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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF HUMAN, SOCIAL AND MATHEMATICAL SCIENCES

Academy Unit of Mathematics

Doctor of Philosophy

DEVELOPMENT OF CAPTURE-RECAPTURE ESTIMATORS IN CLOSED

POPULATIONS INCLUDING INDIVIDUAL COVARIATE INFORMATION

by Alberto Vidal-Diez

Capture-recapture is an area in statistics which aims at the estimation of the size of

an elusive target population using the number of times individuals have been identified

within a time period or in several capture occasions. Closed populations models in

capture-recapture assume no migration, deaths or births during the study period. Many

approaches can be found in the literature that differ in the assumptions about the

distribution and sources of heterogeneity of the capture probability based on the observed

individuals. There are three main sources of heterogeneity: individual characteristics,

the conditions at the time of capture and the behavioural response after being captured

and released. Chao’s lower bound estimator is a well-known estimator that uses only

individuals capture once or twice to estimate the hidden population and it can produce

robust estimates assuming a Poisson mixture distribution without specifying directly

the mixing distribution.

We develop a framework based on zero- and right-truncated models to extend Chao’s

lower bound estimator (Chao, 1987) to use individual covariate information for mod-

elling heterogeneity of the capture probability. An initial estimator for continuous-time

experiments is presented based on a truncated Poisson distribution with only counts of

ones and twos non-truncated. The calculation of this estimator can be easily done with

standard statistical software. The methodology is then extended in two ways. For one,

Chao’s estimator is extended to any member of the power series distribution by using

a truncated likelihood using only counts of ones and twos. For two, the framework is

extended to include more general cut-off values larger than 2. A statistical test to select

the optimal truncation cut-off point is developed and model-averaged estimates are also

suggested to combine estimates with different truncation cut-off points.

We also extend an estimator based on a geometric distribution with censoring (Niwit-

pong et al., 2012) to use individual covariate information. Similarly to the methodology

presented based on truncation we generalise estimates to use different censoring cut-off

points. All estimates are assessed using simulations and practical guidance and case

studies are provided to facilitate the reader the understanding and application of the

proposed methods.
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Chapter 1

Introduction to capture-recapture

analysis in closed populations

1.1 Overview

Capture-recapture is a statistical area which aims at estimating the size of hidden or

elusive populations. In a classic setting where we are interested in estimating N and p for

a binomial distribution Y ∼ Bin(N, p), capture-recapture intelligently uses a different

sampling design to obtain estimates for both parameters. Originally, we have a discrete-

time experiment where there is a fixed number of sampling occasions and the population

of interest is sampled. At every occasion, the units captured are marked or identified

somehow, so a complete capture-recapture history is recorded for each captured unit.

The idea is to use the capture history of those units to estimate the size of the population

that we have not observed.

There are two main types of models: closed and open population models. A closed

population model assumes a constant population without births, deaths or migration.

Although in real life most populations should be considered open, the assumption of

a closed population is not severely violated when the observational period is small or

studying small areas. For that reason, the research in closed populations is still active.

Wildlife populations are usually open and there is an interest to include births, deaths

and migration to estimate the changes in the population, survival rates and the number

of new individuals in the population between sample times. The scope of this thesis is

only to develop estimators for closed populations, so open populations are not discussed

any further.

Although capture-recapture is a popular analysis in ecology for animal abundance esti-

mation (Boyce et al., 2001; Karanth, 1995; Keating et al., 2002), we find examples in

the literature where capture-recapture methods have been applied to other areas: in

1



2 Chapter 1 Introduction to capture-recapture analysis in closed populations

software engineering to estimate the number of errors in a computer software (Duran

and Wiorkowski, 1981; Nayak, 1988), in public health to estimate the number of drug

users in a city or a country or to assess the completeness of medical registries (Böhning

et al., 2004; Farcomeni and Scacciatelli, 2013; McDonald et al., 2014; Xu et al., 2014;

Bailly et al., 2015; Hay et al., 2009), in demography to estimate the US census un-

dercount (Fienberg, 1972), in veterinary medicine to investigate the number of hidden

scrapie population in Great Britain (Böhning and Del Rio Vilas, 2008; Böhning, 2011),

in sociology to infer the number of victims in armed conflicts based on multiple registries

(Lum et al., 2010; Mitchell et al., 2013), in criminology to estimate the number of illegal

immigrants living in the Netherlands coming from some Middle East countries (Van der

Heijden et al., 2012).

In this thesis we are interested in two types of capture-recapture settings: discrete and

continuous-time experiments:

• A discrete-time experiment involves a fixed number of trapping occasions m. So

each individual i will have a capture history xi = (Xi1, Xi2, ..., Xim) with Xij

being a binary variable indicating whether the subject i was registered at occasion

j, with i = 1, . . . , N and j = 1, . . . ,m.

This type of experiment also arises with multiple sources, lists or diagnostic tests

where each list is considered as a trapping occasion. Table 1.1 contains an example

of the raw data format that we find in discrete-time experiments. There are m = 4

trapping occasions. The table is ordered to show the capture history of the n

observed individuals in the first rows. All captures for individuals n+1 to N are 0

as they were not observed. For instance, the table shows that the first individual

was captured in the first and third occasion and the second individual was observed

in the first three occasions.

The last column in table 1.1 reports the number of times individual i has been

captured. Some analyses use only this information, ignoring the order of the

capture history which implies the assumption of homogeneity and independence

among capture occasions. If there is correlation between sample occasions, the

estimations can be positively or negatively biased depending on the direction of

the correlation (Chao, 2001).

• A continuous-time experiment arises when the captures happen in a fixed pe-

riod of time [0, T ] and the time of each capture is recorded. A sample of counts

Y1, Y2, . . . , YN can occur in multiple ways. N is the total number of individuals

in the population and the quantity of interest. Yi represents the number of times

that individual i has been captured in the study period. We can have this setting

for example in the identification of drug users or homeless in a city, estimating the

number of big mammals or other animals using fixed cameras to take photos in
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Table 1.1: Example of the raw data format for a discrete-time capture-recapture
experiment

Individuals Sample 1 Sample 2 Sample 3 Sample 4 Y

1 1 0 1 0 2
2 1 1 1 0 3
3 0 0 1 1 2
. . . . . .
. . . . . .
n 0 0 0 1 1

n+ 1 0 0 0 0 0
. . . . . .
N 0 0 0 0 0

a geographical area. In these examples captures can occur at any time within a

given period previously established.

In this case, the cluster is the individual, and we study the number of repeated

identifications in the time interval [0, T ]. However, the cluster could be a grouping

variable like farms, villages or households. A recapture event happens when a

second individual from the same cluster is identified. For example, the estimation

of the prevalence of a disease at farm level that is based on a passive surveillance

database. The unit is the farm and the recapture occurs when a second sick animal

from the same farm is found, and the time and location of the farm of origin is

recorded. Another example is the estimation of households infected within an

outbreak in a village. The cluster is the village in this case.

For some analyses where the data is seen as a continuous-time counting process

(Becker, 1984), the time of the capture will be used. However, other models

work with a simplified format as a frequency of frequencies (Table 1.2) where y

represents the number of captures and fy is the number of individuals captured

exactly y times in the period of the study. This format assumes equal probability

of being captured across the period of the study for each individual.

The species richness problem (Chao and Bunge, 2002) is also included under the

umbrella of these experiments.

Table 1.2: Frequency of frequencies format in a continuous-time setting

y fy
1 20
2 9
3 5
4 2
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1.2 Heterogeneity explained with covariates in closed pop-

ulation models

Pierre Simon Laplace was one of the first people who applied a kind of capture-recapture

approach using ratios to estimate the size of the population in France in 1802 based on

the number of live births per year and census in several communities (Cochran, 1978).

John Graunt is also mentioned (Hald, 1990) in the literature to have used capture-

recapture concepts in the XVII century to estimate the population in London based on

the number of buried people in a year and the families that had someone dead in the

family that year.

We already mentioned the importance of the application of capture-recapture methods

in ecology to develop new methodology. The estimation of animal abundance is one of

the main applications in the area. One of the first estimators was developed thanks to

Petersen (1896), Dahl (1917) and Lincoln’s work (1930) (Le Cren, 1965) where Petersen

and Dahl studied fish populations and Lincoln estimated the number of birds based

on the return of bands. Chapman (Chapman, 1951) also published an adjustment to

reduce the bias of the Lincoln-Petersen estimator when there is a small number of marked

individuals in the second sample. The Lincoln-Petersen estimator assumes two trapping

occasions. Darroch (Darroch, 1958, 1959) and Schnabel (Schnabel, 1938) developed

estimates for multiple capture occasions assuming changes in the probability in each

occasion, but the same capture probability for all individuals, that is pij = pj .

We can also highlight the early application of capture-recapture in the demography

framework by Seker and Deming (Seker and Deming, 1947) who estimated the birth

and death rates in an area in India. A more detailed description of the early history of

capture-recapture can be found in Seber’s book (Seber, 1982).

All these early developments could not deal with the heterogeneity that real life appli-

cations often involve. Carothers (1973) carried out a real study where he tried to isolate

conditions of equal and unequal catchability capturing taxi cabs in Edinburgh and con-

cluded that it is almost impossible to have equal catchability in natural populations. He

compared several estimates that assumed unequal capture probability (Tanaka, 1956;

Marten, 1970). Pollock (1976) started developing models that considered different cap-

ture probabilities, he referred his main discoveries to his unpublished thesis. Otis (Otis

et al., 1978) published a set of models M0,Mt,Mb,Mh,Mhb,Mht,Mbt,Mhbt for a fixed

number of capture occasions that accounted for time effects (Mt) like temperature, indi-

vidual behaviour (Mb) like trap shyness/happiness and individual characteristics (Mh)

like age, ethnicity, sex, etc... There are models combining these three sources of het-

erogeneity in the capture probabilities depending on the nature of the study. For more

details about the early attempts to deal with heterogeneity in closed populations we

refer to Chao’s review (Chao, 2001) and Amstrup (Amstrup et al., 2005). Chao’s review
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distinguished between discrete and continuous time models. Chao provided key refer-

ences of the different approaches for each of the 8 models (including the homogeneous

case, ”M0”)) presented by Otis (see Table 1 on Chao’s paper).

This thesis focuses on the development of methodology to include individual covariate

information in order to explain the capture probability of each individual (Mh). Pollock

(Pollock et al., 1984) tried to incorporated covariates using a full likelihood approach

in a classical discrete-time experiment. The problem of working with the full likelihood

is that we do not have the covariate information for the individuals who are not cap-

tured (Sanathanan, 1972). Pollock developed an ad hoc method dividing the population

in subgroups. However, the approaches of Huggins (Huggins, 1989) and Ahlo (Alho,

1990) (independently suggested) based on a conditional likelihood have became stan-

dard methodology, see also Coull and Agresti (1999); Mao and Lindsay (2002); Böhning

and Schön (2005). The method consists in writing the likelihood as a product of two

terms, one term depends only on the parameter of the distribution (L1) and the other

term depends also on the parameter of interest N (L2). Maximising L1, not involving

the parameter of interest N , they obtained an estimate for the probability of being cap-

tured that can be used in the generalised Horvitz-Thompson estimator to obtain the

population size N . Huggins method can include all sources of heterogeneity (Mthb).

Borchers (Borchers et al., 1998) proposed a method to use the full likelihood approach

specifying the distribution of the covariates.

Huggins and Hwang (2011) reviewed and updated the framework and application of

the conditional likelihood in capture-recapture. The structure of the paper is a perfect

summary of the classic and modern methodologies developed to solve the problem of

the heterogeneity. They divided the paper in the following sections: classic approaches

and classic log-linear Poisson models, mixture models, covariate models, sample cover-

age and other non-parametric methods, and they complemented their work presenting a

link between the conditional likelihood and the GLM formulation for an Mh model. The

classic log-linear Poisson models are used in multiple registries/lists problems (Fienberg,

1972; Cormack, 1989; Coull and Agresti, 1999). Finite mixture models were believed

to be flexible to model the capture-recapture distribution (Norris and Pollock, 1996;

Böhning et al., 2004; Böhning and Schön, 2005; Pledger and Phillpot, 2008), but the

problems with identifiability pointed out by Link (Link, 2003), Dorazio and Royle (Do-

razio and Royle, 2003) and Pledger (Pledger, 2005) have revived the interest in other

approaches like the inclusion of covariates to determine the probability of capturing an

individual. The advantage of these models is that we can interpret the importance of

the association of each covariate with the capture probability and standard methods can

be used to choose the best models. There are also other non-parametric approaches like

the concept of sample coverage by Good and Turing (Good, 1953), Chao’s sample cov-

erage estimator with heterogeneous capture probabilities (Chao and Lee, 1992), Chao’s

lower bound estimator (Chao, 1987), Jacknife estimator (Burnham and Overton, 1978,
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1979) or Huggins and Chao’s use of martingale estimating functions (Huggins and Chao,

2002).

The friendliest method to incorporate covariates related to captured probabilities is us-

ing a log-linear Poisson model (Tilling and Sterne, 1999; Van der Heijden et al., 2003b,a;

Böhning and Del Rio Vilas, 2009). Cruyff and Van der Heijden (2008) used also a zero-

truncated negative binomial assuming that the overdispersion parameter of the Poisson

distribution follows a gamma distribution. However, the standard form to include co-

variate information as applied in generalised linear models (GLM) has been criticised in

the capture-recapture framework as it can be a non-adequate model for some real life

applications (Borchers et al., 1998). Another highlighted issue appears when all covari-

ate information might not be enough to explain the whole heterogeneity which can make

the model not identifiable (Pollock, 2002) or in the case of multiple lists could mean that

the assumption of independence between lists is violated (Zwane et al., 2004). Zwane

and Van der Heijden (2004) proposed semiparametric models using generalised additive

models (GAM) with smooth functions that allow to relax the assumption of indepen-

dence between lists and to include non-linear relationships between the covariates and

the probability of being captured. They also proposed a graphical tool to assess the

goodness of fit of the models with auxiliary variables. Chen and Lloyd (2000) presented

a full non-parametric approach as an alternative to the model of Huggins (1989) and

Alho (1990). Huggins and Hwang (Huggins and Hwang, 2011) clearly explained the

relation between the conditional likelihood and the link function, showing the method-

ology to relate the approach to generalised linear models. That link-function does not

need to be standard so it could be a P-spline (Stoloksa and Huggins, 2012), a smooth

function (Huggins and Hwang, 2007) or any other form like a combination of parametric

and non parametric forms (Hwang and Huggins, 2007). The package VGAM in the

R statistical software allows to fit all those models. Another approach uses a partial

likelihood (Stoloksa et al., 2011) where they condition on the first capture, but they

recognised that some efficiency is lost compared to Huggins’ approach. However, this

approach facilitates the use of generalised additive models (GAM) or generalised linear

mixed models (GLMM) to model the capture probabilities.

In the context of multiple lists or registries with covariates, methodology has been devel-

oped to study the problem of having missing data in some covariates or covariates which

are not available in all lists (Baker, 1990; Zwane et al., 2004; Zwane and Van der Heijden,

2007, 2008; Van der Heijden et al., 2009; Sutherland et al., 2007; Xi et al., 2009). Zwane

and Van der Heijden combined capture-recapture with multiple imputation techniques

(Little and Rubin, 1987) to make use of all information available rather than following

a näive approach removing part of the information.

There is not as much research in the continuous-time setting as there is in the discrete-

time experiments. Wilson and Collins (1993) reviewed the performance of several robust

estimators like Chao’s, Zelterman’s and Darroch’s estimators under heterogeneity in
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continuous-time problems. Other classic references for continuous-time models with

heterogeneity are Fisher et al. (1943); Tanton (1965); Boyce et al. (2001); Keating et al.

(2002); Chao and Bunge (2002). Becker (1984) was the pioneer in formulating the

problem as a counting process. Yip et al. (1996) developed a partial likelihood including

time-independent covariates to model the individual characteristics. Later, Hwang and

Chao (2002a) extended Yip’s model to include the behavioural effect, covariates for

individuals characteristics and auxiliary variables related to the time of the capture.

Farcomeni and Scacciatelli (2013) combined the approaches of Hwang and Chao (2002a)

and Xi et al. (2007) extending Hwang’s model to include a frailty to represent the

unobserved heterogeneity and generalising the behavioural effect to consider a delayed

onset and a finite time memory in the behavioural response to change behaviour for a

time period and go back to the original behavioural response.

The presence of covariates adds some other challenges. Measurement errors in the co-

variate information has been proven a source of bias (Creel et al., 2003; Carroll et al.,

2006; Hwang and Huang, 2003). Yip et al. (2005) developed a semiparametric method to

take into account measurement error over time. Link et al. (2010) presented a Bayesian

method to deal with misidentification in natural existing features like DNA fingerprints.

They presented a list of studies where they have incomplete observed covariates. They

provided a solution for incomplete and inexact subject-specific random covariate data

in capture-recapture studies.

1.3 Thesis outline

Our initial motivation to start this work is the extension of Chao’s lower bound esti-

mator (Chao, 1987) to include auxiliary variables related to individual characteristics

of the observed subjects. In chapter 2, we introduce the classic Chao estimator and

its properties; we use a Poisson model and include covariate information in the setting

of continuous-time experiments under an approach based on a conditional likelihood.

Similarly to the original Chao’s estimator our model uses only individuals observed once

or twice.

In chapter 3, we extend the estimators with and without covariates presented in the

previous chapter based on a truncated distribution with two non-truncated counts to

include individuals observed J or less times.

Chapter 4 shows the generalisation of the estimators when the counts are assumed to

come from a power series distribution, with examples using the binomial distribution in

discrete-time experiments.
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Chapter 5 presents a goodness of fit test to choose the optimal truncation cut-off point

and explores the idea of model averaging for models with different truncation cut-off

points.

In chapter 6, we extend an estimator that uses the concept of censoring for a geometric

distribution (Niwitpong et al., 2012) to use covariate information for the observed indi-

viduals. We compare the developed estimators based on censoring with the estimators

based on truncation shown in the previous chapters.

Analytical variance formulae are calculated for all estimators, simulations from several

scenarios are provided in all chapters to evaluate the performance of the proposed esti-

mators, case studies and practical guidance are also included in the thesis. The thesis

closes with a chapter on open problems and future work to set the thesis results in

perspective.



Chapter 2

Generalised Chao estimator for

the Poisson case

2.1 Motivation

In this chapter, we look at the setting of capturing and recapturing units in a closed

population framework during a fixed time period. At the end of the period we would

have a sample of counts yi, i ∈ {1, 2, . . . , n, n+ 1, . . . , N}, which represents the number

of times unit i has been captured within the study period. N is the population size

and our variable of interest. n is the total number of captured units. There are N − n
unobserved units, with yj = 0, j ∈ {n + 1, . . . , N} when the population is sorted to

have the captured subpopulation in the first place. Another common notation is using

the sum of frequency of frequencies n =
∑m

y=1 fy , where fy represents the number of

units captured exactly y times and m is the largest number of recaptures within the

period of interest. The outcome of interest is f0, the number of unobserved units, since

N̂ = n+ f̂0 holds.

This scenario occurs in several ways. We find it in populations that are difficult to be

completely observed, like a homeless population, a wildlife population or populations

with a disease. The units of these populations can be captured and identified using

traps, photos, registers, etc.... Each unit i is identified at time t where t can be a

random time point within the study period or a fixed capture occasion. In this case,

clustering occurs as we have repeated identification of the same units across the study

period. A different setting occurs when the recapture comes from identifying units from

the same grouping variable, like a farm, household or villages. An example from the

literature is the cholera-outbreak in a community in India (McKendrick, 1926) where

the clusters were the households in a village.

9
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The distribution of counts defined above could be modelled based on a mixture proba-

bility density function

py =

∫ ∞
0

p(y|λ)q(λ)dλ (2.1)

where the mixing density q(λ) is unspecified and the mixture kernel p(y|λ) comes from

the Poisson family p(y|λ) = Po(y|λ) = e−λλy

y! . Mixture models appear to be a common

methodology applied in the framework of capture-recapture to account for heterogeneity,

see Pledger (2005) for the discrete mixture model approach and Dorazio and Royle (2003)

for the continuous mixture model approach. Simple models like p(y|λ) lack flexibility to

explain the individual heterogeneity. However, the identifiability of mixture models in

the capture-recapture area has been questioned recently (Link, 2003, 2006; Holzmann

et al., 2006). On the other hand, the nonparametric maximum likelihood estimate

(NPMLE)

N̂ =
n

1−
∫∞

0 e−λq̂(λ)dλ
.

where q̂λ is the NPMLE of the mixing density qλ has been reported to produce occa-

sionally high estimated values of the real population (Wang and Lindsay, 2005, 2008).

Therefore, there is a revived interest in the classic Chao’s lower bound estimator and its

properties (Chao, 1987). See (Mao, 2008) for further developments.

The advantage of using Chao’s lower bound estimator when using the mixture density in

(2.1) is that the mixing density q(λ) does not need to be estimated; in contrast to other

approaches like Cruyff and Van der Heijden (2008) where the overdispersion parameter

of the Poisson distribution is assumed to be a gamma distribution, which leads to the use

of a zero-truncated negative binomial regression. Here, we briefly present the deduction

of Chao’s lower bound estimator by applying the Cauchy-Schwarz inequality. Böhning

et al. (2006) published a generalization of Chao’s inequality for power series distribution

following the same reasoning.

The Cauchy-Schwarz inequality states that |E(XY )|2 ≤ E(X2)E(Y 2). In our case

X =
√

e−λ and Y = λ
√

e−λ which leads to:

(∫ ∞
0

e−λλq(λ)dλ

)2

≤
(∫ ∞

0
e−λq(λ)dλ

)
·
(∫ ∞

0
e−λλ2q(λ)dλ

)

This is equivalent to p2
1 ≤ p0(2p2). To estimate pi, we use the estimates p̂i = fi/N with

i = 0, 1, 2 which leads to Chao’s estimate:

f̂0 = f2
1 /(2f2)
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and consequently,

N̂c = n+ f2
1 /(2f2) (2.2)

We have carried out a simple simulation experiment to show how Chao’s lower bound

estimator can cope with some level of heterogeneity because it does not need to estimate

q(λ). We generated 1000 samples from a Poisson mixture distribution Y ∼ 0.5∗λ1 +0.5∗
λ2 where λ1 = 1. We can observe in table 2.1 how the accuracy of the point estimator

and the confidence intervals decreases when heterogeneity is introduced. The coverage

of the confidence intervals suggested by Chao and Burnham in (Chao, 1987) are also

presented in the table.

Table 2.1: Chao’s estimates and coverage of confidence limits (CL) for different
population sizes and levels of heterogeneity based on λ2

λ1 λ2 N N̂Chao Chao’s Coverage CL Burnham’s Coverage CL

1

1

100

103.83 94.1 94.1
2 98.29 86.5 92.1
3 97.14 84.8 93.0
4 97.31 84.2 97.3

1

1

500

502.70 95.0 94.6
2 486.98 85.0 89.8
3 480.20 72.9 82.5
4 478.15 67.6 80.0

1

1

1000

1001.91 94.4 94.7
2 975.23 81.6 85.8
3 957.18 57.0 66.4
4 955.27 54.4 63.5

Chao provided an analytical variance estimator and confidence intervals and obtained

a better coverage probability than the jacknife estimator developed by Burnham and

Overton (1978) for sample distributions where the core frequencies are ones and twos.

Chao’s estimator was proved to be a lower bound estimator of the population size. On

the negative side, Chao’s estimator did not perform adequately when the mass of the

capture frequencies was not in the first two counts, because it only makes use of those

frequencies. Chao used a Poisson approximation to a binomial distribution and Jensen’s

inequality to deduce her estimate f̂0 = f2
1 /(2f2).

The chapter is structured as follows. In the next section, we develop a likelihood frame-

work to obtain Chao’s lower bound estimator from a truncated Poisson distribution.

Sections 2.1.2 and 2.2 extend the methodology to include covariate information to ex-

plain heterogeneity at individual level. In section 2.3 we review the results obtained from

a simulation study with several scenarios. At the end of the chapter, we also present

two case studies to show the applicability of the estimator.
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2.1.1 Chao’s estimator from a truncated Poisson

We assume a truncated Poisson likelihood where only counts of ones and twos are non-

truncated to represent the capture-recapture distribution. Therefore, there are only two

probabilities to define:

q1 =
p(y = 1)

p(y = 1) + p(y = 2)
=

e−λλ

e−λλ+ e−λλ2/2
=

1

1 + λ/2

q2 =
p(y = 2)

p(y = 1) + p(y = 2)
=

e−λλ2/2

e−λλ+ e−λλ2/2
=

λ/2

1 + λ/2
. (2.3)

Notice the presence of the denominators to fulfill the property that q1 + q2 = 1.

This truncated sample leads to a binomial log-likelihood:

`(λ) = f1 log(q1) + f2 log(q2)

= f1 log

(
1

1 + λ/2

)
+ f2 log

(
λ/2

1 + λ/2

)
= −f1 log(1 + λ/2) + f2 log(λ/2)− f2 log(1 + λ/2)

= −(f1 + f2) log(1 + λ/2) + f2 log(λ/2). (2.4)

We maximise the likelihood by taking the first derivative and considering the score

equation or equivalently

d`

dλ
= −f1 + f2

2 + λ
+
f2

λ
= 0.

Solving for λ, we obtain λ̂ = 2f2/f1 and replacing λ̂ in q̂1 and q̂2, we get

q̂1 = f1
f1+f2

and q̂2 = f2
f1+f2

.

We recognise the estimated λ̂ as the family of λs presented by Zelterman (1988). Zel-

terman’s estimator used the Horvitz-Thompson estimator, N = n
1−p̂0 where p̂0 = e−λ̂

and λ̂i = (i + 1)fi+1/fi. Zelterman’s estimator with λ̂ = 2f2
f1

can largely overestimate

the true population size if there is heterogeneity. Böhning (2011) pointed out an error

in Zelterman’s calculation of E(f0). The correct E(f0) leads to Chao’s lower bound

estimator.

Theorem 2.1. The expectation of f0 for a truncated Poisson with only non-truncated

counts of ones and twos is
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E(f0|f1, f2; λ̂) =
f2

1

2f2
, for λ̂ = 2f2/f1

Proof.

We define the expectation of y as ey = Po(y|λ)N , where N is the true unknown popu-

lation size and Po(y|λ) the Poisson probability of having y counts for a known λ.

ey = E(fy|λ) = Po(y|λ)N = Po(y|λ)

e0 + f1 + f2 +

∞∑
j=3

ej

 (2.5)

e0 and
∑∞

j=3 ej are unknown and need to be estimated as

e0 + e+
3 = [1− Po(1|λ)− Po(2|λ)]

(
e0 + e+

3

)
+ [1− Po(1|λ)− Po(2|λ)] (f1 + f2)

with e+
3 =

∑∞
j=3 ej . Solving for e0 + e+

3 we obtain,

e0 + e+
3 =

[1− Po(1|λ)− Po(2|λ)]

Po(1|λ) + Po(2|λ)
(f1 + f2) (2.6)

Therefore, replacing (2.6) in (2.5) for the case of interest y = 0:

e0 = E(f0|λ) = Po(0|λ)

e0 + f1 + f2 +

∞∑
j=3

ej


= Po(0|λ)(f1 + f2)

[
1 +

1− Po(1|λ)− Po(2|λ)

Po(1|λ) + Po(2|λ)

]
=

Po(0|λ)

Po(1|λ) + Po(2|λ)
(f1 + f2) =

e−λ

λe−λ + e−λλ2/2
(f1 + f2)

=
f1 + f2

λ+ λ2/2
(2.7)

Finally, if we substitute λ by its maximum likelihood estimator λ̂ = 2f2/f1, we obtain

Chao’s lower bound estimator f̂0 = f2
1 /(2f2).

2.1.2 Chao’s estimator with covariates

In this section we follow Böhning et al. (2013b) and consider a sample where additional

information for each captured individual unit i is available: (Y1, Z1), ..., (Yn, Zn) where

Zi is a p-dimensional vector. The idea is to explain the heterogeneity in the Poisson

model with the mixing density (2.1) using the covariate information available to model
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different capture probabilities at individual level.

First, a Poisson regression with a log-link function is defined to introduce the covariate

information in the likelihood framework:

λi = eα+β′Zi (2.8)

where λi is the conditional Poisson mean with P (Yi = y) = Po(y|λi). Po(y|λ) is, as

previously defined, a truncated Poisson distribution with only one and two counts. We

define the probabilities of the non-truncated counts:

P (Yi = 1) = (1− qi) =
λie
−λi

λie−λi +
λ2i
2 e−λi

=
1

1 + λi/2

and

P (Yi = 2) = qi =

λ2i
2 e−λi

λie−λi +
λ2i
2 e−λi

=
λi/2

1 + λi/2
. (2.9)

Let us assume that there are M different observed covariate combinations or strata with

n1 + ...+nM = f1 +f2, where ni is the frequency of stratum i, ni =
∑2

j=1 fij with fij the

number of individuals from strata i captured j times. Continuous covariates could lead

to the case where all ni are equal to one. The truncated Poisson likelihood is defined by

M∏
i=1

(
1

1 + λi/2

)fi1
×
(

λi/2

1 + λi/2

)fi2
,

replacing λi from (2.8) we obtain

M∏
i=1

(
1

1 + eα+β′Zi/2

)fi1
×

(
eα+β′Zi/2

1 + eα+β′Zi/2

)fi2
(2.10)

where fij are the frequencies of counts j in the ith covariate combination with j = 1, 2.

We observe that (2.10) is equal to a binomial logistic likelihood except for the intercept:

M∏
i=1

(1− qi)fi1qfi2i =
M∏
i=1

(
1

1 + eα′+β′Zi

)fi1
×

(
eα
′+β′Zi

1 + eα′+β′Zi

)fi2
(2.11)

where α′ = log(1/2) + α. Hence a logistic regression model could be fitted to calculate

the maximum likehood estimates for the truncated Poisson model. We obtain α̂′ and β̂

by maximising the binomial likelihood. We can successively estimate λi as

λ̂i = 2
q̂i

1− q̂i
= 2eα̂

′+β̂′Zi for i = 1, . . . ,M. (2.12)
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An estimate of f0 can be obtained as the sum of the estimates for each stratum since

f0 =
∑M

i=1 fi0. The application of theorem 2.1 in each stratum f̂0i leads to (2.7) for each

covariate combination:

f̂i0 =
Po(0|λ̂i)
Po(1|λ̂i)

(fi1 + fi2) =
e−λ̂i

λ̂ie−λ̂i + λ̂2
i e
−λ̂i/2

(fi1 + fi2) =
fi1 + fi2

λ̂i + λ̂2
i /2

(2.13)

Finally, the estimator arises summing up over all the covariate combinations.

N̂GC = n+
M∑
i=1

Po(0|λ̂i)
Po(1|λ̂i)

(fi1 + fi2) = n+
M∑
i=1

fi1 + fi2

λ̂i + λ̂2
i /2

. (2.14)

Theorem 2.2. The generalised Chao’s estimator is asymptotically unbiased when the

Poisson regression model holds. That means that

E(N̂GC)

N
−→
N→∞

1

Proof.

We note that E(n|λ̂1, ..., λ̂N ) =
∑N

i=1[1−Po(0|λ̂i)] and E(∆i|λ̂i) = Po(1|λ̂i)+Po(2|λ̂i),
where

∆i =

{
1, yi ∈ {1, 2}
0, otherwise

with yi representing the number of times individual i was captured.

Hence,

E(N̂GC |λ̂1, ..., λ̂N ) =
N∑
i=1

[1− Po(0|λ̂i)] +
N∑
i=1

Po(1|λ̂i) + Po(2|λ̂i)
λ̂i + λ̂2

i /2

which becomes
N∑
i=1

[1− Po(0|λ̂i)] +
N∑
i=1

Po(0|λ̂i)
λ̂i + λ̂2

i /2

λ̂i + λ̂2
i /2

= N.

Then the argument is completed by observing that limN→∞E(λ̂i) = λi.

2.2 Variance estimate of N̂GC

For the calculation of the variance we apply the technique of conditional moments (Ross,

1985), applied also by Böhning (2008) and Van der Heijden et al. (2003a). The variance

can be written as the sum of two terms:
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V ar(N̂GC) = V ar
[
E(N̂GC |∆i, i = 1, .., N)

]
+ E

[
V ar(N̂GC |∆i, i = 1, .., N)

]
, (2.15)

where

∆i =

{
1, yi ∈ {1, 2}
0, otherwise

,

The first term estimates the variability coming from the sampling of units. Our gener-

alised Chao’s estimator can be written as

E(N̂GC |∆i, i = 1, . . . , N) = E

(
n+

N∑
i=1

∆i

λ̂i + λ̂2
i /2

)
= E

(
N∑
i=1

∆i +
N∑
i=1

γi +
N∑
i=1

∆i

λ̂i + λ̂2
i /2

)

where

γi =

{
1, yi ≥ 3

0, otherwise

and

λi = eα+β′Zi .

λi was described previously as the link between the covariate information and the Poisson

parameter.

E(N̂GC |∆i, i = 1, . . . , N) can be written:

E(N̂GC |∆i, i = 1, . . . , N) ≈
N∑
i=1

∆i

(
1 +

e−λi

pi

)
= ∆iωi, (2.16)

where ωi = (1 + e−λi
pi

) for simplification in the notation.

pi is the probability that ∆i = 1:

pi = p(∆i = 1|λi) = Po(Yi = 1|λi) + Po(Yi = 2|λi) = λie
−λi + λ2

i e
−λi/2.

∆i follows a binomial distribution, hence E(∆i) = pi and V ar(∆i) = pi(1− pi). There-

fore, we have

V ar
(
E(N̂ |∆1, ...,∆N )

)
'

N∑
i=1

ω2
i V ar(∆i) =

N∑
i=1

ω2
i pi(1− pi)
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Finally, this variance can be estimated using the Horvitz-Thompson estimator

V̂ ar(E(N̂ |∆1, ...,∆N )) '
N∑
i=1

∆i

p̂i
ω̂2
i p̂i(1− p̂i) =

f1+f2∑
i=1

(1− p̂i)

(
p̂i + e−λ̂i

p̂i

)2

(2.17)

For the second term, we have to calculate E
[
V ar(N̂GC |∆i, i = 1, .., N)

]
that reflects the

sampling variation in the truncated Poisson distribution conditional on ∆i. We focus on

estimating V ar(N̂GC |∆i, i = 1, .., N) using the multivariate δ-method and we will then

take a moment estimator for the calculation of the expected value:

V ar(N̂GC |∆i, i = 1, .., N) = V̂ ar

(
N∑
i=1

∆i

λ̂i + λ̂2
i /2

)
= ∇g(α̂′, β̂)′ĉov(α̂′, β̂)∇g(α̂′, β̂)

(2.18)

where ∇g(α̂′, β̂) =


∂g
∂α′
∂g
∂β1

...
∂g
∂βp

 =



∑f1+f2
i=1

λ̂i+λ̂
2
i

(λ̂i+λ̂2i /2)2∑f1+f2
i=1

λ̂i+λ̂
2
i

(λ̂i+λ̂2i /2)2
zi1

...∑f1+f2
i=1

λ̂i+λ̂
2
i

(λ̂i+λ̂2i /2)2
zip

 ,

and λi = 2eα
′+β′zi and its estimate λ̂i = 2eα̂

′+β̂′zi is calculated by replacing the param-

eters α′ and β.

The covariance matrix ĉov(α̂′, β̂) of the regression parameters estimates is available from

the logistic regression as the inverse of the Fisher information matrix. The final variance

estimate of V ar(N̂GC) is the result of the sum of (2.17) and (2.18).

2.3 Simulations

In this section we assess the performance of our estimator by running simulations for

several scenarios. Whenever possible we compare our Generalised Chao’s estimator (GC)

with the following estimators:

• Classic Chao’s lower bound estimate (Chao, 1987):

N̂Chao = n+
f2

1

2f2
. (2.19)

• Turing estimator. It provides accurate estimates under homogeneity (Good,

1953):

N̂Turing =
n

1− f1/S
(2.20)
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where S = f1 + 2f2 + ...+mfm where m is the maximum number of captures.

The background of the Turing estimator is based on the sample coverage estimator

1 − f1/S (Chao et al., 1992). In the case of equal capture probability for all

individuals, the sample coverage is n/N which, if equated to 1 − f1/S leads to

N̂Turing estimator (Darroch and Ratcliff, 1980).

• Zero-Truncated Poisson regression with covariates (ZTP) (Van der Heij-

den et al., 2003a,b). The capture probability is modelled based on a zero-truncated

Poisson regression model. The population size estimate is calculated using the

Horvitz-Thompson estimator:

N̂ZTP =
n∑
i=1

1

1− e−eα̂+β̂
′Zi
, (2.21)

where α̂+ β̂′Zi is the fitted linear predictor of a zero-truncated Poisson regression,

and Zi is a vector of covariates related to the capture-recapture probability. The

estimator is asymptotically unbiased and efficient when the assumption of the

Poisson distribution is true.

• Zero-Truncated Negative binomial with covariates (ZNB) (Cruyff and

Van der Heijden, 2008). The heterogeneity in the probability of being captured is

modelled using a zero-truncated negative binomial model with covariate informa-

tion introduced in a similar way as in the ZTP model. It uses a gamma distribution

for the parameter of the Poisson model.

2.3.1 Simulation 1: All heterogeneity explained by covariate informa-

tion

2.3.1.1 Description of the simulation

In this simulated case study the data are generated following the next steps:

1. Two vectors X1 and X2 of size N are generated independently following normal

distributions with means 5 and 8 respectively and variances of 64 (X1 ∼ N(5, 64)

and X2 ∼ N(8, 64)).

2. Then, the capture-recapture distribution is generated following a Poisson distri-

bution Yi ∼ Po(λi) where λi is calculated from a log linear model:

λi = e−0.02X1i+0.03X2i with i = 1, . . . , N.
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3. Units which are not captured (Yi = 0) are removed to obtain the sample of captured

units.

4. Point and variance estimates are calculated including both covariates into the

regression models. Therefore, unbiased estimates are expected from models with

covariate information as the entire heterogeneity is explained.

5. Steps 1-4 are repeated 5000 times and statistical measurements such as mean,

standard deviation, relative mean squared error and relative bias across samples

are used to summarise the results.

2.3.1.2 Results

Table 2.3 shows the point estimates, the standard errors, the relative mean squared error

(RMSE) and relative bias (RBias) respectively. In order to compare the performance of

the estimators across multiple population sizes we use RMSE = E(N̂−N)2

N2 and RBias =
E(N̂−N)

N .

Chao and Turing’s estimators are biased because they are based upon Poisson homo-

geneity. Classic Chao’s estimator performed better under heterogeneity than Turing’s

estimator. Both estimators ZTP and GC obtain the true population size as expected

because the regression models of both estimators were fitted with the same covariates

used to generate the heterogeneity of the capture probability (Figure 2.3.1.2).

In this case, the ratio between the standard errors of the GC model over the ZTP

estimate is approximately 1.4 for large samples. There is a trade-off for the models

with covariates between the accuracy of the estimates and variability. This conclusion

becomes clear examining the RMSE and RBias results (Table 2.3). The ZTP-RMSE

presents better results than GC because of their differences in variability with similar

point estimates. On the other hand the GC-RMSE is similar to classic Chao’s estimator

because of the larger variance of the GC estimate in spite of its average point estimation

being a closer approximation to the true value of the population size. However, the

GC-RMSE becomes better than Chao’s RMSE when the population size increases. All

estimators reduce their RMSE when the population size increases, however the relative

biases of Turing’s and Chao’s estimators remain constant in contrast to GC and ZTP

that show a reduction in the relative bias when the population size increases.

Therefore, ZTP is the recommended estimator in a scenario where all assumptions hold.

The last column of table 2.2 shows the ratio between the standard errors calculated

from the analytical variance developed in section 2.2 and the estimated true variance

calculated as 1
R

∑R
r=1(N̂ r

GC − N̄GC)2. N̂ r
GC is the GC estimate in the rth simulation run

and R is the total number of replications. The ratio was 1.01 for population size larger

than 1000, which indicated a good approximation to the true variance.
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Table 2.2: Comparison of the empirical and analytical standard errors from the
estimates for the sample generated from Yi ∼ Po(e−0.02X1i+0.03X2i) model with
covariates X1 ∼ N(5, 64) and X2 ∼ N(8, 64) and both auxiliary variables used
in the model fitting.

N Empirical Analytical

SE(N̂GC) SE(N̂GC) AnalyticalSEGC
EmpSEGC

200 27.36 28.87 1.055
500 35.92 37.59 1.047
1000 49.20 49.79 1.012
2000 68.20 68.91 1.010
5000 106.21 107.45 1.011

Table 2.3: Point estimates and standard errors for the sample generated from
Yi ∼ Po(e−0.02X1i+0.03X2i) model with covariates X1 ∼ N(5, 64) and X2 ∼
N(8, 64) independent. Both covariates are included in the estimation process.

N GC ZTP Turing Chao

N̂ (SE)

200 209.47 (28.87) 203.98 (16.94) 192.99 (13.70) 198.12 (1.06)
500 509.71 (37.59) 503.34 (25.21) 480.19 (21.37) 490.29 (30.15)
1000 1007.64 (49.79) 1003.11 (34.99) 960.75 (30.06) 979.43 (42.22)
2000 2008.46 (68.91) 2002.74 (49.11) 1919.07 (43.23) 1954.05 (59.03)
5000 5007.80 (107.45) 5002.69 (77.29) 4798.39 (66.97) 4886.51 (93.22)

RMSE (x 100)

200 2.1788 0.7329 0.6027 1.0144
500 0.5705 0.2615 0.3375 0.4032
1000 0.2594 0.1278 0.2534 0.2277
2000 0.1188 0.0624 0.2086 0.1404
5000 0.0464 0.0244 0.1809 0.0876

RBias

200 0.0474 0.0199 -0.0351 -0.0094
500 0.0194 0.0067 -0.0396 -0.0194
1000 0.0076 0.0031 -0.0393 -0.0206
2000 0.0042 0.0014 -0.0405 -0.0230
5000 0.0016 0.0005 -0.0403 -0.0227
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Figure 2.1: Boxplots of N̂ for the scenario with Y ∼ Po(e−0.02X1+0.03X2) with covariates X1 ∼ N(5, 64) and X2 ∼ N(8, 64) and both
covariates used in the estimation process. A) N = 200, B) N = 500, C) N = 1000, D) N = 2000, E) N = 5000.
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2.3.2 Simulation 2: Including unexplained heterogeneity

The data are generated applying the same model with the two covariates presented in the

previous section 2.3.1.1. However, the capture-recapture estimates are calculated from

a model where X1 is the only covariate involved in the estimation. We are interested in

assessing the impact of unexplained heterogeneity as found in real life problems. 5000

repetitions of a population are generated for each scenario of interest and are summarised

calculating the mean of all R repetitions (N̂ = 1
R

∑R
j=1 N̂j).

Once the assumptions for the ZTP estimator do not hold, the estimator underperforms

compared to classical Chao’s and GC estimators. Turing, as previously seen, underes-

timates severely because its assumption of homogeneity is not fulfilled. GC estimator

presents a good performance although it underestimates the population size because of

the additional heterogeneity coming from X2. GC estimator becomes the best estimator

for sufficiently large samples when looking at the relative mean squared error (table 2.5).

Chao’s estimator also presents smaller RMSE than ZTP. We observe that the bias of the

estimator increase asymptotically, leading to an increase in the relative bias; in contrast

to a decrease of the variance which causes the RMSE values to decrease asymptotically.

The standard errors of our estimator were about 1.5 and 1.05 times the standard errors

of the ZTP estimator and Chao’s estimator. When comparing Chao’s and ZTP standard

errors, Chao’s estimates present higher variability because it uses less individuals due to

the right-truncation. We observe the same result in the comparison between ZTP and

GC estimators.

Table 2.4: Standard error estimates for the model presented in section 2.3.1.1
using only X1 as covariate

N Empirical Analytical

SE(N̂GC) SE(N̂GC) AnalyticalSEGC
EmpSEGC

200 21.84 22.94 1.050
500 31.34 32.53 1.038
1000 44.54 44.71 1.004
2000 61.72 62.44 1.012
5000 97.50 97.81 1.003
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Table 2.5: Point estimates of N̂ for the scenario with Yi ∼ Po(e−0.02X1i+0.03X2i)
with covariates X1 ∼ N(5, 64) and X2 ∼ N(8, 64) and the estimation process
based only in X1.

N GC ZTP Turing Chao

N̂ (SE)

200 202.00 (22.94) 195.60 (14.05) 193.03 (13.70) 197.91 (19.95)
500 496.11 (32.53) 484.06 (21.27) 480.82 (21.53) 490.86 (30.22)
1000 987.08 (44.71) 966.40 (29.77) 960.74 (30.04) 979.93 (42.22)
2000 1970.71 (62.44) 1930.65 (41.90) 1919.92 (43.23) 1955.70 (59.21)
5000 4919.52 (97.81) 4822.45 (65.96) 4798.77 (67.75) 4877.22 (93.25)

RMSE (x 100)

200 1.183 0.547 0.591 0.973
500 0.415 0.293 0.338 0.402
1000 0.205 0.204 0.243 0.214
2000 0.115 0.167 0.207 0.137
5000 0.064 0.144 0.181 0.087

RBias

200 0.010 -0.022 -0.035 -0.012
500 -0.008 -0.032 -0.038 -0.018
1000 -0.013 -0.034 -0.039 -0.020
2000 -0.015 -0.035 -0.040 -0.022
5000 -0.016 -0.036 -0.040 -0.025
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Figure 2.2: Boxplots of N̂ for the scenario with Yi ∼ Po(e−0.02X1i+0.03X2i) with covariates X1 ∼ N(5, 64) and X2 ∼ N(8, 64) and X1

used only in the estimation process. A) N = 200, B) N = 500, C) N = 1000, D) N = 2000, E) N = 5000.
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2.3.3 Simulation 3: Poisson with contamination

A binary auxiliary variable Zi is used to split the data in two populations. The capture

distribution is simulated from a Poisson distribution Yi ∼ Po(eα+β′Zi). The normal

population is defined with Zi = 0 and eα = 0.5. A contaminated part is included with

Zi = 1 and eα+β = 3. Two proportions are chosen for the contaminated part, 0.5 ×N
and 0.1 × N , with true population sizes 500, 1000, 2000 and 5000. Each scenario is

repeated 5000 times and average estimates are calculated to obtain the final summary.

Chao’s and Turing’s estimator underestimate the true value N , although Chao’s estima-

tion, as seen before, copes with some heterogeneity and provides a relatively good lower

bound estimation for the scenario with a small contamination (10%) (Figure 2.3.3). All

estimators using the complete covariate information obtain accurate estimates as ex-

pected. The ZTP estimator is again the best based on the RMSE because of its smaller

variance. The ZNB estimator also presents slightly better RMSE than the GC estimator

although it only converges in half of the repetitions. The conclusion that truncation leads

to higher variability is highlighted again because of the smaller number of individuals

used. However, ZTP and GC are similar based on the relative bias and both are slightly

better than ZNB estimator because of the convergence problems of this estimator (Table

2.6).
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Table 2.6: Point estimates, RMSE and relative bias for a capture-recapture Poisson distribution with contamination: Yi ∼ Po(eα+β′Zi)
with i = 1, .., N . Yi ∼ Po(0.5) for Zi = 0 and Yi ∼ Po(3) for Zi = 1. Two scenarios based on the probability of P (Zi = 1) = 0.5 and
P (Zi = 1) = 0.1

N N̂GC(SEN̂GC ) N̂ZTP (SEN̂ZTP ) N̂Turing(SEN̂Turing) N̂Chao(SEN̂Chao) N̂ZNB(SEN̂ZNB )

P (Zi = 1) = 0.5

500 510.099 (59.661) 507.454 (46.205) 385.937 (12.675) 422.968 (21.705) 515.793 (55.294)
1000 1010.196 (78.077) 1006.764 (61.464) 771.462 (17.962) 844.037 (30.185) 1018.610 (64.035)
2000 2011.925 (106.301) 2010.498 (84.958) 1544.227 (25.841) 1688.222 (42.396) 2024.900 (87.977)
5000 5011.728 (164.506) 5008.882 (131.813) 3858.160 (39.951) 4215.017 (66.613) 5034.720 (136.663)

P (Zi = 1) = 0.1

500 512.404 (59.661) 510.188 (33.208) 484.554 (7.461) 489.561 (10.437) 514.584 (33.799)
1000 1013.657 (64.157) 1009.105 (40.474) 951.486 (10.487) 959.956 (14.682) 1015.120 (39.539)
2000 2011.473 (58.954) 2007.910 (43.088) 1903.058 (15.008) 1919.414 (20.855) 2015.960 (45.315)
5000 5009.335 (82.694) 5006.090 (62.563) 4757.531 (23.748) 4797.306 (32.807) 5018.060 (63.824)

N N̂GC N̂ZTP N̂Turing N̂Chao N̂ZNB N̂GC N̂ZTP N̂Turing N̂Chao N̂ZNB

P (Zi = 1) = 0.5 P (Zi = 1) = 0.1

RMSE

500 1.392 0.853 5.268 2.583 1.051 0.655 0.483 0.255 0.198 0.542
1000 0.630 0.385 5.255 2.535 0.430 0.331 0.172 0.246 0.182 0.179
2000 0.292 0.188 5.210 2.482 0.205 0.082 0.047 0.240 0.173 0.058
5000 0.107 0.068 5.222 2.485 0.076 0.027 0.016 0.237 0.169 0.018

RBias

500 0.020 0.015 -0.228 -0.154 0.032 0.025 0.020 -0.031 -0.021 0.029
1000 0.010 0.007 -0.229 -0.156 0.019 0.014 0.009 -0.049 -0.040 0.015
2000 0.006 0.005 -0.228 -0.156 0.013 0.006 0.004 -0.048 -0.040 0.008
5000 0.002 0.002 -0.228 -0.157 0.007 0.002 0.001 -0.048 -0.041 0.004
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Figure 2.3: Boxplots for the simulated capture-recapture Poisson distribution with contamination. Horizontal line indicates the true
population size of the scenario. Two scenarios: size of contamination group 50% (left side) or 10% (right side)
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2.3.4 Simulation 4: Model with misclassification

In this section we evaluate a situation where we misclassify individuals. We aim to assess

the impact of having wrong information in our covariates.

For this simulation we use the model in the third experiment Yi ∼ Po(eα+βZi) with

Zi as binary covariate. In this case the size of the first group is defined as 0.45 × N
at the time of generating the data, however the calculations of the estimates are made

assuming that 10% and 20% of the individuals of the total population are misclassified

being considered from the first component rather than the second component. Each

scenario is repeated 5000 times and average estimates are calculated.

The results (table 2.7) show that all estimators underestimate the true population size,

but GC was the least biased. Chao’s and Turing’s estimates are not affected by the

misclassification because they do not use covariate information. In fact the impact of

the misclassification in the ZNB and ZTP estimators makes them inferior to Chao’s

estimator in this scenario. The ZNB model converges on this occasion and its seem to

produce slightly better estimates than the ZTP estimator

Our estimator appears to be robust despite introducing wrong information into the

logistic model. Part of the distribution of GC estimates contains the true value (Figure

2.3.4) and there is a clear negative effect when the proportion of misclassified individuals

increases. On the basis of RMSE and relative bias GC is superior in this particular

scenario and it is less sensitive to contamination in the covariate information than the

other estimators.
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Table 2.7: Point estimates, RMSE and relative bias for a fitted model with misclassified observations Yi ∼ Po(eα+βZi) with i = 1, .., N .
Yi ∼ Po(0.5) for Zi = 0 and Yi ∼ Po(3) for Zi = 1. The probability of P (Zi = 1) = 0.45. Two scenarios were generated with 10% and
20% of the population misclassified.

N N̂GC(SEN̂GC ) N̂ZTP (SEN̂ZTP ) N̂Turing(SEN̂Turing) N̂Chao(SEN̂Chao) N̂ZNB(SEN̂ZNB )

10% misclassified individuals

500 468.219 (35.837) 400.913 (14.163) 396.000 (12.030) 427.099 (20.627) 415.66 (17.193)
1000 929.164 (47.908) 800.777 (19.968) 791.596 (17.089) 852.123 (29.326) 829.499 (23.826)
2000 1855.799 (66.441) 1602.074 (28.150) 1584.467 (24.115) 1705.119 (41.237) 1657.81 (33.59)

20% misclassified individuals

500 449.485 (28.010) 390.430 (11.967) 395.851 (11.989) 426.839 (20.942) 412.547 (17.097)
1000 895.159 (38.207) 780.624 (16.747) 791.885 (16.713) 852.591 (28.798) 824.161 (23.756)
2000 1787.892 (53.248) 1561.768 (23.733) 1584.36 (23.931) 1704.258 (41.626) 1647.230 (34.296)

N N̂GC N̂ZTP N̂Turing N̂Chao N̂ZNB N̂GC N̂ZTP N̂Turing N̂Chao N̂ZNB

10% misclassified individuals 20% misclassified individuals

RMSE

500 0.893 4.008 4.384 2.296 2.963 1.339 4.859 4.396 2.316 3.176
1000 0.732 4.009 4.372 2.273 2.964 1.245 4.841 4.359 2.256 3.148
2000 0.632 3.978 4.331 2.216 2.956 1.200 4.815 4.333 2.230 3.140

RBias
500 -0.064 -0.198 -0.208 -0.146 -0.169 -0.101 -0.219 -0.208 -0.146 -0.175
1000 -0.071 -0.199 -0.208 -0.148 -0.171 -0.105 -0.219 -0.208 -0.147 -0.176
2000 -0.072 -0.199 -0.208 -0.147 -0.171 -0.106 -0.219 -0.208 -0.148 -0.176
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Figure 2.4: Two main scenarios with 10% and 20% misclassified individuals in the population. A) N = 500 and 10% misclassified
individuals, B) N = 500 and 20% misclassified individuals, C) N = 1000 and 10% misclassified individuals, D) N = 1000 and 20%
misclassified individuals, E) N = 2000 and 10% misclassified individuals, F) N = 2000 and 20% misclassified individuals
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2.3.5 Simulation 5: Data generated from a negative binomial distri-

bution

We evaluate the performance of our estimator under heterogeneity generated by a neg-

ative binomial distribution. The capture-recapture distribution Yi|Zi ∼ NB(µi, θ) with

µi = eα+β′Zi , α = 0, β = 0.02, θ = 3 and Zi ∼ N(8, 25). Zero counts are removed and

the remain counts represent the sampling distribution used to calculate the estimates.

The ZNB estimator presents the best relative bias because of its assumptions hold for

this experiment (table 2.8). GC is moderately underestimating (figure 2.3.5) although its

standard error is about 0.56 times the standard error of the ZNB estimate. The RMSE

and relative bias show that ZNB estimator is asymptotically unbiased in comparison

to the GC estimator where E(N̂)/N ≈ 0.9 for all population sizes included in the

simulation. The classical Chao’s estimator performs similarly to the GC estimator in

spite of not using any covariate information. The ZTP estimator severely underestimates

the true value, performing even worse than Turing estimator.

ZNB estimator works well under the assumption that the capture distribution is a neg-

ative binomial, but in other circumstances the zero-truncated negative binomial model

tends to have convergence problems like in the first experiment where the ZNB estimator

could not be reported.
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Table 2.8: Comparison of capture-recapture estimates for captures following
a Negative Binomial distribution Yi|Zi ∼ NB(µi, θ) with µi = e0.02Zi , Zi ∼
N(8, 25) and θ = 3

N GC ZTP Turing Chao ZNB

N̂ (SE)

200 187.02 (22.29) 167.96 (12.47) 171.42 (12.93) 183.50 (20.01) 208.80 (46.45)
500 459.40 (31.80) 417.73 (19.22) 428.34 (20.03) 455.95 (30.18) 504.98 (58.02)
1000 913.06 (43.84) 833.78 (27.09) 855.85 (28.41) 909.04 (41.98) 1005.80 (78.72)
2000 1819.01 (60.35) 1664.40 (37.55) 1709.59 (39.31) 1813.60 (58.75) 2003.66 (107.31)
5000 4542.05 (94.85) 4159.92 (58.87) 4274.65 (61.95) 4532.13 (92.56) 5005.08 (168.75)

RMSE (x 100)

200 1.644 2.881 2.397 1.674 5.587
500 1.061 2.845 2.210 1.158 1.356
1000 0.953 2.834 2.158 1.017 0.623
2000 0.916 2.850 2.148 0.963 0.288
5000 0.881 2.851 2.129 0.915 0.114

RBias

200 -0.065 -0.160 -0.143 -0.083 0.044
500 0.099 -0.165 -0.143 -0.088 0.010
1000 -0.087 -0.166 -0.144 -0.091 0.006
2000 -0.091 -0.168 -0.145 -0.093 0.002
5000 -0.092 -0.168 -0.145 -0.094 0.001
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Figure 2.5: Simulation based on a negative binomial Yi|Zi ∼ NB(µi, θ) with µi = e0.02Zi , Zi ∼ N(8, 25) and θ = 3. Horizontal line
indicates the true population size of the scenario. A) N = 500 B) N = 1000 C) N = 2000 D) N = 5000.
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2.4 Case studies

2.4.1 Carcass submission from animal farms in Great Britain

Private veterinary surgeons (PVS) regularly send animal submissions to the Animal

Health and Veterinary Laboratories Agency (AHVLA) to determine the cause of death

based on a post-mortem test, to test an animal sample to confirm a disease or to find

out whether an animal needs further testing. The PVS might choose to submit or not

submit a sample depending on the disease. Only notifiable diseases are compulsory to

investigate and report to the authorities. AHVLA could miss submissions for several

reasons, for instance, a PVS might have facilities to run some diagnostic tests, he/she

might not submit a sample because there is history of a confirmed disease in the farm

and the animal presents similar symptoms. The cost is also an important factor, as

farmers might not even call a PVS when they believe that the disease is not going to

spread to other animals. In fact, the Department of Food and Rural Affairs (DEFRA)

used to subsidise some diagnostic tests but the current economic climate is leading to

move all costs to farmers.

Our objective is to evaluate the completeness of the farm submissions in Great Britain

to understand which proportion of the general picture is being explained. In 2009, the

number of farms with cattle was estimated to be 60,571 farms. 48,535 of those farms

did not have any submissions that year. From those 12,036 farms that submitted we

aim to estimate the total number of farms with unknown disease that did not submit.

Three risk factors related to animal submissions were identified in previous studies car-

ried out at AHVLA: holding type (beef or dairy), holding size and distance to the

regional labs. Large holdings are expected to have a larger submission rate because of

the potential costs involved if the disease spreads within the farm and their financial

resources. The distance from the farm to the closest regional lab is also specially im-

portant for carcass samples, because farmers are obliged to cover delivery costs to the

regional lab. On the positive side, a carcass sample has higher probability of identifying

the disease. In this problem the re-capture comes from the second or more submissions

from the same farm, so the dependent variable is the number of submissions from each

farm.

The total number of carcass submissions and the total number of submissions including

other types of samples (like blood or faecal samples) are the primary endpoints. Table 2.9

contains the data in the format of frequency of frequencies. A ratio plot (Rocchetti et al.,

2011; Böhning et al., 2013a) is produced to evaluate the existence of heterogeneity in the

probability of submitting animal samples and to identify the right statistical distribution

to model the capture-recapture probability. Table 2.10 contains the ratios and their 95%

confidence limits. In our case, Figure 2.4.1 presents a structural heterogeneity, which
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questions the use of an homogeneous Poisson and suggests the use of a heterogeneous

distribution, such as the negative binomial distribution.

Table 2.9: Frequency distribution of number of farms submitting any type of
samples (first row) and number of farms submitting carcass samples (second
row) to AHVLA regional laboratories in 2009.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11+ total

48535 6340 2520 1149 709 380 249 173 135 94 80 207 60571
58713 1532 231 51 27 6 5 2 1 3 0 0 60571

Table 2.10: Ratios (r(x) = (x + 1)fx+1/fx) and confidence bands for the ratio
plot (Figure 2.4.1).

Any sample Carcass
ratio r̂x r̂x 95% CL r̂x r̂x 95% CL

r1 0.26 (0.25-0.27) 0.05 (0.05-0.05)
r2 1.19 (1.14-1.25) 0.45 (0.39-0.52)
r3 1.82 (1.70-1.96) 0.88 (0.65-1.20)
r4 3.09 (2.81-3.39) 2.65 (1.66-4.22)
r5 3.22 (2.84-3.64) 1.33 (0.55-3.23)
r6 4.59 (3.91-5.38) 5.83 (1.78-19.11)
r7 5.56 (4.58-6.75) 3.20 (0.62-16.49)
r8 7.03 (5.61-8.8) 4.50 (0.41-49.63)
r9 6.96 (5.35-9.06) 30.00 (3.12-288.42)
r10 9.36 (6.95-12.61)
r11 31.05 (23.99-40.19)

The probability of submitting any type of animal samples is found significantly related

to the holding size (log-scale) and the type of the farm (dairy or beef) (Table 2.11).

In contrast, the total number of carcass submissions depends on the distance and the

holding size (log-scale). Non-carcass samples (blood, faecal, etc...) represent a majority

of the total samples which do not depend that much on the distance to the regional

lab because they are normally sent by post. However, as mentioned previously, farmers

need to cover the expensive cost of sending carcass samples to the regional labs.

There are large differences between estimates. The zero truncated Poisson model with

covariates provides an estimate which is lower to the one provided by the conventional

Chao’s estimator that is proven to be a lower bound estimator. The Good-Turing es-

timator also underestimates due to the non-homogeneous captured probability. GC

estimator is significantly larger than Chao’s lower bound estimator. The percentage

of farms detected with all type of submissions based on generalised Chao’s estimate is

between 12,036×100
22,429 (53.7%) and 12,036×100

20,885 (57.6%). The completeness of carcass submis-

sions is between 21% to 28.5%, which suggests that a further investigation should be
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carried out to find out the main causes of missing submissions to establish new policies

for increasing submission rates.

Table 2.11: Results from the logistic regressions to obtain the Generalised Chao
estimates. Chao, Zero-truncated Poisson and Turing estimates are also reported
for total number of farms submitting any sample and total number of farms
submitting carcass samples.

Logistic regression analysis TOTAL NUMBER OF SUBMISSIONS
covariate coef SE-coef Z p-value

log-size 0.33 0.03 12.5 0.00
type(1=dairy 0=beef) 0.29 0.05 5.55 0.00

log-distance -0.01 0.04 -0.10 0.92

Estimated farms submitting any animal sample (95% CI):
[based on TOTAL NUMBER OF SUBMISSIONS]

n G-Chao Chao Turing ZTP
12036 21657 20011 15532 18346

(20885,22429) (17932,18760) (15349,15716) (19993,20029)

Logistic regression analysis NUMBER OF CARCASS SUBMISSIONS
covariate coef SE-coef Z p-value

log-size 0.32 0.08 4.10 0.00
type(1=dairy 0=beef) 0.05 0.16 0.38 0.71

log-distance -0.15 0.09 -1.66 0.09

Estimated farms submitting carcasses (95% CI):
[based on NUMBER OF CARCASS SUBMISSIONS ONLY]

n G-Chao Chao Turing ZTP
1858 7688 6938 5279 6008

(6523, 8853) (6868,7009) (4645,5913) (5293, 6723)
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Figure 2.6: Ratio plot to investigate the presence of heterogeneity in the number of animal submissions and carcass submissions
respectively. r(x) = (x+ 1)fx+1/fx
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2.4.2 Drug users in Bangkok

Böhning estimated the size of the hidden population of heroin and methamphetamine

drug users in Bangkok in 2001 and 2002 (Böhning et al., 2004). Ratio plots (Böhning

et al., 2013a; Rocchetti et al., 2011) are firstly calculated to determine whether there is

heterogeneity in which case the ratio plot also provides information about the type of

heterogeneity (Figure 2.4.2). All graphs suggest a structural heterogeneity. Age and gen-

der are chosen as covariates related to the probability of being identified in the registries.

Both years are analysed independently to fulfil the assumption of closed populations.

Individual logistic models are fitted for each drug and year with the outcome variable

being the probability of appearing in the registries twice.

Both covariates are found to be significant in all models with the exception of age in the

heroin model in 2002 (table 2.12). GC point estimates are consistently larger than the

other estimates. However, its confidence intervals for both drugs in 2002 overlap with

the confidence limits of classic Chao’s estimator. Although Chao’s confidence interval

seems to be quite narrow in comparison to the confidence intervals of the other estimates.

The zero-truncated Poisson estimator clearly underestimates in all scenarios with similar

results to Turing’s estimator.

Table 2.12: Results from the logistic regression models for the calculation of
GC estimates, for both drugs and years

Heroin drug users 2001
covariate coef SE-coef Z p-value

Gender -1.095 0.136 -8.040 <0.001
Age 0.014 0.004 3.720 < 0.001

Heroin drug users 2002
covariate coef SE-coef Z p-value

Gender -0.839 0.141 -5.964 < 0.001
Age 0.005 0.005 1.136 0.256

Methamphetamine drug users 2001
covariate coef SE-coef Z p-value

Gender -1.369 0.314 -4.356 < 0.001
Age 0.038 0.007 5.694 < 0.001

Methamphetamine drug users 2002
covariate coef SE-coef Z p-value

Gender -0.855 0.296 -2.889 0.004
Age 0.029 0.008 3.682 < 0.001
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Table 2.13: Point estimates and asymptotic confidence limits of the number of
heroin and metamphetamine drug users in Bangkok

Case N̂GC N̂ZTP N̂Turing N̂Chao

(95% CL) (95% CL) (95% CL) (95% CL)

Heroin 2001 10661 7605 7802 9825
(10001,11320) (7398,7813) (7639,7965) (9805,9845)

Heroin 2002 8121 5885 6202 7805
(7677,8566) (5760,6009) (6075,6330) (7786,7825)

Methamphetamine 2001 14539 10990 9483 10967
(11205,17873) (9397,12583) (8123,10844) (10879,11056)

Methamphetamine 2002 8390 5808 5944 7498
(7002,9779) (5248,6369) (5159,6730) (7421,7576)

Table 2.14: Ratios and 95% confidence limits for the Bangkok drug users case
study

Case r1 r2 r3 r4 r5 r6 r7 r8 r9

Heroin 2001
1.45 2.1 3.18 3.68 4.94 4.82 1.46 5.06 0

(1.37-1.53) (1.97-2.24) (2.96-3.43) (3.38-4.01) (4.49-5.44) (4.32-5.39) (1.18-1.82) (3.63-7.07)

Heroin 2002
1.5 2.65 3.39 3.44 3.52 3.91 4.57 1.84 2.78

(1.42-1.6) (2.48-2.83) (3.15-3.64) (3.16-3.73) (3.17-3.91) (3.4-4.49) (3.8-5.5) (1.29-2.63) (1.38-5.6)

Metha 2001
0.53 0.85 1.16 1.56 4.8

(0.48-0.58) (0.72-1.01) (0.84-1.6) (0.88-2.79) (2.25-10.25)

Metha 2002
0.41 0.95 1.84 4.17

(0.37-0.46) (0.8-1.12) (1.41-2.41) (2.84-6.11)
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Figure 2.7: Ratio plots for Bangkok drug users case study. From upper left to lower right: Heroin users 2001, heroin users 2002,
methamphetamine users 2001 and methamphetamine users 2002.
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2.5 Conclusions

In this chapter, we have developed a framework to extend Chao’s lower bound estimator

to include covariate information of the observed units in order to model the heterogeneity

of the capture-recapture probability and obtain less biased estimates. A key finding in

the chapter was the proportionality between the likelihood of a truncated Poisson model

with non-truncated counts of ones and twos and the likelihood of a binomial logistic

regression model. Such relation provided a straightforward process to calculate our

estimates with a standard statistical software. We also provided analytical formulae for

the variance of the estimator that was proven to be very close to the empirical variance

in our simulations.

The properties of our estimator were investigated by running simulations and comparing

the generalised Chao estimator with other popular estimators. We initially showed that

providing all covariates involved in the simulated heterogeneity of a Poisson distribu-

tion the zero-truncated Poisson estimator and the generalised Chao estimator obtained

accurate estimations but the former estimator was better because its variability was

smaller. Chao’s estimator provided robust estimation for scenarios where the hetero-

geneity is not large. Turing’s estimator presented the smallest variability because it is

the closest to the maximum likelihood estimator assuming homogeneity. The second

experiment, where contamination was introduced as a binary covariate, revealed a good

performance of the generalised Chao estimator, although, on the basis of the relative

mean squared error, the estimators from the zero-truncated Poisson and zero-truncated

negative binomial model were slightly better due to their small variability.

Potential bias to test our estimator was introduced in three-fold: 1) Using part of the

covariate information available when fitting the regression models to obtain our esti-

mates of the population size; 2) generating a wrong covariate misclassifying part of

the population; 3) generating data based on a negative binomial distribution. The

zero-truncated Poisson estimator underperformed when the assumptions did not hold,

performing sometimes even worse than the Turing estimator. The generalised Chao’s

estimator was robust across all scenarios and we highlighted the trade-off between the

variance and the accuracy when using covariates and truncation. The zero-truncated

negative binomial model could not be applied in all scenarios and it showed convergence

problems in many cases.

In the following chapter, we develop the framework to consider different truncation

cut-off points.





Chapter 3

Generalised Chao estimator

considering all frequency counts

The generalised Chao estimator presented in the previous chapter was developed from

a truncated Poisson distribution with only counts of ones and twos non-truncated. In

this chapter we aim to extend the generalised Chao estimator by increasing the num-

ber of non-truncated counts to assess whether more information leads to more efficient

estimators.

We initially develop the simplest case with 3 non-truncated counts and no covariates.

Then we extend the estimate to J counts without covariates (J ≥ 2) and later we follow

the same procedure to obtain the final estimate with J counts and covariates. We also

deduce an analytical formula for the variance and simulations are conducted to evaluate

the impact of increasing the number of non-truncated counts.

3.1 Extension of Chao’s estimator without covariate infor-

mation

Two methods are applied to obtain estimates: a) The first method consists in using

the EM algorithm (Dempster et al., 1977) based on a complete likelihood and latent

variables. b) The second method is based on directly maximising the truncated likelihood

using numerical optimisation algorithms like Nelder-Mead (Nelder and Mead, 1965) or

BFGS (Broyden-Fletcher-Goldfarb-Shanno) (Broyden, 1969; Fletcher, 1970; Goldfarb,

1970; Shanno, 1970) algorithms which are provided under the R internal command optim.

43
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3.1.1 Complete likelihood

The EM algorithm (Dempster et al., 1977) assumes that observed data represent only

a part of so called complete data, where missing information should be considered as

well. The EM algorithm consists of two stages, expectation and maximisation. In order

to maximise the likelihood function, the posterior expectations of the complete data

likelihood need to be estimated, but in order to estimate those expectations we need to

obtain the estimation of the parameter of interest from the likelihood. Initial values of

the parameter of interest are normally provided to start the iterative algorithm.

In our case, the complete likelihood for a Poisson distribution for J non-truncated counts

with m being the maximum number of captures can be written as

L(λ) =
m∏
j=0

p
fj
j

where

pj = e−λλj/j!

is the probability of being captured j times, while fj is the number of units captured

exactly j times. Therefore, the expected complete log-likelihood is defined as

`(λ) = e0 log(p0) + f1 log(p1) + ...+ fJ log(pJ) + eJ+1 log(pJ+1) + ...+ em log(pm) (3.1)

where f1, . . . , fJ represent the observed frequencies of the non-truncated counts consid-

ered to obtain our estimate. Hence, the rest of the frequencies of counts are assumed to

be unobserved and their expectations are used (ek = E(fk|λ)), k ∈ {0, J + 1, . . . ,m}).

Replacing the probabilities in the likelihood we obtain

`(λ) = e0 log(e−λ) + f1 log(e−λλ) + ...+ fJ log(e−λλJ/J !) + eJ+1 log(e−λλJ+1/(J + 1)!)

+ ...+ em log(e−λλm/m!)

= −λ(e0 + f1 + ...+ fJ + eJ+1 + ...+ em)

+ log(λ)(f1 + 2f2 + ...+ JfJ + (J + 1)eJ+1 + ...+mem)

− (f2 log(2!) + ...+ fJ log(J !) + eJ+1 log(J + 1!) + ...+ em log(m!) (3.2)

3.1.1.1 M Step

The likelihood can be maximised calculating the first derivative and solving the score

equation d`(λ)
dλ = 0.

d`(λ)

dλ
= (e0 + f1 + ...+ fJ + eJ+1 + ...+ em)+

(f1 + 2f2 + ...+ JfJ + (J + 1)eJ+1 + ...+mem)

λ
= 0
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leading to

λ̂ =
(f1 + 2f2 + ...+ JfJ + (J + 1)eJ+1 + ...+mem)

(e0 + f1 + ...+ fJ + eJ+1 + ...+ em)
.

The EM algorithm leads to an updated parameter estimates:

λ̂ =
(f1 + 2f2 + ...+ JfJ + (J + 1)eJ+1 + ...+mem)

(e0 + f1 + ...+ fJ + eJ+1 + ...+ em)
. (3.3)

3.1.1.2 E step

Estimates for e0, eJ+1, . . . , em are necessary in order to calculate λ̂. We write:

E(fy|f1, .., fJ ;λ) = Po(y|λ)N = Po(y|λ)(e0 + f1 + ...+ fJ + eJ+1 + ...+ em) (3.4)

where J is the number of non-truncated counts, m is the maximum number of captures

and Po(y|λ) is the probability of being captured y times from a Poisson distribution.

The next step is the estimation of the latent variables e0 and
∑m

j=J+1 ej :

e0 +
m∑

j=J+1

ej =

(
1−

J∑
i=1

Po(y|λ)

)
(f1 + ...+ fJ) +

(
1−

J∑
i=1

Po(y|λ)

)
(e0 +

m∑
j=J+1

ej).

Therefore, solving for e0 +
∑m

j=J+1 ej

e0 +
m∑

j=J+1

ej =

(
1−

∑J
i=1 Po(y|λ)

)
(f1 + ...+ fJ)∑J

i=1 Po(y|λ)
. (3.5)

We substitute (3.5) in the calculation of (3.4) to obtain:

E(fy|f1, .., fJ ;λ) = Po(y|λ)(e0 + f1 + ...+ fJ + eJ+1 + ...+ em)

= Po(y|λ)(f1 + ...+ fJ) + Po(y|λ)
1−

∑J
x′=1 Po(y

′|λ)∑J
y′=1 Po(y

′|λ)
[f1 + ...+ fJ ]

=
Po(y|λ)∑J

y′=1 Po(y
′|λ)

[f1 + ...+ fJ ] =
λy/y!∑J

y′=1 λ
y′/y′!

[f1 + ...+ fJ ].

(3.6)

We are particularly interested in e0 = E(f0|f1, .., fJ ;λ):

E(f0|f1, .., fJ ;λ) =
1∑J

y′=1 λ
y′/y′!

[f1 + ...+ fJ ]. (3.7)
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An initial λ̂ estimate value λ0 is firstly chosen . Then λ0 is used in the expectations

formulae, which is needed in the likelihood to obtain a new maximum likelihood estimate

λ̂ = λ1. The process is repeated recursively until the difference | λk+1−λk | or | `r+1−`r |
is smaller than a chosen tolerance threshold.

3.1.2 Truncated likelihood

3.1.2.1 3-counts

In this section a truncated likelihood is initially developed for a Poisson distribution

with 3 non-truncated counts f1, f2, f3 and no covariate information included. Therefore

three probabilities p1, p2, p3 are calculated

py = P (Y = y|λ) =

e−λλy

y!∑3
j=1

e−λλj

j!

, for y ∈ {1, 2, 3}.

The Poisson truncated likelihood is defined as

L(λ|f1, f2, f3) = pf11 · p
f2
2 · p

f3
3 =

(
e−λλ∑3
j=1

e−λλj

j!

)f1 (
e−λλ2/2!∑3
j=1

e−λλj

j!

)f2 (
e−λλ3/3!∑3
j=1

e−λλj

j!

)f3
.

(3.8)

Consequently, the log-likelihood is:

`(λ|f1, f2, f3) = f1 × log(p1) + f2 × log(p2) + f3 × log(p3)

= (f2 + 2f3) log(λ)− (f1 + f2 + f3) log(6 + 3λ+ λ2) + f1 log(6) + f2 log(3)

and it is maximised solving the score equation d`(λ)
dλ =0. We obtain

d`(λ)

dλ
= −(f1 + f2 + f3)

2λ+ 3

6 + 3λ+ λ2
+
f2 + 2f3

λ

= −3f1λ+ 2f1λ
2 − 6f2 + f2λ

2 − 12f3 − 3f3λ

λ(6 + 3λ+ λ2)
= 0

Solving for λ results in:

λ̂ =
−3(f1 − f3) +

√
9(f1 − f3)2 + 24f2(2f1 + f2)

2(2f1 + f2)
(3.9)

The other possible solution

λ̂ =
−3(f1 − f3)−

√
9(f1 − f3)2 + 24f2(2f1 + f2)

2(2f1 + f2)
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from the quadratic equation is not feasible. This is clear if f1 ≥ f3. Otherwise 9(f1 −
f3)2 + 24f2(f1 + f2) > 9(f1 − f3)2. Hence the second solution is always negative.

An analytical solution is still available for the case of three non-truncated counts, but

next section shows that a numerical optimisation algorithm is necessary in order to

maximise the likelihood when more non-truncated counts are considered.

3.1.2.2 J-counts

The same process applied in the previous section (3.1.2.1), is followed to extend the

approach to use a Poisson distribution with J non-truncated counts, where J ≥ 2. The

truncated counts are Ω = {0, J + 1, . . . ,m}, with m the maximum number of captures

observed.

The likelihood is defined as

L(λ|f1, . . . , fJ) =
J∑
j=1

p
fj
j ,

where

py =

e−λλy

y!∑J
j=1

e−λλj

j!

, for y ∈ {1, . . . , J}.

The notation ω =
∑J

j=1
λj

j! is used for simplification in the following expressions.

The log-likelihood results in

`(λ|f1, . . . , fJ) = f1 × log(p1) + . . .+ fJ × log(pJ)

= f1 log

(
λ

ω

)
+ . . .+ fJ log

(
λJ/J !

ω

)
= f1 log(λ)− f1 log(ω) + . . .+ fJJ log(λ)− fJ log(ω)− log(J !)

= log(λ)(f1 + 2f2 + . . .+ JfJ)− log(ω)(f1 + f2 + . . .+ fJ)

− f2 log(2) + . . .− fJ log(J !) (3.10)

The maximum likelihood estimate λ̂ can be directly obtained from numerical optimisa-

tion algorithms like Nelder-Mead or BFGS as mentioned previously.

The next step is the estimation of E(f0|f1, . . . , fJ ;λ). The same reasoning as presented

in section 3.1.1.2 is followed and f̂0 is provided.

E(f0|f1, . . . , fj ;λ) =
1

ω
[f1 + ...+ fJ ] =

1∑J
y′=1 λ̂

y′/y′!
[f1 + ...+ fJ ]. (3.11)

where λ̂ was previously estimated.
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3.2 Generalised Chao estimator with covariates using J

counts

3.2.1 Complete likelihood

The EM algorithm based on the complete likelihood is applied as shown in section 3.1.1,

but this time covariate information is included in the model.

The covariate information is log-linked with λi.

λi = eα+β′Zi , (3.12)

where Zi represent a vector of p covariates, i is the index of the different covariate

combinations, i = 1, . . . ,MJ where MJ is the total number of strata when J counts are

non-truncated. ni =
∑J

j=1 fij is the number of units observed for the ith stratum, where

fij is the number of units captured j times with the ith set of characteristics.

The Poisson complete likelihood is defined as

L(λi) =

MJ∏
i=1

m∏
j=0

p
fij
ij (3.13)

where MJ is the number of covariate combinations, m is the maximum number of cap-

tures available and

pij = e−λiλji/j! , (3.14)

the probability of being captured j times for units in the ith covariate combination.

The expected complete log-likelihood is presented here because it is computationally

more efficient and easier to work with.

`(λi) =

MJ∑
i=1

ei0 log(pi0)+fi1 log(pi1)+...+fiJ log(piJ)+ei(J+1) log(pi(J+1))+...+eim log(pim),

(3.15)

where J is the number of counts included for the estimation.
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`(λ) =

MJ∑
i=1

(ei0 log(e−λi) + fi1 log(e−λiλi) + ...+ fiJ log(e−λiλJi /J !)

+ ei(J+1) log(e−λiλJ+1
i /(J + 1)!) + ...+ eim log(e−λiλmi /m!))

=

MJ∑
i=1

−λi(ei0 + fi1 + ...+ fiJ + ei(J+1) + ...+ eim)

+ log(λi)(fi1 + 2fi2 + ...+ JfiJ + (J + 1)ei(J+1) + ...+meim)

− f2 log(2!) + ...+ fJ log(J !) + fJ+1 log(J + 1!) + ...+ fm log(m!)

The log-likelihood can be written with respect to α and β.

`(α, β) =

MJ∑
i=1

−eα+β′Zi

 J∑
j=1

fij + ei0 +
m∑

s=(J+1)

eis

+

MJ∑
i=1

(α+ β′Zi)

 J∑
j=1

jfij +
m∑

s=(J+1)

seis


−

m∑
j=2

fj log(j!) (3.16)

An optimisation algorithm could be used to estimate α and β once estimates for the

expectations of the frequencies are obtained and replaced into 3.16.

The expectations are computed following the technique in section 3.1.1.2.

E step

eiy = E(fiy|fi1, .., fiJ ;λi) = Po(x|λi)(ei0 + fi1 + ...+ fiJ + ei(J+1) + ...+ eim) (3.17)

ei0 and
∑m

j=J+1 eij are unknown. Now,

e0i+
m∑

j=J+1

eij =

(
1−

J∑
i=1

Po(y|λi)

)
(fi1+...+fiJ)+

(
1−

J∑
i=1

Po(y|λi)

)ei0 +
m∑

j=J+1

eij



Therefore, solving for ei0 +
∑m

j=J+1 eij

ei0 +
m∑

j=J+1

eij =

(
1−

∑J
i=1 Po(x|λi)

)
(fi1 + ...+ fiJ)∑J

i=1 Po(x|λi)
(3.18)
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(3.17) can be calculated by replacing (3.18) to obtain:

eiy = E(fiy|fi1, .., fiJ ;λi) = Po(x|λi)
(
ei0 + fi1 + ...+ fiJ + ei(J+1) + ...+ eim

)
= Po(y|λi)(fi1 + ...+ fiJ) + Po(y|λi)

(
1−

∑J
y′=1 Po(y

′|λi)
)

∑J
y′=1 Po(y

′|λi)
[fi1 + ...+ fiJ ]

=
Po(y|λi)∑J

y′=1 Po(y
′|λi)

[fi1 + ...+ fiJ ]

=
λyi /y!∑J

y′=1 λ
y′

i /y
′!

[fi1 + ...+ fiJ ]. (3.19)

Finally, our parameter of interest f0 can be estimated as f̂0 =
∑MJ

i=1 f̂i0.

f̂0 =

MJ∑
i=1

1∑J
y′=1 e(α̂+β̂′zi)y′/y′!

[fi1 + ...+ fiJ ] (3.20)

The implementation of the EM algorithm can be summarised as follows:

• Choose initial values for α and β

• Replace those values in the expectations formula (3.20)

• Replace the calculated expectations in the log likelihood and maximise it to obtain

α̂1 and β̂1

• Repeat the procedure until the maximum difference between the parameters cor-

responding to step k + 1 and k is less than a tolerance τ > 0.

max(| α̂k+1 − α̂k |, | β̂k+1 − β̂k |) < τ.

3.2.2 Truncated likelihood

In this section, we extend the methodology presented in section 3.1.2.2 to include covari-

ate information working directly with a truncated Poisson likelihood rather than with

the complete Poisson likelihood developed in the previous section 3.2.1.

J counts are considered to be used and m is defined as the maximum number of counts

in the capture distribution. Covariate information is also available and linked with λi

as in previous sections. Let

λi = eα+β′Zi for i = 1, . . . ,MJ ,

whereMJ is the total number of covariate combinations when J counts are non-truncated,

and Zi is a vector of covariates.
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In this case, a Poisson likelihood truncating the counts 0, J + 1, . . . ,m is defined as

L(λi|f1, . . . , fJ) =

MJ∏
i=1

J∏
j=1

p
fij
ij

where

piy =

e−λiλyi
y!∑J

j=1
e−λiλji
j!

, for y ∈ {1, . . . , J} (3.21)

is the probability of being captured y times for units with covariate combination i.

Therefore, the log-likelihood becomes

`(λi|f1, . . . , fJ) =

MJ∑
i=1

[fi1 × log(pi1) + . . .+ fiJ × log(piJ)] (3.22)

For simplification we assign ωi =
∑J

j=1
λji
j! . Hence, the log-likelihood after replacing the

capture probabilities from (3.21) in (3.22) is

`(λi|fi1, . . . , fiJ) =

MJ∑
i=1

fi1 log

(
λi
ωi

)
+ . . .+ fiJ log

(
λJi /J !

ωi

)

=

MJ∑
i=1

fiJ logλi − fi1 log(ωi) + . . .+ fiJJ log(λi)− fiJ log(ωi) (3.23)

− fi2 log(2)− . . .− fiJ log J !

=

MJ∑
i=1

 J∑
j=1

jfij

 log(λi)−

 J∑
j=1

fij

 log(ωi)−
J∑
j=2

fij log(J !) (3.24)

Finally, the log-likelihood with respect to α and β is calculated replacing λi with the

linear predictor. Firstly, we see that

log(ωi) =
J∑
j=1

log

(
e(α+β′zi)j

j!

)
=

J∑
j=1

(α+ β′zi)j − log(j!), (3.25)

and therefore,

`(α, β|fi1, . . . , fiJ) =

MJ∑
i=1

(α+ β′Zi)

 J∑
j=1

jfij

− J∑
j=2

fij log(J !) (3.26)

−

 J∑
j=1

fij

 J∑
k=1

(α+ β′Zi)k − log(k!)

 (3.27)
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At this stage, an optimisation algorithm can be used to maximise the likelihood and

obtain estimates for α and β.

The calculation of E(f0|f1, . . . , fj ;λi) is identical to the E step in section 3.2.1. α̂ and

β̂ are obtained by maximising the log-likelihood.

Finally, we find

e0 = E(f0|f1, . . . , fj ;λi) =

MJ∑
i=1

1∑J
y′=1 Po(y

′|λi)
[fi1 + ...+ fiJ ] =

MJ∑
i=1

1

ωi
[fi1 + ...+ fiJ ]

=

MJ∑
i=1

1∑J
j=1

(
e(α̂+β̂

′Zi)j

j!

) [fi1 + ...+ fiJ ] (3.28)

3.3 Variance estimator for NGC with J non-truncated counts

and covariates

We use the same conditioning technique applied to the case J = 2 to obtain an analytical

variance estimate (section 2.2):

V ar(N̂GC) = V ar
[
E(N̂GC |∆i, i = 1, .., N)

]
+ E

[
V ar(N̂GC |∆i, i = 1, .., N)

]
, (3.29)

where

∆i =

{
1, yi ∈ {1, .., J}
0, otherwise

The first part relates to the sampling variance and the second part represents the variance

coming from the estimate itself.

Our estimate N̂GC when using J non-truncated counts and covariates can be written as

E(N̂GC |∆i, i = 1, . . . , N) = E

(
n+

N∑
i=1

∆i

λ̂i + λ̂2
i /2 + ...+ λ̂Ji /J !

)

= E

(
N∑
i=1

∆i +

N∑
i=1

γi +

N∑
i=1

∆i

λ̂i + λ̂2
i /2 + ...+ λ̂Ji /J !

)
,

where

γi =

{
1, yi ≥ J + 1

0, otherwise
,

and

λi = eα+β′Zi .

λi links the covariate information with the Poisson parameter.
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We can also write

E(N̂ |∆i, i = 1, . . . , N) ≈
N∑
i=1

∆i

(
p̂i + eλi

pi

)
=

N∑
i=1

∆iωi.

with ωi = 1 + e(λi)
pi

for simplification.

pi is defined as the probability that ∆i = 1:

pi = p(∆i = 1|λi) = λie
−λi + λ2

i e
−λi/2 + ...+ λJi e−λi/J !,

The E(∆i) = pi and V ar(∆i) = pi(1 − pi) because ∆i follows a binomial distribution.

Ultimately, we achieve

V ar
(
E(N̂ |∆i, i = 1, . . . , N)

)
'

N∑
i=1

V ar(∆iωi) '
N∑
i=1

pi(1− pi)w2
i .

The Horvitz-Thompson estimator is applied to estimate the variability:

V̂ ar(E(N̂ |∆i, i = 1, . . . , N))) '
N∑
i=1

∆i

p̂i
p̂i(1− p̂i)ω̂2

i =

f1+f2+...+fJ∑
i=1

(1− p̂i)

[
p̂i + e−λ̂i

p̂i

]2

.

(3.30)

The multivariate Delta method is used for calculating the second term:

E[V ar(NGC |∆i, i = 1, .., N)] = ∇g(α̂, β̂)T cov(α̂, β̂)∇g(α̂, β̂)

(3.31)

where

∇g(α̂, β̂) =


∂g
∂α
∂g
∂β1

...
∂g
∂βp

 =



f1+f2+...+fJ∑
i=1

−
J∑
j=1

λ̂ji
j − 1!(∑J

j=1
λ̂ji
j!

)2

f1+f2+...+fJ∑
i=1

−
J∑
j=1

λ̂ji
j − 1!(∑J

j=1
λ̂ji
j!

)2 zi1

...

f1+f2+...+fJ∑
i=1

−
J∑
j=1

λ̂ji
j − 1!(∑J

j=1
λ̂ji
j!

)2 zip



.



54 Chapter 3 Generalised Chao estimator considering all frequency counts

∇g(α, β) can be also expressed in terms of α̂ and β̂ that have been obtained in the

maximisation of the likelihood.

The covariance matrix cov(α̂, β̂) is calculated as the inverse of the observed Fisher in-

formation (or the inverse of the Hessian of the negative log likelihood).

cov(α̂, β̂) = −
(

∂

∂α∂β
`(α, β)

)−1

cov(α̂, β̂) = −


∂2`(α,β)
∂α2

∂2`(α,β)
∂αβ1

... ∂2`(α,β)
∂αβp

∂2`(α,β)
∂αβ1

∂2`(α,β)
∂β2

1
... ∂2`(α,β)

∂β1βp

... ... ... ...
∂2`(α,β)
∂αβp

∂2`(α,β)
∂βpβ1

... ∂2`(α,β)
∂β2
p


−1

The partial derivatives are presented here although an approximation of the covariance

matrix is commonly produced by the optimisation function of the statistical software.

∂2`(α, β)

∂α2
= −

J∑
j=1

fj


∑J−1

j=1
λ̂ji j

2

(j+1)!

∑J−1
j=0

λ̂ji
(j+1)! −

(∑J−1
j=1

λ̂ji j
(j+1)!

)2

(∑J−1
j=0

λ̂ji
(j+1)!

)2



∂2`(α, β)

∂α∂βj
= −zj

J∑
j=1

fj


∑J−1

j=1
λ̂ji j

2

(j+1)!

∑J−1
j=0

λ̂ji
(j+1)! −

(∑J−1
j=1

λ̂ji j
(j+1)!

)2

(∑J−1
j=0

λ̂ji
(j+1)!

)2



∂2`(α, β)

∂β2
j

= −z2
j

J∑
j=1

fj


∑J−1

j=1
λ̂ji j

2

(j+1)!

∑J−1
j=0

λ̂ji
(j+1)! −

(∑J−1
j=1

λ̂ji j
(j+1)!

)2

(∑J−1
j=0

λ̂ji
(j+1)!

)2



∂2`(α, β)

∂βj∂βk
= −zjzk

J∑
j=1

fj


∑J−1

j=1
λ̂ji j

2

(j+1)!

∑J−1
j=0

λ̂ji
(j+1)! −

(∑J−1
j=1

λ̂ji j
(j+1)!

)2

(∑J−1
j=0

λ̂ji
(j+1)!

)2



3.4 Simulation Results

3.4.1 Heterogeneity without covariate information

In this simulation the number of captures Yi is generated as Yi ∼ 0.5Po(1) + 0.5Po(λ),

a mixture of two Poissons, for i = 1, ..., N and λ ∈ {2, .., 7}. Multiple scenarios were
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conducted varying the population size, the number of non-truncated counts and the level

of heterogeneity (Tables 3.1 and 3.2, figures 3.1, 3.2, 3.3 and 3.4).

In the absence of auxiliary variables related to the generated heterogeneity, we showed

in section 2.1 that the classic Chao estimator using two counts could still provide robust

estimates. Here we aim to evaluate whether using more information could improve

Chao’s estimator. We observe in figure 3.1 that for all levels of heterogeneity defined by

λ, two counts provided the most accurate estimates and an increase in non-truncated

counts decreases the accuracy of the estimates. We also notice a bathtub effect for λ ≥ 6,

despite stronger heterogeneity than other scenarios, less biased estimates are obtained.

However, figure 3.2 shows a decrease in the standard deviation when the number of non-

truncated counts increases. There is a tradeoff between accuracy and variability. The

relative mean squared error and the relative bias are good measures to assess the esti-

mates accounting for point estimation and variability and they also allow us to compare

estimates across different population sizes (figures 3.3, 3.4). In this particular example,

the models with two non-truncated counts present the best performance based on the

RMSE criteria, although the model with three non-truncated counts provide similar

RMSE values. The RMSE and relative bias remained constant across populations of

N ≥ 500 (Table 3.1). It is clear from the simulations that for large N the bias becomes

dominating, leading to the result that J = 2 (classical Chao) performs best.
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Figure 3.1: Population estimates for the model Yi ∼ 0.5Po(1) + 0.5Po(λ) for i = 1, . . . , N and λ = {2, .., 7}. A) N = 100 B) N = 500
C) N = 1000 D) N = 2000
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Figure 3.2: SD estimates for the model Yi ∼ 0.5Po(1) + 0.5Po(λ) with i = 1, . . . , N and λ = {2, .., 7}. A) N = 100 B) N = 500 C)
N = 1000 D) N = 2000
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Figure 3.3: RMSE (x100) estimates for the model Yi ∼ 0.5Po(1) + 0.5Po(λ) with i = 1, . . . , N and λ = {2, .., 7}. A) N = 100 B)
N = 500 C) N = 1000 D) N = 2000
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Figure 3.4: Relative bias estimates for the model Yi ∼ 0.5Po(1)+0.5Po(λ) with i = 1, . . . , N and λ = {2, .., 7}. A) N = 100 B) N = 500
C) N = 1000 D) N = 2000
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Table 3.1: Point estimates and SD estimates for the model Yi ∼ 0.5Po(1) +
0.5Po(λ) with i = 1, . . . , N and λ = {2, .., 7}. Italics are only use for visual
purposes.

N # NTC λ N̂ SDEmp λ N̂ SDEmp

100

2

2

101.16 11.09

3

97.53 9.21
3 98.11 8.36 93.87 6.61
4 95.91 7.47 91.75 5.79
5 93.62 7.25 90.44 5.35

500

2 489.41 23.36 479.14 19.59
3 481.45 18.15 466.15 14.97
4 476.51 16.42 455.74 12.98
5 472.63 15.76 449.38 11.89

1000

2 976.64 32.91 956.89 27.89
3 961.36 25.61 930.99 20.66
4 951.02 23.87 911.84 18.01
5 945.12 22.89 898.85 16.96

2000

2 1947.78 46.7 1911.41 39.58
3 1920.81 37.11 1861.41 29.37
4 1901.16 33.19 1822.37 25.41
5 1888.35 31.59 1796.4 23.77

100

2

4

96.95 9.57

5

98.51 10.65
3 92.65 6.16 93.25 6.49
4 89.94 5.21 89.38 5.20
5 87.84 4.75 86.96 4.54

500

2 478.68 19.29 483.14 20.79
3 460.79 13.62 463.44 13.69
4 447.78 11.47 445.72 11.46
5 438.60 10.62 434.06 10.14

1000

2 955.71 27.08 964.74 28.48
3 920.85 19.00 925.43 19.56
4 894.2 16.49 890.99 15.89
5 876.35 14.78 867.85 14.19

2000

2 1909.70 37.64 1928.45 40.24
3 1841.83 26.67 1850.78 27.31
4 1788.25 23.17 1781.39 22.57
5 1752.71 21.28 1735.15 20.32

100

2

6

100.17 12.72

7

101.51 13.94
3 94.99 7.31 96.71 7.94
4 90.13 5.41 92.06 5.87
5 87.19 4.61 87.91 4.85

500

2 490.11 22.37 495.71 24.26
3 470.02 15.17 478.84 16.86
4 449.05 11.89 456.87 12.74
5 434.02 10.20 437.54 10.57

1000

2 977.57 31.22 988.01 33.76
3 938.81 21.29 956.71 23.45
4 897.98 16.65 912.76 18.21
5 867.51 14.54 874.57 15.01

2000

2 1952.46 43.76 1973.34 46.73
3 1877.14 29.92 1912.26 32.79
4 1795.11 22.96 1823.50 25.18
5 1734.92 20.07 1748.81 21.38
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Table 3.2: RMSE and relative bias for the model Yi ∼ 0.5Po(1)+0.5Po(λ) with
i = 1, . . . , N and λ = {2, .., 7}

.

N # NTC λ RMSE Rbias λ RMSE RBias

100

2

2

1.24 0.0116

3

0.91 -0.0247
3 0.73 -0.0189 0.81 -0.0613
4 0.73 -0.0409 1.02 -0.0825
5 0.93 -0.0638 1.2 -0.0956

500

2 0.26 -0.0212 0.33 -0.0417
3 0.27 -0.0371 0.55 -0.0677
4 0.33 -0.0470 0.85 -0.0885
5 0.40 -0.0547 1.08 -0.1012

1000

2 0.16 -0.0234 0.26 -0.0431
3 0.21 -0.0386 0.52 -0.069
4 0.30 -0.0490 0.81 -0.0882
5 0.35 -0.0549 1.05 -0.1011

2000

2 0.12 -0.0261 0.24 -0.0443
3 0.19 -0.0396 0.50 -0.0693
4 0.27 -0.0494 0.80 -0.0888
5 0.34 -0.0558 1.05 -0.1018

100

2

4

1.01 -0.0305

5

1.16 -0.0149
3 0.92 -0.0735 0.88 -0.0675
4 1.28 -0.1006 1.40 -0.1062
5 1.70 -0.1216 1.91 -0.1304

500

2 0.33 -0.0426 0.29 -0.0337
3 0.69 -0.0784 0.61 -0.0731
4 1.14 -0.1044 1.23 -0.1086
5 1.55 -0.1228 1.78 -0.1319

1000

2 0.27 -0.0443 0.21 -0.0353
3 0.66 -0.0792 0.59 -0.0746
4 1.15 -0.1058 1.21 -0.109
5 1.55 -0.1237 1.77 -0.1321

2000

2 0.24 -0.0452 0.17 -0.0358
3 0.64 -0.0791 0.58 -0.0746
4 1.13 -0.1059 1.21 -0.1093
5 1.54 -0.1236 1.76 -0.1324

100

2

6

1.62 0.0017

7

1.97 0.0151
3 0.78 -0.0501 0.74 -0.0329
4 1.27 -0.0987 0.97 -0.0794
5 1.85 -0.1281 1.70 -0.1209

500

2 0.002 -0.0198 0.24 -0.0086
3 0.005 -0.0600 0.29 -0.0423
4 0.012 -0.1019 0.81 -0.0863
5 0.02 -0.1320 1.61 -0.1249

1000

2 0.15 -0.0224 0.13 -0.0120
3 0.42 -0.0612 0.24 -0.0433
4 1.07 -0.1020 0.79 -0.0872
5 1.78 -0.1325 1.60 -0.1254

2000

2 0.10 -0.0238 0.07 -0.0133
3 0.40 -0.0614 0.22 -0.0439
4 1.06 -0.1024 0.79 -0.0882
5 1.77 -0.1325 1.59 -0.1256
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3.4.2 Generalised Chao’s estimate using covariates and J non-truncated

counts

3.4.2.1 One covariate

In this section, our purpose is to investigate a scenario with heterogeneity described by

a continuous covariate. The estimates are calculated also including that covariate in

the model for the estimation. Therefore, we expect to obtain accurate estimates of the

true population size when considering the available covariate. The capture-recapture

distribution is originated from a Poisson distribution with parameter λi (Yi ∼ Po(λi)),

where λi is obtained as

log(λi) = 0.04X1i,

whereX1 follows a normal distribution with mean 20 and variance 225 (X1 ∼ N(20, 225)).

Once the capture-recapture distribution is created, zeros are excluded to analyse only

the observed units.

Similar estimates are found across all scenarios with different population sizes which in-

dicates that high number of counts do not need to be used to obtain reliable estimates.

For scenarios with the same population size N , there is a slightly decreasing trend of

the standard deviation when the number of non-truncated counts increases. For sce-

narios with the same number of non-truncated counts, the standard deviation increases

asymptotically with respect to N , in contrast to the RMSE that decreases (Table 3.3).

This simulation is also useful to validate the method and the programming code.

3.4.2.2 Two covariates with unexplained heterogeneity

This simulation was previously presented in 2.3.1.1. Two covariates are generated inde-

pendently to build the capture-recapture distribution but only one covariate is considered

in the model fitting for the estimation of the population size. In this way, we assess the

effect of fitting the partially specified model with unknown information missing.

The capture-recapture distribution Y follows a Poisson with λi parameter (Y ∼ Po(λi)),
where λi is defined as

λi = e−0.02Xi1+0.03Xi2 ,

and X1 ∼ N(5, 64) and X2 ∼ N(8, 64) are independent.

The results (Table 3.4, figures 3.5, 3.6) show that an increase in the number of non-

truncated counts leads to a reduction of the standard deviations and an increase in
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Table 3.3: Estimates for the model Yi ∼ Po(e0.04X1) with X1 ∼ N(20, 225)

N # non-truncated counts N̂ Empirical SD RMSE (x 100) RBias

500

2 496.99 14.37 0.09 -0.0060
3 498.06 13.79 0.08 -0.0039
4 498.40 13.33 0.07 -0.0032
5 498.80 13.12 0.06 -0.0024
6 498.48 13.01 0.06 -0.0030

1000

2 996.24 21.57 0.05 -0.0038
3 997.78 19.58 0.04 -0.0022
4 998.06 18.82 0.04 -0.0019
5 998.64 18.76 0.04 -0.0014
6 998.90 18.08 0.03 -0.0011

2000

2 1998.72 30.95 0.02 -0.0006
3 2002.24 28.64 0.02 0.0011
4 1999.79 28.10 0.02 -0.0001
5 2000.09 27.56 0.02 0.0001
6 1999.06 26.61 0.02 -0.0005

5000

2 5013.78 52.74 0.01 0.0028
3 5010.00 50.02 0.01 0.0020
4 5005.54 47.30 0.01 0.0011
5 5004.63 46.59 0.01 0.0009
6 5002.30 45.16 0.01 0.0005

the bias of the estimates. For this example, the model based on 3 counts present the

best RMSE values. The model with 2 non-truncated counts is unstable for small sam-

ples but it provides similar RMSE values than the 3 counts model in large samples.

The variance follows an asymptotic increase with respect to the population size N , in

contrast to a decreasing trend of the RMSE estimates (figure 3.6) . The developed

analytical standard deviation is close to the empirical standard deviation, calculated

as the standard deviation of the estimates from all replications (R) of the simulation(
SDemp =

∑R
k=1

√
1
R(N̂GC − ¯̂

NGC)2

)
(Table 3.4).
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Figure 3.5: Boxplots based on the estimates for the model Yi ∼ Po(e−0.02Xi1+0.03Xi2) with X1 ∼ N(5, 64) and X2 ∼ N(8, 64). Estimates
based on models including only X1. A) N = 500 B) N = 1000 C) N = 2000
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Figure 3.6: SD and RMSE estimates for the model Yi ∼ Po(e−0.02Xi1+0.03Xi2) with X1 ∼ N(5, 64) and X2 ∼ N(8, 64). Estimates based
on models including only X1. A) SD estimates B) Relative Mean Squared Error (RMSE) x 100
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Table 3.4: Estimates for the model Yi ∼ Po(e−0.02Xi1+0.03Xi2) with X1 ∼
N(5, 64) and X2 ∼ N(8, 64). Estimates based on models including only X1.

N # non-truncated counts N̂ SDemp SDana RMSE (x 100) RBias

500

2 496.84 27.11 32.86 0.30 -0.0063
3 491.56 23.89 25.05 0.26 -0.0169
4 488.86 22.64 22.58 0.26 -0.0223
5 482.80 23.20 21.57 0.33 -0.0344

1000

2 988.99 40.46 45.65 0.18 -0.0110
3 979.51 33.89 34.91 0.16 -0.0205
4 974.32 31.51 31.51 0.17 -0.0257
5 968.21 30.62 30.38 0.19 -0.0318

2000

2 1957.27 52.21 63.40 0.11 -0.0214
3 1955.70 47.50 49.10 0.11 -0.0222
4 1912.99 38.24 44.42 0.23 -0.0435
5 1935.13 42.89 42.65 0.15 -0.0324

3.5 Conclusions

We developed a framework to extend the generalised Chao estimator to include also in-

dividuals captured more than twice (J ≥ 2). The methodology did not present the same

appeal seen in the previous chapter where standard statistical software could be em-

ployed to obtain the generalised Chao estimator with 2 non-truncated counts. However,

we have implemented R functions that will be available online to provide a user-friendly

environment to obtain the estimates presented in the current chapter.

Two methods were applied to obtain estimates, the EM algorithm and numerical opti-

misation algorithms (Nelder-Mead, BFGS, etc...). The EM algorithm should be more

efficient, however when covariate information was included, we did not find a solution in

the M step, so we use Nelder-Mead to maximise the likelihood and obtain the parameter

estimates to replace in the calculation of the expectations.

All simulations conducted concluded that estimates with 2 and 3 non-truncated counts

were the most efficient, in the sense of the RMSE criteria. However, other captures dis-

tributions might require larger amount of information and a potential test to determine

the optimal cut-off would complement the analysis. A χ2-squared test to find the right

amount of truncation will be presented in chapter 5.

The bias/variance tradeoff was observed across the information utilised within each true

population size when unexplained heterogeneity was present. There was a negative trend

in the variability with respect to the number of counts included in the analysis against
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a positive trend of the bias. In terms of the RMSE, the efficiency of the estimator

improved asymptotically with respect to the population size.





Chapter 4

Power Series

In this chapter, we generalise the framework developed for the Poisson distribution

(chapter 3) to the family of power series of distributions. The chapter is structured

similarly to previous chapters. We initially present the calculations without using co-

variate information to describe the simplest case. The methodology is later extended

to incorporate variables at individual level related to the probability of being captured.

Simulations are carried out to assess the characteristics of our estimators and cases

studies are also discussed. Final conclusions are highlighted at the end.

Power series distributions are discrete distributions on N where the probability density

function takes the following form

P (X = k|θ) =
akθ

k

g(θ)
(4.1)

with g(θ) =
∑∞

k=0 akθ
k with θ ∈ R, k = 0, 1, 2, ...

We are mainly interested in the binomial, Poisson and geometric distributions, particular

cases of the power series family that appear frequently in the capture-recapture area. The

parameters for these specific distributions are defined in table 4.1. The h() link function

in the table will be described later in the context of estimators including covariate

information.

69
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Table 4.1: Parametrization for the Power Series Distributions

Distribution Original parameters θ ak g(θ) k h-function

Binomial Bin(m, p) p
1−p

(
m
k

)
(1 + θ)m 0, 1, ..,m log(θi)

Poisson Po(λ) λ 1
k! eθ 0, 1, 2... log(θi)

Geometric G(p) 1− p 1 1
1−θ 0, 1, 2, ... log(1−θi

θi )

4.1 Power series distribution without covariates point es-

timation

4.1.1 2 counts

We initially build the methodology for the simplest scenario where all counts were trun-

cated except counts of one and two (J = 2). The only two probabilities to define are

q1 = P (X = 1|θ) =
a1θ/g(θ)

a1θ

g(θ)
+
a2θ

2

g(θ)

=
a1

a1 + a2θ

q2 = 1− q1 = P (X = 2|θ) =
a2θ

2/g(θ)

a1θ

g(θ)
+
a2θ

2

g(θ)

=
a2θ

a1 + a2θ
.

Therefore the likelihood function presents the following form

L(θ) = qf11 q
f2
2

and subsequently the log-likelihood is described as

`(θ) = f1 log

(
a1

a1 + a2θ

)
+ f2 log

(
a2θ

a1 + a2θ

)
= f1 log(a1) + f2 log(a2) + f2 log(θ)− (f1 + f2) log(a1 + a2θ).

The log-likelihood can be maximised calculating the first derivative with respect to θ

and solving the score equation `(θ)
dθ = 0

d`(θ)

dθ
= f2

1

θ
− (f1 + f2)

a2

a1 + a2θ
= 0.

Equivalently, we can write

a1f2 − f1a2θ = 0.
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The maximum likelihood estimator takes the form

θ̂ =
a1f2

a2f1
. (4.2)

The specific estimates for the binomial, Poisson and geometric case are deduced replacing

θ, a1, a2 with the parametrisations shown in table 4.1:

• Binomial

p̂

1− p̂
=

(
m
1

)
f2(

m
2

)
f1
⇒ p̂ =

2f2

(m− 1)f1 + 2f2
.

• Poisson

λ̂ =
(1/1!)f2

(1/2!)f1
⇒ λ̂ =

2f2

f1
.

• Geometric

1− p̂ =
f2

f1
⇒ p̂ =

f1 − f2

f1
.

Notice that the Poisson estimate coincides with the calculations shown in previous chap-

ters.

4.1.2 J counts

In this section, we extend the formulae to include the first J counts into the likelihood.

Two approaches could be considered: 1) the application of the EM algorithm with

the likelihood assuming complete data and 2) the likelihood based on J non-truncated

counts.

4.1.2.1 Complete likelihood

The EM algorithm can be applied following the reasoning described in section 3.1.1.

• M step

The likelihood and probabilities are calculated based on the assumption of the
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data set being complete or missing data being imputed. Therefore, the likelihood

is defined as

L(p|θ) =

m∏
k=0

pfkk|θ ,

where

pk|θ = P (X = k|θ) = akθ
k/g(θ)

is the probability of a unit being captured exactly k times.

Hence, the log-likelihood is written

`(θ) = e0 (log(a0)− log(gθ)) +

(
J∑
k=1

fk log(ak)

)
+

(
J∑
k=1

kfk

)
log(θ)−

(
J∑
k=1

fk log(gθ)

)
(

m∑
l=J+1

el log(al)

)
+

(
m∑

l=J+1

lel

)
log(θ)−

(
m∑

l=J+1

el log(gθ)

)
, (4.3)

where ei = E(fi|θ), i ∈ {0, J + 1, . . . ,m} are unknown parameters that represent

the expected number of units captured 0, J + 1, . . . ,m times. These parameters

need to be estimated to obtain estimates for θ.

• E step

The E step aims to provide estimates of the expectations of capture frequencies

to obtain a maximum likelihood estimator from (4.3). The expectation of being

captured exactly y times is

ey = E(fy|θ) = p(X = y|θ)N = p(X = y|θ)

e0 + f1 + f2 + ...+

∞∑
j=J+1

ej


(4.4)

then

e0 + e+
J+1 = [1− p(X = 1|θ)− p(X = 2|θ)− ...− p(X = J |θ)]

(
e0 + e+

J+1

)
+

[1− p(X = 1|θ)− p(X = 2|θ)− ...− p(X = J |θ)] (f1 + f2 + ...+ fJ)

with e+
J+1 =

∑∞
j=J+1 ej . Solving for e0 + e+

J+1, we obtain

e0+e+
J+1 =

[1− p(X = 1|θ)− p(X = 2|θ)...− p(X = J |θ)]
p(X = 1|θ) + p(X = 2|θ) + ...+ p(X = J |θ)

(f1+f2+...+fJ) (4.5)
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Therefore, replacing (4.5) in (4.4)

ey = p(X = y|θ)

e0 + f1 + f2 + ...+ fJ +
∞∑

j=J+1

ej


= p(X = y|θ)(f1 + f2 + ...fJ)

[
1 +

[1− p(X = 1|θ)− ...− p(X = J |θ)]
p(X = 1|θ) + ...+ p(X = J |θ)

]
=

p(X = y|θ)
p(X = 1|θ) + ...+ p(X = J |θ)

(f1 + f2 + ...+ fJ)

=
ayθ

y∑J
j=1 ajθ

j
(f1 + f2 + ...+ fJ). (4.6)

Consequently, our primary outcome y = 0 can be estimated substituting the prob-

abilities in (4.6) as

e0 =
a0∑J

j=1 ajθ
j
(f1 + f2 + ...+ fJ). (4.7)

Obviously, θ is unknown and needs to be estimated to be able to calculate e0.

The EM algorithm starts from a chosen initial value θ̂0 that follows the estimation

of the unknown expectations of capture frequencies; it similarly leads to a new

estimate θ̂1 coming from the maximisation of the likelihood. This iterative process

continues until the difference between two consequent estimates is less than a pre-

defined tolerance value τ , | θ̂t+1 − θ̂t |< τ .

For the simplest case where only 2 counts are considered, e0 can be easily obtained for

the three distributions of interest replacing the parameters shown in table 4.1:

• Binomial distribution: Here we have that

e0 =

 1

m
p̂

1− p̂
+
m(m− 1)

2

(
p̂

1− p̂

)2

 (f1 + f2)

=

(
2(1− p̂)2

2mp̂(1− p̂) +m(m− 1)p̂2

)
(f1 + f2)
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Replacing p̂ =
2f2

(m− 1)f1 + 2f2

=

2(m− 1)2f2
1

((m− 1)f1 + 2f2)2((
4mf2

(m− 1)f1 + 2f2

)(
(m− 1)f1

(m− 1)f1 + 2f2

)
+m(m− 1)

4f2
2

((m− 1)f1 + 2f2)2

)(f1 + f2)

=
2(m− 1)2f2

1

4mf2(m− 1)f1 +m(m− 1)(2f2)2
(f1 + f2) =

(m− 1)f2
1

2mf2
. (4.8)

We recognise the classic Chao’s estimator for the binomial case where the number

of captured occasions is fixed a priori.

• Poisson distribution: For the Poisson we find

e0 =
1

λ̂+ λ̂2

2

(f1 + f2)

Replacing λ̂ = 2f2/f1 we obtain Chao’s lower bound estimator for continuous-time

experiments:

e0 =
1

2f2
f1

+
2f22
f21

(f1 + f2) =
1

2f2f1+2f22
f21

(f1 + f2) =
f2

1

2f2
. (4.9)

• Geometric distribution: In the geometric case we find that

e0 =
1

(1− p̂) + (1− p̂)2
(f1 + f2).

Inserting for p̂ the previously calculated maximum likelihood estimator p̂ = f1−f2
f1

e0 =
f1 + f2

f2
f1

+
f22
f21

=
f2

1

f2
. (4.10)

This estimator was described in Niwitpong et al. (2012) and the results presented

in the paper will be discussed in greater detail in the following chapters.

4.1.2.2 Truncated likelihood

Another approach consists in working directly with the truncated distribution; the prob-

abilities for the non-truncated counts are defined as
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pk = P (X = k|θ) =
akθ

k/g(θ)
J∑
j=1

ajθ
j

g(θ)

=
akθ

k∑J
j=1 ajθ

j
. (4.11)

The likelihood function is written as

L(p) =
J∏
j=1

p
fj
j

accordingly the log-likelihood is

`(θ) =

(
J∑
k=1

fk log(ak)

)
+

(
J∑
k=1

kfk

)
log(θ)−

(
J∑
k=1

fk

)
log

 J∑
j=1

ajθ
j

 . (4.12)

Term θ can be estimated maximising the likelihood with a numerical algorithm and be

used later in the calculation of the expectations. The formula for the estimation of the

expectation of f0 is equal to the formula presented in (4.7).

Tables 4.2 and 4.3 contain the formulae for the estimation of N and f0 for the binomial

and geometric distribution with J counts with and without covariate information.

4.2 Power series distribution with covariates point estima-

tion

In the situation when the probability of being captured is not the same for all study units,

we propose to include covariate information for each captured unit. These variables

are linked to θ by a link function h. 4.1 contains the canonical link functions for the

distributions of interest, but other link functions could be used.

h(θi) = α+ β′Zi, (4.13)

where β is a vector of coefficients with length equal the number of covariates. In this

case we only consider the approach with the truncated likelihood using J non-truncated

counts as the EM algorithm cannot find a solution for α and β in the M-step and we
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need a numerical algorithm. Therefore, the probabilities with respect to α and β are

P (X = k|θi) =
akθ

k
i /g(θi)

J∑
j=1

ajθ
j
i

g(θi)

=
ak
(
h−1(α+ β′Zi)

)k∑J
j=1 aj (h−1(α+ β′Zi))

j
, (4.14)

as g(θi) cancels out. From the log-likelihood presented in the previous section (4.1.2.2),

we replace θi by the its inverse link to the linear predictor defined in (4.13).

Let MJ be the number of covariate combinations when J non-truncated counts are

used, and fik be the number of individuals captured k times with the ith covariate

combination.

We have the following log-likelihoods:

`(θi) =

MJ∑
i=1

J∑
k=1

fik log(ak) +

MJ∑
i=1

(
J∑
k=1

kfik

)
log(θi)−

MJ∑
i=1

( J∑
k=1

fik

)
log

 J∑
j=1

ajθ
j
i


(4.15)

`(α, β) =

MJ∑
i=1

J∑
k=1

fik log(ak) +

MJ∑
i=1

(
J∑
k=1

kfik

)
log(h−1(α+ β′Zi))

−
MJ∑
i=1

( J∑
k=1

fik

)
log

 J∑
j=1

aj
(
h−1(α+ β′Zi)

)j . (4.16)

The log-likelihood with respect to α and β for the binomial and the geometric distribu-

tion can be found in tables 4.2 and 4.3.

The expected number of units captured y times is calculated as

ey = E(fy|α, β) =

MJ∑
i=1

eiy,

where eiy = E(fiy|α, β) is the expected number of units captured y times for the i-th

covariate combination. Hence ey can be estimated as the sum of the expected number
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of units captured y times across all covariates combinations:

eiy = p(X = y|α, β)Ni = p(X = y|α, β)

ei0 + fi1 + fi2 + ...+

∞∑
j=J+1

eij

 . (4.17)

ei0 +
∑∞

j=J+1 eij is unknown and need to be calculated. We have the following:

ei0 + e+
i(J+1) = [1− p(X = 1|α, β)− ...− p(X = J |α, β)]

(
ei0 + e+

i(J+1)

)
+

[1− p(X = 1|α, β)− ...− p(X = J |α, β)] (fi1 + fi2 + ...+ fiJ)

with e+
i(J+1) =

∑∞
j=J+1 eij .

Solving for ei0 + e+
i(J+1), we yield

ei0 + e+
i(J+1) =

[1− p(X = 1|α, β)...− p(X = J |α, β)]

p(X = 1|α, β)...+ p(X = J |α, β)
(fi1 + fi2 + ...+ fiJ). (4.18)

We replace ei0 + e+
i(J+1) on (4.17) and achieve

eiy = p(X = y|α, β)

ei0 + fi1 + fi2 + ...+ fiJ +

∞∑
j=J+1

eij


= p(X = y|α, β)(fi1 + fi2 + ...fiJ)

[
1 +

[1− p(X = 1|α, β)...− p(X = J |α, β)]

p(X = 1|α, β)...+ p(X = J |α, β)

]
=

p(X = y|α, β)

p(X = 1|α, β) + . . .+ p(X = J |α, β)
(fi1 + fi2 + ...+ fiJ)

=

ay
(
h−1(α+ β′Zi)

)y
g(h−1(α+ β′Zi))

J∑
j=1

aj

(
h−1(α+ β′Zi)

)j
g(h−1(α+ β′Zi))

(fi1 + fi2 + ...+ fiJ)

=
ay
(
h−1(α+ β′Zi)

)y∑J
j=1 aj (h−1(α+ β′Zi))

j
(fi1 + fi2 + ...+ fiJ).

E(fy|α, β′) will be the sum over all covariate combinations MJ

ey =

MJ∑
i=1

eiy =

MJ∑
i=1

ay

(
h−1(α̂+ β̂′Zi)

)y
∑J

j=1 aj

(
h−1(α̂+ β̂′Zi)

)j (fi1 + fi2 + ...+ fiJ). (4.19)

To calculate the expected number of non-captured units, e0 = E(f0|α, β′), we use (4.19):

e0 =

MJ∑
i=1

a0∑J
j=1 aj (h−1(α+ β′Zi))

j
(fi1 + fi2 + ...+ fiJ). (4.20)
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The estimators for the binomial and the geometric case assuming the canonical link as

link function are obtained by replacing in (4.20) the parameters presented in table 4.1:

• Binomial

e0BIN =

MJ∑
i=1

1∑J
j=1

(
m
j

)
(eα+β′Zi)

j
(fi1 + fi2 + ...+ fiJ)

• Geometric

e0GEO =

MJ∑
i=1

1
J∑
j=1

(
1

1 + eα+β′Zi

)j (fi1 + fi2 + ...+ fiJ).



Binomial Bin(p,m)

2 counts without covariates

`(p|m) f1 ∗ log(m) + f2 log(m(m− 1)/2) + f2 log( p
1−p)− (f1 + f2) log(m(1 + (m− 1) p

1−p))

E(fy)
(my )

(
p

1−p

)y
m
(

p
1−p

)
+
m(m−1)

2

(
p

1−p

)2 (f1 + f2)

N̂ n+ 1

m p
1−p+

m(m−1)
2

( p
1−p )2

(f1 + f2)

J counts without covariates

`(p|m)
∑J

j=1 fj log(
(
m
j

)
) +

(∑J
j=1 jfj

)
log
(

p
1−p

)
−
(∑J

i=1 fj

)
log

(∑J
j=1

(
m
j

) ( p
1−p

)j)
E(fy)

(my )
(

p̂
1−p̂

)y
∑J
j=1 (mj )

(
p̂

1−p̂

)j (f1 + ...+ fJ)

N̂ n+ 1∑J
j=1 (mj )

(
p̂

1−p̂

)j (f1 + ...+ fJ)

J counts and covariates

`(α, β|J)
∑MJ

i=1

∑J
k=1 fik log(

(
m
k

)
) +

∑MJ
i=1

(∑J
k=1 kfik

)
(α+ β′Zi)−

∑MJ
i=1

((∑J
k=1 fik

)
log

(∑J
j=1

(
m
j

) (
eα+β′Zi

)j))
E(fy)

(∑MJ
i=1

(my )ey∗(α̂+β̂
′Zi)∑J

j=1 (mj )ej∗(α̂+β̂
′Zi)

)
(f1 + ...+ fJ)

N̂ n+

(∑MJ
i=1

1∑J
j=1 (mj )ej∗(α̂+β̂

′Zi)

)
(f1 + ...+ fJ)

Table 4.2: Estimates for the case of a capture-recapture binomial distribution



Geometric G(p)

2 counts without covariates

`(p) f2 log(1− p)− (f1 + f2) log(2− p)
E(fy)

(1−p)y
(1−p̂)+(1−p̂)2 (f1 + f2)

N̂ n + f1+f2
(1−p̂)+(1−p̂)2

J counts without covariates

`(p|m) (
∑J

j=1 jfj) log(1− p)− (
∑J

i=1 fj) log
(∑J

j=1(1− p)j
)

E(fy)
(1−p)y∑J
j=1(1−p̂)j

(f1 + ...+ fJ)

N̂ n+ 1∑J
j=1(1−p̂)j

(f1 + ...+ fJ)

J counts with covariates

`(α, β|J)
∑MJ

i=1

(∑J
k=1 kfik

)
log( 1

1+eα+β
′Zi

)−
∑MJ

i=1

((∑J
k=1 fik

)
log

(∑J
j=1

(
1

1+eα+β
′Zi

)j))
E(fy)

∑MJ
i=1

1/
(

1+ey∗(α̂+β̂
′Zi)

)
∑J
j=1 1/

(
1+ej∗(α̂+β̂

′Zi)
)(f1 + ...+ fJ)

N̂ n+
∑MJ

i=1
1∑J

j=1 1/
(

1+ej∗(α̂+β̂
′Zi)

)(f1 + ...+ fJ)

Table 4.3: Estimates for the case of a capture-recapture geometric distribution
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4.3 Analytical variance: the case with covariates

We follow the conditioning moments methodology (Ross, 1985) as shown in previous

chapters (2.2).

V ar(N̂GC) = V ar[E(N̂GC |∆i, i = 1, ..., N)] + E[V ar(N̂GC |∆i, i = 1, ..., N)]. (4.21)

The variability from the sampling is represented by the first term of the right hand side

of the equation. For its estimation we initially calculate

E(N̂GC |∆i, i = 1, ..., N) = E

(
n+

N∑
i=1

a0∆i∑J
j=1 aj θ̂

j
i

|∆i, i = 1, ...N

)
≈

N∑
i=1

∆iωi ,

where ∆i is a binary variable defined as

∆i =

{
1, yi ∈ {1, 2, ..., J}
0, otherwise

and

ωi = 1 +
a0

pig(θi)
(4.22)

and pi is the probability of being captured between 1 and J times (p(∆i = 1)):

pi = p(∆i = 1) = P (Yi ∈ {1, 2, ..., J}) = P (Yi = 1|θi) + ...P (Yi = J |θi) =

J∑
j=1

ajθ
j
i /g(θi).

The expectation and variance of ∆i is

E(∆i) = pi and V ar(∆i) = pi(1− pi).

Therefore, the variance of the conditional expected value E(N̂GC) is

V ar[E(N̂GC |∆i, i = 1, ..., N)] = V ar

(
N∑
i=1

∆iωi

)
=

N∑
i=1

pi(1− pi)ω2
i .

This variance can be estimated using the Horvitz-Thompson estimator which leads to:

V̂ ar[E(N̂GC |∆i, i = 1, ..., N)] =
N∑
i=1

∆i

p̂i
p̂i(1− p̂i)ω̂2

i =

f1+...+fJ∑
i=1

(1− p̂i)

(
1 +

a0

p̂ig(θ̂i)

)2

.

(4.23)
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The second term in (4.21) relates to the variability from the estimate itself. V ar(N̂GC |∆i, i =

1, ..., N) is calculated and considered in itself as a moment estimator for the expected

value. The multivariate δ-method is applied:

E[V ar(N̂GC |∆i, i = 1, ..., N)] ≈ ∇v(α̂, β̂)′ ˆcov(α̂, β̂)∇v(α̂, β̂) , (4.24)

where

v(α̂, β̂) =

f1+...+fJ∑
i=1

a0∑J
j=1 ajθ

j
i

=

f1+...+fJ∑
i=1

a0∑J
j=1 aj (h−1(α+ β′Zi))

j

and ∇v(α̂, β̂) =


∂v
∂α
∂v
∂β1

...
∂v
∂βp

 =



f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jajθ
j−1
i ∂θi/∂α J∑

j=1

ajθ
j
i

2

f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jajθ
j−1
i ∂θi/∂β1 J∑

j=1

ajθ
j
i

2 Zi1

...

f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jajθ
j−1
i ∂θi/∂βp(∑J

j=1 ajθ
j
i

)2 ZiJ


Replacing θi = h−1(α+ β′Zi), we obtain:
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∇v(α̂, β̂) =



f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jaj
(
h−1(α+ β′Zi)

)j−1
∂h−1(α+ β′Zi)/∂α J∑

j=1

aj
(
h−1(α+ β′Zi)

)j2

f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jaj
(
h−1(α+ β′Zi)

)j−1
∂h−1(α+ β′Zi)/∂β1 J∑

j=1

aj
(
h−1(α+ β′Zi)

)j2 Zi1

...

f1+f2+...+fJ∑
i=1

−a0

J∑
j=1

jaj
(
h−1(α+ β′Zi)

)j
∂h−1(α+ β′Zi)/∂βp J∑

j=1

aj
(
h−1(α+ β′Zi)

)j2 ZiJ


where β is the vector of coefficients defined in (4.13). The covariance matrix cov(α̂, β̂)

is the inverse of the observed Fisher information, that can also be estimated as part of

the numerical algorithm used to maximise the likelihood. The likelihood of the model

with respect to parameters α and β was described in (4.15).

4.4 Simulations

In this section, several scenarios are simulated with focus only on the binomial distribu-

tion. Simulations for the geometric distribution will appear in a later chapter where it

will be compared to other new estimators suitable for a capture probability based on a

geometric distribution.

4.4.1 Estimators for comparison

Our estimator is compared to two other estimators that assume a binomial distribution

and constant capture probability over individuals.

4.4.1.1 Maximum likelihood estimator for the binomial distribution

We now deduce the maximum likelihood estimator under homogeneity for the binomial

distribution using the EM algorithm. We assume we have complete data or any missing

data can be imputed. For the maximisation step (M step) we calculate the likelihood
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function.

The capture probabilities are defined by

qj = P (Y = j) =

(
m

j

)
pj(1− p)m−j ,

where m is the number of capture occasions and p is the probability of being captured,

the same for all individuals because homogeneity is assumed. The likelihood takes this

form

L(p|m) =

m∏
j=0

q
fj
j .

and the log-likelihood is

`(p|m) =

 m∑
j=1

fj

(
m

j

)+

 m∑
j=1

jfj

 log(p) +

 m∑
j=0

(m− j)× fj

 log(1− p)

=

 m∑
j=1

fj

(
m

j

)+

 m∑
j=1

jfj

 log(p) +

me0 +
m∑
j=1

(m− j)× fj

 log(1− p),

where e0 = E(f0|p) is the expected number of units that have been never captured.

An estimate for p can be obtained by maximising the log-likelihood, or calculating the

roots of the likelihood equation:

d`(p|m)

dp
=

(∑m
j=1 jfj

)
p

−

(∑m
j=0(m− j)× fj

)
1− p

= 0.

We obtain

p̂ =

∑m
j=1 jfj

m× (n+ e0)
, (4.25)

but e0 is unknown. It can be estimated in the E step as

E(f0|p̂) = e0 = N ∗ q0 = (n+ e0)(1− p̂)m ,

from where

ê0 =
n(1− p̂)m

1− (1− p̂)m
. (4.26)

follows.

The EM algorithm starts with an initial value at stage 0 p̂0 to be used in the calculation
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of ê0, which is consequently applied for the estimation of p at stage 1, p̂1. The process

repeats recursively until the difference of the estimates between two consecutive steps

are smaller than a chosen tolerance τ , | pk+1 − pk |< τ .

4.4.1.2 Generalised Turing estimator for power series

In this section, the Turing estimator is obtained for the power series and the particular

cases of the Poisson, the binomial and the geometric distribution.

First, we present Turing’s reasoning to estimate p0 = P (Y = 0|λ) for the Poisson case.

We have that

P (Y = 0|λ) = e−λ =
λe−λ

λ
=

p1

E(Y )
,

which can be estimated as f1/N
S/N where S =

∑m
i=1 ifi, being m the maximum number of

times a unit was captured. This leads to the Turing estimator N̂ = n
1−f1/S .

As we assumed at the beginning of the chapter,

P (Y = k|θ) =
akθ

k

g(θ)

where g(θ) is the normalising constant to make the probabilities sum up to 1. It is

assumed that

g(θ) =
∞∑
k=0

akθ
k,with θ ∈ R.

We calculate the probabilities for Y = 0 and Y = 1 to follow the same induction process

shown above for the Poisson case:

P (Y = 0|θ) =
a0

g(θ)

P (Y = 1|θ) =
a1θ

g(θ)
.

On the other hand,

E(Y |θ) = θ
g′(θ)
g(θ)

.
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Then, we can apply the ratio that Good (1953) showed p1
E(X)

p1

E(Y |θ)
=

a1θ

g(θ)

θg′(θ)
g(θ)

=
a1

g′(θ)
⇒ a0

a1

p1

E(Y |θ)
=

a0

g′(θ)
.

We know that p0 = a0
gθ

= a0
g(g′−1(g′(θ)) leading to

a0

g (g′−1(g′(θ)))
= p0.

Consequently, the estimate for p0 for the power series is

p̂0 =
a0

g
(
g′−1

(
a1S
f1

)) .

Specific estimates for distributions of interest are obtained replacing the power series

parameters to the common parameters of those distributions (4.1).

• Poisson case

We know ax and g(θ):

ax = 1/x!

g(θ) = eθ.

Firstly we calculate g′(θ), the derivative of g(θ):

g′(θ) = λ = eθ.

Therefore, the inverse of g′(θ) is

g′−1(θ) = log(λ)

p̂0 =
1

e
log
(
S
f1

) =
f1

S
.

If p̂0 is replaced in the Horvitz-Thompson estimator, N̂ is estimated as
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N̂Turing−Poi =
n

1− f1
S

. (4.27)

• Binomial case

The known parameters for the binomial case are

ax =

(
m

x

)
g(θ) = (1 + θ)m .

We calculate the first derivative of g(θ) and its inverse function

θ = g′(θ) = m (1 + θ)m−1 = λ

g′−1(λ) = λ =

(
λ

m

)1/(m−1)

− 1,

so that

p̂0 =

(
f1

S

) m
m−1

.

The total population can be estimated using p̂0 in the Horvitz-Thompson estimator

N̂Turing−Bin =
n

1− ( Sf1 )
m
m−1

. (4.28)

• Geometric case

Finally, we apply the same process to the geometric case. The parameters of the

power series for the geometric distribution are

ax = 1

g(θ) =
1

1− θ
.

We can obtain an estimate of p0 once we have an estimate of g′−1(λ):

g′(θ) =
1

(1− θ)2
= λ

g′−1(λ) = 1− 1√
λ
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so that

p̂0 =
1
1

1−

1− 1√
S
f1


=

√
f1

S
.

Therefore, the estimate for the population size is

N̂Turing−Geo =
n

1−
√

f1
S

. (4.29)

4.4.2 Results

2000 samples have been simulated from the same population and their capture-recapture

distribution are simulated. The capture-recapture distribution is generated from a bi-

nomial distribution Yi ∼ Bin(pi,m). Two scenarios with the same characteristics are

proposed differing only in the number of captured occasions m = 10 and m = 20 for

true population sizes 500,1000,2000. pi is based on two covariates

logit(pi) = −0.05X1 + 0.035X2 ,

where i represents the index for a generic individual in the population, X1 follows a nor-

mal distribution with mean 40 and variance 144 (X1 ∼ N(40, 144)) and X2 ∼ N(8, 64).

X1 and X2 are independent.

Estimates are calculated fitting a model using only X1 as independent variable to study

the impact of having unexplained heterogeneity (Tables 4.4 and 4.5, and figures 4.1, 4.2,

4.3 and 4.4).

Firstly we observe for scenarios with the same number of capture occasions and true

population size, that an increase in the number of non-truncated counts leads to a larger

biased estimates but a reduction in the standard deviation. We see again the trade-

off between variance and precision. The maximum likelihood estimator and Turing’s

estimator are largely biased because they assume homogeneity and their variances are

the smallest, as expected.

The estimates improve considerably when the number of captured occasions are doubled.

The ratio between standard deviations having 10 or 20 capture times is equal or greater

than 2 across all population sizes and estimators.
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The relative mean squared error (RMSE) and the relative bias (RBias) are also calculated

to study the asymptotic behaviour with respect to the population size (Table 4.5 and

figure 4.4). When the true population size increases, the RMSE of the generalised Chao

estimator decreases across all scenarios, Turing’s RMSE also decreases slightly and the

RMSE of the maximum likelihood estimate (MLE) remains constant. The relative bias

of the generalised Chao estimators increases with the increase of the true population

size, in contrast to the relative bias of Turing and MLE that do not present any trend.

The RMSE and the relative bias are negatively correlated to the number of capture

occasions.

The optimal number of non-truncated counts varies depending on the scenario and our

criteria, whether we consider the RMSE or the relative bias. We also have to notice that

the scale of those measures is reported multiplied by 100, so differences are very small

in this example. The boxplots presented in figures 4.1, 4.2, 4.3 can be also helpful to

decide about the best estimator for our objective.

In this chapter, we also developed an analytical formula for the variance of the generalised

Chao estimator with J counts (section 4.3). We observe that the analytical standard

deviation is very close to the empirical standard deviation for m = 10, but the difference

increases for m = 20 (table 4.4).



Table 4.4: Population and SD estimates from a model assuming Y ∼ Bin(m, pi) with logit(pi) = −0.05X1 with the true model based
on logit(pi) = −0.05X1 + 0.035X2. X1 ∼ N(40, 144) and X2 ∼ N(8, 64), independently.

N m NT counts N̂GC N̂Turing N̂MLE Emp SDGC Analytical SDGC Emp SDTuring Emp SDMLE

500 10

2 496.115

450.187 436.929

28.146 28.799

12.994 11.968
3 490.873 21.171 21.887

4 487.754 19.525 19.400

5 485.187 19.026 18.296

6 485.714 18.387 17.972

500 20

2 500.012

478.403 468.460

14.073 16.226

6.967 6.478
3 496.618 9.997 13.040

4 494.577 9.150 11.453

5 493.761 8.401 10.248

6 491.968 8.221 9.250

1000 10

2 987.272

899.542 872.574

38.768 39.436

18.602 17.094
3 979.416 30.764 30.469

4 973.508 27.310 27.113

5 969.374 27.080 25.676

6 968.814 25.620 25.198

1000 20

2 996.090

956.220 936.298

17.748 22.024

9.766 9.181
3 992.499 13.633 18.280

4 988.849 12.417 16.129

5 985.912 12.145 14.394

6 983.942 11.965 13.010

2000 10

2 1972.951

1800.926 1746.601

53.984 55.131

26.762 24.457
3 1955.646 41.542 42.851

4 1944.895 38.680 38.210

5 1940.762 38.160 36.329

6 1936.480 36.927 35.586

2000 20

2 1991.078

1912.380 1872.078

25.695 30.800

13.542 12.616
3 1982.500 19.994 25.647

4 1976.044 17.996 22.665

5 1971.069 17.352 20.269

6 1966.666 16.745 18.340



Table 4.5: RMSE (x100) and relative bias (x100) values from a model assuming Y ∼ Bin(m, pi) with logit(pi) = −0.05X1 with the
true model based on logit(pi) = −0.05X1 + 0.035X2. X1 ∼ N(40, 144) and X2 ∼ N(8, 64), independently.

N m

Non

truncated

counts

RMSEGC(x100) RMSETuring(x100) RMSEMLE(x100) RBiasGC(x100) RBiasTuring(x100) RbiasMLE(x100)

500 10

2 0.3228

1.0600 1.6485

-0.777

-9.963 -12.614
3 0.2125 -1.825

4 0.2124 -2.449

5 0.2325 -2.963

6 0.2168 -2.857

500 20

2 0.0792

0.2060 0.4147

0.002

-4.319 -6.308
3 0.0445 -0.677

4 0.0452 -1.085

5 0.0438 -1.248

6 0.0528 -1.606

1000 10

2 0.1664

1.0438 1.6529

-1.273

-10.046 -12.743
3 0.1370 -2.058

4 0.1447 -2.649

5 0.1671 -3.063

6 0.1629 -3.119

1000 20

2 0.033

0.2012 0.4142

-0.391

-4.378 -6.370
3 0.0242 -0.750

4 0.0278 -1.115

5 0.0346 -1.409

6 0.0401 -1.606

2000 10

2 0.0911

1.0087 1.6202

-1.352

-9.954 -12.670
3 0.0923 -2.218

4 0.1133 -2.755

5 0.1241 -2.962

6 0.1349 -3.176

2000 20

2 0.0185

0.1965 0.4131

-0.446

-4.381 -6.396
3 0.0176 -0.875

4 0.0224 -1.198

5 0.0284 -1.447

6 0.0348 -1.667



92
C

h
ap

ter
4

P
ow

er
S

eries

Figure 4.1: Boxplot for N̂ with N = 500. Data generated by a model with pi = −0.05X1 + 0.035X2 with independent X1 ∼ N(40, 12)
and X2 ∼ N(8, 8) and model fitting using only X1.
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Figure 4.2: Boxplot for N̂ with N = 1000. Data generated by a model with pi = −0.05X1 +0.035X2 with independent X1 ∼ N(40, 144)
and X2 ∼ N(8, 64) and model fitting using only X1.
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Figure 4.3: Boxplot for N̂ with N = 2000. Data generated by a model with pi = −0.05X1 +0.035X2 with independent X1 ∼ N(40, 144)
and X2 ∼ N(8, 64) and model fitting using only X1.
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Figure 4.4: Relative mean squared error (RMSE) for binomial cases with the number of occasions A) m = 10 and B) m = 20
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4.5 Case study

An example of binomial data with auxiliary variables is presented in Amstrup et al.

(2005) (chapters 2 and 4). The data comes from a live-trapping experiment where deer

mice were captured during 6 consecutive nights. The weight, age (young or adult) and

gender for the captured mice were recorded. Table 4.6 contains all data for the 38 mice

observed.

We initially look at the ratio plot to assess the presence of heterogeneity (Figure 4.5).

The y-axis of the ratio plot is r̂x = (x+1)fx+1

fx
as an estimation of rx = (x+1)p(Y=x+1)

p(Y=x) and

the x-axis is the number of captures (x = 1, . . . ,m − 1). The confidence limits of the

ratio plot are calculated as exp(log(r̂x) ±
√

1/fx+1 + 1/fx). We observe in figure 4.5 a

potential structural heterogeneity.

Our generalised Chao’s estimator will be compared to the weighted linear regression

model estimator (WLR)(Rocchetti et al., 2011). This estimator can be applied to the

Katz family of distributions (Johnson et al., 2005) which include binomial, Poisson

and negative binomial distributions. The idea behind the WLR estimator is to fit a

linear regression model between the count x and the ratio described above r̂x or the

log(r̂x). The WLR estimator does not use any individual covariate information; moreover

behavioural and time effects maybe present. Hence, f0 can be predicted based on the

model:

log

(
(x+ 1)fx+1

fx

)
= α+ βx+ εx, (4.30)

where εx is a random error, x = 1, . . . ,m − 1. f0 can be estimated as f̂0 = f1e−α̂.

The authors suggest the use of weighted least squares with the matrix of weights chosen

inversely to the covariance matrix cov(Y ). A practical approximation is provided as a

diagonal matrix with values

wx =

(
1

fx
+

1

fx+1

)−1

. (4.31)

A variance estimator for N̂ is also deduced and defined as

V ar(N̂) ≈ nf̂0

N̂
+ e−2α̂f1 (V ar(α̂)f1 + 1) . (4.32)

The results are shown in tables 4.7 and 4.8. The generalised Chao’s estimator with 2

non-truncated counts does not seem adequate because of the larger standard error than

the models with more non-truncated counts and the estimate of f0 as shown in figure 4.6.

The point estimators with larger number of non-truncated counts present similar results.

The standard errors increase significantly when the variable weight is added into the

model. The variability decreases when the number of non-truncated counts increases as
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Table 4.6: Individual capture history with 3 covariates: sex (0:female,1:male),
age (0:adult,1:young) and weight(in grams), m = 6 trapping occasions.

ID # captures Sex Age Weight

1 6 1 1 12
2 5 0 1 15
3 4 1 1 15
4 5 1 1 15
5 6 1 1 13
6 5 1 0 21
7 5 1 1 11
8 4 1 0 15
9 6 1 1 14
10 5 1 1 13
11 5 1 1 14
12 5 0 0 22
13 6 1 1 14
14 4 1 1 11
15 2 0 1 10
16 2 0 0 23
17 3 0 1 7
18 2 1 1 8
19 3 1 0 19
20 3 1 1 13
21 3 0 1 5
22 2 0 0 20
23 3 1 1 12
24 1 0 1 6
25 4 0 0 22
26 3 0 1 10
27 4 0 1 14
28 2 0 0 19
29 1 0 0 19
30 1 0 0 20
31 3 1 0 16
32 2 0 1 11
33 1 1 1 14
34 1 0 1 11
35 1 1 0 24
36 1 1 0 9
37 1 1 1 16
38 1 0 0 19

observed in the simulations. The weighted linear regression estimator provides a higher

point estimate but a larger confidence interval compared to our estimator.

The expected values of the WLR estimator are close to the observed values with the

exception of the mice captured 5 times (figure 4.6). r̂4, the ratio between mice captured
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5 and 4 times (figure 4.5) seems to be an outlier or unusual value and the weights

are reducing the impact of that point in the regression. The expected values for the

generalised Chao’s estimator with 3 and 4 non truncated counts seem reasonable with

respect to the scale of the graph. However the estimators with 5 and 6 non-truncated

counts are clearly negatively affected by the counts in the tail.

In this small dataset with covariates, the covariates did not show a large impact in

the results compared to estimates without covariates. The p-values from the likelihood

ratio tests found only significant variables for models with 5 and 6 non-truncated counts

(table 4.8). Amstrup et al. (2005) calculated a similar estimate (39.9 (SE - 1.7)) based

on Huggings Mh model with covariates. The expected values of the WLR estimator were

better than the ones of the generalised Chao estimator, however the variability is larger

despite not using any auxiliary variables. The possibility of changing the cut-off point

of truncation to decide the balance between precision and variability is an advantage of

the generalised Chao’s estimator.

Table 4.7: Point estimates and 95% asymptotic confidence intervals for the
deer mice case study (m = 6) with 3 covariates: sex (0:female,1:male), age
(0:adult,1:young) and weight(in grams).

Counts Model N̂ ŜE Asymptotic 95% CI

2
Sex 70 2.77 64-75

Sex+Age 69 5.52 58-79
Sex+Age+Weight 51 15.33 21-81

3
Sex 42 0.73 41-44

Sex+Age 43 1.22 41-45
Sex+Age+Weight 42 3.26 36-49

4
Sex 41 0.49 40-42

Sex+Age 41 0.77 39-42
Sex+Age+Weight 41 2.21 36-45

5
Sex 39 0.32 39-39

Sex+Age 39 0.5 38-40
Sex+Age+Weight 40 1.76 36-43

6
Sex 39 0.26 39-39

Sex+Age 39 0.47 38-40
Sex+Age+Weight 40 1.59 36-43

6 WLR estimate 44 4.26 36-52
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Table 4.8: Likelihood ratio tests for models estimating the number of deer mice.

Counts Model χ2 df P-value

2
Sex 1.323 1 0.2500

Sex+Age 0.204 1 0.6517
Sex+Age+Weight 0.058 1 0.8095

3
Sex 0.214 1 0.6438

Sex+Age 1.367 1 0.2424
Sex+Age+Weight 0.741 1 0.3894

4
Sex 0.958 1 0.3277

Sex+Age 0.974 1 0.3237
Sex+Age+Weight 0.014 1 0.9045

5
Sex 4.006 1 0.045

Sex+Age 1.803 1 0.1794
Sex+Age+Weight 3.524 1 0.061

6
Sex 11.413 1 0.0007

Sex+Age 4.943 1 0.0262
Sex+Age+Weight 5.115 1 0.0237

Figure 4.5: A) Ratio plot for the deer mice example.log(r̂x) = log
(

(x+1)fx+1

fx

)
.

B) Fitted ratio values log(E(r(x))) for the WRL estimator
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Figure 4.6: Observed vs fitted frequencies for the deer mice experiment. Models with covariates: A) Sex. B) Sex and Age. C) Sex, Age
and Weight
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4.6 Conclusions

In this chapter, we have extended the generalisation of Chao’s estimator for the Poisson

distribution to any capture-recapture distributions belonging to the power series. We

have focused on the Poisson, binomial and geometric distributions because they com-

monly appear in the capture-recapture area. The Poisson case has been used to validate

the general estimators of the power series distributions. Simulations and a case study

were only presented for the binomial distribution because an estimator based on the

truncated geometric distribution will be part of the comparison with other estimators

based on the geometric distribution in a later chapter.

The deduction of the estimators started from the simplest case with 2 non-truncated

counts and no covariate information to the most complex case with J non-truncated

counts and the addition of auxiliary variables to explain the heterogeneity of the capture-

recapture distribution. We also detailed a generalised Turing estimator for the power

series and the maximum likelihood estimator for the binomial case to be compared with

our estimators.

Our findings for the estimators based on the binomial distribution were similar to the

results obtained in previous chapters. The estimates are asymptotically biased and there

is a shrinkage effect in the variance when the population size increases. The error cannot

be reduced because it decomposes into the sum of the bias squared and the variance and

the reduction in bias leads to an increase in the variability and vice-versa.

In the binomial case we have also shown the impact of increasing the number of captured

occasions. A duplication in the number of occasions led to a reduction by half the

standard deviations and a significant reduction of the RMSE.

The estimators behaviour with respect to the number of non-truncated counts depends

on the specific case. However, we observed in the simulations that estimators with small

number of non-truncated counts are more efficient based on the relative mean squared

error. We obtained a similar conclusion for the Poisson case. In the case study we also

concluded that some truncation cut-off values were not adequate based on the fitted

values. The question of determining an optimal cut-off point arises and a solution is

proposed in the following chapter.





Chapter 5

Selecting the ”right” cut-off

estimate

In this chapter, we describe methods to decide about the best cut-off truncation point

for the generalised Chao estimator with and without covariate information. We have

seen in previous chapters how an increase in the number of non-truncated counts leads

to an increase in the bias but a reduction in the variability, because more information is

considered. The ratio plot, also described previously, is a useful tool to assess visually the

presence and type of heterogeneity, but it can also be used to find an optimal truncation

cut-off point (Böhning et al., 2013a). A formal χ2 test is provided initially for the

Poisson case without covariates and its extension to the power series distributions using

covariate information.

Another approach to obtain an optimal estimator based on the methodology of model

averaging is also presented. Simulations and case studies were conducted to compare to

other estimators.

5.1 Goodness of fit

5.1.1 Poisson case without covariates

We aim to develop a formal test to find the optimal upper truncation point J to obtain

the best estimate. We firstly look at the Poisson case without covariates.

A χ2 test is defined by

χ2(J |λ̂J) =
J∑
y=1

[
fy − E(fy|J, λ̂)

]2

E(fy|J, λ̂)
=

J∑
y=1

[
fy − f̂y

]2

f̂y
. (5.1)

103
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We can replace f̂y = E(fy|J, λ̂) by the estimates shown in (3.6) to obtain

χ2(J |λ̂J) =
J∑
y=1



fy −
 J∑
j=1

fj

 λ̂yJ/y!
J∑
k=1

λ̂kJ/k!


2

 J∑
j=1

fj

 λ̂yJ/y!

J∑
k=1

λ̂kJ/k!



. (5.2)

where J ≥ 2. Notice that λ̂J is the estimate of λ when the first J counts are the only

non-truncated counts in the distribution.

Note that χ2(J, λ̂J) = 0 for J = 2 because the perfect fit is achieved. Under the null

hypothesis that the model is valid, the statistic follows a χ2 distribution with J − 2

degrees of freedom where J is the number of non-truncated counts (χ2(J, λ̂J) ≈ χ2
J−2).

This asymptotic result needs the constrain fx ≥ 5. Therefore, the optimal J is defined

as the largest truncation point where the test is not significant. We have calculated

the kernel density of the χ2 statistic to confirm the number of degrees of freedom of

the χ2 distribution (figure 5.1). We have carried out a simple simulation exercise where

the capture-recapture distribution follows an homogeneous Poisson Y ∼ Po(2). Each

truncation point is compared to theoretical χ2 distributions.
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Figure 5.1: Comparison of theoretical χ2 distributions with the density of the χ2 statistic for a simulation from a Poisson distribution
without covariates. A)J = 3 B)J = 4 C)J = 5 D)J = 6
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5.1.2 Power series distributions without covariates

The test can be extended to the power series distributions applying the estimates for

the expectations of the frequencies obtained in (4.6). Hence, the χ2 statistic is defined

by

χ2(J |θ̂J) =
J∑
y=1



fy −
 J∑
j=1

fj

 ay θ̂J
y

J∑
k=1

akθ̂J
k


2

 J∑
j=1

fj

 ay θ̂J
y

J∑
k=1

akθ̂J
k



. (5.3)

The characteristics of the χ2(J |θ̂J) statistic are the same as described above. It fol-

lows a χ2 distribution with J − 2 degrees of freedom (χ2(J |θ̂J) ∼ χ2
J−2). We have

conducted another small simulation exercise to confirm the J − 2 degrees of freedom.

2000 replications are generated from a population with a capture-recapture distribution

Y ∼ Bin(0.25, 10). The kernel density of the χ2(J |p̂) is compared graphically to the-

oretical χ2 distributions (figure 5.2). We also estimate the degrees of freedom of the

distribution based on data using the function fitdistr from the R-package MASS.
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Figure 5.2: Comparison of theoretical χ2 distributions with the density of the χ2 statistic for a simulation from a binomial distribution
without covariates.A)J = 3 B)J = 4 C)J = 5 D)J = 6
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5.1.3 Power series distributions with covariates

Holling et al. (2013) described a graphical tool to assess the goodness of fit of count dis-

tributions when covariate information is available. Several examples with heterogeneity

are provided in the paper where the probability py (λ(µi, θn)) depends on a vector of

known parameters µi and a vector of unknown parameters θn.

Our scenario for the Poisson case and auxiliary variables can be described in such a way,

where the λ function is λi = eα+β′Zi . Zi is the known vector and α and β formed the

unknown part. Holling et al. (2013) applied the same marginal method to calculate the

expectation of the frequencies fy as the sum of the frequencies across all n covariate

combinations. Therefore,

f̂y(θ̂n) =
n∑
i=1

py

(
λ(µi, θ̂n)

)
(5.4)

which translates in our case and notation into

f̂y =

MJ∑
i=1

f̂iy, (5.5)

where MJ is the number of covariate combinations when J non-truncated counts are

considered.

Consequently, we can deduce the χ2 statistic replacing f̂y by E(fy|λ̂i) shown in (3.19).

χ2(J |λ̂iJ) =
J∑
y=1



fy −
MJ∑
i=1



(
J∑
l=1

fil

)
λ̂yiJ/y!∑J

k=1 λ̂
k
iJ/k!




2

MJ∑
i=1



(
J∑
l=1

fil

)
λ̂yiJ/y!

J∑
k=1

λ̂kiJ/k!





, (5.6)

(5.7)

for y = 1, . . . , J . The index j indicates the assumption that the model used j non-

truncated counts. λ̂iJ is the λ estimate for the ith covariate combination with J non-

truncated counts. We can also replace λiJ = eαJ+β′JZi with αJ and βJ are the estimations
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of α and β for the model with J non-truncated counts. Hence we obtain

χ2(J |α̂J , β̂′J) =
J∑
y=1



fy −
MJ∑
i=1


(∑J

l=1 fil

)
ey(α̂J+β̂′Jzi)/y!

J∑
k=1

ek(α̂J+β̂′JZi)/k!




2

MJ∑
i=1


(∑J

l=1 fil

)
ey(α̂J+β̂′JZi)/J !

J∑
k=1

ek(α̂J+β̂′JZi)/k!





. (5.8)

We can generalise this formal test to the power series distributions. In chapter 4, we

calculated ey (4.19) and the h function was defined to link the parameter θ and the

covariate information, h(θi) = α+ β′Zi. Therefore the test statistic can be written as:

χ2(J |θ̂iJ) =
J∑
y=1



fy −
∑MJ

i=1


ay θ̂

y
iJ

(
J∑
l=1

fil

)
∑J

k=1 akθ̂
k
iJ




2

∑MJ
i=1


ay θ̂

y
iJ

J∑
l=1

fil∑J
k=1 akθ̂

k
iJ





. (5.9)

χ2(J |α̂J , β̂′J) =
J∑
y=1



fy −
∑MJ

i=1


ay(h

−1(α̂J , β̂
′
J))y

J∑
l=1

fil

∑J
k=1 ak(h

−1(α̂J , β̂
′
J))k




2

∑MJ
i=1


ay(h

−1(α̂J , β̂
′
J))y

J∑
l=1

fil∑J
k=1 ak(h

−1(α̂J , β̂
′
J))k





. (5.10)

This χ2 statistic follows a χ2 distribution but the number of degrees of freedom need

to be calculated. Two simulation studies have been conducted to calculate the number

of degrees of freedom. 2000 replications from a population were generated following

the example presented in (4.4.2). This time we first draw data based only on X1 that
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follows a normal distribution with mean 40 and variance 144 (X1 ∼ N(40, 144)) with

logit(pi) = −0.05X1 as link function. The capture-recapture distribution follows Y ∼
Bin(pi, 10). The second simulation adds X2 ∼ N(8, 64) to the model as logit(pi) =

−0.05X1 + 0.035X2. The idea is to evaluate whether an increase in the number of

covariates affects the number of degrees of freedom.

The results from the simulation concluded that the number of degrees of freedom only

depends on the number of non-truncated counts and is independent of the number of

covariates included in the model (Figure 5.3 and 5.4). Therefore, the χ2(J |θ̂iJ) statistic

follows a χ2 distribution with J − 2 degrees of freedom based on simulated data. The

number of covariates in the model does not impact the degrees of freedom, the reason

could be that we are taking the average over the various strata defined by the covariates.
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Figure 5.3: Comparison of theoretical χ2 distributions with the kernel density of the χ2 statistic from a capture-recapture distribution
Y ∼ Bin(pi, 10) with pi = expit(−0.05X1). J indicates the number of non-truncated counts in the model. A)J = 3 B)J = 4 C)J = 5
D)J = 6.
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Figure 5.4: Comparison of theoretical χ2 distributions with the kernel density of the χ2 statistic from a capture-recapture distribution
Y ∼ Bin(pi, 10) with pi = expit(−0.05X1 + 0.035X2). J indicates the number of non-truncated counts in the model. A)J = 3 B)J = 4
C)J = 5 D)J = 6.
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5.2 Model averaging

In previous chapters we described the common trade-off between the bias of an estimate

and its variance. We observed that when unexplained heterogeneity is present, the closest

models to the true value of the population are the models with the smallest number of

non-truncated counts J . When J increases, the estimates become more biased but their

variance decreases.

We have now presented the χ2 test to find an optimal level of truncation to add to other

useful tools like the ratio plot (Rocchetti et al., 2011; Böhning et al., 2013a) and the

adjusted frequency plot (Holling et al., 2013). We explore in this section the application

of model averaging theory to build an estimate balanced between bias and variance.

Stanley and Burnham (1998) proposed a frequentist approach to calculate model averag-

ing estimates in closed-population capture-recapture framework. Information-theoretic

criteria like AIC are used to obtain the weights of each model. However, a key assump-

tion to compare models using AIC or any similar criterion is to have the same initial

dataset. In our case the data changes with respect to the level of truncation. To the best

of our knowledge we have not found any example in the literature for comparing models

with different truncation levels. Therefore, we propose two ad hoc sets of weights and

investigate their performance by simulations. The first set is

w1(j) =
fj∑J−1
k=1 fk

, (5.11)

with j = 1, .., J − 1. The second set is

w2(j) =
fj/V̂ ar(N̂J=j+1)∑J−1

k=1

(
fk/V̂ ar(N̂J=k+1)

) , (5.12)

with j = 1, .., J − 1. V̂ ar(N̂J=j+1) is the variance estimate of the population estimate

for the model with j + 1 non-truncated counts.
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Therefore, the simplest case comprises the estimates for the models with two and three

non-truncated counts. The weights in this case are:

w1(1) =
f1

f1 + f2

w1(2) =
f2

f1 + f2

w2(1) =
f1/V̂ ar(N̂J=2)

f1/V̂ ar(N̂J=2) + f2/V̂ ar(N̂J=3)

w2(2) =
f2/V̂ ar(N̂J=3)

f1/V̂ ar(N̂J=2) + f2/V̂ ar(N̂J=3)
.

The weights w1(j) are designed to take into account the frequency distribution. In

contrast, the alternative weights w2(j) includes the inverse of the variance to reduce

the weights of models with larger uncertainty. Hence, the population estimates can be

written as

NMA1 =
J−1∑
j=1

w1(j)N̂J=j+1 (5.13)

NMA2 =
J−1∑
j=1

w2(j)N̂J=j+1, (5.14)

where N̂J=j+1 is the generalised Chao estimator for the model with j+ 1 non-truncated

counts.

The efficiency of these new estimators is investigated going back to the simulation based

on a binomial distribution with unexplained heterogeneity due to a missing covariate in

the model fitting (4.4.2).

Table 5.1 and 5.2 contain the estimates, standard errors, relative mean squared errors

and relative bias for the generalised Chao’s estimator and the model averaged estima-

tors respectively. Figures 5.5 and 5.6 clearly show how the estimates based on model

averaging are a balance between the estimates involved in their calculation. We observe

that the model with two non-truncated counts tend to be more unstable presenting a

good point estimate but a large variance. The weighted estimates are ideal to obtain a

balanced solution with smaller variance and better point estimates. The weighted esti-

mators using w1 weights favour the point estimation. In contrast to the other weighted

estimator (5.14) which penalises large variance leading to an estimate with smaller vari-

ance but greater bias. Both weighted estimators show smaller RMSE than the original

estimators (5.7). The w1 weights provide a slightly better estimate with respect to the

RMSE but both weighted estimates are similar in these particular scenarios (table 5.2).
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Table 5.1: Generalised Chao estimates based on a capture-recapture distribution
Yi ∼ Bin(pi, 10) with pi = expit(−0.05X1 + 0.035X2) where the model fitting
included only X1; N = 1000.

Non-truncated counts N̂ ŜEN RMSE x 100 RBias

2 988.12 38.89 0.158 -0.011
3 978.36 30.21 0.130 -0.021
4 972.14 27.63 0.145 -0.027
5 969.28 26.55 0.157 -0.030
6 968.55 26.30 0.160 -0.031

Table 5.2: Model averaging estimates based on a capture-recapture distribution
Yi ∼ Bin(pi, 10) with pi = expit(−0.05X1 + 0.035X2) where the model fitting
included only X1. MA1 and MA2 are the average models with w1 and w2

weights respectively; N = 1000. The standard errors presented are empirical.

Estimates N̂MA1 N̂MA2 ŜEMA1 ŜEMA2 RMSEMA1 RMSEMA2 RBiasMA1 RBiasMA2

involved (x100) (x100)

2-3 984.18 981.88 33.76 32.20 0.130 0.127 -0.015 -0.018
2-4 981.61 978.45 31.81 29.94 0.126 0.127 -0.018 -0.021
2-5 980.38 976.88 31.00 29.08 0.126 0.129 -0.019 -0.022
2-6 979.88 976.26 30.68 28.76 0.126 0.130 -0.019 -0.023
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Figure 5.5: Comparison of generalised Chao and model averaging estimates based on a capture-recapture distribution Yi ∼ Bin(pi, 10)
with pi = expit(−0.05X1 + 0.035X2) where the model fitting included only X1. MA1 and MA2 are the average models with w1 and w2

weights respectively.
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Figure 5.6: Comparison of generalised Chao and model averaging estimates and 95% CI based on a capture-recapture distribution
Yi ∼ Bin(pi, 10) with pi = expit(−0.05X1 + 0.035X2) where the model fitting included only X1. MA1 and MA2 are the average models
with w1 and w2 weights respectively.



11
8

C
h

ap
ter

5
S

electin
g

th
e

”righ
t”

cu
t-off

estim
ate

Figure 5.7: RMSE (x100) values for generalised Chao and model averaging estimates based on a capture-recapture distribution Yi ∼
Bin(pi, 10) with pi = expit(−0.05X1 + 0.035X2) where the model fitting included only X1. MA1 and MA2 are the average models with
w1 and w2 weights respectively.
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5.3 Case study

Section 4.5 described a live-trapping experiment on deer mice. We represented the ratio

plot (figure 4.5) and the covariate-adjusted frequency plot (figure 4.6) to choose the best

truncation cut-off.

Now we can use the chi-square test and we can also provide average estimates using

the weights proposed in the previous section. The chi-square test (table 5.3) suggests

to look at the model with J = 4. Although in this case the chi-square test for J = 5

is borderline significant and for J = 6 is borderline non-significant, we could observe

more details about these models. The covariate-adjusted frequency plot shows that the

expected value of f5 is underestimated under the estimator based on 5 non-truncated

counts. On the other hand, the estimator based on all the data included overestimates

the observed number of mice captured 4 times. There is no large difference between

point estimates of these 3 estimators, but we would recommend to use the estimator

that uses 4 non-truncated counts.

We could also report the estimate from the weighted average of the estimators based

on 2 to 4 non truncated counts. Both estimates are a good compromise between the

variance and the bias. In this example, there were only 36% of the captures in the first 2

counts, an indication that we should be cautious with the model with two non-truncated

counts. So the weighted estimates might provide a more reliable solution.

Table 5.3: Generalised Chao’s estimates for the deer mice case study: χ2 statis-
tics and p-values

Non-truncated counts N̂ ŜE χ2(J) df p-value

2 51.20 15.33 0
3 42.06 3.26 1.129 1 0.288
4 40.48 2.213 2.534 2 0.272
5 39.47 1.758 8.520 3 0.036
6 39.54 1.585 8.083 4 0.089

Table 5.4: Model averaging point estimates and standard errors for the deer
mice case study.

Models involved N̂MA1 ŜEMA1 N̂MA2 ŜEMA2

2-3 counts 47.54 6.90 42.64 6.53
2-4 counts 45.30 6.73 41.12 6.41
2-5 counts 44.22 6.65 40.39 6.36
2-6 counts 43.25 6.58 40.02 6.33
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5.4 Conclusions

Our initial motivation was to extend Chao’s lower bound estimator to incorporate co-

variate information to model the individual capture probability. Chao’s estimator is

robust because it only uses individuals observed once or twice. We also extended the

initial estimator to include individuals captured more than 2 times. We developed the

initial framework under the assumption of a Poisson distribution and we extended it to

the power series of distributions.

The results from our simulations showed that models with low number of non-truncated

counts obtained the most accurate point estimates but with larger variability. Therefore,

the question to solve was to develop a criterion to choose the ”right” model based on the

data. In this chapter we presented a χ2 test to find an optimal truncation cut-off point

for our estimates with and without covariates. We also provided two weighted estimators

to combine models considering varying truncation points to obtain a balanced solution

to the trade-off between variance and bias observed in previous chapters. We also found

the application of graphical tools like the ratio plot and the adjusted-covariate frequency

plot very practical to assess our estimates in more detail.

We finish here exploring the methodology applying truncation and developing in the

next chapter new estimates based on the concept of censoring under the assumption of

a geometric distribution.



Chapter 6

Estimates with censoring and

covariates

In this chapter, we explore the concept of censoring applied to capture-recapture estima-

tion based on a geometric distribution. Niwitpong et al. (2012) presented an estimator

based on the geometric distribution with different capture probability for individuals

captured once and individuals captured more than one time. We extend this estimator

to include covariate information and consider other censoring cut-off points. Simulations

are also presented assessing the performance of the new estimators and comparing them

to the previously developed estimators assuming a left and right truncated geometric

distribution. The theory is also applied to a case study at the end of the chapter.

6.1 Point estimation for the geometric distribution with

censored data

We follow the same structure as in previous chapters. We start extending the estimator

described by Niwitpong et al. (2012) but censoring individuals captured 2 or more times.

Thereafter, we censor individuals captured more than c times and we finally extend the

methodology to include covariate information.

There are different ways to handle censoring in survival analysis. The meaning of cen-

soring individuals captured more than c times in our case is to aggregate all individuals

observed c or more times in one category. In contrast, we saw that truncation ignored

the individuals captured more than J times for the estimation of f0.

121
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6.1.1 Censoring units captured more than 2 times

We initially have a zero-truncated geometric distribution where individuals captured

more than 2 times are censored. Three probabilities are considered: the probability of

being captured once, being capture twice and being captured more than twice (censored

individuals).

q1 = P (Y = 1) =
p(1− p)

1− p
= p

q2 = P (Y = 2) =
p(1− p)2

1− p
= p(1− p)

q3 = P (Y > 2) = 1− q1 − q2 = 1− p− p(1− p) = (1− p)2,

where p is the probability of being captured.

The likelihood has the following form

L(p) = qf11 q
f2
2 q

n−f1−f2
3 .

Hence, the log likelihood is

`(p) = (f1 + f2) log(p) + f2 log(1− p) + 2(n− f1 − f2) log(1− p)

= (f1 + f2) log(p) + (2n− 2f1 − f2) log(1− p).

To maximise the log likelihood we solve the score equation d`(p)
dp = 0, or

d`(p)

dp
=
f1 + f2

p
− (2n− 2f1 − f2)

1− p
= 0.

Hence, the maximum likelihood estimator is

p̂ =
f1 + f2

2n− f1
. (6.1)

6.1.2 Censoring units captured c ≥ 2 times

We look now at the likelihood when we censor all individuals who were captured more

than c times. The zero-truncated probabilities are defined as

qk = P (Y = k) =
p(1− p)k

1− p
= p(1− p)k−1 , for k = 1, .., c

qc+ = P (Y > c) = 1−
c∑
j=1

qj = 1−
c−1∑
j=0

p(1− p)j =
∞∑
j=c

p(1− p)j =
∞∑
j=0

p(1− p)j+c

= (1− p)c
∞∑
j=0

p(1− p)j = (1− p)c.
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Notice the property of the geometric distribution that the zero-truncated geometric is

still a geometric distribution.

The likelihood is written as

L(p) =

 c∏
j=1

q
fj
j

 (1− p)c×(n−
∑c
j=1 fj).

Therefore, the log-likelihood is

`(p) =

 c∑
j=1

fj

 log(p) +

 c∑
j=1

(j − 1)fj

 log(1− p) + c

n−
 c∑
j=1

fj

 log(1− p).

We solve the score equation to find the maximum likelihood estimate:

d`(p)

dp
=

(∑c
j=1 fj

)
p

−

(∑c
j=1(j − 1) ∗ fj

)
1− p

−
c
(
n−

(∑c
j=1 fj

))
1− p

= 0.

The maximum likelihood estimate is

p̂ =

∑c
j=1 fj

cn+
∑c

j=1(j − c)fj
. (6.2)

For the particular case where c = 2, we obtain (6.1).

An estimate f̂0 can now be obtained using p̂. The expected value e0 = E(f0|p̂) will be

e0 = Np0 = (n+ e0)× p̂

e0 =
np̂

(1− p̂)
=

n
∑c

j=1 fj(∑c
j=1 fj(j − (c+ 1))

)
+ nc

.

Consequently, the population estimate is

N̂G−censor = n+
np̂

(1− p̂)
=

n

1− p̂
=

n

1−

c∑
j=1

fj

c ∗ n+

c∑
j=1

(j − c)fj

.

N̂G−censor is actually the Horvitz-Thompson estimator, where p̂ is the probability of not

being captured. Notice that the estimate for c = 1 leads to the estimate N̂ = n
1−f1/n

(Niwitpong et al., 2012).
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6.2 Point estimation for the geometric distribution with

censored data and covariates

Following the technique applied in previous chapters we are going to introduce covariate

information at individual level to explain the heterogeneity in the capture-recapture

distribution. pi is linked to explanatory variables using

pi =
eα+β′Zi

1 + eα+β′Zi
, (6.3)

where i = 1, . . . ,M , M being the total number of different covariate combinations.

As a result of this link, we can easily obtain the probabilities and the likelihood for the

case with auxiliary variables, replacing the unique probability p by pi:

qik = P (Yi = k) =
pi(1− pi)k

1− pi
= pi(1− pi)k−1

qic+ = P (Yi > c) = 1−
c∑
j=1

qij = 1−
c−1∑
j=0

pi(1− pi)j =
∞∑
j=c

pi(1− pi)j

=

∞∑
j=0

pi(1− pi)j+c = (1− pi)c
∞∑
j=0

pi(1− pi)j = (1− pi)c.

The likelihood and log-likelihood are provided as

L(pi) =
M∏
i=1

 c∏
j=1

q
fij
ij q

(ni−
∑c
j=1 fij)

ic+


`(pi) =

M∑
i=1

[( c∑
j=1

fij

)
log(pi) +

( c∑
j=1

(j − 1)× fij
)

log(1− pi)

+ c
(
ni −

c∑
j=1

fij

)
log(1− pi)

]
,

where ni is the number of individuals observed in the ith strata. The log-likelihood,

replacing logit(pi) = α+ β′Zi, becomes

`(α, β) =
M∑
i=1

[(
c∑
j=1

fij

)
log

(
eα+β′Zi

1 + eα+β′Zi

)
+

(
c∑
j=1

(j − 1)× fij

)
log

(
1

1 + eα+β′Zi

)

+ c

(
ni −

(
c∑
j=1

fij

))
log

(
1

1 + eα+β′Zi

)]
.
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We do not have a closed form to estimate α and β, but they can be obtained maximising

the likelihood using a numerical algorithm as shown in previous chapters.

Now, f̂0 is calculated as E(f0|α̂, β̂) =
∑M

i=1E(fi0), we first calculate all ei0 = E(fi0) for

each strata:

ei0 = Niq̂i0 = (ni + ei0)× q̂i0 ,

where Ni is the total number of units with covariate combination i in the population,

ni is the total number of units sampled and qi0 is the probability of non-being captured

for individuals with covariate combination i :

ei0 =
niq̂i0

(1− q̂i0)
.

We can write the expression with respect to α̂ and β̂′ as

ei0 = nie
α̂+β̂′Zi .

Hence, the estimate of the population size N is,

N̂Geo−censored = n+

M∑
i=1

nie
α̂+β̂′Zi .

f̂0 is calculated as the weighted sum of the number of people in each strata. Notice that

the weights depend on the individual probability of being captured in that strata. If

qi0 ≥ 0.5, we expect to have at least the same number of individuals of that stratum

within the hidden population.

6.3 Analytical variance for the estimator of population size

based upon the geometric distribution with censoring

An estimator was presented for the geometric distribution using the concept of cen-

soring and including covariate information to adjust for heterogeneity in the capture

probability:

NGeo−censor = n+

M∑
j=1

nj
pj

1− pj
= n+

M∑
j=1

nje
α+β′Zj =

N∑
i=1

∆i(1 + eα+β′Zi), (6.4)

where Zj contains the jth covariate information, Zi contains the covariate information

for the ith individual, M is the number of different covariate combinations and nj is the
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total number of individuals captured with the jth covariate combination.

The link between the probability pi of being captured and the covariate information was

provided as pi = expit(α+β′Zi). The variance can be obtained using the same approach

applied in previous chapters where

var(N̂Geo−censor) = E
[
V ar(N̂Geo−censor|∆i, i = 1, .., N)

]
+V ar

[
E(N̂Geo−censor|∆i, i = 1, .., N)

]
,

(6.5)

where

∆i =

{
1, yi ∈ {1, ..,m}
0, otherwise

,

and m is the maximum number of occasions that an individual was observed. We can

compute

E(∆i) = qi and V ar(∆i) = qi(1− qi),

where qi is the probability for the ith individual of being captured:

qi = p(∆i = 1|pi) =
m∑
k=1

pi(1− pi)k =
m∑
k=1

eα+βZ′i

(1 + eα+β′Zi)
(k+1)

. (6.6)

E(NGeo−censor|∆i, i = 1, . . . , N) can also be written as

E(N̂Geo−censor|∆i,i=1,..N ) =
N∑
i=1

∆i

(
1 +

qi∑m
k=1(1− pi)k+1

)
=

N∑
i=1

∆iωi.

We can now calculate the variance as

V ar(N̂Geo−censor|∆i,i=1,..N ) =
N∑
i=1

V ar(∆iωi) =
N∑
i=1

qi(1− qi)ω2
i .

We can use the Horvitz-Thompson estimator to calculate an estimate of this variance:

V̂ ar(N̂Geo−censor|∆i,i=1,..N ) =

N∑
i=1

∆i

q̂i
q̂i(1− q̂i)ω̂2

i

=

f1+...+fm∑
i=1

(1− q̂i)
(

1 +
q̂i∑m

k=1(1− p̂i)k+1

)2

. (6.7)
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Ultimately, we use the multivariate Delta method to calculate the second term:

V̂ ar[E(NGC |∆i, i = 1, .., N)] = ∇g(α̂, β̂)′ĉov(α̂, β̂)∇g(α̂, β̂), (6.8)

where g(α̂, β̂) = n+
∑f1+...+fm

j=1 nje
α̂+β̂′Zj and then

∇g(α̂, β̂) =


∂g
∂α̂
∂g

∂β̂1

...
∂g

∂β̂p

 =



f1+f2+...+fm∑
j=1

nje
α̂+β̂′Zj

f1+f2+...+fm∑
j=1

njZ1eα̂+β̂′Zj

...
f1+f2+...+fm∑

j=1

njZpe
α̂+β̂′Zj


.

β̂ is the vector of estimates β̂1, . . . , β̂p, associated to each auxiliary variable.

An estimate of the covariance matrix (ĉov(α̂, β̂)) of model parameters is the inverse of

the Fisher information matrix, normally provided within the routine of the numerical

algorithm. The final estimate is obtained summing (6.7) and (6.8)

6.4 Simulations

Following the reasoning of previous chapters we have simulated a population with a

capture-recapture distribution depending on 2 auxiliary variables. However, we fit

our models only with 1 covariate to assess the estimator performance when there is

unmeasured heterogeneity. We simulate 2000 repetitions of capturing a population.

The capture-recapture distribution follows a geometric distribution Y ∼ G(qi), where

logit(qi) = −0.02X1 + 0.13X2 with X1 following a normal distribution with mean 40

and variance 144 (X1 ∼ N(40, 144)), X2 ∼ N(10, 9), and X1 and X2 are independent.

Three estimators are reported, the extension of the geometric estimator based on censor-

ing and including covariate information, the generalised Chao estimator using truncation

and covariate information and Turing’s estimator for the geometric distribution calcu-

lated in (4.29).

The models based on truncation present better point estimates than the models that

apply the concept of censoring (table 6.2). However, the standard deviations of the

estimators based on censoring are much smaller being close to the standard deviation of

Turing’s estimator. When we increase the cut-off for censoring, the bias increased slowly

and the variability remains fairly constant with a slight decrease (Figures 6.1,6.2,6.3).
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The variance estimates for the estimatiors based on censoring and covariates were small.

We observe that the part of the variance that increases with respect to the population

size estimate, does not have a large impact in the global estimate, in contrast to the

estimators based on truncation. However, it is reassuring to see that the analytical

formula provided a good approximation to the empirical standard deviation (table 6.1).

The RMSE values reflect an asymptotic improvement in the censored models as we

observed for the truncated models in previous chapters. The censored models seem to

perform better for small samples with respect to the RMSE, but the models with left

and right truncation are superior in medium and large samples. We find an exception for

the estimators with two non-truncated and censored counts where the large variability

of the truncated models leads to a larger RMSE values.

Table 6.1: Comparison between the analytical and the empirical standard de-
viation for the estimate assuming censoring and a geometric capture-recapture
distribution. The scenario comprises data generated from a geometric distribu-
tion Yi ∼ G(qi), where logit(qi) = −0.02X1 + 0.13X2 with X1 ∼ N(40, 144) and
X2 ∼ N(10, 9) independent. Model fitting based on X1 only.

Counts Analytical SD Empirical SD Analytical SD Empirical SD Analytical SD Empirical SD

N = 500 N = 1000 N = 2000

2 45.93 45.31 64.39 69.79 89.83 89.64
3 43.81 43.58 61.26 67.65 85.55 86.56
4 42.91 42.90 59.96 66.40 83.74 85.43
5 42.49 42.60 59.37 66.10 82.89 84.91
6 42.21 42.26 59.11 65.93 82.45 84.84



Chapter 6 Estimates with censoring and covariates 129

Table 6.2: Estimates from the model with a capture-recapture geometric Yi ∼
G(qi), where logit(qi) = −0.02X1 + 0.13X2 with X1 ∼ N(40, 144) and X2 ∼
N(10, 9), independently. Model fitting based on X1 only.

N Estimate Counts N̂ SDN RMSE(x100)

500 Censored

2 473.05 45.93 1.11
3 469.52 43.81 1.13
4 467.24 42.91 1.17
5 465.96 42.49 1.19
6 464.89 42.21 1.21

500 Truncated

2 505.5 87.09 3.18
3 487.38 61.93 1.41
4 480.63 52.89 1.16
5 476.21 48.59 1.12
6 472.51 46.19 1.12

500 Turing 456.28 40.4 1.42

1000 Censored

2 945.42 64.39 0.78
3 936.37 61.26 0.86
4 931.73 59.96 0.91
5 929.16 59.37 0.94
6 928.09 59.11 0.95

1000 Truncated

2 990.07 113.59 1.32
3 972.20 82.03 0.80
4 958.63 71.34 0.77
5 948.75 66.02 0.77
6 940.80 63.07 0.83

1000 Turing 914.75 61.50 1.11

2000 Censored

2 1877.42 89.83 0.58
3 1861.06 85.55 0.67
4 1851.41 83.74 0.73
5 1846.18 82.89 0.77
6 1843.04 82.45 0.80

2000 Truncated

2 1958.56 154.8 0.64
3 1925.23 114.67 0.45
4 1902.42 99.80 0.48
5 1884.17 92.43 0.55
6 1872.11 88.54 0.61

2000 Turing 1820.96 83.13 0.97
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Figure 6.1: Comparison of estimates based on truncation and censoring for N = 500. The capture distribution Yi ∼ G(qi), where
logit(qi) = −0.02X1 + 0.13X2 with X1 ∼ N(40, 144) and X2 ∼ N(10, 9), independently. Model fitting based on X1 only.
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Figure 6.2: Comparison of estimates based on truncation and censoring for N = 1000. The capture distribution Yi ∼ G(qi), where
logit(qi) = −0.02X1 + 0.13X2 with X1 ∼ N(40, 144) and X2 ∼ N(10, 9), independently. Model fitting based on X1 only.
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Figure 6.3: Comparison of estimates based on truncation and censoring for N = 2000. The capture distribution Yi ∼ G(qi), where
logit(qi) = −0.02X1 + 0.13X2 with X1 ∼ N(40, 144) and X2 ∼ N(10, 9), independently. Model fitting based on X1 only.
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Figure 6.4: Comparison of RMSE(x100) values. The capture distribution Y ∼ G(qi), where logit(qi) = −0.02X1 + 0.13X2 with
X1 ∼ N(40, 144) and X2 ∼ N(10, 9), independently. Model fitting based on X1 only. A)N = 500, B)N = 1000, C)N = 2000
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6.5 Case study

We aim at estimating the number of heroin users in Bangkok. The data were previously

described in detail (Böhning et al., 2004). It is based on a study conducted at the end of

2001 in Bangkok. They collected information of treatment episodes of drug users from

61 health centres. The data consist on one entry list with repeated entries. We consider

three covariates: gender, age group and marital status.

The ratio plot, based on r(x) = (x+1)fx+1

fx
(figure 6.5 and table 6.3), suggests the present

of structural heterogeneity. A potential distribution to fit the data can be the geometric

distribution, as a mixture between a Poisson and an exponential distribution. We com-

pare two estimators based on a geometric distribution: 1) The estimator developed in

section 4.2 using a zero- and righ-truncation. 2) the estimator based on zero-truncation

and censoring (section 6.2). Table 6.4 shows the point estimates and the standard er-

rors for all models varying the number of censored/truncated counts and the covariate

structure.

The standard errors follow the same pattern observed in the simulations. The estima-

tor based on a geometric censored distribution presents smaller standard errors than the

zero- and right-truncated estimator. The standard errors decrease slightly when decreas-

ing the number of censored counts compared to the faster decrease when the number of

non-truncated counts increased. In the case of the estimator based on zero- and right-

truncation, this decrease is caused by the inclusion of more data and the increase in the

bias that leads to smaller population estimates.

The point estimates from the estimators using censoring are fairly similar across the

different covariate structures and the number of counts considered. In contrast, the

estimators with truncation obtained larger population sizes. The estimates decrease

when more information is considered. The estimator based on two non-truncated counts

is usually less stable, although in this example frequencies of counts 1 and 2 represent

58.61% of the observed population.

Likelihood ratio tests are calculated to determine the impact of each covariate in the

probability of being captured (table 6.5). Age group and marital status are significantly

associated to the capture probability in the models using censoring. On the other hand

gender and marital status are significant across all models based on truncation. Age

group is only found significant in three of the truncated models.

The expected log-ratio plot and covariate-frequency plots were obtained to assess the

performance of the estimators (Figures 6.6, 6.7, 6.8, 6.9). The lines of the estimators

using less counts are at the front overlapped with the estimators with more counts for

easier visualization. The estimators using a censored geometric distribution severely

underestimate the number of individuals captured once (figure 6.8) which have a large
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impact in the estimations. They also underestimate other frequencies. The reader should

notice the scale of the graph to realise of the size of the underestimation. The zero and

right-truncated models present a better fit. The increase of non-truncated counts leads

to an increase of the underestimation of f1. The problem could be caused by the fact

that the capture-recapture distribution is one-inflated. These models also overestimate

severely f2 (figure 6.9).

The χ2 test described in the previous chapter is significant for all combinations, an

indication of the lack of fit of the models. The geometric distribution has not produced

the results expected and other distribution should be tested to find a better fit to the

capture-recapture distribution.

Figure 6.5: Ratio plot for the case study on the hidden number of heroin users
in Bangkok
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Table 6.3: Ratios r̂x = (x+ 1)fx+1/fx and 95% confidence limits for the heroin
drug users in Bangkok.

ratio r̂x r̂x 95% CL

r1 0.80 (0.74 - 0.85)
r2 2.05 (1.88 - 2.25)
r3 3.00 (2.70 - 3.34)
r4 3.45 (3.04 - 3.91)
r5 4.86 (4.20 - 5.62)
r6 5.73 (4.89 - 6.73)
r7 5.24 (4.33 - 6.32)
r8 6.32 (5.03 - 7.94)
r9 5.84 (4.38 - 7.79)
r10 5.73 (3.87 - 8.47)
r11 6.32 (3.68 - 10.85)
r12 9.10 (4.6 - 18.02)
r13 11.00 (4.99 - 24.23)
r14 5.45 (1.74 - 17.13)
r15 4.00 (0.45 - 35.79)
r16 51.00 (5.3 - 490.31)
r17 24.00 (5.37 - 107.24)

Table 6.4: Case study: Number of heroin users in Bangkok. Point estimates
and standard errors for all models varying the number of non-truncated/non-
censored counts and the covariates (gender, marital status (MS) and age group).

Counts Model N̂cens ŜENcens N̂trunc ŜENtrunc

2
Sex 10941 114.17 19438 357.81

Sex+Marital Status 11057 115.03 19605 368.35
Sex+Marital Status+Age group 11070 115.62 19619 370.88

3
Sex 10880 101.25 15051 209.18

Sex+Marital Status 10718 101.91 15101 212.11
Sex+Marital Status+Age group 10729 102.33 15160 215.17

4
Sex 10835 95.65 13075 156.88

Sex+Marital Status 10578 96.18 13121 158.82
Sex+Marital Status+Age group 10589 96.57 13135 159.67

5
Sex 10808 92.27 12162 133.72

Sex+Marital Status 10486 92.79 12196 135.01
Sex+Marital Status+Age group 10498 93.15 12203 135.47

6
Sex 10465 90.76 11495 118.11

Sex+Marital Status 10458 91.18 11529 119.35
Sex+Marital Status+Age group 10468 91.51 11544 120.01

7
Sex 10482 90.51 11006 107.13

Sex+Marital Status 10476 90.88 11026 107.85
Sex+Marital Status+Age group 10487 91.22 11036 108.23
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Table 6.5: Case study: Number of heroin users in Bangkok. Likelihood ratio
tests for all models varying the number of non-truncated/non-censored counts
and the covariates (gender, marital status (MS) and age group).

NC/NT counts Model df χ2
cens p− valuecens χ2

trunc p− valuetrunc

2
Sex 1 0.054 0.8162 7.078 0.0078

Sex+MS 3 24.254 < .0001 17.312 0.0006
Sex+MS+Age group 4 15.174 0.0043 2.534 0.6386

3
Sex 1 0.200 0.6547 8.368 0.0038

Sex+MS 3 21.148 < .0001 17.754 0.0005
Sex+MS+Age group 4 14.36 0.0062 12.564 0.0136

4
Sex 1 0.010 0.9203 30.224 < .0001

Sex+MS 3 20.124 0.0002 24.068 < .0001
Sex+MS+Age group 4 15.352 0.0040 7.082 0.0991

5
Sex 1 0.002 0.9643 29.926 < .0001

Sex+MS 3 20.356 0.0001 24.182 < .0001
Sex+MS+Age group 4 16.326 0.0026 6.764 0.1489

6
Sex 1 -0.006 1.0000 36.698 < .0001

Sex+MS 3 15.318 0.0016 30.368 < .0001
Sex+MS+Age group 4 14.532 0.0058 6.764 0.0135

7
Sex 1 0.012 0.9128 65.682 < .0001

Sex+MS 3 15.734 0.0013 22.628 < .0001
Sex+MS+Age group 4 15.024 0.0047 11.470 0.0218
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Figure 6.6: Case study: number of heroin users in Bangkok. Observed and fitted
log ratio plot for the model based on a zero-truncated and censored geometric
distribution.
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Figure 6.7: Case study: number of heroin users in Bangkok. Observed and
fitted log ratio plot for the model based on a zero and right truncated geometric
distribution.
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Figure 6.8: Case study number of heroin users in Bangkok. Observed and fitted
covariate-adjusted frequency plot for the model based on a zero-truncated and
censored geometric distribution.
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Figure 6.9: Case study number of heroin users in Bangkok. Observed and
fitted covariate-adjusted frequency plot for the model based on a zero and right-
truncated geometric distribution.
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6.6 Conclusions

In this chapter, we explored the idea of applying censoring rather than truncation for

situations where the geometric distribution is appropriate. We were motivated by the

fact that censoring does not ignore the censored counts compared to the concept of

truncation. We started with the estimator suggested by Niwitpong et al. (2012) and we

extended it to choose a censoring cut-off and to include covariate information to model

the individual capture-recapture probability.

We compared the new estimators with the estimators from a zero and right truncated

geometric distribution. The estimators based on truncations were calculated applying

the general formulae described in chapter 4. These ”truncated” estimators were found

superior in large samples to the estimators based on censoring on the basis of the RMSE

criterion. However, ”censored” estimators with two counts presented better RMSE than

the estimators based on two non-truncated counts because of their large standard errors.

The estimates from the models using a geometric distribution with censoring presented

larger bias but smaller variability. An increase in the number of non-censored counts

did not show a large impact in the estimates of the population and the standard errors.

A case study was also included where both models could not explain all the heterogeneity,

but the models with censoring underestimated largely the number of individuals captured

once that accounted 41.9% of the capture distribution. The geometric distribution was

not the right distribution in this problem and other distributions could be tested.

We do not investigate further this route of estimation after the results obtained. The

application of right-truncation has given evidence to provide more realistic and accurate

results.



Chapter 7

General conclusions and

discussion

Our initial motivation was to extend Chao’s lower bound estimator to include auxiliary

variables measured on the captured individuals. We chose Chao’s estimator because

of its robustness even in the presence of some heterogeneity. We showed that a model

with right-truncation associated with the multinomial likelihood was the appropriate

way to incorporate covariate information. The chapter 2 considered a model assuming

a Poisson distribution with all counts truncated except individuals captured one or two

times. A link between the likelihood of the truncated Poisson with two non-truncated

counts and a logistic regression likelihood was exploited to provide an easy way to obtain

an estimate of the population with any standard statistical package.

The simulated scenarios with unexplained heterogeneity showed a good performance

of the generalised Chao estimator (GC) compared to the estimator based on a zero-

truncated Poisson model (ZTP) (Van der Heijden et al., 2003a). The generalised Chao

estimator obtained better relative mean squared error in populations larger than 1000

individuals. The point estimates were better than the ZTP estimator but the variance

was larger. Bigger differences between GC and ZTP were found in the scenarios with

part of the observed individuals misclassified. GC presented robust estimates and con-

siderably smaller RMSE values. The robustness of the GC estimate was also observed

in the simulated scenario generated from a negative binomial distribution.

The natural following step was to develop a framework where the level of truncation

changes. Chapter 3 continued assuming a Poisson distribution but the number of non-

truncated counts is a parameter J , with J ≥ 2. The methodology led to the application

of numerical algorithms to obtain maximum likelihood estimators, contrary to the easy

calculation of the GC estimates with two non-truncated counts. The simulations carried

out in the chapter concluded that an increase in the number of non-truncated counts

increased the bias of the estimate but reduces its variability. The models with 2, 3 or
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4 non-truncated counts presented the best RMSE values; an indication that the tail of

the capture-recapture distribution can impact negatively the accuracy of the estimates.

In the following chapter 4, we relaxed the assumption of the capture-recapture distri-

bution. We generalised the framework for the power series distributions. We focused

on the Poisson, binomial and geometric distribution as typical distributions found in

the field of capture-recapture. An analytical variance was also provided. The simula-

tions were based on a binomial distribution and conclusions similar to those observed

in the Poisson case were obtained. We also showed the impact of having more captured

occasions in the particular case of a binomial distribution.

Following the reasoning of any statistical modelling, we were interested in assessing

the performance of our models in real life and the establishment of a decision rule to

determine the optimal cut-off truncation point. A χ2 test was developed in the chapter 5.

We found that our proposed χ2 statistic followed a χ2 distribution with J − 2 degrees of

freedom independently of how many covariates we include in the analysis. The chapter

was also complemented with a section proposing two ad-hoc model-averaging estimators.

These weighted estimators provided a balanced solution combining models with different

truncation cut-off points. They are specially adequate to reduce the large variability we

normally obtain using only two non-truncated counts.

The model with two non-truncated counts can sometimes produce larger estimates vari-

ance compared to the models with more non-truncated counts. Although the χ2 test

should determine the optimal number of non-truncated counts, we saw that it is useful

to use other visual tools like the ratio plot and the covariate-adjusted frequency plot to

decide the best model.

The models inherit the problems of the models based on the conditional approach in-

troduced by Huggins and Alho (Huggins, 1989; Alho, 1990; Farcomeni and Tardella,

2012). The covariate information used to infer results comes only from the observed

individuals. Our models also make the common assumption in modelling that there is

not unobserved heterogeneity. Although the modelling and the application of the EM

algorithm were designed to cope with observed and some unobserved heterogeneity. We

showed in our simulations that in the case of unexplained heterogeneity our estimators

underestimate the true population size but performed better than other estimators with

covariates like the zero-truncated Poisson estimator (Van der Heijden et al., 2003b).

Another limitation of our models is the assumption of equal probability between sample

occasions and the omission of behavioural effects. It is essential to use graphical tools

and the developed χ2 test to assess the validity of the model as other authors have argued

that capture-recapture inference requires more complex models like mixture models or

generalised additive models. For instance, we observed for the case study of the number

of heroin users in Bangkok that our models assuming a geometric distribution did not

achieve a good fit to the data.
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Chapter 6 was motivated by the idea of exploring a different approach to work with the

tails of capture-recapture distributions. We extended an estimator based on the geo-

metric distribution (Niwitpong et al., 2012) that censored all individuals captured more

than once. Firstly we changed the censoring cut-off point to add covariate information

later on. The new estimates were compared with the estimators based on truncated

distributions. The standard errors of the estimators based on censoring were smaller

than using truncation but the point estimates were less accurate. The RMSE values

concluded that censoring could only outperform the truncation approach in small popu-

lations. It is interesting to note that the expectation that censoring could be a valuable

way to use the entire information turned out to be illusive for the case of the geometric

distribution.

Across the thesis we included several case studies that provided a practical guide to

choose and validate the performance of the right estimator. All algorithms implemented

along the duration of the PhD will be joined into an R library to facilitate the calculation

of our estimates and to provide statistical and graphical tools to assess its efficiency and

lack of fit.

7.1 Future Work

Our estimators are based on the conditional likelihood approach (Huggins, 1989) under

the umbrella of the Mh models that use individual covariate information of the captured

subjects. Behavioural effects and covariates related to the time of capture could be added

in the future to complete the set of models that consider the other two potential sources

of heterogeneity based on Otis’ classification (Otis et al., 1978). The first problem is to

determine the best way to introduce the effects into the model. In a discrete experiment

we could follow Huggins (1989) and use a log-linear model. However, the standard

approaches for continuous-time experiments (Hwang and Chao, 2002a; Farcomeni and

Scacciatelli, 2013) involve the use of Cox-type models for multiple events that take into

account time-dependent covariates.

The model linking the parameters of the likelihood and the covariates could also be

extended to use more complex structures like splines or generalised additive models.

The challenge is to use those frameworks considering truncation. Generalised additive

models for location, scale and shape (GAMLSS) could be a solution.

Our framework and methodology could be applied to other potential useful distributions

in the area of capture-recapture that are not included under the power series distribu-

tions. The use of truncation add another difficulty to the application of those distri-

butions. If we deviate from the power series distributional family, the major difficulty

arises that the Chao estimator is no longer a lower bound as the argumentation involved

in the Cauchy-Schwarz inequality (Böhning et al., 2006), presented also in chapter 2, is
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no longer valid. Here, again, simulation work could help to investigate the validity of

the truncated likelihood approach.

The techniques developed in the capture-recapture area to work with missing data and

measurement errors in individuals’ covariates could be also explored in our estimators.

The sensitivity of our models to missing values in some covariates could be investigated

in detail and the current techniques could be applied in our specific framework. An

extension of our EM algorithm could be developed to impute all missing information.

The use of the EM algorithm and the maximum likelihood estimation has been suggested

when only categorical covariates are used (Van der Heijden et al., 2009). The other

option is to use the multiple imputation by chained equations method (mice) that is

simpler when there is a mixture of categorical and continuous covariates (Zwane and

van der Heijden, 2008).

The impact on our estimates of extreme values or outliers in the covariate information

need to be assessed and graphical tools could be developed to identify the individuals

causing confounded estimates.
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Böhning, D., Vidal-Diez, A., Lerdsuwansri, R., Viwatwongkasem, C., and Arnold, M.

(2013b). A generalization of Chao’s estimator for covariate information. Biometrics,

69(4):1033–42.

Borchers, D., Zucchini, W., and Fewster, R. (1998). Mark-recapture models for line

transect surveys. Biometrics, 54:1207–1220.

Boyce, M., Mackenzie, D., Manly, B., Horoldson, M., and Moddy, D. (2001). Negative

binomial models for abundance estimation of multiple closed populations. Journal of

Wildlife Management, 65:498–509.

Broyden, C. (1969). A new double rank minimization algorithm. Notices American

Mathematical Society, 16:670.

Burnham, K. and Overton, W. (1978). Estimation of the size of a closed population when

capture probabilities when capture probabilities vary among animals. Biometrika,

65(3):625–633.

Burnham, K. and Overton, W. (1979). Robust estimation of population size when

capture probabilities vary among animals. Ecology, 60(5):927–936.

Carothers, A. (1973). Capture-recapture methods applied to a population with known

parameters. Journal of Animal Ecology, 42:125–146.

Carroll, R., Ruppert, D., Stefanski, L., and Crainiceanu, C. (2006). Measurement errors

in non linear models: A modern perspective. Champman and Hall.London.

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal

catchability. Biometrics, 43(4):783–791.

Chao, A. (2001). An overview of closed capture-recapture models. Journal of Agricul-

tural, Biological, and Environmental Statistics, 6(2):158–175.

Chao, A. and Bunge, J. (2002). Estimating the number of species in a stochastic abun-

dance model. Biometrics, 45:427–438.



REFERENCES 149

Chao, A. and Lee, S. (1992). Estimating the number of classes via sample coverage.

Journal of the American Statistical Association, 87:210–217.

Chao, A., Lee, S., and Jeng, S. (1992). Estimating population size for capture-recapture

data when capture probabilities vary by time and individual animal. Biometrics,

48(1):201–216.

Chapman, D. (1951). Some properties of the hypergeometric distribution with applica-

tion to zoological censuses. University California Public Statistics, 1:131–160.

Chen, S. and Lloyd, C. (2000). A non-parametric approach to the analysis of two-stage

mark-recapture experiments. Biometrika, 87(3):663–649.

Cochran, W. (1978). Laplace ratio estimates. Contributions to survey sampling and

applied statistics.Academic Press, pages 3–10.

Cormack, R. (1989). Log-linear models for capture-recapture. Biometrics, 45:395–413.

Coull, B. and Agresti, A. (1999). The use of mixed logit models to reflect heterogenity

in capture-recapture studies. Biometrics, 55:294–301.

Creel, S., Spong, G., Sands, J., Rotella, J., Zeigle, J., Joe, L., Murphy, K., and Smith, D.

(2003). Population size estimation i yellowstone wolves with error-prone noninvasive

microsatellite genotypes. Molecular Ecology, 12:2003–2009.

Cruyff, M. and Van der Heijden, P. (2008). Point and interval estimation of the pop-

ulation size using a zero truncated negative binomial regression model. Biometrical

Journal, 50:1035–1050.

Darroch, J. (1958). The multiple recapture census, I: estimation of a closed population.

Biometrika, 45:343–359.

Darroch, J. (1959). The multiple recapture census, II: estimation when there is immi-

gration or death. Biometrika, 46:336–351.

Darroch, J. and Ratcliff, D. (1980). A note on capture-recapture estimation. Biometrics,

36:149–153.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete

data via the em algorithm (with discussion). Journal of the Royal Statistical Society

Series B, 39:1–38.

Dorazio, R. and Royle, J. (2003). Mixture models for estimating the size of a closed

population when capture rates vary among individuals. Biometrics, 59:351–364.

Duran, J. and Wiorkowski, J. (1981). Capture-recapture sampling for estimating soft-

ware error content. IEEE Transactions on Software Engineering, 7(1):147–148.



150 REFERENCES

Farcomeni, A. and Scacciatelli, D. (2013). Heterogeneity and behavioural response in

continuous time capture-recapture, with application to street cannabis use in Italy.

The Annals of Applied Statistics, 7(4):2293–2314.

Farcomeni, A. and Tardella, L. (2012). Identifiability and inferential issues in capture-

recapture experiments with heterogeneous detection probabilities. Electronic Journal

of Statistics, 6:2602–2626.

Fienberg, S. (1972). The multiple recapture census for closed populations and incomplete

2k contingency tables. Biometrika, 59(3):591–603.

Fisher, R., Corbet, A., and Williams, C. (1943). The relation between the number of

species and the number of individuals in a random sample of an animal population.

Journal of Animal Ecology, 12:42–58.

Fletcher, R. (1970). A new approach to variable metric methods. Computer Journal,

13:317–322.

Goldfarb, D. (1970). A family of variable metric methods derived by variational means.

Mathematics of Computation, 24:23–26.

Good, I. (1953). The population frequencies of species and the estimation of population

parameters. Biometrika, 40:237–264.

Hald, A. (1990). A History of Probability and Statistics and Their Applications Before

1750. Wiley.New York.

Hay, G., Gannon, M., MacDougall, J., Eastwood, C., Williams, K., and Millar, T.

(2009). Capture-recapture and anchored prevalence estimation of injecting drug users

in england: national and regional estimates. Statistical Methods in Medical Research,

18:323–339.
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