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Efficient parameterisation of hierarchical Bayesian models for spatially correlated data
by Mark Bass

Fitting hierarchical Bayesian models to large spatially correlated data sets using MCMC
techniques is computationally expensive. Complicated covariance structures of the under-
lying spatial processes mean that the number of calculations required grows cubically with
the number of spatial locations. This necessitates the need for efficient model parame-
terisations that hasten the convergence and improve the mixing of the associated MCMC
algorithms.

We focus on hierarchical centering reparameterisations which act upon the mean struc-
ture of the latent spatial processes. For Gaussian data and under the assumption of known
variance parameters, we compute the exact convergence rate for the Gibbs samplers emit-
ted by the centred parameterisation (CP) and the non-centred parameterisation (NCP).
We analyse the impact of the variance parameters and the correlation structure of the
latent variables upon the convergence rate.

The CP and NCP are considered to be opposite extremes of a continuum of partially
centred parameterisations (PCPs). By minimising the conditional posterior covariance
of the random and global effects for a Gaussian three stage model, we construct a PCP
that has zero convergence rate, implying immediate convergence. Where the variance
parameters are unknown we provide a dynamically updated PCP and suggest strategies
to mitigate its computational expense.

The construction of the PCP requires the computation of the conditional posterior
variance of the random effects, which is intractable for non-Gaussian likelihoods. There-
fore, an approximation based on the Hessian matrix is used to construct the PCP for
spatial Tobit and spatial probit models.

Our work shows that for a Gaussian likelihood and latent spatial processes with ex-
ponential correlation functions, that convergence is hastened for the CP when there is
stronger spatial correlation, whereas convergence is delayed for the NCP. Simulation stud-
ies suggest that these results hold for unknown variance parameters and for non-Gaussian
likelihoods. The PCP is shown to outperform the CP and the NCP for Gaussian likeli-
hoods. The pilot adaption schemes that reduce the computational expense of the PCP
are shown to inherit the good mixing properties of the PCP.

The work in this thesis extends the current knowledge of hierarchical centering to
include the effect that spatial has correlation upon the convergence rate. The development
of a dynamically updated PCP provides practitioners with a robust and fully automated

algorithm that has better convergence and mixing properties than either the CP or the
NCP.
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Chapter 1

Introduction

1.1 Motivation

Spatially correlated data is prevalent in many of the physical, biological and environmen-
tal sciences. It is natural to model these processes in a Bayesian modelling framework,
employing Markov chain Monte Carlo (MCMC) techniques for model fitting and predic-
tion. There is a growing interest among researchers in regression models with spatially
varying coefficients. Fitting these highly overparameterised and nonstationary models is
challenging and computationally expensive. Latent process correlated across space pro-
duce dense covariance matrices that require calculations of order O(n?) to invert, for n

spatial locations.

Typically these calculations must be executed many thousands of times when using
MCMC sampling techniques to perform Bayesian inference. To mitigate the computa-
tional expense practitioners require efficient model fitting strategies that produce Markov
chains which converge quickly to the posterior distribution and exhibit low autocorrelation

between successive iterates.

It has long been understood that the parameterisation of a hierarchical model affects
the performance of the MCMC method used for inference. In particular, high posterior
correlations between model parameters can lead to poor mixing and slow convergence. For
normal linear hierarchical models (NLHMSs) two natural parameterisations emerge; the
centred parameterisation (CP) and the non-centred parameterisation (NCP). If we fit a
NLHM using the Gibbs sampler the work of Roberts and Sahu (1997) allows us to compute
the exact convergence rate, under the assumption of a known posterior precision matrix.
In turn, we can show that for independent random effects it is the relative informativity
of the data that determines the convergence rate for the CP and the NCP. What is
not so well understood is the effect that correlation across the latent variables has upon
the convergence rates of the samplers for each parameterisation. Furthermore, how do we
decide which parameterisation to use when we do not have access to the exact convergence
rate, i.e. when the posterior precision matrix is unknown, as is the case in practice, or

when we have a non-Gaussian model for the data.

In this thesis we look to address the following questions:



(i)

(i)

How does the presence of spatial correlation across the latent variables impact the

convergence rate for the CP and the NCP of a hierarchical model?

Can we develop a robust fitting strategy for hierarchical models that has conver-
gence properties that are independent of the data, and hence can be routinely im-

plemented?

These questions are of particular importance when one considers the proliferation of open

source software for fitting spatial models that implement MCMC algorithms.

1.2

Thesis contribution

The contribution of this thesis can be placed into two broad categories in line with the

questions posed in Section 1.1.

(i)

(i)

We extend the current knowledge of the conditions in which hierarchical centering
leads to a more efficient Gibbs sampler to include the impact of the correlation
structure across the random effects, and therefore add weight to the notion that the

CP and the NCP form a complimentary pair.

For NLHMs it is known that the relative informativity of the data dictates which
of the CP or the NCP will yield the most efficient Gibbs sampler. When the data
precision is relatively high, the CP will perform best and when it is low, the NCP
should be implemented. In the case of Gaussian posterior distributions with known
precision matrices, we are able to compute the exact convergence rate for the Gibbs
sampler. We show that for an exponential correlation function that the convergence
rate associated with the CP is hastened with increasing strength of spatial correla-
tion, with the opposing effect seen for the sampler associated with the NCP. We are
also able to show that covariance tapering hinders the CP whereas it helps the NCP,
and that introducing geometric anisotropy by strengthening the spatial correlation
in one direction, helps the CP and hinders the NCP.

When the posterior precision matrices are unknown, or the target distributions are
not Gaussian, we run Gibbs samplers on simulated and real data and use well known
diagnostic tests to compare the parameterisations. We find that for unknown co-
variance parameters that the CP is favourable to the NCP not only when the data
precision is relatively high, but also when the correlation across the random effects

is strong. We see this result for non-Gaussian data as well.

We develop a dynamically updated, partially centred parameterisation (PCP) that
is shown to be robust to the data and outperform the CP and the NCP.

By minimising the posterior covariance of the random and global effects, we are able
to parameterise the model in such a way that convergence for the associated Gibbs
sampler is immediate. The construction is conditioned on the covariance matrices in
the model. When the covariance matrices are known only up to a set of covariance

parameters, we show that the parameterisation can be dynamically updated within



the Gibbs sampler. We develop a pilot adapted PCP that reduces the computational

expense and still retains the good mixing and convergence properties of the PCP.

1.3 A review of computational strategies for hierarchical

Bayesian models

Hierarchical Bayesian models provide a coherent framework to model stochastic processes.
They allow for the incorporation of prior knowledge and properly account for uncertainties
at different levels of the model. Consequently they have ‘taken over the landscape in
contemporary stochastic modelling’ (Gelfand, 2012).

A commonly used schematic representation of the hierarchical structure follows that

laid out by Berliner (1996). Broadly we have the following distributional specifications:

Stage 1. [data|process, parameters]
Stage 2. [process|parameters]

Stage 3. [parameters].

In general, each stage may have further sub-levels, enriching the model where appropriate.

Bayesian inference allows us to make probability statements about any quantity of
interest, but typically we must employ MCMC techniques (Robert and Casella, 2004).
High posterior correlation and weak identifiability of the model parameters can lead to
slow convergence and poor mixing of the Markov chains. In this section we review some
of the techniques that have been developed to address the problems that arise when using
MCMC to fit hierarchical models. We begin in Section 1.3.1 with an overview of the fitting
strategies that have been used for hierarchical models in a range of contexts. In Section
1.3.2 we consider the response of the statistics community to the particular challenges that

are faced by fitting spatial models within a Bayesian framework.

1.3.1 General fitting strategies for hierarchical models

The parameterisation of a hierarchical model plays an important role in the efficiency of
any MCMC algorithm employed for inference. Often some form of reparameterisation
can help yield better behaved chains, where by well behaved we mean chains that explore
the parameter space well and converge quickly. Considered part of the art of MCMC,
it is often left to the practitioner to discover for themselves the most effective model
parameterisation.

Gelfand et al. (1995) show that for NLHMs and linear mixed models (Laird and Ware,
1982) simple hierarchical centering can significantly improve the efficiency of the sampling
algorithm. The accompanying paper, Gelfand et al. (1996), extends the result to gener-
alized linear mixed models (GLMMSs) (Dey et al., 2000; Breslow and Clayton, 1993), and
demonstrates the effectiveness of centering for Poisson and binary data models.

To illustrate centering consider the following simple model taken from Gelfand et al.



(1996, Section 2). Let
Y;=0+U; + ¢, (1.1)

with U; ~ N(0,02) and ¢; ~ N(0,02) independently distributed for all i = 1,...,n.
The form of the model given by (1.1) is what Gelfand et al. (1995) call uncentred but
following more recent literature we will refer to it as the non-centred parameterisation
(NCP). Consider the variable U; = U; + 0. Replacing U; with U; in (1.1) gives

and U; ~ N(#,02), hence U; is centred on 6 and thus (1.2) is referred to as the centred
parameterisation (CP).

Assuming a constant prior distribution for 6, and that o2 and o2 are known, Gelfand
et al. (1996) compute the posterior correlation of the centred random effects U; and the

global effect 6 as

2\ —1/2 2N\ —1
Corr(U;,0ly) = <1 + Tw;) and Corr(U;,Ujly) = (1 + n02u> , (1.3)
[o)= O¢
where y = (y1,...,ys) is the vector of observed data. From equation (1.3) we can see

that for fixed n the posterior correlations between the model parameters are reduced as

the ratio 02 /02 is increased. The equivalent expressions for the NCP are given by

77,0'2 2

~1/2 -1
Corr(U;,0ly) = — (1 + 26) and Corr(U;,Ujly) = (1 + nazﬁ) , (1.4)
o o

u u

and here the posterior correlations are reduced by decreasing 02 /a2. Gelfand et al. (1995)
argue that random effects are included in a model to ‘soak up’ the variability in the
population effects model and so 2 will typically be greater than o2, and therefore the CP
is preferable to the NCP.

Equations (1.3) and (1.4) highlight two important features of the performance of the
CP and the NCP. Firstly, that the ratio of the variance parameters is an important quantity
in determining which parameterisation should be employed for model fitting, and secondly,

that a change in variance ratio has opposing effects on each of the parameterisations.

Papaspiliopoulos et al. (2003, 2007) consider the NCP and the CP for a broad class
of hierarchical models. They define the NCP to be a parameterisation such that the
random and global effects are independent a priori. This is trivially satisfied by the NCP
of model (1.1) but as they admit the construction of an NCP satisfying this condition may
be hard to achieve for more complicated models. Roberts et al. (2004) use the NCP of
the non-Gaussian Ornstein-Uhlenbeck process (Barndorff-Nielsen and Shephard, 2001) to
construct an efficient algorithm for model fitting. Papaspiliopoulos et al. (2003) find that
the NCP outperforms the CP for a Cauchy data model with Gaussian latent variables.
Papaspiliopoulos and Roberts (2008) further investigate how the model parameterisation
and the tail behaviour of the distributions of the data and the latent process all interact

to determine the stability of the Gibbs sampler. They look at combinations of Cauchy,



double exponential, Gaussian and exponential power distributions for the CP and the
NCP. The heuristic remark that follows from this comparison is that the convergence of
the CP is quickest when the data model has lighter tails than that of the latent variables,
with the opposite scenario favouring the NCP.

In many cases where one parameterisation does well the other does poorly. To try and
take advantage of this dichotomy Yu and Meng (2011) develop a strategy to combine the
NCP and the CP. Their interweaving algorithm is particularly useful when the practitioner
has little knowledge of the convergence properties of either parameterisation. Suppose
that the NCP and the CP have associated convergence rates of A\,. and A, respectively,
where the convergence rate is defined in Section 2.3. Yu and Meng (2011) show that the
convergence rate associated with the interweaving algorithm, denoted Ay, is related to Ay,

and A, via the following inequality:

)\I < e@nc,c V )\nc)\ca

where .. is the maximal correlation between the latent variables under the two param-
eterisations. This implies that A\; < max(\,, \.) and hence the interweaving algorithm is
more efficient than the worst of the NCP and the CP.

As an example of the interweaving algorithm, consider the NCP and the CP of the
model above, equations (1.1) and (1.2) respectively. A standard Gibbs sampler (see Section
2.2.4) for the NCP alternates between drawing U ~ #(U|0®),y) and then drawing
00 ~ 70U y) where U = (Uy,...,U,)". Tt is easily shown that

ol(y—01) o202 1< o?
Ulo,y ~ N (e 2% ) and OU,y~N (=S (-1, 2],
10,y ( o2+ o2 034—05) an Uy n;(yz i) n

where 1 is a n x 1 vector of ones and I is the identity matrix of order n. The equivalent
algorithm for the CP draws o ~ 7(U]6", y) and then §*) ~ 7r(9]l~](t),y), where

_ 2 261 2 2 N 1 L 2
U‘H’yNN<0'uy+0'e Ueau2I> and 0|U’yNN<ZU“O-u> X
n el n

2 2 7 52
ot oy o toy

Both parameterisations have the same target distribution, w(6|y), but typically differ-
ent convergence rates. The interweaving algorithm combines the two sampling algorithms

as follows:

Algorithm 1 The interweaving algorithm

Given ),
Step 1. Draw U® ~ (U0, y).

Step 2. Draw 0105 ~ 7(9|U®  y).
Step 2. Draw U(tﬂ) ~ 7T(f]|9(lt+0.5)7 U(7f)7 Y).
Step 3. Draw 0D ~ x(0]T " y),

(t40.5)

The intermediate draw 6 can be discarded. Often, U and U are related via some



deterministic function and Step 2 requires a trivial transformation. In this example,

f](t-i-l) _

U = U + 01, that the Markovian dependence between successive iterates for 0 is reduced.

U® + gt+05)1 Tt is by re-sampling 6, conditional on the constant vector

Papaspiliopoulos (2003) views the CP and the NCP as extremes of a continuum of
partially centred parameterisations (PCPs). They develop a PCP for the NLHM and show
that for known covariance matrices the resulting Gibbs sampler converges immediately.
We let U}* = U; + wb for w € [0,1]. Substituting U;” into model (1.1) we have

Y; ~ N((1-w)f+UP c?)

Clearly the NCP is recovered when w = 0 and the CP recovered when w = 1.

It can be shown that

2

Y . 1.5
([wo? — (1 — w)o2]? + no2a2)'/? 9

wo? — (1 —w)o

Corr(U{,0ly) =

We can see from (1.5) that the Corr(U¥, 0y) = 0 when wo? — (1 —w)o?2 = 0. This implies

that we should set )

u
w=——-7
2 27
oz + o

g

to minimise the posterior correlation between U;" and 6. We discuss PCPs in the context

of spatial models in Chapter 5.

1.3.2 Fitting strategies for spatial models

Spatially referenced data sets arise in many diverse areas such as environmetrics/ecology,
hydrology, meteorology and many others. The availability of such data has driven a
considerable effort to develop statistical models for the observed processes (Cressie and
Wikle, 2011; Gelfand et al., 2010; Schabenberger and Gotway, 2004; Banerjee et al., 2003).
Bayesian hierarchical modelling provides a natural framework to properly assess the uncer-
tainty in the parameter estimates and spatial predictions. It is common to use a Gaussian
processes at the second stage of the hierarchy to model the latent spatial structure in the
observable data. As noted by Gelfand et al. (2003) ‘the literature here is enormous’ and
they recommend Cressie (1993) as a place to start.

Conditional independencies determined by the hierarchical structure of the model fa-
cilitate the construction of Gibbs sampling type algorithms for model fitting (Gelfand
and Smith, 1990). A requirement of these algorithms is the repeated inversion of dense
n X n covariance matrices, an operation of order O(n?) in computational complexity, for
n spatial locations (Cressie and Johannesson, 2008). This, coupled with high posterior
correlation between model parameters and weakly identified covariance parameters, means
that the problems of MCMC are sharpened for spatial models.

To illustrate some of the fitting strategies developed for spatial models consider the

following standard hierarchical model for univariate spatial data, (Cressie, 1993). For



spatial locations s within the spatial domain 2 C %2, responses Y (s) are modelled as
Y (s) =x'(s)0 + 5(s) + €(s), (1.6)

where x(s) is a px 1 vector of spatially referenced covariates and 6 is a vector of p regression
coefficients. The residual has two components. The first, 5(s), is a realisation of a zero
mean Gaussian process capturing the spatial structure unexplained by the covariates.
We have that E[5(s)] = 0, Var(B(s)) = a% and Cov(fB(s),B(s*)) = U%p(s, s*; @), where
p(+,-; @) is a valid two-dimensional correlation function known up to correlation parameters
¢. The second, €(s), is a non-spatial, pure error term referred to as the nugget in the
geostatistics literature, which is assumed to be independent and normally distributed
with mean zero and variance o2 for all s.

For locations s, ..., s, we have

Y = (Y(sl)v s 7Y(Sn))/ and /3 = (B(Sl)v s 7ﬁ(sn)),‘
Putting a flat prior on @ we can write the NCP of the model (1.6) as

Y[0,8 ~ N(X6+8,00)
B ~ N(0,03R),

where X is an n X p matrix with ith row equal to '(s;), for i = 1,...,n, 0isan n x 1
vector of zeros and correlation matrix R has ijth entry equal to p(s;, s;; @).

Now define B(s) = B(s) + 2'(s)8 or equivalently B =B+ X80, then the CP for model
(1.6) is given by

Y|B ~ N(B,olI)
Ble ~ N(X6,03R).

It is most common to see the standard spatial model given in its non-centred form
(Gelfand et al., 2010; Banerjee et al., 2003), as it is in (1.6). This enables the reader to
distinguish between the spatial and non-spatial parts of the residual, but gives no hint as
to the best parameterisation to use for model fitting, and so presumably the practitioner
will turn to the NCP by default. However, the R package spTimer (Bakar and Sahu, 2015),
developed to fit latent Gaussian process regression models to large space-time data sets,
use the CP of their model specification. Berrocal et al. (2010) regress ozone concentration
data upon the output of a numerical model, allowing for a spatially varying intercept and
slope, and they too fit the CP of their model. In either case, the reason for the choice of
parameterisation is not stated. Is it ease of programmability or improved convergence or
some other reason? The effect of hierarchical centering in the presence of spatial correlated
random effects is investigated in Chapters 3 and 4.

The interweaving algorithm described in Section 1.3.1 is designed to work on any two
model parameterisations, and so we can use it to interweave the CP and the NCP of the
spatial model given in (1.6). Neal and Roberts (2005) combine the CP and the NCP of



stochastic epidemic models such that at each MCMC iterate some of the latent variables
are centred and some are non-centred.

An alternative approach is that of marginalisation. Due to the normality assumption of
both spatial and non-spatial error processes, we can integrate 3 (or B) out of the likelihood.
This reduces the dimension of the joint posterior distribution. It is argued by Banerjee
et al. (2003) that marginalisation makes the covariance structure more computationally
stable. For either the CP or the NCP the marginalised likelihood is given by

Y ~ N(X6,02I +03R).

Marginalised likelihoods are used by Gelfand et al. (2003) for fitting spatially varying co-
efficient regression models and by Banerjee et al. (2008) to implement Gaussian predictive
process models.

The R package spBayes (Finley et al., 2007) uses a marginalised likelihood for fitting
univariate and multivariate spatial models. Under the reformulation of their core func-
tions they marginalise over all of the random and global effects in the model. Samples are
obtained from the marginal posterior distributions of the variance and correlation param-
eters which are then used to recover samples from the posterior distributions of the global
and spatial effects as the user desires, see Finley et al. (2015, Section 2.2) for details.

The strategies discussed so far are concerned with the mean structure. Diggle and
Ribeiro Jr (2002) reparameterise the variance parameters to model the relative nugget

2

variance, defined as v? = 02/ ag and hence a marginalised likelihood of

Y ~ N(X6,05v°I + R)),

is employed. Yan et al. (2007) prefer to consider the relative contribution of the o2 to the
total variation in Y. They let 02 = o2 + 0’% and ¢ = 02/0?. Therefore, the marginalised
likelihood is written as

Y ~ N(X0,5%[¢T + (1 —¢)R)). (1.7)

Consequently ¢ is bounded to (0,1) and this facilitates the use of slice sampling (Neal,
2003). The parameterisation given in (1.7) is implemented in the R package Smith et al.
(2008) which allows for the joint modelling of data from different spatial scales.

For spatially referenced data for which the normality assumption is inappropriate we
have spatial GLMMs (Diggle et al., 1998). In such cases marginalisation is no longer
available as the necessary integrals are intractable. Papaspiliopoulos et al. (2003) develop
a PCP for application to the Poisson log-normal model (Christensen and Waagepetersen,
2002). Their construction is analogous to the PCP for NLHMs given by Papaspiliopoulos
(2003). The approach of Christensen et al. (2006) is to orthogonalise the random effects
to remove correlation a posteriori. Papaspiliopoulos et al. (2003) and Christensen et al.
(2006) rely on an approximation of the conditional posterior covariance matrix of the
spatially correlated random effects and both use the quadratic expansion of the log-full
conditional distribution for this purpose. We look at the parameterisation of non-Gaussian

data models in Chapter 6



Hierarchical centering, interweaving and marginalisation are performed to create faster
converging and better mixing Markov chains. When n is very large, say 10° or greater,
the matrix operations required for model fitting are prohibitive regardless of the param-
eterisation. To cope with very large data sets some sort of dimension reduction must be
performed. For a review of the techniques employed see Sun et al. (2012). A popular
method is to use Gaussian predictive processes (GPP) Banerjee et al. (2008). The idea

is to use realisations of the Gaussian process at m << n knot locations to approximate

*

*.)) are realisations of the

B. For a set of locations s7,...,sk,, where a = (a(s7),...,a(s

same process giving rise to 3, we have that a and B are jointly distributed as

()= ([ ),

where R, is an m x m correlation matrix with ijth entry equal to p(s}, s}; @), for i, j =
1,...,m, and Cpg, is an n xm cross correlation matrix with ijth entry equal to p(s;, s;f; ?),

fori=1,...,n,j=1,...,m. We estimate 3 by 3%, where
B* = E[Bla] = Csu R, a.
Model (1.6) is then replaced by the GPP model
Y(s) =a'(s)0 + B"(s) + (),

and consequently we have to invert matrices of order m and not n. Moreover, if the knot
locations form a regular lattice, R, is block circulant and can be inverted efficiently using
the discrete Fourier transform (Gray, 2005). Guhaniyogi et al. (2011) model the knots
to allow their locations to be stochastically adapted. GPP models are used by Sahu and
Bakar (2012) and can be implemented in R packages spBayes and spTimer. GPPs have

also been used for nonparameteric regression models (Banerjee et al., 2012).

Another approach is covariance tapering (Furrer et al., 2006). Sparsity in the covari-
ance matrix is induced by forcing to zero those entries corresponding to pairs of locations
that are separated by a distance greater than some threshold range. The new tapered
correlation matrix Rrg, is formed by taking the element wise (or Schur) product of the
original correlation matrix R and a positive definite tapering matrix T, where the ijth
entry of T is zero if ||s; — sj|| exceeds some desired range. The tapered matrix Ry, is
then a banded matrix and can be inverted efficiently using sparse matrix libraries i.e. the
R package Koenker and Ng (2003). We look at covariance tapering in greater detail in
Chapter 3 and its impact on the efficiency of Gibbs samplers for the CP and the NCP.

The GPP captures large-scale spatial variation whereas the covariance tapering ap-
proach captures variation over shorter ranges. Sang and Huang (2012) combine the two

methods by writing
B(s) = B*(s) + Bs(s),

where (s(s) = 5(s) — 5*(s) is the residual of the GPP approximation. They use a tapered



covariance matrix for the residual process fs(s) that attempts to capture the small-scale
variation that is neglected by the GPP approximation.

Somewhat related to the notion of tapering is the methodology of integrated nested
Lapacian approximation (INLA) (Rue et al., 2009). Through an armoury of efficient
coding, covariance approximations and deterministic mode finding algorithms, they allow
for the fitting of a broad class of latent Gaussian process models to high dimensional data.
By using stochastic partial differential equations they represent the Gaussian process as a
Gaussian Markov random field, thus creating very sparse correlation matrices (Lindgren
et al., 2011). Although INLA does not provide full Bayesian inference it does offer a very

powerful tool for fitting spatial models.

1.4 Thesis organisation
The work in this thesis is organised as follows:

e In Chapter 2 we give background information about Bayesian computation and
provide details of the three stage normal linear hierarchical model which motivates
the work of Chapters 3-5.

e Chapter 3 introduces a general spatial model that has spatially varying coefficients
which are realisations of Gaussian processes. We analyse the exact convergence
rates of the Gibbs samplers emitted by the CP and the NCP for different covariance
structures of the latent variables. We compare the effect of the scale of a covariate
upon the convergence rates for the different parameterisations. We also look at
the impact of covariance tapering and blocking strategies for updating the model

parameters in the Gibbs sampler.

e In Chapter 4 we look at the practical implementation of the CP and the NCP and
give details of the full conditional distributions needed to construct the respective
Gibbs samplers. Further details are given for the procedure required to sample from
the posterior predictive distribution, a procedure necessary in order to construct pre-
dictive maps. We use simulated and real data examples to compare the performance
of the Gibbs sampler for both parameterisations, where performance is judged by

well known diagnostic tests.

e In Chapter 5 we construct a PCP which eliminates the conditional posterior cor-
relation between random and global effects and consequently gives rise to a Gibbs
sampler with immediate convergence. We investigate how the weights of partial
centering are affected by the covariance parameters and how they vary over space.
We show how the PCP can be dynamically updated within the Gibbs sampler and
demonstrate the efficacy of pilot adaption schemes that are used to mitigate the
computational expense of the PCP. The PCP is compared to the CP and the NCP
for both simulated and real data examples and is shown to be robust to changes in

the covariance parameters of the data generating mechanism.
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e In chapter 6 we look at two frequently used models for non-Gaussian spatial data;
the Tobit model, which is applied to censored data, and the probit model, which
is applied to binary data. We compare the performance of the CP and the NCP
for these models using simulated and real data examples. We fit the Tobit model
to New York precipitation data and produce a map of the probability of positive
precipitation across New York. The probit model is used to construct a map of the
probability that ozone concentrations across California exceed the limits set forth
by the U.S. Environmental Protection Agency. We go on to construct a PCP for
non-Gaussian data by using the negated Hessian matrix evaluated at the MLE to
estimate the conditional posterior covariance of the random effects. The properties
of the PCP are investigated and compared to the CP and the NCP for both Tobit

and probit models.

e Chapter 7 contains a discussion of the results of the preceding chapters and sets
an agenda for future work which includes extensions to spatio-temporal data and

multivariate responses.
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Chapter 2

Bayesian computation

2.1 Introduction

Bayes theorem is the basic tool for Bayesian statistics. It allows us to update our prior
beliefs about a set of unknown parameters & € 2 C #% in the light of observed data y =
(Y1,---,yn)". Given a likelihood f(yl€) and a prior distribution w(&) for the parameters,

Bayes theorem tells us that the posterior distribution for £ is

[WOE _ FlenE o)
f(y) J= F(yl&)m(&)de’ '

m(&ly) =

where f(y) is the marginal distribution of the data and the normalising constant for the

posterior distribution of £&. Hence we can write

m(&ly) o< f(yl&)m (),

which says that the posterior distribution for £ is proportional to the product of the
likelihood and the prior distribution.

Assuming that we can write down a likelihood for the model, we must then choose
a prior distribution for &. Elicitation of prior distributions is an important part of any
Bayesian analysis. The choice should reflect all of our prior beliefs about the model
parameters. It should respect their support and assign greater mass to intervals of that
support where we believe it to be appropriate. In practice, we often have very little prior
information on which to make these decisions. This encourages the use of non-informative
priors, sometimes referred to as vague priors.

An example of a vague prior is the uniform prior distribution. We consider all values
of & equally likely a priori such that w(&) o< constant. One problem with this prior is that
under a different parameterisation the prior distribution may no longer be uniform. To
combat this one can employ a Jeffreys prior which is proportional to the square root of
the Fisher’s information matriz and is invariant to parameterisation. A second problem
with a uniform prior is that it is émproper as it does not integrate to one. Although
improper prior distributions can induce proper posterior distributions (see Gelman et al.,

2004, Chapter 2) it is not always ensured. For this reason many practitioners use proper

13



priors with large variability.

For a proper prior distribution, it is computationally convenient to use a conjugate
prior. Suppose (&) comes from a family .# of distributions and that we have a random
sample from density f(y|€). If w(&€|y) € F for all f(-|€) we say that 7(-) is a conjugate
prior with respect to f. If f is from the exponential family then we can always find a
conjugate prior, but in general one may not exist. A conjugate prior should only be used
if it can be reasonably justified in terms of our prior beliefs.

The choice of prior distributions is subjective and as such we must check how sensitive
our inference is to this choice. Robustness to prior misspecification can be checked via
posterior predictive performance, see Section 2.5.

With a likelihood and prior we can compute the posterior distribution. Access to the
posterior distribution allows us to make probability statements about £&. We can compute
moments, quantiles and test hypotheses. We often want to calculate posterior expectations
of some function ¢(-). This requires evaluation of the expression

J=9(&) f(wl&)m(& )

Elg(&)ly] = f- y|€ ©d (2.2)

In most applications closed form solutions for the integrals in (2.2) cannot be found.
Numerical integration is an option but becomes unreliable for high-dimensional problems.
For this reason we use sampling techniques like Markov chain Monte Carlo (MCMC) to
estimate these expectations.

If £(t), t =1,...,N, are independent samples from 7 (&|y) then by the law of large

numbers

N
v = S 9(€®) - Blg(@)ly] as N - oo, (23)
=1

Obtaining independent samples from the posterior distribution may not be possible. How-
ever, if {£(t)}i1 form an ergodic Markov chain with stationary distribution 7(£€|y), then
under suitable regularity conditions (2.3) still holds (Smith and Roberts, 1993). Therefore,
our problem is now to construct a Markov chain with the desired stationary distribution.
This can be achieved by using the Metropolis-Hastings, Metropolis or Gibbs sampling al-

gorithms, as described below.

2.2 The Metropolis-Hastings algorithm

A widely used technique for sampling from high-dimensional distributions is the Metropolis-
Hastings (M-H) algorithm (Hastings, 1970). It allows us to induce a Markov chain with a
stationary distribution equal to the posterior distribution in (2.1). Given the current state
of the chain, a candidate value for the next state is drawn from an easy to sample proposal
distribution ¢(-|-). If accepted, the chain jumps to the candidate value. If rejected, the
chain remains in its current state. The goal is to explore the parameter space, retaining
values in the correct proportions with respect to the target density m(&|y).

The M-H algorithm proceeds as follows:

14



1. Choose an initial value & ©),

2. Given the current value & (t), sample a candidate value £* from a proposal distribution

q(-lg").

3. Calculate the acceptance probability

* (t) ] ¢*
m7*_mHLw@ymzm>},
e e { (€D y)g(€7|€D)

4. Draw a value u from a uniform U(0,1) distribution.

5. Let
smu_{s*iMSanFL
€D ifu>a(e®, ).
As the acceptance probability is in the form of a ratio, we do not need to compute the
normalising constant, f(y). Note also that since there is positive probability of rejecting
a move the chain will be aperiodic and so the stationary distribution will also be the
limiting distribution. Furthermore, it can be shown that as long as ¢(-|-) and 7 (-) have
the same support the resulting chain will have a stationary distribution equal to 7(+), (see
Gilks et al., 1996, Chapter 1). For more details regarding the implementation of the M-H

algorithm see Chib and Greenberg (1995).

2.2.1 The Metropolis algorithm

The M-H algorithm is an extension of the Metropolis algorithm, developed for applica-
tions in statistical physics (Metropolis et al., 1953). If we consider a symmetric proposal
distribution where ¢(:|€) = q(&]-), e.g. a multivariate normal distribution, then we recover

the Metropolis algorithm. The acceptance probability becomes
mwmwzanﬂ%ﬁl,
(& y)

and so if a more likely value is proposed it will always be accepted.

2.2.2 Component-wise updating algorithms

It is more computationally efficient to sample from lower dimensional random variates.
Therefore it is common to partition £ into s components of dimension r;, i = 1,..., s, such
that >7_, r; = d, and update each of these in turn. Components are usually univariate
quantities but highly correlated random variables may be grouped together, a practice
known as blocking.

The posterior distribution of a component &, given all others, £_,, where

£—i = (5/17 . 75;—17€{£+17 tee 75{9),7
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is known as the full conditional distribution, denoted by 7(&;|€_;,y). The set of full con-
ditional distributions uniquely determines the joint distribution (Besag, 1974). It follows
that if

E'Et) Nﬂ(Ei’E—ivy)7 7::17"'737

then (5 gt), ce £gt))/ is a sample from the joint distribution 7(&|y). Moreover, the sequences
{Sl@}iv:l are samples from marginal distributions 7(&;|y).

We can identify the full conditional distributions by noting that

m(€ly)

W(&iysfiv ) f'—‘ €\y df

and so 7(&;|€_;,y) ox w(€). In addition, a graphical representation of the model in the form
of a directed acyclic graph allows us to read off any conditional independencies (Spiegel-
halter et al., 1993).

We perform s cycles of the M-H algorithm to obtain a sample from the joint posterior
distribution. Let ¢;(-|-) be the proposal distribution for the ith component. A candidate
value & is then accepted with probability

s &(t) () g5 £(t)
@i(§;7, &) mln{ ’n(ggt)\ﬁ(_tz,y)Q¢(€Z‘\€§t)75(2)

where E(fz = ( gtﬂ ,...,£Zt+11), l+1’ . ,fs )/. Notice that we always condition on the

latest values for the other components.

2.2.3 Acceptance rates

The acceptance rate impacts the rate of convergence of the Markov chain to its stationary
distribution. By tuning the scale of the proposal distribution we control the proportion of
candidate values that are accepted. If the scaling parameter is too small then we are more
likely to propose small jumps. These will be accepted with high probability. However,
many iterations will be needed to explore the entire parameter space. On the other hand,
if the scale is too large then many of the proposed jumps will be to areas of low posterior
density and will be rejected. This again will lead to slow exploration of the space.

For Metropolis algorithms, if 7(&€|y) can be factorised into IID components we have the
asymptotic result that as d — oo the optimal acceptance rate is 0.234 (Roberts et al., 1997;
Gelman et al., 1996). Neal and Roberts (2006) show that if we partition € into components
of equal dimension i.e. r = r1 = ro = ... = 1, then the optimal acceptance rate is
independent of r. For r = 1 Gelman et al. (1996) showed that the optimal acceptance rate
is 0.44, and so for univariate components-wise updating algorithms we look to tune the

proposals distribution to achieve this rate.

2.2.4 The Gibbs sampler

If the full conditional distributions can be sampled from directly then the algorithm is
referred to as a Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984). As
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pointed out by Gelman (1992) the Gibbs sampler can be considered a special case of the
M-H algorithm where the proposal density is equal to that of the target density, hence
candidate values are accepted with probability one. This makes Gibbs samplers easy to
program and quick to run. Given starting values 5(0), the Gibbs sampler cycles through
the following steps for t =0,..., N — 1:

N (13 T S LW JOR)
U m(e)ef e, e y)

Sgt+1) ~ (5s|€(t+1 ’ (t+1 N ££t+11)’ Y),

It may be the case that some components have full conditional distributions that
cannot be sampled from directly. Such components are updated using M-H steps. This

leads to a hybrid sampling algorithm known as Metropolis-Hastings within Gibbs.

2.3 Convergence rates

Any practitioner of MCMC methods faces the problem of knowing when the chain has
converged to the stationary distribution. For a square integrable function g, let E[g(&)]
be the expectation of g(&) under the target distribution for £&. We define the convergence
rate A to be the minimum number such that for all square integrable functions g, and for
all m > A,

lim (B [g(6")[€0] - Bo[g(¢)] ) v = 0. (2.4)

The convergence rate A is bounded by the interval [0, 1], with A = 0 indicating immediate
convergence and A = 1 indicating subgeometric convergence (Meyn and Tweedie, 1993).
This form of convergence is considered by Amit (1991) and Roberts and Sahu (1997)
among others.

It is standard practice to discard an initial portion of the Markov chain and make
inferences based on simulations after that. A difficulty here is on deciding the length of this
initial portion, the so called burn-in period. The burn-in required will be problem specific
as the convergence rate is a measure of the discrepancy between the transition kernel
P(eM[£®) and the stationary distribution 7(£). Attempts to predetermine the burn-in
have had limited success. Upper bounds for the distance of the chain to stationarity, after
a certain number of iterations, are difficult to compute and are often too large of be of
any practical use, see Roberts and Rosenthal (1998) and references therein. Many tests

rely on an analysis of the output of the chain to diagnose convergence.

2.3.1 Diagnostic tests

A straightforward diagnostic test is to plot the values of the chain on a graph and see how

many iterations it takes for the chain to ‘settle down’. So called trace plots are a useful
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visual tool but can be misleading. A chain may appear to have settled and be mixing
well but may be merely be stuck in a local mode. For an example of this behavior see
Ripley and Kirkland (1990). It is therefore recommended to overlay the trace plots of
many chains with widely spread starting points. The object here is to identify the number
of iterations it takes for the chains to overlap and ‘forget’ where they had begun. A
quantitative application of this principle underpins many of the post sampling statistical
tests of convergence (Gelman and Rubin, 1992; Johnson, 1996; Liu et al., 1992; Roberts,
1996). The difficulty with these measures is choosing start values that are overdispersed

with respect to the unknown posterior distribution.

A popular measure from Gelman and Rubin (1992) compares the variance across the
chains to that of the variance within the chains. It is computed as follows. Consider the
scalar parameter of interest, £, assumed to be a posteriori normally distributed with mean
p and variance 02. Run [ > 2 independent chains of length 2N, discarding the first N
iterations. Let &7 be the tth iteration for the jth chain, t =1...,N, j = 1,...,l. The

between chain variance K/N is calculated as

! N !
1 - . 1 . _ 1 )
- J _ £)? Jo— — Jt —— J-
K/N == (& =87 where & =53 ¢ &=7> ¢,
7j=1 t=1 7j=1
and the within chain variance M is given by
1 l 1 N
— 2 2 _ jt .\ 2
M_fzsj’ where sj_mZ(gj — &2,
]:]_ t=1
A weighted average of K and M gives an estimator for o2
K N-1
2
=—+ —M.
TTNTTN

If samples are from the stationary distribution then 0_% is unbiased. As starting points are
overdispersed, if the chain has not yet converged then 03_ will overestimate o2. On the
other hand, if the whole parameter space is yet to be explored then M will underestimate
o?. Adjusting for the sampling variability in the estimator for u gives a pooled variance

estimator V = 03_ + K/IN. The statistic is then given by

(e+3)V

= (e+1)M’

where ¢ = 212 / Var(f/) is the estimated degrees of freedom for a t-distribution with mean

[t and variance V.

The value R is referred to as the potential scale reduction factor (PSRF), the factor
by which the width of the credible intervals for p could be reduced if N were increased.
Values much greater than 1 indicate a failure to converge, with values less than 1.1 or 1.2
considered low enough to be satisfied that convergence has been achieved (Gilks et al.,
1996, Chapter 8).
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The PSRF is extended to a multivariate convergence diagnostic by Brooks and Gelman

(1998). The multivariate potential scale reduction factor (MPSRF') compares estimates of

covariance matrices. If &/! = (f . ,gg’t)’ is a vector containing the tth iteration of
the jth chain for scalar components fi, i=1...,s, then
1 I N
— ]t ]t 7\
7j=1 t:l
and

l
K/N= 103 (€ -8 -8,

J=1

where & = (¢],¢},...,¢8) and € = (&,&,...,&) . The MPSRF is given by

N -1 [+1
Rs = N +< ] >’y,

where 7 is the largest eigenvalue of M 1K /n, with values of R, substantially above one

indicating a failure to converge.

It must be noted that diagnostic tests are used to indicate a failure to converge as
we can never know if convergence has truly been achieved. In their comparative review
of convergence diagnostics, Cowles and Carlin (1996) find that all of the methods they
consider can fail to detect a lack of convergence. Consequently they advise employing
a battery of tests. It is also warned by Cowles et al. (1999) that the act of employing
diagnostic tests to assess the number of iterations to be discarded, can itself induce biases
into the estimator (2.3). It is therefore recommended that several pilot chains are used
to determine the length of the burn-in period and then inference is based on one long

separate chain.

2.3.2 Autocorrelation

Markov chains that exhibit high autocorrelation will mix more slowly and hence take longer
to converge. The autocorrelation plot is sometimes used to determine the thinning interval.
The idea is to try and achieve close to independent samples values by retaining every mth
value where the autocorrelation at lag m falls below some tolerance level. Although
this may seem reasonable, MacEachern and Berliner (1994) show that by throwing away
information the variance of the mean of the samples can only be increased. It is far better
to use the concept of an effective sample size or ESS (Robert and Casella, 2004, Chapter
12). The ESS is computed by dividing the number of post burn-in samples N by an

estimate of the autocorrelation time x, where

k=1 +2Zp(/~c),
k=1

and p(k) is the autocorrelation of at lag k. We can estimate x by using the sample auto-

correlations of the chain and truncate the infinite sum when the autocorrelation falls below
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some threshold. This may lead to a biased estimate for x (Banerjee et al., 2003, Chapter
4). Another method of estimating ~ is to estimate the spectral density at frequency zero.
If we consider scalar quantities such that gy = N1 Zi\i 1 g(€®), we have from Ripley
(1987, Chapter 6) that

NVar(gn) — v*k = 2w f(0),

where v? is the variance and f(0) the spectral density of the chain {g(¢ (t))}fll. So asymp-
totically N/k = Nv?/2rxf(0). It is this method that is used in the R package CODA
(Plummer et al., 2006) to estimate the ESS.

2.3.3 Convergence rates for the Gibbs sampler

For Gibbs samplers with Gaussian target distributions with known precision matrices we
have analytical results for the exact convergence rate (Roberts and Sahu, 1997, Theo-
rem 1). Convergence here is defined in terms of how rapidly the expectations of square
integrable functions approach their stationary values, see (2.4). If &ly ~ N(u,X), let
Q = X! be the posterior precision matrix. To compute the convergence rate first parti-

tion @ according to the s blocks used for updating, i.e.,

Qu Qi - Qy

Qa1 Qxn -+ Qo
Q= : : - :
Qsl QsZ e st
Let A =1 —diag(Qy',...,Q5.)Q and F = (I — La)~'U 4, where L4 is the block lower
triangular matrix of A, and Uy = A — Ly. Roberts and Sahu (1997) show that the
Markov chain induced by the Gibbs sampler with components block updated according
to matrix (2.5), has a Gaussian transition density with mean E[E(t+1)|£(t)] = FeW 4 f,
where f = (I — F)p and covariance matrix ¥ — FXF’. Their observation leads to the

following theorem:

Theorem 2.3.1 (Roberts and Sahu, 1997) A Markov chain with transition density
N(Fs(t)—i—f?E_FZF/)v
has a convergence rate equal to the maximum modulus eigenvalue of F.

Corollary 2.3.2 If we update & in two blocks so that s = 2 then

Q- <Q11 Qu) and F— (0 _1—Q1_116%112 ) 7
Qa1 Qo 0 QpnQnQQ1 R

and the convergence rate is the mazimum modulus eigenvalue of Fas = Q5 Qo1 Q11 Q1.

We will make repeated use of Theorem 2.3.1 in Chapter 3. As an example of its

application we return to the elementary model (1.1). Recall that the CP of the model
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hasY; = Ui +¢€,i=1,...,n, with U; ~ N(0,02) and ¢; ~ N(0,02) all independent. A
flat prior is given to 6. For the CP it can be shown that the joint posterior distribution

7(U, 6|y) is multivariate normal with precision matrix Q°, where

o _ (/o2 +1/o)I —1/021
—1/021 njo?

u

Applying Theorem 2.3.1 we find that the convergence rate for the CP is

0.2

Ae = ———. 2.6
© 02402 (2:6)
By definition a smaller value of \. indicates faster convergence. Therefore, convergence is
hastened for the CP when the random effects variance dominates the data variance.
The NCP is found by letting U; = U; — 6. The joint posterior distribution (U, 0]y) is

multivariate normal with precision matrix Q"°, given by

(1/062 + 1/03)1 1/0621

QTLC —
1/021 n/o?
The convergence rate for the NCP is
2
o
)\nc = O’EQTUO%7 (27)

and we see that in constrast to the CP, convergence for the NCP is hastened as the variance

for the random effects shrinks compared to that of the data.

It is also worth noting that A,. = 1—A.. Although this relationship does not hold if 8 is
given a proper prior distribution, it sharply demonstrates that the two parameterisations

are complementary, where one does well the other does poorly.

Roberts and Sahu (2001) consider the problem of predetermining which parameterisa-
tion to use in the absence of a known precision matrix. They suggest approximating (2.5)
by evaluating the negative Hessian matrix of the posterior distribution at the posterior
mode, where the mode is found using the EM algorithm (Dempster et al., 1977). We use
a similar approach in Section 6.4 to estimate the conditional posterior covariance of the

random effects for non-Gaussian data.

2.4 The three stage linear model

In this section we consider the following hierarchically centred three stage model:

Y[B ~ N(X:18,Cy)
BlO ~ N(X20,Cs)
0 ~ N(m,C3). (2.8)
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where Y is a G x 1 vector of responses, X is G x P design matrix and B is P x 1 vector
of centred random effects. The random effects are modelled jointly as multivariate normal
with mean X0 where X4 is a P x H design matrix and @ is H x 1 vector of global effects.

Model (2.8) is a general set up and many models can be written in this form. For
example, suppose that Y = (Y,..., Y. Y and Y,; = (Y1,...,Y,,), fori =1,... n, then
G =" n;. Further, let B = (,Bll, . 7521)’ where 3; is a p x 1 vector, hence P = np. If
we assume that Cov(Y;,Y ;) = Cov(Bi,Bj) =0, for i # j and C3"' = 0 then we have the
model considered by Papaspiliopoulos (2003, Section 2.4). If in addition Var(Y;) = 021,
then we have the model considered by Gelfand et al. (1995, Section 2). Furthermore, the
spatial models we consider in Chapters 3, 4 and 5 can be written in this form, hence we
give some of its properties in the remainder of this section.

The NCP for model (2.8) is found by letting

B=08—-X-0. (2.9)
Substituting (2.9) into model (2.8) gives the NCP for the three stage model as

Y|3,6 ~ N(Xi8+ X1X20,Cy)
B ~ N(0,C»)
0 ~ N(m,Cg).

2.4.1 Conditional posterior distributions for the CP and the NCP of the
three stage model

The work of Lindley and Smith (1972) for the Bayesian analysis of the normal linear

hierarchical model is relevant here and we make repeated use of the following lemma:

Lemma 2.4.1 (Lindley and Smith, 1972) If Y ~ N(X18,C1) and 8 ~ N(X16,C5) for
X1, Xo, Cq and Cs all known, the conditional posterior distribution ofB 18

7(3]0,y) ~ N(Bb, B), (2.10)

where
B '=X|C{'X;+C;' and b=X|Ci'y+C;'X50.

We can immediately apply Lemma 2.4.1 to find the conditional posterior distribution
of 0 as
(6]8,y) ~ N(m*,C3), (2.11)

where
C, = (X4Cy' X, +C51) " and m* = C; (X’QCjB + Cg1m> :
Similarly, we find the conditional posterior distributions for the NCP. For 3 we have
7(6|0,y) ~ N(Bd, B), (2.12)
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where d = X’ICfl(y — X 1X20), and the conditional posterior distribution for € for the
NCP is given by
m(618,y) ~ N(m*, C3), (2.13)

where
C; = ((X1X,)Cy' X 1 X+ C3 1)

and
m* = C§ ((Xng)'Cl_l(y — Xl,@> + C?Tlm) .

2.4.2 Posterior covariance matrices for the CP and the NCP of the three
stage model

In this section we derive the posterior variances and covariance for random and global
effects for the different model parameterisations. Computations are similar in spirit to
those conducted by Gelfand et al. (1995) and we make repeated use of the results for the
two stage model given by Lemma 2.4.1. We remind ourselves that covariance matrices
C1, C5y and C3 are assumed to be known. We begin by considering the CP and use the
relationship given in equation (2.9) to find the equivalent results for the NCP.

First we find the marginal posterior distribution of 8. Marginalising over the 3’s we
get a likelihood of
Y0~ N (X1X20,Zyp),

where ¥y g = C1 + X102 X . Then we find the marginal posterior distribution of € to
be

Oy ~ N (é, 29|y) :

where

Soy = ((X1X2)’z—1

-1
X1 X+ C5)

A~

6 = 3y, (X1X2)Syly + C3'm).

To compute the marginal posterior distribution for 8 we marginalise the conditional pos-
terior distribution given in (2.10) over . We have that G|y is normally distributed with

expectation

EBly] = E[E[Blevy]}
— BEJb)
= B(X\Ci'y+Cy;'X2E8y])

~

= Bb,
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where b = XﬁCfly + C;ngé, and variance

Var(Bly) = E[Var(8l6,y)] + Var(E[B]6,y))
= FE[B]+ Var(Bb)
= B+ Var(BC;'X10)
= B+ BC;'X,5,X,C;'B.

We now compute the posterior covariance of B and 0. We have

[{B - E[BI}{6 - E[6]}'|y]

[{(B - E[B]}0'|y]

[86'|y] — E[E[B)0'|y]

[E[B16,y]6'|y] — BbE[O'|y]

— BE[(X)Ci'y+C;'X1:0)0'|y] — B(X\C;'y +C;'X,0)6

— BX,C;'y6 + BC;'X,E[00'|y] — BX,C;'y6 + BC;' X106’
— BC,'X,E[00|y] - BC;' X200

= BC;'X,Xy,.

Cov(B,0ly) =

We now turn our attention to the NCP. Recall from (2.9) that 3 = 8 — X26. The

posterior covariances are

Var(Bly) = Cou(B— X20,8— X20|y)
= Var(Bly) — Cov(B,0ly) X — X2C00(0, Bly) + X2Var(6ly) X
= B+ BC;'X,%,X,C;'B - BC;' X%, X5 — X2%,,X,C;'B
+X 9%, X5,

and

Cov(B,0ly) = Cov(B— X3,6|y)
= Cou(B,6ly) — XsVar(0ly)
= BC,'X)%, — X33,

2.4.3 Convergence rates for the CP and the NCP of the three stage
model

Suppose that we run a Gibbs sampler updating the random effects as one block and global
effects as another. We continue to assume that all prior covariance matrices are known.
For the CP we have £ = (EI/, 0’). Given €W we obtain £ as follows:

1. Draw B(tH) ~ (8|69, y).

(t+1

2. Draw 80D ~ W(O\B )79)7
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where 7(8|6,y) and 7(6|3, y) are given in (2.10) and (2.11) respectively. To compute the
convergence rate of the Gibbs sampler we first compute the posterior precision matrix of

B and 0. The matrix is determined by model (2.8) and can be identified by writing

m(B.6ly) o w(Y|B)m(B|6)m(6)
a<m{—;UY—XﬁﬂxwY—Xﬁwwﬂa&@b?@—xw>

+(6~m)'C3'(6 —m)| }
= exp { _ %[ L+ B (XCT X +Cy B 28 Cr X400

+0'(X45C5' X, +C51)0 + .. } }

where the last equation only includes the terms containing both B and 6. Therefore the

posterior precision matrix for the CP is given by

o X\crix, + oyt ~-Cy;' X,
= Yore XLCy' Xy + C3?

By Corollary 2.3.2 the convergence rate of the Markov chain induced by the Gibbs sampler

under the CP is given by the maximum modulus eigenvalue of

1

_ L1yl _ _ TS R
S = (X5Cy ' X2+ C3') T X5Cy (XI1CT' X1+ CyY) €yl X,

For the NCP we cycle between drawing 8¢+ ~ 77(,8|9(t),y) and 9+ ~ 7r(9|ﬂ(t+1), Y),
where the relevent distributions are given in (2.12) and (2.13) respectively. The posterior

precision matrix for the NCP is found by writing

™(B,6ly) < =(Y|B,0)n(8|6)r(0)
X exp { - % [(Y ~ X168 - X1X20)'C7HY - X18 - X1X20) +
+HC£ﬂ+w—nWCJW—wﬂ}
= exp { — % [ LA (XICTIX +CyY)B+ 28 X C X1 X0

+0/ (XHXCT X1 Xy + C51)0 + .. } }

and hence we have
xXiertx, + eyt XCr'X X,

an —
XLxher'x,  XLX\CTy'X X, + O3t
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By Corollary 2.3.2, the convergence rate of the Gibbs sampler for the NCP is the maximum

modulus eigenvalue of

e = (XLX4CTIX X+ C3) T XLXNCTIX (X X + e

XCT1X 11X,

2.5 Criteria for calibrating out of sample predictions

We use three criteria to assess the accuracy of spatial predictions. The first two, the mean
absolute prediction error (MAPE) and the root mean squared prediction error (RMSPE),
compare point estimates with observed values for the validation data set. A third mea-
sure, the continuous ranked probability score (CRPS), compares the CDF of the posterior
predictive distribution with the known validation observations. The CRPS is a more ap-
propriate measure in the Bayesian setting as it takes into account the sharpness and not

just the location of the posterior predictive density.

Let y;,i = 1,...,m, denote the m known validation observations. These are estimated
by g; which may be the mean or mode of the post burn-in samples ygt), t=1,...,N, which
are drawn from 7(Y;|y). We calculate the MAPE as

1 m
MAPE = — > lyi — il
=1

and the RMSPE as

m

1
RMSPE = | — S (4 — 4:)2.
- ;(y 3i)

If F is the CDF of the posterior predictive distribution, Gneiting and Raftery (2007) show
that the CRPS can be written as

1
crps(Fyy) = ErY —y| = 5 Ep|Y — Y|
where Y and Y’ are independent copies of a random variable with CDF F' and finite first

moment. Note that if F' were a point estimate the CRPS would equal MAPE. Given
MCMC samples y),t =1,..., N, we can estimate the CRPS as

1 N 1 N N
aps(Fy) = > 1w —ul = 5z DD ™ =yl
t=1 t=1 u=1

For m validation sites we take the overall measure to be

I o~
CRPS = po- ;crps(Fl,yz).
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2.6 Summary

In this chapter we have provided a short overview of Bayesian computation, focusing on
those aspects of the field which are used in the remaining chapters of this thesis. We have
provided details of Metropolis Hastings and Gibbs sampling algorithms and discussed
convergence and convergence diagnostics. In particular, we have given the a result that
allows us to compute the exact convergence rate for Gibbs samplers with Gaussian target
distributions with known precision matrices, a result we make use of in Chapter 3. We
have also provided details of the potential scale reduction factor and the effective sample
size, which we make use of in Chapters 4, 5 and 6.

We have given details and properties of the three stage normal linear hierarchical model
and expressions for the exact convergence rate of the CP and the NCP of models that
can be written in this general form. We have also given three criteria for assessing the
accuracy of out of sample predictions. These criteria are used in the real data examples
of Chapters 4 and 6.
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Chapter 3

Exact convergence rates for the
CP and the NCP

3.1 Introduction

Spatially varying coefficient (SVC) models (Gelfand et al., 2003) are being widely applied
by researchers looking to understand observed processes that exhibit spatial dependency.
Berrocal et al. (2010) include a spatially varying intercept and slope to correct for the bias
in the numerical model output that is used as the covariate in their downscaler model for
tropospheric ozone concentrations. Hamm et al. (2015) take a similar approach to model
the concentration of particulate matter across Europe. Wheeler et al. (2014) use SVC
models to analyse housing sale prices in Toronto, Canada for January 2001 and Finley

et al. (2011) construct an SVC model for continuous forest variables, e.g. biomass.

In Section 1.3.2 we give details of the standard Gaussian process model for point

referenced spatial data, which is given by
Y(s) = x'(s)0 + B(s) + €(s). (3.1)

Model (3.1) takes a normal linear regression model and includes a Gaussian process to

capture the spatial association unexplained by the covariates. Re-writing the model as

p—1
Y(s) =00+ B(s) + > xi(s)0k +€(s), (3.2)
k=1

we can consider 3(s) as a local adjustment to the global intercept 6y, where 3(s) is
modelled as a realisation of a Gaussian process at location s. Alternatively, we can view
B(s) = 6y + B(s) as a random intercept process. Gelfand et al. (2003) extend model (3.2)
to allow all of the coefficients of the explanatory variables to vary locally, envisioning a
spatial surface for each coefficient and thus providing a flexible class of non-stationary
models.

In Section 2.3.3 it is shown that for the simple independent random effects model given

in (1.1), that the ratio of the variance parameters is important for determining the conver-
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gence rate. In this chapter we consider SVC models and use Theorem 2.3.1 to investigate
the additional role that correlation across the random effects plays in determining the
convergence rate of the Gibbs samplers for the CP and the NCP.

The rest of this chapter is organised as follows: In Section 3.2 we give details of the
set up for regression models with spatially varying coefficients and compute the posterior
precision matrices for the CP and the NCP which are needed to calculate the conver-
gence rate of their respective Gibbs samplers. In Section 3.3 we look at how the variance
components and the strength of correlation between random effects impacts upon the con-
vergence rates for equi-correlated and then spatially correlated random effects. Section
3.4 looks at covariance tapering and in Section 3.5 we look at how the convergence rate
is affected by the scale of the covariate. In Section 3.6 we consider different correlation
functions from a family of isotropic functions widely applied in spatial statistics and in
Section 3.7 we construct anisotropic correlation functions and assess their impact on the
convergence rates of the CP and the NCP. Section 3.8 considers the effect of blocking on

the convergence rate and we close in Section 3.9 with some summary remarks.

3.2 A general spatial model

Following Gelfand et al. (2003, Section 3) we consider the following normal linear model

with spatially varying regression coeflicients
Y (si) = 6o + Bo(s:) + {91 + Bl(si)}xl(si) +...+ {91,, + ﬁp(si)}xp_l(si) +e(si), (3.3)

for i = 1,...,n. We model errors €(s;) as independent and normally distributed with
mean zero and variance o2. Spatially indexed observations Y = (Y (s1),...,Y(s,)) are

conditionally independent and normally distributed as
Y(si) ~ N(2'(s:){6 + B(si)}, 02),

where x(s;) = (1,21(8i),...,zp—1(8i))" is a vector containing covariate information for
site s; and @ = (0, ...,0,—1)" is a vector of global regression coefficients. The kth element
of 0 is locally perturbed by a realisation of a zero mean Gaussian process, denoted Si(s;),
which are collected into a vector B(s;) = (Bo(si), - -, Bp—1(si))". The n realisations of the

Gaussian process associated with the kth covariate are given by

Br = (Br(s1), .-+, Br(sn)) ~ N(0,Xg),

where

Zk = U]%Rk, and (Rk)” = COTT{ﬂk(Sl‘), ,Bk(sj)}

The CP is found by introducing the variables f;(s;) = 05+ B (s;), for k=0,...,p—1,

and i = 1,...,n. Therefore

By = (Bu(s1), ..., Br(sn)) ~ N(0x1,%y).
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Global effects 8 are assumed to be multivariate normal a priori and so we write model

(3.3) in its hierarchically centred form as

Y|3 ~ N(X.3,Cy)
Bl6 ~ N(X16,Cs)
0 ~ N(m7C3)a

where C; = 02I and X1 = (I, Dy,...,D, 1) is the n x np design matrix for the first

stage where Dy, is a diagonal matrix with entries & = (zx(s1),...,25(8,)). We denote

by B = (,El:), ceey ,B;_l)’ the np x 1 vector of centred, spatially correlated random effects.
The design matrix for the second stage, X, is a np x p block diagonal matrix, the

blocks made of vectors of ones of length n,

Xy =
00 --- 1
The p processes are assumed independent a priori and so C'5 is block diagonal where the
kth block is given by Xy, and so

S 0 --- 0

0o - 0
2 = . . .

0 0 - X,

The global effects @ = (6p,61,...,0,—1) are assumed to be independent a priori with

the kth element assigned a Gaussian prior distribution with mean my and variance aivk,

hence we write 6 ~ N(mk,alzvk), for k =1,...,n. Therefore m = (my,...,mp—1) and
odvg 0 .- 0
C,— 0 odvy .- 0
0 o - ‘7;2;71%—1

The hierarchical form of model (3.3) is identical to that of the three stage model
introduced in Section 2.4, where here we have G = n, P = np and H = p. There-
fore we can use the results of that section to compute the posterior covariance matrices
Var(B{Ci}i=123,9), Cov(B,0|{Ci}i=123,9), Var(B{Ci}i=123,9),
Cou(B,0|{C:}i=123,y) and Var(0|{C;}i=123, ).

Model (3.3) extends many of the models that appear in the literature. If we let
Bi(si) = ... = Pp—1(s;) = 0, then the model collapses to model (3.1), the standard
Gaussian process geostatistical model found in, for example, Banerjee et al. (2003, Chapter

5) or Schabenberger and Gotway (2004, Chapter 6). In much of this chapter we use
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model (3.1) with x(s;) = 1 to investigate how the strength of correlation between the
random effects impacts the convergence rate for the different parameterisations. This
same simplified model was used by Banerjee et al. (2008) to investigate the efficacy of

Gaussian predictive process models.

If we have just one covariate and it has a spatially varying coefficient, i.e. in model

(3.3) we let p = 2, then we have
Y (s:) = 6o + Bo(si) + {61 + Bi(si)}w1(s:) + €(si), (3.4)

which is the model used by Berrocal et al. (2010) to model ground-level ozone concentra-
tions for the eastern states of the U.S. We will revisit model (3.4) in Section 4.5 as we use
it to model Californian ozone concentration data. In Section 3.5 we investigate the effect
of covariate information upon the convergence rates for the different parameterisations by
using model (3.4) with 6y = fo(s;) = 0.

The general form of the posterior precision matrices for the CP and the NCP of the
three stage model are given in Section 2.4.3. Using those results we can write down the

posterior precision matrix for the CP of model (3.3) as

Q5 <
=" " (35)
o5 Qb

where Q% is an np x np block matrix with blocks corresponding to the processes ,Bk, for
k=0,...,p—1. The klth n x n block of Q% is given by

. DC'Dy+ 21 ifl=k,
(@) = o .
D,CT'D, it 1 k,
for k,l = 0,...,p — 1, and we define Dy = I. The submatrix Q%a = (Q;B)’ is block

diagonal with the kth block equal to
(Q5p)r = -1, k=0,...,p— 1
The submatrix Qf is diagonal with the kth diagonal entry equal to
Q) =121+ 1/(ofvk), k=0,...,p— 1.

The form of Q€ indicates the conditional independence between the Bk and 0; and between
0, and 6; for | # k, given the rest of the parameters in the model. We can write these
statements as

By L 6B .0, ki=0,....p—1, 1+#Ek.

Or 1L 6,|8,0 1y, k,0=0,....p—1, 1#k

32



The posterior precision matrix for the NCP is written as

gue— (¥ @) (3.6)
Qs Qi

where the Qj° = Q%. The submatrix Qg = (Qgg)’ is a mp x np block matrix with kith

n x n block equal to
(QF5) = DyCylm, k1=0,...,p—1,
where we define £y = 1. The submatrix Qf° is a p X p matrix with klth entry equal to

Qi) — zyCy ) +1/(ctvy) if 1=k,
oK 2, Cy ') if 1k,

for k,1=0,...,p—1.

It is shown in Section 2.3.3 that given the posterior precision matrix of a normal
linear model we can compute the convergence rate for the associated Gibbs sampler. By

Corollary 2.3.2 we have that for a 2 x 2 block precision matrix

Qll Q12
Q21 Q22

the convergence rate is the maximum modulus eigenvalue of the matrix
-1 -1
Fa = Q45 Q2,Q11 Qo

Therefore, the convergence rate of the CP of model (3.3) with precision matrix (3.5) is

given by the maximum modulus eigenvalue of
5 = (@5) ' Q55(Q9) 7' Q5

and the convergence rate of the NCP of model (3.3) with precision matrix (3.6) is given

by the maximum modulus eigenvalue of

5 = (Q5°) T Q5 (QE) ' Q.

3.3 Convergence rates of the CP and the NCP in the pres-

ence of correlated random effects

To investigate the effect of correlation between the realisations of the latent processes upon

the convergence rate of the different parameterisations, we let p = 1 and therefore model
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(3.3) reduces to

Y|B, ~ N(By,oll)
Bolo ~ N(6p1,%)
0o ~ N(mo,ov0). (3.7)

Recalling that X = 02 Ry, the posterior precision matrices for the CP and the NCP are

given by
1/02I +1/02 Ry " ~1/0¢Ry'1
—1/a31'Ry"  1/031'Ry*'1 + 1/(03wp)
and
—1
o — 1/0%I +1/0¢R, 1/021
1/021 n/o? +1/(agvo)

respectively. As 6y is a scaler the Foo matrices are also scalers and so the respective

convergence rates are
Ae = (1/021 Ry +1/(03w0)) 1/03V Ry (1/02T +1/02RyY) ' 1/02R; 11, (3.8)
and
Ane = (n)o? +1/(02v0)) " 1/021’ (1/021 +1/03 Ry ") 1/071. (3.9)
In the rest of this section we investigate how the structure of the correlation matrix
Ry affects the values for ;. and A\,..
3.3.1 Convergence rates for equi-correlated random effects

To illustrate how changing the strength of correlation between the random effects influ-
ences the convergence rates of the different parameterisations, we begin by assuming a

equi-correlation model. We suppose that
p ifi+j
(Ro)ij :{ e (3.10)
1 ifi=j,

for 0 <p<1.
To assist in the computation of convergence rates A. and \,. we make use of the

following two matrix inversion lemmas.

Lemma 3.3.1 (Woodbury, 1950)Let N be an n x n matriz, U be an n x m matriz, M

be an m x m matrix and V' be an m x n matriz, then
(N+UMV)'=N'-N'UM'+VN'U)'VNL
Lemma 3.3.2 If I is the n x n identity matriz and J is an n X n matriz of ones, then

1 b
I+bJ) =T ——
(al +5J) a a(a + nb)

)
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for constants a > 0, b # —(a/n).

This can be easily checked by direct multiplication and noting that
JJ =11'11" = 1nl’ = nJ.

Also Lemma 3.3.2 follows from Lemma 3.3.1 if we set N = o, U = 1, M = bl and
vV =1.

To compute the convergence rates given in (3.8) and (3.9) we must invert matrices
02Rg and (1/02I + 1/03Ry"). Using Lemma 3.3.1 we see that

(1/0?T +1/03Ry") ™! = 021 — 021(0?1 + 02 Ry) 0?1,
For Ry defined by (3.10) we write
2p _ 2 2
o5 Ry = 05(1 — p)I + ogpd, (3.11)

and
2 2 _ 2 2 2
ol +oiRy = (02 + o5(1 — p))I + ojpd. (3.12)

Applying Lemma 3.3.2 to invert matrix (3.11) we have the following restrictions on p:

aF(L=p)#0 = p#1, (3.13)

and

at(1—p 1
opp # _O(n) = p# 1 (3.14)

Applying Lemma 3.3.2 to invert matrix (3.12) we have the following further restrictions

on p:

o2+ o3
ol +oi(1—p) #£0 = p# 60720» (3.15)
0
and 2( ) 2 2 2
o5(1—p) —o: o;+o
oppF - = p# _Wa (3.16)
0

Restriction (3.13) is satisfied by insisting that p < 1 as we have done in (3.10), and
restriction (3.15) is trivially satisfied for o2 > 0. Restrictions (3.14) and (3.16) correspond
to negative values of p and are non-linear functions of other parameters. For values of p
around p = —1/(n — 1) or p = —(0? + 02)/(n — 1) the matrix inversions are unstable
and so are the subsequent calculations of the convergence rates. Hence we restrict p to
take only non-negative values, as is usual in spatial data modelling.

After some cancellation we find the convergence rates for the CP and the NCP to be

2
Ae = 1o ( Te ) , (3.17)

— 02(1 = p) +notp+nvy \ o2+ a3(1—p) +noip

and

N noduvg 03(1—p) +naip (3.18)
" 02 4 nodug \ o2+ 01— p)+nodp)’ '
e 0v0 \0¢ T g p) T nogp
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Note that if we have a flat prior on 6y, achieved by letting 1/vg = 0, then

2
O

02+ 031 —p)+noip’

C

and

" 024 02(1—p) +nalp

(3.19)

and then A; + A\, = 1. For p = 0 we recover the rates for the independent random effects

model, given in equations (2.6) and (2.7). Also note from equations (3.17) and (3.18) that

if we use of a proper prior we speed up convergence.

We let dg = 02/a? be the ratio of the variance parameters. Figure 3.1 shows conver-
gence rates for the CP for 0 < p < 1 and when 1/vy = 0 for n = 20,50, 100, 250, for five
levels of dg = 0.01,0.1, 1,10, 100. The equivalent plot for the NCP is given in Figure 3.2.

Recall that a lower rate indicates faster convergence. We can see clearly that for fixed n

and p, increasing dp improves the performance of the CP but worsens the performance of

the NCP. For a fixed dg and sample size n, increasing the strength of correlation reduces

the convergence rate for the CP but increases it for the NCP. We also see that for a fixed

p increasing n helps the CP but hinders the NCP.
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— o 3
[o0) [ee] [o0)
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o o o
oL : : : : ; ol : : : : ; o
00 02 04 06 08 10 00 02 04 06 08 1.0
p p
(d) (e)
o | o |
- -
* © _—
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© (o]
Uoli 00.7 —_—
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o o
o o

0.0 02 d4pd6 0.8 1.0 0.0 02 ohpob 0.8 1.0
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n=50
n=100
n=250

00 02 ozpob 0.8 1.0

Figure 3.1: Convergence rates for the CP of the equi-correlation model for n =
20, 50, 100, 250, for different values of dp. (a) dp = 0.01, (b) dp = 0.1, (c) dp =

50 = 10, (e) 50 = 100.

1, (d)

The effect of a change of correlation on the two different parameterisations can be
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Figure 3.2: Convergence rates for the NCP of the equi-correlation model for n =
20, 50, 100, 250, for different values of dg. (a) dp = 0.01, (b) 6o = 0.1, (¢) do = 1, (d)
(50 = 10, (e) (50 = 100.

examined through the partial derivatives of the convergence rates with respect to p.

OXe _ n(n—1)otvo [0? + 2(;78(1 —p) +nogp) + M%vg} <0, (3.20)
B~ (1= p)+np+nwo)? (2 + 03(1— p) + nodp)
One _ n(n —1)ooguo > 0. (3.21)

I (02 +nodvg) (02 +02(1 —p) + nag,o)2
Equations (3.20) and (3.21) show that A, is monotonic decreasing function of p, and A,

is monotonically increasing in p.
When 1/vp = 0 we have

T R
dp (02 +0¢(1—p)+nodp)?2 7
e _ (n—1)o%02 S0,

dp (024 03(1—p)+nodp)?
and trivially dA./9p + OAne/Op = 0.

3.3.2 Convergence rates for spatially correlated random effects

In spatial modelling the correlation between two realisations of a latent process is usually

assumed to be a function of their separation. Here we look at a commonly used correlation
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function, namely the exponential function. The entries of the correlation matrix are given
by
(Ro)ij = exp{—¢d;;}, (3.22)

where ¢ controls the rate of decay of correlation between sites random effects at s; and
s; and d;; denotes the distance between them. By employing an exponential correlation
function there is always non-zero correlation between any two realisations of 3, no matter
how great the distance between them. This gives rise to the notion of an effective range,
defined as the distance such that correlation falls to 0.05. For the exponential correlation

function the effective range, dy, is given by
exp{—¢do} = 0.05 = dy = —1og(0.05)/¢ ~ 3/¢.

The exponential correlation function is a special case of the Matérn class of correlation
functions, which we will revisit in Section 3.6.

We cannot compute explicit expressions for the entires of R 1 and hence we cannot
find expressions for the convergence rate in terms of ¢. Therefore we use a simulation
approach to investigate how the convergence rates for the CP and the NCP are affected
by changes in 0(2), o2 and ¢.

We randomly select n = 40 points in the unit square, which is taken to be spatial do-

main, see Figure 3.3. We compute the convergence rates given in equations (3.8) and (3.9)

08 1.0
|

0.6

0.4

0.2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: Points in the unit square used as sampling locations for simulating data from
model (3.3).

for different variance ratios and for effective ranges between zero (no spatial correlation)
and /2 (the maximum possible separation of two points in the domain). Again we let
S0 = 03/c? and set dp equal to 0.01, 0.1, 1, 10 and 100. Convergence rates are plotted
against the effective range, dy, for the CP and the NCP in Figure 3.4, where a lower rate
indicates faster convergence. For a fixed dy we can see that increasing dg decreases the

convergence rate for the CP but increases it for the NCP. We also observe that for a fixed
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level of §g increasing dy, thus increasing the strength of correlation between the random

effects, decreases the convergence rate for the CP and increases it for the NCP.

CP NCP
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— \ i

g T g 7 I 602001

© | © | — 6020.1
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5 | 5 | 5,=10
— 6():100

N N

o o

o | o | /
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0.0 04 08 1.2 0.0 04 08 1.2
0 dO

Figure 3.4: Convergence rate against effective range for the CP and the NCP at different
levels of 4.

The convergence rates computed here are dependent on the set of locations given in
Figure 3.3. For a different set of locations the rates are changed but the overall picture

is not; increasing dy or dy quickens convergence for the CP and slows convergence for the
NCP.

3.4 Tapered covariance matrices

When spatial association is modelled as a Gaussian process the resulting covariances ma-
trices are dense and inverting them can be slow or even infeasible for large n. In Section
1.3.2 we discuss covariance tapering (Furrer et al., 2006; Kaufman et al., 2008). The idea
is to force to zero the entries in the covariance matrix that correspond to pairs of loca-
tions that are separated by a distance greater than a predetermined range. This results
in sparse matrices that can be inverted more quickly than the original. In this section
we investigate the effect covariance tapering on the convergence rates for the CP and the
NCP. We take model (3.7) with an exponential correlation function for Ry and compare
the convergence rates given in Section 3.3.2 with those computed when we use a tapered
covariance matrix.

The tapered correlation matrix, Rrpp, is the element wise product of the original
correlation matrix Ry and the tapering correlation matrix T', where T is a sparse matrix
with ijth entry equal to zero if d;; is greater than some threshold distance. Positive
definiteness of Ry, is assured if T is positive definite (Horn and Johnson, 2012, Theorem

7.5.3).

Given that our original correlation function is an exponential one, we follow Furrer
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et al. (2006) and use a spherical tapering function such that

1- 3d;jx i d?jXS
T = 2 2
0 otherwise,

ifdij < 1/X,X> 0

with decay parameter x, where 1/ is equal to the effective range, so that here we have
X = —¢/10g(0.05). Therefore

3dix A\ .
exp{—o¢d;;} |1 — —L& 4 = if dj; < dgp,¢>0,x>0
(RTap)/L] — { ]} ( 2 2 J

0 otherwise,

where dy = —10g(0.05)/¢ is the effective range.
As in Section 3.3.2 we use the n = 40 locations given in Figure 3.3 and let g =
0.01,0.1,1,10 and 100 and vary dy between 0 and V2.

CP NCP

— 60=001
— 60:0.1

60:10
8,100

Figure 3.5: Convergence rates with tapered covariance matrices for the CP and the NCP
at different levels of dg.

The convergence rates for the CP and the NCP are given in Figure 3.5. The dashed
line represents the use of the tapered correlation matrix. The solid line for comparison
are the rates achieved using the original correlation matrix Ry and are identical to those
given in Figure 3.4. Convergence rates are slowed by tapering for the CP and hastened for
the NCP. Intuitively we can say that the under the CP stronger correlation is desirable
and tapering reduces that, with the opposite being true for the NCP.

We can illustrate this effect by considering a spatial model with just two locations s1
and sy such that s; # s2. Let 0 < corr(f5(s1),8(s2)) = p < 1. Suppose that we use a
tapering function that takes values p* if di2 < dp and zero otherwise, where 0 < p* < 1.
The tapered correlation is

) oppt it diz <dp
PTep = { 0 otherwise.
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Therefore prq, < p, with equality attained only when p = 0. We know from equations
(3.20) and (3.21) that

0Ac 0Ane
0 d 0
9 <0 an 9 > 0,

and so for n = 2 tapering can only increase the convergence rate for the CP and only
decrease it for the NCP.

3.5 Covariates and convergence rates

In this section we investigate the effect of the covariates upon the convergence rate. We

consider the following model
Y(SZ) = {(91 + 61(32-)}3:1(32-) + E(SZ'), 1=1,....,n, (3.23)

which may be found by letting k = 1,...,p — 1, and p = 2 in model (3.3). Recalling that

B1 = (Bi(s1),...,Bi(sn))’, where Bi(s;) = Bi(si) + 01, and @1 = (x1(s1),...,21(s,)) and
D, = diag(x;), we can write model (3.23) in the following form

Y8, ~ N(DiBy,021)
B1|91 ~ N(Gll,a%Rl)
91 ~ N(ml, 0'%1)1). (324)

Given that we consider only one covariate in the rest of this section we drop the subscript

from Dy and x;

Using the results of Section 2.4.3 we can immediately write down the posterior precision

matrix for the CP as
. (Y/92DD +1/0iR;" ~1/0}R;'1
o= —~1/0?1'R;* 1/o?VR; M 4 1/(0%v1)
The equivalent matrix for the NCP is given by

1/o?DD +1/0}R;! 1/02Dx
Q’VLC —
1/o%x' D 1/o%x'x +1/(0%vy)

3.5.1 Convergence rates for independent random effects

Suppose that random effects are independent. This can be considered the limiting case

for weakening spatial correlation. The posterior precision matrix for the CP is

o 1/02DD +1/0%1 —1/021
—1/021/ njo? +1/(o%vy)
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For the sake of notational clarity, under the assumption of spatial independence we write

x(8;) = x4, for i = 1,...,n. Therefore, the convergence rate for the CP is given by
1 - o?
Ae = € )
Cn+1/n ; o2 +o%x?

Letting 1/v1 = 0, we can write \; as

n

1
2 T G ora (3:25)

=1

Ac =

SRS

We introduce the variable §; = 02 /o2, For fixed @, we can see that as d; tends to zero the
convergence rate for the CP of model (3.23) tends to one. As d; gets larger the convergence

rate goes to zero.

To see the effect of the scale of @ we introduce variables u;, where

T, — T

sdy

u;p = i=1,...,n, (3.26)

and & and sd, are the sample mean and sample standard deviation of @ respectively.

Substituting equation (3.26) into equation (3.25) we have
n

1 1
AC:;Z

— 1+ (0}/02) (ujsdy + &)*

We suppose that the z;’s have already been centred on zero and so & = 0. For fixed
variance parameters, the effect of the scale of x is clear; an increase in sd, results in a

decrease in the convergence rate and vice versa.

For independent random effects the posterior precision matrix for the NCP becomes

o 1/02DD +1/0%1 1/0?Dx
1/o%x'D 1/o2x'x + 1/(0%v1)

and the convergence rate is given by
4

Y 2+ o2/ (o) & o2 + ofal

i=1 (

Letting 1/v1 = 0, we can write A\, as
1 " zh
>\nc = n P} Z D) 2z PR
Yo wp = (02]0]) + ;

=1

(3.27)

For fixed z, if 02 /07 goes to zero then A, goes to one. Contrastingly, as the data variance

dominates that of the random effects the convergence rate falls.

To see the effect of the scale of & upon A, we substitute equation (3.26) into equation
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(3.27). Then we have

n

N — 1 Z (ulsdx + 53)4
" S (uisdy + @) = (02/07) + (uisdy + )2

Again, assuming & = 0, we get

(u;sdy)
)\nc =
Yoy uzsd z; (02)a?) + (uzsd )2

4

2= 1U2 Z 02/018d2)

Fixing 062 and O‘%, as sd, tends to infinity, \,. tends to 1, as sd, tends to zero, A, tends
to 0.

3.5.2 Convergence rates for spatially correlated random effects

In this section we investigate the effect that increasing the strength of correlation between
realisations of the slope surface has upon the performance of the CP and the NCP. We let
(R1)i; = exp{—¢d;;} and so the effective range d; = —1og(0.05)/¢. We use the n = 40
locations given in Figure 3.3. To generate the values of x we select a point s,, which we
may imagine to be the site of a source of pollution. We assume that the value for the
observed covariate at site s decays exponentially at a rate ¢, with increasing separation

from s;, so that
SU(SZ) :exp{*ﬁbx”sifsxn}a 1=1,...,n.
The spatial decay parameter ¢, is chosen such that there is an effective spatial range of

V2/2, ie. if ||s — 8| = v/2/2 then x(s) = 0.05. The values of x are standardised by

subtracting their sample mean and dividing by their sample standard deviation.

We compute the convergence rate for the CP and the NCP for model (3.24) for five
values of §; = 0.01,0.1, 1,10, 100, and for an effective range d; between 0 and v/2. Results

are given in Figure 3.6.

We see that for the CP for a fixed dy, increasing d; achieves faster convergence. If we fix
01 the performance of the CP is improved as the effective range is increased. The opposite
is seen for the NCP, whose performance is improved by decreasing §; or shortening the

effective range.

3.6 The effect of the correlation function upon the conver-

gence rate

The exponential correlation function is a special case of a more general class of correlations
functions; the Matérn class (Handcock and Stein, 1993; Matérn, 1986). The correlation
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Figure 3.6: A comparison of convergence rates for the CP and the NCP at different levels
of (51.

between realisations of the Gaussian process at two sites s; and s; is given by

21—1/

) (@Qﬁdij)yKy(\/ﬁgbdij), ¢>0,v>0, (3.28)

p(dij7¢7 V) =

where I'(+) is the gamma function and K, (-) is the modified Bessel function of the second
kind of order v (Abramowitz and Stegun, 1972, Section 9.6). The parameter ¢ controls
rate of decay of the correlation between two points as their separation increases. The
smoothness of the realised random field is controlled by v, as the process realisations are
|v]|-times mean-square differentiable. Again d;; is the distance between sites s; and s;.
A number of parameterisations of the Matérn correlation function exist, for examples
see Schabenberger and Gotway (2004, Section 4.7.2). The form given in (3.28) is taken
from Rasmussen and Williams (2006, Section 4.2.1), and has the advantage that for v = 0.5
it is identical to the exponential correlation function given in (3.22). To see this we can

use the following results given by Schabenberger and Gotway (2004, Section 4.3.2)

F(05) = \/7?7 K05(t) = \/jte_t>

and substituting into (3.28) we get

92 0.5 T 0.5
o) = (2) 0502 (5 ) ewl-oa)

= exp{—qﬁdij}. (329)

Another advantage of this parameterisation is that the decay parameter is not a function
of v as it is in the parameterisation given in Handcock and Wallis (1994) and employed in
the R package geoR (Ribeiro Jr and Diggle, 2001).

When v is a half integer, such that v = b 4+ 0.5 where b = 0,1, 2, ..., the correlation
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function takes on a simpler form, so that

b

pldigs 6,v) = exp{—V2wédi;) 2bb—:11 Zlfé’“ (VEudy)P . (3.30)
=0

In particular when v = 1.5 the correlation function is
p(di]’, qb, V) == (1 + \/g(ﬁdm) exp{—\/gqﬁdij}, (331)

and when v = 2.5 it becomes

5¢2dZ;
p(dij,qs,u):( e 3”>e><p{—¢5¢dij}. (3.32)

As v — oo the correlation function goes to

242
p(dij7¢7y) :exp{_w}a (333)

which is sometimes known as the squared exponential or Gaussian correlation function.

We return to model (3.7), which we recall is

Y|IBO ~ N(BO)O-?I)
Bolfo ~ N(6o1,02Rp)
(90 ~ N(mo,vo).

In what follows we compare the convergence rates for the CP and the NCP rates for the
correlation functions given in equations (3.29)—(3.33) for the n = 40 locations given in
Figure 3.3.

In earlier sections we have considered the strength of correlation in terms of the effective
range, which for the exponential correlation function is —log(0.05)/¢. In terms of ¢ the
effective range for the Gaussian correlation function is given by \/W /¢. For
other members of the Matérn class there is no closed form expression for the effective
range. Therefore, for the cases when v is equal to 1.5 and 2.5, we take an effective range

do and search for the value of ¢ that solves
p(do, ¢,v) — 0.05 =0,

where p(do, ¢, ) is given by functions (3.31) and (3.32) respectively.

Convergence rates are computed for each parameterisation for effective ranges between
0 and v/2 and for five values of 6y = 0.01,0.1, 1, 10, 100. The results for the CP are given in
Figure 3.7. We see that for fixed v and ¢, increasing the §y reduces the convergence rate.
Also we see that for fixed ¢ and Jy, the convergence rate is slowed when v is increased,
except for the §p = 0.1 case where the ordering only becomes apparent as the effective

range is increased. Unlike in the case for v = 0.5, increasing the effective range does not

45



reduce the convergence rate for other values of v.
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Figure 3.7: Convergence rates for the CP of model (3.7) for different values of v. (a)
(5() = 0.01, (b) (50 = 0.1, (C) (5() = 1, (d) 50 = 10, (e) (50 = 100.

The equivalent plot for the NCP is given in Figure 3.8. For fixed v and ¢, increasing
do increases the convergence rate. For fixed ¢ and dg, increasing v slows convergence as it
does for the CP. The convergence rate is monotonically increasing with increasing effective
range for all four correlation functions. We also note that convergence rates for the NCP

are not as sensitive to changes in v as they are for the CP.

3.7 Geometric anisotropy

The class of Matérn correlation functions is isotropic. This means that the correlation
between the random variables at any two points, s; and s;, depends on the distance
between them d;; = |[|s; — s;|| (and parameters ¢ and v) and hence the contours of
iso-correlation are circular. The assumption that spatial dependence is the same in all
directions is not always appropriate and therefore we may seek an anisotropic specification
for the correlation structure.

Anisotropic correlation functions are widely used and have been employed to model,
for example, scallop abundance in the North Atlantic (Ecker and Gelfand, 1999), extreme
precipitation in Western Australia (Apputhurai and Stephenson, 2013) and the phenotypic
traits of trees in northern Sweden (Banerjee et al., 2010).

Different forms of anisotropy exist, see Zimmerman (1993), but we consider only ge-
ometric anisotropy. Geometric anisotropic correlation functions can be constructed from
isotropic correlation functions by taking a linear transformation of the lag vector s; — s;.
Let

aj; = |G(si — ;)] (3.34)
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Figure 3.8: Convergence rates for the NCP of model (3.7) for different values of v.(a)
50 = 0.01, (b) 50 = 0.1, (C) 50 = 1, (d) (50 = 10, (e) 50 = 100.

where G is a 2 x 2 transformation matrix. In Euclidean space (3.34) is equivalent to

de = [(Sl — Sj)/H(Si — Sj)] 1/2 s

where H = G'G. The matrix H must be positive definite, i.e. di; > 0 for s; # sy,
which is ensured if G is non-singular, see Harville (1997, Corrollary 14.2.14). By replacing
dij with dj; in (3.28) we have a geometric anisotropic Matérn correlation function with

elliptical contours of iso-correlation.

Following Schabenberger and Gotway (2004, Chapter 4) we let

G_ [a O] [co.sw Sinwl _ [ac?sgb asinw]’ (3.35)
0 1| |—siny cosy —sinYy  cosvy

hence the axis are rotated anti-clockwise through an angle ¢ and then stretched in the
direction of the x-axis by a factor 1/a > 0. The determinant of G is a and so it is

non-singular for a # 0, hence H is positive definite as required.

For G given in (3.35) we have

He_ca_ | @ s vtsin®y (a® —1)cosysingy
B B (a2—1)coswsin1/1 cos21/1+a251n21p ’

If « = 1, then H is the identity matrix and isotropy is recovered. If ¢p = 0 & 27m,

m=1,2,..., then
- a? 0
0 1

which is equivalent to just a stretch of the x-axis by 1/a.
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To illustrate the effect of the transformation matrix G, we consider a = 0.5,1,2 and

Y = 0,7/4,7/2 with an anisotropic exponential correlation function such that

p(di;, @) = exp{—¢d;;}. (3.36)

We take the point s* = (0.5,0.5)" in the unit square and fix decay parameter ¢ = 1.
We then compute the correlation between s* and all points on a 20 x 20 grid, according
to the correlation function given in (3.36). The values are then smoothed to produce a
correlation surface. This is repeated for each of the nine combinations of o and v and

displayed in Figure 3.9.
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Figure 3.9: Correlation surface for §(s*), s* = (0.5,0.5)", for exponential anisotropic

correlation functions with transformation matrix G given in (3.35). Panels are given an
alpha-numeric label. Numbers refer to three values of & = 0.5,1,2. Letters (a), (b) and
(c) refer to three values of ¢ = 0,7/4,7/2.

We can see that setting o = 0.5 strengthens correlation in the x-direction. This is
because for the purposes of computing correlation, the separation of two points in the
x-direction is halved. When a = 1, the angle of rotation ¢ does not effect the contours as

they are circular.

To assess the impact of anisotropy on the convergence rates for the CP and the NCP
we return to model (3.7) and the n = 40 locations given in Figure 3.3. We consider an

anisotropic exponential correlation function for the spatial process and so replace d;; with
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d;; in (3.22) such that

(Ro)ij = Corr(B(si), B(sj)) = exp{—od;;},

where dj; is given by equation (3.34).

We begin by fixing 1) = 0 and letting e = 0.5, 1,2. This corresponds to panels 1 (a), 2
(a), and 3 (a), in Figure 3.9. We use five values for 6y = o3/ = 0.01,0.1,1,10,100 and
vary ¢ such that 3/¢ € (0,/2]. Here, the effective range is direction dependent so we no
longer refer to 3/¢ as the effective range. We compute convergence rates for the CP and
the NCP as given by expressions (3.8) and (3.9) with 1/v9 = 0. Results for the CP and
NCP are plotted in Figures 3.10 and 3.11 respectively. As « is reduced we increase the
strength of correlation in the x-direction. This result is faster convergence for the CP and
slower convergence for the NCP. This is consistent with the results of Section 3.3.2 which
shows that increasing the effective range of an isotropic exponential correlation function,
thus strengthening the correlation in all directions, helps the CP and hinders the NCP.

We now look at the effect of rotating the axis. If & = 1 then a rotation has no impact on
the correlation function as G is the identity. We consider four combinations of o = 0.5, 2
and ¢ = w/4,7/2. These values correspond to panels 1 (b) and 1 (c) for &« = 0.5, and 3
(b) and 3 (c) for & = 2 in in Figure 3.9. Again, we let 6y = 0.01,0.1, 1,10, 100 and vary ¢
such that 3/¢ € (0,v/2].

The results for the CP and the NCP are given in Figures 3.12 and 3.13 respectively.
We can see that changing 1 has very little effect on the convergence rates of either pa-
rameterisation. Further investigation is needed to determine whether the same holds for
patterned sampling locations.

The results given are for only one set of randomly selected locations and although the
actual convergence rates are different for different sets of randomly selected locations, the

picture remains the same.
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Figure 3.10: Convergence rates for the CP of model (3.7) with an anisotropic exponential
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3.8 Blocking

So far we have considered the convergence rates when the random effects, the realisations
of a Gaussian process at the sampling locations, have been updated all at once, or in other
words in one block. In this section we consider the impact on the partitioning the set of
random effects and updating them in two or more blocks.

It is acknowledged that jointly updating highly correlated variates may improve con-
vergence (Gilks et al., 1996, Chapter 1). Therefore one may, as we have done, consider the
random effects as one component. However, this comes at a computational cost. For ex-
ample, in order to update an n—dimensional multivariate normal component, a Cholesky
decomposition of an n x n matrix is performed. This operation is of cubic order in com-
putational complexity. Therefore, if we can partition the component and update a series
of lower dimensional components, we may achieve a more efficient Gibbs sampler. This
section looks at how we might partition the random effects and the impact this has upon

the convergence rate. In all that follows we use an exponential correlation function.

3.8.1 Blocking by location

In the spatial setting we assume that the correlation between random effects increases as
the distance between the locations at which they are realised is shortened. Therefore we
update the random effects according to their location by partitioning the spatial domain.

In this subsection we utilise model (3.7), which we recall is

Y’Bo ~ N(Bo,a?I)
Bolbo ~ N(6o1,08Ry)
90 ~ N(mO,Uo),

and hence we have one spatial process and one global effect to update at each iteration of
the Gibbs sampler. We consider n = 200 sampling locations randomly selected across the
unit square.

We update the 200 random effects in one block and then in 2, 4, 8 and 16 blocks
according to the partitioning of the unit square given in Figure 3.14, and hence locations
that lie within the same section are updated together. We let 1/v9 = 0 and compare the
convergence rates for the CP and the NCP for different values of 6y = o2/0? and for an
effective range do between 0 and /2, shown in Figures 3.15 and 3.16 respectively.

For both parameterisations we see that for a fixed dp and at a fixed dy, increasing
the number of blocks slows convergence, as expected. As &g increases, the convergence
rate becomes less sensitive to the blocking strategy until at dg = 100 when the difference
in convergence rates for different blocking strategies is negligible. In Section 3.3.2 we
see that for model (3.7) with an exponential correlation function, increasing the effective
range hastens convergence for the CP. Here we see that if more than one block is used,
for a particular blocking strategy and dp, there is a critical effective range such that

further increasing the strength of correlation results in a slower convergence. Beyond this
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Figure 3.14: Partitioning of sampling locations used for blocking; (a) 2 blocks, (b) 4 blocks,
(c) 8 blocks, (d) 16 blocks.

range, the penalty for partitioning BO, when there is inter-block correlation, overwhelms
the improvement in convergence that is achieved with strengthening correlation. For the
NCP we see that increasing the number of blocks exaggerates the effect of increasing the

strength of correlation, which we see in Section 3.3.2 also slows convergence.
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3.8.2 Blocking by cluster

Instead of sampling uniformly over the unit square we now sample according to the pattern
given in Figure 3.17, which is to divide the unit square into a 3 x 3 grid. Locations are
chosen uniformly within the nine sub-squares as follows; 100 top left; 25 in top middle,
middle left and middle middle; five top right, middle right and bottom third. We use
three blocking strategies: one block to update all random effects together, two blocks to
update the cluster of 100 locations separately from the rest, and nine blocks to update the
random effects according to the blocks used to create the pattern of sampling locations.
We compare convergence rates for different blocking strategies for different ratios of
the variance components and for effective ranges between 0 and /2. The rates for the CP

and the NCP can be found in Figures 3.18 and 3.19 respectively.
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Figure 3.17: Locations chosen as follows: (a) two blocks, one for the dense cluster in
the top left, and one for all other locations; (b) nine blocks according to the pattern of
locations.

We see a similar result here as in Section 3.8.1. Given that there is spatial correlation
between realisations of the Gaussian process at any pair of sampling locations, using more
than one block to update the random effects will only slow convergence. Even for short
effective ranges, at which the convergence rate for the CP is robust to the blocking strategy
employed, the convergence rate for the NCP can be sorely effected if all random effects are
not jointly updated. However it should be noted that the convergence rates computed here
do not reflect the cost in computation time that is incurred by jointly updating all random
effects. It may be more computationally efficient to use lower dimensional components for

the Gibbs sampler, an issue we revisit in Chapter 4.
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3.8.3 Blocking and tapering

We have seen in Sections 3.8.1 and 3.8.2 that where there is correlation between all pairs
of random effects we should use one block to jointly update all of the random effects. Here
we use a tapered covariance matrix to induce independence between clusters of sampling
locations. We might imagine that the clusters are separated by some geographical feature

and for some reason we believe that there is negligible correlation between them.
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Figure 3.20: Pattern of n = 200 sampling locations split into two clusters of n = 100.
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Figure 3.21: Convergence rates for the CP and the NCP for tapered covariance matrices
for sampling locations given in Figure 3.20.

We place over the unit square a 3 x 3 grid and select 100 locations in the top left

and bottom right sub-squares. The locations are given in Figure 3.20. We use a spherical
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tapering function as described in Section 3.4, with a range of 1/x = v/2/3. Therefore,
there is only non-zero correlation between pairs of realisations of the Gaussian process if

they lie within the same cluster.
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Figure 3.22: Pattern of n = 200 sampling locations split into four clusters of n = 50.
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Figure 3.23: Convergence rates for the CP and the NCP for tapered covariance matrices
for sampling locations given in Figure 3.22.

The convergence rates for the CP and the NCP are given in Figure 3.21. We find that
whether the random effects are jointly updated or updated according to the two clusters,
the convergence rate remains the same.

We repeat this approach with four clusters, see Figure 3.22, but now the range of the
spherical tapering function is equal to 1/3, thus ensuring independence across the clusters.

In this case whether one block or four blocks are used to update the random effects, the
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convergence rates for both the CP and the NCP, given in Figure 3.23, remain unaffected.

3.8.4 Blocking by process

In Sections 3.8.1-3.8.3 we concerned ourselves with one spatial process and saw that in
the presence of spatial correlation an update all at once approach for the random effects
is best in terms of the convergence rate. Suppose that we have more than one process at
the same set of locations. Consider model (3.3) where p = 2, so that we have the following

hierarchically centred model

5 - I0C )
5~ () 5 )

Using the results of Section 3.2 we can write down the posterior precision matrix for

(BE)HBID 907 91)/ as

2

/o2l + 251 1/o2Dy | 0
o — 1/o2D})  1/02D|D;+ %! 0 |
-1'%;! 0 'S5+ 1/(03vo) 0 ’
0 -1zt 0 S +1/(0%0)

and where the random effects have zero mean apriori we have a posterior precision matrix

of

/o2l + %! 1/02D, 1/021 1/o%x
ne /02Dy  1/0?D Dy + %! 1/02D}1 1/02D\x
v = 1/021 1/021'D, njo? +1/(o?vg) 1/021'x
1/o2x’ 1/02x' Dy 1/02x'1 1/o2x'z +1/(0%v1)

For the CP, 6y and 0, are conditionally independent. If we transform the values x so
that they have zero mean then 1’z = 0 and 6y and 6; are also conditionally independent
for the NCP. This in turn means that the convergence rate does not depend on whether the
global effects are updated together or separately. To see this suppose that we update all

random effects as one block and all global effects as another. Then the posterior precision

_ [ Qs QBG)
@ (Qeg Q)

and by Theorem 2.3.1 the convergence rate is the maximum modulus eigenvalue of

0 Q' Qu (3.37)
0 QelQeﬁQg Qg

matrix has the form
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Now suppose instead that we partition € into 81 and 6. We write the precision matrix

as

Qﬁ Qﬁ@l Qﬁ@z
Q=1Qys Qn Qoo
Qﬁzﬁ Q9192 Q92

If Qy,p, = 0 it can be shown that the convergence rate is the maximum modulus eigenvalue
of
0 —leQgel _leQﬁeg
F=1o0 Q;llQelﬁleQﬂel Q;llQengngﬁeg ) (3.38)
0 Qg_;QezﬁleQ,@ez Q(,T;QQQBQ[;IQMQ

and matrices (3.37) and (3.38) are equal. Therefore, only the blocking structure of the
random effects will impact upon the convergence rate.

We compare the convergence rates when all of the random effects are updated together
and when they are updated according to the process of which they are realisations. We
again use the n = 40 locations given in Figure 3.3 and generate values for x as described
in Section 3.5.

Both processes are assigned exponential correlation functions with decay parameter ¢
and hence we let d = dy = d; be the common effective range. We compute the convergence
rates for the CP and the NCP for five levels of variance ratios such that § = g =
81 = 0.01,0.1,1, 10, 100 at effective ranges between 0 and v/2. For each parameterisation
convergence rates are computed for the two blocking strategies; jointly updating all random
effects in one block, labelled CP; and NCP, or partitioning the random effects according
to their process, labelled CP2 and NCPy. Results are given in Figure 3.24.

For the CP, updating the random effects according to process has the effect of slowing
convergence. The penalty for not jointly updating all random effects increases for larger
values of § and d. For the NCP convergence can be hastened by blocking by processes,

but this improvement is slight and becomes even smaller as § increases.

3.9 Summary

In this chapter we have compared the CP and the NCP of spatial models with known
covariance parameters via the exact convergence rates of Gibbs samplers constructed un-
der the different parameterisations. We find that in addition to the ratio of the variance
parameters, the correlation structure between the random effects play a key role in deter-
mining the convergence rate. We have shown that for spatially correlated random effects
with an exponential correlation function, increasing the relative informativity of the data
about the latent surface, as well as increasing the strength of correlation, works to hasten
the convergence of the CP but slows the convergence of the NCP.

However, when the covariance matrix is tapered to remove long range correlation,
convergence for the CP is hindered but convergence for the NCP is helped. Introducing
geometric anisotropy to strengthen the correlation in one direction has, for randomly

selected locations, a similar effect to strengthening it in all directions; the CP is helped
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Figure 3.24: Convergence rates for the CP and the NCP for a model with two processes.
CP; and NCP; indicate that the random effects are updated all at once. CPy and NCP,
indicate that the random effects are blocked according to their process.

and the NCP hindered. Both of these results are consistent with the notion that the
performance of CP is improved in the presence of greater spatial correlation but the
performance of the NCP is worsened.

We have seen that as the smoothness parameter in the Matérn correlation function is
increased both the CP and the NCP are slower to converge. Also, if there is any spatial
correlation across the random effects then they should be updated together. To use more
than one block results in a slower to converge Gibbs sampler for both the CP and the
NCP. When we considered a model with two processes we saw that while it makes little
difference to the NCP, it can be greatly beneficial to jointly update all of the random
effects for the CP.
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Chapter 4

Efficiency of the CP and the NCP
for spatial models with unknown

variance components

4.1 Introduction

In this chapter we focus on the practical implementation of the Gibbs sampler for the
CP and the NCP for spatially varying coefficient models. The joint posterior distribution
is unaffected by hierarchical centering and so inferential statements are the same under
either parameterisation. However, what is affected is the efficiency of the Gibbs sampler
used to make those statements.

In Chapter 3 the CP and the NCP are compared in terms of the exact convergence
rate of the associated Gibbs sampler. The key assumption needed to compute these rates
is that the joint posterior distribution is Gaussian with known precision matrix. Here
we allow for the more common scenario that the precision matrix is known only up to
a set of covariance parameters. In this case we cannot compute the exact convergence
rate. Therefore, we use the MCMC samples to assess the efficiency of the Gibbs samplers
induced by the CP and the NCP. Performance is judged by the (multivariate) potential
scale reduction factor and the effective sample size, see Section 2.3 for details.

The rest of this chapter is organised as follows: In Section 4.2 we give the full condi-
tional distributions that are needed to run the Gibbs samplers for the CP and the NCP.
In Section 4.3 we give details of how to sample from the posterior predictive distributions.
Section 4.4 contains a simulation study and Section 4.5 applies the different model param-
eterisations to ozone concentration data from California. The chapter is concluded with

some closing remarks in Section 4.6.

4.2 Model specification and posterior distributions

In this section we give details of the model, specify the prior distributions and derive the
joint posterior and full conditional distributions for the CP and the NCP. We have the
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following normal linear model with spatially varying regression coefficients

Y(si) = 0o+ Bo(si) +{01 + Bi(si) tx1(si) + ... +{0p—1 + Bp—1(8i) }rp—1(8:) +€(s4), (4.1)

for i = 1,...,n. We model errors €(s;) as independent and normally distributed with
mean zero and variance o2. Spatially indexed observations Y = (Y (s1),...,Y(s,)) are

conditionally independent and normally distributed
Y (si) ~ N(a'(5:){6 + B(s:)}, 07),

where x(s;) = (1,z1(si),...,zp—1(si))" is a vector containing covariate information for
site s; and @ = (o, ...,0,_1)" is a vector of global regression coefficients. The kth element
of 0 is locally perturbed by a realisation of a zero mean Gaussian process, denoted Sj(s;),
which are collected into a vector B3(s;) = (Bo(si), ..., Bp-1(8i))".

The n realisations of the Gaussian process associated with the kth covariate are given
by
ﬁk = (6k(81)7 cee ’/Bk(sn))/ ~ N(O) 2](3)7
for k=0,...,p—1. We discuss the structure of the 3 in Section 4.2.1. The CP is induced

by introducing the variables Bk(sz) =0 + Br(s;), for k=0,...,p—1,and i =1,...,n.
Therefore

Bk = (Bk(sl)a <o 76/6(3”))/ ~ N(9k17 Zk)

Global effects 6 are assumed to be multivariate normal a priori (see Section 4.2.1 for

details) and so we write model (4.1) in its hierarchically centred form as

Y|B ~ N(X13,C))
Bl ~ N(X120,C)
0 ~ N(m,Cs), (4.2)

where Cy = 02T and X1 = [I, D, ..., D,,_,] is the n x np design matrix for the first stage
with Dy, = diag(ay,) where @, = (z4(s1), ..., 2x(sn)). We denote by 8 = (B/O, .. ,B;,l)’
the np x 1 vector of centred, spatially correlated random effects. The design matrix for
the second stage, X, is a np x p block diagonal matrix, the blocks made of vectors of

ones of length n,

The p processes are assumed independent a priori and so C is block diagonal where
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the kth block is given by X, therefore

> 0 .- 0

0 % - 0
2 = .

0 0 ¥,

4.2.1 Prior distributions

We complete the model specification by assigning prior distributions to the model param-

eters. The global effects @ = (6o, ...,0,-1)" are assumed to be independent a priori with
the kth element assigned a Gaussian prior distribution with mean my and variance O"%Uk,
hence we write 0 ~ N(mg,oivg), for k=0,...,p—1, and so m = (mg,...,mp_1)" and
odvg 0 .- 0
0 o2vy - 0
Cs = !
0 o - Ug_lvp,l

The realisations of the kth non-centred Gaussian process, 8;,, have a prior covariance
matrix given by 3 = U%Rk. This prior covariance matrix is shared by the kth centred

Gaussian process, Bk The prior distributions for the variance parameters are given by
o2 ~ IG(ay,by), for k=0,...,p—1, and o> ~ IG(ac,b),

where we write X ~ IG(a,b) if X has a density proportional to =@t e=b/z  The entries
of the Ry, are given by

(Ri)ij = corr{Bk(si), Br(8j)} = pr(dij; Prs i)

where d;; = ||s; — s;|| denotes the distance between s; and s; and pj is a correlation

function from the Matérn family, see Section 3.6.

We wish investigate the effect of the variance and decay parameters upon the perfor-
mance of the CP and the NCP, and so henceforth we fix v, = 0.5, for Kk =0,...,p — 1.

Therefore we have an exponential correlation function, i.e.
pi(dijs o) = exp{—¢ydi;}.

These are used widely in applications (Sahu et al., 2010; Berrocal et al., 2010; Sahu et al.,
2007; Huerta et al., 2004). The effective range for the kth process is the distance, dj, such

that corr(Br(si), Br(s;)) = 0.05. For an exponential correlation function we have that

di = —log(0.0B)/qﬁk ~ 3/(bk
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Decay parameters are given uniform prior distributions, i.e.

¢kNU(lkvuk‘)a kZOa"'up_]-7

where the lower bound, I, and the upper bound, ug, are suitably chosen non-negative
values. It is with respect to the scale of the domain and the effective range that we
choose the upper and lower bounds for the uniform prior distributions that are placed
upon the decay parameters. The problem with this approach is that we are excluding the
possibility that the parameters lie outside support of the prior distribution. However, we
cannot use a non-informative prior distribution as we are unable to consistently estimate
both variance and decay parameters under weak prior information (Zhang, 2004). It is
common in applications to estimate the decay parameters by performing a grid search
over a small number of values (Sahu et al., 2011; Berrocal et al., 2010; Sahu et al., 2007),
choosing values that minimise some calibration criterion, like those described in Section

2.5. This approach is employed in Section 4.5.1.

4.2.2 Posterior distributions for the CP

In this section we give the joint posterior and full conditional distributions for the CP
of model (4.1). We denote by o2 = (d3,... ,012)_1)’ the vector containing the variance
parameters of the random effects and let ¢ = (¢, . .., ¢p—1)’ contain the decay parameters.
We let € = (B/, 0,02 02, ¢') contain all np random effects, p global effects, p+1 variance

parameters and p decay parameters. The joint posterior distribution of £ is given by

w(ély) o w(Y|B,02)m (B0, 0%, ¢)m(6]o)n () (07 )7()

1
pl_[ (O_%)_(n/2+1/2+ak+1) ‘Rk’_l/Q (Ug)—(n/2+ae+1)

X €
k=0
1 =1\ -1
exp{ —o 5 (Y = Dkﬁk> (Y — ZDk,Bk> + 2b,
€ k=0 k=0
1 p=l / -
exp{_QZ (Bi—i1) = (B “”“1>}
k=0
p—1 2 p—1
exp {—; 3 % (M + 2bk> } T (o0, (4.3)
k=0 "k k k=0

where Dy is defined to be the identity matrix I.

We use Gibbs sampling (see Section 2.2.4) to sample from 7(£€|y) for the CP, given
in (4.3). We assume that the random effects will be block updated according to their
process, i.e. we jointly update the m-dimensional vector 8, for £k = 0,...,p — 1. Al
other parameters in &€ are updated as single univariate components. The full conditional

distributions we need for the CP are given below.

e The full conditional distribution for the centred spatially correlated random effects
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Bk,k::(),...,p—l, is given by

Bk|Bfk’ 07 0-2’ 0527 d)’ Yy~ N(mzv EZ)?

where we denote by B_k, the vector of all random effects B without the realisations
of the kth process Bk and

1 -1
3= (DD, + 3!
k <02 Dk + 24 )

€

-1
* * 1 S P —
mi =3} ﬁpk y—§ D;B3; | +%,. 6,1
€ ]ZO

J#k

e The full conditional distribution for the global effects 0, £k = 0,...,p — 1, for the
CP is given by
0k|167 a—ka 0-27 0-623 d)) Yy~ N(m;;’ UZ))

where
1 \"!
vi= (1S 114+ ——)
- (e )
17 mi
mi=vi (1S18, + —= ).
k k < x B 0;%’01@»)
e The full conditional distribution for the random effects variance 0']%, k=0,...,p—1,

for the CP is given by

n+1
2

T oag, %[ (Bk _ 9k1>,R;1 (Bk _ 0k1>

1 O =) +2bk}}.

Uk

UI%’B? 97 az—ka 0527 d)a Yy~ IG{

e The full conditional distribution for data variance o2 for the CP is given by
n 1 p-1 ! p—1

e The full conditional distribution for the decay parameter ¢, k = 0,...,p — 1, for
the CP is given by

. 3 1 /- e
7(6x18,0, 02,02, & _y,y) o< [Rel /¥ exp {—202 (Bi—0i1) = (B - m)},

k

for I < ¢p < uy, zero otherwise.
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We note that the mean and variance parameters are conditionally conjugate, and so
their full conditional distributions can be sampled from directly. The form of the full
conditional distributions for ¢ is not one belonging to a known distribution. Therefore
we use a Metropolis-Hastings step within the Gibbs sampler, see Section 2.2. Moreover, if
we sample ¢ on the log-scale we can use a Gaussian proposal distribution centred on the
current value log <b§:). This proposal distribution is symmetric in its arguments and so we

use a Metropolis step, see Section 2.2.1.

Given qb,(f) we obtain gb,(fﬂ) as follows:
1. Sample a candidate value log ¢; ~ N (log gb,(f), ai) where a(% is the tuning parameter.

2. Calculate the acceptance probability

13 0. 02. g2 ] "
a(logéb;(:),logﬁ):min{l, m(¢718,0,0% 02, d_y, y) exp{log ¢} } }

7(6183,6,02,02,¢_, y) exp{log o\ }

where the terms exp{log ¢;} and exp{log d),(f)} appear in the quotient due to the
change of variables.

3. Draw a value u from a uniform U(0,1) distribution

4. Let
log ) — log ¢t if u < a(logél” log¢r) and ¢ € (Ik, ug)
log ¢(t) otherwise,

The value d),(fﬂ) is stored to be used to sample from the other variables.

4.2.3 Posterior distributions for the NCP

We now look at the joint posterior and full conditional distributions of the model param-
eters for the NCP. For the NCP we have £ = (3,6, 02,02, ¢')', and

w(Ely) o< w(Y[B,0,0%)n(Blo?, ¢)n(8lo?)m(o?)m(a?)m(¢)

p—1

—(n a — —(n/24ae+1
x H(Ui) (n/2+1/2+ k+1)|Rki 1/2 (062) (n/ )
k=0
1 p—1 ! p—1
exp T202 (Y - Z(Dkﬂk + mkek)> (Y - Z(Dkﬂk + ﬂfkek)) + 2bc
k=0 k=0
152 1 1231 m)?
exp{—2 kz_oﬂk ) B pexp 22001% (W+2bk>

p—1
T =60, (4.4)
k=0

where we define xg to be the vector of ones.
In Section 4.1 we note that the equivalence of the joint posterior distribution under

the CP and the NCP means that inference is unaffected by reparameterisation. It is clear
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that (4.3) and (4.4) are equivalent when we recall that 3, = B, — 0x1 and D1 = ;.
The full conditional distributions for the NCP are given below.

e The full conditional distribution for the non-centred spatially correlated random

effects B, k=0,...,p— 1, is given by
Bk|ﬁ—k7070270527¢7y ~ N(m27 22)7

where

1 -1
= <2D;€Dk + 21?1>
UE

—1 p—1
R X
my, = 3y pa’?c y_ZDj’Bj_ijej
€ =0 5=0

j_
J#k

e The full conditional distribution for the global effects 0, £k = 0,...,p — 1, for the
NCP is given by
0k|/67 0*]67 027 0627 ¢7 Yy~ N<m;;7 02)7

where
1 \!
* /
UV = LTk + ) 5
( 2 TRV,

1 1 L m
k

my, = vy, 233; Y ZDj/BJ Zwﬂ] +—
€ -0 0 O Vg

Jj= j=
J#k
e The full conditional distribution for the random effects variance O’i, k=0,....,p—1,

for the NCP is given by

n+1 1 _ O — my)?
0']%|ﬂ,0,0'2_k,0'€2,¢,yN1G{ 9 +a’ka§ (B%Rklﬁk—l_(kvkk) +2bkz>}

e The full conditional distribution for the data variance o2 for the NCP is given by

n
0—62|167070-27¢?yNIG{2+G‘6

% (Y RS (Dkﬁk n azka)> (Y -

p—1
(Dkﬁk + ka@k)) + 2b,

k=0 k=0
e The full conditional distribution for the decay parameter ¢, k = 0,...,p — 1, for
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the NCP is given by
_ 1 _
W((bk‘l@a 67 0-27 0527 ¢—k> y) X |Rk’ 1/2 exXp {_Mﬂggzk lﬁk} )
k

for I < ¢ < uyg, zero otherwise.

As with the CP, we use a Metropolis step to update each ¢, within the Gibbs sampler.

4.3 Predictive distributions

The advantage of process based models is that we can obtain predictions at highest
possible resolution and interpolate the surface to produce predictive maps. In a fully
Bayesian framework this is done by evaluating the posterior predictive distribution (PPD),
(Y (s*)|y), where s* is a location at which data has not been observed. The PPD gives
us access to full predictive inference, i.e. we may compute point estimates, }A/(s*)7 or
probabilities such as P(Y (s*) > ¢), where ¢ may be some threshold value of interest such
as those given by air quality directives for concentrations of pollutants.

The PPD also provides a natural way to judge the performance of the model and
robustness to prior specifications. In Section 4.5.1 we use the PPD to estimate the decay
parameters. By partitioning the data into training and validation sets we can obtain

numerical measures for prediction error such as those described in Section 2.5.

4.3.1 Posterior predictive distribution for the CP

The centred form of model (4.1) implies that

Y(s*) = Bo(s") + Br(s)z1(8") + ... + Bp1(s)zp_1(s") + €(s%),

for any new location s*. The set of model parameters & = (,[:}/, o', 0%, o2, @) is augmented
by the realisations of the p spatial processes at location s*. We denote the augmented set
by &€* = (B(s*), &) where B(s*) = (Bo(s*), ..., Bp_1(s*))". To find the posterior predictive

distribution we must evaluate the following integral

n(Y(s)y) = / (Y (56", ) (€° ) de*

- / r(¥ (7)€" y)m(B(s") [€)m (Ely)de”

p—1
= [ 7 ele ) [T wGu e mElnae (4.5

k=0
where the last step is possible due to the assumption of prior independence across the p

processes.

We estimate (4.5) by composition sampling, (Banerjee et al., 2003, Chapter 5). If
a posterior sample £€® ~ 7(&ly) and Bl(:)(s*) ~ 7(Br(s*)|€D), for k = 0,...,p—1,
then draws Y®(s*) ~ 7(Y(s*)|¢*® y) have the marginal distribution 7(Y (s*)|y). We
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receive samples from 7(€|y) when we sample from the full conditional distributions given
in Section 4.2.2.

The conditional distributions for the other elements of the integrand in (4.5) are found

using standard results for multivariate normal distributions. The joint distribution of

Br(s*) and B, is given by

() {0 = )
Br 1) *\er Ri) [’

where ¢, is an n-dimensional vector whose elements are given by pg(||s; — s*||; o, vk). It
follows that

Bu(s*)|€ ~ N (ek + RN (By — 0x1), 02(1 — C;Rglck)) .

Using a similar approach we write the joint distribution of Y (s*), and Y as

()45 )]
Y X8 \o 1) |’

where x'(s*) = (1, 21(s*),...,2x(s*)). Hence, the conditional distribution for the data at

location s* is
Y(s*)|€, y ~ N(a/(s*)B(s*), 07).

Therefore, for each post burn-in sample from 7(€|y) we can obtain draws from the PPD

for any number of out of sample locations.

4.3.2 Posterior predictive distribution for the NCP

For the NCP we follow the same procedure. Model (4.1) implies that
Y (s*) =00+ Bo(s™) + {61 + Bi(s™) }a1(s™) + ... + {0p—1 + Bp—1(8") xp—1(8") + €(s).

The set of model parameters for the NCP, &€ = (38,6',62',02,¢'), is augmented by the
realisation of the p zero mean spatial processes at location s* and so & = (B(s*),¢’)
where B(s*) = (Bo(s*),...,Bp-1(s)). We can write the PPD as

p—1
m(Y(s")ly) = /W(Y(S*)lﬁ*,y) [T ~(Br(s")I€)m(Ely)de™. (4.6)

k=0
We evaluate the integral (4.6) in the same way as we did integral (4.5), by composition
sampling. Given a sample £€® ~ 7(¢|y), we draw B,(:)(s*) ~ 7(Br(s*)|ED), for k =
0,...,p— 1. We use these samples to generate Y I (s*) ~ 7(Y (s*)|€*®, ) which has the
marginal distribution 7(Y (s*)|y). We receive samples from 7(£|y) when we sample from

the full conditional distributions given in Section 4.2.3.

The conditional distributions for the other elements of the integrand in (4.6) are found

using standard results for multivariate normal distributions. The joint distribution of
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Br(s*) and B} is given by

() {6) (2 )]
B 0/ *\er Ri)|’

and the conditional distribution of fj(s*) is given by
Br(s*)|€ ~ N (. Ry, By, oii(1 — Ry L)) -

The joint distribution of Y (s*) and Y for the NCP is

V() [ (#6086 +0) (10
Y X(B+X20) ) “\0o I)|[’
Hence, the conditional distribution for the data at location s* is

Y(s")€" y ~ N(@/(s")(B(s") +6),07).

4.4 CP versus NCP: A simulation study

In this section we examine the convergence and mixing properties of the Gibbs samplers
induced by the CP and the NCP. We let p = 1 in model (4.1) and so we have the following

hierarchically centred model

Y’Bo ~ N(BoaU?I)
Bolbo ~ N(6o1,08R0)
90 ~ N(mo, 0’8’00). (4.7)

We use an exponential correlation function, so that
Ry = exp{—d¢od;;}.

We generate data from model (4.7) as described in Section 4.4.1 for different combinations
of 02, o} and ¢y. Two simulation studies are conducted. The first fixes the variance
and decay parameters at their true values and so we only sample from the joint posterior
distributions of the global effect, 6, and the random effects, Bo or B,. We use the MCMC
output for 8y to compute diagnostic statistics for comparing the performance of the CP
and the NCP. The first statistic we use is based on the potential scale reduction factor
(PSRF), described in Section 2.3.1. We define the PSRF/(1.1) to be the number of
iterations required for the PSRF to fall below 1.1. To compute the PSRF;/(1.1) we run
five chains of length 25,000 from widely dispersed starting values. In particular, we take
values that are outside of the intervals described by pilot chains. Moreover, the same
starting values are used for both the CP and the NCP. At every fifth iteration the PSRF
is calculated and number of iterations for its value to first drop below 1.1 is the value that

we record. The second statistic we use is the effective sample size (ESS) of 6, see Section
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2.3.2. The ESS is computed using all 125,000 MCMC samples and gives us a measure
of the Markovian dependence between successive MCMC iterates, with values of 125,000

indicating independence.

By fixing the variance and decay parameters we have known posterior precision matri-
ces. Therefore we are able to compare the measures of efficiency used here with the exact

convergence rates computed in Chapter 3.

The second simulation study drops the assumption of known variance parameters,
fixing only the decay parameter. In this case we judge performance by the MPSRF /(1.1)
which we define to be the number of iteration needed for the multivariate PSRF (see
Section 2.3.1) to fall below 1.1. When we sample from the variance parameters we record
the ESS of 6y, 03 and 2. In both simulation studies we let hyperparameters mo = 0 and
vy = 10%.

4.4.1 Data generation

We simulate data from model (4.7) for n = 40 randomly chosen locations across the

unit square, see Figure 4.1. These are the same locations used in Chapter 3. We set

1.0

0.8

0.4

0.2

0.0
|

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Points in the unit square used as sampling locations for simulating data from
model (4.1).

0o = 0 and generate data with five variance parameter ratios such that &y = 03/02 =
0.01,0.1,1,10,100. This is done by letting o5 = 1 and varying o2 accordingly. For each of
the five levels of §y we have four values of the decay parameter ¢g, chosen such that there
is an effective range, denoted do, of 0, v/2/3, 2v/2/3 and /2, where /2 is the maximum
possible separation of two points in the unit square. Hence there are 20 combinations of
0(2), 062 and ¢q in all. Each of these combinations is used to simulate 20 datasets, and so

there are 400 data sets in total.
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4.4.2 Known variance parameters

Initially we set the variance parameters equal to the values used to generate the data and
we sample from the spatially correlated random effects (3, or B,) and global effect 6.
For each of the 400 data sets, five chains of length 25,000 are produced under the CP
and the NCP. We are only sampling from one global parameter and so the efficiency of
the Gibbs sampler is assessed in terms of the PSRF/(1.1) and the ESS of 6. There is
a negligible difference in the run times for the CP and the NCP and so we do not adjust

these measures by computation time.

Figure 4.2 shows boxplots of the PSRF/(1.1) (top row) and the ESS of 6, (bottom
row) for the CP. Each panel contains the results for a fixed value of §y, increasing from
0.01 on the left to 100 on the right. Each panel contains four boxplots corresponding to
the four effective ranges of 0, x/3, 2z/3, and z, where z = /2. As the effective range
increases we have stronger spatial correlation between the random effects. Each boxplot

is produced from the 20 values obtained for a given combination of dg and ¢q.
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Figure 4.2: PSRF/(1.1) and the ESS of 6 for the CP of the Gaussian model with known
variance parameters. Plots (a)—(e) give the PSRF,(1.1), plots (f)—(j) the ESS of 6y. L-R
S0 = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are
used.

We see that convergence is hastened and the ESS increased as we increase dg. We can
also see improvement in the performance of the sampler with increasing spatial correla-
tion. The pattern reversed for the NCP, see Figure 4.3, whose performance degrades with

increasing &g or increasing spatial correlation.

We can see that the observed measures of convergence and mixing employed here are
in agreement with the convergence rates for the CP and the NCP given in Figure 3.4. This
give us confidence to use these measures to judge the performance of the samplers when
we do not have access to the exact convergence rate, i.e. when the variance parameters

are unknown.
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Figure 4.3: PSRF/(1.1) and the ESS of 6 for the NCP of the Gaussian model with known
variance parameters. Plots (a)—(e) give the PSRF/(1.1), plots (f)—(j) the ESS of 6. L-R
8o = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2/2/3 and /2 are
used.

4.4.3 Unknown variance parameters

In this section we drop the assumption that the variance parameters are known and we
sample from their full conditional distributions given in Section 4.2. Recall that the
variance parameters are given inverse gamma prior distributions with 7 (o) = IG(aq, bo)
and 7(02) = IG(ac,b.). We let ag = a. = 2 and b, = b. = 1, implying a prior mean of one
and infinite prior variance for 0(2) and o2. These are common hyperparameters for inverse
gamma prior distributions, see Sahu et al. (2010, 2007); Gelfand et al. (2003).

As we are sampling from more than one parameter, we measure efficiency by the
MPSRF(1.1) and the ESS of 6y, 03 and o2. The results here are represented in the same
way as in Figures 4.2 and 4.3. A row contains the results for either the MPSRF /(1.1) or
ESS of a parameter. Panels in each row correspond to a fixed value of the true variance
ratio dg, and a boxplot within a panel is made of 20 results for a fixed Jy and effective
range do.

Figure 4.4 gives the MPSRF;(1.1) and ESS of 6y for the CP. We can see that the
performance of the CP improves with increasing g and also with increasing strength of
correlation between the random effects. The equivalent plot for the NCP is given in Figure
4.6. We can see a reverse of the pattern displayed by the CP. The performance of the
NCP is worsened as dp increases and the detrimental effect of increasing the strength of
correlation between the random effects is also clearly evident. Therefore, dy and the dy
have the same influence on the CP and the NCP as we saw for the case when the variance
parameters were assumed to be known in Section 4.4.2.

Figure 4.5 gives the ESS of 02 (top row) and the ESS of o2 (bottom row) for the CP.
We can see a general increasing trend in the ESS of of for increasing &y, but a downward

trend is seen for o2. However, for a fixed value of dp we can see an improvement as the
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effective range increases, particularly in o2. This is because for the case when there is zero
effective range, marginally the data variance is (03 + 02)I, and so increasing the effective
range moves us away from the unidentifiable case which can result in poor mixing of the
chains.

Figure 4.7 shows the ESS of 62 and o2 for the NCP. We see that the ESS of o2 is stable
under changes in §y and dy, with the exception being the case where dg = 0.1 and dy = 0.
In this case the results are again explained by the lack of identifiability of the variance
parameters for independent random effects. The ESS of o2 is reduced by increasing do.
For a fixed value of §y we can see an improvement in the ESS as dy increases. This was

also observed o2 under the CP and is similarly explained.
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Figure 4.4: MPSRF;;(1.1) and the ESS of 6y for the CP of the Gaussian model with
unknown variance parameters Plots (a)—(e) give the MPSRF;/(1.1), plots (f)—(j) the ESS
of 6y. L-R 8y = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2v/2/3
and /2 are used.
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parameters. Plots (a)—(e) give the ESS of o2, plots (f)—(j) the ESS of 02. L-R & =
0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2¢/2/3 and /2 are used.
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Figure 4.6: MPSRF,(1.1) and the ESS of 6y for the NCP of the Gaussian model with
unknown variance parameters. Plots (a)—(e) give the MPSRF ,(1.1), plots (f)—(j) the ESS
of fp. L-R &y = 0.01,0.1, 1,10, 100. Within each plot effective ranges of 0, v/2/3, 2v/2/3
and /2 are used.
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Figure 4.7: ESS of 03 and o2 for the NCP of the Gaussian model with unknown variance
parameters. Plots (a)-(e) give the ESS of o3, plots (f)—(j) the ESS of 2. L-R & =
0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2v/2/3 and /2 are used.
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4.5 Californian ozone concentration data

In Section 4.4 we saw how varying the values of the variance and decay parameters used
to generate data affects the efficiency of Gibbs samplers constructed under the CP and
the NCP. In this section we fit the CP and the NCP of model (4.1) to a real data set. We
have ozone concentration data from the State of California. It is a spatial data set with
values, in parts per billion (ppb), of the annual fourth highest daily maximum eight-hour
average. The eight-hour average for the current hour is the mean concentration of the
last four hours, the current hour and the future three hours. The annual fourth highest
eight-hour average is the key measure used by the U.S. Environmental Protection Agency
for monitoring ozone concentrations. The current standard, set in 2008, is 75 ppb ' down
from the 80 ppb standard set in 1997. Proposals are in place to bring the standard within
the range 65-70 ppb.

Data are collected at 176 irregularly spaced locations across California. We fit the
model using data from 132 sites, leaving out 44 sites for validation, see Figure 4.8. The

mean and standard deviation for the 132 data sites is 80.35 ppb and 17.72 ppb respectively.

x 132 data sites
+ 44 validation sites

Figure 4.8: Sampling locations for Californian ozone concentration data.

The spatially varying covariate we use is land use. Sites are categorised as urban or
suburban and assigned the value one, or they are categorised as rural, and assigned the
value zero. Of the 132 data sites, 89 are urban or suburban with mean concentration 78.71

ppb and standard deviation 18.53 ppb. The remaining 43 rural sites have mean 83.74 ppb

see http://http:/ /www.epa.gov/air /criteria.html
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and standard deviation 15.59 ppb. Of the 44 validation sites 28 are urban or suburban
and 16 are rural.

Given information about land use at each data location we fit model (4.1) with p = 2.
Therefore we have two processes, an intercept and slope process and so B = (B{), Bll)’ for
the CP and B = (3, 3})’ for the NCP. Each process has a corresponding global parameter
and a variance parameter and so 6 = (g, 01) and 02 = (03,07). We use an exponential
correlation function for both processes and so ¢ = (¢g, ¢1)". In addition we have the data
variance, o2, and so we have 2(n + 3) + 1 parameters to estimate.

For the prior distribution of @ we let m = (0,0)’ and vg = v; = 10%. We let ag = a1 =
ac =2 and by = by = b = 1, so that each variance parameter is assigned an IG(2,1) prior
distribution.

To stabilise the variance and avoid negative predictions, we model the data on the
square root scale, as done by Sahu et al. (2007) and Berrocal et al. (2010) when modelling

ozone concentrations for the U.S.

4.5.1 Estimating decay parameters

To estimate the spatial decay parameters we perform a grid search over a range of values
for ¢g and ¢1. A grid search is equivalent to placing a discrete uniform prior distribution
upon the decay parameters and is a commonly adopted approach, see Sahu et al. (2011);
Berrocal et al. (2010); Sahu et al. (2007). We obtain predictions at the validation sites as
described in Section 4.3. The estimates are taken to be the pair of values that minimise
the prediction error with respect to the validation data. The criteria used to compute the
prediction error are the mean absolute prediction error (MAPE), the root mean squared
prediction error (RMSPE) and the continuous ranked probability score (CRPS), defined
in Section 2.5.

The greatest distance between any two of the 132 monitoring stations in California is
1190 kilometers (km) and so we select values of ¢ and ¢; corresponding to effective ranges
of 50, 100, 250, 500 and 1000 km. For each of the 25 pairs of spatial decay parameters we
generate a single chain of 25,000 iterations and discard the first 5,000.

We denote by dy and d; the effective range implied by ¢¢ and ¢ respectively. The
values of the MAPE, RMSPE and CRPS for the 25 combinations of dy and d; are given
in Table 4.1. We see that the prediction error is minimised for two of the three criteria

when dy = 250 and d; = 500 and so our estimates for the spatial decay parameters are

do = —10g(0.05)/250, and ¢ = —log(0.05)/500. (4.8)

4.5.2 Prior sensitivity

In this section we assess the sensitivity of prediction to changes in the hyperparameters
a and b for the IG(a,b) prior placed upon the variance parameters. By the properties

of the inverse gamma distribution we have a prior mean and variance for the variance
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Table 4.1: Prediction error for different combinations of dy and d;.

dy dy MAPE RMSPE CRPS
20 50 15.84 19.45 11.15
100 15.83 19.41 11.15

250 15.87 19.40 11.14

500 15.91 19.41  11.16

1000 15.89 19.41 11.15

100 50 14.92 18.58  10.52
100 14.97 18.58  10.55

250 14.99 18.53  10.54

500 14.98 18.50  10.53

1000 15.01 18.53  10.54

250 50  14.63 18.39  10.42
100 14.69 18.39  10.44

250 14.70 18.33  10.43

500 14.65 18.27 10.39

1000 14.66 18.28  10.40

500 50 15.37 19.10  11.00
100 15.36 19.06  10.99

250 15.29 18.96  10.93

500 15.30 1894 10.93

1000 15.28 18.93  10.93

1000 50 16.17 20.20 11.98
100 16.24 20.22  11.99

250 16.17 20.04 11.90

500 16.19 20.056 1191

1000 16.24 20.06 11.94

parameters of b/(a — 1) and b?/{(a — 1)?(a — 2)} respectively. We assign the same values
to the hyperparameters for each of the variance parameters and so a = ap = a1 = a. and
b =by = by = b.. Decay parameters are fixed at the values given in (4.8). Table 4.2
gives the prediction error for a range of values for a and b. We see that the predictions
are robust to changes in a and b. Only when we impose an extreme prior mean to the
variance parameters is the quality of the predictions degraded. In what follows we let

aoza1:a€:2andbozblzb€:1.

4.5.3 The impact of the decay parameters on the performance of the
CP and the NCP

In the simulation study of Section 4.4, a model with one process is considered and the
effective range dj is held at the value that is used to generate the data. There, it is shown
that the performance of the sampler is strongly affected by the value of the effective range.
For the Californian ozone data we do not know the effective ranges dy and d; and their
values are selected by minimising the prediction error, see Section 4.5.1. Although this
is a common approach, we can see from Table 4.1 that the quality of prediction is not
sensitive to changes in dg and d;. In this section we look at how the values of dg and d;
affect the performance of the CP and the NCP.
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Table 4.2: Prediction error for different hyperparameters of the IG(a, b) prior placed upon
the variance parameters.

b MAPE RMSPE CRPS

1 14.79 18.35 10.44

1 14.75 18.33  10.43

1 14.76 18.33  10.42
1000 1 14.79 18.35 10.44

2

3

4

14.79 18.37  10.45

14.77 18.34  10.43

14.79 18.36  10.46

1000 86.36 90.41  39.76
) 14.80 18.36  10.45

10 10 14.84 18.40  10.50

We look at five effective ranges: 50, 100, 250, 500 and 1000 km, hence there are 25 pairs
of dyp and dy. For each pair we generate five Markov chains of length 25,000 and compute
the MPSRF;(1.1) and the ESS of 6y, 01, 02, 0? and 2. Results for the CP are given
in Table 4.3. We can see that the lowest values for the MPSRF,(1.1) are found for the
longer effective ranges. It is clear that the ESS for 6y increases when dj is increased and
the ESS for #; and increases when d; is increased. The ESS of 08 reduces with increasing
dp and is insensitive to changes in d;, whereas the ESS of 0% is reduced by increasing
d1 but is not strongly affected by the level of dy. For a fixed value of dy the ESS of o2
increases in d; where the best value for dy is 250 km.

Results for the NCP are given in Table 4.4. We can see that the performance degrades
significantly for longer effective ranges, and the MPSRF;(1.1) is almost 15,000 for dy =
d1 = 1000. The ESS of 6 is reduced by increasing dy but stable under changes in dy, and
similarly the ESS of 8, is reduced as d; is increased but insensitive to changes in dy. The
pattern for the ESS of the variance parameters for the NCP is the same as that of the

variance parameters for the CP.

4.5.4 Selecting a fitting method

In this section we compare the performance of the CP and the NCP when fitting model
(4.1) to the Californian ozone concentration data. We have an intercept and a slope
process and we will compare the performance of each parameterisation when we update
all random effects together or in two blocks according to the process of which they are
realisations. In Section 3.8.4 it is shown that as long as the covariate x is centred, so
that it has zero mean, the convergence rate remains the same regardless of whether we
update 0y and 6, together or separately. As it is more efficient to sample from univariate
distributions, we will update the global effects as two separate components. Therefore,
we have four fitting strategies; the CP and the NCP with random effects updated in two
blocks, which we label CPy and NCP5, and the CP and the NCP where all of the the
random effects are updated as one block, which we label CP; and NCP; respectively. The

full conditional distributions needed to block update B and 3 are given in equations (2.10)
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Table 4.3: The MPSRF,/(1.1) and the ESS of the model parameters under different
combinations of dy and dy for the CP.

dy  d; MPSRF(1.1) ESS6, ESS6 ESSo2 ESSo? ESS o2

50 50 675 48559 5486 30511 5109 9264
100 420 46668 8881 30281 4615 9971

250 630 48960 16859 31413 4481 10373

500 570 45185 26310 34031 4166 10281

1000 410 49989 38392 34099 3583 10322

100 50 465 69147 6237 34693 5985 12481
100 430 69459 9683 35664 5582 14489

250 310 64122 18027 37391 5232 15078

500 600 64652 29680 38646 4626 14606

1000 440 65409 40612 38285 3635 15420

250 50 715 95206 7455 25203 6315 12477
100 370 96426 11862 26064 6062 16055

250 225 94084 21687 26394 5892 16931

500 170 86589 35370 27553 4887 17209

1000 470 88235 47911 27048 3883 17432

500 50 560 110988 8061 17153 9976 12187
100 315 107418 12887 18234 6300 14856

250 530 105493 23750 19592 5815 15323

500 180 102489 37490 18078 5005 15672

1000 180 105549 52678 19026 3974 15509

1000 50 505 113575 8984 13343 6007 11429
100 590 114256 13903 14006 5753 13368

250 245 111889 25438 13831 5477 13809

500 240 114169 39463 14967 4821 14800

1000 345 111179 54504 14158 3782 14280

and (2.12) respectively.

For each fitting strategy we generate five Markov chains of length 25,000 from the
same widely dispersed starting values. The MPSRF,;(1.1) and the ESS for 8 = (6y, 6)’,
02 = (02,07) and o2 are computed and given in table 4.5. Compare first the CPy and
NCP,. The CP5 requires far fewer iterations for the MPSRF to drop below 1.1 than the
NCPs, 120 versus 1995. There is a significant difference in the ESS of the mean parameters
between the parameterisations. The CP4 yields more than 70 times the number of effect
samples for 6y, and more than 10 times the number of effective samples for #; than the
NCP3. The CPy mixes better in the 08 coordinate and has small advantages over the
NCP; in terms of the ESS for o7 and o2 . Fitting strategies CP; and NCP; compare
similarly. Respectively their MPSRF/(1.1)’s are 135 and 1405. The ESS is over 80 times
greater for 6y, and over 16 times greater for §; when the CP; is used instead of the NCP;.
The ESS for the variance parameters is higher for the CP; than the NCPq, in particular
ﬁn'aa

If we compare blocking strategies, CP, with CP; and NCPy with NCP1, we see that
while there is little difference in the results for non-centred parameterisations, updating

all random effects at once provides a significant increase in the ESS of the global mean

83



Table 4.4: The MPSRF)/(1.1) and the ESS of the model parameters under different
combinations of dy and dy for the NCP.

dy di MPSRF(1.1) ESS6, ESS6 ESSo2 ESSo? ESS o2

50 50 975 8031 13135 24580 5081 11480
100 1150 7752 12079 25118 4700 11781

250 425 7790 6980 24624 4356 11563

500 865 7722 3657 26519 4051 11912

1000 1415 7995 1993 29054 3264 11427

100 50 515 4050 13890 27390 9965 14580
100 660 4036 11944 27475 5630 15175

250 1045 4006 6720 27080 4887 14884

500 790 3820 3502 27862 4495 14708

1000 2145 4118 1808 27807 3247 14934

250 50 1995 1213 16719 20602 6313 15881
100 1980 1246 13908 21857 5921 16045

250 1860 1140 6978 18715 9633 16795

500 2075 1242 3747 22525 4746 16494

1000 1405 1191 1693 20419 3214 16053

500 50 1815 428 18699 14663 0974 14874
100 4425 405 14933 14225 6220 15969

250 4735 452 7816 16334 5691 16291

500 3200 445 3755 15572 4703 15705

1000 4590 451 1997 15758 3724 15278

1000 50 8960 135 20648 11317 5824 13817
100 4820 145 15944 11616 5675 13897

250 9800 152 8247 11305 5396 14043

500 6745 160 4037 12125 4735 14753

1000 14985 162 2104 12645 3612 14487

parameters for the centred parameterisations. This is consistent with the results of Section
3.8.4 in which the exact convergence rates for this model are investigated.

However, there is a computational cost of jointly updating all random effects. For each
iteration of the Gibbs sampler we must construct the Cholesky decomposition of a 2n x 2n
matrix, an operation of cubic computational complexity. This means that each iteration
takes longer than if we were to update the random effects according to the processes from
which they are realised, which requires the decomposition of two, n x n matrices.

We let

MPSRF;(1.1) = MPSRF/(1.1) x time per iteration,

denote the computation time (in seconds) for the MPSRF to fall below 1.1, and let ESS/s
denote the ESS per second. Table 4.6 gives the time adjusted measures for each fitting
method. We see that when computation time is considered the approaches that update
the random effects in two blocks are more efficient. It is clear that the choice is between
the CPy and the CP;. We must decide between the method whose sampler can be run
more quickly, the CPs, and the one that returns samples that have lower autocorrelation,
the CP;. The utility placed upon these two factors will differ between practitioners and

it is up to the individual to decide which is favourable.
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Table 4.5: MPSRF/(1.1) and ESS of the model parameters.

MPSRFy(1.1) ESS 6y, ESS6; ESSoj ESSof ESSo?
CP, 120 89230 36170 27283 4977 17095
NCP; 1995 1238 3485 20863 4214 16017
CP 135 103129 56718 29539 5271 16836
NCP, 1405 1252 3242 23371 4333 15797

Table 4.6: MPSRF(1.1) and ESS/s of the model parameters.

MPSRF:(1.1) ESS/sfy ESS/s6; ESS/soi ESS/so? ESS/so?
CPy 0.7 119.8 48.6 36.6 6.7 22.9
NCP, 11.9 1.7 4.7 28.0 5.6 21.5
CPy 2.6 42.7 23.5 12.2 2.2 7.0
NCP; 27.2 0.5 1.3 9.7 1.8 6.5

4.5.5 Posterior inference

In this section we use the CPy to obtain posterior estimates of the model parameters.
We run a single long chain of 50,000 iterations and discard the first 10,000. Parameter
estimates and their 95% credible intervals are given in Table 4.7. We also include estimates

and 95% credible intervals for the variance ratios §y = 03 /02 and §; = o3 /02.

Table 4.7: Parameter estimates and their 95% credible intervals (CI).

Parameter Estimate 95% CI
0o 8.654  (8.197,9.010)
0, -0.176  (—0.784,0.397)
o3 0.677  (0.456,0.958)
o? 0.360  (0.143,0.768)
o? 0.137  (0.081,0.218)
50 5.329  (2.428,9.970)
51 2.808  (0.914,6.716)

A negative estimate for 61 implies that ozone concentrations are higher in rural areas,
although we see here that given the spatially correlated random effects, #; is not signifi-
cantly different from zero. The variances of the spatial processes are estimated to be larger
than that of the pure error process as the Gaussian processes capture the spatial variation
in the data. The estimates of the variance ratios dy and d; are approximately five and
three receptively. Given these results it is not surprising that the CP outperformed the

NCP here. The density plots for the model parameters are given in Figure 4.9.

4.6 Summary

In this chapter we have given details of how to construct Gibbs samplers for the CP
and NCP of a general spatially varying coefficients model. The sampling efficiency of
the parameterisations is compared via the (M)PSRF;/(1.1) and the ESS of the unknown
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Figure 4.9: Density plots of model parameters for Californian ozone concentration data.

model parameters. Simulation studies suggest that when the covariance parameters are
assumed to be known, these measures are in good agreement with the exact convergence
rates computed in Chapter 3. Therefore, we use them to judge the efficiency of the Gibbs
samplers emitted by the CP and the NCP when we do not have access to the exact
convergence rates, i.e. when the variance parameters are unknown.

We have seen that the relationships established in Chapter 3 between the sampling
efficiency of the respective parameterisations, and the ratio of the variance parameters
and the strength of spatial correlation, still hold for unknown variance parameters. The
CP performs better when the data precision is relatively high and when the correlation
is strong. Contrary to this, the NCP performs best for when the data is less informative
and the correlation is weak.

We have fitted the CP and the NCP of a model with spatially varying intercept and
slope to ozone concentration data from California. We find that the performance of the
CP is far superior than that of the NCP due to the strong spatial correlation in the data.
Block updating all of the random effects together has little effect on the NCP but gives a
higher ESS for the mean parameters for the CP. However, this comes with a computational

time penalty as we have to invert larger matrices.
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Chapter 5

Partially centred
parameterisations for spatial

models

5.1 Introduction

In Chapters 3 and 4 we have considered the CP and the NCP of spatial models. We
find that the performance of the Gibbs samplers under these model parameterisations is
dependent on the informativity of the data about the latent surface. Without knowing
the values of the covariance parameters we cannot recommend one parameterisation over
another aprior.

In this chapter we look to construct a parameterisation that has an associated Gibbs
sampler whose performance is robust to changes of the values of the covariance parameters.
Papaspiliopoulos et al. (2003) consider a family of partially centred parameterisations
(PCPs) that lie on a continuum between the CP and the NCP at the extremes. They
construct a PCP for a two stage NLHM that has a Gibbs sampler with zero convergence
rate. By minimising the posterior covariance between the global and random effects we
construct a PCP for the three stage NLHM that has the same property. Furthermore, we
show that to achieve immediate convergence we must update all random effects as one
block and all global effects as another.

The PCP is constructed conditional on the covariance parameters. When these pa-
rameters are unknown we propose a dynamically updated PCP and show that stationarity
is only preserved if the parameterisation is updated with each new draw of a covariance
parameter. We go on to suggest pilot adaption schemes which limit the number of ma-
trix computations needed when we run the Gibbs sampler under the PCP with unknown
variance parameters.

The rest of this chapter is organised as follows: In Section 5.2 we give details of the
construction of the PCP for the three stage NLHM. In Section 5.3 we look at how the
optimal weights of partial centering vary with the variance parameters and the correlation

structure of the random effects. Section 5.4 gives the full conditional distributions needed
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for Gibbs sampling under the PCP. We conduct a simulation study to assess the effective-
ness of the PCP for the cases when the variance parameters are known and then when
they are unknown. Section 5.5 applies the PCP to model Californian ozone concentration

data. Section 5.6 contains some summary comments.

5.2 Construction and properties of the PCP

In Section 1.3.1 we consider a simple random effects model to illustrate hierarchical cen-

tering. The partially centred form of the model is given by

Y; ~ N((1-w)d+UP" %)

1 77€

U ~ N(wb,o?), (5.1)

» Oy

for i = 1,...,n and w € [0,1]. This follows the PCP given by Papaspiliopoulos (2003,
Chapter 7), but instead they consider w* =1 — w.

We can show that for a flat prior distribution on 6 that the posterior precision matrix
of UV = (U, ...,UY) and 6 is

1 1 l—w w
(wra)r ()
0—5 Uu O-E O—U
(1w w), (1—-w)n  w’n

1 +

€ u

Q" =

Applying Theorem 2.3.1 we find that the convergence rate for model (5.1) is given by

(1 —w)or — wo?)?
(1 = w)?02 + w?a?)(02 + 02)
(1 = w)Ape — wAe)?

= . 2
(1 —w)?Ape + w2, (5:2)

Ape =

From equations (2.6) and (2.7) we have that A\n. = 02/(0% + 02) = 1 — A.. We can see
from the numerator of (5.2) that A\,c = 0 when w = \,,.. Note that from equation (1.5)
we have that Corr(U;”,0]y) = 0 when w = Ap.

5.2.1 Constructing the PCP of the spatially varying coefficients model

We can apply the constructive approach of model (5.1) to the spatially varying coefficients
model discussed in Chapters 3 and 4. A PCP is found by introducing the partially centred

spatially correlated random effects, defined to be
B,@”(si):ﬂk(si)+wk9k, k=0,....p—1, 1=1,...,n, (5.3)

where Sk (s;) is a realisation of a zero mean spatial process and wy € [0,1] is the weight

of partial centering for kth process. Substituting equation (5.3) into the general spatial
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model given in (4.1) gives us the PCP of the model, which is written as

p—1
Y(si) = Z{(l —wi)Ok + By (i) ok (si) + €(si), (5.4)
k=0
where zg(s;)) =1landi=1,...,n.

We let 8% = (8y",...,8, 1), where 8)) = (B}(s1),..., 5} (sn))’, and then we write

the partially centred random effects as

BY=B-I-W)X,0, (5.5)
where we recall that 8 = (Bg, .. ,B;,_l)’ is the vector of centred random effects of length
np, @ = (0o,...,0,_1)" is the p x 1 vector of global regression coefficients and X5 is a

np X p block diagonal matrix with blocks made up of vectors of ones of length n,

on 0 0
0 wl --- 0

W=\ . e (5.6)
0 0 - w1l

By substituting (5.5) into model (4.2) the partially centred model is written as

Y|,@w,0 ~ N(Xl,@w—i-Xl(I—W)XQO,Cl)
B0 ~ N(WX.0,Cs)
0 ~ N(m,Cs). (5.7)

Note that if W is the identity matrix we recover the CP and where W is the zero matrix
we have the NCP. The question is how do we choose the entries of W such that optimal

performance of the Gibbs sampler is achieved?

5.2.2 Posterior covariance matrices and convergence rates for the PCP

Now that we have the model written in the three stage hierarchical form given in (5.7) we

can apply the approach of Section 2.4.2 and use expression (5.5) to compute the posterior
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variance of 3". This gives us

Var(8ly) = Cov(B— (I - W)X26.8— (I - W)X26ly)
= Var(Bly) — Cov(B,0]y) X5(I - W) — (I - W)XCou(6, Bly)
+(I — W)X Var(8|ly) X,H(I — WY
= B+ BC;'X,5,X,C;'B — BC;' X25,,X5(I - W)
—(I =W)X 2%, X5C5'B+ (I - W)X 25, X5(I - W), (5.8)

where we recall that
B =Var(8l6,y) = (XiC7' X1+ C3Y)

and
—1
Sy, = Var(Bly) = (X1 X2) Sy, X1 X2+ C51) (5.9)

where Yy p = C1 + X102 X '. The posterior covariance of 8% and 0 is given by

Cov(B",0ly) = Cov(B—(I—-W)X36,0ly)
= Cou(B,0ly) — (I - W)X:Var(0ly)
= BC;'Xy%g, — (I - W)X,35,
= (BC3;'—(I-W)) X3y, (5.10)

We can see from (5.10) that Cov(8Y,8|y) = 0 when BC;' = I — W, or equivalently
when

W=I-BC,'=I—(X,C{'X,+C;")" C;". (5.11)

Equation (5.11) implies that to minimise the posterior correlation between the random
effects and global effects we cannot restrict W to be the diagonal matrix given in (5.6).
It then follows that as 8|0 ~ N(W X10,C3) apriori, the prior mean of 3}°(s;) will be
a linear combination of all elements of @ and not just a proportion of 8y as expressed in
(5.3).

Henceforth we will set W =1 — BC,, ! and further explore the consequences of this
construction. Substituting this expression into the posterior variance for 3" given in

equation (5.8) we get

Var(8“ly) = B+ BC;'X2%,X,C5;'B— BC;" ' X,5,X5(I - W) —
—(I =W)X 55, X45C5'B + (I - W)X 33, X5(I — W)
= B+ BC;'X,%,X,C;'B - BC;' X33, X,C,'B —
—BC;' X%, X5C;'B + BC,' X125, X,C;'B
= B.

We now look at the implication of (5.11) for the convergence rate of a Gibbs sampler

using the PCP. First we need the posterior precision matrix of 8 and 6, which we can
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identify by writing

(B, 0ly) o« w(Y[B",0)r(B"|0)r(6)
X exp { - % [(Y —X1BY — X, (I - W)X,) CT (Y — X,8"
~X1(I-W)X,) + (B — WX20)Cy' (B — WX10)

+(6—m)'C7'(6—m)| }

1 — — w
- exp{ — 5[ —l—,@wl(X'lCl .¢! + C, 1),8
+2B" (X1CT X 1(I — W)X2 — C3'WX5)0 + 6 (XH(I - W)

XICT'X (I - W)Xy + XHW'C'W X, +C51)0 + .. } }
Then we can see that the posterior precision matrix for the PCP is

o Qg
Qr=| 7 T (5.12)
g Qo
where
e = X1CT' X1 +Cy
g = X1CT' X 1(I - W)X, — C;' WX,
b= XL(I - W)X\ CT X1 (I - W)X, + X4W/'CL' WX, + C3

If we block update a Gibbs sampler according to the partitioning of the precision matrix
(5.12), by corollary 2.3.2, we have that the convergence rate of the PCP is the maximum

modulus eigenvalue of the matrix
Pl = (@) Qfu (@) Qi
Consider ngue and substitute W from equation (5.11), then we have
Gog = X1CT'X1(I-W)X5—Cy'WX,
= (X{Cr'Xy) [(X5CT' Xy + €705 X - C7 [T - (X107 X,
+CQ—1)—1C;1} X,
= [(xier'x(xier'x, + 63 eyt + o (Xer X + 63 T ey
—C’gl}Xg
= [(xier'x + erhxier X + 63 est - C5 X

= [051—051}X2
~ 0.
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Therefore by setting W = I — BC, L' F P becomes the zero matrix and immediate
convergence is achieved. A more straightforward way to see this is that by construction
we have a 2 x 2 block diagonal posterior covariance matrix for 8* and 8. Therefore the

precision matrix is also block diagonal and F%3 is null.

Suppose now that we have constructed the PCP as before but we partition the partially
centred random effects, 8%, into two disjoint sets, 37" and 85, and update them separately

in a Gibbs sampler. Partitioned accordingly, the covariance matrix is a 3 x 3 block matrix

given by
251 2]512 0
Y= 2521 252 0
0 0 b7

Using results from Harville (1997, Chapter 8) we find the corresponding precision matrix
to be

Qﬂl Qﬂm 0
Q = Q/BQI Qﬁz 0 ’ (5'13>
0 0 Q

where

QBI = (2/31 25122 2521) )

QB12 = _(251 2,3122 2,321) 12,312 v
Qﬁzl = _(252 2,3212 Eﬁm) 12,321 )
Qﬂz = (252 2352123 23512) 17

Qy=3,"

It can be shown that a Gibbs sampler with Gaussian target distribution with precision

matrix given by

Qu Qun Q3
Q=1Qn Qxn Qux];
Q31 Qs Qs
has a convergence rate which is equal to the maximum modulus eigenvalue of
0 -Q1/' Q> -Q1/' Qi3
F=10 Q0Qx0Q1/Qn @5 QnQiQ1— QnQy |,
0 Fso Fs3

where

F3 = (Q§31Q31 - Q§31Q32Q521Q21)Qf11Q12a
F33 = (Q3 Qs — Q33 Q3Q5 Q01)Q1, Qi3 + Q33 Q3:Q5, Qo

Therefore, the convergence rate corresponding to the precision matrix given by (5.13) is
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the maximum modulus eigenvalue of

—1 —1
0 -Q5'Qs, 0 0 %5, 25, 0
— -1 -1 _ -1 -1
ch— 0 QﬁZ QBQlQﬁl Q,312 O — 0 2621261 2’8122B2 0 9
0 0 0 0 0 0

which will be zero if the posterior correlation between 3} and 39 is zero.

Alternatively, suppose that we update 3“ as one block but partition 8 into 6, and 8,

updating them accordingly. The covariance and precision matrices have the form

X5 0 0 Q; 0 0
z - 0 291 2912 ) Q = 0 Q61 Q912 ’
0 2921 292 0 Q921 Q92
where
Qs =35

Qo, = (o, — T0,, 25, oy, ) 7
Qp,, = —(Zp, — X, 2 12921) 120,25,
Qo,, = — (B0, — Ty, By, To,) ' Ty, By,
Qo, = (o, — T, 25 py,)

and the convergence rate is the maximum modulus eigenvalue of

00 0 00 0
F=100 -Q;.'Qp,, =(0 0 3., 25, :
00 Q9_21Q921Q0_11Q912 00 292129_11291229_21

which will be a null matrix if the two blocks of @ are uncorrelated a posteriori.

It is the relationship between convergence rate and inter-block correlation that we take
advantage of when constructing the PCP. For our construction, immediate convergence is
only guaranteed if the random effects and global effects are each updated as one complete
block. If a greater number of blocks are used we cannot, in general, find a matrix W that
will remove all cross covariances and return a convergence rate of zero. To see this first
note that the posterior covariance matrix Xy, given in (5.9), is unaffected by hierarchical
centering and so partial centering cannot remove and any posterior correlation between
subsets of 8, and therefore all of its elements must be updated together. Then Suppose that
we partition the partially centred random effects into [ blocks so that 8% = (8Y’,...,8}").
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We find the posterior covariance between the ijth block to be

Cov(BY,BY|ly) = Bij+ Bi.Cy' X%, X5C5'B; — B;.Cy' X235, X5(1 - W)/,
—(I = W) X35, X5C5'Bj+ (I - W); X33, X5(I — W),
= Bij+ B;.C;' X%, X5(C;'Bj — (I -W)))
+(I = W) X930, X5((I - W), — C;'B ),

where Bjj is the ijth block of B = Var(8|0,y). We let B; denote the rows of B
associated with the ith block and let B ; denote the columns of B associated with the
jth block, with (I — W); and (I — W) ; having similar interpretations. We see that if
(I-W), = C,' B then Cou( i, B5'|y) = Bij, which is generally a non-zero matrix.

Therefore we must update 3 as one component and 8 as another.

We have seen that letting W =1 — BC,, ! gives us the optimum parameterisation in
terms of posterior uncorrelatedness and convergence rate of the Gibbs sampler. Using the

lemma 3.3.1 we write W as

W = I-BC;'
I-(x{c7'x +C5') cy!
= I-[Cy- X (Cr+ X10:X1) T X1 G €7
— CX) (C1+ X,1C:X0) 7 X (5.14)
which requires the inversion of a matrix of the size n X n not one of np X np, as is the case
for the representation of W' given in (5.11). We then re-write model (5.7) as
Y|BY,0 ~ N(X{"(8",6),C1)
BUle ~ N(XI'0,C)
60 ~ N(m,C3),

where the optimal design matrix for the latent process at the second of the three stage

model is given by the np X p matrix
X = CoX} (C1 + X1C2X5) 7 X1 X,

hence the optimal design matrix for the first stage is given by the augmented n x (np + p)

matrix

X = [X1,X1(I- W)X,
_ Xl,Xl(Xg—Xgpt)].
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5.3 Spatially varying weights for partial centering

In this section we will be investigating how the weights for the PCP depend on the variance
parameters but also the correlation structure of the latent processes. In particular, we will
see how the weights vary across the spatial region and see the impact upon the weights of
a spatially varying covariate. To focus on these relationships we will consider simplified

versions of model (5.7) that have one global parameter and one latent process.

5.3.1 Optimal weights for the equi-correlation model

We begin by looking at the following model,

Y|B§,00 ~ N(B§+ (I —W)16y,01)
BY10y ~ N(W1by,osRy)
90 ~ N(mo,Ugvo). (5.15)

which has one global parameter @ = 6 and one latent spatial process 3 = 3, and hence
can be found from (5.7) by letting X1 = I, C; = 021, Xo =1, Cs = agRO, m = mg and

C3 = odvg. Therefore, using the representation of W given in equation (5.14) we have
W = 02Ro(0’T + 02Ry) . (5.16)

Model (5.15) is the PCP of the model we used to investigate the properties of the CP and
the NCP in Section 3.3. Here we look at the equi-correlated model as in Section 3.3.1

which is characterised by the following correlation structure for the random effects

p ifi#]
(Ro)ij = R
1 ifi=j,

for 0 < p < 1. We write
o1 + o Ry = [02 + 0 (1 — p)lI + o5 pd,

then using Lemma 3.3.2 to find (621 + 02 Ry) !, we have that

1 alalp
W=—_ (o2(1—pI+ c’0 J).
) ( ot =r) 024 02(1—p)+noip

As X5 =1, the entries of the optimal design matrix are the row sums of W. Due to the
equi-correlation assumption the weight for each data point is the same, and after some

cancellation we get
2 1— 2
(X = w= 20 =P noop (5.17)
02+ 05(1 —p)+noip

Note that w is equal to the convergence rate of the NCP for the equi-correlated model
for 1/vy = 0, see equation (3.19). This extends the result from Papaspiliopoulos (2003,

Chapter 7), who showed it to be true for p = 0, in which case w = 03/(0? + 03)
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Figure 5.1 illustrates equation (5.17) by plotting w against p for n = 20,50, 100, 250,
for 6g = 03 /0% = 0.01,0.1,1,10,100. We see that for fixed n and p that the optimal weight
increases with the variance ratio dg = o3 /02. When n and &y are fixed, w is increases with

increasing p. Finally we see that when dp and p are fixed, increasing n increases w.
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Figure 5.1: Optimal weights against correlation for the PCP of the equi-correlation model
for n = 20,50, 100, 250 for different values of §y. (a) dp = 0.01, (b) dg = 0.1, (¢) Jp = 1,
(d) (50 = 10, (e) 50 = 100.

5.3.2 Surfaces of optimal weights for spatially correlated random effects

In this section we consider spatially referenced data. We continue to look at model (5.15)

but now, as in Section 3.3.2, we impose a spatial correlation structure upon By, such that

(Ro)ij = exp{—dodi;}, (5.18)

where ¢ controls the rate of decay of the correlation between the partially centred random
effects at sites s; and s;, and d;; denotes the distance between them.

Here we select sampling locations according to a pattern, such that the locations are
more densely clustered in some regions of the domain than others. We consider 200
locations in the unit square, see Figure 5.2, which we split into nine sub-squares of equal
area. We randomly select 100 points in the top left square and 25 points in the three areas
to which it is adjacent. The remaining five sub-squares have five points randomly chosen
within them.

We consider five variance ratios: &y = o3/0? = 0.01,0.1,1, 10,100, and three effective
ranges: dg = /2 /3, 2v/2 /3, V2. Note that an effective range of zero, implying independent
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random effects, is equivalent to a equi-correlation model with p = 0, and so the weights are
the same at each location. For each of the 15 variance ratio-effective range combinations
we compute the spatially varying weights, w(s;) = (W1);, i = 1,...,200, where W is
given in (5.16).

We use the Tps (thin plate spline) function in the R package fields (Furrer et al.,
2009) to interpolate the weights over the unit square. These interpolated plots of spatially
varying weights are given in Figure 5.3. Each row corresponds to a value of dg, from 0.01
in top row to 100 in the bottom. For each row going left to right we have increasing
effective ranges, dy = v/2 /3, 2V2 /3, V2. We can see that as the variance ratio increases we
favour a greater weight, as we do when the effective range increases. Within each panel,
the areas of higher weights are concentrated around the areas of more densely positioned
sampling locations. The stronger the correlation, the farther reaching is the influence of

these clusters.

We make it clear that although the interpolated plots are informative they do not
represent a true surface in the sense that the interpolated values are not estimates of a
true value of w(s) for an unsampled location. Indeed, if we were to include a new location

in our set of points, the values of w(s;) at the existing locations would be changed.

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.2: Patterned sampling locations. 100 top left; 25 in top middle, middle left and
middle middle; five top right, middle right and bottom third.

5.3.3 Covariate surface and optimal weights

In this section we investigate the effect of a covariate upon the spatially varying weights.
To do this we look at the PCP of model (3.24) which is used in Section 3.5 to compare
the effect of the covariate on the CP and NCP. The model is given by

Y8V, 01 ~ N(DBY+(I—-W)161,021)
BY|e, ~ N(W161,07R,)
01 ~ N(my, o), (5.19)
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Figure 5.3: Interpolated surfaces of weights for the PCP for 15 combinations of variance
ratio dg and effective range dy. Panels are given an alpha-numeric label. Numbers refer
to the five values of 6y = 0.01,0.1, 1,10, 100. Letters (a), (b) and (c) refer to three values

of dy = v/2/3,2v/2/3, /2.

where D = diag(x) and « = (2(s1),...,2(s,))" contains the values of a known spatially
referenced covariate. We have a global slope, hence 8 = 01, and a partially centered spatial
process B8Y = BY. Model (5.19) can be retrieved from model (5.7) by letting X = D,
C,= 0621, Xo=1,C, = J%Rl, m =mq and Cs3 = J%Ul.

For model (5.19) the W matrix is given by
W = o?R1D(cI + 0 DR D) ' D.

98



As there is one global parameter in the model, 6, X,

%" — W1 is a vector whose ith entry

represents the optimum weight of partial centering for 5}’(s;). To see how these weights

vary across the domain we randomly select 200 points uniformly over the unit square, see

Figure 5.4. We generate the values of & by selecting a point s,, which we may imagine to
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Figure 5.5: Interpolated surface of x for the uniformly sampled data locations given in

Figure 5.4.

be the site of a source of pollution. We assume that the value for the observed covariate
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at site s; decays exponentially at rate ¢, with increasing separation from s,, so that

z(8;) = exp{—¢z|lsi — ||}, i=1,...,n.

The spatial decay parameter ¢, is chosen such that there is an effective spatial range of
V2/2, ie. if ||s; — s;|| = V/2/2 then z(s;) = 0.05. The values of x are standardised by
subtracting their sample mean and dividing by their sample standard deviation. Figure
5.5 gives the interpolated covariate surface where s, = (0.936,0.117)". We can see how
the values decay with increased separation from s,. As in Section 5.3.2, interpolation is
carried out using the Tps (thin plate spline) function in the R package fields (Furrer et al.,
2009).

The optimal weights are computed for 15 combinations of variance ratio §; and effective
range dp, where §; = 02 /02 = 0.01,0.1,1,10,100 and d; = v/2/3, 2/2/3,v/2. The weights
are interpolated and plotted in Figure 5.6. The layout is the same as Figure 5.3, with each
row corresponding to a value of 1, going from 0.01 at the top to 100 at the bottom, and
increasing effective range from left to right.

As in Section 5.3.2 we see that the weights increase with increasing d; or dy. It is
also clear that for locations near s,, where the values of the covariate are greatest, the

optimum weights are greatest.
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Figure 5.6: Interpolated surfaces of weights for the PCP for 15 combinations of variance
ratio dyp and effective range d;. Panels are given an alpha-numeric label. Numbers refer
to the five values of 6; = 0.01,0.1, 1,10, 100. Letters (a), (b) and (c) refer to three values
of di = v/2/3,2v/2/3,/2.
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5.4 Gibbs sampling for the PCP

In this section we investigate the performance of a Gibbs sampler using the PCP con-
structed as described in Section 5.2. We begin by outlining the joint posterior and full
conditional distributions needed for the PCP. We then demonstrate that by dynamically
updating W the stationary distribution of the Markov chain is not disturbed. Simulated
data is used to investigate the performance of the PCP, first by assuming that the variance
parameters are known and then relaxing this assumption. We go on to consider schemes

that mitigate the computational cost of the PCP, so called pilot adaption schemes.

5.4.1 Joint posterior and full conditional distributions of the PCP

We begin here by writing down the joint posterior distribution of the parameters in model
(5.7). We let &€ = (8Y,6",02' 62, ¢') be the vector containing all np partially centred
random effects, p global effects, p random effect variances, the data variance and p decay

parameters for the correlation functions. The joint posterior for £ is given by

w(Ely) o< m(Y|B".0,02)n(8"10,0%, ¢)(6|0?)m(a?)m(0?)m ()
Zﬁ (0_2)—(n/2+1/2+ak+1) ’Rk’_l/Q (0_2)—(n/2+a5+1)

X k €

k=0

exp{ — 2(1;62 [(Y — X, (B + (I - W)X20)>/<Y ~ X, (8" +

(I W)XQB)) + 214 } exp { - %(ﬁ“’ - WX20>/CQ_1 (ﬁ“’ _ WXQB)}

12201 /(0 — ma)? L
eXp{ - 52;2 <w+2bk> }gﬂ(m),

where a description of the prior distributions 7(e2), m(c?) and 7(¢) can be found in
Section 4.2.1.

It is argued in Section 5.2 that we must jointly update the 8%’s and jointly update 6

and this is reflected in the conditional distributions given below.
e The full conditional distribution of 3% is
816,02, 02, ¢,y ~ N (m},C3),
where

C3 = (07X X1 +C31)
mj=C5 (0. (y — X1(I - W)X10) + C;'WX,0).
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e The full conditional distribution of @ is
0‘/61”7 0-25 0527 ¢a y ~ N (m;a Cg) 9

where

C; = (072X (I - W)X2) (X1(I - W)X2) + (WX,)Cy' WX, +C51)

mj = Cj (0. 2(X1(I - W)X5) (y — X18") + (WX,)'C;'8" + C3'm).

e The full conditional distribution of 0']%, k=0,...,p—1,1is

1
02’6w707027k70'?7¢7y ~ IG{H;_—FG’]%
-1 / o1
! S - O — my)?
3 (6? -> kaekl) R (ﬁg -3 kaek1> n (kvkk) +ab| b
m=0 m=0

where Wy, denotes the kmth, n x n block of W.

e The full conditional distribution of o2 is
0218".0,0% 6,y ~ 1G{3 +a.,

% (Y — X1(8° + (I — W)X28) (Y — X1(8” + (I - W)X10) +2b.] } |

e The full conditional distribution of ¢ is
m(0k|B,0,0% ¢_y.y) o |Rp["Y/?

—1 / p—1
1 w N -1 w
exp “20? <ﬂk -y Wk:m9k1> R, (ﬂk - z—:okaek1> ;

m=0

for I, < ¢ < ug, zero otherwise.

5.4.2 Dynamically updating the PCP

The PCP relies on the W matrix which, by construction, removes the posterior correlation
between B and 6. However, the expression for Cov(3", 08|y) given in (5.10) that leads to
the derivation of W is conditional on the covariance matrices, C'1, C and C'3. Therefore
when the variance and decay parameters are unknown how do we compute W7 We propose
a dynamically updated parameterisation that uses the most recent values to re-compute
W at each move of the Markov chain along a coordinate of which it is a function. As
we will see it is essential that W is updated each time a parameter it depends upon is
updated, and not just at the end of a complete pass of the sampler through all of the

model parameters.
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We must ensure that by dynamically updating W we do not disturb the stationary
distribution of the Markov chains generated from the Gibbs sampler. To demonstrate that
stationarity is preserved we let p = 1 in model (5.7), therefore we have the version of the
model given in (5.15). If

60 = (80,00, 00,020, 60

is the state of the Markov chain after ¢ iterations, we must show that
A 0ly) = [ PECHIIE)r(E]y)ag (5.20)

where P(:|-) is the transition kernel of the chain. Given €Y, we obtain a new sample,
4D from w(€ly) as follows:

1. Sample B4+ ~ (87165, 00 ®, 52® 311 y).

2. Sample O(HI) (0o |,60 t+1, S(t), O¢ 7% ' Y)-

3. Sample ag(tH (o o|,3w(t+1a tH),US(t), E(t)7¢é)7y)'

4. Sample O'G(t+1 (o 2|ﬂw(t+1, t+1),0§(t+1),02(t),éf)(()t)vy)-

5. Sample ¢(t+1) ~ 7T(¢0‘,616](t+1), 08t+1), O.S(t""l) 2(t+1), ¢(t) )

Note that the full conditional distributions of o3, o2 and ¢o are conditional on their

2(t+1) 2(t).

respective current values through W, ie. oy is conditioned on oy

The transition kernel of the Markov chain is

P(E(t—i—l)‘g(t)) — 7r(Bw (t+1) |00 ’ 0 ’ E ¢0 Ly)m(0 (t+1)|166"(t+1)7U(Q)(t),ag(t),gi)(()t),y)
w(ag(tﬂ |50 t+1)’9(()t+1)70(2)(t)’06() (t) y)
w(af(t“)]ﬁg‘)(t*l) 9(()t+1)70[2)(t+1)’062 ¢(t ,y)
7T(<Z>( Jrl)‘lgo (t+1) 9(()t+1)70'§(t+1)70}2(t+1 % ),
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and it follows that

/ PED|EO)r (€D ]y)de®

_ / m(@FD|gutHD) gl G2+ 241 40 4

r(o2EHD gy it Go ) 520 o) )
7T(O'2(t+1)‘16w(t+1)7 o(tJrl),O_g(t)’ o_?(t)’ (t 7 ) (H(tJrl |16w(t+1) d)o 7y)

(3 w(t+1)|0(t) 2(t) ¢(()t)7y) </ (5w(t) Gét), g(t), 6 (t)|y)d5 t)>

:W(ﬁg(prl) 9(()t)7 0( )’Ug(t)’ (()t)|y)

d6y) doy do?® dg
= / 7T(¢ét+1) |ﬂgj(t+1)7 eétJrl)a 0§(t+1)7 Jg(t-‘rl)? ¢E)t)’ y)

7T(0€2(t+1)‘ﬁw(t+l) 9(t+1) 2(t+1) g(t % 1Y)
(2D ) G20 20 0 )
H(OFD IR 20 o d)ét)’y) </ (BUEHD gD 520 ;20 40| g 0(1&))

= (B 0y, 002, 6 y)
dogdo®® ey
_ /ﬁ(¢ét+1)|ﬂg;(t+1)’9(()t+l)’0(2)(t+1)70_€2(t+1)7¢ét)’y)

7T(0'€2(t+1) ‘/Bw(t+1)7 oét+l)7 0’2(t+1)7 Uz(t)7 (t)7 y)

</7T( 2041 gu(thD) g+D) (20 20) 40 4y guittD g+ (20 o2 01 2(t)>

_ ﬂ(ﬁsu(wl)’ 9(()t+1)7 Ug(tJrl), U?(t): ¢gt) ‘y)

t
do?®dey)
- / m(glFD|gutHD) gl G2+ 241 50 4

(/ﬂ_(o_?(H»l)BBU(H—I)’0(()t+1),0_g(t+1)’0_€2(t)’ (()t)7y)7r(56u(t+1)79(()t+1) (t+1),a6 ,¢(()t)|y)da?(t)>

_ 7'('( g}(tJrl)’9(()t+1)70_(2)(t+1),0_€2(t+1),(bgt)‘y)

o (5.21)
dgf’

_ R(BUED D G2 j2(e41) ()

= n(€"]y),

Y),

and hence stationarity is preserved.

The above argument can easily be extended for p > 1, and in which it must be noted
that in Section 5.2 it is argued that the desirable properties of the PCP, that of posterior
uncorrelatedness and immediate convergence, can only be achieved if 3Y and 6 are each

updated in one block.

Notice that if we update W and the end of each complete pass of the sampler then the
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stationarity condition (5.20) does not hold. For instance, consider o2, which is conditioned

on o3 through W, see Section 5.4.1. If W is not recalculated using ag(tH) 200 4

(®)

then o

conditioned and O'g , and consequently

/ﬂ_(ag(t-&-l)’ﬁg(tﬁ-l)’9(()154—1)’0(2)@)’02(16)7 (()t)7y>7r( BU(H-l)’6(()t+1)70(2)(t+1)’Uﬁ?(t)7¢(()t)’y)dg€2(t)

€

?é ﬂ_(géﬂ(i‘l’l)’ 0(()t+1)’ O'S(H—l), 052(

1) (¢
.60 y),
but equality is required to complete step (5.21) in the string of equalities proving station-

arity.

5.4.3 Performance of the PCP for known variance parameters

In this section we investigate the convergence and mixing properties of a Gibbs sampler
employing the PCP. As in the analysis of Chapter 4 we assess performance of the sampler in
terms of the number of iterations required for the (multivariate) potential scale reduction
factor to fall below 1.1, [(M)PSRF/(1.1)] and the effective sample size (ESS) of the model
parameters, see Section 2.3. We focus on how these measures are influenced by the ratio
of the variance parameters and the correlation structure between the random effects.

We again look at model (5.15) and assume an exponential correlation function between
realisations of the Gaussian process used to model the spatial surface, see (5.18). We
generate data from this model by first selecting n = 40 points in the unit square. These
are given in Figure 4.1. The global mean is fixed at 6y = 0 and we let hyperparameters
mo = 0 and vy = 10*. We use five levels of variance ratio dg, 0.01, 0.1, 1, 10 and 100, and
four levels for the effective range dg, which are 0, v/2/3, 2¢/2/3 and /2, hence we have 20
variance ratio-effective range combinations. For each of these 20 data sets are generated
and so we have a total of 400 data sets

Variance parameters, 08 and o2, and the decay parameter ¢y = — log(0.05)/dy are
held fixed at their true values and so for each iteration of the Gibbs sampler we generate
samples from the full conditional distributions of 3 and 6.

For each data set we generate five chains of length 25,000 using starting values for 6y
that are outside the range of values described by pilot chains. We then use the output to
compute the PSRF/(1.1) and the ESS for y. The results are plotted in Figure 5.7. On
the top row we have the PSRF/(1.1) and on the bottom the ESS. Each of the five panels
in each row corresponds to a value of dg, with 0.01 on the left rising to 100 on the right.
Within each panel we have four boxplots, one for each level of the effective range, again
rising from left to right. Each boxplot consists of 20 values, for the 20 repetitions of that
variance ratio-effective range combination.

The analysis of Section 4.4 is conducted using the same data and starting values and
used here. For comparison we can look at the results for the CP and NCP for known
variance parameters, given in Figures 4.2 and 4.3 respectively. The CP performs well for
higher values of dg and dy, the opposite being true for the NCP. Figure 5.7 shows that
for the PCP with known variance parameters we achieve near immediate convergence and

independent samples for 6y in all cases, and that it is robust to changes in both variance
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Figure 5.7: PSRF/(1.1) and the ESS of 6, for the PCP of the Gaussian model with known
variance parameters. Plots (a)—(e) give the PSRF/(1.1), plots (f)—(j) the ESS of 6y. L-R
8o = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are
used.

ratio and strength of correlation.

5.4.4 Performance of the PCP for unknown variance parameters

In this section we remove the assumption that the variance parameters are known but we
still the fix the decay parameter ¢g at its true value. We repeat the analysis of 5.4.3 but
now we sample from the full conditional distributions of o3 and 2.

Now that we are sampling the variance parameters as well as global mean 6y, con-
vergence is assessed through the multivariate PSRF. Figure 5.8 shows the MPSRF;(1.1)
(top row) and the ESS of 6y (bottom row) for the 20 combinations of dy and dy detailed in
Section 4.4.1. There is more variability in the results seen here for the MPSRF /(1.1) than
we saw for the PSRF/(1.1) in Section 5.4.3. When the random effects are independent,
weak identifiability of the variance parameters can effect the performance of the sampler.
However, the robustness to changes in Jy remains and we still see rapid convergence in
most cases. The ESS for 8y remains high, with a median value above 120,000 for all of the
20 combinations of §y and dy.

Boxplots of the ESS of the variance parameters are given in Figure 5.9, with the results
for o2 on the top row and o2 on the bottom row. There is a suggestion that increasing do
increases the ESS of 02 and decreases the ESS of o2. For a fixed value of §y we can see
that the ESS of both variance parameters increases as the effective range increases. The
stronger correlation across the random effects means that the variability seen in the data
can be more easily separated between the two components.

We compare the results for the PCP with those obtained for the CP and the NCP by
calculating the mean responses of each measure of performance for each of the 20 variance

ratio-effective range combinations. Table 5.1 shows the mean MPSRF;;(1.1) and mean
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Figure 5.8: MPSRF,(1.1) and the ESS of 6y for the PCP of the Gaussian model with
unknown variance parameters Plots (a)—(e) give the MPSRF/(1.1), plots (f)—(j) the ESS
of 6y. L-R 6y = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2v/2/3
and /2 are used.
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Figure 5.9: ESS of 02 and o2 for the PCP of the Gaussian model with unknown variance
parameters. Plots (a)—(e) give the ESS of o2, plots (f)—(j) the ESS of 02. L-R & =
0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are used.

ESS for 6y. We see that the PCP has a lower average MPSRF;(1.1) for most cases, and
when it does not, the difference is less than 3%. We can also see that, in terms of the ESS
of g, it is clear that the PCP is superior to the CP and the NCP in all cases.

A similar comparison for the mean ESS of the variance parameters is given in Table
5.2. The PCP does not always deliver the highest ESS for the variance parameters, but
for o3 it is always within 1% of the ESS for the parameterisation that does return the

highest value, and for o2 it is always within 2%.
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Table 5.1: Means of the MPSRF);(1.1) and the ESS of 6y for 20 variance ratio-effective
range combinations for the CP, the NCP and the PCP.
MPSRFM(l.l) ESS of 90
So  do/V?2 CP NCP PCP CP NCP PCP
0.01 0 3064.50 172.00 163.25 463 108819 124988
1/3 1115.75 278.25 251.25 1821 103342 116659
2/3 544.50 166.25 154.00 3055 105397 125108
1 366.50 184.75 175.00 4652 94657 123730
0.1 0 3528.25 3455.50 2464.50 4707 20420 125272
1/3 607.00 1305.50 624.25 13336 33347 108922
2/3 271.25 592.75 251.50 25884 28959 109987

1 211.00 51825  203.75 | 31938 22361 113191

1 0 274.50  910.50  187.50 | 25523 7353 124945
1/3 134.50 1639.00 118.75 | 65927 3785 120325

2/3 78.25 2092.00 76.00 | 82100 3148 121013

1 101.00 2473.75 103.00 | 84742 2722 115700

10 0 123.50 1140.25  105.75 | 32578 5226 125091
1/3 79.75 1556.25 79.75 | 83586 2918 123055

2/3 45.25 2824.25 44.50 | 102306 1734 124341

1 49.50 3542.25 50.50 | 107261 1177 122774

100 0 104.75 1124.75  102.75 | 32891 4596 125388
1/3 42.75 1607.50 42.50 | 84755 2772 124120

2/3 41.75 2544.75 41.50 | 104941 1671 124214

1 32.75 3427.75 33.00 | 108050 1186 124670

Table 5.2: Means of the ESS of o3 and ESS of o2 for 20 variance ratio-effective range
combinations for the CP, the NCP and the PCP.
ESS of o3 ESS of o2
S0 do/V2 CP NCP  PCP CP NCP  PCP
0.01 0 4138 4078 4244 | 27753 95416 98456
1/3 4312 4268 4295 | 56647 95916 94741
2/3 5061 5071 5044 | 81338 111550 110636
1 4804 4737 4758 | 88184 108623 107762
0.1 0 383 391 397 532 505 545
1/3 3696 3027 3719 | 36659 30190 39819
2/3 5368 4873 5406 | 60338 58930 62573
1 5784 5095 5790 | 72669 70080 73138
1 0 5527 3868 5557 6188 6208 6321
1/3 8333 3557 8297 | 12400 11488 12412
2/3 9430 3945 9430 | 22846 18310 22828
1 9714 3712 9711 | 28853 23222 28770
10 0 11270 3945 11352 | 12216 12308 12495
1/3 | 18435 3543 18413 | 18226 18009 18167
2/3 | 23692 3699 23632 | 26945 26373 26825
1 24595 4015 24572 | 29228 28790 29177
100 0 11423 3652 11457 | 12427 12495 12690
1/3 119708 3559 19668 | 20118 19930 20085
2/3 | 27706 3929 27649 | 26197 25924 26120
1 26937 3012 26936 | 37121 36499 37087
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5.4.5 Pilot adaption schemes

The limitation of the dynamically updated PCP is the requirement to compute W multiple
times at each iteration of the Gibbs sampler, see Section 5.4.2. In this section we look
at a method of mitigating the computational cost. We propose a strategy that runs
the sampler until the MPSRF reaches 1.1, and then a further number of iterations M™*
to obtain an estimate for W, which is fixed thereafter.
MPSRF(1.1) 4+ M*+1,..., N, where N is the total length of the chain, we estimate W

I~

by, W= W (02,52, &), where

Therefore, for iterations t =

MPSRF s (1.1)+M*

>

t=MPSRF p;(1.1)+1

2t)

€

*

with equivalent definitions for U]% and ¢ for kK = 0,...,p — 1. We refer to these fitting

strategies as pilot adapted partially centred parameterisations (PAPCPs).

Table 5.3: Means of ESS/s of 6y, o3 and o2 for 20 variance ratio-effective range combina-
tions for the PAPCP with M* = 1000, 2000, 3000, 4000, 5000.

ESS/s 609 ESS/s o3 ESS/s o2

So do/+/2| 1000 2000 3000 4000 5000| 1000 2000 3000 4000 5000, 1000 2000 3000 4000 5000

0.01 O
1/3
2/3

1

9069 8033 7244 6593 6022 338 299 270 247 226
8917 7964 7142 6501 5903| 354 314 283 257 235
9408 8411 7596 6902 6328| 421 374 337 306 280
8799 7816 7004 6409 5980| 397 352 317 288 263

7902 6995 6307 5790 5279
7929 7025 6322 5747 5229
9224 8181 7372 6687 6120
8965 7942 7177 6509 5949

0.1 0
1/3
2/3

1

1996 1564 1346 1328 1130] 55 50 45 39 35
5221 4765 4322 4062 3694| 328 283 258 233 211
4066 3736 3487 3244 2951 483 427 383 343 314
3757 3460 3020 2768 2605| 511 453 405 367 337

395 421 406 414 333
3268 2990 2756 2536 2301
4098 3558 3556 3292 3158
4582 4260 3556 3415 3147

0
1/3
2/3

1

1879 1727 1470 1392 1344| 647 543 476 437 380
3906 3357 2977 2655 2380, 809 731 632 566 523
5528 4819 4238 3660 3370 937 801 715 642 589
5965 5098 4465 4133 3536| 961 825 734 664 595

961 849 748 684 605
11241007 888 804 733
2005 1760 1576 1410 1302
2577 2262 2025 1860 1670

10 0 |3433 28802776 2346 2385|1012 947 812 755 662(1123 1024 895 836 740

1/3
2/3
1

5751 4882 4374 4085 3467
5864 4766 4040 3721 3086
6744 5299 4481 4153 3676

1724 1522 1367 1227 1126
2341 1940 1787 1552 1400
2369 2078 1826 1670 1451

1562 1381 1248 1134 1038
2357 2058 1847 1670 1533
2563 2267 2040 1857 1682

100 O
1/3
2/3

1

3554 3292 2622 2233 2519
6065 5308 4681 4298 3851
6985 5873 5176 4463 3994
7794 6455 5693 5218 4720

1037 915 820 748 669
188716711476 1300 1191
2641 2274 2023 1859 1650
2499 2197 1921 1743 1600

1111 997 905 827 743
1723 1533 1371 1242 1135
2271 1996 1799 1639 1499
3136 2780 2494 2271 2071

Here we look at a simulation example to investigate the impact of different values

of M*. We wish to investigate the trade-off between the additional computation time
of larger values of M* and the improvement in performance gained by obtaining a more

accurate estimate of W.
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We let p = 1 in model (5.7) and so again we reduce the model to the form given in
(5.15). We use the same data as in Sections 5.4.3 and 5.4.4. We fix ¢y and sample from
0o, 02 and o2.

We consider five values of M*: 1000, 2000, 3000, 4000 and 5000. We run five chains of
length 25000 for each value of M*. The same random seed is used each time and so the
MPRSF/(1.1) is identical across the schemes. We compute the ESS and divide it by the
total run time (in seconds) to obtain values for the ESS/s of 6y, o5 and o2. We then take
the mean of the 20 values returned for data generated under the same values of dg and dj.

The results given in Table 5.3 show clearly that there is no advantage in terms of
ESS/s for the model parameters of using a value of M* larger than 1000. The ESS is little
improved as M* is increased and so the reduction in ESS/s is due almost entirely to the
increased run times. Therefore in the following section, we take the PAPCP to be the
scheme with M* = 1000.

5.5 Californian ozone concentration data

In this section we apply the PCP and the PAPCP of model (5.7) with p = 2, to the Cal-
ifornian ozone concentration data introduced in Section 4.5. Given the results of Section
5.4.5 we take the PAPCP to be the scheme that updates W for MPSRF,(1.1)41000
iterations, i.e. M™* = 1000.

We compute the MPSRF;(1.1) and the ESS of the model parameters for both the
PCP and the PAPCP fitting strategies. Results are given in Table 5.4. For comparison
we also include the results for the CP; and the CPs from Section 4.5.4, as these were
the best of the centred and non-centred parameterisations. The subscript indicates the

number of blocks used to update 3. For all four fitting strategies convergence is swift

Table 5.4: MPSRF/(1.1) and the ESS of the model parameters.
MPSRF(1.1) ESS 6, ESS6; ESSoi ESSoi ESSo?

CP, 135 103129 56718 29539 5271 16836
CPy 120 89230 36170 27283 4977 17095
PCP 160 125000 121995 28348 5082 15028
PAPCP 160 124248 111495 29515 5221 15661

with the MPSRF/(1.1)’s between 120—160 iterations. There is also little difference in
the ESS of the variance parameters across the methods. The difference lies in the ESS of
the global mean parameters. The PCP returns independent samples from the marginal
posterior distribution of 6y and near independent samples for ;. The ESS’s are only
slightly reduced by using the pilot adaption scheme. In particular we see the partially
centred methods are superior to the centred methods in the #; coordinate.

Just as there is a penalty in terms of computational time for using CP; instead of CP»
(see Section 4.5.4) the superior mixing of PCP comes at a cost. We have to update 8* as
one block and also we must update W repeatedly for each iteration of the Gibbs sampler,

consequently increasing run times. This increase is mitigated by the use of the PAPCP,
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Table 5.5: MPSRF(1.1) and ESS/s of the model parameters.
MPSRF;(1.1) ESS/sfy ESS/s6; ESS/soi ESS/so? ESS/so?

CP, 2.6 42.7 23.5 12.2 2.2 7.0
CPo 0.7 119.8 48.6 36.6 6.7 229
PCP 5.4 29.6 28.9 6.7 1.2 3.6
PAPCP 3.1 52.1 46.8 12.4 2.2 6.6

but we still have to update all random effects at once.

Table 5.5 gives the time adjusted measures for each fitting strategy. The relatively
short run times for the CPy give it the advantage over the other methods in terms of
MPSRF,(1.1) and ESS/s. However, in order to retain the same number of effective samples
the CPy will need a longer chain than the PAPCP, for example. This means that more
data must be stored and handled. Ultimately the user must decide between an algorithm

that can be run quickly and one that returns samples with lower autocorrelation.

5.6 Summary

In this chapter we have investigated the performance of a PCP for the spatially varying
coefficients model. By minimising the posterior covariance of the random and global ef-
fects, we are able to parameterise the model in such a way that the convergence rate for
the associated Gibbs sampler is zero. The construction is conditioned on the covariance
matrices in the model. We have shown that the parameterisation can be updated dynam-
ically within the Gibbs sampler for the case when these matrices are known only up to a
set of covariance parameters which must be estimated.

The optimal weights of partial centering are shown to vary over the spatial domain,
with higher weights given to locations where the data is more informative about the latent
surface. Therefore, higher weights are found when the data precision is relatively high, or
there is some clustering of locations. We also saw higher weights for locations where the
value of the covariate was larger.

Our investigations show that the unlike the CP and the NCP, the performance of the
PCP is robust to changes in the relative informativity of the data and the strength of
correlation. Swift convergence and independent, or near independent samples from the
posterior distributions of the mean parameters are achieved for all of the data sets we
considered, whether it was simulated or real data.

The PCP requires us to update all of the random effects in one block and all of
the global effects in another, hence it is a computationally intensive strategy. The pilot
adaption schemes are shown to reduce the computational burden associated with the PCP

while inheriting its desirable properties of fast convergence and good mixing.
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Chapter 6

Different parameterisations of

non-(zaussian spatial models

6.1 Introduction

In previous chapters we have confined ourselves to a Gaussian error structure for the
data. In this chapter we investigate the effect of parameterisation on the efficiency of
Gibbs samplers for non-Gaussian spatial models. These models are referred to as spatial
GLMMs, see for example Diggle et al. (1998) and Christensen et al. (2006). We consider

models of the form
Y(s) ~ f(1Z(s)) where E[Y(s)|Z(s)] = 17" (%(s)). (6.1)

for some link function I. We assume that ¥ = (Y(s1),...,Y(s,))" are conditionally
independent given Z = (Z(s1),...,7Z(s,))" and that

Z|B ~ N(X:18,C1)
B0 ~ N(X30,C3)
6 ~ N(m,C3), (6.2)

hence the latent processes are Gaussian, but the model for the data is not Gaussian in
general.

Gelfand et al. (1996) find that for GLMMs, the centred parameterisation (CP) reduces
the posterior correlation between the parameters describing the mean function when com-
pared to the non-centred parameterisation (NCP), a result that extends their work on
normal linear mixed models (Gelfand et al., 1995). Here we are concerned with models
with latent spatial processes, and so we wish to discover how the presence of spatial corre-
lation effects the efficiency of the Gibbs sampler under different model parameterisations.

Together, (6.1) and (6.2) describe the CP of the model, with the NCP found by letting
B = ,@ — X960. The partially centred parameterisation (PCP) is analogous to the one con-
structed in Chapter 5 for Gaussian likelihoods and is found by estimating the conditional

posterior covariance matrix of the random effects.
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Through simulated and real data examples we compare the efficiency of the model
parameterisations. In the case of Gaussian likelihoods we have expressions for the exact
convergence rate when the variance parameters are known. For non-Gaussian likelihoods
we do not have an equivalent result, but we feel justified in comparing parameterisations
in terms of the (M)PSRF and the ESS of the model parameters, given the close agreement
between these measures and the exact convergence rate when the convergence rate is
available.

We look at two widely employed models for non-Gaussian spatial data. We begin with
a Tobit model for the data (Tobin, 1958). Developed to model non-negative economic
data, Tobit models have been generalised to model data that is constrained in some way,
see Amemiya (1984) for a detailed review. Here we apply the Tobit model to create
a predictive map of the probability of positive precipitation over New York for the week
beginning July 30, 2001. The second model we look at is the probit model for binary data.
Binary spatial data arises in many disciplines, i.e. ecology, politics and biology. Here we
use it to indicate whether the observed of ozone concentration exceeds a predetermined
air pollution standard, and then create a map of the probability of exceedance.

The rest of this chapter is organised as follows: Sections 6.2 and 6.3 contain the
full conditional distributions and compare the performance of the CP and the NCP with
simulated and real data sets for the spatial Tobit and the spatial probit models respectively.
Section 6.4 looks at the construction and performance of PCPs for non-Gaussian models

and the chapter is concluded in Section 6.5 with some summary remarks.

6.2 Spatial Tobit model

Tobit regression models are usually applied to data that are truncated at zero. Reich et al.
(2010) use a spatial Tobit model with spatially varying coefficients to model the activity
of pregnant women across North Carolina. Berrocal et al. (2008) use a similar model to
predict precipitation over the Pacific Northwest where they use the output of a numerical
weather prediction model as a covariate. Spatial Tobit models are also widely used in
econometrics, where it is common to model the latent spatial process as a Markov random
field (Pace and LeSage, 2009).

We consider the following Tobit model with spatially varying coefficients
Y(s;) = max{Z(s;),0}

p—1
Z(si)) = > {0k + Br(si)}an(s) + €(s), (6.3)
k=0

where 7o(s;) = 1 and €(s;) ~ N(0,02) independently for all i = 1,...,n. We only observe
Z(s;) when it is non-negative and so we have a truncated normal distribution with a point
mass at zero for observations Y (s;). Covariate information for site s; is contained within
the p x 1 vector x(s;) = (2o(s;),...,xp—1(s;)) and 8 = (0o, ...,0,—1)" is a p x 1 vector of
global regression coefficients. Elements of 8 are assumed to be independent a priori and

each 6 is assigned a normal prior distribution with mean mj and variance azvk, so that
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O ~ N(my, azvk).
We denote by [(s;) the realisation of the kth spatial process at site s;, which we

model as a zero mean Gaussian process. Therefore, we take

Br. = (Br(s1),- .., Br(sn)) ~ N(0,04Ry),

The B, are centred on zero and so model (6.3) is referred to as the NCP for the spatial
Tobit model. Introducing the variable B (s;) = B (s;) + 0 gives us the CP and allows us

to write the model in its hierarchically centred form as

Y(s) = max{Z(s),0}
Z|B ~ N(X.18,02I)
B8 ~ N(X20,C5)
0 ~ N(m,Cj3), (6.4)

where Z = (Z(s1),...,7Z(s,)) and B = (Bg,...,,@;_l)/ is the mp x 1 vector of centred
spatially correlated random effects where 8, = (Bx(s1),- .., Br(sn))-

The distributional specification for Z, 3 and 6 given in (6.4) is used to model Gaussian
data in Chapters 3 and 4, where Z is the top level of the hierarchy. For a description of
design matrices X1 and X9 and covariance matrices C'y and C'5 see Section 3.2.

We consider exponential correlation functions so that

(Rk)ij = exp{—xpdi;},

where d;; = ||s; — s;|| and xy is the spatial decay parameter for the kth process.! To com-
plete the model specification we assign inverse gamma prior distributions to the variance

parameters, such that
o2 ~ IG(ag,by), and o2 ~ IG(ac,be),
and uniform prior distributions to each decay parameter

Xk ~ U(lka uk‘)a

where [, and u are the lower and upper bounds of the support of the uniform distribution.

6.2.1 Gibbs sampling for the Tobit model

In this section we demonstrate how to perform Gibbs sampling for the Tobit model. Let
¢ = {i:Y(s;) =0} and define Z~ = {Z(s;) : i € €} so that Z~(s;) < 0 for i € €. We
treat Z~ as missing data and following Chib (1992) we combine the data augmentation
(DA) algorithm (Tanner and Wong, 1987) with the Gibbs sampler (Gelfand and Smith,
1990) to obtain draws from the posterior distribution m(£|y). We consider only the CP

'In other chapters the spatial decay parameters are represented by ¢. Later in this chapter we take ¢
to be the density of a standard normal distribution, hence the change of notation.
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for the time being and so the vector of model parameters is £ = (B/, o, 0'2,, o2,x"), where

0% =(05,...,05_1) and x = (X, > Xp_1)"-
The DA algorithm uses the following equalities

r(€ly) = / (€12 y)(Z |y)dZ",

and

(2 |y) = / (27 |€, y)m(Ely)dE,

and is performed as follows. Given & (0), we alternate between the following two steps. For
t=1,...,T,

1. Sample Z=® ~ W(Zf|€(t_1),y)-
2. Sample £€®) ~ W(E\Z_(t)>y)-

The draws {€®}L, are samples from the marginal posterior distribution m(£|y). The
conditional distribution of w(Z ™|, y) is

Z7|£7y ~ N(*OO,O}(Xl_BvagI)a

where X[ contains only the rows of X that correspond to locations at which Y'(s;) = 0.
We denote by N4(+,-) the normal distribution truncated to the set A € R.

To generate values from a truncated normal distribution we use a one-to-one inversion
method, see (Devroye, 1986, Chapter 2). Let u ~ U(0,1) be a random draw from a

uniform distribution over the unit interval. Then
v=p+0® (D(a) + [(y) — B()]u),

is a draw from a truncated normal N yj(p, 02), where a = (a — p)/o, v = (b — p)/o and
®(+) is the cdf of a standard normal distribution.

We use the value of Z~ to impute the missing values in y and then we can use the full
conditional distributions given in Section (4.2.2) to sample from 7(§|Z7, y).

For the NCP the set of all model parameters is & = (B’,O’,azl,a?,x/)’, and the
conditional distribution 7(Z~|€,y) is

Z7’£7y ~ N(*OO,O](XI_(IB + X20)702I)
Details of how to sample from 7(&|Z~,y) for the NCP are given in Section (4.2.3).

6.2.2 CP versus NCP for the Tobit model

In this section we investigate the performance of the CP and the NCP of the Tobit model.
We simulate data and compare the performance of each parameterisation in terms of the
(M)PSRF,(1.1) and ESS of the model parameters. The measures are not adjusted for
computation time as there is a negligible difference between the CP and the NCP in this

regard.
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Data is generated from model (6.3) with p = 1 and so we have a global mean parameter
0o which is locally adjusted by the realisations of a spatial process, Bo (or By in the non-
centred case). We take the unit square to be the spatial domain and randomly select n=40
sampling locations, see Figure 3.3, and fix 6y = 0. We let g = 03/02 be the ratio of the
random effects variance to the data variance. We let 02 = 1 and vary o2 so that we have
five variance ratios of g = 0.01,0.1, 1,10, 100. For each variance ratio we have four levels
of the decay parameter, ¥, corresponding to effective ranges of dy = 0,/2/3,2v/2/3, /2.

We generate 20 data sets for each of the 20 variance ratio-effective range combinations.

We begin by assuming that 02 and o2 are known, and hence they are fixed at their
true values within the sampler. Therefore, we only sample from Bo (or By) and 6. For the
prior distribution of 8y we take hyperparameters mg = 0 and vy = 10*. We run five chains
of length 25,000 with from widely dispersed starting values, with the same values used for
both the CP and the NCP. From the output we compute the PSRF;(1.1) and the ESS
of 8yg. The results for the CP and the NCP are given in Figures 6.1 and 6.2 respectively.
The top rows give the results for the PSRF,/(1.1) and the bottom rows give the results
for the ESS of 65. Each panel corresponds to a value of g, rising from 0.01 on the left
to 100 on the right. Within each panel of the four boxplots represent the results for each

variance ratio-effective range pair, with each boxplot formed of 20 values.
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Figure 6.1: PSRF/(1.1) and the ESS of 6y for the CP of the Tobit model with known
variance parameters. Plots (a)—(e) give the PSRF,(1.1), plots (f)—(j) the ESS of §. L-R
8o = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are
used.

We see that the effect of that varying dp and x, on the performance of the different
parameterisations of the Tobit model is similar to that seen for the Gaussian model, inves-
tigated in Chapter 4. As the relative size of the data variance decreases, the performance
of the CP is improved. Furthermore, for a fixed variance ratio, increasing the strength of
correlation also improves the CP’s performance. The opposite is seen for the NCP, where

a relative increase in the data variance or a reduction in the strength of correlation yields
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Figure 6.2: PSRF;/(1.1) and the ESS of 6y for the NCP of the Tobit model with known
variance parameters. Plots (a)—(e) give the PSRF/(1.1), plots (f)—(j) the ESS of . L-R
8o = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are
used.

an improved performance.

We now relax the assumption that ag and o2 are known and sample from their full
conditional distributions. Following Gelfand et al. (2000) we take the prior distributions
for the variance parameters to be 7(03) = m(02) = IG(2,1). As we are now sampling the
variance parameters, the CP and the NCP are compared by their MPSRF/(1.1)’s and
the ESS of 0y, o and o2.

Figure 6.3 gives the MPSRF/(1.1) and the ESS of # for the CP. We see a similar
picture here as when the variance parameters are assumed to be known. As the ratio of dg
increases, the MPSRF/(1.1) decreases and the ESS of 0y increases. We also see improved
performance with increasing strength of correlation for a fixed variance ratio. It should
be noted that for independent random effects, marginally Var(Z(s;)) = 02 + o2, which
explains the poor performance for zero effective range.

The MPSRF/(1.1) and the ESS of 6y for the NCP are given in Figure 6.4. The
NCP also displays the trends here that were apparent when the variance parameters were
fixed at their true values. The performance worsens as Jy increases or as the strength of
correlation increases.

The ESS of the variance parameters is shown for the CP and the NCP in Figures
6.5 and 6.6 respectively. The pattern of results for the different parameterisations is
similar. Both CP and NCP display poor mixing in the 0(2) and o2 coordinates for the case
when the random effects are independent. However, the performance is much improved
in the presence of spatial correlation. The ESS of the variance parameters shows a slight
downward trend as Jg increases, but not significant enough to claim that any relationship

exists.
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Figure 6.3: MPSRF /(1.1) and the ESS of 6, for the CP of the Tobit model with unknown
variance parameters. Plots (a)—(e) give the MPSRF,(1.1), plots (f)—(j) the ESS of . L-R
8o = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are
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Figure 6.4: MPSRF/(1.1) and the ESS of 6, for the NCP of the Tobit model with unknown
variance parameters. Plots (a)—(e) give the MPSRF,(1.1), plots (f)—(j) the ESS of 6. L-R
S0 = 0.01,0.1,1,10,100. Within each plot effective ranges 0, v/2/3, 2v/2/3 and /2 are
used.
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Figure 6.5: ESS of 02 and o2 for the CP of the Tobit model with unknown variance

parameters.

Plots (a)—(e) give the ESS of o2, plots (f)—(j) the ESS of o2.
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Figure 6.6: ESS of 02 and o2 for the NCP of the Tobit model with unknown variance

parameters.

Plots (a)—(e) give the ESS of 03, plots (f)—(j) the ESS of o2.

L-R 4o

0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are used.
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6.2.3 Global mean and parameterisation for Tobit data

In this section we investigate how the performance of the CP and the NCP is affected
by the global mean 6y and whether its value need inform us about how we choose to
parameterise model (6.4).

The probability that Y (s) is equal to zero is given by

Z(s)— 0 —f —0
Pr(Y(s) = 0) = Pr(Z(s) <0)=P7“<¢03f0§< ¢03+La2> -7 <J08+L02>

and hence in the above simulation study by fixing §y = 0 we fix probability of not observing

Z(s) at 0.5. We now look at how varying this probability affects the performance of the
CP and the NCP. To generate the data we fix 03 = 02 = 1 and vary 6y such that the
Pr(Z(s) <0)=0.9,0.7,0.5,0.3,0.1. For each level of Pr(Z(s) < 0) we have four effective
ranges 0, v/2/3, 21/2/3 and v/2, and we generate 20 data sets for each of the 20 pairs of
Pr(Z(s) < 0) and effective range.

We begin by fixing the variance parameters and looking at the PSRF,(1.1) and the
ESS of 6y. Results for the CP and the NCP are given in Figures 6.7 and 6.8 respectively.
The PSRF/(1.1) is given in the top row and ESS of 6y given in the bottom row. Each
panel relates to a Pr(Z(s) < 0), ranging from 0.9 on the left to 0.1 on the right. Within
each panel the four boxplots correspond to the four effective ranges, increasing from left to
right. Each boxplot is made of the results of the 20 data sets generated for the respective
pairing of Pr(Z(s) < 0) and effective range.

We see that for a given 0y increasing the strength of correlation improves the perfor-
mance of the CP and hinders that of the NCP, as expected given the results of Section
6.2.2. When the probability of observing Z(s) is increased, we see a slight improvement
in the performance of both the CP and the NCP, but nothing to suggest that one param-
eterisation should be favoured over the other for a given level of censoring.

We now drop the assumption that the variance parameters are known and sample from
their full conditional distributions. Figures 6.9 and 6.10 give the MPSRF;/(1.1) and ESS
of 0y for the CP and the NCP. Again we can see an improvement in performance for both
the CP and the NCP as the Pr(Z(s) < 0) decreases. The ESS for the variance parameters
for the CP and the NCP is given in Figures 6.11 and 6.12 respectively. The results are
very similar for both parameterisations, each displaying an increase in the ESS of both of
the variance parameters as Pr(Z(s) < 0) decreases. We conclude that the value of the

global mean 6y should not be a factor in choosing between the CP and the NCP.
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Figure 6.7: PSRF,(1.1) and the ESS of 6y of the CP of the Tobit model with different
global mean with known variance parameters. Plots (a)—(e) give the PSRF/(1.1), plots
(f)—(j) the ESS of y. L-R Pr(Z(s) <0) =0.9,0.7,0.5,0.3,0.1. Within each plot effective
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Figure 6.8: PSRF/(1.1) and the ESS of 6 for the NCP of the Tobit model with different
global mean with known variance parameters. Plots (a)-(e) give the PSRF/(1.1), plots
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Figure 6.11: ESS of 08 and o2 for the CP of the Tobit model with different global mean
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Figure 6.12: ESS of 02 and o2 for the NCP of the Tobit model with different global mean
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6.2.4 Tobit model applied to New York precipitation data

We now apply the CP and the NCP to a real data set. We have precipitation data from
New York for the week July 30—August 5, 2001. Observed are the total weekly precipitation
at 130 sampling locations. We fit the model to data from 104 locations having randomly
selected 26 points to leave out for validation. These are shown in Figure 6.13. Of the 104
data sites there was no precipitation that week at 29 of them, and of the 26 validation

sites there was no precipitation at seven. The dry locations are shown in Figure 6.14

+ %

104 data sites §
26 validation sites D

Figure 6.13: Locations of precipitation monitoring stations in New York.

We do not have any covariate information and therefore we set p = 1 in model (6.3),
and so 0 = 6y, 3 = BO and 3 = B,. To estimate x, we fit the model with five different
values corresponding to effective ranges, dy, of 50, 100, 250, 500 and 1000 km. Predictions
are made at the validations sites and prediction errors are computed. Table 6.1 gives the
mean absolute prediction error (MAPE), the root mean squared prediction error (RMSPE)
and the continuous ranked probability score (CRPS) for each effective range. We see that
an effective range of 100 km yields the lowest value for each criterion and so we set
Xo = —log(0.05)/100 ~ 0.03.

Table 6.1: Prediction error for different values of dy under the Tobit model.

dy MAPE RMSPE CRPS
50  0.791 0.883 0.470
100 0.767  0.858 0.456
250  0.812 0.885 0.472
500  0.876 0.933 0.497
1000  1.011 1.072 0.555
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+ data sites with +ve precipitation

0 data sites with zero precipitation .
+ validation sites with +ve precipitation
0 validation sites with zero precipitation Y7,

Figure 6.14: Locations of precipitation monitoring stations in New York indicating which
measured positive precipitation.

Having fixed the decay parameter we now compare the CP and the NCP. We run five
chains each of length 25,000. Table 6.2 gives the MPSRF;(1.1) and ESS of each of the
model parameters for the CP and the NCP. We see that the CP has an MPSRF/(1.1)

Table 6.2: MPSRF,(1.1) and the ESS of the Tobit model parameters.

MPSRF )/ (1.1) ESS 6y ESSoi ESSo?
CP 500 52982 6662 5207
NCP 1875 2001 3878 4270

that is nearly four times lower, and an ESS for 6y that is over 26 times greater than that
of the NCP.

Due to its superior performance we use the CP to obtain parameter estimates. A single
chain of 50,000 iterations is run and the first 10,000 are discarded. The arithmetic mean
and the 2.5 and 97.5 percentiles for the model parameters are given in Table 6.3 along

with density plots given in Figure 6.15.

Table 6.3: Parameter estimates and their 95% credible intervals (CI) for the Tobit model.

Parameter Estimate 95% CI
0o 0.686  (—0.011,1.358)
o2 2.730 (1.453,4.243)
o? 0.589 (0.184,1.377)
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Figure 6.15: Density plots of the Tobit model parameters for New York precipitation data.

By evaluating (56” = ag(t) /o’e2 ® at the tth iteration of the sampler, we obtain an
estimate of &y = 6.531. This explains why the CP outperforms the NCP for this data set.
We now look to create a predictive map of the probability of precipitation across New
York during the week that the data were recorded. We draw samples from the posterior

predictive distribution of Z(s) at knot locations on a 18 x 12 grid given in Figure 6.16.

2

2), the posterior

For a given knot location s* and model parameters £ = (B/O,Ho,ag,a

predictive distribution is given by
m(Z(s%)ly) = /W(Z(s*)lﬁo(s*),&Z‘,y)ﬂ(ﬁo(s*)l&Z_,y)ﬂ(i, Z " |y)dpo(s*)dedZ .

For each post-burn in sample (& 0 z _(t))’ ~ (&, Z |y) obtained from the Gibbs sampler
we draw B(()t)(s*) ~ 7(Bo(s)]€®, Z=® ) and then

70 (s*) ~ 7(Z(s)8(s7), 60, 270 y),

is a draw from the posterior predictive distribution 7(Z(s*)|y). The relevant conditional

distributions are
Z(s*)|Bo(s%),&€,Z ",y ~ N(Bo(s*),0?),

and
Bo(s)I€. 2y ~ N (60 + coRy ' (By — 1), o3 (1 — chRy "))

where ¢p is a n-dimensional vector whose elements are given by exp{—x,l|s; — s/}

By computing the proportion draws from Z®)(s*) ~ w(Z(s*)|y) that are greater than
zero, we compute the probability of positive precipitation at s* during the week that
the data was recorded. This is done for all knot locations. The probabilities are then

interpolated to produce the predictive probability map given in Figure 6.17.
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Figure 6.16: Data locations and predictive grid for New York precipitation data.
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Figure 6.17: Predictive map of the probabilty of positive precipitation across New York
for the week July 30—August 5, 2001.
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6.3 Spatial probit model

In this section we look at the spatial probit model. The probit model has been widely
applied to model binary data due to the easy implementation of Gibbs samplers for making
inference. The spatial probit model is widely used in ecology for presence-absence data,
(Johnson et al., 2013; Rathbun and Fei, 2006; Musio et al., 2008), and is applied to model
voting behaviour (Salazar et al., 2013) and real estate markets (Gelfand et al., 2000).

We consider the following model

1 if Z(Si) > z*

Y(Si =
0 if Z(s;) < 2*
p—1
Z(si)) = Y {0+ B(si)}u(si) + e(si), (6.5)
k=0
fori =1,...,n, where Z(s;) is the realisation at s; of the process driving the observable

Y (s;) and z* is some threshold value that dichotomises Z(s;). Errors €(s;) are modelled
2

as independent, normally distributed random variates with mean zero and variance o?.

The rest of the model is identical to that of the Tobit model, given in Section 6.2.

Setting f1(s;) = ... = Bp—1(s;) =0, so that
Z(si) = ' (8;)0 + Bo(si) + €(s:),

where &/(s;) = (1,z1(s;),...,2p—1(8;)), gives us the model considered by Gelfand et al.
(2000). They have z* = 0 and note that

P?“(Y(Si) = 1|0a/60>062) = PT(Z(S) > OwaBO?J?)
_ -3 (_33 (s1)6 + 50(&'))

Oe

e (m’(si)e + Uofy(si)> |

O¢

where ®(-) is the cdf of a standard normal distribution, and v = (y(s1),...,7(sn)) with
By = 007, so that v ~ N (0, Ry). Therefore Pr(Y (s) = 1|0, B, 02) is unchanged if o, o
and @ are multiplied by a constant. To combat this indentifiability problem, De Oliveira
(2000) and omit the nugget term and have

Z ~ N(X6,02Ry),

where the ith row of X is #'(s;). However, Gelfand et al. (2000) point out that without

including €(s;), there is no conditional independence for the Y (s;), and so they set o = 1.

These issues only arise if z* = 0, as in general

Pr(Y(s;) =1/0, 8y, 0%) = ® <$/(Si)9 + o0v(s;i) — z*> |

O¢
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and we have z* # 0 for the simulated and real data examples analysed in Sections 6.3.2
and 6.3.3.

6.3.1 Gibbs sampling for the probit model

Gibbs sampling for the probit model is performed similarly to the Tobit model, but for

binary data we must obtain samples from all of Z, and not just the negative part. We

have that € = {i : Y(s;) = 0} and Z= = {Z(s;) : i € €}, see Section 6.2.1. Now

we equivalently define & = {i : Y(s;) = 1} and ZT = {Z(s;) : i € &}. Therefore

we partition Z = (Z~', Z™')" where Z~ contains the unobserved values of Z at locations

where Y (s;) = 0, and Z contains the unobserved values of Z at locations where Y (s) = 1.
For the CP the full conditional distributions for Z~ and Z* are

Z_|£7y ~ N(—oo,z*](X_Ba 0-621—) and Z+|£7y ~ N(z*,oo)(X—’—élvO-egI)a

where X~ and X7 are the rows of X corresponding to locations where Y (s;) = 0 and
Y (s;) = 1, respectively. For the NCP we have

Z_lgay ~ N(—oo,z*](Xl_(16+ X20>703I) Z+‘£ay ~ N(z*,w)(Xi_(B"i_ X20>7062I)7

The remaining full conditional distributions for 3 (for the CP), 3 (for the NCP), 0, o2,

02 and x are the same as those given for the Gaussian model, see Section 4.2.

6.3.2 CP versus NCP for the probit model

We generate data from the probit model (6.5) where we set p =1 and 6y = 1 and 2* = 1.
We use the unit square as the spatial domain and the same sampling locations as were used
for the Tobit model in Section 6.3.2. We use 20 variance ratio-effective range combinations.
There are five levels for 6y = o3/02 which are 0.01, 0.1, 1, 10 and 100. We use effective
ranges of 0, v/2/3, 2¢/2/3 and /2, which correspond to fractions of the largest possible
separation of two points in the unit square. We have 20 data sets for each combination,
and hence 400 data sets in total. We run five chains of length 25,000 for the CP and the
NCP, using the same set of widely dispersed starting values for each parameterisation.

We begin with case when o2 and o2 are assumed to be known. The PSRF;(1.1) and
ESS of g are given for the CP and the NCP in Figures 6.18 and 6.19 respectively. We see
a now familiar pattern. The performance of the CP is improved with increasing §y with
the opposite observed for the NCP. For a fixed dy increasing the effective range favours
the CP but hinders the NCP.

When we sample from the variance components the picture remains largely unchanged.
The MPSRF;(1.1) and the ESS of 6y for the CP is given in Figure 6.20, with the equivalent
results for the NCP given in Figure 6.21. Again, we can see that as dg is increased the
CP becomes more efficient, and the NCP less so. It is not as clear here as it is when the
variance parameters are fixed, but increasing the effective range has a positive effect on
the ESS of 6y for the CP, and a negative one for the NCP.
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The results for the variance parameters 08 and o2 are given in Figures 6.22 and 6.23.
The pattern of results for each parameterisation is the same. We see that the ESS of o3
falls with Jg. For a fixed g the ESS increases with effective range, dgy, especially for §y < 1.

For both the CP and the NCP, the results for o2 are fairly constant across the different

values of dg. For a fixed &g, we see that the ESS of 062 increases with dg.
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are used.
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Figure 6.21: MPSRF)/(1.1) and the ESS of 6y for the NCP of the probit model with
unknown variance parameters. Plots (a)-(e) give the MPSRF/(1.1), plots (f)—(j) the
ESS of 6y. L-R dp = 0.01,0.1,1,10,100. Within each plot effective ranges 0, v/2/3, 21/2/3
and /2 are used.
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Figure 6.22: ESS of 02 and o2 for the CP of the probit model with unknown variance

parameters.

Plots (a)—(e) give the ESS of o2, plots (f)—(j) the ESS of o2.

L-R §p =

0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2v/2/3 and /2 are used.
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Figure 6.23: ESS of 03 and o2 for the NCP of the probit model with unknown variance

parameters.

Plots (a)-(e) give the ESS of o3, plots (f)—(j) the ESS of o2.

L-R 69 =

0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are used.
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6.3.3 Probit model applied to Californian ozone concentration data

In this section we apply the CP and the NCP of the probit model to the Californian ozone
data set analysed in Section 4.5. Here, we are interested in the probability that the ozone
concentration exceeds 75ppb, the limit set by the US Environmental Protection Agency.
We model data on the square root scale to stabilise the variance and so z* = /75 in model
(6.5). As in the simulation study in Section 6.3.2 we have x(s;) = 1 and hence 68 = 6y,
B:BO and 8 = By.

We begin by estimating the decay parameter, x,. We consider the same effective ranges
that were considered in Section 4.5: 50, 100, 250, 500 and 1000 km. The true values of
Z(s) are the observed ozone concentrations, and in this case they are available. Therefore,
we compare the predictions for Z(s) at the validation sites with the ozone concentration
data. Table 6.4 shows the MAPE, the RMSPE and the CRPS for the five different effective
ranges. We see that judged by the RMSPE and the CRPS, an effective range of 250 km
gives the best performance, and by the MAPE criterion it comes a close second. Therefore
we let x, = —log(0.05)/250.

Table 6.4: Prediction error for different values of dy under the probit model.

dy MAPE RMSPE CRPS
50  13.99 17.96 10.91
100 12.65 16.81 10.21
250  11.72 15.96 10.05
500 11.69 16.16 10.78
1000 13.83 18.36 11.81

With x fixed, we run five chains with widely dispersed starting values of length 25,000
each for both the CP and the NCP. The MPSRF/(1.1) and the ESS of 6y, o and o2
are given in Table 6.5. There is not much between the CP and the NCP in terms of
the MPSRFj/(1.1), both taking around 10,000 iterations to converge by this measure.
The ESS of 02 is very low for both parameterisations and this contributes to their slow

convergence. However, the ESS of 6y is over 23 times greater for the CP than the NCP.

Table 6.5: MPSRF,(1.1) and the ESS of the probit model parameters.

MPSRF ) (1.1) ESS 6y ESSoi ESS o2
CP 9925 19245 268 1887
NCP 10335 740 271 1899

We now use the CP to obtain estimates of the model parameters. A single chain of
length 50,000 is generated. We discard the first 10,000 iterations, performing inference on
what remains. Parameter estimates and their 95% credible intervals are given in Table
6.6 and density plots of model parameters given in Figure 6.24.

We obtain an estimate for 6y = 03 /02 of o = 10.498, which is why we have far better
mixing for 6y for the CP than the NCP. Note the uncertainty in the estimate of ag. High
correlation between successive iterates means that after excursions to the tails the sampler

is slow to return to areas of high posterior density.
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Table 6.6: Parameter estimates and their 95% credible intervals (CI) for the probit model.

Parameter Estimate 95% CI
0o 8.885 (8.581,10.180)
o2 3.824  (0.456,17.475)
o? 0.406 (0.133,1.137)
90 0(2)
o | 3 |
o o |
2 2 |
g < | 2]
oo 0o |
o) ] ] 3 |
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Figure 6.24: Density plots of the probit model parameters for Californian ozone concen-
tration data.

To create a predictive map of the probability of exceedance, predictions are made at
a collection of points described by the 12 x 12 grid given in Figure 6.25 and are then
smoothed to create the map given in Figure 6.26. We can see that the probability of

exceeding the 75 ppb threshold is greatly reduced for areas near the coast.
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Figure 6.25: Data locations and predictive grid for Californian ozone concentration data.
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Figure 6.26: Predictive map of the probabilty of that ozone concentrations in California
exceed 75 ppb.
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6.4 Partial centering for non-Gaussian spatial models

In this section we look at the construction and performance of the partially centred pa-
rameterisation (PCP) for non-Gaussian spatial models. Recall that in the case of Gaussian
likelihoods the PCP is induced by constructing a weight matrix W = I — BC,, 1 where
B =Var(B|6,y) and Cy = Var(B|0) are the conditional posterior and prior variances of
3 respectively.

In the Gaussian case we can compute B (see Lemma 2.4.1), but we do not have
an equivalent expression in the non-Gaussian case, and so it must be estimated. We
approximate the Var(,@|9, y) by B, where

~—1 52 ~

and ,@ is the MLE of 3. Justification of this approximation can be found in (Bernardo
and Smith, 1994, Chapter 5.3).

This approach is used by Papaspiliopoulos et al. (2003) to find a PCP for the Poisson
log-normal model often used for count data. Christensen et al. (2006) suggest transforming
,C:} to obtain approximately independent random effects, so that instead of updating B, they
update B* where 8 = BI/ZB*, and 31/2 is the Cholesky decomposition of B. We use B
to find W =1 — B cy ! and hence construct a PCP for the Tobit and probit models.

6.4.1 Partial centering for the Tobit model

In Section 6.2 we analysed the performance of the CP and the NCP for the spatial Tobit
model. In this section we revisit the Tobit model and investigate the construction and
performance of its PCP. We consider model (6.3) with p = 1. Initially we must compute

~

B, given in expression (6.6). To begin, let e; be an indicator variable such that

1 ifY(s;) >0

€; =

Now we write log (8|60, y) as

log m(By|60,y) o< logm(Y|By) + logm(By|6o)

n

= > (1—e)log(l— ®;)

i=1

1 2 1 5 2
+e; <—210g 2r —logo? — 507 (Y(s;) — Bo(si)) )

o
2

Slogat — 5 (8o~ 1) Ry' (B~ bot) . (67

og2m — 203
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where ®; = ®(n;), the cdf of a standard normal distribution taking argument 7;, where

n; = B(s;)/oc. Twice differentiating (6.7) with respect to B, and negating gives

0? - . 1—e ¢\ mdi
7873210g7r(130|00,y) = dlag{ 052 [(1_<I>z> - 1— @,
0

€; 1 —1
— —R 6.8
+ 062 } + O_g 0 ( )

where ¢; = ¢(n;), the pdf of a standard normal distribution taking argument 7. Evaluating
~ ~—1 —~
expression (6.8) at the 3, gives B = from which W follows.

Properties of the W for the Tobit model

Note that if Z(s;) is observed for all i = 1,...,n, then we get B = (0721 + 0y *Ry") 71,
which is the exact expression for the conditional posterior variance of Bo for the equivalent

hierarchical model with a Gaussian first stage.

When Z(s;) is unobserved the data precision, 1/02, is multiplied by h;, where

P ? _ Nidi
! 1—®; 1—®;

By Mills’ Ratio inequality (Gordon, 1941) we have that for a real constant x > 0,

¢(z)
1—®(x)

—z>0, (6.9)

and it is clear that inequality (6.9) holds for z < 0 and hence h; > 0. Furthermore, by the
properties of the truncated normal distribution (Barr and Sherrill, 1999), the variance of

Z~(s;) is given by

vm@(myq£0+’Wi—(¢g)j<ﬁ. (6.10)

1—®; 1-
By combining (6.9) and (6.10) we get the following bounds on h;

Var(Z=(s;))

2
O¢

O<h;=1-— <1,
for 02 # 0. Therefore, the effect of not observing Z(s;) is to reduce the data precision at
location s; by a factor h;. For independent random effects, where Ry equals the identity

matrix, W is a diagonal matrix with ith diagonal element equal to w;, where

Tﬁij if Y(s;) > 0
;= UO+O2—€
% if V(s;) =0,

02 +0%/h;
hence if Z(s;) is unobserved the weight associated with s; is shifted downwards.
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We can write B as

B = 08 (ngiag{(l —e)hi+e}+ R61> )

€

and we can see that as o2/02 — 0, B — 03 R and W tends towards zero matrix. Alter-

natively, Lemma 3.3.1 lets us write B as

~

—1
B = USRO — UgR(] (ozdiag {[(1 — el-)hi + 61]_1} + USR()) U%R(),
from which we get the following expression for w:
W = Ry <62diag {[(1 — ei)hi + 62']_1} + R0> ,
90

and we see that as 02/a% — 0, W - I Therefore, a PCP constructed in this way has
the desired property that as the data variance overwhelms that of the random effects we
move toward the NCP and opposingly, as the variance of the random effects overwhelms
that of the data we move toward the CP.

Maximum likelihood estimates for the Tobit model

To obtain an estimate for B we must evaluate expression (6.8) at the maximum likelihood
estimates for B,. Closed form solutions for the maximum likelihood estimates are not
available for the Tobit model, and hence iterative methods must be employed. We use
the EM algorithm (Dempster et al., 1977), details are taken from Amemiya (1984). Given
current values £€®) = (B[()t), o2®))’ the EM algorithm finds £€*+1) as follows:

1. E-step : Compute K(£|€®) = E[logn(Z|¢)|€®), y].
2. M-step : Let €1 be the value of & that maximises K(E!ﬁ(t)).

Recalling that e; = 1 if Z(s;) is observed, 0 otherwise, K (£|€®) is given by

2

K(Ee®) = ~Tlogo? - 5> iy

¢ 202« -
1=

n

n 9 1
= bt g3l

€ =1

2

_2(1762 zz:;(l —)E [(Z—(
(

(:) = Bo(s1))
8i) — Bo(si))2 \ 5(75)}
s:) = Bo(s1))

o > e (B[ 2750169 — ()
€ i=1

_2(172 Y (1 —e;)Var (Z_(Si)\ﬁ(t)) )
€ =1



where

E[Z (s:)|€V] = 3 (1) — o — 2 (sy), (6.11)
“1-al
and )
(t) (1) (t)
Var(z- (s)le®) = 020 (14 2000 (P ) )
1-a (1-a

where 0" = 3 (s;) /o, ¢\ = o(5") and &) = o(n").
Let y, be the vector of observations with zeros replaced by z7(s;), as defined in (6.11).

Then we have
1 n
202 (yz(si) B > 202 Z J)Var ( (Si)‘g(t)) '
€ =1
(6.12)
Differentiating (6.12) with respect to Bo(s;) and then o2, it is clear that to maximise
K (£]€W) we should set

K(glg") =

B (85) = y.(s0),
and

1 |« . 2
2(t+1) _ = A1 G e —(s:)]e®
o: = [; <yz(s,) By (sz)) + (1 —e)Var (Z (si)|€ )] :

Once the algorithm has converged we have estimates for Bo which can be substituted
into (6.8) to find B.

Performance of the PCP for the Tobit model

With the data generated for use in Section 6.2.2 we investigate the performance of the PCP.
We run two simulation studies. For the first we assume 03 and o2 are known. In addition,
the true values of By(s;) are substituted into (6.6) to compute B. The PSRF);(1.1) and
ESS of 6y are plotted in Figure 6.27. We can see rapid convergence and a high ESS for the
three cases when Jy < 1. The performance is not so good for larger relative values of o3.
In particular, the ESS is at its lowest when §y = 100 and there is no spatial correlation
between the random effects. However, across the range of variance ratio-effective range
pairs, there is far less variability in the performance of the PCP than we saw from either
the CP or the NCP, whose results are given in Figures 6.1 and 6.2 respectively.

Figure 6.28 compares the performance of the PCP with the CP and the NCP for the
same 400 data sets, under the assumption that the variance parameters are known and
the true values of 3, have been used to compute B. On the top left panel we have the
PSRFj/(1.1) for the CP minus the PSRF/(1.1) for the PCP for each of the 400 data sets.
The bottom left panel gives the ESS of 6y for the PCP minus the ESS of 6y for the CP.
Therefore, values above the horizontal line indicate superiority of the PCP. We see that
for lower values of §g, the PCP out performs the CP but our construction of the PCP fails
to match the CP for higher values of .

The equivalent comparisons between the PCP and the NCP are given in the right two
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Figure 6.27: PSRF)/(1.1) and the ESS of y for the PCP for the Tobit model for known
variance parameters using the known values of 3, to compute B. Plots (a)-(e) give the
PSRF/(1.1) of 0y, plots (f)—(j) the ESS of 3. L-R d9 = 0.01,0.1, 1,10, 100. Within each
plot effective ranges of 0, v/2/3, 2¢/2/3 and /2 are used.

panels of Figure 6.28. We can see that the PCP outperforms the NCP for almost all data
sets both in terms of PSRF,(1.1) and ESS for 6.

For the second simulation study, the analysis is repeated but now we use the EM
algorithm to obtain maximum likelihood estimates for 3, and sample from the variance
parameters, dynamically updating W within the sampler.

We see from Figures 6.29 and 6.30 that the PCP is robust to changes in the variance
ratio and effective range. The differences of the MPSRF/(1.1) and ESS of 6y between
the PCP and each of the CP and the NCP are plotted in Figure 6.31. The PCP clearly
outperforms the CP and the NCP in terms of ESS of 8y. Of the 400 data sets, the PCP
returns a greater ESS for 6y than the CP for 393 data sets, and one greater than the NCP
for 384 data sets. The comparison of the ESS of the variance parameters is given in 6.32.
The PCP performs well against the CP in the o2 coordinate and well against the NCP for

both variance parameters.

142



A PSRFy(1.1)

A ESS for 6y

(CY

(b)

8 8
g Gl-h
— — -
L \E/
o e e in o
o
7]
a
4 Q 4
o o
o o
o | o |
o o
b o
T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400
Data set Data set
(© (d)
[Te] n
o o
+ 4 + 4
[ [
- —
4 < 4
8 s 8
[}
8 @ 3
. < .
[Te] [Te)
o o
5 | T |
(] (3]
— —
I I
T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400
Data set Data set

Figure 6.28: Comparison of the PSRF;(1.1) and ESS of 6, for the PCP with the CP and
the NCP of the Tobit model with known variance parameters using the known values of
B, to compute B. Panels (a) and (c) compare PCP with CP. Panels (b) and (d) compare
PCP with NCP.

10000 20000

[o]

2e+04 6e+04 1le+05

ot

o i i i
T T T T
0 13 23 1

(a)

T T T T
0 13 23 1

®

10000 20000

0

40000 80000

0

T o | T
" o "
' o '
' o
' N
3 oi ;
= -
o | .
8 ‘
Q : i D |
T e o | +EQI:I
0 13 23 1 0 1/3 23 1
(b) ()
3 < I
i o - i
T . ' |
— 3 ‘
Vool ® -
HH : = |
o '
<
[}
_ Ly - E
= ' o] .
- 1 1~ 8|~ L L =
0 13 23 1 © 0 1/3 23 1

(9)

(h)

10000 20000

0

60000

0 20000

Peim

10000 20000

0

s,

T T T
0 13 23 1

(d)

T T
0 13 23 1

(e)

R - o — :
' ' o i '
1 " ! ' o A '
i ' o "
: E : © :
i } ol —
. " o i
| TB; 81 BQH
= SIBYT T
S B e S S
0 13 23 1 0 13 23 1

@

@

Figure 6.29: MPSRF;/(1.1) and the ESS of 6y for the PCP of the Tobit model with
unknown variance parameters Plots (a)—(e) give the MPSRF/(1.1), plots (f)—(j) the ESS
of fg. L-R &y = 0.01,0.1, 1,10, 100. Within each plot effective ranges of 0, v/2/3, 2v/2/3

and /2 are used.
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Figure 6.30: ESS of o3 and o2 for the PCP of the Tobit model with unknown variance
parameters. Plots (a)—(e) give the ESS of 03, plots (f)—(j) the ESS of 2. L-R §y =
0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 21/2/3 and /2 are used.
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Figure 6.31: Comparison of the MPSRF,(1.1) and ESS of 6y for the PCP with the CP
and the NCP of the Tobit model with unknown variance parameters. Panels (a) and (c)
compare PCP with CP. Panels (b) and (d) compare PCP with NCP.
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Figure 6.32: Comparison of the ESS of ¢4 and o2 for the PCP with the CP and the NCP
of the Tobit model with unknown variance parameters. Panels (a) and (c) compare PCP
with CP. Panels (b) and (d) compare PCP with NCP.

145



PCP for New York precipitation data

We now apply the PCP to the New York precipitation data analysed in Section 6.2.4. We
run five chains of length 25,000 and compute the MPSRF/(1.1) and the ESS of the model
parameters. We also run the pilot adapted PCP (PAPCP) introduced in Section 5.4.5.
Recall that the PAPCP adapts W, or in this case ﬁ\/, for an additional 1000 iterations
after the MPSRF dips below 1.1, and then fixes it for subsequent iterations.

Table 6.7 shows the MPSRF,(1.1) and ESS of the model parameters for each of the
different fitting methods. Recall from Section 6.2.4 that we got an estimate for the ratio of
the variance parameters of 8y = 6.531. We can see that the PCP is comparable to the CP
in terms of MPSRF/(1.1) and the ESS of the variance parameters, but returns a lower
ESS for y. We saw in the first simulation study earlier in this section that where §y > 1
the respective PSRF/(1.1)’s for the CP and the PCP are similar but the CP has a higher
ESS for 6y, see Figure 6.28. This may be due to the difficulty in estimating Var(,@owo, Y)

for relatively high values of o3.

Table 6.7: MPSRF,(1.1) and the ESS of the model parameters for the Tobit model.
MPSRF )/ (1.1) ESS 6y ESSoi ESSo?

CPp 500 52982 6662 5207
NCP 1875 2001 3878 4270
PCP 515 38316 7055 4297
PAPCP 515 36268 7026 4303

Table 6.8: MPSRF(1.1) and the ESS/s of the model parameters for the Tobit model.
MPSRF:(1.1) ESS/s 6y ESS/s o5 ESS/so?

CP 6.76 313.97 39.42 30.81
NCP 25.35 11.84 22.95 25.27
PCP 49.44 31.93 5.88 3.58
PAPCP 24.8 60.25 11.67 7.15

Table 6.8 gives a comparison of the fitting strategies with the measures adjusted for

computation time. Here the relative computational efficiency of the CP is clear.
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6.4.2 Partial centering for the probit model

We now turn our attention to the PCP for the probit model. As in Section 6.4.1 we are
without access to the exact conditional posterior covariance matrix of Bo and therefore we
evaluate the negated Hessian matrix of the log full conditional distribution at the MLE,

~ ~—1 —~
By. This gives B and in turn allows us to compute W.

We begin by writing the log-conditional posterior distribution of Bo as

log 7(Byl00,y) o logm(Y|B,) + log(By|6o)

n

— 2(1 — ;) log(1 — ®;) + y; log(®;)

i=1

n 1 - -
~logas — —(By — 001)' Ry *(By — 6o1),

n
R P
2 87Ty 202

where ®; = ®(n;), the cdf of a standard normal distribution taking argument 7;, where

n;i = (Bo(s;) — 2*)/o.. Twice differentiating with respect to 3, and negating gives

2 ~ ) 1 1
_ P g n(Bolbory) — dlag{2[<1—y@->h@-+y@-g¢]}+2R01 (6.13)
3. o o?

b (% 2_ niPi (9 2+77z¢z‘
A sy 1—o, 97\, D, ’

and ¢; = ¢(n;), the pdf of a standard normal distribution taking argument 7;. Evaluating
~ ~ -1
expression (6.13) at the 3, gives B

where

Properties of W for the probit model

We saw in Section 6.4.1 that 0 < h; < 1. By similar argument it is easy to show that
0 < g; < 1. Therefore, by only being able to observe the sign of Z(s;) we reduce the data
precision by either h;, if Z(s;) is negative, or by g; if Z(s;) is positive.

Recall that W = I — EC; 1, where here Cy = a%RO is the prior covariance matrix of
Bo- Writing B as

2 -1
5 90 ;. —
B = 0(2] [Ugdlag{(l —yi)hi +vigi} + Ry 1] ,
we see that as 03/0? — 0 then B — Ry and W — 0. Hence as the data variance

increases relative to that of the random effects the parameterisation tends to the NCP.

Alternatively, by Lemma 3.3.1 we can write
B 2 2 2 1 -1 2 1
B =0jR - 0jRy (Jedlag{(l —yi)hi +vigi} +00R0) oy Ro
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which implies that

—

2 21 -1 2 -1
W = o5Rp (ae diag {(1 — yi)hi + vigi} ~ + O'OR0>
o? -1
=Ry <U€2d1ag{(1 — yz)hz + yigi}il + Ro) . (614)
0

We see from equation (6.14) that as the variance of the random effects grows large relative
to that of the data and ¢2/0% — 0, W — I and we recover the CP.

Maximum likelihood estimates for the probit model

Closed form solutions for the maximum likelihood estimates are not available for the probit
model, and hence iterative methods must be employed.
Given current values &) = (N(()t), o2 (t))’ , the EM algorithm finds £“*1) as follows:

1. E-step : Compute K (£|¢®)) = E[logn(Z|¢)|€®), y].

2. M-step : Let £+ be the value of € that maximises K(£|£(t)).

n - 2
K(Ele®) = ~Dlogo? — 1, S (1 y)E [(Z<si>—ﬁo<si>) rs@]
€ =1
oz >0 (2760 - uls)) 1€
€ =1
= —Sloga?— 55> (1) (B |27 ()69 = fu(s1))
€ =1
oy 21— y)Var (27 (s0)lE®)
€ =1
5 S (B2 (s01€9) - o(s)
o S uiVar (2*()/0).
€ =1
where ®
B[z (s)|E)] = B (s1) — 0 2o = 27 (s) (6.15)
1— @
(t)
Bz (s9l€") = B (30) + o1 25 = (a0, (6.16)
and )
®) () )
Var(Z(si)|€?) = 520 <1+ e —( % ))
1—a  \1-ol
(8) 4 (1) ®\ 2
Var(Z*(s:)|g") = o2 (1”%’ b <¢i ) )
€ (I)z(t) (I)z(t)



where ") = (5 (s:) — =%)/02), 6" = 6(u") amd &Y = (")
Let y, be the vector of observations with zeros replaced by z7(s;) and ones replaced
with 27 (s;), as defined in (6.15) and (6.16). Then we have

K(Ee®) = ~Tloo? — g 3 (us(o1) — folsn))

¢ 202« -
1=

*2%2 > (1 yvar (27 (s:)1€W) +yivar (2% (s1)€V) . (6.17)
€ =1

Differentiating (6.17) with respect to Bo(s;) and then o2, it is clear that to maximise
K(¢]€®) we should set

B (s5) = ya(sa),

and

ottt = L [En: (yz(si) —BSHI)(Si))Q

n |«
=1

+(1—y;) Var (Z_(sl-)|£(t)) +yiVar <Z+(si)|£(t))] .

Once the algorithm has converged we have estimates for Bo which can be substituted
into (6.13) to find B.

Performance of the PCP of the probit model

We fit the PCP for the probit model to the 400 data sets that were generated to compare
the CP and the NCP for probit model in Section 6.3.2. We begin by fixing the variance
parameters at their true values and using the true values of Bo to generate the matrix
B. Results are given in Figure 6.33. We can see for values of g < 1 that we have rapid
convergence, but the performance deteriorates as ag becomes relatively large. The ESS
of Ay reduces accordingly. For a fixed dp, mixing is poorest when there is no correlation
between the random effects.

Figure 6.34 compares the results of the PCP with those obtained for the CP and
NCP (plotted in Figures 6.18 and 6.19 respectively). Positive values indicate a superior
performance for the PCP. The left hand panels shows that for low values of dg the PCP
outperforms the CP, but as the variance ratio increases and the CP improves, the PCP fails
to deliver the optimal matrix W. The right hand panels shows that the PCP increasingly
outperforms the NCP as Jj increases.

We now go on to consider the case of unknown variance parameters. The MPSRF,(1.1)
and ESS of 0y are plotted in Figure 6.35. We can see that the performance of the sampler
is more consistent across the range of variance ratio-effective range pairs than was the case
when we fixed the variance parameters at their true values, see Figure 6.33.

Looking at Figure 6.36 we see that the performance of the variance parameters for the
PCP is similar to that of the CP and the NCP, given in Figures 6.22 and 6.23 respectively.

The ESS of 03 falls with increasing §p and increases with increasing effective range, dp.
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Figure 6.33: PSRF;(1.1) and the ESS of  for the PCP of the probit model with known
variance parameters using the known values of 3, to compute B. Plots (a)-(e) give the
PSRF/(1.1) of 0y, plots (f)—(j) the ESS of 3. L-R d9 = 0.01,0.1, 1,10, 100. Within each
plot effective ranges of 0, v/2/3, 2¢/2/3 and /2 are used.

The ESS of 0'3 is fairly constant across the different values of §y and dy.

Figure 6.37 compares the MPSRF/(1.1) and ESS of 6 for the PCP with those obtained
for the CP and the NCP, which are plotted in Figures 6.20 and 6.21 respectively. Values
above the horizontal line indicate a superior performance for the PCP. From the top left
panel of Figure 6.37 we can see that the PCP does better than the CP for the lower
values of §g, but this is reversed as the variance ratio is increased. The bottom left panel
compares the ESS of 6y for the PCP and the CP. The wave like pattern indicates that
the PCP does better than the CP when there is a shorter effective range. This is because
the PCP is robust to changes in effective range whereas the CP improves with increasing
effective range. Looking at the panels on the right we see that an increase in dg adversely
affects the NCP much more heavily than the PCP and so the advantage of the PCP over
the NCP grows with dg.

Figure 6.38 compares the ESS of the variance parameters obtained with the PCP to
those obtained with either the CP or the NCP. From the top left panel we can see that
the ESS for 0(2) is regularly higher for the CP than the PCP. The bottom left panel shows
us that the PCP returns a higher ESS for o2 than the CP, especially for smaller values
of §p and for shorter effective ranges. We can see on the right that only for low values of
6o does the NCP have a higher ESS for 08 than the PCP. There is little difference in the
ESS of 02 between the PCP and the NCP, with points evenly spread either side of the

horizontal line.

PCP for Californian ozone data

We now fit the PCP of the probit model to the Californian ozone data analysed in Section

6.3.3. In that section we got an estimate for the variance ratio, o = 10.498. Table 6.9 gives
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Figure 6.34: Comparison of the PSRF;(1.1) and ESS of 6, for the PCP with the CP and
the NCP of the probit model with known variance parameters using the known values of
B, to compute B. Panels (a) and (c) compare PCP with CP. Panels (b) and (d) compare
PCP with NCP.

the MPSRF/(1.1) and ESS of the model parameters for different fitting strategies. We
can see that convergence is slow for all methods, each requiring around 10,000 iterations
before the MPSRF falls below 1.1. This is due to the poor mixing in the 3 coordinate,
we achieve an ESS of less than 300 out of a total 125,000 MCMC samples for all of the
parameterisations. We do see that the ESS for 6 is the greatest for the CP, this is not

surprising given the value of 5o that we observed.

Table 6.9: MPSRF,(1.1) and the ESS of the model parameters for the probit model.
MPSRF,(1.1) ESS 6 ESS o3 ESS o?

CPp 9925 19245 268 1887
NCP 10335 740 271 1899
PCP 9705 4887 219 1888
PAPCP 9705 5318 254 1908

Table 6.10 compares the fitting strategies in terms of the time adjusted measures
MPSRF,(1.1) and ESS/s. Here we can see that the CP is the preferred fitting method.
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Figure 6.35: MPSRF/(1.1) and the ESS of 6y for the PCP of the probit model with
unknown variance parameters.
ESS of fy. L-R & = 0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3,
2\@/3 and v/2 are used.

Plots (a)—(e) give the MPSRF;(1.1), plots (f)—(j) the

Table 6.10: MPSRF,(1.1) and the ESS/s of the model parameters for the probit model.

MPSRF(1.1) ESS/s 6y ESS/s o5 ESS/so?
CP 29.85 51.18 0.71 5.02
NCP 31.09 1.97 0.72 5.05
PCP 188.67 2.01 0.09 0.78
PAPCP 99.07 4.17 0.20 1.50
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Figure 6.36: ESS of 03 and o? for the PCP of the probit model with unknown variance

parameters.

Plots (a)—(e) give the ESS of o3, plots (f)—(j) the ESS of o2.

L-R do

0.01,0.1,1,10,100. Within each plot effective ranges of 0, v/2/3, 2v/2/3 and /2 are used.
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Figure 6.37: Comparison of the MPSRF,(1.1) and ESS for 6y for the PCP with the CP
and the NCP of the probit model with unknown variance parameters. Panels (a) and (c)
compare PCP with CP. Panels (b) and (d) compare PCP with NCP.
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6.5 Summary

In this chapter we have investigated the efficiency of Gibbs samplers produced under
different model parameterisations for non-Gaussian spatial models. Parameterisations are
compared in terms of the MPSRF/(1.1) and the ESS of model parameters using simulated
and real data sets. We have focused on the spatial Tobit and spatial probit models. For
both models, we see that the CP is preferable to the NCP when the nugget variance is low
relative to the marginal variance of the spatially correlated random effects. Furthermore,
strengthening spatial correlation improves the performance of the CP, but impairs that of
the NCP.

We showed how to construct a PCP for non-Gaussian data which is analogous to the
one employed for Gaussian data. The construction used here relies on an estimate of the
conditional posterior covariance matrix of the random effects, denoted by B. We saw that
in many cases the PCP outperforms the CP and the NCP, but when the random effects
variance is relatively high, the accuracy of B can be diminished and with it the efficiency
of the PCP. In these cases, in which the CP is at its most effective, the PCP may not
perform as well as the CP. However, we saw that the efficiency of the PCP is robust to
changes in the ratio of the variance components and the effective range, and so it becomes

a useful strategy when these quantities are unknown.
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Chapter 7

Conclusions and future work

In this final chapter we summarise the work in this thesis and give details of two pos-
sible extensions to the analysis presented in the preceding chapters. In Section 7.1 we
highlight the important results and detail the limitations of the approaches undertaken.
In Section 7.2 we give brief details of how to extend our work to spatio-temporal and
multivariate spatial models, and state some of questions that emerge as a consequence of

these extensions.

7.1 Conclusions

The goal of this thesis is to investigate the impact of the correlation structure of latent
random processes upon the efficiency of the Gibbs sampler used for inference. It is known
that for a normal linear hierarchical model (NLHM) with independent random effects that
if the data precision is high relative to that of the random effects, then the centred param-
eterisation (CP) gives us a more efficient sampler than the non-centred parameterisation
(NCP). This work shows how the strength of spatial correlation between realisations of a
latent Gaussian process impacts upon the convergence rates associated with the CP and
the NCP.

In Chapter 3 we looked at a spatially varying coefficients models with Gaussian errors at
the first stage. We compared the CP and the NCP in terms of the exact convergence rates
of their associated Gibbs samplers, where the rates are computable for known posterior
precision matrices. We show that with an exponential correlation structure for the random
effects, that as we strengthen the spatial correlation the convergence rate is quickened for
the CP but slowed for the NCP.

The notion that the CP becomes more efficient with stronger correlation and the NCP
less so, is borne out when we look at covariance tapering and geometric anisotropic expo-
nential correlation functions. Removing long range correlation through tapering favours
the NCP but degrades the performance of the CP. Whereas when we increase the cor-
relation in one direction by inducing geometric anisotropy, the performance of the CP is
improved and the performance of the NCP is worsened.

In Chapter 3 it is also demonstrated that if there is any correlation between the random

effects that they should be updated together to achieve faster convergence. This does
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not, however, take into account the additional computational burden of jointly updating
variables of higher dimension within a Gibbs sampler. These practical issues are addressed
in Chapter 4 where we look at the implementation of Gibbs samplers for the CP and
the NCP of spatially varying coefficient models. We assume that covariance matrices
are known only up to set of parameters. Therefore the posterior precision matrices are
unknown and we cannot compute the exact convergence rate as we did in Chapter 3.
Instead we compare the CP and the NCP in terms of the potential scale reduction factor
(PSRF) and the effective sample size (ESS) of the model parameters. It is shown for both
simulated and real data examples that the CP performs best when the variance of the
random effects is much greater than that of the data, and when there is strong spatial
correlation. The NCP performs best when the random effects variance is relatively low

and when there is weak spatial correlation.

The work of Chapters 3 and 4 adds weight to the notion that the CP and the NCP
are complimentary pairs, where one does well the other does badly. The performance of
either parameterisation depends on the data through the covariance parameters in the
model, which are typically unknown. Therefore, we cannot know a priori which of the
CP or the NCP to implement. In Chapter 5 we tackle this problem by constructing a
parameterisation whose performance is robust to the data. By computing the conditional
posterior correlation between the random and global effects we are able to produce a par-
tially centred parameterisation (PCP) for a three stage NLHM. The PCP is determined
by a weight matrix W and returns a Gibbs sampler that converges immediately and pro-
duces independent samples from the marginal posterior distribution of the global effects.
Therefore we can optimise the performance of any model that can be written as a three
stage NLHM.

The derivation of the PCP is conditional on the covariance matrices. When these are
known only up to a set of covariance parameters we show that the PCP can be updated
dynamically within the Gibbs sampler without disturbing the stationary distribution of
the Markov chain. The PCP is shown to converge more quickly and to return samples
from the posterior distributions of the global effects with lower autocorrelation than either
the CP or the NCP.

However, the PCP is a computationally demanding fitting strategy. We have to update
all random effects as one block and all global effects as another. Also, when the covari-
ance parameters are unknown we have to repeatedly update the associated weight matrix
W . Pilot adapted PCPs offer some reduction in computation time for little reduction in

performance but are still slower to run than the CP or the NCP.

In Chapter 6 we consider models for non-Gaussian data for which we cannot compute
the exact convergence rate of their associated Gibbs samplers. Therefore we again com-
pare parameterisations in terms of the PSRF and the ESS. We looked at spatial Tobit
and spatial probit models. The simulated and real data examples show that, just as for
Gaussian data, the CP is best when the ratio of the random effects variance to the nugget
variance is high, and when there is strong spatial correlation, with the opposite holding
for the NCP.
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We demonstrated how to construct a PCP for non-Gaussian models with a method
analogous to the one used to construct the PCP for Gaussian data in Chapter 5. This
requires the estimation of the conditional posterior covariance matrix of the random effects,
Var(B|0,y). The performance is good for relatively low ratios of the random effects
variance to the nugget variance, but the performance is degraded as the variance ratio

increases as this makes estimating Var(3|6,y) becomes more problematic.

7.2 Future work

In this thesis we have only considered univariate spatial models. In this section we outline
how we might extend our models to spatio-temporal or multivariate models. For discus-
sions of spatio-temporal modelling see, for example, Gelfand et al. (2010, Chapter 23)
or Banerjee et al. (2003, Chapter 8), and for mutlivariate modelling see Gelfand et al.
(2010, Chapter 28) or Banerjee et al. (2003, Chapter 7). We are concerned with how the
increasingly complicated covariance structures resulting from these extensions affects the

efficiency of the Gibbs samplers for the different model parameterisations.

7.2.1 Spatio-temporal models

It is natural to extend the spatial models discussed in this thesis to model spatial data
that is collected over time at equally spaced intervals. We let Y'(s;,t) be the response at

site s; and at time t. We model Y (s;,t) as

Y (si,t) = Oo+Bo(8it)+{01+581(8i, 1) yr1(8i,t)+. . . AH{Op-1+Bp-1(8i, t) }rp-1(8i, ) +e(si, 1),

(7.1)
fori =1,...,n,and t = 1,...,T, where €(s;,1) nd N(0,02), and x1(s;,t) is the value
of the kth covariate at location s; and at time ¢, for k = 1,...,p — 1. Global regression

coefficients 0 are perturbed by realisations of space-time processes fk(s;,t), and hence
we have a model with spatio-temporally varying coefficients.

It is straightforward to see that we can write model (7.1) in the form of the three stage
NLHM given in (2.8). We collect the responses into a vector Y = (Y'(s1),...,Y"(sn)),
where Y (s;) = (Y(si,1),...,Y(s;,T))’, and gather measurements for the kth covariate

into the vector xy = () (s1),...,x)(sn)) where @(s;) = (xx(si,1),...,2x(s:,T)). The
vector @ = (6o, ...,0,—1)" contains the global regression coefficients and has a Gaussian
prior distribution with mean m and covariance Cs. We let 8, = (B)(s1),...,08%(sn))

where 8;,(si) = (Bk(8i,1),- .., Bk(s:,T))". Centering the random effects on their associated
global parameter introduces Bk = B + 01, where 1 is a nT" x 1 vector of ones. We now

write model (7.1) as

Y|B ~ N(Xlléao-ez‘[)
B0 ~ N(X320,Cs)
6 ~ N(m,Cs),
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where 8 = (Bg,...,ﬁ;_l)’ and X1 = (I,Dq,...,Dp_1) is a nT x nT'p matrix with
D, = diag(xg). The matrix X9 is a nTp x p block diagonal matrix, with blocks made
up of vectors of ones of length nT'. Using the results of Chapter 2 we can compute the
conditional posterior covariances of B, B and 6, and the calculate exact convergence rates
for the CP and the NCP of model (7.1). Moreover, we can compute the W = I — BC;!
to find the optimal PCP, where B = (0,2 X} X+ C5;")~%.

We have yet to specify the covariance structure of the space-time processes, C'y. Sup-
pose that we follow Sahu et al. (2011) and model the §i(s;,t)'s as a zero mean Gaussian

process with separable covariance structure, such that

Cov(Bi(8i,t1), Br(8j, tm) = 02pi(8iy 855 B5) Pk (ts tim; D),

fori,j=1,...,nand l,m=1,...,T. We take pi(-; ¢;) and p.(-; ¢%) to be valid correla-
tion functions, possibly non-stationary and anisotropic (Rasmussen and Williams, 2006),

with parameters ¢ and ¢!, respectively.

We assume apriori independence across the p space-time processes and so we have

02Ri @ R}, 0 e 0
s ? U%R‘?@ R} 0 |

where ® denotes the Kronecker product and
(R})ij = pi(sis s 0%),  (Ri)im = Pty tis #5)-

Note that the separable covariance structure means that to invert the nT x nT matrix
* @ R}, we have only to invert one n xn matrix and one T'x T matrix, as by the properties

of the Kronecker product we have
(Ri@RY)™ = (R) ™ o (R
It is also useful to note that for determinants we have |R; ® RS | = |R;|T|RL|".

Given this model set up we may ask how the spatial and temporal dependencies interact
to determine the convergence rate for the CP and the NCP. If, for example, there is strong
spatial correlation but weak temporal correlation what effect might that have on the

convergence rate, and does it depend on the relative sizes of n and 17

Given the results of this thesis we might expect to see that strengthening either spatial
or temporal correlation, or indeed both, will result in increased efficiency for the CP,
but a reduction in efficiency for the NCP. If T' >> n say, it is likely that the temporal
dependence will be more important in determining the efficiency of the CP and the NCP
than the spatial dependence.
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7.2.2 Multivariate spatial models

In this thesis we have only considered univariate responses. Consider the multivariate
extension of the standard Gaussian process model, given in (3.1). Suppose we collect data
Y (si) = (Yi(si),...,Yv(si)) on V variables at each location s;, for i = 1,...,n. We
model Y (s;) as

Y (s;) = X (s:)0 + B(si) + €(si),

where X (s;) is a V' x Vp block diagonal matrix with vth block given by the 1 x p row

vector of covariate information for the vth quantity of interest at location s;, denoted

! (s;). The concatenated vector of all Vp global regression coefficients is denoted by 8,
B(si) = (B1(8i),...,Bv(si)) is a realisation of a zero mean multivariate spatial process
at location s;, and non-spatial errors €(s;) = (e1(s;),...,ev(s;))'~N(0,02Iy), for all
t=1,...,n, where Iy is the identity matrix of order V.

Let B = (B (s1),...,08(sn)) be the vector of all spatially correlated random effects.
We must take care when choosing Cov(By,(si), Bv(sj)), u,v =1,...,V, i, =1,...,n, to
ensure that Var(3) = C4q is positive definite. Suppose we follow Banerjee et al. (2003,

Chapter 7.1) and have a seperable covariance structure such that

Cov(ﬁu(si)a 5v(3j)) = :O(Sia Sj)CO’U(ﬁu(s)a Bv(s))a (7'2)

where Cov(Sy(s), Bu(s)) is the covariance between variables v and v at location s, for all
s, and p(-,-) is a valid correlation function for a univariate spatial process. Then we can

write

C:=R®S,

where R;; = p(si, s;) and Sy, = Cov(By(s), Bv(s)) with S the V' x V' covariance matrix
assiciated with B(s). Therefore, if S is positive definite, then so is Cs.

With the foregoing model specification the following questions arise: How do the entries
of S affect the convergence rate for the CP and the NCP? Furthermore, how does S affect
the spatial pattern of the optimal weights of partial centering for the different variables?

Given this thesis we might speculate that strengthening the correlation between vari-
ables will will make the CP more efficient and the NCP less so. For a seperable covariance
structure, like that given in (7.2), it seems likely that the optimal weights of partial cen-
tering will be increased with increasing correlation across the variables. We would expect
that when S is the identity matrix, the spatial pattern of weights for the individual vari-
ables will be the same as if we had fitted a series of univariate models. As the correlation
between the variables strengthens it seems plausible that the weights will increase, possibly

by the same amount at each location.
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