. HIV incidence (new 

infections) in the population aged 15 – 49 has been reported to stabilize at about 1.6 percent 

although the absolute number of new infections increases year on year as a result of 

consistent population growth in the country.  

 

2.3 Demographic and AIDS profile of Zambia 

 
2.3.1 Demographic characteristics of the population 

According to the 2010 Zambia census of population and housing, there were 13 million people 

in the country during that year with 51 percent of them being females (Central Statistical 

Office (CSO), 2012a). The age distribution of the Zambian population revealed a very young 

population with about 45.5 percent of the country’s inhabitants aged below 15 years. The age 

group 15 – 64 years was 52 percent of the total population and only 2.6 percent of the 

population was recorded as aged 65 years or over. In terms of residence, 60 percent of the 

Zambian population lived in rural areas in 2010 compared with 40 percent in urban areas.  
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Figure 2.3: Distribution of population by province in Zambia, 2010 (Source: Zambia Census of Population and Housing, CSO) 

 

The country is divided into ten provinces for administrative purposes and the distribution of 

the population in these regions varies widely with the more urbanized provinces being home 

to most people. Lusaka province (host of the nation’s capital, largest commercial city and seat 

of government) has the largest share of the Zambian population at 16.7 percent, followed by 

the Copperbelt province (home of the copper mines, the country’s economic mainstay) at 

15.1 percent. This is shown in Figure 2.3. The smallest share of the population is in Muchinga, 

a new province created in October 2011 which has only 5.4 percent of the national total. The 

urbanized provinces have population densities many times more than the national average of 

17.4 persons per square kilometer (45 persons per square mile). This is as a result of people 
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migrating to these areas in search of work and other social amenities not readily available in 

the rural areas. Lusaka province has a population density of 100.1 persons per square km, 

followed by Copperbelt province, which has a density of 63 persons per square km. By 

contrast, some of the more rural provinces have population densities of less than 10 persons 

per square km (Muchinga and Western provinces have densities of 8.1 and 7.1 persons per 

square km respectively)  

 

2.3.2 State of the HIV epidemic in Zambia 

Zambia has a mature and generalized HIV hyper epidemic (or pandemic) according to the 

country’s National HIV/AIDS Council. The epidemic is primarily driven by heterosexual contact 

which accounts for approximately 78 percent of new infections (Ministry of Health Zambia 

(MOH) & National HIV/AIDS/STI/TB Council Zambia, 2009; National HIV/AIDS/STI/TB Council 

Zambia, 2015). Vertical transmission from mother to child during pregnancy, at birth or during 

breastfeeding is the next most important transmission route of HIV in Zambia, accounting for 

10 percent of new infections. Other modes of transmission are unsafe medical injections (0.2 

percent) and blood transfusions (0.02 percent) of all new infections. The other vehicles of 

infection such as IDU and MSM are not documented because IDU is only practiced on a small 

scale in the Zambia and homosexual activity is taboo and illegal therefore not well understood 

or documented. 

 

2.3.3 HIV prevalence in Zambia: trends and patterns  

Geography, age and gender define some of the most important factors that characterise the 

heterogeneity of HIV prevalence in Zambia. Figure 3 shows that women in the sexually active 

population (15 – 49 years) generally show a higher HIV prevalence than do their male 

counterparts. Specifically, 5.7 percent females versus 3.6 percent males (aged 15 – 19 years) 

are HIV positive. This trend increases to a peak of 26 percent prevalence for females aged 30 

– 34 years compared with 17.1 percent among the males of the same age group. However, 

this pattern is reversed for age groups between 40 and 49 years where men have a higher HIV 

prevalence. This trend, it is proposed, is as a result of younger females preferring older male 

sexual partners and vice versa (Central Statistical Office (CSO), Ministry of Health Zambia 

(MOH), National HIV/AIDS/STI/TB Council National HIV, & MEASURE Evaluation, 2010; 

Ministry of Health Zambia (MOH) & National HIV/AIDS/STI/TB Council Zambia, 2012). The 
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total prevalence in all age groups is still higher in women compared to men of reproductive 

age with women recorded at 16.1 percent versus 12.3 percent in men (against a national 

prevalence rate of 14.3 percent for both sexes).  

 

The same report indicates that the HIV prevalence in urban areas is twice that in the rural 

parts of the country, 19.7 percent versus 10.3 percent respectively. This trend is also true 

within the sexes disaggregated by residence, 23 percent for urban women compared with 11 

percent among rural women and 15.9 percent prevalence for urban men versus 9.4 percent 

for their rural counterparts. Furthermore, the HIV prevalence is distributed with a similar 

pattern between provinces with the more predominantly rural provinces having lower rates 

than the urbanised provinces. 

 

 
Figure 2.4: HIV prevalence rate by age and gender, 2007 (Source: ZDHS 2007) 

 

According to the Zambia Demographic and Health Surveys (ZDHS) conducted by the Ministry 

of Health in 2001 (Central Statistical Office (CSO) & Ministry of Health Zambia (MOH), 2003) 

and 2007 (Central Statistical Office (CSO) & Ministry of Health Zambia (MOH), 2009), the 
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province with the highest HIV prevalence rate in Zambia remains Lusaka province. The 2007 

survey reported a provincial prevalence rate of 20.8 percent with the next highest being 17 

percent in the copper producing province (the Copperbelt) while the other commercialized 

provinces (Central and Southern) also had prevalence rates of about 15 percent or higher. The 

lowest reported prevalence rate at provincial level in 2007, as was the case in 2001-2002, was 

in the Northern province at 6.8 percent versus the earlier rate of 8.3 percent. The more rural 

and less commercialized provinces of the country have continued to show lower HIV 

prevalence rates over the periods covered by the two surveys ranging from 8.3 to 13.7 

percent in 2001 and 6.8 to 15.2 percent in 2007. 

 

Other socio-economic characteristics of the HIV epidemic in Zambia do not show very 

significant differences in the distribution of people infected with the virus. In 2007, HIV 

prevalence among people in Zambia with no education was reported to be 10 percent 

compared with 13.7, 15.1 and 19.3 percent for those whose highest level of education was 

primary, secondary and tertiary respectively. There was a variation in the HIV prevalence rates 

by employment status with 15.6 percent of employed individuals testing positive while only 

11.7 percent of the unemployed tested HIV positive in 2007. Zambians falling in the fourth 

wealth quintile exhibited the highest HIV prevalence (20.6 percent) relative to the other 

quintiles, followed closely by the highest (fifth) quintile which had 17.8 percent of individuals 

testing HIV positive. People in the lowest wealth quintile had the lowest prevalence rate of 

7.8 percent. The wealth quintiles tie in well with the higher prevalence rates discussed above 

in the more urban commercialized provinces. 

  

2.3.4 National response to the HIV/AIDS epidemic 

The Zambian political leadership, along with other global leaders, pledged to do all it can 

within its powers to reverse the spread of HIV at the United Nations General Assembly Special 

Session on HIV and AIDS (UNGASS) of 2001. Zambia’s development blueprint known as the 

National Development Plan, currently in its sixth phase (hence known as the Sixth National 

Development Plan, SNDP), incorporates HIV/AIDS related issues in all its programs, cutting 

across all sectors of national development. 
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Figure 2.5: HIV prevalence rate by province and year, 2001-2007 (ZDHS 2001 & 2007) 

 

The national response to the HIV/AIDS epidemic is in turn implemented according to plans 

set out in the 2011-2015 National AIDS Strategic Framework (NASF) which follows on from 

earlier strategic plans 2002-2005 and 2006-2010. The NASF sets out as its priorities to 

accelerate and intensify HIV prevention; accelerate the provision of quality treatment care 

and support for PLWHA; to mitigate the social-economic impacts of HIV/AIDS on the most 

vulnerable groups such as orphans and vulnerable children; and to strengthen the capacity 

for a well-coordinated and sustainably managed HIV/AIDS program in the country.  

 

To achieve these objectives, the Government of the Republic of Zambia (GRZ) has scaled up 

the different HIV-related services over the last 10 years to reach as many people in the 

country as possible. Counselling and testing (CT) services were being offered in 1,784 health 

facilities countrywide in 2011 with nearly 2.04 million people receiving CT services. This 

represents 94 percent of all health facilities in Zambia and is a substantial increase from only 

1,083 health facilities offering the service in 2007.  During the same year, 560,000 pregnant 

women were tested for HIV in a direct effort to institute prevention strategies for the unborn 

children where the need would arise. In addition, 32,293 infants born to HIV-infected women 

were tested for HIV within 12 months of birth to determine their HIV status. This number 
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increased from 23,713 infants tested in the previous year. A recently added national 

prevention strategy for HIV in Zambia is male circumcision (MC) (National HIV/AIDS/STI/TB 

Council Zambia, 2010). With only 13 percent of Zambian males circumcised, the opportunity 

to further mitigate the spread of the HIV virus is high with increased circumcision of males 

aged over one year. The MC services are being provided as part of a comprehensive package 

of CT and Sexually Transmitted Infections (STI) testing and treatment. 

 

Antiretroviral therapy services and general care services for PLWHA are offered in both public 

and private health facilities in the country alongside CT and PMTCT. In 2011, there were 509 

health facilities providing ART services in all the provinces and nearly all districts of the 

country (up from 373 facilities in 2009). Further details of the ART services are outlined in the 

next section.  

 

2.3.5 The antiretroviral therapy program in Zambia 

While counselling and testing, as an entry point, is the most vital initial step in combating the 

HIV epidemic, providing treatment and care services to those individuals who test HIV positive 

is critical when their infection reaches advanced stages. Antiretroviral therapy (ART) service 

provision has seen a very rapid growth in Zambia over the last decade. During what could be 

described as the pilot phase in 2002, there were only 143 patients on ART in Zambia at the 

country’s 2 national referral hospitals (one located in the nation’s capital and the second 

located in a town in the Copperbelt province). Antiretroviral therapy was offered at these 

sites because at the time, these were the only facilities in the country at which both specialist 

personnel and equipment required to monitor the patients were available. A trend of the 

number of people in need of treatment and the corresponding number who were receiving 

the treatment in presented in figure 5 below. The 142 people on ART in Zambia in 2002 were 

against an estimated disease burden of 236,000 patients representing an unmet need for ART 

services of over 99 percent. During the development and expansion phases of the national 

ART response (2004 – 2005), capacity building and increases in the number of health facilities 

providing ART was put in place. This ensured that Health care workers were trained, 

laboratory equipment, logistics and information systems developed and put in place and 

more patients put on treatment from an array of additional entry points such as PMTCT, TB 

clinics, STI clinics and provider initiated testing for HIV. By the end of 2005, more than 51,700 
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people were on ART against a disease burden of over 256,000 (the unmet need had been 

reduced to 80 percent from over 99 percent in 2002).  

 

 
Figure 2.6: Antiretroviral therapy and disease burden in Zambia, 2002 – 2007 (HMIS, Ministry of Health) 

 

Further expansion of ART services aimed at reaching rural and other remote communities was 

embarked on between 2006 and 2010. In 2010, patients on ART in rural areas increased to 34 

percent compared with only 11 percent in 2008. The gap between people needing ART 

services and those actually receiving ART was consistently reduced over the years with only a 

22 percent unmet need in 2011 (414,517 on ART vs. 535,685 requiring ART). ART services 

were being offered at 450 sites in 2011. 

 

An integral component of the ART program during the years has been the release of ART 

protocols which are used by different practitioners to provide the care and treatment services 

to patients. These protocols describe which antiretroviral drugs should be given to PLWHAs 

in different categories and circumstances such as pregnant women, people presenting with 

advanced clinical symptoms, people presenting with important co-infections such as TB and 

so on. Contained herein is the all-important CD4 cut-off point at which ART is to be initiated 
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for any patient. In Zambia, prior to 2007, ART was commenced for all individuals whose CD4 

count was less than 200 cells/µL of blood. This was in line with WHO recommendations for 

LMICs for the management of PLWHAs (World Health Organization, 2004, 2006). However, 

after sufficient research showed the benefits of commencing ART at higher CD4 count levels 

than 200 cells/µL of blood, the Zambian government adopted the new WHO guidelines. In 

2007, the new cut-off point of 350 cells/µL of blood was the adopted as the criteria for 

initiating ART in both adults and paediatric patients and new guidelines were formally 

published in 2010 (Ministry of Health Zambia (MOH), 2010).    

 

2.4 Chapter summary 

This chapter has achieved the following: 

 

• Provided a description of HIV and how it affects HIV-infected persons Provided a 

profile of the HIV epidemic in Zambia outlining its salient characteristics in the country 

• Discussed the trends and patterns of HIV prevalence in Zambia and the national 

response to the epidemic  
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3 Literature Review 

 
3.1 Introduction 

In this chapter, healthcare modelling literature is introduced in order to provide a general 

sense of the utilisation and application of OR techniques in the field. Examples are presented 

in which different aspects and problems in healthcare are modelled before focusing on 

applications to HIV/AIDS. To illustrate these various research concerns, the remainder of the 

chapter is arranged into three broad categories labeled HIV/AIDS modelling, Survival Analysis 

and Economic Analysis in Healthcare. The first part is a discussion of studies outlining the OR 

techniques applied to the various aspects of the HIV/AIDS epidemic. Some of the different 

characteristics of the epidemic to which the reviewed literature relates include applications 

in prevention of HIV, the care and treatment of PLWHA, HIV transmission dynamics and other 

epidemiological considerations 

 

The second part deals with the survival estimation of HIV-positive persons. Research is 

reviewed outlining the evolution of the research area from purely observational cohort 

studies in the early years of the epidemic to more sophisticated mathematical and other 

models developed after several years of observations. This section of the literature review 

ends with a synopsis of the different methodologies employed in survival analysis and how 

the current work is proposed to fit into this picture. Using a similar structure as above, a 

separate section of the chapter is dedicated to a review of literature on economic evaluation 

and related models. HIV/AIDS-related economic analyses are presented in four broad 

commonly used methodologies applied to a similar spectrum of the aspects of the epidemic 

(transmission, prevention, care and treatment) as discussed in the survival analysis part of the 

literature review. 

 

3.2 Operational Research methods in healthcare 

The application of Operational Research (OR) in healthcare has been practiced for over 40 

years (Brailsford, 2005; Flagle, 2002) and extensive documentation now exists in the literature 

of these practices (Katsaliaki & Mustafee, 2010). Decision making in diverse areas of 

healthcare have been aided by operational research including (but not limited to) hospital 

capacity planning and management, supply chain management in blood banks, evaluation of 
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hospital efficiency, national drug control policy, decision making for bioterror preparedness, 

and analysis of asthma treatments (Brandeau, Sainfort, & Pierskalla, 2004). Rais and Viana 

(2011) conducted a survey of OR in healthcare with a focus on optimization methods 

employed in healthcare planning in problems such as demand forecasting, location selection 

for health centers and emergency vehicles as well as capacity planning (Koch & Weigl, 2003; 

D. B. Smith & Aaronson, 2003; H. K. Smith, Harper, Potts, & Thyle, 2009; White, Smith, & 

Currie, 2011). A broad spectrum of research has been conducted using optimization in diverse 

aspects of healthcare including disease diagnosis and treatment planning (Censor, 2003; 

Olafsson, Jeraj, & Wright, 2005; Trofimov, Vrancic, Chan, Sharp, & Bortfeld, 2008), prevention 

of diseases (Kresel et al., 1987; Welte et al., 2004), scheduling of patients, doctors operating 

rooms (Vermeulen et al., 2009) and so on. Specialized health delivery aspects such as organ 

transplant or donation equally benefits from optimization methods in OR. 

 

Davies and Davies (1995) proposed discrete event simulation (DES) to be one of the methods 

in OR most suited to modelling health systems because of its ability to model individual 

entities (patients in this case). Furthermore, the authors argue that DES allows for 

incorporation of resource constraints in the system while also accounting for as much detail 

as the real life system has since it does not have to meet restrictive assumptions typical of 

analytic models. This position is supported by another researcher (Caro, 2005) who holds that 

the method of DES allows for a disease to be modelled naturally without much restriction but 

with the added advantage of providing the flexibility of conducting sensitivity analysis which 

can be very useful in studies where different costing policies are necessary to be studied to 

inform decision making. DES has also used to evaluate different disease treatment policies as 

in the case where it was used  to test the effectiveness of a new treatment for osteoarthritis 

pain (Ward et al., 2007). 

 

Various simulation methods have been used in healthcare modelling to investigate or 

evaluate problems in a wide range of categories such as 1) Healthcare system and design; 2) 

Management of healthcare planning; and 3) Medical management (Pierskalla & Brailer, 1994). 

Simulation as an operational research method has been employed in other specific areas such 

as the improvement of healthcare systems in hospitals where various studies have 

concentrated efforts in the different aspects of hospital service delivery (inpatient, 
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outpatient, laboratory, pharmacies, etc) (Gunal & Pidd, 2009). Simulation has also been used 

in the study of the transmission dynamics of tuberculosis (TB) against the background of TB-

HIV co-infection (Mellor, Currie, & Corbett, 2011; Roeger, Feng, & Castillo-Chavez, 2009).   

 

Over the last several decades, healthcare expenditure has increased substantially and with it 

has come the need to evaluate the cause and effects of various aspects of healthcare in 

relation to the money spent in the sector (Noelle, Jaskulla, & Sawicki, 2006). As a result of 

this, OR methods have been extensively applied to the area of economic evaluation of 

healthcare ranging from the cost of different treatment policies to the lifetime costs of certain 

diseases (Barton, Bryan, & Robinson, 2004; Jackson, Sharples, & Thompson, 2010). Others 

apply OR to the problem of resource allocation for preventive HIV activities in the case where 

resources may be allocated at multiple levels (Lasry, Zaric, & Carter, 2007). Other research in 

resource allocation includes areas such as in improving the efficiency of hospital operations 

(Aktas, Ulengin, & Onselsahin, 2007), the location of trauma systems relative to the needs of 

the communities they serve (Branas, MacKenzie, & ReVelle, 2000). Decision trees are used in 

health economics as tools to aid decision making at the aggregate level and are well 

understood as modelling methods (Brennan, Chick, & Davies, 2006).  

 

With the above overview of different OR strategies applied in general healthcare, the 

following section focuses on HIV/AIDS modelling by discussing the different OR techniques 

and which situations they have been applied to, as reported in the literature.  

 

3.3 HIV/AIDS modelling 

Modelling HIV/AIDS has been practiced and reported in research work since the 1980s when 

the disease became a public health concern (Roberts & Dangerfield 1990). Like any other 

epidemic, the HIV/AIDS epidemic has been studied and modelled by scientists in a variety of 

fields including epidemiologists, statisticians, mathematicians, operational research 

specialists and other applied disciplines (Fusaro et al., 1989). Furthermore, different aspects 

of the pandemic have been of interest including, but not limited to, transmission dynamics, 

magnitude of the epidemic, infectivity and infection distribution, survival analysis, disease 

progression and clinical trials. Aside from the above epidemiological realm, substantial 
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research into the various aspects of planning, financing and related prevention and treatment 

options has been published.  

 

Owing to the lack of empirical information about the dynamics of the disease in the early 

years of the epidemic, deterministic models were initially much more sensible to use than 

stochastic models (R. M. Anderson, May, & McLean, 1988; R. Anderson, Medley, May, & 

Johnson, 1986). Deterministic models have been used extensively to model spread of the HIV 

and other similar viruses successfully (Perelson, 2002). Further areas of application in HIV are 

in public health policy evaluation and the evaluation of different intervention strategies in 

prevention, care and treatment of the disease. Economic evaluation of various aspects of HIV 

have benefited from different operational research modelling exercises over the last several 

years. The following sections present an evaluation of the different forms of models applied 

to healthcare and HIV. 

 

3.3.1 HIV/AIDS modelling in developing countries 

In order to put the work in this thesis into context, HIV/AIDS modelling in developing countries 

is highlighted followed by a discussion of the different methods used in HIV/AIDS modelling. 

Since the majority of people living with HIV/AIDS are resident in sub-Saharan Africa, there has 

been a substantial amount of research effort to model the pandemic in this geographic region 

which represents the developing countries as opposed to the developed western countries of 

the northern hemisphere. A number of methods have been used in modelling HIV/AIDS in 

different settings described by Salomon et al. (1999) as ranging in complexity from “simple 

extrapolations of past curves to complex transmission models.” Based on an epidemiological 

model in sub-Saharan Africa and South East Asia, Hogan et. al. (2005) developed a model to 

assess the costs and health effects of a range of interventions for preventing the spread of 

HIV and for treating people with HIV/AIDS in the context of the millennium development goal 

for combating HIV/AIDS. A model to study the cost effectiveness of a community-based 

intervention for reducing the transmission of Schistosoma haematobium and HIV in Africa 

was developed using data from Rural Zimbabwe (Ndeffo Mbah et al., 2013). In a paper to 

investigate the impact of mathematical modelling of HIV/AIDS on policies and programs in 

the developing world, Stover (1999) conducted a literature review and summarized those 

findings supported by more than one group of researchers. Evidence gathered showed that 
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simulation has contributed significantly to understanding important issues to do with the 

epidemic including the benefits of early intervention, the need for combined intervention, 

demographic impact of HIV/AIDS and so on. The paper further proposes that simulation 

modelling can play an important role in helping establish monitoring, evaluation and research 

priorities and systems. Evaluation of interventions would be one of the beneficiaries of 

mathematical modelling.   

HIV/AIDS modelling in developing countries has also been used to model the effects of the 

pandemic on the African economy as well as aspects of the cost effectiveness of prevention 

and treatment programs (Dixon, 2002). Other research in the developing world include the 

estimation of the HIV/AIDS in sub-Saharan Africa using seroprevalence data from antenatal 

clinics. 

 

3.3.2 Compartmental Models 

Widely used in medicine, general healthcare and elsewhere (Jacquez, 1972), compartmental 

models are founded on the principle that an entity (or a group of entities) will occupy one 

state (compartment) of a system at any given time and move on to the next compartment 

governed by appropriate mathematical equations. The compartmental models built can 

either be deterministic or stochastic depending on assumptions made (i.e. whether chance is 

taken into consideration or not) which govern the movement of the entities between states 

(Garnett, 2002; Mishra, Fisman, & Boily, 2011).  

 

In HIV/AIDS research, compartmental models have been used in a wide variety of problems 

and situations ranging from studying the effect of male circumcision on female-to-male 

transmission of HIV in Botswana and Kenya (Nagelkerke, Moses, De Vlas, & Bailey, 2007)  to 

the comparison of heterosexual and unsafe injections as modes of HIV transmission in Africa 

(French, Riley, & Garnett, 2006). Other applications have been the exploration of the HIV/AIDS 

epidemic among IDU in Thailand in order to see long term effects on the population (Bogard 

& Kuntz, 2002) and others. A sample of relevant HIV/AIDS studies employing this modelling 

technique is described below. 

 

Abu-Raddad et al. (2008)  explore the role of the Herpes  Simplex Virus 2 (HSV-2) in the 

prevalence of HIV in Africa by constructing a compartmental model that took into 
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consideration both the transmission and acquisition dynamics and their interaction between 

the two viruses. From this study, it was estimated that HIV was not a significant driver for 

HSV-2 prevalence in the population while up to 35% of the prevalence of HIV in Africa was 

attributable to the HSV-2 virus.  

 

In another study, Malunguza et al. (2010) use a compartmental model to show that the use 

of a single strategy approach (either condom use alone or ART) can have a desirable impact 

on HIV prevention among homosexual, heterosexual or bisexual people. They show that in 

the case of Zimbabwe, where like most of Africa, homosexual activities are taboo and illegal, 

such approaches may be the only way to implement HIV prevention policies among these high 

risk groups of people who would not otherwise come out to seek HIV prevention services on 

account of their sexual orientation.  

 

A deterministic compartmental model was used to assess the potential effectiveness of a 

three-pronged intervention aimed at reducing HIV prevalence among male and female 

commercial sex workers (CSW) and their clients in southern India (Williams et al., 2006). The 

three components evaluated were condom use, sexually transmitted infections (STI) 

management and periodic presumption of treatment of STI. Results showed that condom use 

accounted for up to 20% averted infections out of the total estimate of up to 30% infections 

expected to be prevented by the combination of all the components.   

 

Granich et al. (2009) used both a deterministic and stochastic model to investigate a 

theoretical strategy in which yearly universal counselling and testing for HIV was 

implemented and followed up with immediate antiretroviral therapy as a way to eliminate 

the HIV pandemic. Using empirical data from South Africa, the study shows that the 

commencement of ART as soon as HIV is diagnosed in the general population leads to 

substantial reduction in mortality rapidly and resulting in a near concentrated epidemic which 

is undoubtedly easier to manage.  

 

Modelling healthcare related problems using compartmental models is usually an easy 

decision to make considering that the health of an individual is representative of one state 
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and one state only until the person moves on to the health state. The transition probabilities 

from state to state need to be computed in order to run the models.   

 

3.3.3 Markov models 

Markov models are a family of models built to assist with decision problems which involve 

exposure to risks or events over time, on-going exposures or situations where the specific 

timing of an event is considered important or uncertain(Stahl, 2008). The fundamental 

assumption in Markov models is that the distribution of the entities or elements in the model 

at all future states at time (tn+1) is solely determined by the status of the entity at time (tn). In 

healthcare, a patient for example may exist in one and only one of a finite number of health 

states which change at intervals of time referred to as Markov cycles. In this section, literature 

is reviewed in which different problems around HIV/AIDS are studied by use of Markov 

models. The first issue reviewed here is on the incidence and prevalence of HIV followed by 

disease progression. Other issues are HIV transmission and the status of the body’s immune 

system in the face of HIV infection.  

 

In an early publication, Bongaarts (1989) attempted to predict long-term incidence and 

prevalence of HIV and AIDS  as a Markov system. He further proceeded to hypothesise the 

long-term impact of the epidemic on the demographic profiles of the population. To achieve 

this, he analysed the resulting survival patterns against the age, marital status and sex of the 

patients along with behavioural factors such as sexual behaviour and others. Another group 

of researchers used a Markov model to predict AIDS incidence and prevalence in a population 

of homosexuals in England and Wales (Aalen, Farewell, De Angelis, Day, & Gill, 1997). Further 

impacts of sexual contact patterns between men and women on the spread of HIV in urban 

centres of selected African countries using mathematical methods employing aspects of 

Markov processes is also reported by others (R. M. Anderson, May, Boily, Garnett, & Rowley, 

1991; Garnett & Anderson, 1993). 

 

In the area of disease progression in HIV/AIDS, Binquet at al. (2009) used data based on HIV+ 

patients seen between 1996 and 2004 in north-eastern France to model the effect of the 

different drivers of HIV disease progression. The identified stages of the disease were based 

on 4 ranges of CD4 counts in increasing order such that when a patient moved from one stage 
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to a higher one, this was recorded as clinical progression of the disease. The researchers 

employ a multi-stage Markov model to investigate prognostic factors that have an impact HIV 

evolution. Using five different categories of CD4 counts as markers of immunological 

evolution and clinical progression of the disease, the impact of different prognostic factors on 

the transition through the different HIV disease stages was modelled.  

 

In related disease progression research, in order to study how the HIV virus invades its human 

host, Yuan and Allen (2011) built a combination of deterministic and stochastic models 

(including Markov Models) to characterise the distinct viral release strategies known as 

bursting and budding. The virus, they hold, either reproduces within the host cell and then 

releases itself into the blood (burst) or it continuously releases itself into the blood as 

replications are made (budding). For this task, the researchers employed the use of 

Continuous Time Markov Chain models (CTMC) and stochastic differential equations. The 

application of Markov models in studying similar aspects of HIV disease progression is well 

researched (Guihenneuc-Jouyaux, Richardson, & Longini, 2000; Jackson, Sharples, Thompson, 

Duffy, & Couto, 2003; Kanekar, 2010; Satten & Longini Ira M, 1996; Titman & Sharples, 2009; 

Vaughan, Drummond, & Drummond, 2012). 

 

To understand the status of the body’s immune system in the face of HIV infection a model 

was developed by Mathieu et al. (2005) in which they used both CD4 and Viral Load (VL) to 

model the status of the immune system and the state of the infection respectively. They 

employed a series of methodological combinations including a continuous time 

homogeneous Markov process (HM), the HM-covariate model (by introducing covariates into 

the HM model), an extension of the HM to a piecewise homogeneous model (PHM) and a 

combo of the HM-cov and the PHM models. 

 

Palombi et al. (2012) explored the prospects of the elimination of the HIV/AIDS epidemic by 

using a Markov prediction model. This was achieved by parameterising the model (i.e. CD4, 

VL, ART use or not) using empirical data from Malawi and Mozambique. Several health states 

were formulated and the model was then used to simulate the epidemic in a hypothetical 

population of a rural district in southern Africa of 3,000 inhabitants. The results indicated that 
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the treatment of all infected individuals could result in a very significant reduction in incidence 

of HIV which could theoretically lead to a sterilisation of the epidemic.  

 

In contrast, the long term implications of ART are reported (Tebas et al., 2001) in the scenario 

where treatment is initiated immediately or staggered over a period of time. The Markov 

model developed analysed together with a set of decision trees to gain an in-depth 

understanding of the different initiation policies, reveals that the initiation of ART 

immediately would result in a 57% undetectable infected population with a large (38%) 

proportion of the population with a drug-resistant virus compared with 64% undetectable 

(with only 24% drug resistant) population if initiation of ART was provided to 10% of the 

population annually from the time of detection. 

 

Other uses of Markov models in HIV/AIDS modelling include the estimation of the size of the 

epidemic in the general population and in subgroups of the general population such as IDU of 

homosexual men (Amundsen et al., 2000; Lieb et al., 2010), estimation of HIV population 

dynamics (Sloot, Ivanov, Boukhanovsky, Van De Vijver, & Boucher, 2008). The application of 

Markov models to economic aspects of HIV is discussed in detail below. Markov models are 

well understood and are among the most widely used in HIV/AIDS research, as seen above, 

as well as in general healthcare. In the case of long term survival, estimation of a Markov 

model requires a significantly large amount of computations in order to generate all the 

transition probabilities. This is a requirement because all health states in the model ought to 

be computed. Other methods such as Discrete Event Simulation handle this issue of 

transitions differently as outlined below. 

 

3.3.4 Decision Trees 

Decision trees are used to aid the process of choosing the best strategy which enables a 

decision maker reach their goal by representing the problem in a treelike structure. The 

separate branches of the tree represent the different choices and their outcomes. In 

healthcare, the choices at each decision node often correspond to different ways of managing 

a medical condition, while the random nodes represent the possible outcomes for a patient 

in terms of morbidity, incapacitation, life expectancy or mortality Using a time-homogenous 

Markov model to generate transition probabilities, Piroth et al. (2005) constructed a model 
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using a decision tree designed to represent the possible stages at which antiretroviral therapy 

could be initiated for PLWHA based on a 10-year follow-up period. Conclusions from the study 

indicate that there would be desirable benefits on the outcome of interest, namely 

maintaining a CD4 count of at least 500 cells/µL blood, if treatment were commenced 

immediately for individuals who had advanced infection (i.e. viral load over 100,000 copies of 

HIV per milliliter of blood [100,000 copies/mL]) and delay the administration of the protease 

inhibitor-based ART if the viral load was less than 3,162 copies/mL and CD4≥350 cells/µL of 

blood. Using data from 17 Sub-Saharan African countries, Aledort (2006) used a decision tree 

to investigate diagnostic screening strategies being used up to the year 2005 in comparison 

with potential new strategies which could deliver the HIV sero status of infants from as early 

at 6 months after the birth (from an HIV-infected mother). This model, whose population was 

infants <12 months in the sub-region, yielded as its outcome a number of health benefits such 

as Disability adjusted life years (DALY) saved and proportion of disease burden averted as a 

result of more efficient HIV diagnosis and therefore timely treatment. Furthermore, the early 

infant diagnosis (EID) proposed showed potentially improved outcomes because both 

eligibility and availability of ART was projected to increase.   

 

The use of decision trees as described above in HIV research has not been applied successfully 

to survival estimation as the method is more suited to treatment policies and similar decision-

related healthcare practices which involve choosing one route over the other.  For survival 

analysis and estimation, more appropriate tree-structured methods such as Survival Trees are 

used and these are discussed in the survival analysis section of this work. 

 

3.3.5 System dynamics 

Developed in the 1960s as a set of methods to be used in the application of feedback concepts 

to social systems and later to complex feedback loops in business (Forrester, 1968), System 

Dynamics (SD) has evolved as a method of choice in various aspects of healthcare (Taylor & 

Lane, 1998) including HIV modelling (Atun, Lebcir, McKee, Habicht, & Coker, 2007; Lebcir, 

Atun, & Coker, 2010). The main feature of SD is that stocks of people, materials or other 

entities of interest accumulate in compartments and leave to enter other compartments 

governed by systems of algebraic relationships and differential equations. Brennan et al. sum 

it up by stating that the rate of change of the system is a function of the systems’ state itself 



E Mushota Kabaso Literature Review
    

  27 

(i.e feedback). The method is appropriate for studying large and complex phenomena such as 

spread of disease (Bagni, Berchi, & Cariello, 2002), estimating the impact of diseases on the 

public (Nyabadza & Mukandavire, 2011) and the evaluation of economic aspects of the health 

service delivery (P. C. Smith & van Ackere, 2002) among others.  

 

In 1990, a comprehensive SD model of the transmission dynamics of AIDS among 

homosexuals in the UK was developed (Roberts & Dangerfield, 1990). The model was 

designed to account for the complex virological and behavioral facets of the epidemic such as 

infection rates, the incubation period of the disease and the heterogeneity of sexual mixing 

(partner change rates and high sexual risk practices). Heidenburger and Flessa (1993) also 

developed a system dynamics model in the early 1990s to provide helpful understanding of 

both the dynamics of the epidemic and policy implications using data from Tanzania. The 

model was able to illustrate possible medical or economic characteristics of the epidemic 

while taking into consideration the behavioral and virological profiles of the population. 

Needle sharing as the mode of transmission of HIV was reported by Homer and St Clair (1991) 

in a study of a population of IDUs in California, United States in which the sub focus was also 

estimating HIV-related deaths . The SD model used was built on a structure consisting of three 

IDU-needle sharer population stocks and related flows. The IDU population flowed from the 

uninfected sharers stock to infected sharers then on to the Infected Former Sharers stock. 

The model accounted for additional losses of the population from each stock level by either 

death or standard loss (defined as out-migration or non-HIV death) besides the flow described 

above. 

 

More recently, Lebcir et al. (2010) conducted an SD study to investigate the interplay between 

TB, Multi Drug Resistant TB (MDRTB) and HIV/AIDS transmissions for a population of Injection 

Drug Users (IDU) in the region of Samara in Russia. The model was designed to allow for the  

MDRTB cure rates to be varied by between 5% and 80% while ART coverage was allowed to 

be anywhere from 0 to 100 %. This variation allowed the researchers to explore the resulting 

dynamics at the population level and make conclusions. Comparable results were reported in 

an earlier paper for a different IDU population in which MDRTB and HIV interact in the same 

way in Estonia (Atun et al., 2007).  
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One of very few early SD models developed to investigate the effect of ART in the treatment 

of HIV/AIDS was reported in 2001 (Dangerfield, Fang, & Roberts, 2001). The model developed 

by these researchers utilised a homosexual database among UK HIV+ patients as their base 

data. The study explored treatment outcomes of triple ART therapy as it was being introduced 

to replace mono and dual therapy to treat AIDS. Some of the scenarios explored include the 

effects of ART on both the survival time and infectivity of the patient, the impact of ART during 

the time when it was at its most efficacious on new infections and effects of risky sexual 

behaviour by patients on ART. The findings of the research showed that triple therapy showed 

impressive results in reducing new infections owing to the suppression of the virus but that 

risky sexual behaviour could slow down the benefits of triple therapy with regard to new 

infections.  

 

As seen above, the application of system dynamics in HIV has been mainly in understanding 

the transmission dynamics of the virus on its own or in the case of co-morbidity with diseases 

such as TB. Mortality due to HIV has also been incorporated in some studies. All research 

conducted using SD, as the method demands, has been at the population level and lacks the 

ability to replicate the individual behaviours of the PLWHA.  

 

3.3.6 Discrete Event Simulation models  

A discrete event simulation (DES) model is a mathematical structure in which the state of the 

system changes only at those discrete points in time at which events occur and not at fixed 

time intervals. In essence, the system is modelled as a series of events, that is, instances in 

time when a state-change occurs (Robinson, 2004). The series of state to state changes mimic 

a queuing system in which the attainment of a new state is modelled as a discrete event which 

is a function of time. Although DES has been used extensively to model queuing scenarios in 

healthcare, it has also been used to simulate complex diseases such as chronic illnesses 

including HIV/AIDS. A DES model has the ability to use stochastic processes to simulate 

outcomes for a theoretical cohort of patients which replicate the statistical characteristics of 

real life patients as specified in the model by Simpson et al (2009). To model the course of a 

disease more naturally, DES is more flexible than Markov modelling because here, patients 

can compete for resources in the system such as health care workers, drugs or space and then 

change their health state as a result of the outcome of such interactions. These models are 
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considered complex networks. The literature discussed below is focused on available research 

in HIV/AIDS using DES. Areas of application include PMTCT, HIV transmission, HIV vaccine 

trials and HIV co-infection with TB. 

 

The method of DES is employed in the prevention of mother to child transmission (PMTCT) 

set up to evaluate the benefits of ART at childbirth and/or different bottle-feeding strategies 

in a developing country setup (Rauner, Brailsford, & Flessa, 2004). Data from Tanzania and a 

variety of sources including the WHO was used to populate the model, creating a population 

of individuals who have the attributes of the typical developing country population under 

study. This stochastic model investigated the outcomes for a treatment only and treatment 

and bottle-feeding scenario by producing estimates of the prevalence of the virus in adults as 

well as the Cost-effectiveness of the two policies. A similar model was developed to evaluate 

intervention strategies in the area of PMTCT by Vieira et al. (2009) with use of data from 

Botswana, a Sub-Saharan African country with one of the highest HIV infection rates in the 

world. 

 

In the area of HIV transmission, DES has been used to model social interactions and HIV 

transmission in small world networks (SWN) (Vieira, Cheng, Harper, Senna, & De Senna, 

2010). The SWN was assumed to have a population living in a complex network of social, 

cultural and other interactions. Other characteristics of the population also taken into 

consideration include the demography, diseases and types or levels of service delivery among 

others. To evaluate an HIV vaccine trial design known as the Retrospective Partner Trial (RPT), 

Adams et al. (1998) used DES as the appropriate tool for this purpose. The aim of the research 

was to quantify the differences between a standard vaccine trial and the RPT HIV vaccine trial 

design with its associated statistical methods for calculating the vaccine effects. Simulating a 

closed population of homosexual males, complex transmission system dynamics were 

modelled incorporating various sexual contact patterns such as length of partnership, 

differing partnership-seeking propensities, variable rates of sexual activity and belonging to 

concurrent partnerships. The RPT design’s was found to have a better statistical power in 

comparison with the standard vaccine trial for the case where vaccine had a low susceptibility 

effect and a strong infectiousness effect.  

 



E Mushota Kabaso Literature Review
    

  30 

As with any other virus, the co-infection of HIV with other diseases has been explored by many 

researchers. Mellor et al (2011) developed a DES model of endemic TB, with HIV co-infection, 

incorporating household structure in the high HIV-prevalence Sub-Saharan Africa sub region. 

The model focused on the transmission of TB against an assumed random transmission of 

HIV. Made up of a sub-model each for HIV and TB, this was to ensure that the accurate 

progression of each disease was replicated. The major finding from this work was that TB 

control was effectively tackled if healthcare authorities targeted their TB case finding efforts 

to those households with HIV-infected individuals.  

 

The co-morbidity of TB and HIV is further examined by predicting the effect of HIV on TB 

outbreaks by Porco et al. (2001). Their DES model was designed to account for the co-infection 

at different states of HIV (by WHO stage I, II, III and IV) (World Health Organization, 2010a) 

and TB (from newly infected through to active infectious TB). This was set up such that the 

individuals who have active TB are infectious but they are allowed to become non-infections 

as a result of treatment or death. Results reported indicated that the presence of HIV had the 

potential to increase both the severity and probability of TB outbreaks although very high TB 

treatment rates could substantially reduce this amplification. Furthermore, the HIV presence 

in individuals was hypothesized to cause an even more pronounced effect on TB outbreaks if 

long-term TB infections were considered in the model (i.e. reactivation of TB). This is against 

the background that HIV was expected to cause TB to recur in patients more frequently in the 

developing world where there are higher number of people latently infected with TB coupled 

with much lower TB treatment rates. The model did not model long-term TB infection. Other 

work in the comorbidity of TB and HIV have been reported by Getz et al. (2005) and Raimundo 

et al. (Raimundo, Engel, Yang, & Bassanezi, 2003). 

 

The ability of DES to easily include many conditions or attributes in the models it has been 

used to study makes it a possible choice in the modelling of chronic diseases such as HIV/AIDS. 

For example, the co-infection of HIV and TB, the different transmission dynamics of HIV in 

vaccine trials and a host of other opportunistic infections are all easily incorporated into the 

model without the need to compute transmission probabilities for each of the additional 

health states the inclusion demands. 

 



E Mushota Kabaso Literature Review
    

  31 

3.3.7 Agent-based Simulation models  

Agent Based Simulation (ABS) is a modelling approach in which the ‘agents’ or entities in the 

model are assigned individual characteristics which influence their behaviours and 

determines how they interact with other agents. All the agents in turn interact with the 

environment in which they exist resulting in models of very complex systems. Distinctly 

different from other modelling techniques by this salient feature of developing the model 

from bottom-up, ABS is a powerful computational tool which allows the modelling of 

simultaneous interactions of agents with each other and the environment in which they 

operate be they social, structural or otherwise. The effect of this interaction gives rise to 

changes in the state of the system under study providing a basis to recreate and analyse the 

conditions of complex real-life phenomena. Here, a sample of ABS models looking at 

questions in HIV/AIDS are discussed with a further focus on HIV prevention and transmission.  

 

Richardson and Grund (Richardson & Grund, 2012) argue that a more detailed understanding 

of the macro level HIV transmission among IDU is better understood by use of ABS. They 

demonstrate this by constructing a set of four calibrated ABS models with increasing 

complexity of the interactions of the agents and the networks they belonged to and by adding 

the dimension of additionally belonging to an IDU injection gallery. Results show that as the 

model complexity is increased, then so do the levels of HIV seroconversion making the point 

that studying the dynamics of diffusion patterns at the aggregate (macro) level may not be as 

beneficial as accounting for the complexities of the IDU interactions with each other and the 

environment in which they operate.  

 

In a recent publication on HIV transmission, Beyrer et al. (2012) built an Agent-based 

simulation (ABS) model to incorporate several key drivers of HIV transmission among MSM. 

The drivers of the transmission accounted for in the model include the existence of a high 

number of partners in a population, the higher transmission rate of HIV relative to vaginal sex 

and others. Parameterised with data from urban USA and Peru (high income and middle 

income countries respectively), the model was used to estimate developing countries’ 

transmission patterns and other underlying characteristics by adjusting access to health care 

to as low as one-third of the levels in the richer countries.  
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To further explore other aspects of HIV transmission, recent research has been conducted. 

The existence of concentrated HIV epidemics outside Sub-Saharan Africa is well documented 

in the literature (WHO UNAIDS UNICEF, 2011). An inevitable aspect of the presence of these 

populations, in addition to HIV among heterosexual partners, is the possibility of the epidemic 

spreading across the groups or populations. One effort to quantify the magnitude of the 

extent to which HIV-1 moves between these high risk groups is reported by Graw et al. (2012)  

using ABS alongside phylogenetic analyses. In their model, a distinction is made on the type 

of individual or agent by viewing infected and uninfected (or susceptible) individuals. The 

infected individuals are characterised by demographic, virological behavioural and social 

properties and belonging to the IDU, MSM, heterosexual contact or sex worker high risk 

categories. Uninfected individuals are only assigned to any one of the four high risk groups 

above. The model tracks three events in the epidemic namely infection, development of AIDS 

and death. The results of the model using data from Latvia show that the heterosexual 

epidemic in that country is being sustained by IDU who act as the bridge for the epidemic to 

cross from one group to the other. The researchers point out that although there is a very low 

chance that IDU may trigger a  generalised epidemic in Latvia, future policy implementations 

and other interventions in prevention, care and treatment of HIV should be targeted at this 

population.  

 

In the HIV prevention sphere, the prevention of HIV transmission among MSM was studied 

by Sullivan et al. (2012) who use the same model developed by Beyrer et al (2012). The team 

adds data from Kenya representing a generalised epidemic with some MSM infection and 

data from India which has a mixed epidemic with MSM, IDU and heterosexual infections. 

Using similar setting-specific characteristics as in the Beyrer model, the model explores, as 

prevention methods, condom use, oral pre exposure prophylaxis (PrEP), improved ARV 

initiation and a combination of these. Results indicate that the combination of all the 

interventions has a realistic potential to reduce incidence and that the increased coverage of 

efficacious interventions is critical for the reduction in incidence to be achieved. Furthermore, 

it is evident that additional aspects such as adherence to the prevention strategies will also 

have significant positive effects on the epidemic. 
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One of the noted differences therefore between the research situations and problems 

conducted between DES and ABS is that the latter predicts the state of the system taking into 

consideration the interaction of the entities with each other or the environment beyond just 

carrying individual-level attributes. This interaction between entities (HIV+ patients in this 

case) is not of interest because the objective of this current work which is survival of a patient 

on ART is assumed to be independent of the interaction the patient may have with other 

patients on the same treatment. It may be argued that re-infection of an HIV positive person 

is possible and could affect survival. In this study, such effect is assumed to be zero. Further 

discussion on choice of method for this work is discussed at the end of the chapter. 

 

3.4 Survival analysis 

With its origins in the 17th century as either weekly bills of mortality in London and as 

lifetables, survival analysis was until the second World War used by actuaries, biomedical 

researchers and statisticians as lifetables (Lee & Go, 1997). More formal techniques were 

published after the war with notable papers being those by Kaplan and Meir (1958) and Cox 

(1972). The death of a biological organism or failure of a machine (or machine part) in 

engineering is the core interest in survival analysis. Survival analysis techniques are used in 

many areas of science and beyond. In human resource management the retention or loss of 

staff may be modelled as a survival problem (Kaminski & Geisler, 2012), in genetics the 

identification and quantification of protein in genes is studied by using survival methodology 

to carry out differential expression analysis of proteins (Tekwe, Carroll, & Dabney, 2012). In 

the engineering sciences, the times to failure of machine parts or the lifetime of a bridge 

across a river and so on are all modelled as survival problems (Chevalier, Smith, & Dean, 2012; 

Okasha, Frangopol, & Orcesi, 2012; Tao & Tam, 2012).  

 

Other applications of survival analysis are in as diverse and different disciplines as marine 

biology and wildlife (Fletcher et al., 2012; McGarvey, Linnane, Feenstra, Punt, & Matthews, 

2010), perishable food management and planning (Cruz et al., 2010; Libertino, Osornio, & 

Hough, 2011), cancer research and cancer medical practice (Abdollah et al., 2012; Vercelli, 

Lillini, Capocaccia, & Quaglia, 2012), ocean engineering (Long, Lee, & Kim, 2010), actuarial 

science (Lopez, 2012), economics (Chen, Fan, Pouzo, & Ying, 2010), energy (Niu, Zhang, Zhao, 
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& Niu, 2012) and so on. In the sections that follow, applications of survival analysis to HIV and 

specifically ART are discussed. 

 

Some general applications of long-term survival in the context of healthcare include the case 

where median survival time and long-term survival probabilities of surgery patients in ICU at 

a large western Australian hospital were fitted to a Cox proportional hazard regression model. 

The model results indicated that important predictors of long term survival of such patients 

(between 6 and 60 months) included age, gender, co-morbidities, severity of illness and 

duration in ICU or organ failure (Ho, Knuiman, Finn, & Webb, 2008). Related work in 

estimating the survival of critically ill patients is well researched and documented (Bagshaw 

et al., 2005; Golestanian, Liou, & Smith, 2009; Hartl, Wolf, Schneider, Küchenhoff, & Jauch, 

2007). Given the general introduction and examples of survival analysis above, the next 

section delves into the specific area of survival analysis for people on ART. 

 

3.4.1 Antiretroviral therapy (ART) Survival estimation 

Some of the early work in survival estimation of people with HIV/AIDS was published by Lemp 

et al. (1990)  based on patients enrolled between 1981 and 1987 in San Francisco, California. 

The reported mean survival was 12.5 months in this study with only a 3.4% chance of survival 

to 5 years after diagnosis of HIV. Similar work reported during this early phase of the epidemic 

was by Marasca and McEvoy (1986) and Harris (1990). There have been further studies 

undertaken during the last decade to estimate the survival (and life expectancy) of HIV-

infected people on ART (Grover & Shakeri, 2007; Henriques et al., 2012; Kuhn, Thomas, Singh, 

& Tsai, 1998; May et al., 2007). Different methodologies have been employed in the 

estimation ranging from Mathematical models (Dasbach, Elbasha, & Insinga, 2006; Hallett, 

Gregson, Dube, & Garnett, 2008; Yiannoutsos, 2009) to a series of different simulation models 

(Walensky et al., 2006).  

 

Survival estimates for HIV-infected people presented in research findings are based on a 

number of different assumptions mainly to do with the attributes attached to the entities 

(PLWHA) at the beginning of the simulation. There is consensus on some of the critical 

attributes which most influence the survival patterns, rates and other aspects of HIV/AIDS 

treatment outcomes. Of these CD4 and Viral load stand out as being some of the most 
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important (Egger et al., 2002; Mathieu et al., 2005). The CD4 counts have been used in the 

developing world mainly on account of the lower cost of the tests (Phillips et al., 2008) 

compared to viral load. Other studies have used CD4 cell counts, Viral Load, the development 

of opportunistic infections (OIs) and adverse drug reactions to estimate the clinical benefits 

and cost-effectiveness of ART (Freedberg et al., 2001).  

 

The following three sections of the literature review forms three broad groups of methods 

used in survival analysis for PLWHA. These are cohort analysis, mathematical and statistical 

models as well as computer-based simulation models. As is explained below, this grouping is 

not strict as some models have more than one method used.  

 

3.4.2 Cohort analysis 

Cohort analysis is a general strategy which is used to analyse data relating to a group of people 

who have in common a certain event during a specified period of time. The event could be 

year of birth (birth cohort), people who joined (or left) the labour force during the same 

month (labour force cohort), women who had a first child in the same year (first-parity cohort) 

and so on. The literature reviewed in this section refers to the survival estimation of cohorts 

of HIV infected patients who were either infected during the same period of time or who 

commenced ART during the same time period.  

 

The improved survival among HIV+ people after ART initiation is demonstrated by the study 

of the mortality patterns in an early cohort of HIV+ people in British Columbia, Canada for 

persons initiated on ART between 1992 and 1996 (Hogg et al., 1998). With a sample of just 

over one thousand, patients were observed from start of therapy until either death or the 

development of AIDS. Kaplan-Meier and other statistical methods were used to analyse the 

outcomes of interest. At 15 months after initiation on ART, there was an observed survival of 

about 98% beyond this point in the cohort indicating the efficacy of the ART administered to 

the patients. A population-based cohort study to estimate survival and age-specific mortality 

in HIV-infected people in Denmark for the period 1997 to 2005 was undertaken by Lohse et 

al. (2007). They compared survival and age-specific mortality between HIV-infected people 

and non-infected people from the general population and reported survival from the age of 

25 for all subjects. Among HIV-infected people, the median survival was 19.9 years while this 
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was as high as 51.1 in the general population. Data analysed for survival in the new millennium 

however (2000 to 2005) showed a survival of 32.5 years. The study provided relatively robust 

estimates as it included all stages of HIV disease stage, co-morbidities and variable times of 

commencement of ART.  

 

The Antiretroviral Therapy Cohort Collaboration (ART-CC), a multi-national cohort study of 

people on ART in 10 countries in North America and Europe, compared changes in mortality 

and life expectancy at age 20 and 35 years among people on ART (Antiretroviral Therapy 

Cohort Collaboration, 2008). The study was targeted at persons aged 16 years and above at 

ART initiation during three periods:  1996-99, 2000-02 and 2003-05. The analysis of the results 

was disaggregated by baseline CD4 count, sex and IDU history for each patient. The results 

showed that life expectancy at the age of 20 years was 36.1 years in the period 1996-99 

compared with a higher life expectancy of 49.4 years in 2003-05. Women were found to have 

a higher life expectancy than men and people with a history of injection drug use had a lower 

life expectancy than the rest of the population who did not have drug use history. The life 

expectancy of those patients who started ART with baseline CD4 count higher than 200 

cells/µL was more than those whose CD4 count was lower than 200 cells/µL. 

 

In South Africa , long-term outcomes (virologic, immunologic, clinical) of ART at a large 

HIV/AIDS health facility were evaluated and reported by a Sanne et al. (2009). Based on 

patients initiating ART at the facility between April 2004 and March 2007, patient censoring 

was effected at the event of death, loss to follow up (LTFU) or study end date (March 2008). 

Using Kaplan-Meier and Cox proportional hazard models, the researchers analysed the effect 

of baseline CD4 count on mortality and LTFU among other relationships. The observed 

mortality rate was 5.1% after a follow-up period of 21 months with more than a third of the 

deaths occurring within the first 90 days of initiation. Furthermore, the risk of death was 

nearly 5 times more in patients whose baseline CD4 was less than 50 copies/µL of blood 

compared to those for whom it was 200 copies/µL or more. The overall crude death rate of 

2.9 deaths per 100 person years observed was comparable to other sub-Saharan countries’ 

rates. Excellent virological responses were observed such as viral suppression by month 6 of 

treatment.  
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A retrospective cohort analysis of HIV-infected patients presenting at a central HIV/AIDS 

facility in Serbia was undertaken with the objective of establishing factors influencing the 

response to treatment and survival (Jevtovic et al., 2010). The observational data gleaned 

from the over 560 patient record files was found to suggest that patients who commenced 

ART while less than 40 years of age, were not IDU and initiated the treatment while CD4≥100 

copies/µL had a significantly better prognosis of survival than otherwise. Overall estimated 

survival was 13 years from initiation of ART. The study also revealed that the achievement of 

undetected viral load was an independent predictor of survival.  

 

The studies reviewed above were conducted as retrospective cohort analyses to either 

estimate survival of PLWHA or to determine the best predictors of survival. The number of 

the years patients were predicted to survive has been shown to mainly depend on CD4 count 

or viral load although there are other predictors such as age at initiation of ART and sex. The 

current research will attempt to use similar variables to be applied to a much larger dataset 

of PLWHA in Zambia 

 

3.4.3 Mathematical and statistical models 

Mathematical or statistical models in survival estimation are models which use different 

techniques within general mathematics or in statistics (or a combination of both) to formulate 

a representation of the real life survival patterns of a population being studied. The use of 

such techniques is extensive and the following section is a review of a part of the appropriate 

literature for antiretroviral therapy. Hallett et al. (2008) developed a mathematical model to 

explore different ART initiation strategies and patient management policies on the impact of 

ART programs in sub-Saharan Africa. The survival of the people put on ART is a primary subject 

and outcome of this work. The model assigns characteristics to each individual infected with 

HIV ranging from time and mode of HIV diagnosis to frequency of clinical monitoring to 

initiation basis (CD4 counts or syndromic). The stochastic cohort model developed employs 

various functions among them a constant rate of CD4 decline to mimic disease progression 

sensitive to age of the client. Initiation into ART was determined by an initiation rule which 

was a combination of 9 scenarios combining CD4 counts and symptomatic presentations. 

Survival was modelled based on a three-part set of categories comprising the assumptions 

that the hazard of death was: 1) constant from that observed in the first three years of ART; 
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2) increased gradually; 3) increased sharply. The model predicted that the survival of HIV-

infected individuals on ART could be increased from 10 years to a range of 17 to 27 years from 

the time of infection. 

 

In a prognostic model, Egger et al. (2002) analysed over 12,500 patients who started ART with 

a combination of at least 3 ARVs. The model, based on 13 cohorts of people on ART across a 

number of countries in Europe and North America, considered the probability of developing 

an AIDS-defining event and death or death only as outcomes. The survival was modelled 

based on a number of variables observed at commencement of ART including CD4 count, viral 

load, age, sex, transmission group (male homosexual, heterosexual, Injection drug use or IDU 

and other), year of starting ART and others. The resulting survival models were essentially 

based on Weilbull, logistic and lognormal distributions. The probability of the outcomes was 

enumerated after 1, 2 or 3 years. The probability of death after three years of ART was 

reported to range between 0.8% (for individuals who started treatment with CD4 counts 

greater than 350 cells/µL and not IDU) and 48% (for CD4<50 cells/µL among IDU). Other 

transmission groups fell anywhere between these two extremes. The research did not 

document the survival of the patients beyond the 3 years. 

 

Work was undertaken by Mills et al (2011) who calculate life expectancy of people on ART in 

a resource constrained country (Uganda). At age 20, a person initiating ART was estimated to 

live an additional 26.1 years compared to 36.1 years for a person in the developed economies 

(Antiretroviral Therapy Cohort Collaboration, 2008). The life expectancy rates reported in 

Uganda compared very well with the richer countries, in reference to life expectancy of the 

respective general populations, making them useful inputs into survival modelling. 

 

Like the cohort-based models discussed in the previous section, the basis of survival 

estimation in mathematical and statistical models reported in the literature is primarily CD4 

counts, a proxy for disease status. Evidence in the research therefore shows that survival of 

people on ART is sensitive to the timing of initiation of treatment. The underlying 

mathematical structures built into these models assumed that the distributions of the 

attributes possessed by the patients were stochastic.  
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3.4.4 Computer simulation models 

While most models discussed above are essentially run on computers, this section puts 

together relevant models built specifically for this purpose often using some form of 

specialised or purpose-built software. In this section, a collection of different OR methods 

employed in survival estimation and executed as computer simulations are reviewed. Using 

data from an observational cohort, a computer simulation model of the expected survival of 

people on ART accounting for baseline CD4 cell count is built (King, Justice, Roberts, Chang, & 

Fusco, 2003). Attributes accounted for in this model included ART treatment failure, risk of 

ART on-treatment mortality and age-related mortality obtained from either the study, 

published literature, actuarial tables or expert opinion. Designed as a Markov model, patients 

were allowed to transition to other health states from the assigned initial health state 

mimicking the real-life progression of a patient on ART (i.e. experiencing any number of the 

events listed above). The patients were allowed to undergo these transitions any time during 

month-long cycles. The health states which could be transitioned to by a patient at any time 

in their treatment life were ARV treatment round n, post-ART grace period and death. Results 

demonstrate that  median long-term survival  for people on ART is dependent on CD4 count 

levels at initiation ranging from 15.4 years to 5.5 years (CD4 > 200 cells/µL vs. CD4 ≤ 50 

cells/µL). Patients initiated on ART with a baseline CD4 count of less than or equal 20 200 

cells/µL were estimated to live for up to 8.5 years.   

 

In the year 2008, estimates of the time from HIV seroconversion to ART eligibility and from 

ART eligibility to death were published by Wandel (2008) in a 3-country collaboration known 

as the eligibility for ART in lower income countries (eART-linc) collaboration. Using a model 

parameterised from 5 cohorts in the collaboration (2 in Uganda and Thailand and 1 in Ivory 

Coast), Weibull survival models were used to estimate the duration from HIV-seroconversion 

to ART eligibility and from ART eligibility to death. The cohorts used to parameterise the 

models were representative of Low and middle income countries according to the World 

Bank. Similarly, a model was developed for the entire time between seroconversion and 

death. Analyses were performed for three CD4 count categories (CD<200 cells/µL, CD4<275 

cells/µL, CD4<350 cells/µL) with an additional category of patients initiated with CD4<350 and 

WHO Stage 3 or 4. Gender and age were also included as further analysis variables for survival 

and seroconversion respectively. Markov Chain Monte Carlo simulation was used to generate 
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sample patients for posterior distributions in the model. The researchers reported that the 

duration from ART initiation at CD4<200 cells/µL to death was estimated at a mean of 3.9 

years (median 2.1 years) while the mean time from seroconversion to death was 11.5 years. 

Across all analysis categories, the mean survival from seroconversion was estimated at 11.3 

to 11.7 years.    

 

Basing their evidence of the best ART treatment strategies on an extensive review of 

published literature, Johansson et al. (2010) constructed a Markov cycle model to estimate 

the survival of patients on presenting for HIV care in low income countries. The model was 

designed to produce estimates for both the case where ART was initiated and when it was 

not initiated for a patient presenting for first HIV care. Strata for baseline CD4 count were set 

at CD4<50, 50-199 and 200-350 cells/µL. These three strata are a fair representation of the 

stages of disease progression. The model was run for 100 years (Markov cycle length was 1 

year) representing 100 Markov cycles during which patients moved from stratum to stratum 

till death. Survival estimates of 14.5 years were realised for patients starting ART early (CD4 

200-350 cells/µL), 7.6 and 7.3 life years for CD4 50-199 and <50 cells/µL. If patients were not 

put on ART, their remaining life years reduced to 4.2, 2.0 and 0.7 years for CD4 200-350, 50-

199 and <50 cells/µL respectively clearly demonstrating the benefits of ART in general and 

early initiation in particular. 

 

To estimate the life expectancy of MSM in developed countries with extensive access to ART 

healthcare Nakagawa et al. (2011), used a previously published computer simulation model 

(known as the HIV synthesis). Using this model, a 30 year old MSM infected with HIV was 

considered and their life was modelled until 2090 (i.e. for 80 years) or until death. The men 

in the model were assumed to have a 40% chance of being a smoker with no hepatitis co-

infection and would not be lost to follow up. The estimated life expectancy for such an MSM 

was found to be 75 years provided diagnosis levels were high (such that CD4 count at 

diagnosis was at least 432 cells/µL).  When low diagnosis levels were assumed (CD4 = 140 

cells/µL), the life expectancy fell to 71.5 years. 

 

In the published literature in the category we have labelled ‘Computer simulation models’, 

the models were built using specialist computer software. The actual simulation methods 
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used included some of the previously discussed methods. Here data gleaned from large 

cohorts were used to populate the models and scenarios of various initiation strategies for 

ART were explored providing a wide-range of outcomes.  

 

The literature reviewed in the area of survival estimation of persons on ART shows that the 

use of the ARV drugs prolongs the lives of HIV-infected people as long as the initiation of the 

treatment is early. All reviewed studies above, irrespective of methods used, hold the view 

that the timing of when to initiate treatment is crucial for longer survival of PLWHA. The 

timing of when to commence the treatment in turn is most easily and reliably represented by 

the patient’s CD4 count. Other attributes have also been found to further have an effect on 

survival and these include sex, age at ART initiation, sexual behaviour, IDU and so on.   

 

In the current work, survival analysis techniques will be applied to the large database of 

PLWHA in Zambia and the resulting survival profiles will be used to develop a simulation 

model in order to study different scenarios and outcomes thereof to make the case for 

Zambia. 

 

3.5 Economic analysis in healthcare delivery 

This section of the literature review focusses on the economic side of the current research 

undertaking which is to offer an economic perspective to the provision of ART to PLWHA in 

Zambia and generally in the developing world. The section also explains and reviews the 

general literature in healthcare followed by a more focused look at the economic evaluation 

literature in HIV/AIDS research. Four categories of economic evaluation are discussed in this 

latter part. 

 

In health economics, the process of ‘economic evaluation’, generally aims to compare the 

consequences of healthcare programs with their costs. Here, ‘healthcare programs’ is used to 

imply any aspect of healthcare introduced to an existing health system in the hope of better 

outcomes or performance. Drummond et al (2005) describe four forms of economic 

evaluations commonly used as follows. Cost analysis – dealing only with the cost of an 

intervention or program; Cost-effectiveness analysis – measuring the consequences of 

programs/interventions in the most appropriate natural effects or physical units such as life 
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years gained; Cost-utility analysis – the evaluation of a program or intervention in terms of an 

adjusted state of preferred health outcomes such as Quality Adjusted Life Years (QALY); and 

Cost-benefit analysis – the value of consequences of programs and interventions are 

measured in monetary terms with the aim of making them commensurate with costs. 

 

In practice, most economic evaluations employ more than one of these methods sometimes 

making the distinction between them quite academic. The following section deals with 

published literature on the use of some forms of economic evaluations in general healthcare 

with an emphasis on those related to HIV. Considerable research has been conducted 

employing simulation in health economic models. In terms of HIV, the last two decades have 

seen an extensive body of research work focussed on the economic analysis of various aspects 

of the epidemic from prevention to care and treatment. Different OR modelling techniques 

incorporating economic analysis have been used for this purpose ranging from system 

dynamics to mathematical models and Markov models. An array of healthcare aspects have 

thus been explored including diseases (e.g. diabetes, hepatitis, coronary diseases, 

tuberculosis), paediatric medicine, influenza and other vaccines, Post-exposure prophylaxis 

(PEP) and so on (Katsaliaki & Mustafee, 2010). Discrete Event Simulation, note Katsaliaki and 

Mustafee, has been more extensively used to estimate the cost and cost-effectiveness of 

providing healthcare, alternative interventions and screening strategies. 

 

3.5.1 Economic analysis in HIV/AIDS 

In Africa, various health and other developmental needs compete for scarce resources and 

among the important challenges being faced on the continent is the HIV/AIDS pandemic. 

Making decisions on which sectors of the local economies get these resources is of significant 

importance. Furthermore, deciding which programs within a sector such as healthcare to fund 

is also an important undertaking. Some basic approaches include making the call on whether 

the economic benefits of HIV programs outweigh their costs, which HIV programs are the 

most cost-effective and generally whether HIV programs are more cost-effective than other 

health programs faced by different nations. Cost-effectiveness of the interventions to 

mitigate the effect of the epidemic, though not the only method used, is a popular tool used 

to make the decision on how and on what intervention these scarce resources must be spent. 

Models have been presented, some of which for example, specifically examine the cost-
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effectiveness of additional ARVs added to a regimen, the choice of eligibility criteria for ART 

and so on (Meyer-Rath & Over, 2012). The three sections below outline four broad forms of 

economic evaluations as applied to HIV/AIDS research during the last decade. 

 

3.5.2 Cost analysis 

There has been a new strategy in HIV prevention called Treatment as Prevention (TasP). This 

is a strategy that has evolved over the last few years as a result of the successful HTPN 052 

trial reported by Cohen et. al (2011) that ART in serodiscordant couples can reduce 

transmission of HIV by as much as 96%. In order for TasP to succeed in the general population, 

it is necessary that members of communities frequently test for HIV and commence ART as 

soon as they test positive instead of waiting for the disease to progress before initiating the 

therapy. This added dimension of HIV prevention interventions will likely require additional 

community mobilisation beyond that present in current ART programming. It is also possible 

that TasP could affect the course of the disease, quality of life and the economic productivity 

of PLWHA. Estimates of the economic costs of TasP strategies are currently estimated from 

ART costing studies and data (Meyer-Rath & Over, 2012).  Barnighausen et al. (2012) argue 

that in view of the foregoing additional components, there is need to collect empirical data 

alongside the many TasP strategies being evaluated in order to more accurately determine 

the true economic costs of these programs. In South Africa, increasing the provision of ART to 

all people with CD4<350 copies/µ𝐿𝐿 (current guidelines recommend initiating ART at CD4<200 

copies/µ𝐿𝐿) is projected by Granich et al. (2012) to significantly reduce cost of service delivery 

while lessening the HIV disease burden. The researchers further report that this could result 

in a reduction of about 265,000 new HIV infections and over 200,000 deaths. 

 

HIV-related health care costs of long-term ART are presented by Keiser et al (2001) in a study 

conducted on a comprehensive HIV service within a Veterans Affairs Medical Centre in the 

Unites States. The analysis of data from this facility is undertaken using mathematical and 

statistical methods and results indicate a reduction in the mean hospitalisation of HIV-

infected persons on ART during 2 years. Total costs of caring for the HIV-infected clients 

decreased from $1,905 to $1,391 over the 44-month period under study.  
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In order to estimate the clinical benefits and cost-effectiveness of 3-drug ART, Freedberg et 

al. (2001) used a computer-based simulation model and compared alternative antiretroviral 

(ARV) drug combinations. Using chronic illness, acute illness and death as categories of the 

status of each HIV-infected person outcomes of the model were, among others, life 

expectancy and lifetime costs of ARV treatment.  

 

An early estimate of the lifetime cost of ART in France during the era of Highly Active 

Antiretroviral Therapy (HAART) was reported by Yazdanpanah et al. (2002). Their primary 

objective was to estimate the lifetime direct medical costs of HIV infection and this was 

achieved by adopting the micro-costing approach in which the unit cost of four stages of 

disease progression are defined and costs at each of these are individually computed. The 

sum of costs across all these stages is then summed up to generate a monthly stage-specific 

cost estimate. A computer simulation was then run to generate the survival times of patients 

in each stage. Using these survival times and stage-specific cost estimates, the lifetime costs 

of HIV for patients on ART was computed by multiplying the duration spent in each stage by 

the corresponding unit cost for that stage. Both in-patient and out-patient care costs were 

included in the analysis providing a realistic picture. Results showed that the lifetime cost for 

an HIV patient in France ranged from €156,000 to €253,000 if clinical management of the 

patient was commenced when the CD4 count was at least 378 copies/µ𝐿𝐿 (the undiscounted 

cost was estimated at €212,000 to €378,000).  

 

Other research reporting the cost of HIV service provision has been reported including the 

estimation of unit costs and annual costs of ART service delivery in Zambia (Bratt, Torpey, 

Kabaso, & Gondwe, 2011), the lifetime costs of treating a person with HIV from infection to 

death (Hellinger, 1993; Jebakumar, Woolley, & Curless, 1993) and the cost of rapid HIV testing 

(Pinkerton et al., 2010) 

 

3.5.3 Cost-effectiveness and Cost-utility analysis 

A review of 24 studies containing information on both cost and effectiveness of HIV/AIDS 

interventions on the African continent was conducted by Creese et al. (2002). Results indicate 

that HIV infection prevention was more cost-effective than each disability adjusted life year 

(DALY) gained from provision of ART. There are however, very large variances between 
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interventions partly attributed to the inconsistent collection of cost-effectiveness data during 

program implementation. The clinical impact and cost-effectiveness of routine, voluntary HIV 

testing in South Africa was reported by Walensky et al. (2011) in a study that considered the 

testing annually, every five years or once only. The simulation showed that annual testing of 

HIV was highly cost-effective in terms of the increase in HIV-infected quality-adjusted life 

expectancy which would be at 197.2 months compared with 180.6 months from the test date. 

The study revealed though that the benefit of the intervention would even be more if there 

was a linkage between ART and the HIV screening and that ultimately, the driver of the cost-

effectiveness was the ART.  

 

A cost-effectiveness analysis in drug abuse and HIV testing was conducted to compare three 

HIV testing strategies offered at a community-based substance abuse treatment program 

(Schackman et al., 2012). These were, off-site HIV testing by referral, on-site rapid HIV testing 

with only test results given and on-site HIV testing with risk reduction counselling (sexual risks, 

injection risks, or reducing substance use) provided to drug users attending the community-

based program. Using life expectancy, lifetime costs and Quality Adjusted Life Years (QALY) 

computed from the Cost-Effectiveness of Preventing AIDS Complications (CEPAC) computer 

simulation model, the study concluded that on-site testing with information but without the 

extra risk reduction counselling was the most cost-effective strategy with a cost-effectiveness 

ratio of US$60,300/QALY. 

 

A simulation model to study the cost-effectiveness of variants of PMTCT post-partum 

strategies using ARV interventions for the mother and the infant in sub-Saharan Africa 

employed Markov modelling (Maclean & Stringer, 2005). This model, based on Zambia data, 

showed the cost-effectiveness of exclusive breastfeeding for 6 months at a cost of $806,995 

generating a total of 446, 208 Quality Adjusted Life Years (QALYs). An additional daily dose of 

the ARV Nevirapine (NVP) given to the infant is reported to have cost $93,638 and although 

it generated 1,183 additional QALYs was not feasible as it exceeded the standard willingness 

to pay ($64/QALY) for most resource-poor settings. A more recent effort in establishing the 

cost-effectiveness of PMTCT strategies was reported by Robberstad and Evjen-Olsen (2010) 

in a study that utilised data from Tanzania. Using a decision tree, the costs and outcomes of 

single-dose nevirapine (sd-NVP) and ART-based PMTCT Plus regimen as different strategies to 
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prevent MTCT were computed. Cost-effectiveness was calculated as the cost per DALYs 

averted. The final results showed that though more expensive to implement by up to 40%, 

the ART-based PMTCT plus strategy yielded at least 5 times better health benefits at 

US$162/DALY averted with an incremental cost effectiveness ratio of US$4,062 USD per child 

infection averted. 

 

In order to assess the long-term economic and clinical impact of 3-drug ART compared to 2-

drug ART, a cost-effectiveness study was conducted designed to track viral load and CD4 count 

as proxies for the progression of HIV-infected people from asymptotic infection to AIDS-

defining illnesses and ultimately death (Cook et al., 2004). The study revealed that triple 

therapy provided to an asymptotic HIV+ patient yielded a better survival than dual therapy 

with a total discounted cost over the initial 5 years of treatment being US$5,100 lower than 

that for dual therapy. The lower discounted costs were mainly attributable to savings as a 

result of the delayed onset of AIDS. Additionally, the incremental cost per life year gained by 

adding the third drug to the dual therapy (i.e. adding Indinavir to Lamivudine + Zidovudine to 

make ‘triple’ therapy) was estimated at US$13,229 which fell within accepted levels for similar 

medical interventions at the time of publication. 

 

3.5.4 Cost-benefit analysis 

As indicated above, most economic analyses combine one or more methods when measuring 

the effect of an intervention in relation to costs. In a paper which could serve as a practical 

guide for conducting cost-benefit analysis (CBA), La Croix and Russo (1996) outlined both the 

costs and the potential benefits of routine voluntary HIV counseling and testing for hospital 

patients. Costs associated with the HIV testing included the testing kits with related 

consumables, the rental cost of the laboratory and the cost of staff time from drawing the 

blood for the test through to the post test counseling at which results are given to the patient. 

Benefits considered were primarily in terms of the calculated value of life. Beyond monetary 

terms, benefits discussed included those to the healthcare worker (HCW) by way of their 

ability to take precautions thereby reducing their exposure rates to HIV, the possible life-

extending antiretroviral therapy the patient could receive and the possible infection of the 

patient’s sexual partners averted as a result of safer sex practices. Cost-benefit ratios ranging 

from 1:21 (for HIV prevalence of 0.23%) to 1:636 (for prevalence of 10.63%) were derived 
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from the study showing that HIV testing was far more beneficial to society than the cost of 

conducting the tests.  

 

With an objective of comparing costs and benefits of providing pregnant women with PMTCT 

in Mozambique, Peffer et al. (2002) used the UNAIDS cost-effectiveness tool (CET) to develop 

their model. The costs arm of the study accounted for costs of counseling and testing, 

antiretroviral therapy provided to mother and infant (nevirapine) as well as the cost of 

nutritional counseling and provision of infant feeding formula. The results indicated that the 

intervention would result in savings of over US$5,200 and a negative DALY cost of about 

US$1.53 for the case without infant formula.  

 

Andresen and Boyd (2010) used a mathematical model to estimate new HIV infections and 

deaths prevented in a supervised injection facility in Canada. These prevented deaths and 

infections were viewed as societal benefits and compared with costs which were taken to be 

the annual operating costs of the facility. It was demonstrated that the intervention would 

prevent 3 deaths and 35 new HIV infections annually with a benefit-cost ratio of 5.12:1. Other 

CBA has been conducted in areas such as HIV counseling and testing for women in child-

bearing age (Brandeau, Owens, Sox, & Wachter, 1993), needle and syringe exchange (Clark & 

Corbett, 1993) and partner notification by people who test HIV positive (Judson, 1990). 

Significant economic analysis research has been conducted to study different HIV/AIDS 

interventions with more work found in the literature directed at prevention strategies. Cost 

effectiveness studies seem to be more preferred along with cost analysis more than are cost 

benefit and cost utility methods.  The work proposed in the current research will utilize only 

cost analysis. 

 

3.6 Chapter summary 

The literature reviewed covers a wide variety of OR methods which have been used to 

investigate different aspects of HIV. Some aspects of HIV studied include HIV transmission 

dynamics using system dynamics, agent-based simulation, compartmental models and 

discrete event simulation. Decision trees have been used in determining the best 

antiretroviral treatment strategies. In the area of HIV prevention, compartmental and ABS 

models have been developed to explore different HIV prevention methods alongside STIs; in 
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PMTCT research as well as the prevention of HIV transmission among MSM. The dynamics of 

HIV transmission from concentrated populations (IDU, MSM, and CSW) to heterosexual 

populations has been studied with the aid of ABS models.  Agent based simulation and Markov 

models have been used in determining which prognostic factors have an impact on HIV 

evolution, general disease progression as well as key drivers of the epidemic among injection 

drug users. The effect of ART on levels of viral load and CD4 cells counts have also been 

determined using Markov models. Determining the size of the HIV epidemic and possible 

strategies to sterilise or eradicate it from the population have been investigated by employing 

compartmental and Markov models. Various aspects of co-morbidities of HIV and TB, herpes 

simplex virus and others have been researched using compartmental models and DES.  

 

Different approaches in the estimation of the survival of HIV-positive people have been used 

by different researchers. A fundamental difference in this work lies in the definition of the 

event of interest based on which the time intervals are modelled. Typically, the event of 

interest is the death of the HIV-positive individual. The same techniques have been used to 

model the time intervals leading to loss to follow up or a combination of death and loss to 

follow up and so on. In general, HIV-positive people are observed in prospective cohorts or 

data is reviewed in retrospective cohort analyses. Kaplan-Meier survival curves and Cox 

proportional hazards models have been used as some of the main statistical techniques to 

study the survival patterns and other covariates which affect survival. The effect of CD4 

counts on survival of people on antiretroviral therapy is a common relationship of interest in 

most literature. Some researchers have generated age-specific survival rates while others 

have reported life expectancy instead. Survival of PLWHA has also been of interest against 

the background of different drug combinations at ART initiation. A number of multi country 

models of the survival of PLWHA have been constructed to account for possible geographic, 

economic or other differences in similar categories of PLWHA such as MSM, IDU, heterosexual 

populations and so on. Furthermore, research work has been published specifically estimating 

survival of PLWHA from seroconversion or from the first time they present for HIV care to 

either manifestation of AIDS or death.  

 

Economic analysis literature in the HIV/AIDS sphere revealed substantial work done utilizing 

different techniques. Cost analyses have been used to test various HIV prevention techniques 
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including new prevention strategies such as antiretroviral Treatment as Prevention (TasP), the 

benefits of early initiation on ART, the lifetime direct medical costs of ART in a developed 

country and others. Cost effectiveness has also been used as an economic evaluation 

technique in many other areas such as testing different HIV interventions, routine voluntary 

HIV testing in a population with high HIV prevalence rates and the comparison of different 

PMTCT strategies in a resource constrained environment. Comparison of 2 or 3 drug ART has 

also been studied in terms of cost effectiveness in the long-term. The other frequently 

reported method of economic analysis in HIV/AIDS is cost benefit analysis. Cost-benefit 

analysis has been used in investigating routine testing and counselling and the different 

scenarios of PMTCT in resource poor settings in sub-Saharan Africa. 

 

The long-term survival of PLWHA exiting the ART program as a result of death, LTFU and 

stopping treatment has not been fully explored by using DES as the primary modelling 

technique. The use of large data sets which have many years of observations has also not 

been explored extensively to gain further insight into the different outcomes or survival using 

DES. The effects of treatment policy changes recommended by the WHO for initiation of ART 

(from 200 to 350 cells/µL of blood) on survival are still being explored. Prognosis of drop out 

(survival) for PLWHA on ART is still to be well understood if treatment is commenced at earlier 

stages of the disease (than the now recommended WHO cut-off of 350 cells/µL of blood), say 

at 500 CD4 cells/µL of blood, in resource constrained settings. The proposed work seeks to 

help fill some of these gaps by using a patient-level electronic database of people on ART with 

records of up to 10 years. Discrete event simulation is the method of choice for this project 

and it is envisaged that this simulation will provide a tool to be used to answer the different 

questions on dropout outcomes of ART at different levels of disease progression. The model 

will also provide an opportunity to alter any of the treatment policies to other desired levels 

of CD4 count and other attributes. Furthermore, questions that may be answered by this 

research will include the study of possible variations in drop out patterns based on different 

treatment regimens which are provided to patients at initiation of treatment. The different 

covariates which affect survival of PLWHA on ART will also be explored to determine what 

factors to significantly affect survival.     
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There has previously been research on long-term economic costs of the provision of ART to 

PLWHA from initiation on ART to drop out or exit from the program (Resch et al., 2008), but 

more up to date estimates are needed. There is need to analyse the costs associated with 

different treatment strategies for treatment considering that HIV is currently a chronic illness 

and not a disease which always results in very early mortality. The proposed research will also 

provide an insight into the various costs associated with the commencement of treatment at 

different stages of disease progression as described above. In general, the proposed model 

combining survival and economic costs of ART in resource limited settings will present an 

opportunity to understand the implications of long-term ART on the PLWHA and also act as 

an important tool in healthcare planning. 

 

In summary, the chapter has provided: 

 

• An overview of OR methods in healthcare followed by an introduction of the 

developments of OR output in HIV/AIDS 

• A chronicle of different OR methods which have been used to model HIV/AIDS-related 

problems 

• A discussion of survival analysis techniques and how they have been applied to 

HIV/AIDS survival estimation 

• An introduction of common economic analysis techniques used in healthcare 

modelling with specific references to HIV/AIDS applications 

 

The next chapter outlines how these modelling opportunities have been explored using 

appropriate methodologies 
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4 Data 

4.1 Introduction 

This chapter describes the data used in the research and where it is obtained from within the 

Zambian health system. Descriptions of the type of data and what kind of database the data 

is stored in are given as well as other data sources from where additional data was obtained 

from for the research. A description of the data collection process is given along with the 

status of the data when it was collected. The challenges faced during data collection are 

outlined to provide the reader with an understanding of the process and duration of data 

collection. A discussion on the missing data in the dataset is presented in this chapter. Efforts 

to address these missing data are clearly stated supported by the results of the effort to 

mitigate the problem. The chapter also provides a description of the ART program in Zambia 

by presenting a series of descriptive accounts of the statistics from the dataset such as the 

gender distribution, patient flow, patient outcome, etc. To conclude the chapter, a discussion 

on the choice of covariates subjected to statistical analysis and subsequently simulation 

modelling is given. 

 

4.2 The electronic medical record system for HIV in Zambia 

Following a policy statement issued by the Ministry of Health of Zambia on 23rd November 

2007, the official medical records system for HIV-positive patient management and reporting 

in Zambia is SmartCare. SmartCare is an electronic medical record (EMR) system designed to 

store individual medical records for HIV-positive individuals in Zambia who enrol into any of 

the dozens of health facilities countrywide (http://www.smartcare.org.zm/). The system is 

made up of two main components namely the pre-coded paper forms used by the clinicians 

to manage patients and the computerised database. Clinicians use the paper forms during 

clinical consultation and other interactions with patients which are then entered into the 

electronic database by dedicated data entry clerks located at the health facility.  

 

4.3 Database description 

While multiple computers in the same facility are usually set up in a network ensuring that 

only one database is updated at all times, the SmartCare system is not connected by virtual 

networks between any two separate ART facilities. On a monthly basis, the databases are 

http://www.smartcare.org.zm/
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backed up and physically sent to a central repository in the district or city (District medical 

Office) where a district-level merged database is generated. The district databases are in turn 

merged at the Provincial Medical Office and finally the provincial medical office databases are 

merged into a national database housed at the Ministry of Health headquarters.  

 

4.4 Data collection 

The SmartCare national database was the primary data source for this doctoral research 

project. The data for the research was provided to the researcher by the Zambian Ministry of 

Health (MOH) in the form of Microsoft Excel spreadsheets and Microsoft Access databases. 

These were collected from the ministry headquarters and represent all the ten provinces of 

Zambia. The MOH did not have dedicated database programmers of SQL or Structured Query 

Language who could extract the detail needed for the research from the database. This in 

turn led to challenges in obtaining the data at the time it was required.   

 

4.5 Challenges in data collection 

The absence of an SQL programmer at MOH prompted the ministry to seek the services of a 

programmer from the software development team. Delays in securing the time for this 

programmer to extract the data at the MOH ensued despite the software developers assuring 

the MOH of the availability of the programmer. More than two months were spent waiting 

for this software programmer to put in time into the programming to extract the requested 

data. As a result, this process of back and forth went on for over 12 months without usable 

data being made available to the researcher.  

 

When further efforts to get some data from the programmers proved futile, the ministry 

decided to allow the researcher to appoint an independent SQL programmer to work with 

other IT personnel at MOH to extract the data. Progress was speeded up after this decision 

and the researcher was able to receive data from the appointed researcher with approval by 

relevant MOH staff in Zambia after a delay of about 18 months.  

4.6 Other data sources 

Data to complete the research undertaking was derived from other sources to compliment 

and validate the some aspects of the SmartCare data. The other data sources include: 
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• The 2010 Zambia Census of Population and Housing (Central Statistical Office (CSO), 

2012b) 

• Demographic and Health Surveys 2001 – 2002 (Central Statistical Office (CSO) & 

Ministry of Health Zambia (MOH), 2003) 

Health Management Information System, HMIS (electronic database and reports) 

 

4.7 Analysis of Missing Data in the Zambia ART data set 

Incomplete or missing data occurs in many research settings and the missing data gives rise 

to complications in data analysis and inference. The challenges brought on by missing data to 

researchers are profoundly acute for longitudinal research projects where multiple cycles of 

the same data are collected over extended periods of time (Graham, 2009). Three 

mechanisms for missing data are frequently discussed namely: missing completely at random 

(MCAR), missing at random (MAR) and missing not at random (MNAR). Data is said to be 

MCAR when the probability of a variable having a missing value does not depend on any of 

the observed or unobserved quantities or variables in the dataset. For this case, unbiased 

estimators are obtainable from the dataset by ignoring the processes which generate the 

missing values (Kadengye, Cools, Ceulemans, & Van den Noortgate, 2012). When data is 

considered MAR, it means that a missing value depends on a selected number of observed or 

unobserved variables in the dataset. For the case where missing values are neither MCAR nor 

MAR, then they are considered to be MNAR which implies missing data items are dependent 

on unobserved variables. 

 

Many methods exist for dealing with missing data, so-called imputation methods.  The 

performance of these imputation methods varies in terms of effectiveness and each 

researcher is expected to make a decision based on the use of the resulting ‘complete’ data 

set. Some methods used to impute data are Complete Case Analysis (CCA) where a whole 

case is ignored in the analysis as long as it has a missing value, Simple Random Imputation 

(SRI), Multiple Imputation (MI), Regression Imputation (RI), Direct Likelihood (DL) Analysis, 

etc (Finch, 2008; Kadengye et al., 2012). Besides these methods based on modelling the 

patterns or characteristics of the missing data, some researchers have employed such basic 
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methods as list wise deletion in which entire cases or individuals with any missing data are 

omitted from the study or pairwise deletion and mean substitution. Other imputation 

methods, specifically used to impute missing values in longitudinal studies,  were summarised 

by Engels (2003) in Table 4.1. The methods were used to illustrate their differences when 

imputations were performed on different types of data sets such as population data, baseline 

data, before-data as well as before–and-after-data.  

 
Table 4.1 Definitions of imputation methods and circumstances of their application 

Group Imputation method*                                          Definition 

Population Column mean Mean of all persons in the dataset for a particular year 

Population Column median Median of all persons in the dataset for a particular year 

Baseline Class mean Mean of other persons in corresponding class 

Baseline Class median Median of other persons in corresponding class 

Baseline Hot deck Value of a random person in corresponding class 

Baseline Regression Predicted value from a regression model 

Baseline Regression with error Same as Regression with an error term added 

Before Previous row mean Mean of person’s previous known values 

Before Previous row median Median of person’s previous known values 

Before LOCF Last observation carried forward 

B/A Row mean Mean of person’s values before and after 

B/A Row median Median of person’s values before and after 

B/A NOCB Next observation carried backward 

B/A Last & next Average of the last known and next known values 

*All missing values are replaced by values obtained by the method in this column 

 

Missing data were found to occur in the Zambia ART data used in this research. Considerations 

were made based on the nature of the data being used in the research and what the data 

would be used for to aid the choice of imputation method. The other factor in choosing the 

imputation method was the large sample size of the data, that is, over 400,000 patients or 

cases. We consider five different approaches to imputation: i) The hot deck method assumes 

that a person’s missing data is a random sample of other people in the same class. A donor 

(different person) with a value in the same class is selected at random and the missing value 

is replaced with the sampled value; ii) The linear trend at a point approach replaces the 
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missing value with the linear trend for that point obtained from a regression of the data series. 

Here, the missing value is replaced with its predicted value; iii) The series mean method 

replaces the all the missing values with the mean of the entire series; The mean of nearby 

points uses all valid points below and after the missing value to compute a mean which then 

replaces the missing value; iv) The median of nearby points method replaces the missing value 

with a median computed from all valid values before and after the missing value.    Results of 

the imputation for the Zambia data on baseline CD4 are given in Table 4.2. 

 

Table 4.2: Comparison of different imputation strategies for the Zambia ART data missing values 

 
 

Various measures of central tendency and variation are computed to see which method 

produces results closest to those for the original data. In this case, the Hot Deck method has 

the closest values to the original data (BaselineCD4 Count). The mean is 217.22 (95% CI: 

216.59 to 217.85) for the original data and 217.44 (95% CI: 216.9 to 217.98) for the hot deck 

while the median is identical; the standard deviation is also close as are the percentiles. 

 

As a method to impute missing data, hot deck imputation is widely used by survey 

practitioners in different types of surveys including longitudinal trials (Andridge & Little, 2010; 

Tang, Song, Belin, & Unützer, 2005; Taylor & Lane, 1998; Twisk & De Vente, 2002). It was 

chosen over other sophisticated methods such as multiple imputation (MI) because of its 

simplicity and the fact that the results obtained compared very favourably with the non-
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missing values in the data set. The strength of the hot deck method is that it imputes real 

values instead of values based on parametric assumptions, which results in realistic imputed 

values. The imputed data using the Hot Deck method will be used in the rest of the analysis. 

 

4.8 Characteristics of the Zambia ART program 

This section provides a description of the dataset used in this research. General characteristics 

of the ART program in Zambia are summarized from the data and other aspects of the dataset 

also discussed to provide the reader with a sound understanding of the nature, size and extent 

of the dataset. All data discussed in this section is from the Zambia ART dataset. This analysis 

is based on 487,492 patients eligible for analysis out of over 600,000 enrolled patients on the 

ART program in Zambia. A high proportion of people put on ART in Zambia were alive after 9 

years of being on treatment. The earliest patient considered in this study commenced ART in 

January 2003, while the most recent started during August 2013. The censorship point for the 

analysis is 31 March 2014. Different events were then recorded over a period of 95 months. 

 

4.8.1 Geographical distribution of patients enrolled on ART 

The geographic distribution of patients enrolled on ART in the Zambia ART program follows 

patterns of population density and distribution similar to that in the general population with 

the highest numbers of patients in the urbanized provinces. As can be seen in Figure 4.1, 

Lusaka and Copperbelt provinces along with Southern and Central provinces together make 

up 75 percent of all patients enrolled on ART although they collectively hold only 53 percent 

of the national population. The higher proportion of the patients enrolled on ART in these 

urban provinces is as a result of the initial concentration of ART clinics in the predominantly 

urban provinces which had higher population densities and corresponding HIV prevalence 

before the service was more widely offered in the rural provinces.  Muchinga province, which 

is a new province created in 2011 does not show up in the Zambia ART data because the 

database was still in the process of being revised to include it as a separate province. The 

province is made up of parts of northern and eastern provinces. 
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Figure 4.1: Percentage distribution of patients enrolled in the ART programme in Zambia by province of enrolment, 2003 to 

2013 

 

Patients registered in rural health facilities (HF) account for 10% of the total while the rest are 

registered in urban health facilities. The rural/urban variable is used in this case to refer to 

the location of a health facility where a patient is enrolled and not necessarily the residence 

or location of the patient under observation. The large disparity in the distribution of the 

patients does not reflect the true picture of the actual distribution owing to the definition of 

‘urban’ and ‘rural’ health facilities. The health facilities are defined as urban as long as they 

are within ‘close’ proximity (and in the same local authority) to social and commercial 

amenities such as a post office, bank, market, etc.  

 

4.8.2 Demographics 

The enrolment of patients into the ART program started with very small numbers in 2003 

when ART was offered at only two health facilities which had the requisite specialists and 

diagnostic equipment for patient monitoring to commence treatment. Thereafter, as shown 

in Figure 4.2 there was a rapid increase in the number of patients receiving ART following the 

government’s decision to scale up the provision of the service by training service providers 
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and procuring equipment, drugs and laboratory supplies. Over 1,000 patients were being 

enrolled per month by 2005 rising to between 5,000 and 7,000 patients per month from 2009. 

This high inflow continued until the first quarter of 2013.  

 

 
Figure 4.2: Number of new patients enrolled on ART by month, January 2003 - July 2013 

 

The reduction in the last two quarters of the observation period may be attributed to logistical 

challenges in updating databases from all the districts in the country which have to send 

databases on physical removable media (CDs or USB flash drives) to the MOH headquarters. 

By design, these databases should be merged into district databases which are then sent to 

provincial capitals where ideally a provincial database is created. This is seldom achieved 

owing to the number of facilities and challenges on the ground. It is therefore a fair 

assumption that the number of new patients initiated on ART is a steady 5,000+.  

 

The distribution of the new patients enrolled onto ART by gender shows a higher number of 

female patients enrolled compared to men. This trend has been consistent during the entire 

period under observation and as at the end of observation, 295,930 female patients had been 

initiated onto ART compared with 191,562 male patients.  
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Table 4.3: Patient characteristics 

 

This represents a consistent 20 percent higher enrolment of female versus male patients onto 

the program over the last period from 2003 to 2013. Table 5.3 shows that there were 61 

percent female and 39% males enrolled on ART with paediatric patients (aged less than 15 

years old) accounting for 6%, while adults made up 94 % of this patient population. The 

median age at ART initiation was 35 years (Interquartile range (IQR): 29 – 41 years) 

Variable 
   Gender  Total 

   Female Male  Number Percent 

Residence         

 Rural            30,830            19,581             50,411  10% 

 Urban      265,100          171,981           437,081  90% 

          

Age Group         

          Under 15 yrs           14,541  14,097  28,638 6% 

          15 yrs +  281,389 177,465  458,854 94% 

          

Baseline CD4 Count      

  < 200 copies  156,288 113,824  270,112 55% 

  ≥ 200 copies  139,642 77,738  217,380 45% 

          

  < 350 copies  256,084 169,015  425,099 87% 

  ≥ 350 copies  39,846 22,547  62,393 13% 

          

  < 500 copies  278,026 180,976  459,002 94% 

  ≥ 500 copies  17,904 10,586  28,490 6% 

          

  200 - 349 copies 99,796 55,191  154,987 32% 

      

 Baseline WHO Stage     

         Stage I   115,670 58,041  173,711 36% 

         Stage II   56,866 35,019  91,885 19% 

         Stage III   105,946 83,391  189,337 39% 

         Stage IV   16,368 14.047  30,415 6% 
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4.8.3 Disease progression in patients at enrolment 

It is a fact that HIV positive patients are enrolled onto ART when the disease is at different 

stages of advancement. One measure of the extent of advancement of HIV infection is WHO 

staging which is based on the clinical presentation of the patient (World Health Organization, 

2010a).  The distribution of ART patients enrolled onto ART at different ART clinics in Zambia 

by WHO stages is presented in Figure 4.3 below. In terms of WHO staging, the majority of 

patients who were enrolled on ART in Zambia during the observation period (55%) were in 

either stage I or II, 39% were in stage II and only 6% were enrolled into ART when they were 

in stage IV. This is consistent with the recommended practice of enroling patients as early as 

possible based more on CD4 count than symptomatic presentation or WHO staging.  

 

 

 
 
Figure 4.3: Percent distribution of patients by baseline WHO stage at enrolment onto ART (n = 487,492) 

 

About 45 percent of the patients enrolled while in stages III and IV. If the situation had been 

such that enrolment on ART was based on WHO staging, then the majority of patients would 
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have been in the WHO Stages III and IV according to existing guidelines (Ministry of Health 

Zambia (MOH), 2010). In absolute numbers, 190,173 people were enrolled as WHO stage III 

patients while 174,478 patients presented to the clinic for enrolment onto ART before the 

disease progressed to the second stage. The WHO stages II and IV accounted for 92,291 and 

30,549 patients enrolled during the same period.  

 

The other measure of disease progression in patients with HIV is the count of CD4 cells per 

micro-liter (µL) of blood. In terms of disease progression, as measured by its proxy the CD4 

count, the median CD4 count at enrolment among patients in the Zambia data was estimated 

at 181 copies/µL (IQR: 97 – 282 copies/µL). About half or 55 % of the patients had CD4 count 

less than 200 copies/ µL of blood at enrolment into ART. The other cut-offs for baseline CD4 

counts were distributed as follows: 87 percent less than 350 copies/ µL of blood; 94 percent 

had less than 500 copies/µL of blood. In order to compare all groups of people in the 

categories, the additional category of those patients with CD4 counts between 200 and 349 

was also created. This group made up 32 percent of the total number of enrolled patients.  

 

Of the two measures of disease progression, CD4 count is more accurate and reliable. Studies 

have shown that WHO staging can misclassify patients eligible for ART by as much as 50% 

meaning that patients who ought to be on treatment could be missed if only WHO staging 

were used as the initiation criteria (Baveewo et al., 2011; Carter et al., 2010; Kagaayi et al., 

2007; Torpey et al., 2009). As a result of this, the WHO staging is not used in further analysis 

beyond this descriptive account in this research undertaking. 

 

4.8.4 Patient outcome by cohort 

In Figure 4.4, a picture of the final status of each patient cohort enrolled between 2003 and 

2013 is shown. The graph shows that of the patients who were enrolled onto ART in 2003 and 

2004, none were still on ART in 2013 and all had either been lost to follow up, died or had 

stopped treatment. The proportion of patients whose status was recorded as on ART, as 

expected, increases from 19 percent in 2005 to 87 percent in 2013 because the patients in 

the latter years will have only been on treatment for a few years compared to those who 

enrolled in the earlier years. With similar logic, the percentage share of patients whose status 

was declared are LTFU reduces from 60 percent in the cohort enrolled on treatment in 2003 
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to only 9 percent in the 2013 cohort because the earlier patients are bound to be lost. The 

other such reducing trend is that of the percentage of patients whose status had been 

recorded as died (27 percent among the 2003 cohort versus 3 percent among the 2013 cohort 

of patients enrolled onto ART). 

 

 

 
Figure 4.4: Status of patients at censorship point by year of enrolment, 2003 to 2006 

 

Table 4.4 shows of all the people enrolled on ART during the observation period, 49 percent 

were alive and on ART at the censorship point. The table also shows that 5 percent of the 

patients were recorded as those who had stopped treatment while 13 percent died during 

the observation period. The category LTFU (lost to follow up) accounted for about 33 percent 

of the patients. For purposes of this work, the three categories of patients exiting the 

treatment program namely those who were LTFU, Died or Stopped treatment were combined 

to form the category ‘Exited ART’. This combined category represented 51 percent of patients 

enrolled onto ART but exited the treatment program before the end of the observation 

period.  
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Table 4.4: Status of patients on ART in Zambia as at May 2014 

 

4.8.5 Covariates analysed: in the dataset, in survival analysis and in simulations 

The full dataset for the Zambia ART program has a large number of variables and the variables 

used in this research project is a subset of the full dataset. The list of variables in the dataset 

which were considered for analysis is displayed in Table 5.3 with explanation of what the 

variable represents and a summary of its distribution.  

 

Other variables not explicitly shown in Table 5.3 were derived from the variables on the list 

by creating categorical variables from continuous variables such as age and CD4 count. These 

were Age group (created as 5 year age groups, 2 age groups “paediatrics” and “adult”, and 

others) and CD4 categories (CD4 cut-offs at 200, 350, 500, etc.). The distribution of patients 

in the program by some of these derived variables is tabulated in Table 4.5.  It is expected 

that although all the variable listed in Table 5.3 were subjected to statistical analysis in the 

survival analysis chapter, not all variables were used in the simulation model. Further analysis 

of variables is performed and presented in the survival analysis chapter. 

 

The age structure was also compared with that in the general population and that of the 

sexually active population in both the national census and specialized surveys such as the 

Demographic and Health Survey and Sexual Behaviour Survey (Central Statistical Office (CSO) 

& Ministry of Health Zambia (MOH), 2009; Central Statistical Office (CSO), 2012b).  

Status 
 Gender  Total 

 Female Male  Number Percent 

On ART          150,926            87,645             238,571  49% 

LTFU            93,622            67,243           160,865  33% 

Patient Died            37,999  26,921            64,920  13% 

Stopped            13,383  9,753          23,136  5% 

Combined categories     

       

Exited ART  145,004 103,917  248,921 51% 

Total          305,943  198,130  487,492 100% 
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Figure 4.5: Age structure comparison of HIV positive people in the general population vs patients on ART 

 

The results are shown in Figure 4.5 indicating that the general distribution of ages in the 

Zambia ART program is representative of the HIV positive population as estimated by the 

demographic and health survey of 2007.  

 

4.9 Chapter summary 

This chapter has: 

• Provided a description of the nature of the data management system for HIV-positive 

people in Zambia 

• Described the electronic health record system known as SmartCare used in Zambia 

• Given an account of the data collection process for the current research 

• Outlined problems faced during the data collection 

• Provided a list of other data sources used in the study 

• Provided general statistics about the ART program in Zambia 

• Provided justification why some important variables were not used in simulation 

modelling later in the thesis 
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5 Survival Analysis 

5.1 Tasks addressed in this chapter 

Task 1: What are the main covariates which have an effect on survival of ART patients 

in Zambia? 

Task 2: What measure of effect do the covariates of survival have on ART patients? 

Task 3: What is the best combination of covariates predicting survival for patients on 

ART in  Zambia 

 

5.2 Methodology 

This section describes the choice of methods and the justification for that. A list of the tasks 

undertaken to answer the research questions is also provided to make it easier to follow the 

different stages of the thesis and which objective is being addressed.  

 

5.3 Research tasks 

The research questions from Chapter 1 are re-stated here to remind the reader what this 

research project was designed to achieve. Research tasks for each objective are listed 

immediately following the question.  

 

Question 1 What is the survival estimate of the time intervals from initiation to exiting ART 

among patients who commence treatment in a LMIC such as Zambia? 

 

With the understanding that survival was defined as the time intervals between enrolment 

and exiting the ART program, the tasks undertaken to answer this question are as follows. 

 

Tasks for Question 1 

Task 1: What are the main covariates which have an effect on survival of ART patients 

in Zambia? 

Task 2: What measure of effect do the covariates have on survival of ART patients? 

Task 3: What is the best combination of covariates predicting survival for patients on 

ART in  Zambia? 

Task 4: What is the survival profile of ART patients in Zambia? 
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Question 2 

What is the total economic cost of the provision of ART in Zambia from enrolment to drop 

out?  

Tasks for Question 2 

Task 5: What are long-term estimates of the economic costs of ART provision in 

Zambia? 

 

5.4 Choice and justification of methods 

Survival analysis techniques were used to explore the nature of the survival times of the 

population under study. Differences in the survival patterns of different subgroups of the 

population were identified statistically and probability distributions were fitted to any such 

sub-populations. The survival analysis techniques were necessary because the data from the 

observations are right censored therefore raising the need to model beyond the censoring 

point into the future. The resulting sub-populations were later exclusively modelled in the 

DES model in order to generate the desired estimates for the many ‘what if’ questions stated 

in the tasks in the previous section. Early studies employing similar survival analysis 

techniques include Lemp (1990), Marasca and McEvoy (1986) and Harris (1990) while more 

recent uses of the same methodology have been reported by Sanne et al. (2009), Jevtovic et 

al. (2010), Mills et al. (2011) and Johnson et al. (2013).   

 

The choice of the simulation method for this research was primarily driven by the nature of 

the system to be modelled. Discrete event simulation was viewed as an appropriate method 

to model the survival of persons on antiretroviral therapy because the main characteristics 

(primarily CD4, age, sex) used to predict the survival of these patients are stochastic. Previous 

research has employed DES in modelling outcomes of long term diseases (Caro, 2005; Patten, 

2007; Simpson et al., 2009). As patients move through the model, they experience events 

such as change of antiretroviral drug regimen or death at different intervals in time, also 

stochastically. The occurrence of these events at different times also makes DES a practical 

choice over methods such as Markov models which are updated at each time cycle rather 

than at each event. Discrete event simulation is also able to predict the course of a disease 

more naturally than most other simulation methods among other reasons because DES uses 
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a random draw from distributions of attributes in the population to predict outcomes of 

interest. While computationally complex, DES models are easier to sell to stakeholders in this 

case the planning departments in the Ministries of health, because of the visualization 

facilities available. We use Simul8 (Simul8 Corporation, 2011) in this project, which has been 

designed to enable users to see the movements and visualize what happens to each patient 

as they move through the model.  

 

5.5 Introduction to Survival Analysis 

In this chapter, a description of the statistical techniques from Survival Analysis which were 

applied to the data is given. The work in this chapter answers Tasks 1 to 4 as outlined above 

and in the previous chapter. Stated generally, survival analysis is a collection of statistical 

methods for the analysis of data where the outcome variable of interest is the time to event 

(Kleinbaum & Klein, 2005). Survival analysis is used to identify the covariates which drive the 

survival among people on ART in Zambia. This analysis is limited to the use of variables which 

are available in the database and are in a usable form. Other variables such as viral load, 

trends of CD4 count during ART, incidence of opportunistic infections and others which affect 

survival (World Health Organization, 2010a, 2010b) have not been considered here for the 

following reasons.  

 

• Viral load is still expensive in Zambia and is not tracked routinely except in instances 

where possible drug failure is suspected  

• Repeat CD4 count tests are not consistently done because of inadequate laboratory 

capacity.  

• Opportunistic infection data is not consistently recorded by clinicians on the patient 

files, usually due to heavy patient load, and is therefore not available for analysis.  

 

The identification of the drivers of survival from the Zambia ART database was critical in 

deciding the extent of detail to account for in the simulation model. The other aspect 

discussed in this chapter is that of assessing the magnitude of the effect which these 

covariates or factors have on survival. A combination of these two processes provided a set 

of factors we can used to disaggregate the population of people on ART into sub-populations 
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that are homogeneous with respect to their survival times. Probability distributions of the 

survival times of these sub-populations or risk groups govern the time which persons on ART 

spend in the various stages of the disease until death or other event. The distributions were 

estimated from the electronic database and form the model inputs for the simulation model. 

 

5.6 Data layout and analytical considerations 

Patients are enrolled onto the database on the day that they commence ART and observed 

for purposes of the analysis. The patients are typically expected to attend the clinic every 

month but due to high numbers of people on ART, once stable, the patients are seen by the 

initiating clinician on a quarterly basis or sometimes less frequently. The antiretroviral drugs 

(ARVs) are also issued in a similar manner but to ensure that adherence to the medication is 

more closely monitored, a large number of patients who have long review dates with the 

doctors are issued their drugs to last shorter periods. This results in patients attending the 

pharmacy to collect drugs more frequently than they do to see the doctors or other clinicians 

who initiate the therapy and manage the disease.   

 

For purposes of this research, survival of patients on ART with “Exited ART” being the event 

of interest is considered. Patients are recorded as “Exited ART” when their status changes 

from “On ART” (patient is alive and receiving ART) to: 

 

• Died – the patient died during the observation period  

• Lost To follow Up (LTFU) – the patient has missed their appointment by a period 

greater than 90 days 

• Stopped – the patient has stopped ART either by order of a clinician or by their own 

decision during the observation period  

 

Figure 5.1 below shows a graphical picture of the patient flow based on which the survival 

analysis is performed [adapted from Machin et al. (2006)]. Patients entered the study during 

a period known as the observation period in which the status of each patient was recorded 

according to the categories above. The survival analysis is undertaken at a point in time 

referred to here as the Analysis point taken to be 31st March 2014. The event of interest is 
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Exit ART and is associated with the parameter time to event. The time to event is defined as 

the number of days between the day a patient entered the study and the day the patient exits 

ART. Not all patients will exit ART during the observation time. Therefore, a classification of 

the patients relative to the time when they experienced an event (or did not) was made as 

follows. Those who did not experience any event and were known to be alive and on ART at 

the end of the observation period are known as right censored patients (represented by white 

crosses). Their date of exiting ART is not known because it had not happened at the time the 

observation period ended. Patients who exited ART during the observation period are marked 

with a black cross.   

 

Although the event of interest is exiting the ART program, we also present results showing 

the survival of patients on ART until death. These provide a means of verifying the data and 

the subsequent simulation model. For this part of the results, all other events other than 

death are considered censored.  

 

    
Figure 5.1: Graphical representation of patients on ART included in the study 
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5.7 The Survival and Hazard functions 

The most commonly used functions to describe survival data are the survival function and the 

hazard function. The two functions are closely related as explained below and thus the 

estimation of only one of them is usually sufficient followed by a derivation of the other from 

the estimated function.  

 

Let T be a random variable denoting the survival time for a patient and t is a specific value of 

the random variable T (T≥0). If T has a probability density function 𝑓𝑓(𝑡𝑡), then the probability 

that a person survives beyond time t is called the survival function and is given by: 

 

 𝑆𝑆(𝑡𝑡) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡) = 1 − ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑡𝑡
𝑥𝑥=0 , (5.1) 

 

where F(t) is the cumulative distribution function of the random variable T. The survival 

function is a non-increasing function which is such that at t=0, S(t) is 1 and as t goes to infinity, 

the function S(t) equals 0. These properties are interpreted to mean that at time t = 0, every 

patient has probability of surviving beyond that time equal to 1. The probability of anyone 

being alive in the population is equal to zero at infinity.  

 

Related to the survival function, the hazard function denoted by h(t) is the instantaneous rate 

of failure during a time interval given that the patient survived up to the time t. It is therefore 

the conditional probability that the failure (or event of interest) will occur in the time interval 

between t and t + Δt , given that T ≥ t. That is  

 

 

ℎ(𝑡𝑡) = lim
∆𝑡𝑡→0

𝑃𝑃(𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + ∆𝑡𝑡 | 𝑇𝑇 ≥ 𝑡𝑡)
∆𝑡𝑡

 

 

(5.2) 

The hazard function is for this reason sometimes referred to as the conditional failure rate or 

the conditional density (Allison, 2010; Kleinbaum & Klein, 2005). The relationship between 

the survival function and the hazard function is well defined. The survival profile of a dataset 

can therefore be fully understood by estimating only one of these functions and then deriving 

the other according to the relationships between them. To illustrate this relationship we 
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define a related function, the cumulative hazard function, which measures the cumulative 

risk accumulated up to a point t as follows: 

 

 𝐻𝐻(𝑡𝑡) = ∫ ℎ(𝑥𝑥)𝑑𝑑𝑑𝑑𝑡𝑡
𝑥𝑥=0 , (5.3) 

 

where h(x) is the hazard function. The cumulative hazard function (5.3) can be expressed in 

terms of the survival function S(t) by use of the two other basic relationships between the 

hazard function and the probability density function of T:  

 

 
ℎ(𝑡𝑡) =

𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡)

 

 
(5.4) 

and 

 
𝑓𝑓(𝑡𝑡) =

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 

 
(5.5) 

 

Thus 

 
𝐻𝐻(𝑡𝑡) = �

𝑓𝑓(𝑥𝑥)
𝑆𝑆(𝑥𝑥)

𝑑𝑑𝑑𝑑 = − �
1

𝑆𝑆(𝑥𝑥)
�
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑆𝑆(𝑥𝑥)� 𝑑𝑑𝑑𝑑 = −𝑙𝑙𝑙𝑙{𝑆𝑆(𝑡𝑡)}
𝑡𝑡

𝑥𝑥=0

𝑡𝑡

𝑥𝑥=0

 

 

(5.6) 

This expression allows us to summarise the relationships between the functions as follows: 

 

 𝑆𝑆(𝑡𝑡) = 𝑒𝑒−𝐻𝐻(𝑡𝑡) (5.7) 

 𝐹𝐹(𝑡𝑡) = 1 − 𝑒𝑒−𝐻𝐻(𝑡𝑡) (5.8) 

 𝑓𝑓(𝑡𝑡) = ℎ(𝑡𝑡)𝑒𝑒−𝐻𝐻(𝑡𝑡) (5.9) 

 

Survival data can therefore be adequately explained by use of any combination of the various 

forms of the survival and hazard functions. Estimating these functions is achieved by use of 

non-parametric methods. 
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5.7.1 Estimating the survival function 

In general, the probability of survival up to a time t is given by the formula 

 

 𝑆𝑆(𝑡𝑡) = 𝑝𝑝1 × 𝑝𝑝2 × 𝑝𝑝3 × ⋯× 𝑝𝑝𝑡𝑡 (5.10) 

 

Where the pi’s are the conditional probabilities of surviving the time interval i having survived 

the preceding interval time (i-1).  

 

To estimate the survival function 𝑆𝑆(𝑡𝑡) we employ the Kaplan-Meier (K-M) estimator. This has 

been one of the most commonly used methods of estimating survival functions ever since 

Kaplan and Meier (1958) showed that the product-limit estimator was the non-parametric 

likelihood estimator of the survival function. The method employs the use of survival times 

for both the (right) censored event times and the uncensored event times (i.e. when the event 

of interest, death, is observed). The probability of survival at each time point after an event 

has occurred is evaluated based on the number of patients who have survived up to that 

point, giving rise to a set of conditional probabilities which, when multiplied by each other, 

provide an estimate of the survival function (Hosmer, Lemeshow, & May, 2007). 

Mathematically, the survival function is given by the following representation.  

 

Let the random variable T have m distinct time events such that t1 < t2 < … < tm. If at each time 

ti there are exactly nt patients who are at risk of an event and have survived up to this time, 

then the probability of experiencing the event (death) at time t is given by: 

 

 𝑝𝑝𝑡𝑡 =
𝑛𝑛𝑡𝑡 − 𝑑𝑑𝑡𝑡
𝑛𝑛𝑡𝑡

 (5.11) 

or  

 

 

 

 

 

𝑝𝑝𝑡𝑡 = 1 − 𝑑𝑑𝑡𝑡
𝑛𝑛𝑡𝑡

, 
(5.12) 

where dt is the number of patients who experience the event at time t. 

The Kaplan-Meier estimator is defined as 
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 𝑆̂𝑆(𝑡𝑡) = �
𝑛𝑛𝑡𝑡 − 𝑑𝑑𝑡𝑡
𝑛𝑛𝑡𝑡𝑡𝑡

 (5.13) 

 

Here, 𝑆̂𝑆(0) = 1 for all t less than t1 meaning that the value of the Survival function is equal to 

1 at the beginning of the observation. These successive overall probabilities of survival 

𝑆̂𝑆(1), 𝑆̂𝑆(2), 𝑆̂𝑆(3)⋯𝑆̂𝑆(𝑡𝑡) are known as the Kaplan-Meier or product limit estimators of survival 

(Machin et al., 2006). 

 

A useful way to view the K-M estimate of the survival function is to plot a graph of 𝑆̂𝑆(𝑡𝑡) against 

time, t. The graph is equal to 1 at the point t=0. The graph is plotted as a step function which 

declines towards 0 as time increases. If all patients in the observation experience a death 

during the observation period, the K-M curve is equal to zero at the appropriate time t when 

the last of the patients was recorded as dead. In most situations, the curve ends with a plateau 

from the time of the last event to the censorship point.  The graph remains horizontal for any 

period of time between which no deaths are recorded and drops instantaneously whenever 

a death is recorded.  

 

The accuracy of survival curves is measured by calculated confidence intervals which are 

computed at the point of interest. Assuming that the K-M estimates are normally distributed, 

the 95% CI at any point in time t is  

 

 𝑆̂𝑆(𝑡𝑡) ± 1.96 × 𝑆𝑆𝐸𝐸[𝑆̂𝑆(𝑡𝑡)] (5.14) 

 

The quantity 𝑆𝑆𝑆𝑆[𝑆̂𝑆(𝑡𝑡)] is obtained by using Greenwood’s formula  

 

 𝑆𝑆𝑆𝑆�𝑆̂𝑆(𝑡𝑡)� =  𝑆𝑆(𝑡𝑡)�∑
𝑑𝑑𝑗𝑗

𝑛𝑛𝑗𝑗(𝑛𝑛𝑗𝑗−𝑑𝑑𝑗𝑗)
𝑡𝑡−1
𝑗𝑗=0 . (5.15) 

 

5.7.2 Comparison of survival functions 

Survival curves described above can be obtained for different sub-populations (e.g. males 

versus females) from the same data set and plotted on the same graph to visually see the 
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relationship between them. The fundamental question which arises is whether the 

differences between any two (or more) survival functions are statistically significant or not.  

Consider two hazard functions computed from a population. To answer the question of 

whether the differences observed graphically between the hazard functions are statistically 

significantly, we formulate the following hypothesis 

 

 

𝐻𝐻0 ∶  ℎ1(𝑡𝑡) = ℎ2(𝑡𝑡) 

 

𝐻𝐻1 ∶  ℎ1(𝑡𝑡) ≠ ℎ2. 

(5.16) 

 

This hypothesis is best answered by use of the log-rank non-parametric test (Hosmer et al., 

2007; Kleinbaum & Klein, 2005). The test compares the overall K-M curves by making use of 

the observed and expected cell counts across the categories of the outcomes. The log-rank 

test is computed as follows: 

  

 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 = (𝑂𝑂1−𝐸𝐸1)2

𝐸𝐸1
+ (𝑂𝑂2−𝐸𝐸2)2

𝐸𝐸2
, (5.17) 

 

where 𝑂𝑂𝑖𝑖 and 𝐸𝐸𝑖𝑖 are the observed events and total number of expected events in each of the 

two groups (i.e. i  = 1, 2). At each time event time, the expected number of events is calculated 

as the number at risk of death in the group at that time, multiplied by the number of patients 

who are alive in the group at that time, or 

 

 𝐸𝐸1 = ∑ 𝑑𝑑𝑖𝑖
𝑟𝑟𝑖𝑖
𝑟𝑟1𝑖𝑖2

𝑖𝑖=1 . (5.18) 

 

Here, 𝑑𝑑𝑖𝑖 is the number of deaths at event time i and 𝑟𝑟1𝑖𝑖 is the number of patients alive in 

group 1 at the time of the event. If the total number of deaths in the whole dataset is n, then 

the expected number of deaths in group 2 (𝐸𝐸1) is given by 𝑛𝑛 − 𝐸𝐸1 [adapted from Bewick et al. 

(2004) and Machin et.al. (2006)]. 

 

The log-rank test for the case where there are more than two groups is computationally 

complex and is achievable by use of computer packages based on the logic above. If there are 



E Mushota Kabaso Survival Analysis
    

  75 

k groups and m distinct failure times in all groups and that at failure time 𝑡𝑡𝑗𝑗 we have a total 

of 𝑛𝑛𝑗𝑗  patients at risk of failure, then if 𝑑𝑑𝑗𝑗 represents the number of deaths observed (implying 

that 𝑛𝑛𝑗𝑗 − 𝑑𝑑𝑗𝑗 survive that time period), the log-rank test statistic is derived from the 

combination of m contingency tables (each of size 𝑘𝑘 × 2). The resulting test statistic for this 

case would be a generalized from of (5.17): 

 

 𝜒𝜒𝑙𝑙𝑙𝑙𝑙𝑙−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 = �
(𝑂𝑂𝑔𝑔 − 𝐸𝐸𝑔𝑔)2

𝐸𝐸𝑔𝑔

𝑚𝑚

𝑔𝑔=1

 (5.19) 

 

 The computed values of the test statistics in (5.17) and (5.19) are compared to the 𝝌𝝌2 

distribution with 𝑔𝑔 − 1 degrees of freedom. For the former, 𝑔𝑔 = 2 and therefore the degrees 

of freedom are 2 − 1 = 1.  

 

5.8 Survival functions for the Zambia ART data (event = Death) 

The mean survival time of people enrolled in ART may be defined as the integral of the survival 

function from zero to infinity and the non-parametric estimator of this mean is: 

 

 𝜇𝜇𝑇𝑇� = � 𝑆𝑆(𝑡𝑡)� 𝑑𝑑𝑑𝑑

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

0

 (5.20) 

 

where 𝑆𝑆(𝑡𝑡)�  is the Kaplan-Meier estimator fitted to the Zambia ART dataset up to the 

maximum observed failure time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. Since this mean is calculated by the integral in 5.20 

which is restricted to the range [0, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. ], the mean is formally called the restricted mean.  
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Figure 5.2: Kaplan-Meier survival function for all patients (event = Death) 

 

The estimated mean time between enrolment onto ART and death in the Zambia ART 

program was 80.3 months (95% CI: 80.2 to 80.4 months). The corresponding Kaplan-Meier 

graph is shown in Figure 5.2. It is not unusual for the median survival time to be reported in 

the analysis of time-to-event data. The median survival time is defined as that time beyond 

which 50% of the subjects are expected to survive. From Figure 6.2 it is clear that the curve 

terminates at 0.69, a value of the survival function greater than 0.5 which means that at the 

end of the observation period, more than half the patients were still alive and that the point 

at which half of the patients will have experienced death was not observed and cannot 

therefore be computed from the observed data. The cumulative survival probability of 0.69 

means that 69 percent of all patients enrolled on ART in the Zambia program were alive and 

on ART after 94 months. However, for comparison with other studies, the chance of survival 

at 36 months was considered. A person in the Zambia ART program had an 85 percent chance 

of surviving beyond 36 months. This compares with an 87 percent chance of being alive and 

on ART at 36 months in a study of patients at 5 sites in Mozambique, Malawi and Guinea (Fox 

& Rosen, 2010; Palombi et al., 2009). Another comparable published study which estimates 

survival at 36 months in the Sub-Saharan setting is based on a public sector HIV/AIDS program 

0.69 
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in Uganda by Mills et. al. (2011). In this work, the chance of surviving beyond 36 months was 

estimated at different age groups: 90.7 percent for the 14 to 19 year olds, 93.4 percent for 20 

to 29 years, 93.0 percent for 30 to 39 years, 93.2 percent for 40 to 49 years and 90.9 percent 

for 50 years and over. There is a paucity of published work on longer term survival such as 

this research because the epidemic is still evolving hence the comparison at only 36 months.  

 

In order to graphically view the survival patterns of the patients on ART in the Zambian 

program disaggregated by some background variables, two additional Kaplan-Meier graphs 

were plotted and are shown below. This first graph shows the survival functions split by 

gender, Figure 5.3. Female patients have a better survival profile than males because the 

value of the Kaplan-Meier survival function for the females is higher than that of males. At 

the end of the observation period, females have a 0.71 chance of surviving beyond 94 months 

compared to a 0.68 chance of males surviving beyond 94 months.  The corresponding mean 

survival times for males and females enrolled on the program were 81.0 months (95% CI: 80.9 

to 81.2 months) and 79.2 months (95% CI: 79.0 to 79.4 months).  

 

 
Figure 5.3: Kaplan-Meier survival functions by gender 

 

0.71 

0.68 
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A comparison of survival profiles for rural versus urban registered patients resulted in Figure 

5.4. Patients commenced on ART in urban health facilities had a better survival profile than 

those enrolled in rural health institutions. For patients in urban facilities, their chance of 

surviving beyond 94 months was estimated to be 0.70 compared to 0.65 for the rural patients. 

The mean survival time in rural health facilities for patients enrolled on ART in Zambia 

between 2003 and 2013 was 76.9 months (95% CI: 76.5 to 77.4 months). By contrast, the 

mean survival time among urban-enrolled patients was 80.7 months (95% CI: 80.6 to 80.8 

months). Survival estimates for patients on ART in very large programs such as Zambia remain 

debatable because of the unclear extent to deaths among the LTFU patients is verifiable. 

Some patients recorded as LTFU may be dead while others may have self-transferred to other 

sites or stopped treatment. This scenario has been compounded by the initial rapid scale up 

and subsequent decentralisation of ART services (Geng et al., 2011). Zambia, like many 

countries facing the pandemic initially provided ART services in large urban- based hospitals 

and clinics.   

 

 
Figure 5.4: Kaplan-Meier survival functions by residence 
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This was followed by decentralisation to smaller clinics in urban settings and the rural areas 

of the country. This decentralization, or provision of the HIV/AIDS services closer to the 

patient’s home, provides an opportunity for patients to simply enrol at another facility 

without officially being transferred from the bigger facilities giving rise to inflated and often 

difficult numbers to verify which are classified as LTFU. The definition of LTFU is another 

confounder because it is not uniform between countries and in some cases within the country 

(Chi et al., 2011). The duration of missing appointments for a patient to be declared LTFU may 

be 60 days, 90 day, 180 days or other making comparisons especially between countries a 

challenge 

 

5.9 Survival functions for the Zambia ART data (event = Exited ART) 

Overall, the mean survival time (time from enrolment to exiting the system) of people on ART 

in the Zambia data was calculated to be 48.4 months (95% CI from 48.3 to 48.5 months) during 

an observation period of 95 months or 7 years 11 months. The estimated cumulative 

probability of surviving up to 94 months was 0.16.  These results are obtained after analysing 

the Kaplan-Meier estimates of the survival function as shown in Figure 5.5. This compares 

well with other studies examining patient retention in a similar way at 36 months (Fox & 

Rosen, 2010; Odafe et al., 2012). A three country study on Retention in ART conducted at sites 

in Uganda, Zambia and Tanzania also reports comparable results ranging from 32.7 to 90.4 

percent at 3 years of observation and 28.5 to 90.4 percent at 4 years of observation (Koole et 

al., 2014).  As explained in the previous section, comparisons with other studies are mainly 

possible at 36 months of ART provision because the body of literature on the subject is still 

growing.    
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Figure 5.5: Kaplan-Meier survival function for all ART patients 

 

Based on the heterogeneity of the HIV pandemic in Zambia discussed in earlier chapters, the 

survival of people on ART was examined for the different sub-populations based on different 

CD4 count cut-offs (at 200, 350 and 500), age group, baseline ART regimen, gender and 

residence. The resulting survival functions for each category were compared to make a 

decision on whether the differences seen graphically were statistically significant or not.  

The graph below (Figure 5.6) displays the results of the comparison of survival functions based 

on gender. The graph indicates that that female patients had a better survival probability than 

men implying that on average, female patients were retained longer than men on the ART 

program. The mean survival time was estimated at 50 months (95% CI: 49.9 to 50.2) for 

females patients and 45.9 months (95% CI: 45.7 to 46.0) for male patients. The log-rank test 

for equality of survival functions shows that these two survival functions have a statistically 

significant difference (p < 0.000). The cumulative probability of survival to 94 months for 

females was 0.18 (9%% CI: 0.17 to 0.19) while the corresponding probability to survive the 

same number of months for male patients was estimated as 0.14 (95% CI: 0.13 to 0.15). 

Comparatively, the chance of survival at 36 months in the current study was estimated at 58.1 

0.16 
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percent for females and 53.1 percent for males while the study by Koole et. al. (2014) 

estimated it to be 68.5 percent and 61.4 percent respectively. 

 

 
 Figure 5.6: Survival function plots for the Sex 
 

The survival functions were estimated and compared for the other covariates and the results 

are as follows. 

 

• CD4 < 200 versus CD4 ≥ 200: mean survival time was 48.5 months (95% CI: 48.4 to 

48.6) versus 48.1 months (95% CI: 47.9 to 48.3) respectively. Cumulative survival 

probability to 94 months for CD4 < 200 was 0.17 versus 0.15 cumulative survival 

probability for CD4 ≥ 200. Survival functions were not significantly different at the 5% 

level (p = 0.075) by log rank test 

• CD4 < 350 versus CD4 ≥ 350: the estimated mean survival time for patients enrolled 

with baseline CD4 < 350 was 48.5 months (95% CI: 48.3 to 48.6) versus 47.9 months 

(95% CI: 47.6 to 48.2). Cumulative survival probability beyond to 94 months for CD4 < 

0.14 

0.18 
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200 was 0.15 versus 0.16 cumulative survival probability for CD4 ≥ 350. Survival 

functions were significantly different at the 5% level (p = 0.003) by log rank test 

• CD4 < 200 versus 200 ≤ CD4 < 350 versus CD4 ≥ 350: average survival times were 

estimated at 48.5 months (95% CI: 48.4 to 48.6), 48.2 (95% CI: 47.9 to 48.4) and 48.5 

months (95% CI: 48.4 to 48.6) months for the three groups. The cumulative probability 

of survival to 94 months for the group with CD4 < 200 was 0.17; for the group 200 ≤ 

CD4 < 350 it was 0.15 and the group with CD4 ≥ 350 was estimated to survive to this 

time with a probability of 0.15. The three survival functions were different statistically 

at the 5 % level of significance (p = 0.009) 

• CD4 <500 versus CD4 ≥ 500: the estimated mean survival for the former is 48.4 months 

(95% CI: 48.3 to 48.5) versus 48.6 months (95% CI: 48.1 to 49.1) for the later. Patients 

with CD4 counts lower than 500 were estimated to have a survival probability of 

surviving to 94 months of 0.16 and those with CD4 ≥ 500 had a 0.14 chance of surviving 

to 94 months. The survival distributions of the two groups were not different 

statistically at the 5% level of significance (p = 0.369) 

• Rural versus Urban: persons receiving ART at rural health facilities had a lower mean 

survival time compared to their counterparts in urban health facilities at 48.1 (95% CI: 

47.7 to 48.4) versus 48.5 (95% CI: 48.3 to 48.6) respectively. The comparison of 

cumulative survival revealed a different scenario with rural clients estimated to 

survive to 94 months with a probability of 0.22 compared with a probability of 0.16 to 

survive to 949 months for urban patients. The difference between the two survival 

curves was statistically significant at the 5% level (p<0.000). This is in comparison with 

survival chances of 62.7 and 67.8 percent for rural and urban respectively in the three 

country study in sub-Saharan Africa (Koole et al., 2014) 

• Paediatric (less than 15 years) versus Adults (15 years +): survival times estimates for 

paediatric and adult patients were estimated to be 51.2 months (95% CI: 50.8 to 51.7) 

and 48.2 months (95% CI: 48.1 to 48.3) respectively. In terms of the cumulative 

survival probabilities, paediatric patients were estimated to have a survival probability 

of 0.17 compared with adults at 0.16 of surviving to 94 months. The log rank test 

revealed that there was evidence of a statistically significant difference between the 

survival functions of these two sub-populations (p < 0.000) 
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• ART regimens (Old versus New versus Unclassified): when analysed by the type of ART 

regimens given to patients at initiation on ART (baseline) based on treatment 

guidelines in use up to 2007 (old regimen) versus the revised guidelines in use from 

2007 (issued in 2010 and referred to as new regimens) versus unclassified regimens, 

the mean survival time for the old regimens was estimated to be 52.2 months (95% 

CI: 52.1 to 52.4) while the new regimens was 43.7 months (95% CI: 43.5 to 43.9). The 

mean survival time for the unclassified regimens was estimated to be 42.6 months 

(95% CI: 41.7 to 43.5).   The corresponding survival probabilities of living up to 94 

months were 0.19 and 0.08 for the old and new regimens respectively. Patients 

initiated on unclassified regimens had a probability of 0.12 of surviving to 94 months. 

The survival functions were different statistically (p < 0.000) 

• Other sub-populations compared: Comparisons of survival functions were also 

performed on the province of residence and on the WHO Stage of the client at 

initiation on ART. Zambia has 10 provinces (the data only has 9 provinces because the 

database is yet to be updated with the newest province which was created in 2011) 

therefore the results are presented in the appendices along with that for WHO staging. 

The log-rank test showed that survival curves for both the provinces and WHO staging 

classifications were statistically different at significance levels of 5 percent. 

 

A summary of the comparisons for the survival functions is shown in Table 5.1. 
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Table 5.1: Survival functions summary 

 

Variable 
Mean Survival months     

(95% CI) 

 

p - value 

Cumulative  

survival 

probability 

Overall 48.4 (48.3 – 48.5)  n/a 0.16 
     

Gender     

Female 50.0 (49.9 – 50.2)  
<0.000 

0.18 

Male 45.9 (45.7 – 46.0)  0.14 
     

Baseline CD4 Count     

< 200 copies 48.5 ( 48.4 - 48.6)  
0.075 

0.17 

≥ 200 copies 48.1 (47.9 - 48.3)  0.15 
     

< 350 copies 48.5 (48.3 - 48.6)  
0.003 

0.15 

≥ 350 copies 47.9 (47.6 - 48.2)  0.16 
     

< 500 copies 48.4 (48.3 - 48.5)  
0.369 

0.16 

≥ 500 copies 48.6 (48.1 - 49.1)  0.14 
     

200 - 349 copies 48.2 (47.9 - 48.4)  n/a 0.15 
     

Residence     

Rural 48.1 (47.7 - 48.4)  
<0.000 

0.22 

Urban 48.5 (48.3 - 48.6)  0.16 
     

Age group     

Paediatrics 51.2 (50.8 - 51.7)  
<0.000 

0.17 

Adults 48.2 (48.1 - 48.3)  0.16 
     

ART regimen     

Old 52.2 (52.1 - 52.4)  

<0.000 

0.19 

New 43.7 (43.5 - 43.9)  0.08 

Unclassified 42.6 (41.7 - 43.5)  0.12 
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Having shown that some of the survival curves are significantly different at the 5% level using 

the log-rank test, this forms a basis to consider the inclusion of these sub-populations in the 

modelling of the survival of persons on ART. The next section explores further considerations 

on what combinations of the sub-populations to include in the modelling and the extents of 

their effect on the outcome of interest namely, survival estimates. 

 

5.10 Cox Proportional hazard models 

In order to analyse the effects of multiple covariates (both categorical and continuous), 

methods proposed by Cox (1972) were used. In this paper, he proposed a model which has 

come to be known as the proportional hazards model (PH model). The PH model is a non-

parametric model given by (5.21). An explanation of this non-parametric property is 

presented below.  It states that the given any point in time t in the study of survival analysis, 

the hazard at this point  

 

 

ℎ(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp (𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘) 

 

(5.21) 

where 𝜆𝜆0(𝑡𝑡) is the value of the hazard function for the individual under observation when all 

the k covariates are equal to zero (i.e. 𝑥𝑥1 = 𝑥𝑥2 = ⋯ = 𝑥𝑥𝑘𝑘 = 0). It is known as the baseline 

hazard function. The covariates (x’s) on the other hand are not functions of t and are therefore 

referred to as time-independent covariates. The Cox model assumes that the distribution of 

𝜆𝜆0(𝑡𝑡) is unspecified, which implies that the model is a non-parametric model. Equations (5.21) 

and (5.22) are called proportional hazards because the ratio of the hazards of any two 

individuals m and n would be 

 

 

ℎ𝑚𝑚(𝑡𝑡)
ℎ𝑛𝑛(𝑡𝑡) = exp (𝛽𝛽1(𝑥𝑥𝑚𝑚1 − 𝑥𝑥𝑛𝑛1) + 𝛽𝛽2(𝑥𝑥𝑚𝑚2 − 𝑥𝑥𝑛𝑛2) + ⋯+ 𝛽𝛽𝑘𝑘(𝑥𝑥𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑛𝑛𝑛𝑛), 

 

(5.22) 

which is a constant over time and the baseline hazard functions cancel out in the numerator 

and the denominator. This means that the hazard of death in one group is always a constant 

multiple of the hazard in any other (Bradburn, Clark, Love, & Altman, 2003). 

In the same 1972 paper, Cox derives a method to estimate the coefficients in the PH model. 

In the method he proposes that the estimates of the coefficients in the model, the 𝛽𝛽𝑖𝑖’s, were 
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to be estimated as maximum likelihood estimates (denoted 𝛽𝛽𝚤𝚤� ’s). Since the likelihood formula 

used to estimate the 𝛽𝛽𝚤𝚤� ’s considers only probabilities of survival for patients who experience 

death and does not do this for the censored patients, the method developed by Cox is formally 

known as partial maximum likelihood estimation. The term Cox regression is often used to 

mean a combination of the Cox PH model and the methods to estimate the coefficients in the 

model (Allison, 2010). The technical process of the method is not discussed here but the 

results are easily obtainable with most computer software which handle survival estimation.   

 

5.11 Cox Proportional hazard model for the Zambia ART data 

The Cox PH model was fitted to the Zambia data by considering 7 covariates or variables which 

represent baseline characteristics of the patients enrolled on ART. These are CD4 count cut-

offs (at 200, 350 and 500), age group, baseline ART regimen, gender and residence. The 

covariates used in the model development include the four CD4 count cut off points at 200, 

350, 500 and a three group combination of the 200 and 350 cut off point. The convention for 

the cut off was to code all patients with CD4 count less than the cut off at enrolment on ART 

as category ‘1’ and the group greater than or equal to the cut off as category ‘0’. For the 

Baseline CD4_grp variable, CD4 < 200 = 1, (200 ≤ CD4 < 350) = 2 (recoded as CD4_mid) and 

CD4 ≥ 350 = 3 to enable the three categories to be compared with each other in turn. The 

other covariates were gender (female = 1), enrolment age (continuous), Rural/Urban setting 

(rural = 1) and whether the baseline ARV regimen was the old or new regimen according to 

guidelines released in 2007 or 2010 (new = 1). 

 

The models were first fitted as univariate models for each variable and then multivariate 

models were constructed with the necessary parameters to show any benefit of combining 

the variables. In this case the Log Likelihood values along with the p-values were analysed for 

inclusion of the individual variables. Hazard ratios were analysed as the direct effect of the 

variable or covariate on overall survival when all other variables included in the model (in the 

multivariate case) were zero. The univariate analysis results are shown in Table 5.2 and it can 

be seen from the respective 𝝌𝝌-square p-values that all but two individual covariates (CD4 cut 

off at 500) resulted in a statistically significant effect on predicting the survival of patients 

enrolled on ART in Zambia. The hazard ratios in the second column show the hazard of exiting 
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the ART program for each value of the variable coded ‘1’ versus the value coded ‘0’. The table 

indicates that the risk of exiting ART for a person started on the new ARV regimens is 36.5% 

higher than that of a person who was initiated on the older ARV drug regimens. Alternatively, 

this may be stated to mean the risk of dropping out in the group on new regimens is 0.732 

(1/1.365) times that of the hazard of death for the group CD4 < 200. The other covariates such 

as cut off points at 350 and 500 can be interpreted in the same way although this is to be 

done with a lot of caution because of non-significant fit of some of the covariates in predicting 

exiting ART (e.g. p = 0.479 for CD4 < 500 and p = 0.758 for CD4 200 - 349). Generally, lower 

CD4 counts at these cut-offs consistently show higher risk of death compared with patients 

whose CD4 counts at enrolment into ART were higher.  

 

Table 5.2: Hazard ratios from the PH model for the Zambia ART data (univariate analysis) 

Covariate Hazard Ratio p-value 95% Conf. Interval Log Likelihood 𝝌𝝌-square (p-value) 

CD4 < 200 0.989 0.014 (0.982 – 0.997) -3,072,821 6 (0.014) 

CD4 < 350 0.979 0.001 (0.967 – 0.991) -3,072,818 11 (0.000) 

CD4 < 500 1.006 0.479 (0.989 – 1.024) -3,072,823 0 (0.479) 

Female 0.859 0.000 (0.853 – 0.866) -3,072,138 1,372 (0.000) 

Enrolment Age 0.996 0.000 (0.996 – 0.997) -3,072,629 388 (0.000) 

Rural 1.027 0.000 (1.013 – 1.041) -3,072,816 15 (0.000) 

New ART Regimen 1.365 0.000 (1.354 – 1.376) -3,023,443 5,337 (0.000) 

CD4 200 - 349 1.001 0.758 (0.993 – 1.010) -3,072,824 0 (0.0758) 

 

For the baseline CD4 group which has 3 categories, the hazard ratio of 1.001  represents the 

hazard of exiting the ART program when patients whose CD4 count was between 200 and 349 

are compared with that of patients whose CD4 count was less than 200. Female patients were 

estimated to face 0.859 times the hazard of death of men. The effect of enrolment age, 

rural/urban residence and CD4 < 500 was in favour of older patients, urban dwellers and the 

CD4 ≥ 500 respectively (0.996, 1.027 and 1.006).  

 

Table 5.3 shows the multivariate analysis involving the same variables as above presented in 

groups made up of a CD4 cut off variable, gender, enrolment age, rural/urban residence and 

new/old regimens. Including all CD4 cut off variables in some cases introduced collinearity 

leading to the choice to use them one at a time. The analysis revealed that Baseline CD4 cut 

off at 200, 350, 500 and the 3 group CD4 variables when individually included in a multivariate 
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survival model along with gender, enrolment age rural/urban residence and old/new regimen 

classification were all significantly associated with the survival of patients enrolled on ART in 

Zambia. The four different models in the table had very similar Log Likelihood values 

indicating that the models were all good and fit the data.  

 

Table 5.3: Hazard ratios from the PH model for the Zambia ART data (multivariate analysis) 

Grouping Covariates Hazard Ratio p-value 95% Conf. Interval 

     

CD4 cut off at 200 with 

other covariates   CD4 < 200 0.998 0.699 (0.990 – 1.006) 

 Female 0.857 0.000 (0.849 – 0.864) 

 Enrolment Age 0.994 0.000 (0.993 – 0.994) 

 Rural 1.027 0.000 (1.013 – 1.041) 

 New ART regimen 1.389 0.000 (1.378 – 1.401) 

Log Likelihood = -3,022,253 Log Rank 𝝌𝝌 - square = 7,717 (p<0.000) 

     

CD4 cut off at 350 with 

other covariates CD4 < 350 0.970 0.000 (0.959 – 0.983) 

 Female 0.857 0.000 (0.849 – 0.863) 

 Enrolment Age 0.994 0.000 (0.993 – 0.994) 

 Rural 1.027 0.000 (1.013 – 1.040) 

 New ART regimen 1.392 0.000 (1.379 – 1.404) 

Log Likelihood = -3,022,243 Log Rank 𝝌𝝌 - square = 7,739 (p<0.000) 

     

CD4 cut off at 500 with 

other covariates CD4 < 500 0.994 0.490 (0.957 – 1.011) 

 Female 0.857 0.000 (0.849 – 0.864) 

 Enrolment Age 0.993 0.000 (0.993 – 0.994) 

 Rural 1.027 0.000 (1.013 – 1.04) 

 New ART regimen 1.390 0.000 (1.378 – 1.402) 

Log Likelihood = -3,022,253 Log Rank 𝝌𝝌 - square = 7,718 (p<0.000) 

     

CD4 cut off 200 to  349  

with other covariates CD4 200 – 349 0.988 0.006 (0.979 – 0.996) 

 Female 0.857 0.000 (0.850 – 0.864) 

 Enrolment Age 0.994 0.000 (0.993 – 0.994) 

 Rural 1.027 0.000 (1.014 – 1.041) 

 New ART regimen 1.391 0.000 (1.379 – 1.403) 

Log Likelihood = -3,022,249 Log Rank 𝝌𝝌 - square = 7,725 (p<0.000) 
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The corresponding Log Rank 𝝌𝝌2 values with p-values represent the model goodness of fit 

criteria which shows that all the models are beneficial in explaining the variation of the 

observed survival times (exit times) using the indicated time-independent variables. On the 

other hand, the p-values in the fourth column of Table 5.3 indicate by how much the hazard 

ratios for each variable differ from 1. In all the models, most of the p-values are such that p < 

0.05 which indicates that at the 5% significance level, the differences of hazard ratios from 1 

are statistically significant thereby providing a benefit in the model.  

 

Further assessment of overall model fit was conducted by using Cox-Snell (D. R. Cox et al., 

1968) residuals. If a Cox regression model fits the data well, then a plot of the estimate of the 

Nelson-Aalen cumulative hazard function against the Cox-Snell residuals yields a straight line. 

Formally, for a Cox model of the form (5.21) to hold, the estimate of the survival times given 

by 𝑆̂𝑆(𝑡𝑡) must be very similar to the survival times from the true𝑆𝑆(𝑡𝑡). As long as this holds true, 

then the true cumulative hazard function conditional on the covariate vector has an 

exponential distribution with hazard rate equal to 1. It follows that the Cox-Snell residual for 

the jth observation is given by  

 

 𝑟𝑟𝑟𝑟𝑆𝑆𝑗𝑗 = Λ0�(𝑡𝑡𝑗𝑗)exp (𝒙𝒙𝑗𝑗𝛽𝛽𝑥𝑥�) (5.23) 

 

with both Λ0�(𝑡𝑡𝑗𝑗) and 𝛽𝛽𝑥𝑥� are obtained from the fit Cox model (Cleves, Gutierrez, Gould, & 

Marchenko, 2010).  
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Figure 5.7: Cumulative hazard plots of Cox-Snell residuals for various CD4 cut-offs 

 

The empirical Nelson Aalen cumulative hazard function was derived when the Cox-Snell 

Residuals were taken to be the survival times with the same censoring variable used in the 

Cox regression.  

 

 Figure 5.7 shows the results of these plots for each of the combinations of models developed 

above. Clearly all the models fitted represent good fits to the data. The deviations at the ends 

of the graphs are expected because of the diminishing sample sizes towards the end of the 

observation period.  Other criteria such as Akaike’s Information Criteria, AIC (Akaike, 1974) or 

the Bayes Information criterion, BIC proposed by Schwarz  (1978) were not used here. For 

purposes of this study, ensuring that a model is a good fit without comparison with other 

model suffices because the interest of this research work is to study the results of the 

different what-if scenarios in the simulation model that we develop. 

 

5.11.1 Proportionality of hazards in the Zambia ART data 

In order to correctly use and interpret the fitted Cox PH model, its coefficients and 

implications, the proportional hazards assumption needs to be validated. Testing the 
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proportional hazards assumption is the model specification test equivalent for other 

regression models. For this research, it was achieved by performing one of a number of model 

specification tests to verify the adequacy of the choice of the 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖 terms chosen. For this 

purpose, the choice of the test to use was a graphical method which plots the estimates of 

ln�− ln�𝑆𝑆(𝑡𝑡)� �� versus ln(𝑡𝑡)for each covariate and implemented in Stata. If the hazards are 

proportional, then the above plot, called the log-cumulative hazard plot is roughly parallel 

(Collett, 1994).  This observation is based on equation (6.21), re-written as 

 

 

ℎ(𝑡𝑡) = 𝜆𝜆0(𝑡𝑡)exp (𝜷𝜷′𝒙𝒙𝒋𝒋) 

 

(5.24) 

Integrating both sides yields 

 

 
� ℎ𝑗𝑗(𝑢𝑢)𝑑𝑑𝑑𝑑 = exp (𝜷𝜷′𝒙𝒙𝒋𝒋)� ℎ0(𝑢𝑢)𝑑𝑑𝑑𝑑

𝑡𝑡

0

𝑡𝑡

𝑜𝑜
 

 

(5.25) 

and applying equation (5.3) to equation (5.24) 

 

 

𝐻𝐻𝑗𝑗(𝑡𝑡) = exp (𝜷𝜷′𝒙𝒙𝒋𝒋)𝐻𝐻0(𝑡𝑡) 

 

(5.26) 

Taking logs on both sides of the equation gives rise to the expression of interest, which is the 

subject of the plot  

 
 

ln𝐻𝐻𝑗𝑗(𝑡𝑡) = 𝜷𝜷′𝒙𝒙𝒋𝒋  + ln𝐻𝐻0(𝑡𝑡) 
(5.27) 

 

Equivalently, upon utilization of the relationship between the cumulative hazard and the 

survival function S(t) = exp{−H(T)},   

 
 

−ln[−ln 𝑆𝑆𝑗𝑗(𝑡𝑡)] = −𝜷𝜷′𝒙𝒙𝒋𝒋 − ln[−ln𝑆𝑆0(𝑡𝑡)] 
(5.28) 

 

Figure 5.8 shows the results of the plots. The plots shows that both the CD4 cut-off at 200 and 

the location of the patients’ ART clinic predicted proportional hazards of death for the Zambia 

data because the plots are roughly parallel. There are expected violations of this in the right-
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hand tails of the plots because of reduced effective sample sizes as a result of prior failures 

and censoring. Similar graphs were plotted for each of the other covariates and it was found 

that all were parallel except CD4 cut-off at 500 and the enrolment age dichotomised into 

paediatrics and adults and where there were minor deviations in the right hand tails. These 

deviations in the tail end of the plot were expected to cause possible data unreliability as 

described above which rendered the deviations inconclusive. For purposes of simulation 

however, these were not considered serious deviations to warrant completely dropping those 

covariates from estimating survival of people on ART in Zambia. 

 

 
Figure 5.8: Proportional hazards test for covariates in the model 

 
5.12 Final covariates retained for simulation modelling 

In view of the forgoing analysis, some covariates were not retained for inclusion in the 

simulation model in the next chapter for various reasons. The remaining variables were 

viewed to be sufficient to model the Zambia ART program accurately without much loss of 

accuracy. The final list of variables to be considered in the simulation is presented in Table 

5.4. 

 



E Mushota Kabaso Survival Analysis
    

  93 

Table 5.4: Covariates retained for simulation modelling 

Covariate Status                                                                                           Reason 

CD4 < 200 Excluded Difference not statistically significant (p = 0.075) 

CD4 < 350 Included p = 0.003 

CD4 < 500 Excluded Difference not statistically significant (p = 0.369) 

Female Included P < 0.000 

Age group Included P < 0.000 

Residence (rural/urban) Excluded Inconsistent definitions (see section 5.8.6) 

New ART Regimen Excluded Unclear regimens distinction (see section 5.8.6) 

 

The definition of rural and urban in Zambian medical statistics is not standardized to the 

statistical definition used by the country’s Central Statistical Office (CSO). While CSO is the 

national and official bearer of statistics on behalf of the Government of the Republic of 

Zambia (GRZ), the Ministry of Health (MOH) has adopted an unclear and undocumented 

criteria of allocating the rural or urban classification to its health facilities. This discrepancy 

has created a difficulty in comparing statistics from the country’s health institutions with any 

metrics or statistics compiled by the CSO such as results of the demographic and health 

surveys (DHS) or census of population and housing. For this reason, the simulations were not 

performed using this variable. Furthermore, the distribution of patients at rural and urban 

facilities as classified by the MOH in the dataset is far from comparable with the prevalence 

or residence of HIV positive persons in the general population. 

 

The baseline regimen each patient was given on enrolment onto ART on the other hand was 

left out of the simulation modelling because the backbone of what was the second line ART 

(Tenofovir and Emtricitabine, also known as TDF and FTC) up to 2007 was to be the first line 

ART regimen going forward. As a result of this, there were patients who were on a 

combination of drugs that was not possible to tell whether it was first line or second line 

particularly because during the transition period (of over 12 months), physicians prescribed 

either according to the new guidelines or the old guidelines depending on stocks of the older 

drugs which they had been instructed to deplete before fully prescribing on the newer 

protocols.  
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5.13 Extraction of survival time distributions for the Zambia ART data 

Using the combinations of covariates given in Table 5.4, we estimate the survival distributions 

for use in the simulation model, using Royston-Parmar (RP) distributions to extrapolate 

beyond the end of the survey period (Royston & Lambert, 2011).  

 

RP distributions are a set of standard parametric models which have been generalized to 

include more flexibility with regard to the shapes of the survival distributions they can model. 

In this regard, the Weibull, loglogistic and lognormal models are extended to become 

proportional hazards (PH), proportional odds (PO) and probit-scaled RP models respectively 

(Royston & Lambert, 2011). The baseline distribution is modelled as a restricted cubic spline 

function of the log of time thereby allowing to follow its shape more accurately. 

 

Royston and Lambert argue that since the RP models are on the log cumulative hazard scale, 

then using (6.6) and (6.8), the proportional hazards model reduces to  

 

 ln�𝐻𝐻�𝑡𝑡�𝑥𝑥𝑗𝑗�� = ln[𝐻𝐻0(𝑡𝑡)] + 𝜷𝜷′𝒙𝒙𝒋𝒋 (5.29) 

 

If a cubic spline function of the log of time, ln (𝑡𝑡) with knots numbering k0 is written as 

𝑠𝑠{ln(𝑡𝑡) |𝛾𝛾, k0}, then replacing the baseline log cumulative hazard in (5.29) gives 

 

 

 
ln�𝐻𝐻�𝑡𝑡�𝑥𝑥𝑗𝑗�� = 𝑠𝑠{ln(𝑡𝑡) |𝛾𝛾, k0} + 𝜷𝜷′𝒙𝒙𝒋𝒋

 
= 𝛾𝛾0 + 𝛾𝛾1𝑧𝑧1𝑗𝑗 + 𝛾𝛾2𝑧𝑧2𝑗𝑗 + 𝛾𝛾3𝑧𝑧3𝑗𝑗 +  𝜷𝜷′𝒙𝒙𝒋𝒋 (5.30) 

 

where the spline function is expressed as  

 

 𝑠𝑠{ln(𝑡𝑡) |𝛾𝛾, k0} 
 

= 𝛾𝛾0 + 𝛾𝛾1𝑧𝑧1𝑗𝑗 + 𝛾𝛾2𝑧𝑧2𝑗𝑗 + 𝛾𝛾3𝑧𝑧3𝑗𝑗  

 

from which the survival and hazard functions can be easily derived, 

 

 𝑆𝑆�𝑡𝑡�𝑥𝑥𝑗𝑗� = exp�−exp (𝑠𝑠{ln(𝑡𝑡) |𝛾𝛾, k0} +  𝜷𝜷′𝒙𝒙𝒋𝒋)�   (5.31) 
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 ℎ�𝑡𝑡�𝑥𝑥𝑗𝑗� =
𝑑𝑑𝑑𝑑{ln(𝑡𝑡) |𝛾𝛾, k0}

𝑑𝑑𝑑𝑑
exp�𝑠𝑠{ln(𝑡𝑡) |𝛾𝛾, k0} +  𝜷𝜷′𝒙𝒙𝒋𝒋�   

(5.32) 

 

The form of the RP model used in extracting the survival times for the simulation in the 

Zambia ART data are Proportional Odds (PO) models. These are derived by replacing 

𝐻𝐻�𝑡𝑡�𝑥𝑥𝑗𝑗� = −𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡|𝑥𝑥𝑗𝑗), derived in (5.6) into (5.29) and expressing it as a general form with 

the aid of a monotonic increasing function 𝑓𝑓𝛿𝛿(·) such as Aranda-Ordaz’s function (Aranda-

Ordaz, 1981) which depends on a parameter δ > 0 given by 𝑓𝑓𝛿𝛿(𝑥𝑥) = ln{�𝑥𝑥−𝛿𝛿 − 1� /𝛿𝛿} . That 

is 

 

 
ln[−𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)] = ln[−𝑙𝑙𝑙𝑙𝑆𝑆0(𝑡𝑡)] + 𝜷𝜷′𝒙𝒙𝒋𝒋 (5.33) 

 

generalizes to 

 

 𝑓𝑓𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) = 𝑓𝑓𝛿𝛿{𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)} +𝜷𝜷′𝒙𝒙𝒋𝒋 (5.34) 

 

When δ = 1, rewriting the Aranda-Ordaz function as a function of  𝑆𝑆(𝑡𝑡) instead of it being a 

function of x and  utilizing the relationship 𝐹𝐹(𝑡𝑡) = 1 − 𝑆𝑆(𝑡𝑡) between the survival function 

and the cumulative distribution function, equation (5.34) reduces to the logit of the 

cumulative distribution function because 𝑓𝑓1𝑆𝑆(𝑡𝑡) = ln �{1−S(t)}
S(t)

� = ln � 𝐹𝐹(𝑡𝑡)
1−F(t)

� . This can be 

expressed as a proportional odds (PO) model of the form 

 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙{1 − 𝑆𝑆(𝑡𝑡)} = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙{1 − 𝑆𝑆(𝑡𝑡)} +𝜷𝜷′𝒙𝒙𝒋𝒋 (5.35) 

 

Equation 5.35 defines one type of RP models, which is a PO model. Other transformations 

exist, based on the choice of 𝑓𝑓𝛿𝛿(. ) for example as minus the probit of the normal cumulative 

distribution functionΦ−1{1− 𝑆𝑆(𝑡𝑡)}, where Φ−1(·) is the inverse of the normal distribution 

gives rise to probit models.  

 

For purposes of the Zambia ART data, the PO model with splines is used to estimate the 

baseline survival function from which the simulated survival times are drawn. The 
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implementation of this process is pre-programmed into Stata under the command stpm2 

followed by the stsurvsim command.  

 

The survival times are modelled as weeks of survival rather than months of survival to 

increase accuracy and a histogram of the survival probabilities for the total number of ART 

patients is given below. Figure 5.9 presents the histograms of survival times extracted from 

the data for use in the simulation. Similar histograms for the sub-populations in the data are 

presented in Appendix 1. 

 

 
Figure 5.9: Extracted survival times histograms for males and females 

 

5.14 Chapter summary 

The initial sections of the chapter have provided: 

• A recap of the research questions which correspond to the two main research 

objectives 
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• A description of the development of tasks for each research question to enable us 

answer the research questions 

• A justification of the methods chosen to answer the research questions 

 

The analysis in this chapter has shown that: 

• The mean survival time  (i.e. time to exit the ART program) for patients on ART 

observed in the Zambia ART data is 48.4 months or 4 years 

• The survival times observed for patients whose baseline CD4 counts were less than 

350 versus CD4 ≥ 350 were significantly different at the 5 percent level of significance.  

• The survival function and survival times of patients were significantly different 

between males and females (45.8 and 50.0 months respectively) 

• Survival functions and survival times for patients attending rural versus urban facilities 

were different statistically at 48.0 versus 48.5 months respectively 

• The type of ART regimens (2007- or 2010-based regimen) given to patients at baseline 

showed significant differences with the former having a mean survival of 50.6 months 

and the latter 38.8 months 

• The Cox PH model has shown the benefit of using multiple covariates in the same 

model to estimate exit times for people on ART in Zambia 

• Histograms of survival times can be extracted from the data to be used in the 

simulation model 

 

The findings from the analysis in this chapter provide the basis for the input distributions for 

the simulation model. Specifically, this chapter provides the evidence that the sub-

populations of people on ART in Zambia defined by the different variables above have 

different survival times before exiting ART.  
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6 The Discrete Event Simulation (DES) Model 

6.1 Tasks addressed in this chapter 

Task 4: What are the different survival scenarios of ART patients in Zambia based on the 

different baseline characteristics variables 

 

6.2 Introduction 

The main research question in this doctoral work is addressed in this chapter which is 

concerned with developing a survival profile for people on ART in Zambia. A DES model was 

developed for this purpose. The model development process is outlined and the various steps 

taken to achieve this are enumerated. The model description provides an overview of the 

model and includes a section on model inputs, and conditions. Model performance 

measurements and outputs are discussed separately to enable the reader understand the 

important results being generated. The chapter also outlines how different characteristics (or 

attributes) were assigned to each patient to represent those of real life patients before and 

as they flow through the system. Finally verification and validation of the model is 

undertaken.  

 

6.3 Model description 

The simulation model to study the different survival scenarios of ART patients in Zambia was 

developed using the Simul8 software (www.simul8.com). A screenshot of the model is 

presented in Figure 6.1 showing the various simulation objects and paths followed by patients 

who enter the system. The model in Figure 6.1 is a simplified version for ease of visualisation 

while the full model used is identical in terms of the layout of model objects and the 

underlying logic used to direct the patients through the model but has duplicated 

workstations processing the patients in 1st/2nd Line ART primarily to manage the queues, 

details which are discussed below. 

 

6.3.1 Input modelling 

Patients (entities) enter the system via one entry point which represents all the ART clinics in 

Zambia. Their arrival times into the model are governed by a Poisson distribution with 

parameter 0.008369 extracted from the data. This arrival profile is representative of the rate 

http://www.simul8.com/
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at which the patients are enrolled onto the ART program at any of the country’s public health 

facilities.  

 

Representative of the real ART program, entities continue to enter the model on a weekly 

basis ensuring that there are new patients enroling on ART every week while at the same 

time, some patients exit the system. The Simul8 model (Figure 6.1) is set up to run in time 

units equal to one week. This implies that the number of ART patients initiated on ART are 

aggregated to weekly totals and are introduced at once into the system every week instead 

of every week day. This is a simplification of the model designed to preserve computing 

resources while maintaining model consistency.  The system therefore adjusts its state based 

on events which occur to patients in multiples of a week instead of daily. The ART clinics in 

Zambia are only open on weekdays but the model is based on 7-day weeks because the length 

of time patients spend on ART is based on calendar days. The model output is also provided 

in number of weeks a patient spends in the system.  

 

                 
Figure 6.1: The Zambia ART simulation model in Simul8 

 

The amount of time that an entity or patient spends in the system is modelled as a function 

of the baseline characteristics of the patient at enrolment. For most patients in the program, 

Enrollment 

1st Line ART/ 
2ndLine ART 

3rd Line ART 

LTFU 

Death 

Stopped 
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attributes such as CD4 count and others are rarely updated after commencement of ART even 

though some of these may be available for some patients. The majority of patients in the 

Zambia ART program (> 70%) do not have subsequent CD4 readings after initiation due to the 

limited (human) resources required to perform these tests. In the model, additional 

workstations, called ‘Dummy’ workstations were created to allow for the visual logic code to 

be written in them in order to collect information on the entities as they travel through the 

model. In such workstations, entities do not spend any time at all and they transition through 

to allow the software to record information about their behaviour and which route they have 

taken. 

 

6.3.2 Transition between ART regimens 

On enrolment, patients enter the 1st/2nd Line ART regimen workstation where they 

accumulate and spend different lengths of time. How long they spend in this regimen is 

governed by a probability distribution as described in the last sections of the survival analysis 

chapter and illustrated in Appendix I. The 1st Line and 2nd Line ART regimens have been 

combined in the model because of the unclear distinction between the regimens over the 

period from 2003 to 2013. This is because some drug combinations which were classified as 

2nd line in the period 2003 – 2007 were used as 1st line regimens in the period after 2007. The 

two sets of regimen guidelines overlapped for a few years making it difficult to draw a point 

in time from when the same regimen may be considered first or second line. For example, the 

ARV drug combination made up of Emtricitabine (FTC) and Tenofovir (TDF) in addition to a 

third ARV was strictly a second line regimen before 2007 but was adopted as a first line 

combination based on recommendation of WHO (World Health Organization, 2006). This 

practice was only fully formalized after the year 2010 meaning that there are patients who 

could either be on first or second line treatment during that overlap period between 2007 

and 2010.  

 

The number of patients in this treatment phase (1st/2nd Line ART and 3rd Line ART) represents 

the number of patients currently on ART in the country. The patients will stay in this state 

until they exit the ART program through one of three routes. Of the total number of patients 

who exit the 1st/2nd Line ART phase of treatment, 0.02% proceed to 3rd Line ART. There is such 

a small number of patients in this phase of treatment because of the specialized nature of 
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monitoring required to treat them. Each patient’s drug regimen on third line ART is specific 

to the patient’s immunologic profile mapped out by a series of sophisticated and expensive 

tests and procedures (such as genome sequencing) which can only be performed at the 

country’s highest health institution based in the capital city, Lusaka. Patients are therefore 

very closely monitored by the country’s top specialist HIV clinicians. At censorship point for 

this research work, there were only 77 patients in Zambia on 3rd Line ART. In a similar way, 

these patients also follow a distribution which governs how long they remain on this 

treatment regimen until they also exit the system. For those patients who exit the system, 

either while in the 1st/2nd Line or 3rd Line of therapy, the details of their exit is discussed below. 

 

6.3.3 Exiting the system (LTFU, Stopped treatment or Died) 

When patients have been on treatment in 1st/2nd Line ART for a specified length of time, they 

exit this phase to various destinations as follows. Of those patients who exit the 1st/2nd Line,  

0.02 percent of them  proceed to the 3rd line ART, 26% exit the system because they ‘Died’, 

64.98 percent exit as Lost To Follow Up (LTFU) patients while 9 percent have their treatment 

stopped for various reasons. The primary objective of this research work is to model the 

duration between entering the ART program and exiting it. These three categories of 

destinations for the patients namely LTFU, Stopped and Died therefore define patients who 

have exited the system. In the simulation model, the durations were computed and then 

analysed for each patient based on information on labels carried by each patient. 

 

Clearly, there are some patients whose time of exit will not have been reached at all times 

since patients are allowed to enter the simulation model continuously to depict the real life 

ART program which allows new ART patients to be initiated every week. Those patients who 

remain on in the system at either 1st/2nd line or 3rd Line ART represent the total number of 

patients expected to remain on treatment in the country requiring to be provided with care.  

 

6.4 Model logic 

As the patients enter the model, different attributes are assigned to them. These include age, 

residence, gender, CD4 count and so on. Simul8 achieves this by giving each patient a set of 

labels, where each label is a stamp with such attributes such as ‘rural’ or ‘urban’, ‘male’ or 

‘female’, ‘CD4 < 200’ or ‘CD4 ≥ 200’ and so on written on them. The patient carries these 
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labels throughout the period they are in the system, much as a patient in the real ART program 

carries with them the same information about their status at baseline or enrolment onto ART. 

Some of these attributes determine the duration that each patient spends in the system 

based on the findings in the survival analysis chapter above. Other labels are used to 

determine which route an entity takes in a model and which exit to follow. Simul8 allows the 

modeller to use these labels in writing the logic which determines many aspects of the 

simulation model as required. This is achieved by writing the instruction in Visual Logic which 

is the programming language embedded in Simul8.  

 

An important label ‘stamped’ on each entity at entry into the model is the simulation time 

which represents the time a patient entered the ART program. Different such time labels are 

stamped onto the patient representing the time a patient enters or exits a workstation such 

as 1st/2nd Line ART or 3rd line ART and so on. The amount of time an entity spends in any object 

in the model or in the entire model is calculated as the difference between the appropriate 

time stamps. To compute the time an entity spends in the system, the difference is calculated 

between the times stamped onto the entity at entry into the model and time stamped onto 

it at the point of exit from the model. The time stamps are used to compute the average time 

that each entity spends in each workstation representing an ART regimen and ultimately how 

much time they spend in the system. These times were compared with the estimated survival 

times from survival analysis for consistency and as a way of model validation.  

 

Since the model has been set up to run in weeks, the durations computed as described above 

are reported as weeks. The choice of this time unit was made to accommodate the full 

observation period of 10 years in a realistic computer simulation time.  

 

6.5 Assumptions and simplifications 

According to Robinson (2004), a model that is well simplified preserves the validity and utility 

obtainable from it thereby maintaining an acceptable level of accuracy and run speed as well 

as ease of development. Model simplification helps in reducing the complexity of a model yet 

maintains the essential purpose for which it is developed. In building the model for the 

Zambia ART program, a number of options and variations of the model were considered. The 

final model chosen was the least complex but one that maintains all the necessary 
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components of the process of providing ART to an HIV-infected patient in the context of 

Zambian public health institutions. A significant simplification of the model was to combine 

1st Line and 2nd Line ART into one. This arose out of difficulties with identification of patients 

who were on either regimen as a result of an overlap between the use of a defining regimen 

which can be classified as both first line and second line as discussed in the previous sections. 

 

Furthermore, in order for the model to run as efficiently as possible, a number of assumptions 

have been made. These assumptions are listed below:  

1. Patients enter the model as in the real system (aggregated to a weekly sum) 

2. The capacity to initiate ART is assumed to be infinite (all PLWHA needing the treatment 

are put on ART) 

3. Death of a patient modelled explicitly as AIDS/non-AIDS combined 

4. Patients who stop and re-start ART treatment are considered to be the same as those 

continuing treatment throughout their life 

5. Occurrence of opportunistic infections (OIs) not modelled because of unreliable data 

6. Patients exiting the system are considered to be the sum total of those patients who 

are a) Lost To Follow Up; b) Stopped treatment; and c) Died 

 

6.6 Information variables and outputs 

The various processes and activities in the model are tracked, examined and interpreted by 

studying the information generated by the Simul8 software. This information is written to 

Microsoft Excel spreadsheets both during model execution and at the end of the run. The 

data written out to the Excel spreadsheets is possible because of the labels that are assigned 

to each entity at different stages in the model and at different times as appropriate. These 

labels help the modeller to record the complexity of the model and provide a means to later 

assess the performance of the model. The labels carry a wide range of patient attributes which 

may be categorised as follows: Residence, ID, Routing, Regimen distributions, Entry 

distributions, Age and Patient conditions.  

 

The labels in the model carry various types of information which identify the patients either 

throughout the model or while they are at a simulation object as follows: a patient will have 

been enrolled on ART in a rural or urban health facility; Each patient has a unique ID; a 
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patient’s CD4 count is assigned to them randomly then classified into categorical groupings 

with cut-offs at 200, 350, 500 and the category between 200 and 350; a patient’s WHO stage 

is in any category from WHO stage I to WHO stage IV depending on clinical presentation at 

enrolment.  

 

Another set of labels carry information regarding distributions called label based 

distributions. These labels are used to sample distribution times from pre-determined 

probability distributions for patients with specific characteristics. The distributions are 

assigned to each patient and stamped on a label which is interpreted by each simulation 

object by sampling a duration from an appropriate distribution on entry. This allows the 

modeller, for example, to ensure that all patients who are male and were enrolled in a rural 

health facility all experience similar durations in a particular phase such as 1st/2nd Line ART 

which are different from females in the same area. This provides an opportunity to account 

for the variability of patients in terms of the different durations they take based on their 

characteristics. This increases model accuracy.  

 

The model also contains routing labels which are used to direct patients to various 

destinations on exit from a simulation object. These routing labels are assigned to a patient 

either as they enter the model for the first time or at entry into a simulation object (say 1st/2nd 

Line ART). Once the patient has observed the sampled duration in an object, they are then 

directed to exit towards a specific object or phase in the model depending on conditions 

written down in the visual logic. If the patient is exiting the 1st/2nd Line ART phase, they may 

be directed to 3rd Line ART, LTFU, Died or Stopped treatment. Routing is also processed by 

use of percentage allocations to the appropriate routes in which case Simul8 allows a pre-

determined percentage of patients to each exit route as directed. 

 

6.7 Assigning characteristics to the population on ART  

In this section, the population of ART patients was reconstructed based on the attributes from 

the data. The patients were assigned their age, sex and CD4 count following the patterns or 

distributions observed in the real dataset. This ensures that the patients in the model have 

attributes matching those of the patients in the ART system in Zambia. As has been stated 

above, these attributes are very important in the simulation model because they determine 
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the route and duration each patient spends in the model. The patents were given extra 

attributes which were not necessarily used for either determining the length of their stay in 

the model or routing. These attributes were useful for validation purposes and were seen to 

have possible uses post modelling if the need to analyse the results further arises. The 

additional variables are the geographical distribution of patients discussed in section 5.8.1 

and the residence (rural/urban). 

 

6.7.1 Geographical distribution of ART patients 

The distribution of patients in the ART program in Zambia was reproduced from the dataset 

into the user-defined empirical distribution displayed in Figure 6.2. Using this distribution, 

Simul8 samples a numerical value from 1 to 9 representing each province according to the 

probabilities for each province. This value is written to a label carried by each patient. The 

software assigns an appropriate proportion of patients entering the model to each province 

such that at any one time, the distribution of patients in the model matches that in the real 

system being modeled. 

 
Figure 6.2: Distribution of patients by province 
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6.7.2 Sex distribution of the patients 

In Zambia the national sex ratio is nearly balanced at 49.3 percent males to 50.7 percent 

female (Central Statistical Office (CSO), 2012a). However, the proportion of females in the 

ART program is significantly higher than that of men as shown by the probability distribution 

shown in Figure 6.3.  

 
Figure 6.3: Distribution of patients by Gender 

The distribution of males and females in the baseline data followed a 39 percent to 61 percent 

composition. Based on this distribution, the Simul8 software allocates the label “female” to 

each entity with a probability of 0.61 and the “male” label with a probability of 0.39 as 

numerical values 1 and 2 respectively. The patients were randomly assigned these labels this 

way to ensure that the total population of patients in the model represented that in the 

Zambia ART program. 

 

6.7.3 Distribution of the patients by residence 

From the data on persons on ART in the Zambian program, 10 percent of the patients were 

enrolled onto ART in rural health facilities while the remaining 90 percent were enrolled in 

urban health facilities. A user defined distribution, known in Simul8 as a label based 
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distribution samples a value of 1 to represent rural or 2 to represent urban from the 

probability distribution displayed in Figure 6.4. This number is then written on a label which  

the patient travels with throughout the model and can be used to influence a number of 

things that can happen to the patient at any time and at any phase.   

 
Figure 6.4: Distribution of ART patients by Residence 

 

The residence label is one of the labels which were assigned to each patient as they entered 

the model. 

 

6.7.4 CD4 count distribution of the patients 

The CD4 count is assigned to each patient using a Gamma distribution (1.5488, 135.29). Figure 

6.5 shows the fitted distribution and how well it fitted the baseline data. The blue bars 

represent the baseline data from the database while the thick red line is the fitted Gamma 

distribution.  The Gamma distribution was the better fit among others because it had the 

smallest Akaike Information Criteria, AIC (Akaike, 1974) value compared to other 

distributions. The AIC value for the fitted Gamma distribution was 6.111 × 106 compared with 

Weibull (6.113 × 106), Lognormal (6.118 × 106) and Inverse Gaussian (6.119 × 106) with other 

distributions showing increasingly larger values of the criteria. As shown in the same figure, 
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its mean, median and standard deviations were also numerically closest to those of the 

population in the data base making it a good candidate.  

 
Figure 6.5: The Gamma distribution fitted to the CD4 count baseline data 

 

The CD4 count was generated as a continuous variable and each patient was therefore 

assigned an individual value following the Gamma distribution. Immediately after that, the 

variable was dichotomised with a cut-off at 350 thereby creating the categories CD4 < 350 

and CD4 ≥ 350 which were directly used in the model. 

 

6.7.5 Age group distribution of the patients 

The age of the patients in the model was sampled from the probability distribution in Figure 

6.6. The distribution in the figure was obtained from the base population and will ensure that 

the structure of the age groups remains the same during the simulation thereby providing the 

possibility to make comparisons with the real life program. Each patient was assigned a 

sampled age group as a numerical value from 1 to 9 which was, like all other labels, used to 

develop the logic governing movement and timing of the patient. The categories of the age 

groups make it possible to combine them, into additional configurations for purposes of 

comparison with other publication such as national censuses, WHO reports, Demographic and 

Health Surveys (DHS), Sexual Behaviour Surveys (SBS), etc. For example, the DHS publishes 
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results based on 5-year age groups from 15 to 49 years for females and 15 to 59 years for 

men representing the sexually active population. In the simulation model, the patients are  

 

 
Figure 6.6: Age group distribution of ART patients in Zambia 

 
programmed to follow label based distributions which determine the length of time they 

spend in the 1st /2nd Line ART phase and/or 3rd Line ART based on whether they belong to the 

under 15 age group or the 15+ years group. The resulting output will still have the label with 
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for further analysis if required. 
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as described in chapter 5. The patients in the model are assigned a WHO stage as they enter 

the simulation based on the probability distribution in Figure 6.7. This information, like all 
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Figure 6.7: Probability distribution of baseline WHO stage 

 

6.8 Risk groups and assigned distributions 

The eight risk groups identified for use in the model are shown in the Table 6.1 below. The 

number of patients in each risk group is also shown with the distributions assigned to the 

particular risk group. The densities of the distributions are shown in Appendix I 

 

Table 6.1: Risk groups and distributions assigned to patients in the model 

Risk group Assigned 
distribution* 

Number of 
patients Gender Age group CD4 category 

Male Paediatrics CD4<350 Distribution 01 8,530 
Male Paediatrics CD4 350+ Distribution 02 5,567 
Male Adult CD4<350 Distribution 03 160,485 
Male Adult CD4 350+ Distribution 04 16,960 

Female Paediatrics CD4<350 Distribution 05 8,764 
Female Paediatrics CD4 350+ Distribution 06 5,777 
Female Adult CD4<350 Distribution 07 247,320 
Female Adult CD4 350+ Distribution 08 34,069 

*See Appendix I for a listing of the distributions 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

WHO Stage I WHO Stage II WHO Stage III Stage IV

Pr
ob

ab
ili

ty

Baseline WHO Stage



E Mushota Kabaso The Discrete Event Simulation (DES) Model
    

  112 

The number of patients in each risk group is further shown in the pie chart below (Figure 6.8) 

to make the proportion of patients in each group clearer. The largest risk groups are for adults 

with CD4 count less than 350 cell/µL of blood. 

 
Figure 6.8: Distributions assigned and number of patients by risk groups 

6.9 Outputs of interest 

The time spent on ART before being declared LTFU, Died or Stopped treatment were directly 

calculated by Simul8 but the average time spent on ART by the group that remained on 

treatment at the end of the observation period had to be computed manually from output 

spreadsheets. The manual calculation is because the simulation is designed such that the 

patients on ART at censorship point remain in the system and do not exit whereas KPIs are 

calculated based on information Simul8 analyses at the various exit points in the model. The 

number of patients on ART at the end of the simulation is calculated as the sum of patients in 

each work center representing the appropriate regimen or activity. The results from the 

simulation model runs are presented below  

8,530 

5,567 

160,485 

16,960 

8,764 

5,777 

247,320 

34,069 

Male;  Paediatrics;  CD4<350 (Distribution 01) Male;  Paediatrics;  CD4 350+ (Distribution 02)
Male;  Adult;  CD4<350 (Distribution 03) Male;  Adult;  CD4 350+ (Distribution 04)
Female;  Paediatrics;  CD4<350 (Distribution 05) Female;  Paediatrics;  CD4 350+ (Distribution 06)
Female;  Adult;  CD4<350 (Distribution 07) Female;  Adult;  CD4 350+ (Distribution 08)



E Mushota Kabaso The Discrete Event Simulation (DES) Model
    

  113 

 

6.10 Running the model 

6.10.1 Warm-up period, initial conditions, number of runs and run length 
In many simulations, it is necessary to decide what the warm-up period for the model should 

be. The warm-up period is the duration for which a simulation model should be run in order 

to remove any initial conditions so that the model attains a steady state. The data for the 

experimentation is collected for the period after the warm up period to ensure that the effect 

of the initial conditions is eliminated. In the Zambia ART model, there is no need for a warm-

up period because the patients being enrolled onto ART do not need to find any environment 

different from the very first of the patients who were enrolled. This is because the supplies of 

the drugs, staff and infrastructure remains the same over the duration of the antiretroviral 

therapy. This means that there are no initial contents which must reach a certain level for the 

model to run at the required level.  

  

The real system being modelled has run for a period of approximately 10 years and 8 months 

and the aim of this study is to simulate this real life system and collect results up to this point 

and further beyond. The run length is proposed to be up to an additional 10 years in order to 

observe the expected outcome of the ART program. The model is run for a total of 5 runs in 

order to achieve stable results and to generate 95 % confidence intervals for any statistics of 

interest. This number of runs was arrived at after running a test on the minimum number of 

runs required to achieve this. The results of this test are presented in Appendix II. 

 

6.10.2 Scaling down the model 

The real-life system being modelled in this study is a very heavily populated one with patients 

at censorship point approaching half a million. The number of patients enrolled on ART at the 

various health facilities in Zambia increases with each week day implying that the system 

keeps growing despite accounting for the number of patients who exit it daily. For practical 

reasons, it was decided to run a scaled down number of patients in the Simul8 model to 

represent the real life system as long as the results from the scaled down model could be 

scaled back to the real-life system.  
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In order to verify that the model was scalable, the proportions of patients in each category 

was observed when different numbers of patients were allowed to enter the model. The first 

scenario was to observe the case where the inter-arrival time was set to the rate in the real 

system and the model run for the duration of 520 weeks which is the equivalent of running 

the model for the duration of the observation period for the Zambia ART data. The second 

scenario was to allow only 10 percent of the patients into the system. The results are shown 

in Table 6.2.  

 

Table 6.2: Comparisons of different scenarios for number of patients allowed into the model 

 Model (100% arrival rate)  Model (10% arrival rate) 
 Low (95% CI) Average High (95% CI)  Low (95% CI) Average High (95% CI) 

 On ART  48.94% 49.51% 50.09%  49.09% 49.54% 49.99% 
 LTFU  32.38% 32.78% 33.18%  32.49% 32.80% 33.11% 
 Died  12.95% 13.12% 13.29%  13.02% 13.13% 13.23% 
 Stopped  4.51% 4.59% 4.67%  4.49% 4.53% 4.57% 
 

The percentages of patients in each category is comparable between the 100 percent and the 

10 percent scenarios with very minor discrepancies. The 95 percent confidence intervals for 

all the proportions are also similar indicating that the precision of the estimates is not affected 

by scaling down the model.  

 

This is an important result for the model because it provides a basis to run a lighter and 

therefore faster model representing only 10 percent of the Zambia ART population with 

results which are comparable. The results are the same for indicators such as the average 

time each of the patients spend in the system and others. 

 

6.10.3 Number of duplicated workstations 

The simulation model under study in this thesis is resource intensive in terms of computing 

needs. The model is run on a weekly basis in Simul8 and more than 940 patients are enrolled 

on ART during each week. The software is therefore required to create this number of patients 

and assign all the attributes discussed in the earlier sections to each patient before they begin 

to move through the model. At each work station or object, appropriate logic has to be 

applied to determine what happens to the patient or work item. After each simulation run, 
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the software writes the results of the simulation, also based on the logic built into the model 

to spreadsheets.  

 

In order to speed up the experimentation, each work station, representing the 1st /2nd Line 

regimens has been duplicated into 20 stations, each of which is replicated 10,000 times. This 

implies that the model has a total of 200,000 workstations processing patients at the 1st/2nd 

Line ART phase. The number of workstations providing the same service at 3rd line is much 

less because there is a significantly smaller number of patients who make progress to 3rd Line 

ART (0.02% of the total patients on ART). The replication of work stations ensures that there 

are enough workstations to process the logic and other tasks in the simulation without 

causing queues in the system which do not exist in the real life ART program.  

 

6.11 Model verification and validation 
Every simulation model should undergo verification and validation during and after 

construction in order to determine how well the simulation represents the system being 

modelled. Specifically, model verification is concerned with providing an assurance of how 

accurately the conceptualised model has been coded into a computer model while model 

validation is the more detailed and involved process by which the modeller ensures that the 

model is sufficiently accurate in predicting aspects of the real system (Robinson, 2004). 

Furthermore, Robinson (1997) suggests that validation of a model should be done at different 

stages of model building and that there are a number of forms of validation: conceptual model 

validation, data validation, white-box validation and black-box validation.  

 

6.11.1 Model verification 

The Zambia ART simulation model was verified over a long period of time to gain full insight 

into the various stages and aspects of antiretroviral therapy in Zambia. Consultations were 

held with different categories of clinicians providing ART in Zambian health facilities. These 

included medical doctors, nurses, clinical officers (mid-level practitioners of medicine), 

pharmacists and others. Patient pathways from enrolment on ART to exit were mapped and 

verified based on clinical practice at public health facilities in the country. Clinical program 

managers at the country’s Ministry of Health were also engaged to verify the model 
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specifications because they are responsible for critical aspects of the ART program such as the 

development and distribution of ART guidelines in the country including training of the 

clinicians who see the patients on a day-to-day basis. The eligibility criteria explained in 

Chapter 6 which was used to initiate ART during different periods (before and after 2007) was 

discussed as part of model verification to ensure that the system created in Simul8 is the 

correct model conceptualised for the purpose at hand.  

 

6.11.2 Model validation 

Part of the model validation process is to confirm that both the scope and level of detail in 

the model is suitable for the purpose at hand. The process to decide the level of detail of the 

simulation model is described in section 5.2 with the eventual decision explained in the 

summary of chapter 5. In sections 6.2 and 6.4, the scope and detail of the model in this 

research project is described. In terms of data validation, this is addressed in Chapter 5 where 

the different variables used as covariates in the survival analysis which in turn provide the 

simulation input were checked for accuracy for model construction. Chapter 5 also confirms 

and concludes with confirmation of the accuracy of the data for the purpose of simulation.  

 

In terms of white-box validation, each simulation object shown in the separate sections of 

Figure 6.2 replicates an integral process from the real system. In the 1st /2nd Line ART section, 

the model accomplishes the tasks accomplished by the team of clinicians on the day a patient 

is enrolled on ART in either 1st line ART or 2nd line ART. In the real system, patients spend 

either a few weeks of several years receiving antiretroviral therapy depending of their 

combination of characteristics. This is reproduced in the model so that the total number of 

weeks each patient spends in this section of the model is represented by a probability 

distribution specific to the characteristics assigned to them on entry into the model. An 

example of the distributions from the real system (input) and the output from the model are 

shown in Figure 6. 9 for comparison. These distributions represent the number of weeks spent 

in 1st /2nd Line ART by patients who were female, 15 years and over with CD4 count greater 

than 350. 
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The Kolmogorov-Smirnov test showed that the input and output distributions were drawn 

from the same distribution (p = 0.54). This result indicates that the survival times of the 

entities entering the model (distribution from the real system) and the survival times of the 

output (output distribution) are statistically the same. The specific distributions followed by 

different patients are explained in section 6.10 and Appendix I. During this phase, patients 

experience different events which are modelled as different pathways according to observed 

distributions and proportions from the real system. This is repeated in the 3rd Line ART section 

of the model. The patients exit the system, as either LTFU, Stopped or Died in the same way 

they exit the real system, or remain on ART.  

 

To conduct black-box validation, a comparison of the simulation model and the real system 

was made, as recommended by Robinson (2004). If the ART system is viewed at the macro 

level, patients flow into the real system as they are initiated onto ART and remain on ART for 

different durations of time. That process, at model scale is the arrivals of entities into the 

model where they spend varying lengths of time.  The patients in the real system experience 

different events during the time they are on ART which determine what their status is at the 

end of the observation period, at censorship point. At this point, the different time durations 

each patient will have spent on ART in the Zambian program is summarized as a survival 

profile which can be used to study the patterns of how long people remain in the system. At 

model level, probability distributions are used to reproduce comparable durations of time 

spent by patients in the real system and the resulting survival profile generated by the model 

is studied and compared with that from the real system.  
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Figure 6.9: Comparison of survival times from the model and the Zambia ART data 

 

In figure 6.9, the survival profile of adult female patients with CD4 < 350 enrolled in ART from 

the real system is compared with that from the output of the Simul8 model. The EDFs show 

that the distributions are not very different.  

 

To further validate the overall model, a comparison of the proportions of patients in each of 

the four categories reported in section 4.8.4 at censorship point was made. The categories 

studied are: On ART, LTFU, Died and Stopped treatment. The logic and combination of 

attributes coded into the model to govern how long and which pathway each patient follows 

in the model may be checked by observing the proportions of patients who end up in each of 

these categories. The model is thus validated if these proportions are relatively close to the 

proportions in the real system.  
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Table 6.3: Comparison of proportions of patients in each category at censorship point 

Description 
Real System  Simulation model 

Average  Low (95% CI) Average High (95% CI) 
Number of patients      

 On ART 238,571  226,410 242,610 258,810 
 LTFU 160,885  158,010 165,020 172,030 
 Died 64,920  63,540 66,140 68,740 
 Stopped 23,136  21,950 22,980 24,020 
 Total patients 487,492  469,900 496,750 523,590 

       
Percentages in each category      

 On ART 49%  48.18% 48.84% 49.43% 
 LTFU 33%  32.63% 33.22% 33.86% 
 Died 13%  13.13% 13.31% 13.52% 
 Stopped 5%  4.07% 4.63% 4.99% 
       

 
 
The results of the proportions of patients in each category both in the real system and the 

model are shown in Table 6.3 with appropriate confidence intervals for the model computed 

from 5 runs. The second and fourth columns in the table show that the model achieved very 

comparable proportions of patients in each of the four categories with minor, expected 

differences which will be studied and explained in the results chapter to follow.  

 

This is an indication that in general the Simul8 model is performing tasks comparable to the 

situation in the real system.  

 

6.12 Chapter summary 

This chapter has: 

• Provided a description of the simulation model used to represent the Zambia ART 

program 

• Described the model assumptions and considerations made to develop it 

• Explained how patient characteristics are assigned to the simulation work items 

• How the model is run by explaining the run length, warm-up and initial conditions 

• Outlined how the model was verified and validated 
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7 Results 

In the previous chapter, a description of the simulation model for the Zambia ART program 

was given. Furthermore, the simplifications and assumptions made during model 

construction were outlined including how the model is run and validated. Different categories 

of ART patient statuses have been modelled to enable estimation of the percentages of 

patients who end up in each of these for purposes of determining the associated costs of 

providing treatment to them. This model will therefore be used to explore the different 

treatment outcomes and the related economic cost of the provision of ART services in Zambia 

from a public sector point of view.  

 

The results chapter provides a presentation of the results from the experiments run and how 

these experiments are transformed into economic costs of ART provision which in turn play 

the role of input into informing policy in the general HIV epidemic management in Zambia. 

 

 

7.1 Medium-term projection (5 years) 

Treatment outcomes were observed and reported in the tables below after running the 

model for different periods of time. Projecting the outcome of the ART program in Zambia is 

an important outcome of this research work and Table 7.1 shows the results of a 5-year 

projection beyond censorship point. The results from the model run for 5 years after 

censorship point (referred to hereafter as the medium-term projection) show that an 

estimated 818, 478 patients (95% CI: 788,260 to 848,690) are expected to have been enrolled 

onto ART by that date (March 2019). If the conditions in the model are kept as they were in 

the base model, the overall effect of this on the ART program is projected to be a reduction 

in the percentage of patients who remain on treatment up to 15 years since commencement 

of ART based on the total patients who will ever have been enrolled onto the program.  

 

This is not a real reduction because in absolute number terms, the population of persons on 

ART will have grown to 282,844 (95% CI: 257,554 to 308,135). The sum total of persons LTFU, 

stopped treatment or died increases cumulatively every month while the number of persons 

on ART is a current figure as it is the same people continuing from month to month.  
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Table 7.1: ART treatment outcomes from the model (Medium term projection) 

  Simulation model 
  High (95% CI) Average Low (95% CI) 
Number of patients  

  
 

 On ART 257,554 282,844 308,134 
 LTFU 345,654 348,112 350,570 
 Died 137,254 139,180 141,106 
 Stopped 47,802 48,342 48,882 
 All patients 788,264 818,478 848,692 

     

Percentages in each category 
 

  
 

 On ART 32.67% 34.56% 36.31% 
 LTFU 41.31% 42.53% 43.85% 
 Died 16.63% 17.00% 17.41% 
 Stopped 5.76% 5.91% 6.06% 

     

Average time (years) on ART 
 

  
 

 On ART 3.57 3.78 3.99 
 LTFU 2.75 2.80 2.86 
 Died 2.72 2.78 2.84 
 Stopped 2.72 2.80 2.88 
 All patients 2.25 3.04 3.83 

 

This causes the percentage share of persons on ART to appear to be decreasing but the picture 

is clearer in Figure 7.1 which shows the share of each category of patients at different time 

points. The model estimates the number of patients who exited the system due to being 

declared LTFU to be 348,112 (95% CI: 345,656 to 350,570), a larger proportion than that 

observed at censorship as expected and explained above. 

 

In percentage terms, patients on ART were estimated at 34.56 percent (95% CI: 32.67 to 

36.31%) indicating that 65 percent of the patients enrolled continuously on ART would drop 

out by the end of 15 years. The proportion of patients lost to follow up is projected to increase 

by 10 percent to 43 percent when compared with the base model (section 6.11) while deaths 

among the ART patients will account for 17 percent (95% CI: 16.63% to 17.41%) of the 

patients. The magnitude of the growth in each category can be seen in Figure 8.1 where the 

LTFU patients were projected to make up the largest proportion of patients at all times during 
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both the observation and projection periods. This is expected because patients in the real 

system have a higher chance of being declared LTFU the longer they stay on treatment.  

 

Table 7.1 also displays the average time the patients spent in the system for patients in the 

medium-term projection. On average, patients were estimated to spend 3.04 years (95% CI: 

2.25 to 3.83) on treatment. The patients who remained on treatment at the end of the 

simulation in the medium-term projection were estimated to spend the longest time in the 

system compared with patients who exited the treatment program for one reason or another. 

As seen in the table, patients on ART spent 3.78 years (95% CI: 3.57 to 3.99) compared to 

patients declared LTFU who spent 2.80 years (95% CI: 2.75 to 2.86), patients who died spent 

2.78 (95% CI: 2.72 to 2.84) and patients who stopped treatment spent 2.80 years (95% CI: 

2.72 to 2.88). 

 

7.2 Long-term projection (10 years) 

The simulation model was run for a longer time horizon of 10 years beyond censorship point 

in order to observe what the situation would be of providing ART for patients in Zambia. This 

10-year horizon meant that the program was run for a total of about 20 years from the 

beginning of the ART program. As can be seen in Table 7.2, the projected patient load would 

accumulate to 1,114,122 patients (95% CI: 1,089,024 to 1,139,220). The model estimated that 

the number of patients on ART at the end of the 10 year projection period was 277,598 (95% 

CI: 267,713 to 290,483).  In terms of treatment outcomes, the largest category was that of 

patients who enrolled on ART but were declared lost to follow up sometime during the 

observation period. This category accounted for a total of 543,684 patients (95% CI: 536,391 

to 550,977) ever enrolled on ART. In percentage terms, as argued above, nearly half of the 

patients or 49 percent (95% CI: 48.36 to 49.25) ever enrolled on ART in the program were 

estimated to exit the treatment program as LTFU patients. Death accounted for 19.53 percent 

of the all patients ever enrolled into the system (95% CI: 19.48 to 19.59). 

 

The average time patients were on ART was estimated to be 3.57 years (95% CI: 3.49 to 3.64) 

overall. The table reveals that the length of time spent by all patients who exited the ART 

treatment program before censorship point was comparable and was approximately 3.3 years 

with the 95% confidence intervals ranging from 3.27 to 3.42 years. This is in contrast with the 
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longer average time spent on ART by patients who were still alive and on treatment at the of 

the 10 year projection. Patients who remained in the system and were on treatment were 

estimated to spend an average of 4.24 years (95% CI: 4.06 to 4.42) in the system.   

 

Table 7.2: ART treatment outcomes from the model (Long-term projection) 

 Simulation model 

  Low (95% CI) Average High (95% CI) 

Number of patients    

On ART 264,713 277,598 290,483 
LTFU 536,391 543,684 550,977 
Died 213,391 217,628 221,865 
Stopped 74,529 75,212 75,895 
Total patients 1,089,024 1,114,122 1,139,220 
     

Percentages in each category    

 On ART 24.31% 24.92% 25.50% 
 LTFU 48.36% 48.80% 49.25% 
 Died 19.48% 19.53% 19. 59% 
 Stopped 6.66% 6.75% 6. 84% 
     

Average time (years) in the system    

 On ART 4.06 4.24 4.42 

 LTFU 3.32 3.34 3.37 

 Died 3.30 3.33 3.36 

 Stopped 3.27 3.35 3.42 

 Total patients 3.49 3.57 3.64 

 
 
 

7.3 Comparison of medium-term and long-term projections 

The simulation results for the medium-term projection and the long-term projection were 

compared to make observations in the two cases. One aspect of interest in the comparison 

was the structure of the patient outcomes for the two cases. Figure 7.1 shows the trend in 
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patient outcomes for the base model (at x = 0), the medium-term projection (halfway through 

the x-axis) and the long-term projection (at the maximum point on the x-axis) 

 

 

Figure 7.1: Distribution of patient status at Baseline, Mid-term and Long-term end of run 

 

In absolute terms, the number of patients on ART remained at almost the same level for both 

the medium and long term model runs as shown in Figure 8.1 and in the tables in the previous 

section. This situation was achieved with a constant arrival time of patients on ART across the 

20-year run time. The other category which remained nearly unchanged in terms of the 

absolute number of patients over time was the category of those patients who stopped 

treatment at some point during the observation period. Significant growth, however, was 

recorded for the categories of patients who died during the observation period as well as 

those declared lost to follow up.  Overall, the structure of the composition of the patients is 

maintained in the two cases under consideration as depicted in Figure 7.2.  
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Figure 7.2: Distribution of patient outcome categories by projection window 

 

The figure shows that LTFU is the biggest category and the number of people who die while 

on treatment is the next biggest group among those who exit the system with the category 

of patients who stop treatment being the smallest in both medium term and long-term 

projection windows. 

 

7.4 Projected economic costs of ART 

Based on the number of patients enrolled and their treatment outcomes at the medium-term 

and long-term projection points, the economic cost of providing ART in Zambia was 

estimated. In order to quantify ‘economic costs’, the cost of provision of ART was considered 

to include an extensive range of facility level HIV related medical services. The costs of these 

services are in three broad groups namely capital costs (buildings and other fixed assets), 

Human resources costs and consumables. In no particular order, some examples of these 

costs include staff time (both clinical and non-clinical), medical and office supplies, 

antiretroviral medications (ARVs), opportunistic infection medication (OI), physical 

infrastructure (clinic rent, cost of water, electricity, sanitation), laboratory costs, nutritional 

support, equipment, staff training and others. The cost of ART provision in Zambia is inclusive 
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of non-clinical support staff called Adherence Support Workers (ASWs) (Torpey, Kabaso, 

Mutale, Kamanga, & Mwango, 2008) whose role in the ART clinic is to provide adherence 

counselling to patients on ART. This cadre of staff plays an important role in the provision of 

ART services because adherence to treatment has been proved to be a very important factor 

in retention on ART (Koole et al., 2014).  

 

Taking into consideration the above factors and other related inputs, Tager et. al. (2014) 

reported that the average annual cost of ART across Malawi, Rwanda, Ethiopia and Zambia 

was $208 per patient year (ppy) in 2010 – 2011. This multi-country costing of ART services is 

one of the most comprehensive and up to date work available at present and compares well 

with other, earlier research (Bratt et al., 2011). The specific annual cost ppy for Zambia 

calculated by Tager and his team of researchers was $278. This value was reported as based 

on nominal costs in 2010 – 2011.  

 

For purposes of the current research, this dollar value is taken to be 2010 US dollars. The 

estimated cost of ART service delivery was converted to 2014 US dollars to determine the cost 

of providing the service during that year which was the censorship point of the data used to 

run the simulations. The conversion was achieved by first converting the cost of the services 

to the local currency, the Kwacha. This is because goods and services in the provision of ART 

services in the county are borne in this currency. This was followed by applying the annual 

inflation as computed using the Consumer Price index (CPI) obtained from the country’s 

Central Statistical Office (CSO) which is the only institution mandated by the Government of 

The Republic of Zambia to compile the CPI. The Zambian Kwacha (ZMW) value in 2014 was 

later converted back to US dollars at the average exchange rate between the two currencies 

for that year. At the end of 2014, the cost of providing ART services in Zambia was thus 

estimated to be US$284 ppy. This is the unit cost that was applied to the total person years 

at censorship point to compute the cost of ART service provision in Zambia during 2014. 

 

The second part of determining unit costs of ART service provision was to project the value of 

the cost of the service into the future. To do this, an average projected inflation rate was 

computed from the CPI and applied year-on-year to get an estimated CPI for the years 

through to 2024. This CPI was then applied to the cost of ART service provision, in Kwacha 
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beginning with 2014 and then each year until 2024. The US dollar value of ART service 

provision in the years on interest namely 2019 and 2024 were obtained by converting the 

projected ZMW value to UD dollars using the official Zambian Ministry of Finance’s projected 

annual exchange rates.  The computed values of service provision are $304 in 2019 and $322 

in 2024. Since the cost of the ART service is in the future, it is often desirable to estimate it in 

present value (in this case 2014 US dollars). To do this, the future value of service provision is 

multiplied by a discounting factor which effectively expresses the future value in terms of the 

present value according to the following expression: 

 

 $P = $F(1 + 𝑖𝑖)−𝑛𝑛 (7.1) 

 

where $P is the present value, $F is the future value, 𝑖𝑖 is the discounting rate and 𝑛𝑛 is the year 

in the future in which $F is to be estimated. The discounting factor used to compute the 

present value of the cost of ART in the future is 3.5 percent as recommended by the National 

Institute for Health and Care Excellence (2013). These calculations are shown in Appendix III. 

 

Some of the most important simulation model outputs after each run were the number of 

years each patient has been on ART before they experienced any event such as LTFU, death 

or stop treatment. Some patients entered the model and did not experience any of the events 

above but stayed on ART at censorship point and were thus classified as patients ‘On ART’ but 

even for such patients, the model was able to compute the number of years they spent in the 

model. A sum of all these durations in each category constituted the patient years spent on 

ART in that category. The total person years on ART for all patients in the model is a total of 

all their person years on ART. These person years are displayed alongside costs for the base 

model, the medium-term projection and the long-term projection.  

 

The results are presented in two ways for ease of comparison. Table 7.3 shows the cost of 

ART service provision in Zambia in 2014 US dollars while Table 7.4 shows the same costs in 

discounted US dollars thereby giving a present value of the nominal cost of ART service 

provision in the future.  
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7.4.1 Economic costs of ART provision at current (2014) prices 

The person years for each of the three cases considered are indicated in Table 7.3 which 

reveals that the long-term projection consists of higher numbers of person years experienced 

by the patients in the baseline case. The table further shows the estimated cost of ART service 

provision up to the censorship point and what it is estimated to have cost the Zambian 

government on an annual basis in 2014 US dollars. On average in 2014, it cost $44.5 million 

(95% CI: $42.9m to $46.2m) per year to treat all the patients on ART during that year.  

 
Table 7.3: Economic costs of ART provision in Zambia, in 2014 US Dollars 

 Simulation model 
 Low (95% CI) Average High (95% CI) 

Person years    
        Baseline  1,229,490 1,229,490 1,229,490 
        Medium (5-year) projection 1,281,952 1,334,896 1,387,839 
        Long-term (2019 - 2024) projection 1,353,878 1,404,591 1,455,305 

     
Cost of treatment ($’000)    
Baseline    

 2014 US$ cost per person per year n/a $284 n/a 
 All patients per year in 2014 $42,859 $44,504 $46,148 
 January 2003 to March 2014 $33,675 $349,175 $362,076 
     

Medium (5-year) projection    
 2019 US$ cost per person per year $281 $304 $305 
 All patients per year in 2019 $72,020 $81,162 $84,547 
 April 2015 to March 2019 $360,100 $405,808 $422,736 
     

Long-term (10 year) projection    
 2024 US$ cost per person per year $310 $322 $323 
 All patients per year in 2024 $83,859 $90,456 $93,925 
 April 2019 to March 2024 $419,296 $452,278 $469,627 
 April 2015 to March 2024 $779,396 $858,087 $892,363 

          
 
 
 

This average annual cost of ART service provision was calculated as the average of the 

annualised product of the total number of person years and the cost of providing the service 

to patients. Appropriate confidence intervals of the average cost were calculated and are 
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presented with the result in the table. For the same baseline case, the cost of providing ART 

treatment to patients in the country from 2003 to 2014 was calculated to be approximately 

$349,175 million (95% CI: $336.3m to $362.1m).  

 

Similar estimates were produced for the cost of service provision for the case where the ART 

program was run till 2019 representing 5 years of projections. At the censorship point ending 

2019, the model estimates that the ART system would have provided services equivalent to 

an additional 1,334,896 person years (95% CI: 1,281,952 to 1,387,839). In dollars terms, the cost 

of the service was estimated to be about $81.2 million (95% CI: $72.0m to $84.6m) per year. 

This estimate takes into consideration the patient load at the projected time period and uses 

the estimated person years during the period.  

 

For the long-term projection window, the table provides three cost estimates, namely, the 

annual cost of ART in the last year (2024), the cost of ART for the 5 years from the previous 

estimate (i.e. from 2019 to 2024) and the cost of ART service provision from 2014 to 2024 (i.e. 

over a 10 year time window from the censorship point of the baseline data. The additional 

person years added to the system between 2019 and 2024 were estimated to be about 1.40 

million (95% CI: 1.35m to 1.46m). This number represents the number of additional person years 

which needed to be provided ART by the program during the 5 year period. An annual average cost of 

$90.5 million (95% CI: $83.9m to $93.9m) was projected to be required to pay for ART services for 

these additional life years. The cost of running the ART program for the full 5-year period (at 2024 US 

dollars) was estimated at $452.3 million (95% CI: $419.3m to $469.6m). The corresponding costs of 

running the ART program for the 10 years from 2014 to 2024 were estimated to be approximately 

$858.1 million (95% CI: $779.4m to $892.4m) in 2014 US dollars.  

 

7.4.2 Economic costs of ART provision (discounted 2014 US dollars) 

The cost of providing ART services to the Zambian public in need of treatment in the future is 

presented in Table 7.5 at discounted 2014 dollars, representing the 2014 value of the 

currency. The displayed US dollar amount under the section ‘Future unit cost’ is how much 

the $284 (estimated in 2014) will be worth at each future date. At the applicable discount 

rate discussed above, if measured in the year 2014, $239 in 2019 is worth the same as $284 

in 2014.  
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The table reveals that the future cost of providing ART in Zambia (in 2019) on an annual basis 

to the entire population of patients needing treatment will be approximately $68.3 million 

(95 CI: $60.6m to $71.2m).  

 

Table 7.4: Economic costs of ART provision in Zambia, at discounted 2014 US Dollars 

 Simulation model 
 Low (95% CI) Average High (95% CI) 

Person years    
        Baseline  1,229,490 1,229,490 1,229,490 
        Medium (5-year) projection 1,281,952 1,334,896 1,387,839 
        Long-term (2019 - 2024) projection 1,353,878 1,404,591 1,455,305 

     
Cost of treatment ($’000)    
Baseline    

 2014 US$ cost per person per year n/a $284 n/a 
 All patients per year in 2014 $42,859 $44,504 $46,148 
 January 2003 to March 2014 $33,675 $349,175 $362,076 
     

Medium (5-year) projection    
 2019 US$ cost per person per year $237 $256 $256 
 All patients per year in 2019 $60,639 $68,336 $71,186 
 April 2015 to March 2019 $303,195 $341,680 $355,932 
     

Long-term (10 year) projection    
 2024 US$ cost per person per year $220 $228 $229 
 All patients per year in 2024 $59,449 $64,126 $66,585 
 April 2019 to March 2024 $297,247 $320,629 $332,927 
 April 2015 to March 2024 $600,442 $662,308 $688,860 

          
 
 

The corresponding cost of providing ART to the entire population enrolled for the period from 

2014 to 2019 was estimated at $341.7 million (95% CI: $303.2m to $355.9m). This cost was 

based on a constant enrolment rate of 1,194 new ART patients per week during the entire 

period resulting in more than 2.5 million person years on treatment as discussed in the 

previous section. For the long-term projection, the simulation model estimates that in 2024, 

the annual cost of ART service provision in 2014 US dollars will be $64.1 million (95% CI: 
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$59.9m to $66.6m). The corresponding cost of treating all patients in the program up to that 

year was estimated to be approximately $662.3 million (95% CI: $600.4m to $688.9m).  

 

7.5 Chapter summary 

This chapter has: 

• Presented simulation results for medium-term projections of ART service provision 

• Presented simulation results for long-term projection of ART service provision 

• Made comparisons between medium-term and long term simulation projections 

• Shown economic cost of ART service provision for medium and long-term projections 

• Compared current and discounted costs of ART service provision 
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8 Conclusions, Limitations and Future Work 

The aim of this thesis is to develop a planning tool and reference guide for health intervention 

planners and financiers on the long-term outcomes and economic costs of ART in Zambia. 

Section 8.1 summarizes the key findings and provides conclusions based on those findings 

while section 8.2 is a discussion of future work based on the results of this research project. 

 

8.1  Research summary 

A simulation model was developed with the purpose of observing the survival patterns of 

people enrolled on ART in Zambia. Specifically, the survival patterns of patients disaggregated 

by treatment outcomes were modelled. This made it possible to make inferences on the long-

term retention patterns of the patients. In order for this simulation model to be constructed, 

statistical analyses were performed on the data to determine the overall survival profile and 

to obtain parameters required during model construction. 

 

In order to provide a complete overview of the Zambian ART program, initially the country’s 

demographic profile was described. Based on this demographic picture of the country, the 

HIV/AIDS epidemic was put into context. This provided a description of the spread of the 

epidemic across different age groups and geographic regions in the country. An account of 

the national response to HIV/AIDS was given pointing out the initial response leading to the 

setting up of a national body tasked with the responsibility to coordinate the various efforts 

aimed at combating the pandemic. The national response to the epidemic is aligned to a set 

of national and international development agendas such as The Revised Sixth National 

Development Plan (RSNDP) 2014 – 2016, the Millennium Development Goals, United Nations 

General Assembly Special Session (UNGASS), Political Declaration of HIV and AIDS Targets and 

SADC HIV and AIDS Strategic Framework 2010 – 2015.  

 

A review of the literature focused on operational research methods applied to HIV-related 

studies was conducted. Various HIV-related issues have been investigated using OR methods 

including HIV transmission, outcomes of different treatment strategies and HIV transmission 

from concentrated populations (MSM, IDU and CSW) to heterosexual populations. Others 
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include the effect of ART on viral loads, determining which prognostic factors have an impact 

on HIV evolution etcetera. A variety of approaches have been employed in estimating the 

survival of HIV-infected people. This research work fills in the knowledge gap of estimating 

survival of people on ART with the events of interest to include death, LTFU and stopped 

treatment. This essentially defines retention on treatment. 

 

To achieve this goal, data from the Zambia ART program was statistically analysed with the 

use of survival analysis techniques to establish the survival pattern of the people on ART based 

on the definition above. Furthermore, scientific arguments were made on the heterogeneity 

of the data in terms of the survival of different risk groups in the population. Based on these 

different classifications of risk groups, survival distributions were fitted for each statistically 

different risk group. The distributions acted as part of the input into the simulation model 

developed in Simul8 to represent the real life system of persons receiving ART. Additional 

input parameters for the simulation model were determined directly from the data to form 

the base model.  

 

 

In order to generate required results, the model was run for two separate time-windows: a 

medium-term projection time window equivalent to 5 years from the endpoint of the base 

model; and a long-term projection time window equivalent to 10 years from the same point. 

Results of the created patient profile in both the medium-term and long-term projections 

have been presented and described in the previous chapter. Furthermore, the economic costs 

of the provision of ART to these patients has been computed based on the number of patients 

in the model. The costs have been presented as both current 2014 costs and discounted costs 

at the applicable future dates. 

 

8.2 Conclusions  

The aim and objectives of this PhD research were stated in the first chapter of the thesis. For 

each research objective, a research question was asked and in order to answer the research 

question, specific tasks were set out as a step-by-step guide. The conclusions and 
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recommendations related to each of these research questions are discussed in relation to the 

tasks drawn out to address them. 

 

8.2.1   Task 1 – What are the main covariates which have an effect on survival of ART 

patients in Zambia? 

To address this task, a decision was taken to first run the survival analysis on the data with 

death only as the event of interest (section 5.8) followed by a more extensive analysis with 

the events of interest listed as ‘exited ART’ which is defined as the combination of death, 

stopped treatment and lost to follow up (LTFU) in section 5.9 and beyond. Results from the 

analysis of death only as the event of interest showed that a person on ART in Zambia had a 

70 percent chance of surviving beyond 7 years 10 months of treatment. When the survival 

pattern is viewed from the gender perspective, female patients were estimated to survive this 

long with a higher chance than the men (71 percent versus 68 percent). Similar analyses were 

performed on the same data with survival redefined ‘exited ART’ (event = died, stopped or 

LTFU) and the results showed that the chance of an ART patient remaining on ART after 7 

years 10 months of treatment was only 16 percent for both sexes and 18 and 14 percent for 

females and males respectively. These percentages in effect indicate the retention levels on 

treatment. Survival was from this point onwards only discussed in the context of the event of 

interest being ‘exited ART’ as defined above. 

 

Using univariate Cox proportional hazards techniques in survival analysis, the set of covariates 

which have significant effects on survival in Zambia were identified. The covariates or 

variables were tested one at a time to check whether they predicted survival well or not. This 

was achieved by performing Cox regression in which the output was survival and the covariate 

or predictor was any one of the variables of interest (as a dichotomised variable). Section 6.8 

lists the covariates which were determined to have an effect (p < 0.05) on survival (as 

univariate predictors) to be CD4 count cut off at 200 and 350 cells µl of blood, gender, age at 

enrollment, residence and ART regimen (New or old regimen in the treatment program).  

 

8.2.2 Task 2 – What measure of effect do the covariates have on survival of ART patients? 

In order to enumerate the effect of the various covariates on survival, Cox regression was 

again utilised. The effect of each covariate on survival is measured as a hazard ratio. A hazard 
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ratio close to 1 means that the variable does not have much effect on survival. The results in 

this research indicate that CD4 cut off at 500 and the three category CD4 count did not have 

a significant effect on survival as univariates. From the results it can be seen that the risk of 

dropping out of the treatment program by female is 86 percent that of a male patient. This is 

the case only when gender is the only predictor of survival in the model. The variable with the 

biggest effect on survival is the ART regimen (i.e. new or old) where the hazard ratio of the 

new to the old regimens was estimated at 1.365 which means that a patient on an old regimen 

was 36 percent more likely to drop out of the treatment program than a patient on the new 

ART regimens. Similarly, CD4 at 200 has a hazard ratio of 0.989, CD4 cut off at 350 has a hazard 

ratio of 0.979, age at enrollment (HR = 0.996) Rural/Urban (HR = 1.027). 

 

8.2.3 Task 3 – What is the best combination of covariates predicting survival for patients 

on ART in Zambia? 

The question in this task was answered in section 6.8 in the multivariate analysis output. 

Whereas Tasks 1 and 2 were answered with performing Cox regression with one covariate at 

a time, to determine the combination of covariates which predicted survival the best, all the 

covariates were used in the model in a number of combinations and the best was selected 

from these. The choice of the combinations of variables was based on the realization that the 

three CD4 cut off variables at 200, 350 and 500 if included in the same model would introduce 

obvious collinearity. As a result they were separated to be in models each along with the other 

variables with the exception of the Rural/Urban and Old/New ART regimen variables for 

reasons given in Chapter 4.  

 

Based on the Log Likelihood and Log Rank Chi-square values (Table 6.3), the results indicate 

that all the 4 models show that it was beneficial to model survival using the different 

combinations of variables. However, the individual covariates’ p-value for inclusion in each 

model falls short of desirable levels of significance for the model containing CD4 count cut off 

at 200 (p = 0.699) and for CD4 cut off at 500 (p = 0.490). For similar reasons, the inclusion of 

the CD4 count interval 200 – 349 was dropped (p = 0.758 and HR = 0.993 to 1.010), based on 

the univariate analysis even though it was showing statistical significance in the multivariate 

analysis. This means the selected combination of covariates to estimate survival were CD4 cut 

off at 350, gender and enrollment age  
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8.2.4 Task 4 – What is the survival profile of patients on ART in Zambia? 

One of the main achievements of chapter 6 was to assign probability distributions to each 

group of patients from which to sample their length of stay in the system. These distributions 

were labelled 01 to 08 with a distribution assigned to one of the 8 different risk groups to 

which each patient belongs. The risk groups were constructed based on gender, age group 

and CD4 category based on the 350 cut off (as per conclusion in Task 3). These results are in 

tabular form in section 6.8. The number of runs required to achieve stable results was 

determined in this chapter. It was determined that 5 runs would be sufficient. 

 

The results of the DES model are presented in chapter 8. The simulation model results indicate 

that 5 years after the censorship point or end of the real system data, there were 35 percent 

of the patients who enrolled on ART still alive and on treatment, essentially the retention rate. 

This means the simulation was run from April 2014 March 2019. The ART system had enrolled 

a cumulative total of about 818,478 patients at this point of whom 330,986 were enrolled in 

the period after the censorship point of the observational data. The largest number of 

patients at this point had been declared LTFU (42 percent) which is expected in long-term 

treatment programs and has been reported in a number of studies (Koole et al., 2014). 

Further, 17 percent of the patients were estimated to have died during the observation period 

and 6 percent stopped treatment. The overall drop out from the program at the end of 5 years 

post censorship was therefore calculated to be 65 percent of all patients who had ever 

enrolled onto the ART program.  

 

The same results were generated for the long-term projection window case where the model 

was run for 10 years beyond the censorship point in order to observe what the system would 

look like based on the conditions at censorship point. This represents the years from April 

2014 to March 2024. This also means that the total model running time reached 20 years from 

the beginning. At this point, approximately 1.1 million patients were enrolled onto ART by the 

system and of these, the number on ART at that date was nearly 278,000 patients. In 

percentage terms, the number of patients retained on treatment was estimated to be about 

24 percent of the cumulative new patients. This percentage may look smaller than the case 

at the 5 year projection endpoint but as explained in the previous chapter, the current 
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number on ART is a current result which is carried on from each previous period while the 

other categories (LTFU, died and stopped treatment) have completely new patients added to 

their final total with the passing of each time period. Whereas the retention on ART was 

estimated to be about 35 percent in the 5 year time window, the model estimates it as a lower 

value of 25 percent for the 10 year projection horizon.  

 

The length of time the patients spend on ART is directly related to the cost of providing the 

service. Owing to the large numbers of patients who exit the system, the estimated average 

length of time the patients spend on ART is very short. The estimated average length of stay 

on the program for the medium case was 3.04 years and 3.57 years for the long-term horizon. 

The longer the model runs, the more new ART patients enter the model and as seen in all the 

distributions in Appendix I, the highest probabilities are for dropping out of the treatment 

program in the earliest years. For the medium-term projection window, the minimum time 

spent in the model was 1 week and the maximum was 14 years and 8 months while that for 

the long-term projection window ranged from a week to 19 years and 3 months.  

 

8.2.5 Task 5 – What are the long-term economic cost estimates of ART provision in 

Zambia? 

The response to Task 5 constitutes the answer to the second question aimed at providing an 

economic perspective to ART service provision in Zambia. The economic costs of providing 

ART in Zambia were computed based on published unit costs of providing ART to a single 

person per year (Tagar et al., 2014). The definition of economic costs of provision of ART 

adopted in this research were therefore based on assumptions made in the quoted unit costs 

and included all health facility costs associated with the provision of ART services to persons 

in a public health facility in Zambia. The costs were a sum of clinical and non-clinical staff time, 

capital costs (rent of buildings and fixed assets) and clinical and non-clinical consumables as 

long as they were expended on ART service provision (both HIV and non HIV drugs, other 

clinical consumables. 

 

Estimates from the model indicated that the annual cost of providing ART to patients in 2014 

stood at approximately US$44.5m at current prices. This estimate was based on the 2010 

US$278 unit cost reported by Tager et al (Tagar et al., 2014) which adjusted for inflation was 
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worth approximately $284 in 2014. When the model was run for 5 years in the medium-term 

time window, the cost of service provision increased to $81.2m per annum in 2019. At 

program level, it was estimated that it would cost about $405.8m to provide ART to all 

patients during that period. For the 10 year time window, the model estimated that the 

annual cost of providing ART services in the country would be in the region of $90.5m at the 

projected unit cost of $322 per person per year. This cost level would translate to $452.3 to 

provide ART in the 5 years from 2019 to 2024 or as much as $858.1m for the service covering 

the 10 years from 2014 to 2024.  

 

8.3 Limitations and Future Work 

The main limitation of this study is its inability to project much further into the future. This is 

a consequence of survival analysis because the behaviour of the survival functions after the 

censorship point is not very easy to predict for long time periods. From a clinical perspective, 

the shorter time window limits the clinicians’ understanding of the long-term treatment 

outcomes of the patients. The inability to project treatment outcomes over a longer time 

window also has the effect of making it difficult to project the costs of ART service provision 

for longer periods of time into the future.  

 

The second limitation is that the model could not be built to predict the differences in survival 

for patients who were started on the new ART regimens versus the old regimens. This would 

help the clinicians with decision making with regard to treatment outcomes based on the 

comparisons. On the economic front, since the costs of the newer regimens are higher than 

the old regimens, a simulation of these would have provided health planners with a clearer 

picture of these costs in the long term depending on the simulated outcomes.  

 

Future work in estimating survival or retention of patients on ART in Zambia would 

supplement this work by attempting to use more accurate data on a sample basis which could 

be used as long as it were scalable. May it be noted however, that a full database such as used 

in this research is preferable if it can provide higher accuracy and completeness than before. 

Use of data from only those ART sites where the databases are always up to date and where 

sufficient follow up of LTFU patients is consistently done would provide additional benefits to 
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the current model where the LTFU seems over represented. That LTFU is being over 

represented is postulated to be a direct consequence of the ART roll out model adopted by 

the country. ART was first offered in larger provincial and district hospitals for some years 

until the number of patients enrolled at these central health facilities became unmanageable. 

A roll out to primary health facilities in the localities where patients resided was embarked on 

and at present, ART is offered very close to the family in Zambia. When this roll out process 

commenced and ART was available at clinics close to their homes, thousands of patients 

simply enrolled as ‘new’ patients at these facilities and subsequently became declared ‘LTFU’ 

at the original sites.  

 

More work on estimating what proportion of the  LTFU in Zambia are truly dead will help with 

more accurate survival  estimates  for the classical case (i.e. event = death only).  Such a study 

would also likely reveal that some supposedly LTFU patients have enrolled in ART at different 

facilities. This could be done by targeting health facilities with well-developed community 

follow up systems to help with patient tracing. A full study on the LTFU to determine what 

really happens to them when they drop out of care would really help answer a lot of questions 

in many ART related studies and lay a solid foundation on which future research could stand.
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APPENDIX I: Distributions  
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APPENDIX III: Present value calculations of the cost of ART in the future 
 

 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 
Dollar amount $278 $292 $294 $300 $284 $280 $287 $294 $299 $304 $309 $313 $317 $320 $322 
Discounted dollar amount          $239     $201 
Exchange rate 4.80 4.86 5.15 5.39 6.15 6.59 6.79 6.99 7.20 7.42 7.64 7.87 8.11 8.35 8.60 
Consumer Price Index (2010=100) 100.00 106.44 113.44 121.35 130.83 138.54 146.25 153.95 161.66 169.37 177.08 184.79 192.49 200.20 207.91 
Kwacha equivalent @ 2010 prices 1,333.60 1,419.43 1,512.77 1,618.33 1,744.77 1,847.56 1,950.35 2,053.14 2,155.94 2,258.73 2,361.52 2,464.31 2,567.10 2,669.89 2,772.68 
Discounting factor (3.5%)      0.97 0.93 0.90 0.87 0.84 0.81 0.79 0.76 0.73 0.71 
 


