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ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

QUANTISED VORTICES, MUTUAL FRICTION AND ELASTICITY
IN SUPERFLUID NEUTRON STARS.

by Stuart Wells

This thesis investigates and builds upon the well known approaches to modelling super-
fluid neutron stars. We build single and multiple fluid systems in Newtonian gravity,
introducing mutual friction and elasticity. We then move into general relativity, detailing
how to build a single superfluid system using a quantised vorticity vector. We introduce
multiple interacting fluids into the model, producing the calculation of mutual friction
in general relativity. We then use the variational approach to incorporate elasticity of

the vortex array into the model in order to follow the format of Newtonian calculations.
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Introduction

Neutron stars are formed during the collapse of main sequence stars. When a massive
star has come to the end of its life, it goes out with a bang. After the star uses up its
supply of hydrogen and helium, heavy elements collect in the core of the star. Once the
mass of the core exceeds the Chandrasekhar limit of 1.44Mg (Mg ~ 2 x 1033g is the
mass of the Sun), the core starts to collapse [7, 8, 9, 10]. This collapse causes a shock
wave which throws off the outer layers of the star, while the core continues to compress.
At this point, the resulting structure will depend upon the mass of the stars compressed
core. If its mass is below 2 — 3M, known as the Oppenheimer-Volkoff limit [11], the
core will compress to form a structure similar to a giant nucleus. However, if the mass in
the core exceeds this limit, then it has no choice other than to collapse to form a black
hole. If the star does not end up as a black hole, then the giant nucleus formed in the
collapse is what we call a neutron star. This explosive ending to a stars life is known as
a supernova. Not all stars experience supernova, as the star must initially have a mass
M 2 8Mg in order to do so. Stars with mass which is below this threshold will turn

into a giant star and eventually end up as a white dwarf.
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As you can imagine, a neutron star formed from the violent supernova explosion de-
scribed above will be incomparable to anything we have or can create on Earth. Neutron
stars have masses in the range 1 —2M and all of this mass is compressed into a sphere
of radius 10 — 14 km, which is approximately 60, 000 times smaller than the radius of the
Sun. Due to neutron stars having such extreme densities, which we cannot reproduce
on Earth to study further, we still do not know for sure what the composition of this
type of star is. However, observations of these types of stars allow us to predict what

some of their composition must be [12, 13, 14, 15].

We delve deeper into neutron star composition in the following Chapter, as it is im-
portant to have an understanding of the environment one is trying to model. We discuss
the history of neutron stars, including their discovery and how a special type of neutron
star, a pulsar, provided evidence supporting Einstein’s Theory of Relativity. Chapter 2
also investigates how the early models of neutron stars progressed and details what the
stars are thought to be comprised of in today’s understanding. A crucial component of
neutron stars, and the reasoning behind their name, is their large body of fluid neutrons.
The star is comprised mostly of neutrons and once you get below the surface of the star,

this fluid is thought to be in a superfluid state.

This leads us on to the second part of Chapter 2, in which we consider what a superfluid
is and how they behave. Superfluids have been studied via experiments with liquid
helium and most of our knowledge about them come from such experiments. We discuss
why a fluid may enter a superfluid state and the properties that these fluids exhibit.
One of the important features of superfluids, and an important topic for this thesis, is
that they do not rotate like a conventional fluid. When a container of superfluid helium
is rotated, the fluid does not follow the container as it has zero friction. Instead, vortices
form in the fluid and the faster the container is rotated, the greater number of vortices
are formed. These quantised vortices are a key component of our models and are also

likely to play a large role in many of the behaviours observed in neutron stars.

After we have gained knowledge about the environment we are studying, we would like
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to understand how one would usually model these systems and what tools are commonly
used. In Chapter 3 we discuss different approaches to modelling fluid systems. Firstly,
we consider the variational approach for a general fluid and then consider turning this
fluid into a superfluid. We introduce quantised vortices in order to specify that the fluid
is indeed superfluid. This gives rise to complications that come with a vortex array,
that you don’t usually find in a normal fluid. We must add in the behaviours seen
in experiments with superfluid helium, such as the Magnus force, mutual friction and

elasticity.

Once we understand these forces, we introduce a second fluid component to represent
the normal fluid in the system. In the case of a neutron star, this normal fluid would
consist of superconducting protons and electrons, as we will discuss in Chapter 2. We
consider perturbations of this two fluid model, using Lagrangian perturbation theory
and plane wave perturbations. The investigation into plane wave perturbations of the
system is in order to find Tkachenko waves and see if they are likely to play an important

role in neutron stars.

As neutron stars are such extreme environments, the most accurate models of them
must be formulated in general relativity. In Chapter 4 we start to consider how we can
model our system in the framework of general relativity. We first consider existing work
on relativistic fluid dynamics, in order to understand the different methods for creating

fluid models in relativity as opposed to Newtonian gravitation.

With an understanding of relativistic fluid dynamics, we proceed to recreate our New-
tonian superfluid model in general relativity. Chapter 5 discusses how we use quantised
vortices in relativity, following the Newtonian logic of a quantised vorticity vector
rather than the relativistic vorticity tensor. We build a multiple fluid system including
superfluid neutrons, quantised vortices and a second ‘normal’ fluid component. We
include the Magnus force and mutual friction in this relativistic model, as we did in our

Newtonian model in Chapter 3.
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In Newtonian theory, we created a multiple fluid system including mutual friction and
elasticity. Up to this point in our general relativistic model, we have only introduced mu-
tual friction. Chapter 6 addresses the remaining components in order for our Newtonian
and relativistic models to match. We consider relativistic elasticity in three dimensions
and create a two dimensional vortex elasticity. Once we create an elastic contribution
to the model, we have completed our transition of the Newtonian multifluid model with

mutual friction and vortex elasticity to the framework of general relativity.



Neutron Stars

2.1 The discovery of neutrons and neutron stars

In order for us to learn about or even consider the existence of neutron stars, we first
need to know that neutrons themselves exist. Thankfully, the neutron was discovered
experimentally by Sir James Chadwick in 1932, while working at the Cavendish Labo-
ratory in Cambridge [16, 17]. Shortly after this discovery, there were discussions that
stars could be comprised of these new neutrons by Rosenfeld, Bohr and Landau [18].
It didn’t take long before Walter Baade and Fritz Zwicky proposed a star which was
composed of neutrons and would be born from supernova explosions [19]. They stated

that such a star would be very dense and much smaller than most stars.

The first modelling of neutron star cores was attempted by Oppenheimer and Volkoff in
1939 [11]. They assumed that the neutron star matter would be comprised of an ideal
gas of free neutrons at high density. It was thought at the time that massive normal
stars may also have neutron cores. However, as our understanding of nuclear fusion

increased, we realised this would not be the case and research into neutron cores faded

7
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somewhat. The few people still working with neutron stars were contemplating topics
such as the composition and equation of state of these stars [20]. Another reason that
neutron stars were generally neglected was that they would be too difficult to observe

with the technology of the time, due to their very small size.

Interest in neutron stars was given a boost following the discovery of non solar x-ray
sources in 1962 [21, 22]. This was due to the thought that the source of these x-rays could
be a young, warm neutron star. This triggered investigations to find out more about
neutron star cooling. Interest continued to build after the observation of the first quasar,
but it was shown that there was no connection between neutron stars and quasars. Even
with a great interest developing in the field of compact objects, many people did not
take the work seriously. This could have been due to the vast extrapolation from familiar

physics at the time [18].

Neutron star research was brought back to life after the discovery of pulsars in 1967
[23]. The original observations were made by Jocelyn Bell while working as part of
a team studying quasars using a radio telescope. She noticed a signal which was
pulsing regularly at a rate of approximately one pulse every 1.3 seconds. Due to the
regularity and consistent power of this source, it resembled a signal from a beacon and
was nicknamed LGM-1 for Little Green Men [17]. This discovery was of such significance
that Bell’s PhD supervisor, Anthony Hewish, received the Nobel Prize in 1974 for leading
the team that made the discovery. After the discovery of this regularly pulsing signal, it
was almost immediately proposed by Thomas Gold and Sir Fred Hoyle that the source
could be a rapidly rotating neutron star [24]. Due to this discovery of a pulsar, research
into neutron stars exploded, much like the supernova they themselves are created by.
Already by 1971, the structure of such stars was thought to be comprised of a superfluid
core, solid crust, an atmosphere and a strong magnetic field, as seen in Figure 2.1 taken
from [1]. This description should sound very familiar to current researchers, over 40

years after this original structure was proposed.

In 1969 it was noticed that there was a significant sudden decrease in the periods of
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Dense
plasma
envelope

Figure 2.1: A figure demonstrating the basic structure of a pulsar from a review
published in 1971 [1]. Shortly after the discovery of the first pulsar in 1967,
neutron star models had most of the components we still consider to be true
today.

the Vela pulsar [25]. This behaviour was observed in many other sources and is today
referred to as glitches. This sparked research into the cause of this unusual behaviour and
two explanations stand out from the crowd. The first explanation is that the stars glitch
due to starquakes, much like we have earthquakes here on Earth [26, 27]. The second
explanation was that of vortex unpinning, which relies on properties of the superfluid
interior of the star to cause the glitches [28, 29, 30]. Of course it is likely to be a
combination of several factors which combine to cause glitches at various points in a

stars life.

In 1974 Hulse and Taylor discovered PSR B1913+16 [31], which is a binary system
comprising of a pulsar and a neutron star. A binary system is a pair of objects orbiting
around a common centre of mass. The pulse that we detect from pulsars is a jet of
electromagnetic radiation, which is emitted from the star due to it rotating very rapidly
and being extremely magnetised [32]. This jet is aligned with the magnetic axis of the
star, which is not necessarily in the same direction as its rotation axis. Hence as the

star spins, we see the jet as a pulse as it crosses our line of sight.
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The PSR B1913+16 system was the first binary system to be detected containing a
pulsar. Hulse and Taylor were awarded the 1993 Nobel Prize in Physics for their
discovery. Analysis of this binary system has shown that the orbits of the stars are
decaying, which implies that the system is losing energy somewhere. The amount of
energy that the system is losing can be explained by Einstein’s General Theory of
Relativity, as the energy lost by the system due to gravitational wave emission. Figure
2.2 shows the observed orbital decay (points with error bars), along with the decay

predicted by general relativity due to gravitational wave emission (solid line).

Line of zero orbital decay

-10

—15

-20

—25

_—

General Relativity prediction

-30

Cumulative shift of periastron time (s)

—40

—45

1975 1980 1985 1980 1985 2000 20056
Year

Figure 2.2: This plot shows the observed orbital decay of PSR B1913+16
with error bars, along with the decay predicted from general relativity due to
gravitational wave emission [2]. The observations coincide with the prediction,
giving strong evidence for Finstein’s General Theory of Relativity.

The observations from PSR B1913+16 match the prediction from general relativity.
This is seen as positive evidence for general relativity to be correct and for gravitational
waves to exist, as predicted by the theory. Hence, we arrive at the main reason we wish

to understand neutron stars in greater detail. If we can accurately model neutron stars,
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we can aid the detection of gravitational waves from neutron star systems and determine

that general relativity is the most accurate theory of gravitation.

2.2 Composition of neutron stars

As we saw in the previous section, the standard model of neutron stars was established in
the 1970s. There are many papers and textbooks concerning the composition of neutron
stars. I will use information from [12], [13], [14] and [15] in the following. The neutron
star can be split into four main sections, we call these the outer crust, inner crust, outer
core and inner core. As we can see from Figure 2.3, the crust is quite thin relative to
the radius of the whole star and the bulk of the star is the core. The contents of the

four sections of a neutron star are described below:

Outer crust
The outer crust is relatively thin compared to the radius of the star, approximately
500m. It is comprised mainly of heavy nuclei in the form of a solid lattice, and a

degenerate electron gas.

Inner crust
The inner crust is approximately twice as thick as the outer crust. Throughout this
layer, the pressure increases and neutrons start to be squeezed out of the nuclei.
The neutrons, which drip from the solid lattice, start to form a superfluid as we

go deeper into the star.

Outer core
The outer core is the largest section of the neutron star. Due to the immense
pressure as we proceed into the star, the nuclei we saw in the crust cannot exist
any more. For this reason, the core is flooded with superfluid neutrons, along
with a small proportion of superconducting protons and electrons. The neutron
superfluid makes up approximately 90% of the outer core with the remaining 10%
comprised mainly of protons. The density in this section of the star is comparable

to that of atomic nuclei.
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Inner core
The inner core may or may not exist in a different state to that of the outer core,
this will depend on the mass of the star and how matter behaves at this density.
The density here could be ~ 10'5 g/cm? and we are currently unsure what happens
to the neutrons in this environment. They could be remain as a superfluid, as they
are in the outer core, in which case there will not be two separate sections to the
core. Another outcome could be that they split, similar to how they exited the

nuclei, into more exotic forms of matter such as hyperons or a quark-gluon plasma.

12
Heavy nuclei
11.5
Superfluid neutrons
Superfluid neutrons and
superconducting protons
Radius (km)

Exotic matter?

Figure 2.3: This illustration gives an idea of the depths of each of the different
layers of a neutron star. The crust is solid and made primarily of heavy nuclei.
As you proceed further into the star, neutrons start leaving the nuclei to form
a superfluid. The main component of the core is the neutron superfluid, around
90%, with approzimately 10% of the core being comprised of protons. The centre
of the star is extremely dense so there may be some exotic matter such as quark-
gluon plasma or colour superconductor.
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2.3 Superfluids and vortices

As the main component of neutron stars, superfluids are a necessity if you wish to
realistically model a neutron star. We can’t travel to a neutron star and observe how
the superfluid neutrons behave, so we have to find ways of investigating them here on
Earth. In order to understand more about superfluids, we can experiment with liquid
helium. Helium is particularly useful because it enters a superfluid state when it is cooled
toT < 2.17 K, a temperature obtainable experimentally. This is shown in Figure 2.4, the
peak at T shows the phase transition of the fluid helium as it is cooled. The superfluid
phase of helium was discovered by Pyotr Kapitsa, John F. Allen and Don Misener in 1937
[33] [34]. They noticed that instead of the liquid helium cooling down and freezing as its
temperature is decreased, it remained liquid and exhibited some strange properties. The
point in the specific heat capacity of helium at which it undergoes this transition looks
somewhat like the Greek letter Lambda (\), as can be seen in Figure 2.4, and hence
was denoted the Lambda point. These two states of helium are denoted helium I and
helium II. Helium above the Lambda point is referred to as helium I and the superfluid

helium, below 2.17 K, is denoted helium II.

After the discovery of the superfluid phase of helium, many experiments were developed
in order to understand this new phenomenon. Such experiments with helium [4, 35, 36]
help to develop models for superfluids and show us which behaviours they exhibit. With
this information we can then start to understand how the neutron superfluid within a

neutron star behaves.

So, what is a superfluid? Simply put, a superfluid is a fluid which exhibits zero viscosity,
which means it acts like a fluid but does not experience friction. As superfluids do not
experience friction, they behave very differently in comparison to normal fluids. For
example, in Figure 2.5, the superfluid helium is seen to be creeping up the side of its
container and dripping from the bottom. This is due to the absence of friction between

the superfluid and the container.
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Figure 2.4: Heat capacity of liquid helium as a function of temperature. The
peak at the Lambda point Ty = 2.17 K marks the phase transition. Helium is
often referred to as helium I above T\ and as helium II in the superfluid phase.

Figure 2.5: An experiment in which superfluid helium escapes its container. It
travels up the sides and drips off of the bottom, due to zero friction [3].

This zero viscosity behaviour was first seen by J. Reppy and D. Depatie [37], however,
viscous behaviour had also been seen under certain conditions by A. D. B. Woods and
A. C. H. Hallett [38]. This contradictory behaviour was explained by introducing a two

fluid model for the helium. It was proposed that helium II consists of two inseparable
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fluids. The first fluid component exhibits the observed zero viscosity and frictionless flow,

whereas the second component has viscosity and hence exhibits the viscous behaviour.

The two fluid model for helium was advanced by L. Landau [39], who was later awarded
the Nobel Prize in Physics in 1962. Landau proposed that if a fluid is at absolute zero
then it must be in a perfect, frictionless state. When its temperature is increased, this
causes the excitation of phonons, quantised collisionless sound waves and quasi-particles
of higher momentum and energy which he called rotons [40]. These excitations behave
like an ordinary gas and are responsible for any heat transport. Hence, they are the
viscous fluid in the two fluid model. An experiment proposed by Landau measured the
superfluid fraction of rotating helium II as a function of temperature. It was seen that
almost all of the sample was in the superfluid state when the temperature was below
1 K. This experiment was performed by E. Andronikashvili in 1946 and provided key

evidence to help establish the two fluid model of superfluidity.

A key feature of superfluids which experiments with helium have shown us, is that
vortices form in the superfluid when it is rotated. The fluid itself doesn’t move but it
‘rotates’ through the act of forming vortices. These vortices are extremely small and
are also quantised. This means that when the superfluid rotation is increased by a
specific amount, a new vortex will form. The vortices collect in an array that behaves
in a similar way to an elastic lattice and they also exhibit tension as they bend. As
rotation is increased and more vortices are created in the superfluid, the shape of the
lattice changes. Figure 2.6 demonstrates the triangular shape of the vortex array as the

rotation of the superfluid is increased from (a) to (1).

L. Onsager and R. Feynman both independently showed that vorticity enters the super-
fluid through the formation of vortex lines [41, 42]. This lead to the Onsager-Feynman
quantisation condition, which we will use when averaging over a number of vortices later
on. The first measurement of quantised vortex lines in rotating helium II was by H. Hall
and W. Vinen in 1956 [36]. Experiments were undertaken to see how these vortices

behave and interact with each other and their surroundings under various conditions
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Figure 2.6: The vortex array that forms in superfluid helium due to rotation,
with rotation speed increasing from (a) to (1) [4]. The lattice formed is triangular
but also varies slightly depending upon the number of vortices present.
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[43, 44, 45]. One effect of rotating superfluid helium, which we will encounter later on
in this thesis, is mutual friction [46, 47, 48]. In the 1950s, many scientists thought that
the quantised vortices formed in a rotating superfluid would act as scattering centres
for the excitations constituting the normal fluid and would give rise to a mutual friction
force. This force was investigated by Hall and Vinen in their papers mentioned above
[35, 36]. We can use the results from experiments to formulate a mathematical model

for a superfluid including its vortices.

2.4 Neutron star superfluidity

On Earth, we need extremely cold temperatures to enable the superfluid state to occur.
This has been demonstrated by the experiments with supercooled helium described in
the previous section. Liquid helium has to be cooled to T < 2.17 K in order for it
to enter the superfluid state. In contrast, neutron stars have very high temperatures,
around 10'° — 10" K at birth. So, is it evidence of madness that we are considering the

occurrence of superfluidity within a neutron star?
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Neutron stars are comprised of neutrons, protons and electrons, which are fermions
(particles with half-integer spin). Fermions must obey the Pauli exclusion principle,
which states that two identical fermions cannot occupy the same quantum state simul-
taneously [49]. However, bosons (particles with integer spin) do not obey the Pauli
exclusion principle, which means that any number of bosons can occupy the same state.

This is demonstrated pictorially in Figure 2.7.

E E

| S——
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Bose—Einstein
Condenstate

N

Cold bosons Cold fermions

Figure 2.7: A comparison of the possible energy states of bosons and fermions.
For bosons, there is no limit to the number of particles that occupy each energy
level. Howewver, in the case of fermions, only one fermion of a particular spin
may occupy each state. The highest occupied state for fermions is referred to as
the Fermi energy, seen above as Ey [5].

For the neutron fluid to become superfluid, we need it to be possible to send the particles
to the lowest energy state. In 1957, L. Cooper, J. Bardeen and J. Schrieffer discovered
that it is possible for two fermions to combine and form a Cooper pair, which itself is
a composite boson. As we know from Figure 2.7, this would enable multiples of these
Cooper paired fermions to occupy the lowest energy state and allow for superfluidity.
In 1972, the Nobel Prize in Physics was awarded to Cooper, Bardeen and Schrieffer
for their BCS theory. They initially developed the theory to explain superconductivity,
but it was later found that it also applied to nucleons. Hence, it is indeed possible
for superfluidity to occur in nuclear matter [50, 51, 52, 53]. It is estimated that the
critical temperature for neutron superfluidity is 7, ~ 5.5 x 10® K within a neutron star
[54]. This estimation comes from observations of neutron star glitches and cooling, both

of which are expected to be caused, or heavily influenced, by the neutron superfluid
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within the star. The critical temperature for a superfluid or superconductor is related
to BCS theory via the BCS energy gap. There is a specific amount of energy required
to break the Cooper pairs formed in the fluid or material. If this energy is supplied to
the system, then the composite bosons will separate to fermions and the superfluid or
superconducting behaviour will no longer exist. You can see from Figure 2.8 that there
is a particular Fermi wavenumber for which the neutrons require a significant amount of
energy to break the Cooper pairing and hence the superfluidity. This is then translated

into a critical temperature for the neutron fluid, demonstrated in Figure 2.9.
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Figure 2.8: Left: Neutron singlet gap energy (left axis) and critical temperature
(right axis). Right: Neutron triplet gap energy and critical temperature. See [6]
for more detail.

2.5 General relativity

Given the evidence that general relativity is the correct framework in which to model our
system, we would like to know some of the basics. Information on relativity can be found
in a number of sources such as [55, 56, 57, 58, 59, 60]. As we are considering relativity,

we will assume the Einstein Equivalence Principle. This means that [61, 62, 63, 64]

e test bodies fall with the same acceleration independently of their internal structure

or composition;
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Figure 2.9:  Critical temperature T, for neutron singlet superfluidity as a

function of fractional radius of a neutron star using the APR equation of state
(M =1.4Mg, R = 11.6 km). Different curves correspond to different gap models
which are shown in Figure 2.8. Vertical dotted lines denote the boundaries

between the core, inner crust, and outer crust of the neutron star. See [6] for
more detail.

e the outcome of any local non-gravitational experiment is independent of the ve-

locity of the freely-falling reference frame in which it is performed;

e the outcome of any local non-gravitational experiment is independent of where

and when in the Universe it is performed.

If the Equivalence Principle holds, then gravitation must be described by a metric-based

theory [64]. Which means

1. spacetime is endowed with a symmetric metric,

. the trajectories of freely falling bodies are geodesics of that metric, and
in local freely falling reference frames, the non-gravitational laws of physics are

those of special relativity.

The spacetime metric is denoted g, = gp, and we take its signature to be — + 4+,

demonstrated in (2.2) below. The metric provides the structure of the spacetime we
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are working within. The symmetry of the metric implies that there are in general ten

independent components. The metric can be determined from the line element [61, 65]
ds® = gabd:cadxb, (2.1)

which, in a local set of Minkowski coordinates {¢,z,y, z}, looks like
ds? = —(dt)? + (dz)? + (dy)? + (d=)>. (2.2)

Here we see the — + ++ signature mentioned above. The metric has an inverse ¢*® such
that

9 ghe = 6%, (2.3)

where 0%, is the unit tensor. In relativity, one should take into consideration the
covariance and contravariance of vectors, whereas in non-relativistic models this can
be ignored. Covariant vectors are denoted using a lowered index V, and contravariant
vectors are denoted V¢ with the raised index. The metric g, is used to raise and lower

the indices of the vectors
Vo= gV’ Ve = g"V,. (2.4)
A trajectory parametrised by proper time x®(7) where
2 Lo
dr* = —C—st , (2.5)
has a corresponding unit tangent vector
dx®

a— 2.6
w =" (26)

where u® = yv® and v’ = dt/dr with v = (1 —v?/c?)~'/2. The magnitude of u® is given

by
dx® da? ds?
a, b 2
2 - 2.
Jab"u’ = Gab— - = 5 = € (2.7)
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which can be seen from the equations given above. It is quite often the case that the
speed of light is taken to be ¢ = 1, which we will use in our calculations. There are
three classes of curves: timelike, spacelike and null. A vector is considered timelike if
gabV“Vb < 0, spacelike if gabVaVb > 0 and null if gabVaVb = 0. We can see that u® is

a timelike curve and it will be particularly useful later on.

Covariant and contravariant vectors transform differently when we change coordinates,

from x% to T% say. The different transformations are given by

—a 0T,
V= 1% 2.8
and
— oxb
Vo= =W, 2.9
Ve (29)

for contravariant and covariant vectors respectively. Tensors with greater rank transform

in the same way by acting linearly on each index with the transformations above.

Before diving straight into relativity, we will first consider how fluids are modelled in
the Newtonian framework. We will return to relativity later on in order to build our

superfluid model.
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Newtonian Models

If we wish to model the superfluid system within a neutron star by using general
relativity, we need to be able to confirm that our equations are correct. Hence, we start
by considering superfluid systems in Newtonian gravity, in order to have something to

compare and confirm our relativistic models with later on.

3.1 Variational principles and Lagrange’s equations

3.1.1 Hamilton’s principle

We consider the motion of a system between two times ¢; and to and small variations
of this motion from the actual motion. The configuration of a system is described by
values of the coordinates qy, . .., ¢,. These correspond to a particular point in a Cartesian
hyperspace where the gs form the n coordinate axes, this is known as the configuration
space. As time evolves, the system changes and a curve is traced out in configuration
space, which is the path of motion of the system. Hence, we can parametrise the curve

by time such that each point on the curve has an associated value, or values, of time.

25
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The path given in configuration space is not the motion in space of a particle, as each

point in configuration space represents the whole system at a given time [66].

Hamilton’s principle describes the motion of systems for which all forces are derivable
from a scalar potential, which can be a function of the coordinates, velocities and time.
These systems are called monogenic and if the potential is a function of only the position
coordinates, then it is also conservative. For a monogenic system, Hamilton’s principle
states that the motion of a system from time t; to t5 is such that the line integral (called

the action or the action integral),

to
I:/ Ldt, (3.1)
t

1

where L = T — V is the difference between kinetic 7" and potential V' energies, has
a stationary value for the actual path of the motion. This means that for a system
travelling from ¢; to t9, out of all possible paths between these two times, it travels
along the one for which (3.1) is stationary. Stationary means that the integral along the
given path has the same value as along the neighbouring paths (cf. Figure 3.1). This
corresponds to the first derivative vanishing. Hence, we can say that the motion of the

system is such that the variation of the line integral I for fixed ¢; and to is zero

to
oI =96 L(Qlav%’nqlavqﬂvt)dt:o (32)
t1

3.1.2 Some techniques of the calculus of variations

Before showing that Lagrange’s equations can be found from (3.2), we investigate the
calculus of variations. A main problem is to find the curve for which some given line

integral has a stationary value.

We consider a simple problem of the function f(y,y,z) defined on a path y = y(z)

between two values x7 and x2. Here we denote the derivative with respect to x by a
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Figure 3.1: Path of the system point in configuration space.

dot, for example §. We want to find the path y(z) such that the line integral J of the

function f between x1 and o

. dy
Yy= -

dzx
T2 (3.3)
J= / £y, 3, 2)dz,

has a stationary value relative to paths which differ infinitesimally from the correct
function y(z). Here the variable = takes the same role as the parameter ¢ which we saw
previously. We consider paths for which y(x1) = y1 and y(z2) = y2 (cf. Figure 3.2).

Note that this problem is one dimensional and y is not a coordinate, just a function of x.

We will use differential calculus to find the stationary points of our function. J must
have a stationary value for the correct path relative to any neighbouring path. So, the
variation must be zero relative to some particular set of paths labelled by an infinitesimal
parameter «. This set of paths will be denoted y(x, «), whereas y(z,0) represents the
correct path. If a function n(z) vanishes at z; and x4, then a possible set of paths will
be given by

y(z, @) = y(z,0) + an(z). (3.4)
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04, ¥,)

(%, y)

Figure 3.2: Varied paths of the function of y(x) in the one dimensional extremum

problem.

We assume that the functions y(x) and n(z) are both well behaved, continuous and

non singular between x; and zo, with continuous first and second derivatives between

the same two points. For this family of curves, J, seen in (3.3), is also a function of «

J(a) = /  Fy(a, 0), 9z, 0), z)de.

The condition for finding a stationary point is given by

dJ
@),
do ) o

Taking the derivative of (3.5), we see that

[ (050 0100,
da  J,, \Oyda = 0y oa '

The second half of this integral

mofoy, _ [af &
0y o .

1 1

integrates by parts to

of Oy, ofoy
2 0y 0aldx 0y Do

Ay Dadzx dz,

$2/502d<8f
o z dr \ 0y

(3.5)
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We know that all of the varied curves pass through (z1,y1) and (z2,y2), so the partial
derivative of y with respect to o at 1 and z9 must vanish. We can then use (3.9) to
rewrite (3.7) in the form

dJ [ (0f d [(9f\) Oy
) (ay‘d<ay)>ad (3.10)

1

as the first terms on the right hand side of equation (3.9) vanish. Hence, looking back

to (3.6) we see that the condition for a stationary value can be written

= rof d (0f\ [y B
/ (ay‘d<ay>) (m>a:odx‘0' (3.11)

The partial derivative of y with respect to « is an arbitrary function of x, with continuity
and conditions on the end points. Hence for the integral to vanish it must be the case

that the other term vanishes. Hence, for J to have a stationary value we must have

of d [Jf
- - — (=] =0. 12
dy dx <6y> 0 (3.12)
The differential quantity
dy
— = 1
<8a>a:o da = by, (3.13)

is the infinitesimal departure of the varied path from the correct path y(z), at the point
x. As this corresponds to the virtual displacement discussed in Chapter 1 of [66], it will

have the notation dy. We can write the variation of J about the correct path in a similar

<d']) da = 6J. (3.14)
dov a=0

fashion
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So, if y satisfies the condition (3.12), then we can write the condition that J is stationary

for the correct path as
r2rof  d [(Of
= -_ — '1
o7 /m (&i/ dx <8y>>5 - (3.15)

3.1.3 Derivation of Lagrange’s equations from Hamilton’s principle

Now we consider the case in which f is a function of many independent variables y; and
their derivatives g;. All of these are considered as functions of the parametric variable

x. Then, a variation of the integral J between points 1 and 2

2
57 =35 / Fn (@), (@), . .., i1(@), o), .., 2)de, (3.16)

is obtained by considering J as a function of a parameter «, which labels a possible set

of curves y;(z, a). We introduce a by setting

yl(xv a) = yl(x’ 0) + 0”71(@’

ya2(z, ) = ya(x,0) + ana(x), (3.17)

where y; (z,0),y2(z,0), ... are the solutions to the extremum problem and 7,72, ... are
independent functions of x. These vanish at the end points and are continuous through

the second derivative, but otherwise are arbitrary.

Following the previous section, the variation of J is given by

of Oyi ., . O Oyi
da | dx. 3.18
/ Z <ayz 90" T By 00" ) (3.18)
Integration by parts is used for the second sum of the above equation
Pof Py, 0f 0| [Poyid (Of (3.19)
1 Oy Oadx 0Oy O 1 1 Oa dx ov; ’ )
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where the first term vanishes again, as all curves pass through the fixed end points.

Hence, by combining (3.18) and (3.19) we find that the variation of J becomes

[P~ (0f d [0f
7= 2 (5 s (57,) ) o (3:20)

where the the variation dy; is given in the familiar way

_ yi
0y; = <8a>a:0 dov. (3.21)

As the y variables are independent, the variations dy; are independent. This means that,
as before, for the variation of J to vanish we must have that the terms multiplying the
0y; must vanish. Which tells us that for alli =1,2,...,n,

of d (of\
ﬁyiclm(@yi)_o' (3.22)

The equations above, (3.22), are the generalisation of the equation (3.12) seen in the

previous section to many variables. These are known as the Euler-Lagrange equations.

For Hamilton’s principle, which we saw at the beginning of the chapter,
2
1

This has the same form as (3.16). All we need to do to relate the two is consider the

transformation

T —t
Vi — 4 (3.24)

Then, as the y; variables are independent, the ¢; must also be independent in Hamilton’s

principle. If this is indeed the case, then we know that the Euler-Lagrange equations
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for the integral I become the Lagrange equations of motion

d (0L oL
— =) —-=—=0, fori=1,2,...,n. (3.25)
dt \ 9g; 9q;

Hence we have seen that Lagrange’s equations of motion follow from Hamilton’s princi-

ple.

3.2 Variational approach for a fluid system

In the previous section we saw a simple example of how one would use the variational
approach to find equations of motion. Next, we will steer towards our goal by applying it
to a multifluid system. Although this method is used by many people to model fluids, we
will later consider a different approach in Section 3.3. Our approach will use a method
whereby we average over a conserved number of vortices. For now we demonstrate the

variational approach [67, 68, 69, 70, 71].

We know from previous discussions about neutron stars and superfluid helium, that
we require a model comprised of multiple fluids. One fluid component will refer to the
superfluid neutrons and the second fluid component refers to the normal fluid which, in
the case of a neutron star, will be the proton fluid. We denote the separate fluids by
the general labels x and y in the equations below. The variables for a multifluid system
are the number density n,, the kinematic velocity v: and the mass my, for each of the

x fluid components. From these, we define the mass density
Px = MxNy (3.26)

and the number current

nt = nyl. (3.27)

In order to find the total mass density we sum over each of the fluid components

pP=> P (3.28)
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where, for example, if we are modelling a two fluid system of neutrons and protons,
then x € {n,p}. The system is described by a Lagrangian £, which is a function of
the number densities ny, number currents n® and the gravitational potential ®. We can

write the Lagrangian in the form

L = Ly(ny, n;) + Lgrav — p?, (3.29)

where the hydrodynamical term is given by

mynin’
Ly = —r = _¢ 3.30
and the gravitation contribution is given by
Loy = ——— (V)2 (3.31)
grav. — 87’[‘G . .

The energy £ term in the hydrodynamical piece of the Lagrangian represents the equa-

2

) Where wy

tion of state. This generally has the form & = £(ny, w y = vl — v}i, is the

velocity difference between the two fluid components.

If we take the variation of our Lagrangian £ with respect to the gravitational potential

¢, we find from (3.25) that

d (0L oL
—|—=]—-—===0 3.32
dt <aq>> 0P ’ (3:32)
is calculated to be
2
VI-——=—%Ve =0 3.33
< e ) +p=0, (3.33)
which gives us the Poisson equation
V20 = 47Gp. (3.34)

Then, we vary £ with respect to the fluid variables n, and n’ in the same way as above,

in order to find the hydrodynamical equations of motion. We assume that the total
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number of particles is conserved, which gives us the continuity equation
dinyg + Vinl = 0. (3.35)
Then the conservation of momentum is given by the collective Euler equation

Z (nxatﬁi — ny Vimy — e"jkn?eklmvlw}’?> =0, (3.36)

X

where 7} is the canonical momenta

X 8£ X
and p7 is the hydrodynamical momenta
8£H X
=g = mx <vi‘ + ) exyw) ) : (3.38)
X x

In the case of magnetohydrodynamics, as in [68], the canonical momenta (3.37) have an
extra term which originates from the electromagnetic contributions in the Lagrangian.
But, here we are only considering the hydrodynamical case without an electromagnetic
field, so these do not occur in our calculation. The momenta above show the entrainment

term ey, entering the equations. The entrainment between the different fluids

2 o0&
Exy = — (awg> ; (3.39)

Px Xy

can cause the misalignment of the momentum p’ and the corresponding flux nt. Also

seen above is the scalar function 7fj, which is given by
Ty = —px — fmxvi — my®, (3.40)

where there chemical potential uy for each fluid is given by

o€
fx = <8nx>ny,wg . (3.41)
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The momentum equation (3.36) can be written in terms of a force balance equation

> (Fu + pV'®) =0, (3.42)

X

where any external forces acting on the system would appear on the right hand side of

the above equation. The hydrodynamical force density seen above is given by [72]

Fp = ny ((& +0IV;) Pl 4 Vi +my Z(axyw;fx)vivi) . (3.43)
y

3.3 Single fluid system

As we learnt in Chapter 2, our aim is to model a superfluid system. The previous section
introduced a multifluid model but we are yet to include information regarding the vortex
array within the system. Here we will formulate the superfluid equation of motion for a
single superfluid, including some interaction from a second fluid. We will consider this
fluid to be rotating, which means that we will need to include details about the vortex
array. To do this, we say that the vortices are quantised and we use a quantised vorticity

vector to determine the equations of motion for the fluid [61, 68, 73].

3.3.1 Quantised vortices

We will consider a system of superfluid neutrons, as one would expect to find such a
fluid in the interior of a neutron star. A neutron star will be rotating about its axis and
can be thought of as a rotating container for the superfluid neutrons. Hence, due to the
stars rotation, the superfluid will form an array of tiny quantised vortices. The number
of vortices in this array depends upon the magnitude of the rotation of the star, but we
will say that the direction of the array is along &;. As the vortices are quantised, we will

say that they have a number density A, and we can write the macroscopically averaged
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vorticity of the system as

. 1 .. .
Wi = Ee”kvjp;; = Nk (3.44)

Here we see the canonical momentum p’, the quantum of circulation x = h/2m is
contained within the vortex direction x; = x&; and the mass is denoted m. This equation
for the averaged vorticity, (3.44), is known as the Onsager-Feynman condition. If the
rotation of the star, and hence the fluid, is constant, then no vortices will be destroyed
or created. Hence, we will assume here that the number of vortices is conserved, which

gives us a continuity equation for the number density
Ny + V; (Nyw?) =0, (3.45)

where 1’ is the collective vortex velocity within a fluid element. Our task is to find out

how the vortices behave, so we take the time derivative of (3.44) and see that
OWL = =K'V (N ) + Ny Oy’ (3.46)
Combining this with the fact that VjWﬁ =0, we find
OWL =V ; (Wiu') = V; Wiw!) + Ny (0" + 0! ViK' — kI Vu) . (3.47)

The motion of a single vortex is represented by the Lie transportation of the vector &?,

which denotes the direction of the vortex, by the flow w!. This is written
Ok + Lyk' =0, (3.48)
where the Lie derivative is defined by
Lok =V k" — KV ju', (3.49)
Using this equation of motion, we can rewrite (3.47) as

AW + €liky <eklmwflum) —0, (3.50)
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which shows that canonical vorticity W:, is locally conserved and advected by the u’

flow. If we rewrite the evolution equation (3.50) as a total outer product, we find that
thfl — Gijkeklmuj'vlp;n = Vi\IJn, (3.51)
where ¥, is an unspecified scalar potential.

In reality, it is unlikely that the vortices and the superfluid will be moving together.
There are a number of forces which would disturb the system and cause the vortices to
travel with a different velocity to that of the fluid, which we will see later on. In light of
this, we will now assume that the vortices do not move with the flow by introducing a
velocity difference w!, = vi —u’, where v denotes the velocity of the superfluid neutrons.
This enables us to rewrite (3.51), using the velocity difference and the definition of the

vorticity (3.44), as
0Pl — nu€? et VPl — na VW, = N pne? rjwp. (3.52)

We see that we now have a force appearing the right hand side of (3.52), due to the
velocity difference between the vortices and the superfluid neutrons. This is in fact
the Magnus force exerted on the vortices by the fluid. Obviously this only enters the
picture when w;" is non zero, or in other words, when the vortices and the fluid are
not moving together. A more common example of the Magnus effect is when a rotating
sphere moving through a fluid curves to one side, as seen in any sport involving a struck
ball. In our case, the Magnus force displaces vortices from their equilibrium position

due to the fluid flow past them. The Magnus force is given by
fi=— Vpneijknjw}c“’, (3.53)

which has a negative sign because it is defined as a lifting force. Hence, we have arrived
at

nadypl, — nneijkeklmv;-lvlp;” — Vi, = — (3.54)
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as our equation of motion for the single neutron superfluid. This incorporates the
quantised nature of the vortices and also takes into consideration that the vortices will

not be travelling along with the neutron superfluid.

3.3.1.1 A second look at vortex number conservation
We note here that the conservation of number density used above,
Ny + V; (Myw?) =0, (3.55)
is usually assumed to hold. The same is true for the motion of a single vortex,
Ok + Lyk' = 0. (3.56)

However, it could be the case that they are only conserved in the vortex plane. If we
consider this new planar approach, then the calculation would be as follows. If the

vortex number density is conserved only in the vortex plane, it would be written
1 7y —
INy + Vi (M) =0, (3.57)

where the projection is given by le = ijk = (5;“ — /%j/%k> Vi. We now take the time

derivative of the vorticity to see that
OWL = =K'V (Neu?) + N Ok’ (3.58)
Expanding and manipulating this equation leads to
OWL = =V (WW') + Now! VK" + Ny Ok (3.59)
Here we will say that the motion of a single vortex is given by

Ok + L' Lyk? =0, (3.60)
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where the Lie derivative is defined as before. Remembering that VjWﬁ = 0 while

plugging the equation of motion of a single vortex into (3.59), leads us to
IWE = Vi (u'WF) — V;(WIWY). (3.61)
This should look familiar as it gives (3.50) from the previous calculation.

Hence, we see that whether the vortex number density conservation and single vortex
motion is restricted to the vortex plane or not, the equations of motion are the same.
We will see this projected version of the conservation equation and motion of a single

vortex later on in Chapter 5.

3.3.2 Mutual friction

As we have discussed previously, the second fluid interacts with the vortices through a
mutual friction force [74, 75]. This is due to scattering of the second fluid component
off of the vortex cores. We will now add mutual friction into our system to balance with
the Magnus force. The mutual friction force is proportional to the velocity difference

between the vortices u’ and the second fluid ’Ué. Hence it is written in the form
fF=C@—uw), (3.62)

for the friction force on a single vortex. Ignoring vortex inertia, these two forces balance
each other such that
M+ fF =0, (3.63)

which allows us to rewrite the vortex velocity in the form
P P (R gk
U =, C ek’ (v —u” ). (3.64)

Next, we take the cross product of this form of the vortex velocity with x* to find

ik ik Pn klm _j
€ijpk’u” = €ijprl vy — EEijkE "k (v, — Um) (3.65)
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and cross it again to give

Pn . okl

kl j kl j m j .l r r
€ijk€ K Kium = €jp€" K Kb, — o Cigke Emgri’ K kg (v, —u"). (3.66)

If we focus on the final term of (3.66) for a moment, we can expand it to see that

%eijkeklmequ/ﬁjnlﬁq (v —u") = —%leijkn]/fQ (vﬁ — uk> , (3.67)

remembering that €;;;%7k* = 0. This means that (3.66) becomes

2
. . /{ .
eijkeklm/ijnlum = eijkeklmmjnlv% 4P €ijkhk’ (vﬁ — uk> , (3.68)

C

which we can substitute into the first equation we crossed with x* (3.65) to give

eijrriut = eijknjv’; — %eijkeklmnjnwf‘n + %leijkeklm/@jmv%
2 9 (3.69)
Pnle ik k
+ ol €ijkk (Un — U )
We can collect the vortex velocities
ot j k .k Pn klm _j
1+ ﬁ €ijk’u” = €jpR vy + o Gigke " Ky (Vb — o))
(3.70)
9121”2 ik
+ C2 Gijklﬁ (O
which we do in order to plug it into our first equation (3.64). This gives
C 1 ;
RN o J k k
u; = v, + 5 ( 57 5 2>eijk/<c (vp—vn)
k2 \1+C K

1 1 kim,_j n
T <1 + 02//)2%2) R0 = )

Finally, we plug this into our original form of the mutual friction force (3.62), to see
that

C i j n
= <p2,<;2/jrc2> [Cfijkﬁ]wﬁp + pacijue "R Rpwp| (3.72)
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Since this is the force per vortex, we can multiply by the vortex number density in order
to get the mutual friction force on the whole array of vortices

Cpn ; j
=N (W) |Ceigrriwhy, = pur? Lijuly | (3.73)
n

where 1;; = g;; — R;A; is the projection orthogonal to #' = Kk'/k. The first term in
the mutual friction force (3.73) is analogous to the Magnus force, although it is now
expressed in terms of the velocity difference w)” instead of w!¥. The second term
introduces dissipation into the flow. From the equations we’ve used above, we can

determine that [74]:

1. in the limit C' — oo we have u; — v}. This means that the vortices are strongly

coupled to the second fluid.

2. in the opposite limit C' — 0 we find that u; — v}'. The vortices must flow with

the neutron superfluid as they are weakly coupled to the second fluid.

3. the dissipative part of the mutual friction force vanishes in both the C' — co and

the C' — 0 limit.

The factor of C' is usually rewritten in terms of a dimensionless parameter B. The
analysis of this and the estimates for these parameters can be found in [74]. The

dimensionless parameter is related to C via

o
B=—, (3.74)
Pnk
which leads to the mutual friction force
F p B J ok J
[i" = pakNGB (V) — u;) = Ny 2 {Bpneijkn Wy — Puk-Lijwi, | (3.75)

3.3.3 Elasticity

We have seen in previous sections that there are two forces which move the vortex array

out of equilibrium. The first is the Magnus force, caused by the fluid flow past the
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vortices, and the second is the mutual friction force, caused by interactions between
the second fluid component and the vortices. We will now add a restoring force, which
attempts to return the vortex array to equilibrium and cancel out the Magnus and
mutual friction effects. We treat this restoring force as an elasticity, acting between
each of vortices. This elastic behaviour of the vortices is seen in experiments using
superfluid helium [4, 35, 36], so it is logical to include it in our model. We say that this
elastic force balances the Magnus and mutual friction forces, enabling us to write a new

force balance equation

R+ i+ fh=0 (3.76)

The elastic force is usually denoted o;, and is found from the elastic stress tensor [76],
1

ot = K&'o +2p (5/“ - 351-’%#) ! (3.77)

where K is the bulk modulus and is related to Lamé coefficients by K = A + (2/3)u.

Also, the two index §ik is related to the elastic displacement fZE , by

e = % <8£F N ok N oeP agg) |

Oz, = Ozt ' Oz Ot (3.78)

The elastic displacement SZE of a vortex that we see here is the difference between its
displaced position and equilibrium position, =} — z;. We will denote this elastic vortex

displacement & from now on.

As the displacement of each vortex is extremely small, we ignore higher order terms

and instead use

1/0¢  oek
k_ — i v
51 - 2 <8xk + 6$l ’ (379)
In our single fluid system (3.54), the force term that entered our equation was —fM, so

we will balance this and the mutual friction force with the elastic term o;. This gives us

- M= =1 =0 (3.80)
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where the elasticity o; is found by taking the derivative of the stress tensor (3.77),
oi = Vo~ (3.81)

The elasticity of the vortex array acts in the plane of the vortices. There is no elasticity

acting along the vortex direction, so
o/ kj=0. (3.82)
Using this with (3.81) we see that the elasticity is given by
o; = Viok, (3.83)

where VZJ- is the gradient perpendicular to the direction of the array. We could also
define the perpendicular gradient using the projection (g;; — #;%;)V7/ = Vi as we saw
previously. From equation (3.83) we find that the full elastic term, in terms of the vortex
displacement, is given by

o Kf T :_1,)) vi (Vi) + vt (v’i@)] - (3.84)

As well as exhibiting elasticity in the vortex array, there may also be a form of elasticity
along the vortex lines themselves. It is possible to consider this scenario of elasticity
along the vortices by including an averaged vortex tension. The tension term would be

of the form [68],
8Vn

T = 7Wﬂvjwﬁa (3.85)

where &y, is the energy per unit length of a single vortex, however, we will not be

considering vortex tension in this calculation.

3.3.3.1 A more general elasticity

We note here that although equation (3.84) has the familiar and recognisable form

of the two dimensional vortex elasticity, this assumes that &’ will be fixed along a
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coordinate direction. Later on we may prefer a more general form for the elasticity,
whereby the direction of the array is not necessarily along a coordinate axis. Hence we
need to use projections to form a general elasticity term. If we start from (3.81), we
can use the condition (3.82) to find an equation similar to (3.83). Using the projection

Lij = gij — Rik;, this is given by
o; = Vol + 07Vl (3.86)
which can be written in terms of A’
o; = Vo — ol iV k. (3.87)

In order for (3.83) to hold, we must assume that 4’ is a Killing vector. This means that
it must satisfy the Killing equation V;&; + V;&; = 0, which will kill the second term in

(3.87). We can now see that the elastic term takes the form

K 2 .
- [(M - 3) VEVLER + VEVEEE + V(L VhE)] . (3.88)

As /' is no longer along a coordinate direction, we cannot commute the orthogonal
derivatives. This is due to the fact that V;L; # 0. This is the form of elasticity

orthogonal to a general vector &'

3.4 Two fluid system

As we wish to improve our model in order to more closely replicate what we expect to be
occurring inside of a neutron star, we need to specify an equation for the second fluid.
As we have discussed previously, the interior of a neutron star is thought to be mainly
comprised of neutrons. However, there are also other particles present such as protons
and electrons, which we will now incorporate into our model. We will therefore consider
a two fluid system comprising of both neutrons and protons, where we are assuming
that the electrons are strongly coupled to the proton fluid. In the previous section we

discussed the mutual friction force which arises due to the presence of a second fluid and
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here we will show the equations governing this fluid. The Euler equations for a multiple

fluid system, in a frame rotating at angular velocity €2, are given by
(00 + vF V) (0F + exw™) + 265 20F + V(jix + @) + exwl, Vvl = 0. (3.89)

Where x,y € {n,p} denote the components associated to the neutron or proton fluid,

y

; —

v} is the velocity of the specified fluid, w)™ = v

; vy gives the difference between the

fluid velocities, €y is the entrainment parameter, jix is the chemical potential per unit
mass and Py is the gravitational potential. We assume that the neutrons and protons
have equal mass, m, = m;, = m. Since we are considering a rotating star, we wish
to include the vorticity in order to impose the neutrons be superfluid. Under rotation,
the superfluid neutrons form an array of singly quantised vortices. We will average over

them, as before, to acquire the macroscopic vorticity
% A 1 ijk n n,  pn
W' = Nyki! = . V(vg 4+ €"wp), (3.90)
where A’ is a unit vector in the direction of the vortex array, x = 1.99 x 1073 cm?s™!

is the quantum of circulation and N, is the number density of the vortices. We assume

that the number of vortices is conserved, which gives us
ONy + Vi (Nyu') =0, (3.91)

where v is the macroscopically averaged vortex velocity and L denotes orthogonality
to the vortex direction &%, as before. We also find, from the definition of the vorticity
(3.90), that

OWi + €™ Wiu) = 0. (3.92)

By using (3.91) and (3.92) in the same way as our formulation in Section 3.3, we can

find an equation of motion for the neutron superfluid,

(O + U?V‘j)(v? + enw?™) + 26,V 0F + V (fin + @) + snwénviv;l = Nyreyphid (v —uP).
(3.93)
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If we were to consider the case without entrainment, when €} is zero, this equation would
match (3.54) up to a rotational term. The extra terms appearing in (3.93) are due to
the presence of a second fluid in the system, when compared to the single fluid system
in Section 3.3. The term on the right hand side of (3.93) should be recognisable as the
Magnus force, which we saw in the single fluid case. The vortices will have an effect
on the movement of the proton fluid, which we will write in the form of a drag force
pukNyR(u" — v}). As we have seen, this is the mutual friction caused by interactions
between the second fluid and the vortices. R is a dimensionless drag parameter and
varies depending on what region of the neutron star we are looking at (from R ~ 10~1°
to R &~ 1 ). In the core, drag occurs due to the scattering of electrons off of the vortex
core, whereas in the crust there will be interactions with the lattice phonons. Hence, we

would like to investigate how the variation of the drag parameter, R, affects the modes

in this system.

Now that we know how the vortices interact with the proton fluid via mutual friction,

we can write the second component equation of motion for the protons

(0 + U?Vj)(vzp — epwP™) + €50k + V(fip + P)

; 1—-=z
— epwh, Vv = HNV(:EP)R(W - ),
p

(3.94)

where the proton number z, = p,/(pn+pp) and the entrainment parameter e, = e, (1—xp)/xp.
Now that we have formulated the equations both for the superfluid neutrons and the
proton fluid, we would like to have an equation governing the vortices. This comes in
the form of the force balance equation between the Magnus force, mutual friction and

the elastic force of the vortex lattice which we saw previously
Nykeijiid (0F —uF) + kNyR(u; —oP) + 0, =0, (3.95)
where o; is the elasticity given by

o = 2 2w (Vg - (VR)er| (3.96)

Pn
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Here, & is the displacement of the vortex line from its equilibrium position,

_ paRPNG

3.97
167 ( )

Hv

is the shear modulus of the lattice and VZ-l is again the gradient perpendicular to the
direction of the vortex array. This elasticity only takes into consideration linear order
lattice displacements, as they are assumed to be very small. As before, we will not
consider the contribution due to vortex tension here but it could be included using a

term of the form [77]

2 2.
arzmln(b> O (3.98)

' 8 a) 922’
where a is the vortex core radius, b is the intervortex spacing for a triangular lattice and

the rotation axis of the star is taken to be in the z direction.

We can write the continuity equations for the neutrons and protons as
Dipn + Vi(pnol) = 0, (3.99)

Bipp + V' (pp}) = 0, (3.100)

and the gravitational potential obeys the Poisson equation
V2 = 4G (pn + pp), (3.101)

where G is the gravitational constant. Next, we shall consider how this multifluid system

of neutrons and protons behaves when it is perturbed.

3.4.1 Perturbations

We are only going to consider linear order perturbations, in a background in which the

two fluids rotate together with angular velocity 2. In this background we have

KN, = 29. (3.102)
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We now perturb the equations of motion for each of the fluids, which we found in the

previous section, to find
D (vl 4 endw™) 4 2¢,5 Q060 + Véjiy = —2QR(Su; — dvP) — do; (3.103)

and

1—p)

O (0v) — epdwl™) + 26iijj(5U§ + Vi, = QQ( R(6u; — 6vY), (3.104)

Lp

where we have ignored the perturbations of the gravitational potential d®, using Cowling
approximation. Here we have made use of the force balance equation (3.95) and you can
see that the elasticity only acts on the superfluid neutrons. The perturbed elastic force,

doj, is written as

b0 = o [2VEH(V0¢)) - (V3)ogr | (3.105)

where we have defined the Tkachenko wave speed c& = k§/87. We have also as-
sumed that the vortices are in equilibrium in the background, which means that the
displacement will vanish unless the system is perturbed. Hence, all of the following
displacements will be perturbed quantities and we will drop the perturbation symbol for
them. We would like to consider Lagrangian perturbations of the two fluid system using
Aut = 9€L, as we are already dealing with the displacement vector .. But, since we
are in a rotating frame and the fluids moving together in the background, we find that
Ayu' = du’. Hence we proceed by using Eulerian perturbations, however, we will revisit
Lagrangian perturbations in later sections. When we perturb the force balance equation

(3.95), we find
2Qe;5,i47 v — 2Qe;5,i7 Swh, — 2Qeji! 5u” + 20RSu; — 2QR6VY + 6o =0, (3.106)
and the perturbed continuity equations are given by

D10pn 4+ Vi(pndvl) =0 (3.107)
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and

dpp + V' (ppouvl) = 0. (3.108)

3.4.2 Incompressible fluids

To make our problem simpler, we will consider the case in which the fluids are incom-
pressible, which tells us that dpx = 0. So, from the continuity equations (3.107) and
(3.108), we see that

VigoP = Visvl = 0. (3.109)

Next, we take plane wave perturbations and say that perturbed quantities take the form
5fi(x,t) = fiexp(ikjz! — iwt), (3.110)

where f; is a constant amplitude. We choose coordinates such that the rotation axis
of the system aligns with the z axis and the wave vector k! is in the a-z plane, giving

ki = (ksin,0, k cos 6).

Now that we have specified the type of perturbation we will use, we can plug this

into the perturbed equations of motion (3.103), (3.104) and (3.106) and get
— Wil (1 — &) — iwen @ + 2€;;x VX + ikifin = 20R(iwE) + TP) — 74, (3.111)

. 1_ _
— iwdl (1 — ep) — iwept) + 2@ij317’; +ik;fip, = —2Q(x$p)72(iw§2’ +o7)  (3.112)
p

and

€ijiiI O — ekl W, + iwei Rl € — iwRE — RIP + 63 = 0, (3.113)

where we have defined &; = 7;/2() and we write fix as the amplitude of dfix. From the

continuity equations (3.109), we can also see that

kjvd = k;v) = 0. (3.114)
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Next, we contract each of the above equations (3.111), (3.112) and (3.113) with k¢, Q!
and €™ k,,. We do this to obtain nine scalar equations, which we can then solve for

the frequency w?. Contracting the three equations with k* gives us

ek V0E + ik iy = 20RiwET K — Gk, (3.115)
o 1— _
ezl + i, = 2000 D Riug (3.116)
Tp
and
€ijrk RIUE — € pk' RIwl, +iwejk 7L — iwREK + 6k = 0. (3.117)

Then we repeat the process, contracting instead with Qf, to give the following three

equations
— w1 — &) — iwen 0 Q' + ik Q' iy = 2QRQ" (iwé) + o) — 7;, (3.118)
. e G S Y I e T (L =2p) b yigs av o p
— iw?; Q' (1 — ep) — iwepty Q' + ik Q' fip = —2QTRQ (iw& +7;) (3.119)
p

and

IWRE Q'+ RIPQ — 5,0 = 0. (3.120)
Finally we contract the equations with €™ k,,, to obtain the final set of three equations

—iwﬁ?e“mﬁlkm(l —&n) — iwsnﬁfeilmﬁlk‘m

(3.121)
+2¢,5€ M TE Y Ky = 20RO Ky (1w 4 TY) — Gy Qe
—iwDP €M Y (1 — €p) — iwep P €™ Yk, + 2645 QI TE D Ky, 12

3.122

1— ) _
= —QQ(imRe”lekm(in’ + 7))
Tp
and
o alm rJj=k o ilm ~j.k - dlm ~Jck

€ijre " Qkm i vy — €k Yk R wp, + iwei e Qi €S ( )

3.123

— wRE M ke, — RO EM Y Ky, + 51Ky, = 0.

In order to simplify the equations above, we will need to plug in the components of each

of the terms in the nine equations. In cylindrical coordinates, they are as follows:
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o ki = (ksin6,0,k cos0)

o U = (vf, 05, —vf tan @) from (3.114)

o & =(4,8.8)

o G; = (—c2k%E) sin? 0, 2k%EY sin? 6, 0) from (3.96)

e Q; =(0,0,9)

o ii=(0,0,1)
Next we plug these into equations (3.115) to (3.123), in order to find the nine equations
that need to be solved to find w?. We find that

— 2008 sin 0 + ikji, = 2QRiw (&} sin 6 + £ cos ) — 7 sin 6, (3.124)

(1—zp)

— 2Q05 sin 0 + ik, = —29
Tp

Riw(£) sin 6 + &5 cos 6), (3.125)
— 5 sin @ + wh" sin 0 — iwEY sin 6 — iwWR(E) sinf + £ cosf) + 51 sin =0,  (3.126)

iwd} (1 — ey) tan 0 + iwe, o} tan 0 + ikfiy cos § = 2QR (iwéy — o} tan 6), (3.127)

1— _
iw} (1 —ep) tan § +iwep o] tan 6 +ikji, cos 0 = —2Qﬂ7€(iw§§ —o¥ tan ), (3.128)

Tp
iwéy — v} tan 6 = 0, (3.129)
—iwth (1 — &y) — iwen 0y + 2007 = 20R(iwsy + 05) — 72, (3.130)
1— _
—iwdh (1 —ep) — iwepvy + 2Q0) = —2Q(xxp)7€(iw§§ + %) (3.131)
p
and
o) — oY+ iwey — iwREY — RS + 69 = 0. (3.132)

3.4.2.1 Without mutual friction

Firstly we consider the undamped case, in which we ignore the effects of drag by setting

R = 0. We will also say that the entrainment vanishes, ex = 0. In doing this we find
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two sets of solutions. There are the inertial modes given by

w? = 402 cos? 0, (3.133)

and the Tkachenko waves

474
crk
w? = 40% cos? 0 + 3k* sint 6 — 4TQQ sin® 6. (3.134)
If we now assume c%k2 < 02 and that the propagation is perpendicular to the rotation

axis (cos @ = 0), then we find the Tkachenko wave dispersion relation
w = terk. (3.135)

By taking cosf = 0, we are considering how waves propagate within the plane of the
vortex array. If we look at the bigger picture of a neutron star, this plane would be the

equatorial plane of the star.

3.4.2.2 With mutual friction

We would now like to investigate what impact the mutual friction, or drag, in the system
has on the propagation of the waves. This is controlled through the drag parameter R,
which was previously set to zero. For this section we take the entrainment to be zero,
so we have e, = €, = 0 but keep the drag parameter non zero. Firstly, we consider the
propagation along the rotation axis, the z axis, by setting 8 = 0. We find two sets of

modes, one which is undamped with dispersion relation
w = £2Q (3.136)
and one that is affected by the mutual friction

R? R
=420(1 - —— ) — 20—, 3.137
¢ ( (1 +R2>> I+ R2) (8.137)
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These agree with the two classes of modes in [78].

Now we consider the wave propagation perpendicular to the rotation axis, where cos 6 = 0.
This will tell us how the waves behave within the vortex plane. For this we consider a
typical pulsar with spin rate vz, = 10 Hz and long wavelength oscillations across the
whole superfluid region, such that k = 107 cm~!. We plot the frequency of the modes
as a function of the drag parameter R. In Figure 3.3 we see plots over a range of proton

fractions, from large values of the proton fraction z, = 0.96 down to smaller but more

realistic values z, = 0.1.
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Figure 3.3: The real part (solid lines) and the modulus of the imaginary part
(dotted lines) of the modes, for proton fraction x, = 0.96 (top left), z, = 0.7
(top right), x, = 0.4 (bottom left) and x, = 0.1 (bottom right), with k = 1075.
You can see that, for the high proton fraction case, the real part of the frequency
vanishes where there is an imaginary root and is then damped as the drag
parameter is increased. This imaginary root occurs for values of R such that the
damping time scale T, = 1/2QR is approximately equal to the Tkachenko wave
period Pr = 2w /wp with wp = k\/kQ/7 (yellow, red and blue curves). Also,
close to this, there is another imaginary root which can be seen in the yellow
curve. As we decrease the proton fraction, from top left to bottom right, and
tend towards the realistic neutron star core fraction x, = 0.1, the real part does
not vanish and there are no imaginary roots.
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We see that, for large values of the proton fraction, the real part of the frequency
vanishes and then the damping becomes large for large R. Also, close to this value,
there is an imaginary root. As we tend towards smaller, more realistic, values of the

proton fraction the real part does not vanish and there are no imaginary roots.

3.5 Lagrangian perturbation theory

Modelling a stationary and well behaved system doesn’t usually give any interesting
insight to real world problems. In nature, systems are rarely perfectly behaved, so we
want to see how the star behaves when it is perturbed. We saw previously what happens
to our fluid system when it is perturbed using a specific perturbation, namely a plane
wave perturbation. We will now investigate what happens when we perturb our single
fluid system from Section 3.3 using Lagrangian perturbation theory. This enables us to
write the equations in terms of a displacement vector relating to the component being
perturbed. The Lagrangian perturbation AQ of a quantity @ is related to the Eulerian
variation 6Q by

AQ = 0Q + L¢Q, (3.138)

where ¢; is the Lagrangian displacement. We see from [61, 73, 79] that the Lagrangian

perturbation of the fluid velocity is given by
Av' = 9,€°. (3.139)
Given that the perturbation of the metric is
Agij = V& + V&, (3.140)
we can then deduce that

Av; = 8i&i + VI V&5 + 0V €5 (3.141)



Chapter 3 - Newtonian Models 55

In order to perturb our system, we will assume that there there is no entrainment in the

system, which allows us to rewrite (3.54) in the form

Y
9

3.142
- (3142

(O + Lo, )% — Vi (‘I;L 4 vgv;> _
using pi, = m(v} + epw’,) with the entrainment parameter e, equal to zero. Now we
specify that ¥, is of the form —u, —m®, — mvﬁv;? /2 where p, and ®,, are the chemical
and gravitational potentials respectively. We do this in order for the left hand side of
(3.142) to match that of a standard Euler equation for a single fluid. This form of the
equation is also useful because the Lagrangian variation A commutes with (0; + L)

[80, 81]. After applying the perturbation to (3.142), we find that

M
(O + Ly, AV} + V; (A/Zn + AD, — %A (%w)) =-A (JZ) ) (3.143)

where fi, = pun/m. We wish to find an equation in terms of the displacement vector &;,

so using the perturbations of quantities seen above, we can rewrite (3.143) as

026 + 201,06 + (V1Y) & + Vid@,+E7V, VD,

M
— (Vz'fj) Vjin + ViAfin = —A ({:) )

(3.144)

3.5.1 Magnus force perturbations

We also wish to write the Magnus force term, on the right hand side of (3.143), in terms
of displacement vectors. When the system is relaxed and has no forces applied to it,
the vortices travel along with the fluid. So we know that, in the unperturbed state, the

velocity difference w?,, = v} — u* vanishes, which gives us

M A
A (p) = —Nyeijir? Awk,. (3.145)

%

As a consequence of w!, vanishing in the background, it is true that Aw? = sw’,.
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Currently we have only used one displacement vector, which represents the displacement
of the fluid. It is likely the case that the displacement of the vortices when perturbed is
not equal to the displacement of the fluid, so we will use & to denote the corresponding
displacement vector of the vortices. This vortex displacement vector emerges from
the Lagrangian perturbation of the vortex velocity u’, in the same way that the fluid
displacement ¢ is related to the fluid velocity v! in equation (3.139). In general, we
know for a certain fluid component x € {n,p,v,...} that the Lagrangian displacement

vector for that fluid will be given by
Asvy, = Sy + L, vy, = 9iéy. (3.146)

This tells us that the perturbation of a velocity v¢ with respect to a different fluid

perturbation Ay is given by
Ayvf( = 5“; + ﬁgyvi = Axvi — ﬁngi + ﬁgyvf(, (3.147)

by rearranging (3.146) for dvi and plugging it into (3.147). Hence, in the case of our
Magnus force, we are considering the perturbation of the vortex velocity u! with respect
to the neutron fluid perturbation A, , denoted A above. Using the general perturbation

identities above, we can find that
Au' = Avu' — Leu' + Leu'. (3.148)
Hence, the perturbed Magnus force, (3.145), takes the form
Pn

M ,
A <Z> = —Ny€ijpk’ (Avlrf — LeuF — AP + Egvuk) , (3.149)

which we can simplify, remembering that the fluid and the vortices are travelling together

in the background, to give

M
A (J;) = —Nyeijir? |0y(EF — €F) — Lo g 0] (3.150)
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Now that we have determined all of our perturbed terms, we discover that our superfluid
equation (3.142) behaves according to
O2&; + 20IV 016+ (V1Y) € + Vid®y + €V, V0,

| o FRNCEED
— (Vi&?) Vjfin + VilAfin = Nyegur? |0:(&" — £7) — ﬁ&—évvn} ;

when our system of superfluid neutrons and vortex array is perturbed.

3.5.2 Mutual friction perturbations

In order to write down the complete perturbed force balance equation, we need to find
the perturbed form of the mutual friction force and also the elasticity. Here we will see
how the mutual friction force transforms when we apply the Lagrangian perturbation.
In the background, the vortices and the second fluid are moving together, which causes
the mutual friction to vanish in a similar way to the Magnus force before. Hence, the

perturbed mutual friction force is given by
AfE = pukN B (AP — Aw;) . (3.152)

We have already seen the form of Au; and we can use (3.147) from the previous section
to find that
AUZP = APU;‘O — ,Cgpvzp + [{U;‘O. (3.153)

Putting these back into the mutual friction expression (3.152) we see that
AfiF = puk Ny B (Apvlp — Egpvf — Avu; + Le,u; + Lev) — Egui) , (3.154)

but as vlp = wu; in the background, this simplifies to

AFE = puk NGB (Apo? — Ayu; — Le, ¢ 0F) (3.155)
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and hence we arrive at

ASE = pakNB (00 (€0 — &) = Ley-e, o0 + 0] [Vi (£ - &) + 7, (€ - )] ).
(3.156)
Now that we have the perturbed form of the Magnus force and mutual friction, all that

remains in our force balance equation is the elasticity, which we will consider next.

3.5.3 Elasticity perturbations

We have already discussed that, in the background, the vortices are in equilibrium.
This means that the elastic displacement £ vanishes in the unperturbed system and
only arises when the system is perturbed, along with the Magnus force and mutual

friction.

Using the force balance equation between the Magnus force, mutual friction and elas-
ticity, we can rewrite the superfluid equation (3.143) to include the vortex elasticity.
In doing this, we find a slightly different version of our perturbed superfluid equation,

given by

076 + 20)V,;0i& + (VV;)” &4 Vid®n + EV,V; B,
E F (3.157)
. ~ ~ E . ]
~ (V) Voo + Vit = & (2L

Pn

Yet again we need to consider what form the right hand side will take when the system
is perturbed. However, as we have discussed, the vortices are in equilibrium in the
background, which means that the elastic displacement will be zero unless the system

is perturbed. Hence, the perturbed elastic force remains in the same form that we have

seen previously
K 1 ; ;
E— Do)V (V) v (Ve
Af] ”[<u+3> ( Lf]>+ J( ﬁ@)] (3.158)

We have determined the form of the Magnus force, mutual friction and elasticity when

the system is perturbed. Hence, we note that the perturbed force balance equation for
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the vortices

AN+ fF+ 1F) =0, (3.159)
takes the form
K 1
vanezjk’{ |:at(§ - gxlf) - ‘CE—EV’UE} |:< 3) VL Vigv + VL (v.igv>:|

+pukN B (at (€ = &) = Ley—e,0] +v) [ i (fp 53) Vi (& _&'V)D'
(3.160)

So, (3.157) and (3.160) determine how this single superfluid neutron system and its
vortex array behave when they are perturbed, using Lagrangian perturbation instead of

Eulerian perturbation.






General Relativity
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Relativistic Models

4.1 Relativistic fluid dynamics and vorticity conservation

Now we will begin to consider the approach we need to take in order to model our system
in general relativity. In the case of a single relativistic fluid, we can formulate an Euler

equation by considering the continuity equation of the stress-energy tensor [61, 82, 83]

VT = 0. (4.1)

When considering a perfect fluid, we know that the stress-energy tensor is given by

Top = (p + p)uatp + PYab, (4.2)

where u, is the fluid velocity, p is the pressure and p is the total energy density. Given
a relation p = p(p), there are four independent variables. The equations of motion are
VoT%, = 0, which follows from the Einstein equations and the fact that V,G%, = 0. We

take an equation of state of the form p = p(n) where n is the particle number density.

63
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The chemical potential p is given by

0
dp = 6—Zdn = pdn, (4.3)
and from the Euler relation we get
un =p-+p. (4.4)

We now eliminate the free index of V,T%, = 0 in two ways. Firstly, we contract it with

ub and secondly we project it with J_Ié. Using u®u, = —1 we can see that
Vaoubuy) =0 = Ve’ =0. (4.5)
So, when we contract the equations of motion with u® we find
u'Vap + (p+ p)Vau" = 0. (4.6)
Then, by using the chemical potential and Euler relation, it becomes

unuVen + unVou® =0 = V,n*=0, (4.7)

where n® = nu®.

If instead, we use the projection J_lc’, we see that the equations of
motion give

Dep = —(p+ p)ac, (4.8)

where D, = J_I;Vb is a purely spatial derivative and a. = u*V,u. is the acceleration.
This is similar to the Euler equation for Newtonian fluids. Another way of understanding
VoI% = 0 is if we define

iy = fiup, (4.9)

and note that u,du® = 0, then

dp = —ppdn’. (4.10)
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The stress-energy-momentum tensor can now be written in the form

T = pé“b + naub. (4.11)

The fluid element momentum py is conjugate to the particle number density current n®.

If we now consider the continuity equation V,7%, = 0, we can determine that

nwap + pVen® = 0, (4.12)

where the vorticity wgy, is defined to be the anti-symmetrised derivative of the momentum

Mg = HUq
Wab = QV[a,ub] = Va,ub — Vb,ua. (4.13)

We now contract equation (4.12) with n” and use the fact that the vorticity is antisym-
metric to find that

Van® =0, (4.14)

which tells us that the particle flux is conserved. Clearly this result also tells us that

n%wey = 0, (4.15)

from equation (4.12). This is our relativistic Euler equation, where n* = nu® is the

particle flux, u® is the fluid velocity and wyy, is the vorticity two form.

The definition of the vorticity, equation (4.13), implies that its exterior derivative

vanishes,

V(oW = 0. (4.16)

In the case that the Euler equation (4.15) holds, the vorticity is conserved along the
flow. That is, we have

Lowap = 0. (4.17)

Hence, the equations of motion (4.15) can be seen as an integrability condition for the

vorticity. We will investigate these conservation laws further in Section 4.3.
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4.2 Conventional formulation of perfect fluid and simple

superfluid theory

The equations of motion found in Section 4.1 are also derivable from a Lagrangian
variation principle [65, 84, 85, 86]. The 4-momentum 7,, a combination of the 3-

momentum 7; = p; and the energy mg = F, is defined to be

oL

= — 4.1
aua? ( 8)

Ta

where L is the relevant position and velocity dependent Lagrangian function for the

system and
d a
u® = de , (4.19)

which was described previously in Chapter 2. We obtain an equation of motion from

the momentum and Lagrangian by taking

dm, oL

= ) 4.20
dr oz ( )
For barotropic perfect fluid models, the Lagrangian will have the form
1 1
L = = pgapu®u® — = puc?, (4.21)

2 2

where p gives the mass in the first term and the potential energy in the second term.

The 4-momentum will be given by the relation
Ta = Mg, (4.22)

so that we have E = yuc? and p, = yuv, where p can be interpreted as the relevant
effective mass. We now want to specify an equation of state giving the pressure p in
terms of the density p. In order to do this, we first write p in terms of the conserved
number density n, in the form

€
= — 4.23
p=mn-+ 2 ( )
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where m is the mass of the particle we are considering and ¢ is an extra energy con-
tribution due to compression. We can then write the pressure in terms of the density

as

p = (np—p)c, (4.24)
where the effective mass p is given by

dp 1 de
_ 7 — 4.25
H dn mt c2dn ( )

This will be the effective mass term which appeared in the Lagrangian (4.21).

As we are dealing with a fluid flow rather than a single particle, we will convert the equa-
tion of motion (4.20) from a particle evolution equation to the equivalent field evolution
equations. We rewrite the left hand side of the equation using the gradient of the mo-
mentum V.7, in the form dr, /dr = u®Vy7,. Similarly, we rewrite the right hand side of
the equation in terms of the gradient of the Lagrangian V,L = 0L/dz%+ (9L/0m,)V o7p.

Hence, we arrive at the field evolution equation of the form

WWVyrg + mpVaub = VL. (4.26)

We can also start from the Hamiltonian function in terms of the position and momentum

variables [87], which comes from the Legendre transformation
H = mou® — L. (4.27)

In doing this, we can find our previous equations (4.19) and (4.20) when we specify that

dxz* OH dm, OH
= = — . 4.2
dr 0Ty and dr oz (4.28)
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As we wish to model a fluid, not a single particle, we find another field equation in

evolving the Hamiltonian this time instead of the Lagrangian. This takes the form
2’V 7y = —VH, (4.29)

where the square brackets denote antisymmetrisation over the bracketed indices. Con-

tracting (4.29) with u® we obtain the relation
u*VoH =0, (4.30)

as the left hand side vanished due to being antisymmetric. This tells us that the

Hamiltonian is conserved along the flow u®.

We can find the Hamiltonian for our perfect fluid by using the Lagrangian (4.21) seen

previously. This determines that the Hamiltonian is given by

1 c?
H = Q;Zgabuaub‘+f£%ff. (4.31)

In order for u® to be correctly normalised, the Hamiltonian must vanish. If this is the

case we get

H=0 = wuuu®=—c, (4.32)

as required. Hence, once we use this information in our Hamiltonian field equations
(4.29), we find that
uaV[aﬂ'b} =0. (433)

We found previously that equation (4.15) can be obtained from the Lagrangian equations
of motion given by the Lagrangian in (4.21). Next we need to find the conservation of

number current (4.14) from the action integral

1/2
I:/wyﬁ as@ = L9 (4.34)

C
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where S® is the four dimensional background manifold and £ is the scalar Lagrangian
functional, in order to complete the system of equations. We simplify things by looking
at the irrotational case, where wy, = 0. In this case, we take the independent variable
to be the phase ¢ from the mesoscopic phase factor e¥ and the action is taken to be
the pressure p expressed as a function of the effective mass p. The mass is proportional

to the magnitude of the momentum

poct = mm?, (4.35)

where the momentum is given by

T = hva90> (436)

which applies in the irrotational case. Hence, if we set £ = p and use the pressure

variation dp = ¢*ndpu, the variation of the Lagrangian is given by
0L = —nm, = —hn*Vo (). (4.37)
If we say that the action integral (4.34) must be invariant with respect to infinitesimal

variations of ¢, then we find the required conservation law (4.14).

4.3 Vorticity conservation and flux 2-surfaces

We are interested in finding conservation laws which tell us that certain properties
remain the same after being displaced. The variation given by a displacement vector &£*
is written in terms of the Lie derivative along £, denoted L¢X for some quantity X.

The Lie derivative of the metric is given by

Legab = Valp + Via, (4.38)

which vanishes if the displacement vector £% is a Killing vector. If the displacement is

not a Killing vector, the Lie derivative clearly does not commute with the raising and
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lowering of indices. The Lie derivative of a vector X¢ along £ is given by

LeX =PV, X — XPV,e7, (4.39)
and we can use (4.38) to see that this changes to

LeXo ="V Xq + X, Vo8, (4.40)

for a vector X, = gapX b If we consider our momentum 7,, we find the Lie derivative

to be

Lema = €Va + MV " = €+ Va (e | (4.41)

where wp, = 2Vpm,) is the relativistic vorticity tensor. Due to this definition of the

vorticity tensor, its exterior derivative will vanish
v[aWbc] =0, (442)

as we saw previously in (4.16). Lie differentiation commutes with the exterior derivative,

which means that if we take the exterior derivative of (4.41), we find

Leway = =2V, (wye£°) - (4.43)

If we now look back to the Lagrangian equation (4.26), this can be rewritten in terms
of the Lie derivative as

Lo7a = VL. (4.44)

So, as before, if we apply the exterior derivative to this equation we get a conservation
equation for the vorticity

Lywap = 0, (445)

which tells us that the vorticity is conserved along the flow u*. We know from (4.33)

that u® is a zero eigenvalue eigenvector of the vorticity tensor wgp,. As wgy, has a zero
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eigenvalue eigenvector, it must satisfy the degeneracy condition

wa[bwcd] = 0, (446)

which also implies that it has rank two. Hence the flow u® is just one case of a whole

tangent subspace of eigenvectors e® satisfying the same condition as (4.33)

ewap = 0. (4.47)

This subspace is spanned by a unit worldsheet bivector £%° [65], as long as the vorticity

does not vanish w = (%wabw“b) 1/2 # 0. The bivector is proportional to the dual vorticity
tensor
1
waeb = §eab‘:dwcd, (4.48)
and is written
1
£ = ZWwab, (4.49)
w

We can see that the tangent bivector £% satisfies

EWEp = —2¢% and E%wy. = 0. (4.50)

The equation above means that if we contract any covector with the bivector, this new
term will be a solution of (4.47). An example of this can be seen from the helicity h®,

which is given by [88, 89, 90, 91]

he = wEPr,. (4.51)

As well as being a solution of the vortex worldsheet tangentiality condition, it also

satisfies the helicity conservation law

V.h® = 0. (4.52)
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4.4 Variational fluid model

Next we will introduce the concept of a matter space into our model and use it within the
variational approach. A more in depth discussion of matter space components will occur
in Chapter 6. We start by reviewing the standard approach, as per the Living Reviews
article [61] and [92, 93, 94]. For simplicity we will consider a single matter component,

represented by a conserved flux n®. For an isotropic system, the matter Lagrangian A

2 b

should be a relativistic invariant and hence should only depend on n* = —g,n®n’. In
effect, this means that the Lagrangian depends on the flux and the space-time metric.
An arbitrary variation of A = A(n?) = A(n%, gu) then gives (ignoring terms that can be

written as total derivatives, that is, the ‘surface terms’ in the action)
1
5 (V=gA) =V—g [MaMG +5 (Ag“b - n“u”) 59@} : (4.53)

where ¢ is the determinant of the metric and p, is the canonical momentum

oA oA b
0 = = —2——gun’. 4.54
# on® 8n2g o (4.54)
We have also made use of
1
o/—g= §g“bégab. (4.55)

Equation (4.53) illustrates why a variational derivation of fluid dynamics is non trivial.
As it stands, the variation of A suggests that the equations of motion would be p, = 0,
in essence, none of the fluids carry energy or momentum. This problem is resolved by
imposing constraints on the fluxes. A natural way to do this is to make use of a three

dimensional ‘matter space’.

The coordinates of matter space, X4 where A € {1,2, 3}, serve as labels that distinguish
fluid element worldlines. These labels are assigned at the initial time of the evolution,
say t = 0. The matter space coordinates can be considered as scalar fields on spacetime,
with a unique map obtained by a pull-back construction relating them to the spacetime

coordinates.
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The variational construction then involves three steps. Firstly, we note that the conser-

vation of the individual fluxes is ensured provided that the dual three-form

d
Nabe = €abedN y, N = 7€ Nped (456)

where €,pcq is the usual volume form associated with the spacetime, is closed. That is

V[anbcd] =0 — Vg*=0. (457)

In the second step, we make use of the matter space to construct three-forms that are

automatically closed on spacetime

Nabe = VP00 gnasc, (4.58)
where the map is given by
0x4
A
P = D (4.59)

and the Einstein summation convention applies to repeated matter space indices A, B, C.
The volume form n 4pc, which is assumed to be antisymmetric, provides matter space
with a geometric structure. If integrated over a volume in matter space it provides a

measure of the number of particles in that volume. Specifically, we have

NABC = NEABC- (4.60)

With this definition, the three-form (4.58) is closed provided napc is a function of the

XA, In other words, the scalar fields X4 are taken to be fundamental variables.

The final step involves introducing the Lagrangian displacement &% and linking back
to the spacetime perturbations. This displacement tracks the movement of a given

fluid element. From the standard definition of Lagrangian variations in the relativistic
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context, we have

AXA =X+ LeXxA =0, (4.61)

where X4 is the Eulerian variation and Ly is the Lie derivative along %, as we have

seen in Chapter 3. This means that convective variations are such that

L0XA

A_ A_ _
XA = —LeX = g

= =g, (4.62)

as X4 acts as a scalar field on spacetime. For later benefit, it is also worth noting that

this leads to

Ay?, =0 (4.63)
and after some algebra, one finds that
Angpe = 0, (4.64)
which in turn implies
on® = n"Vu* — £PVyn® — n® (vbé” + ;gb%gbc> : (4.65)

This is the key result. By expressing the variations of the matter Lagrangian in terms
of the displacement £¢, we ensure that the flux conservation is accounted for in the
equations of motion. The variation of A now leads to

VI Y N PRI WP

From the constrained variation it thus follows that the equations of motion are simply
given by

fo =n*(Vpa — Vapp) = 2n“V[bua] = 0. (4.67)

Equation (4.67) above should look familiar as we derived it in the previous section in the

form (4.33). In the previous derivation we denoted the momentum 7, (4.22) whereas
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here we denote it p,. We can read off the stress-energy tensor
2 6(y/—gA
Tab _ ( g ) — (A _ ncﬂc) gab + na'ub‘ (4.68)

B vV —9 5gab

Introducing the matter four-velocity such that n® = nu® and p, = pug, where p is the

chemical potential, we see that the energy is given by

e = uqup T = —A.

Moreover, from the first law of thermodynamics, we identify the pressure as

p=—-c+nu=A—nuc.

This means that the stress-energy tensor takes the form

Tab — pgab + naub — suaub +phab’

where we have used the standard projection

hab — gab + uaub‘

Finally, we can determine from (4.68) that

VaT“b:—fb+VbA—,uaVb a:—fb:().

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

The second equality follows from i) the fact that A is a function only of n® and g,, and

ii) the definition of the momentum p,.

4.5 Introduction of the Kalb-Ramond gauge field

For a macroscopic model which will allow for an averaged effect of a number of vortices

in the fluid, we will investigate the Kalb-Ramond gauge field [95]. We wish to start by

writing the current in terms of an antisymmetric tensor field By, = —Bp,. We define
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the exterior derivative of this tensor to be
Nape = 3v[a,-Bbc]7 (474)
and its dual is the number current, but written in the form

1
n® = ge“bchbcd. (4.75)

This will be invariant under the gauge transformations given by B — B + 2V (g Xp)-
The closure condition

v[tzj\fbcd] =0, (476)

is the equivalent condition to the conservation of the number current (4.14).

We will now perform a Legendre transformation £ +— A, where we replace the inde-
pendent scalar field ¢, seen in Section 5 of [95], with the antisymmetric gauge tensor
Bgp. This will create a new yet similar model, in terms of a Lagrangian function A,

which takes the form

C2

A=-0 CPQNabCNabC —V{®}, (4.77)

in which the potential energy density term V' is some suitably chosen algebraic function of
the dilatonic amplitude ® [95]. We can find the irrotationality condition wep = 2V my) = 0

from the new Lagrangian (4.77) in the equivalent dual form
Va (¢—2Nab0) —0, (4.78)

by requiring invariance with respect to the independent variations of the gauge 2-form

Bap.

We replace the scalar field ¢ by the tensor field B, to take our model to the more
general perfect fluid case. We want to keep the particle conservation equation (4.76)

but get rid of the condition of irrotationality (4.78). The way to do this is to introduce
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a Lagrangian of the form

1
L=A— ZeadeBabwcd, (4.79)

where the vorticity 2-form is constructed from independent gauge fields in a similar way
to the current 3-form. The vorticity is constructed such that the property (4.42) remains
true. The independent gauge fields are taken to be two independent scalars xy* and the

vorticity wgp is then written in terms of these as

Wap = 2 (V[ax+) Vb]X_' (4.80)

If we plug the Lagrangian (4.79) into the action integral (4.34), with the requirement of
invariance with respect to variations of By, x* and ®, it returns our original momentum
equation (4.15). Hence, as we already have the particle conservation equation, we now
have a complete set of equations which govern the motion of a perfect fluid, which are

the same as those derived from the stress-energy tensor in (4.1).

4.6 Going forward

In this chapter we have summarised the standard approaches one would take in order to
model fluids in relativity. As we proceed into the development of our model, we will call
on and adapt these methods as we create our own multifluid system including quantised

vortices, mutual friction and elasticity in general relativity.






Quantised Vortices

and Mutual Friction

So far we have only seen how to model fluids in relativity. In order for our system to
model superfluids, we must input some information regarding superfluidity. Hence, as
in the Newtonian calculations, we will input the characteristic of quantised vortices into

our model to specify that it be superfluid.

5.1 Thin vortex string limit
Following on from Section 4.3, we will now consider that the vorticity of the system is
concentrated within the neighbourhood of some vorticity flux 2-surface S [95]. This

could correspond to zero values of the scalar gauge fields x* seen previously. We will

describe this vorticity 2-surface in terms of two coordinates ¢° and o!.

The worldsheet embedding, {0°, o'} + 2¢ = 7%{0}, with induce a 2-surface metric

79
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Yap On the worldsheet which is given by
YAB = gabfflAff)Bv (51)

where the comma denotes partial differentiation with respect to the 2-surface coordi-

nates. This will in turn specify a worldsheet measure

1/2
ds® = mdgodal, (5.2)

C

of the 2-surface element spanned by the coordinate variations do® and do'.

We assume that the vorticity distribution is confined within a small region given by
the displacements 6y and dx~ of the scalar fields. Then we take the thin string limit
as the size of these displacements tend to zero. The dual vorticity (4.48) in this limit,

is given by an integral over the two dimensional worldsheet by
Wb = W / WS [z — 7{0}] dS®, (5.3)
g

where the term W™ is the antisymmetric vorticity flux tensor on the two dimensional

worldsheet.

If we are considering a continuous vorticity distribution, the vorticity conservation

equation (4.42) can be expressed in this dual form as
VW =0. (5.4)

But, if we are considering the thin string limit in which the vorticity dual is of the
form (5.3), the conservation equation above (5.4) will give us a similar condition for the
2-surface vorticity flux w [95]. We say that n%, is the first fundamental tensor of the
worldsheet, which projects a vector at a point on the worldsheet onto its tangential part

in the worldsheet. This is given by

0% = ¢ € Ew. (5.5)
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Then we can say that the covariant derivative on the worldsheet is given by

Given these, we can note that the conservation condition for the vorticity on the world-
sheet will be in the form

V.7 = 0. (5.7)

We can see that the worldsheet tangent bivector £ will also satisfy an equation of the
same form

V% =0. (5.8)
Hence, (5.7) tells us that the worldsheet vorticity flux tensor W™ is of the form

W = k&P, (5.9)

where & is constant on the worldsheet, V,x = 0.

For the thin string limit, the constant  defined by (5.9) is the 2-surface integral of
the vorticity across any spacelike section through the world tube. By Stokes’ theorem,
this is equal to the value of the Jacobi action around a closed curve surrounding the

vortex string. Hence we will have

K= y{ds = %ﬂ'ad.’ﬂa = 27hn, (5.10)

where n is an integer representing the number of individual quantised vortices carrying
the flux. So, in the case in which we are considering a single quantised vortex, we will
have n = +1 and find that

Kk = 27h. (5.11)
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5.2 Quantised vortices

Now we will start our novel calculation in relativity, in which we will follow the Newto-
nian formulation of a superfluid system as in Chapter 3. In order to follow the Newtonian
formulation of the superfluid equations, we will need to use a quantised vorticity vector
instead of the relativistic vorticity tensor wgp. By adapting the kinematic rotation vector

in [88], we form the vorticity vector from the vorticity tensor by saying

1
W = §€ab6dubw0d, (5.12)

which we can reverse to find the vorticity tensor in terms of the vector
Wab = —€abcdchd. (5.13)

We can see from (5.12) that the vorticity vector is orthogonal to the flow, u,W* = 0,
and also from (5.13) that the Euler equation (4.15) holds. Next, we use the conservation

of vorticity (4.17) to find an evolution equation for the vorticity
LV + W (V) = u (Whiy ) = 0, (5.14)

which can be written as

h [Luwb WP (vcu‘?)} —0, (5.15)

where the projection is given by
h%y = 0p + uup. (5.16)
In order to find (5.14) and hence (5.15), we have made use of

L = — e (7). (5.17)
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Next, we express the vorticity in terms of a collection of vortex lines, in the same way as

the Newtonian formulation. So we say that the quantised vorticity vector can be written
W = Nk, (5.18)

where N is the number density of the vortices, k% = ki&® is the direction of the vortex
array and k = h/2 is the quantum of circulation. The conservation of the vortex line
density is found to be

15,V (Nu®) =0, (5.19)

where the projection is given by
10, =88 — kaib. (5.20)
We can then find that the equation of motion for a single vortex is
(68 4+ upu® — Rpi®) Lyk® = 0. (5.21)

To check that we are indeed reproducing the Newtonian formulation in general relativity,

we take the Newtonian limit of (5.15) and (5.21). We find that (5.15) equates to
IW' + €98V i (eppmWul™) = 0, (5.22)
which is the Newtonian evolution equation for the vorticity (3.50). Also, (5.21) produces
Ok + L' Ly k! =0, (5.23)

which is the Newtonian equation for the motion of a single vortex (3.60). As we use u®
to denote the fluid velocity in this chapter, we use u¢ to denote the collective vortex

velocity in the two equations above.
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5.2.1 Bivector and vector comparison

Although the two methods above are very different, the calculation presented in Section
5.2 for a single superfluid is consistent with that of Carter in [65] and Section 5.1. In
Chapter 4 we used the continuity equation of the stress-energy tensor V%7,; = 0 to find
the system of equations for a relativistic perfect fluid. The equations for such a system

are the conservation of particle flux

Van® =0 (5.24)
and the relativistic Euler equation

nwap = 0. (5.25)

Both of these are shown in the same way in Carter’s calculations. However, from here,

Carter proceeds by using the dual vorticity tensor

1
Wap = ieadewcd (5.26)

and the unit worldsheet element tangent bivector

1
g = Zwab, (5.27)
w

1/2

where w = (%wabw“b) is the vorticity magnitude. The equation for the conservation

of vorticity is expressible in terms of the vorticity dual as
v, = 0. (5.28)

The bars in equation (5.28) denote the restriction of the dual vorticity tensor and the
covariant derivative to a two dimensional surface. The worldsheet tangent bivector

satisfies a conservation condition of the same form as equation (5.28)

VipE® = 0. (5.29)
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. . .. —ab
We determine from these equations that the surface vorticity flux tensor W* must have
the form

W = ke, (5.30)

where k is a constant on the worldsheet, V,k = 0. The constant k defined by (5.30) is

interpretable as the value of the 2-surface integral of the vorticity.

Our system is related to the one summarised above through the final two equations
(5.29) and (5.30). The 2-surface integral of the vorticity k in Carter’s work relates to
our quantum of circulation . Also, it can be shown that the conservation condition for
the worldsheet tangent bivector, equation (5.29), is equivalent to our equation of motion
for a single vortex

0% + upu® — Rpi®) Lok = 0. 5.31
(dp

Hence, our relativistic single fluid system built using the quantised vorticity vector

matches the similar system built by Carter using the dual vorticity tensor.

5.3 The Magnus force and mutual friction

Up until now, the vortices and the superfluid are considered to be moving together.
In this section we will assume that the fluid and vortex velocities are no longer equal,
implying that there is a velocity difference between them. We will then introduce a
frictional force between the vortices and the normal fluid component, causing a second

velocity difference.

5.3.1 Two-fluid model with friction

We now consider a system comprised of two fluids. Let the first fluid component have
particle density n and the second component s. The corresponding fluxes are n® = nu®

and s® = su?. We say that the first fluid represents massive particles and is conserved

Van® = 0. (5.32)
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The second fluid represents entropy, and is in general not conserved

Vst = T. (5.33)

We assume that the two fluids are coupled by friction, which gives us the equations of

motion
nwey = Ry (5.34)
and
swSy + s = R, (5.35)
where
Wi = 2V (5.36)

and pf = pful. If we assume that there are no external forces acting on the system then

we can write down a force balance equation
Ry + R, =0. (5.37)
Due to wgy being antisymmetric, we can see from (5.34) that
noRE = 0. (5.38)
We also use (5.35) and (5.37) to see that
(s%uS) T = s9RE = —s*RE = — s nbwy,. (5.39)

Next, we define the temperature to be T' = ps = —uy, and as the two fluids do not

move together we can say that

ud =y (u® +w), uw, = 0, v=(1- w2)71/2 . (5.40)

S

Combining the above equations with (5.39), we find that

sTTs = s*ywanbwba >0, (5.41)
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in accordance with the second law of thermodynamics. We can also see from (5.39) that

we need

s"Ry = syw*Ry, > 0, (5.42)

which can be satisfied by assuming a friction force

R, = aw, , where a> 0. (5.43)

5.3.2 The Magnus force

We will now impose that the vortices do not move with the flow. We say that there is
friction between the vortices and the second component in our two fluid model. This

means that we can write the vortex velocity as

uy =7 (u® +v?). (5.44)

In Sections 4.1 and 5.2 the vortices moved with the flow, so we had u$ = u* and wrote
the equations using the fluid velocity for simplicity. We will now use the Euler equation
(4.15) in the form

Ugwap = 0 (5.45)

and introduce the velocity difference stated in equation (5.44). This enables us to rewrite
the Euler equation as

Ulwep = —0%wep = féw, (5.46)

where the right hand side defines the relativistic analogue of the Magnus force. It is

clearer to see this once we plug in the definition for wyp, (5.13), to get

a

fé\/[ = —0v%wgap = Negbed? uf,f—;d = Nepaar®v?, (5.47)

where we have defined

€abc = 6dabcug- (548)
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Hence, from (5.46) and (5.47), we arrive at the final equation of motion
n%wap = NN €paer®ve. (5.49)

Taking the Newtonian limit of this equation of motion gives us the correct Newtonian

superfluid equation (3.142),
1 . .
(O + Ly, )vi + V; <ﬂn + &, — 21}%7}?) = Nyeipriwk, . (5.50)

We can see using (5.34) that the superfluid equation of motion (5.49) means we must

have

R® = nNegperlv. (5.51)

5.3.3 Mutual friction

Microphysically one would expect the mutual friction to arise from the scattering of the
second component off of the vortex core. We represent this by using the relative velocity

between the vortices and the normal fluid
ut = 4 (ul + ¢ (5.52)
Combining the relative velocities (5.40), (5.44) and (5.52) we find that
¥ =9 (5.53)
and

¢ =~y (" —w?). (5.54)

Mesoscopically, the vortices move under the influence of two forces. The Magnus force is
balanced by dissipative scattering of the normal component. This leads to an equation
of motion of the form

Baa = —R" = —egapeulro®, (5.55)
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assuming that the vortices are taken to be massless. We can rewrite this as

1
Wy = Vg + Eedabcudﬁbvc, (5.56)

where

n=pBv/9 (5.57)

is the friction coefficient. In fact, is useful to decompose x% into its components parallel
and orthogonal to the flow u?,

K = Kju® + K9, (5.58)

in which case we have

1
We = Vg + Eedabcudmlivc. (5.59)

We have enough information to keep track of the vortices as the system evolves. However,
there is a more practical approach in which we do not need to keep track of the vortices.
To do this, we start by rearranging (5.59) to find an expression for v* in terms of w®.
Then, we can plug it back into the expression for Rj. The method we use to rearrange
(5.59) is exactly the same as in the Newtonian problem [75]. In the first step, we find
that

1 . -
eeafgue/{]%wa =0 —w9) 4+ =k2 190°, (5.60)
n

where

17 =09 — &9 R, (5.61)
with k¢ = k| £} . The second step leads to

b il 2 ¢ b 2 2
ebgcdeeafgu miueﬁf We = —K] Lywe = —nepgequ’ K w9 — (n + HJ_) (wg —vg). (5.62)

Then we reach the final result, which is

Vg = Wq + <M_> [nebgcdu rQw? — k] Lgwe| . (5.63)
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As mentioned above, we use this in our Magnus force expression (5.51) to find that
M UN d,.b n 2 7¢
M= N7 [<2> €dabc K WS+ <> IQJ_J_(Z’LUC:| , (5.64)

URR 7+

which gives us the equation of motion containing the Magnus force and mutual friction.
Note that we no longer have to worry about the vortices after rearranging in this way.
We can evaluate 4 by using (5.63) to show that

2 mPw? + (K wa)?
= 5 )
7724-/@l

(5.65)

Finally, from (5.42), we find that the second law requires us to have n > 0.

We have now completed our relativistic formulation of a multifluid system including
mutual friction between the vortices and the second fluid component. This model
could now be used when considering various mechanisms relating to neutron stars in
which mutual friction could be a factor. Some features of neutron stars which mutual
friction could contribute towards are pulsar glitch relaxation and damping of neutron

star oscillations, as stated in the Newtonian mutual friction calculations [74].



Relativistic Elasticity

We have created a two fluid system including quantised vortices and mutual friction in
relativity. This system almost matches the multifluid system we detailed in Chapter
3. However, we are missing one component which is the vortex elasticity. Relativistic
elasticity, or relasticity, is used to model neutron stars in work such as [96]. In this work,
the neutron star is modelled as an elastic ball. We will firstly consider how to work with
elasticity in relativity, before proceeding to look at elasticity specifically related to the

vortices in our model.

6.1 Matter space

6.1.1 The configuration gradient

We have already brushed upon the concept of matter space previously and here we will
go into a little more detail. Following the relativistic framework of [96], [97] and [98,

99, 100, 101] we create a map from the four dimensional spacetime to three dimensional

91
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matter space

X My — Xs. (61)

In the local coordinates z® on spacetime and X“ on matter space, this is written as

% XA = xA(x?). (6.2)

We will be dealing with derivatives of this map y, hence we will simplify things by

denoting its derivative dy by 1. Hence, 1 has the properties

v My — TX3Q T My, (6.3)
and in coordinates
XA
A
x4 =t = I (6.4)

We now introduce a time foliation of spacetime, such that
X: Rx M;s;— X3, (6.5)
with
(t,z) — XA (6.6)
This has spatial and time derivatives given by

0XA
and ¥4, = o (6.7)

oxA

A
/lp (2 8],'Z

We call x the configuration and both ¢, and 1*; the configuration gradient.

The matter space coordinates X4 label particles and are constant along particle world
lines. This means that

up?, =0, (6.8)
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where the four-velocity u® is tangential to the matter world lines. The four-velocity can

be parametrised as
a _ (gt iy _ o —1 ~i (1 i L2
u' = (u',u') =« W(l,v), W—(l vvj) , (6.9)

which then tells us that

Py = —iyp? (6.10)

6.1.2 Matter space metric and particle number current

The volume form napc on matter space gives us the number of particles in a given
volume, when integrated over the volume. A conformal metric is required, in order to
define angles on matter space, and hence compare them to spacetime in order to see
deformations. These two properties define a Riemannian metric which we call k4p.
Assuming napc is compatible with our metric kg, we know that in matter space

coordinates X%, we have
napc = \/kzdasc, (6.11)

where the determinant is given by

1

kg = y5A305DEFkADkBEkCF. (6.12)

The X notation reminds us that this quantity depends upon the matter space X4

coordinates.

Matter space has no time by construction, but one can use k4 p as a function on spacetime
by considering kg (XC (md)). The pushforward of k4p to spacetime is denoted kg, and

it satisfies the conditions
Lok =0, and u®kyp = ulky = 0. (6.13)

Any tensor field on matter space could be pushed forward to spacetime and defined

by its contractions with u® and its Lie derivative along u® vanishing. We could also
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consider the components of kg (XC (:zd)) as scalars on spacetime, which are constant

along particle world lines. This tell us that
u'kapa =0, (6.14)
which is given in coordinate form by
kapt + 0'kap; = 0. (6.15)

The authors of [96] note that they prefer to work with kap over kg, due to it having
fewer components and a simpler evolution equation, whereas [98] continues with kq in

spacetime.

Next we consider the pushforward of our volume form nspc to a three dimensional

Nabe ON spacetime. Applying the map to napc, we see that
Nave = Py nape. (6.16)

Spacetime already has its own volume form, denoted €,p.q which is compatible with the

metric gup. This is defined by

€abcd = \/gjcéabcda (617)

where the determinant is given in the same way as before, by

1
gz = Eéadeéefghgaegbfgcggdh- (6-18)

We can then define the particle number current in spacetime

1
n“ = §€ab6dnbcda (6.19)

which is timelike and conserved

Van® = €V npeqg = 0, (6.20)
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where V, is the covariant derivative. The right hand side vanishes because it is the
pushforward of njgcp, 4j. We split the number current n® into a matter four-velocity
and a particle density by saying

n® = nu®, (6.21)

where the velocity u® is normalised as
u'u, = —1. (6.22)

This tells us that n? = —n%n, and n = —u,n®.

6.2 Relativistic dynamics

6.2.1 Action and stress energy tensor

We now consider how elasticity is modelled in a three dimensional fluid system [96]. We

start with the matter action

S = /e(gab,z/;Aa,kAB,...)g;/2d4a:, (6.23)

where the dots represent any other tensors on matter space. We can vary this with

respect to the metric

1
0S8 = Q/Tabdgabgglcﬂd‘lx, (6.24)
to find that the stress-energy tensor Ty is given by

Oe
Tab = 2@ — €Jab- (625)

We then define hyp, which is the projection tensor that projects orthogonally to the
four-velocity

hap = UaUp + Gab- (6.26)



96 Chapter 6 - Relativistic Elasticity

This allows us to rewrite the stress-energy tensor as

Oe
Ty = QW — ehgp + euguy, (6.27)

or, if we define the pressure term

Pab = 2agab - 6hab7 (628)

we get,

Tap = €UqlUp + Pab- (6.29)

We wish to take some of the spacetime terms with us to matter space. Hence, we define

the pullback of the spacetime metric to the three dimensional matter space as
9P = APy, (6.30)

which has a matrix inverse g4p. This means that we now have two Riemannian metrics
on matter space, kap and gap. We will say that ksp is the matter space metric, but
raise and lower indices with the g4p and ¢“Z. This tells us that k48 = ¢4%¢PPkop,

but, this is not the matrix inverse of k4p.

We will say that the quantity

ha® = Phg™gas, (6.31)

is the inverse of ¥4, in the sense that
pAap” = 04p, (6.32)

and

o’ = ho". (6.33)

These can be shown by making use of the properties mentioned above and remembering

that he®he’ = hab.
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We can now consider the energy as function of ¢g4Z, as we have
(e, 9") = e(g™P). (6.34)

Hence, we see that the derivative required for the pressure term in (6.28) now takes the

form

Oe de 0gB Oe

_ _ A B
Dg®  9gAB dgab 8gAB¢ ath”- (6.35)

So, we can see from the property of the map (6.8) that ppu® = 0 = ughp.T?. This tells
us that there is no energy flux relative to the matter and that we are considering ideal, or
non dissipative, elastic matter. As we have mentioned, pg;, is the pressure tensor, which
for a perfect fluid takes the form p,p = phgp, where p is the pressure. The Lagrangian e

in the matter action (6.23) is the total energy density in the rest frame of the matter.

Next, we can find that the number density can be written

1 1
n2 = ?nabcnabc = ggadgbengnabcndef' (636)

Since ngpe is only comprised of ¥4, and napc (6.16), it is independent of g?°. Hence
the derivative of (6.36) gives
on 1

I s, 6.37
agab Qn b ( )

which is considered a function of g%, ), and the matter tensors. If we then define the

internal energy per rest mass e such that

e=n(l+e), (6.38)
we see
3
Pab = %Tgab' (6.39)

In a similar way to that of (6.35), we write the pressure as

Pab = nTapta?y, (6.40)
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where 745 is defined to be

6.2.2 Isotropic matter

We will consider the case in which the internal energy e depends upon g%, ¥4, and the
matter space metric k4p. The energies e and € should transform as scalars on spacetime
and on matter space. Hence we need to find all double scalars that can be made from

gAB and kapg.

We see from (6.30) that gP transforms as a (2,0)-tensor on matter space and as a

scalar on spacetime. We define the mixed index metric
kAB = QACkBC = gac¢Aa¢CckBCa (6.42)

which transforms as a (1,1)-tensor on matter space and as a scalar on spacetime. The
eigenvalues of kg transform as scalars on matter space and are the required double

scalars we are looking for.

We can split our k45 matrix into its determinant k& and a unit determinant matrix
g =k 3K, (6.43)

where the determinant k = n? is found from the definition of the determinant and the

fact that n4pc is the volume form of k4p.

We can now consider the internal energy € as a function of n and 7. It must depend
on the unit matrix 7' via the two scalar invariants associated to it. Hence we can say
that

e(k‘AB) = e(k,nAB) =¢e(n, I, I2), (6.44)
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where we have defined the scalar invariants of n5 to be

Li=nta=k3g"Bkyp (6.45)
and
IQ — TIABT]BA _ kiz/ggABgCDkAC’kBD- (646)
We note that
ok
9978 = kgas, (6.47)
which tells us
on 1
9948 = 5n9AB- (6.48)

With these we can find the form of 745 from the pressure term (6.40), which is

86 1 86 1 86
TAB = NgABH- +2 K??AB - gABh> o T2 (UACUCB - 9ABI2> } , (6.49)

on 3 (911 3 8]2
or
TAB = %QAB +2(fimap + fomiB) (6.50)
where we have said that
Oe
2
=n"4 6.51
Oe
—_— forY =1,2 .52
fY a]ya ( or ) ) (6 5 )
1 1
TAB = 1AB — gQABll (6.53)
and
1
T = 2 (UACUCB - 39A312> : (6.54)

Hence, plugging this version of 74p (6.50) into (6.40), can write the pressure tensor in

the form

Pab = phab + Tab, (655)
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where the first term is the same as that for a perfect fluid and the second represents the

anisotropic stress. This stress is given by
Tap = Va0 PymaB, (6.56)

where

map =2n (fimhp + forip) , (6.57)

with fi, fa,mip and 7% given by (6.52)-(6.54). We can see that m,, is a trace free
spatial tensor, ie.

Tapu® =0 and weph® =0, (6.58)

as ¥3,u® = 0. The full anisotropic term, written in terms of the unit determinant

matrix 7 p, is

1 1
Tap = 2007 0By [ﬁ (77,43 — 39AB7700> +2f2 (77,407703 — SQABnCDUDC>:| (6.59)

6.2.3 Hookean model

Instead of treating the energy as a function of n and the individual invariants, we can
instead use a strain scalar comprised of a combination of the invariants. This scalar
must vanish in the relaxed state, when n4p = gap. An example of such a strain scalar

can be found in [98] in the form
s?=— (I} - I; —24), (6.60)
where the invariants are given by
L=n%, L=v'"1, L=n'sn"cna (6.61)

It is worth noting that s2 is a function of n as well as ¢Z and kap. We need to keep

this in mind when we work out various partial derivatives in the following.
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In general, the energy is € = £(n, s?), but as we tend to be mostly interested in slight

deformations, it is natural to consider a Hookean model. Thus we consider the energy

e = &(n) + fu(n)s?, (6.62)

where the checks indicate that the quantity is determined in the relaxed state, and i is
the shear modulus. Using this, we find that the derivative of the energy with respect to

the matter space metric is given by

Oe Je On Oe  0s* 1 (dé dii 4

0s? 0s?
_ Ot _1 e oy 97 L5 95 663
0gAB  On 0gAB + 0s2 0gAB 2"M9AB \ * an’ A on ) + M@gAB (6.63)

Hence, we find the stress-energy tensor

dé dji 5 _0s? oA g 0s
Toy = nhyy | — + £ P egup + 204, . 6.64
b= b(dn+dns g | gay + 2070t b gAB (6.64)

Next, let us assume that s depends on the simplest invariant I;. Then we need
L=n"=n"23g"Blap, (6.65)

where we recall that k4p is fixed and does not depend on n. This allows us to work out

the partial derivatives required

0s? 0s? oI Os?

97 ~ 91 9y ~ oL, (000

and

0s?  0s? 0l 2 0s?
Rl A .
on oI, On 3n 01, " (6.67)

This means that we get a contribution to the stress-energy tensor

Os? 1 0s? 0s?
1 _o- A B o A B o
Tl = 2ua—h¢ a?"p (nAB - 39ABI1> = 2“0111” a" oM AB) = 2#7811 Maby, (6.68)
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where the (...) brackets indicate the removal of the trace. A similar analysis for the

other two invariants I and I3 leads to

2 45 0% A g PP 6.69
oy = 4f %w a7 pNcaNgy = 44 a1, eta’m) (6.69)
and
3 _0s” A ;B _CD _0s? ed
Ty = 6“70131/) a7 neanByp = 6”781377 Ne(abyd- (6.70)

The general expression would be, depending on the choice of strain scalar s2, some linear
combination of these quantities. We note that each ﬂé\{,, where (N = 1—23), is trace-free

and orthogonal to u®.

As a check of these results, note that when using the strain scalar mentioned above

(6.60), we find that

o | =«

[(ncc)2 Nab)y — N Ne(ayd | - (6.71)

N
Tab = Zﬂ-ab =
N

which agrees with the result from [98]. The final stress-energy tensor is

Tab = nhab <d€ + djSQ

dn. dn ) — €9ab T Tab- (672)

6.2.4 The unsheared state

Elastic matter has an unsheared state, when nothing has disturbed it from its preferred
or equilibrium position. Hence, for some number density n, there is a minimum value

for the energy € which corresponds to this unsheared state.

The unsheared state corresponds to g = 64p. It is seen from (6.59) that the
anisotropic term mg, will vanish when it is the case that T]A 5 = 645, This tells us

that n4p is the matrix inverse of gAB

NAB = JAB- (6.73)
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Hence, in the unsheared state we have that
kap =n*gap. (6.74)

We will be taking into consideration the unsheared state when looking at perturbations

of the system.

6.2.5 Perturbations

Now that we have an understanding of relasticity, we will extend our relativistic model
which we built in Chapter 5 to include vortex elasticity. In Section 6.2.2 we formulated
the anisotropic pressure term m,,. In the unsheared or relaxed state this term will vanish,
leaving us with the perfect fluid equations. Hence, we would like to have a closer look at
this term when the system is perturbed and therefore when the anisotropic term is non
zero. We could try to think of this anisotropic term as the elasticity in the superfluid
vortices. This three dimensional elasticity would have to be split into a two dimensional
piece in the plane of the vortex array and a tension term along the direction of the
vortices. Our starting point will be our pressure term (6.59), which we recall is of the

form

1
Tap = V0P yman =2n [f1 (#JAWBWAB - 3?/)Aa¢Bb9ABT)Cc>
(6.75)
1
+2f2 (%DAWBWAC??CB - 31/}Aa¢BbgAB770D?7DC> ] .

So far, we have been considering this nonlinear elastic term. We will look at linear
perturbations of the anisotropic term using the Lagrangian perturbation A, as seen in

previous chapters.

If we call the pushforward of 745 to spacetime 1q, = 14,15 ynap, then equation (6.75)
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can be written in terms of spacetime tensors as

1
fl (nab - 3hab770dh6d>

1
+2f5 (hachbdhef Ndf Nee — ghathdhef %w)] }

Amgp =A { 2n

(6.76)

where we have applied the Lagrangian perturbation A to the elastic term. Expanding

this to see all of the perturbed quantities we get

1
fl <77ab - 3habncdh6d>

1
+ 2f2 (hachbdhefndfnce - 3habh6dhefndencf>]

Aﬂab :A(QTL)

2
+2n 3

1
A(fl) (nab - habncdth)

(6.77)
1
+ fl (Anab - 3A(hab770dh6d)>

1
+ 2A(f2) (hachbdhef Ndf Nee — ghathdhef 77de77cf>

1
+ 2f2 <A(hachbdh€f77dfnce) - SA(hathdhefndencf)>] .

Any terms outside of the perturbation are in the relaxed state. In the relaxed state, we
know that nap = gap from (6.73). Hence, when we apply the map 14, to this, we see
that 745 = hgp- Using this on the unperturbed terms simplifies the equation to

Aﬂ'ab =2n 3

fl (Anab - 1A(habncdh0d)>
(6.78)

1
+ 2f2 (A(hachbdhefndfnce) - SA(hathdhefndencf)>] .

Next we expand the equation using the product rule on the perturbations. Simulta-

neously, we will be able to rewrite the relaxed 74, as hg, as before. This gives us an
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equation of the form

1 1
Aﬂ-ab =2n fl (Anab - ghabhchth - ghathdAncd - Ahub)
+ 2f <2hachbdA77¢d + hachbdAth + haeAhy© (6.79)

2 2
+ hbcAhaC - ghathdAncd - ghabhchth - Ahab)

We will make use of several identities, which we show in Appendix A, namely

hapAg™ = —h™®Agap, (6.80)

hachbdDg = —he hp  Agea, (6.81)
b 1 c, d

Aug = u’Aggp + o Uali“U Aged, (6.82)

Anap = hahp* Arjeq, (6.83)

as well as the definition of the projection hg, = gap + Uqup such that u®he, = 0 and
finally that Ad,? = 0. These enable us, after some algebra, to write our elastic term 7y

in the convenient form

1
Aﬂ—ab =2n [fl <hachbd(A770d - Agcd) - 7habh6d(A776d - Agcd))

3
(6.84)
1
+4fo (hachbd(AUcd — Agea) — ghathd(Ancd - Agcd)>] :
which clearly simplifies a step further to
1
A7Tab =2n (fl + 4f2) (hachbd(Ancd - Agcd) - ghathd(Ancd - Agcd)) . (685)

We have been using the pushforward of the unit determinant matrix 7, in our equations

so far, but we need to consider this term in a little more detail. This originally came
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from the matter space metric k4p in that
Nab = U a0Pynap = n 259 WP k. (6.86)

But, the matter space metric kg = 2 0Ppkap corresponds to the three dimensional
elastic matter in an unstrained state. So in our equation (6.85), we see that we have
the difference between the current state of matter in the g, term and the unstrained
state 145 ~ kqp- Hence, since the matter space metric kg, is fixed in matter space and
also flow line orthogonal, since it came from matter space, the Lagrangian perturbation

Ak,p will vanish.

Since Aky, = 0, we can find out what will happen to our An,, term in the elasticity

(6.85). We know from (6.86) that

Anay = kapAn /3, (6.87)
by using Akg, = 0. Next we use the perturbation of n from [61], given by

An = —gh“bAgab, (6.88)

to rewrite (6.87) in the form

1
Angy = ghathdAgcd- (6.89)

We can then use this to simplify (6.85) a little to

1
ATgy = —2n (fi + 4f2) (haChbdAgcd — 3habhchgcd> : (6.90)

6.2.6 Hookean model perturbation

If we use the same method of perturbation on our Hookean model, we arrive at a similar

equation to that above. The perturbation is given by

1
Amgp = — [t <hachbdAgde — 3hathdAgcd> , (6.91)
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which means that for the models to be equivalent, the shear modulus must be

fi = 2n(f1 +4fs). (6.92)

6.2.7 Newtonian limit

If we consider the Newtonian limit of the divergence of our elastic term above, we find
that it matches the expected linear elasticity term, which we saw earlier in Chapter 3.

From Appendix A we see the limit is given by
. 1 .
VIAT;; = —2n(f1 +4f2) <3V¢V]§j + V2§i) . (6.93)

So this relativistic elasticity term does correspond to Newtonian elasticity.

6.3 Vortex tension and elasticity

In the previous section, we created a three dimensional elasticity term Am,,. However,
in the case of superfluid vortices, we know from experiments discussed previously that
they exhibit elasticity within their array and also tension along the vortices. So in order
to model these behaviours, we would like to have both a tension piece along the vortex

direction k* and also a two dimensional vortex array elasticity orthogonal to &%.

In order to find these two components of the three dimensional elasticity Am,,, we
project away the &% direction from both indices to get the vortex array elasticity E,
and then project along the A% direction to find the tension T,. However, there are
still some remaining terms which are not part of the tension or elasticity which we will
denote Sqp = Amg, — £, — T, So, after applying the projection 8.2 — RaiP to (6.90),

we find a vortex elasticity term in the plane orthogonal to i®

e Aon 1 ~on c
w = —2n(f1+4f2) [(hac — RqR) (hbd — fibfid) Aged — = (hap — Rakp) hAGeq | -

3
(6.94)
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Then, by projecting into the direction of the vortices using k.kc°4%, we can also find

the vortex tension
1
Toy = 20 (f1 + 4f2) Raky [Sth - md} Ageq- (6.95)

As we mentioned above, these are not all of the terms that comprise Ang,. The ‘leftover’

terms are

Sup = 2 (f1 + 4fo) [%agbg%d — haRpa? — Rakhy?] Age. (6.96)

6.3.1 Newtonian limit

Taking the Newtonian limit of the elasticity tensor (6.94) doesn’t quite give the two
dimensional Newtonian elasticity in common usage, such as (3.96). As we discussed
before, it is usually the case that the vortex direction is taken to be along one of the
coordinate axes in Newtonian calculations. Hence, it makes more sense to compare our
limit to (3.88). If we assume again that < satisfies the Killing equation, we arrive at
the Newtonian limit

2

VJE;; =2n (fl + 4f2) |:3

ViVier — Vivier — vﬁ(hkng’“)} . (6.97)

The limit of the tension term is found to be
; 2
VITY, = 20 (f1 + 4f2) [Bvi'v’fgk - 2vL'vﬁ§k] . (6.98)

If we were to use a tension term in our Newtonian calculation produced by projecting
the Newtonian elastic stress tensor (3.77), then this limit matches. However, it does not
match what would commonly be used as vortex tension in the Newtonian case, (3.98).

This is due to the assumptions made in Newtonian calculations mentioned previously.

Due to our formulation in general relativity, it is difficult to expand our three dimensional

elastic term Am,, into a planar elasticity and vortex tension. In Newtonian calculations



Chapter 6 - Relativistic Elasticity 109

it is easy to pick and choose which terms you would like to keep and also to set unwanted
terms to zero. We will now focus on building the vortex elasticity without including the
vortex tension. This approach should eliminate any need for using projections to obtain
an elastic term and should also mean that there will no longer be unwanted terms such

as those in S, above.

6.4 Two dimensional formulation

The three dimensional formulation in the previous section gave us a two dimensional
elasticity. However, it also produced unwanted terms which we are not interested in.
Hence we will now try a new approach and create only a vortex elasticity term, using a
similar method and tools to those of the previous sections. Instead of a three dimensional
matter space, we will use a two dimensional version in order to create the vortex elasticity
and we shall exclude the tension. We consider single component isotropic matter, which
represents the ‘vortex fluid’. The stress energy tensor obtained from the energy ¢ is of
the familiar form
Oe

Top = 2@ — EGab = EUGUp t+ Pabs (699)

where the p,; contribution, which encodes the stresses, is given by

Oe
Pab = 2@ — chap (6100)
and the projection is the usual
hap = Gab + UaUp- (6101)

We will soon be concerned with ‘two dimensional’ versions of three dimensional terms.
These two dimensional terms will be denoted with a bar. Our first encounter of a term
of this form is the projection

hap = hap — Rakp. (6.102)
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We would like to work with matter space variables X4 which, as we know, are scalar

fields in spacetime. We also want to use the matter space map

oXA
A
0= ) 6.103
wha= 20 (610
As before, the map is such that

A s = ha" (6.104)
and

o = opt. (6.105)
It is also the case that

up?, = 0. (6.106)

The vortex number flux follows from the usual variation argument, and is given by

1
N = Nu® = geabchbcd. (6.107)

It is easy to see that this flux is conserved, as in the previous discussions,
Va(Nu®) =0. (6.108)

Next we will consider one of the matter space directions to be related to our vortex

direction, by specifying that

- x4 3 3
g = e 0A° =%, (6.109)
which tells us that
U pha = U pttada® = 0p% = kp. (6.110)

This leaves us with two other dimensions in the matter space map. We denote the

remaining dimensions of the map with a bar such that

PAaR =0 =14k (6.111)
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and A € {1,2} when using 1)?,. Considering this new information, we can rewrite the

number density (6.107) in the form
a 1 abed ;. re 1 abed 2. A7
N¢ = 56 K‘dNbceKv = 56 /Qchd, (6112)

see Appendix A for this manipulation. With this new form of N¢, the conservation

equation (6.108) can be written in the form, see Appendix A,
ViNe =0, (6.113)

where the derivative is orthogonal to £*. This form of the number density conservation
equation matches that in Chapter 5 and is also familiar from our discussion in the
Newtonian formulation. We also make use of a two dimensional version of the pullback

of the spacetime metric which we saw in (6.30)
JAB = YAB — kakB, (6.114)

which implies that

W aPgas = hap = 000" 1gas. (6.115)

For isotropic matter, we have the energy as a function of the matter space map and

spacetime metric

e(ha, g%) = £(g"P), (6.116)

where

g% = AP (6.117)

Equation (6.116) has to hold since this is the only way to contract the spacetime indices
if the building blocks are the map and the spacetime metric. In the following, we will

raise and lower matter space indices with gAB and its inverse gap.
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To build the stress-energy tensor, we need

de O 9GP
agab - 8§AB 8g“b

—A - Oe
= w"‘wBbagAB. (6.118)

This shows that u®p,, = 0 which means that ¢ is indeed the energy. For isotropic matter,

we have

ON

1
—= = =Ng 6.119

which is shown in Appendix A. Equation (6.119) tells us that the stress-energy tensor

can now be written

4 - 0
Tap = [0"a"sga8] N afgv — €Gab- (6.120)

Let us now consider elastic matter. To do this we will need to compare the current
shape of the matter to a relaxed reference shape. A key component to this construction

is the matter space metric

kab = V0P ok ap, (6.121)

which is a fixed matter space tensor. As long as the deformation is conformal, which we
will assume, kg does not depend on the number density N. The strain associated with

the deformation is quantified by the difference

5 (ab = Tlab) (6.122)

Sab =

where

Tab =k~ kap, (6.123)
see Appendix A for details.
Equivalently, we can compare the matter space quantities 745 and gap. We know

that in the relaxed state they are equal and this will come into play later on. As we are

dealing with isotropic matter, it is natural to work with invariants. From f4p we can
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construct the invariants
L=7%4 and I, =i%g7’aA. (6.124)

However, the number density N? is also invariant. This follows from the fact that the
determinant of k4p is given by

1

k=N?=
2!

(N?If — N°IL,) . (6.125)
It is natural to work with N as one of the variables, as this retains the connection
with the standard fluid problem. In addition, we will need another invariant, or some

combination of them. The invariants available to us so far are

k=N?2 IL=i% and L =q%B7%4. (6.126)

In general, we have the energy ¢ = (N, s2) where the strain scalar s is some combination
of the remaining invariants, such that it vanishes when the matter is in the relaxed state.
As we tend to be mostly interested in slight deformations, it is natural to consider a
Hookean model, such that

e =&(N)+ s? (6.127)

where i is the shear modulus and the checks indicate that the quantity is determined
in the relaxed state. Let us now return to the stress-energy tensor (6.120). Considering

our energy of the form (6.127), we now have

2 < ~ 2 2
Oe de ON O 0Os 1 (85 op o 85) Os (6.128)

o _ % e — o Ngap [ Z 2 395 B
9578 ~ oN 0548 " 9520548 2 9B\ oN T an® THaN ) T HogaB

Thus we find that the stress-energy tensor is now given by

4 - 0¢ o[l _0s? 4 -p 0s%
Tap = N¢Aa7f)BbgAB <8N + aTl\L[SQ + M@N) — €Yab Tt QlﬂﬁAa?/)BbagWa (6.129)
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or
—4 - 0 O 4 -p 0s°
T = N2 08,5 G L2 g+ 2002, 08
b (R bgAB(aN+aN3> €Gab + 200" b 554D
022 (6.130)
NviAaiB — S
+ Nayp“ ot bIAB 57

where the final two terms give us the two dimensional anisotropic stress 7,,. We will
now assume that the strain scalar s> depends on the simplest invariant I;. Then we
need

I =q"a=N"3"kap, (6.131)

where we recall that k4p is fixed and does not depend on N. This allows us to work

out the partial derivatives we need

0s? 0s? oI 0s?
9518 = oL 0GP = 871'17“3 (6.132)

and
Ds? B 0s? oI, 1 9s?

ON ~ LN~ Non' (6.133)

This means that the anisotropic contribution to the stress-energy tensor is

2

0s2 _, - i 1_ 082, —p _0s” _
7_rcllb = Q,UaillibAa@bBb <77AB - 29ABI1) = Ql‘aillwA“@ban(AB) = 2ﬂa—hn<ab>, (6.134)

where the (...) brackets indicate the removal of the trace. A similar analysis for the

other invariant Iy tells us that the corresponding partial derivatives are

0s? 0s? Ol 0s? &
= — = 2 n n . ]_

and

9s?2 05 0I, 2 0s?

These give another contribution to the stress-energy tensor

o

. 1
oy = 4ﬂ¢Aa7/)BbaIQ <T7AC7703 - §ABIQ>

2
08 4 g o087
:4,LL87[2¢ aw bTlC (ATIB) :4#’67[2776@77@ :

(6.137)
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The general expression would be, depending on the chosen scalar s2, some linear com-
bination of these quantities. We note that each 7?3/1), where Y € {1, 2}, is trace-free and

orthogonal to both u® and £%. The full anisotropic term is given by

2 s 2
Tab = Z Tap = 2/~L oI, <ab) + 4 ol nc(anb) : (6138)

6.4.1 The unsheared state

As in the previous three dimensional formulation, the matter has a relaxed state in
which the anisotropic term will vanish. The unsheared state corresponds to 745 = 645,
in which case the anisotropic term 7, will vanish. This tells us that 745 is the matrix

inverse of g8

NAB = JAB- (6.139)

Hence it will be the case that

kap = Ngap. (6.140)

We also know that in the unstrained state, the strain scalar s? must also vanish. This is
an important feature to consider when constructing a strain scalar. We will see in the
following section that we must choose a scalar such that it vanishes when the system is

unperturbed.

6.4.2 Perturbations

As the anisotropic term derived above vanishes in the relaxed state, we need to consider
what happens when the system is not relaxed. We do this, once again, by considering
perturbations of 7,,. This anisotropic stress will give us the two dimensional vortex
elasticity. Firstly, we need to use a strain scalar which vanishes when the system is

relaxed. We will use the scalar

IQ
§% = <12 - 21> : (6.141)
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which implies that the relevant derivatives are

0s? 0s?

=7 d — =1. 142
ol LAt 5L (6.142)

Putting these into (6.138) tells us that the anisotropic stress is
_ N (. 1
Tab = Z Tap = 400 | Te(al)© — 5T eMav) | - (6.143)
N

Applying the perturbation A to this equation gives us

he C 1 C
Amgp = 4f1A (nc<a77b> — 37 c77(ab>> : (6.144)

We now expand all of the perturbations using the product rule and remember that in

the relaxed or unperturbed state 74, = hap = gap + UaUp — RqRp. This implies, after some

simplification, that
_ _ o 1.
A7Trab = 4/1 (hacAﬁbc + hbcAﬁca - habhchﬁdC - A77ab + 2habA77]CC) . (6145)

We will now rewrite this expression using identities similar to those in the previous three
dimensional calculation. We also note that the perturbation of the matter space metric
will again vanish Ak, = 0, as this represents matter in the unstrained state and is fixed
in matter space. As the perturbation of kg, vanishes, we can find that the perturbation
of 7qp is given by

Afjgp = %EathdAgcd- (6.146)

Hence, using the information and identities discussed above, we arrive at the equation
= ~ [ 7 cz.d 1 7.cd
ATap = — 4f1 | hothp® — ihabh Ageqd. (6.147)

This is our two dimensional anisotropic stress contribution to the stress-energy tensor,

from which vortex elasticity arises.
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6.4.3 Newtonian limit

If we consider the Newtonian limit of our two dimensional elasticity term (6.147), we

find
VIARy = 41 |[VEVE G — VEVEER - VI (Luv1eh)] (6.148)

As we found with the three dimensional case, this does not match the commonly used
Newtonian vortex elasticity. However, it does follow the form of the general elasticity
(3.88). You can see that all of the derivatives are orthogonal to £%, as in the Newtonian
vortex elasticity, however we have different terms due to not being able to commute the

derivatives as discussed before.

Combining our new relativistic model from Chapter 5 with our new two dimensional
vortex elasticity built in this chapter completes our construction of a multiple fluid

model including quantised vortices, mutual friction and elasticity in general relativity.

6.5 Variational approach redux

We now return to the variational description in spacetime, with the intention of ex-
tending it to account for elasticity. The main motivation for this exercise is that force
balance equations, such as (4.67), are more readily adapted to multi-fluid settings, where
it is useful to have individual momentum equations for the different constituents. These
equations can, to a certain extent, be extracted from the equations obtained from the

total stress energy tensor, but this route is not as elegant.

The main lesson from the matter space derivation we produced in the previous sections,
is that we need to allow the Lagrangian to depend on k,;. Recall that k,;, is independent

of n and that the contraction n®k,, vanishes. This leads to

OA
agab

1
0 ( v —gA) =v-g |::ua5na + (2Agab + > 5gab + Kabékab] ) (6149)
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where we say that
OA

B akab .

K (6.150)

As usual, we replace 6n® with the Lagrangian displacement £¢. As we have mentioned
previously, kq is constructed from a fixed matter space tensor which means that its
perturbation vanishes, Ak, = 0. This tells us that the Eulerian perturbation takes the

form

Okap = —EVekapy — ket Va&S — kac VpE©. (6.151)

Again ignoring surface terms and keeping in mind that kg, is symmetric, we have
K5k, = €° [2% (Kb%ac) - Kbcvakbc} . (6.152)

Making use of this result, we arrive at

o (V=oh) = \/Tg{ {1 (A~ nue) g + 22

: oo g+ gt} (6.153)

where

fo = 200V gy + 2V, (Kb%ac) — K"V ke = 0. (6.154)

From this we find that the stress-energy tensor takes the form

A
T% — (A — np,) g% + 20—
( te) g 99

(6.155)

In order to make contact with the matter space derivation we saw previously, let us

focus on the Hookean model, where

A= —&(n) — a(n)s® = —¢. (6.156)

Again, we build the strain scalar s? out of the invariants of

Nab = 1" *kap. (6.157)
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These invariants,

L=n%, L=n%"a ..., (6.158)

still depend on n and hence on n® and g, as well as kqp.

We find that
0N On? OA 10A y 1 [(de dp 4 0s? b
o = = — =———gun ' =— | —+ — — ) gapn’, 6.159
Ha = 9na = ona on? non’®" T q <dn+dn8 +u8n>gbn ( )
OA de dpi 0s%\ On 0s?
—_ (2= =2 — ) =/ —j 6.160
OGap <dn + dn” T on ) dga “agab’ ( )
where, noting that n® is held fixed in the partial derivative,
on 1 b
= ——n%P. 6.161
OGab 2nn " ( )
It is also useful to note that
2 2
057 _ _ jae b 03 (6.162)

agab -9 8ng '
Also, when working out this derivative, we need to hold n fixed (as is clear from (6.160)).

This means that that stress-energy tensor takes the form

dé  dp 0s?
Tab: |:A +n <€+M$2+ﬂ8>:|gab

dn dn on (6.163)
_|_l ﬁ_F@SQ_}_VaiSQ nanb+2v ac bd852 .
n \dn dn Man K99 dged’
which condenses to
d¢ dfi . 882 . 852
T = Ag™ +n (dn + ﬁﬁ + “an) he + 2ug“gbd—agc - (6.164)

Now, as before, let us consider the explicit case when s depends on the first invariant,
1. For this we need
L =n% =n"23g%ky, (6.165)

0s? 21 0s?
—_ 77 1
on 3n oI’ (6.166)
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oA 05> 0s?
K% = = —fi— = —fn 23y 6.167
Oy~ ok~ T ry (6.167)
and finally
05> 0s?
= = n. 6.168
Using these results, we arrive at the stress-energy tensor
de dji 2 1
T% = —e¢® + + — h + 2 Os n® — ZI b
dn ' dn (9] 3
i d 92 (6.169)
o ab € H 2 ab hé (ab)
=— — h 2
= +n<dn+dn > * 'uﬁlln

This should look familiar as it is the result we obtained from our matter space derivation

previously. In the same way, we also obtain results for the cases in which s depends on

I
Iy = %% = n~ 3 g kyegkga, (6.170)
052 4]2 03
o = 6.171
oA 0s? 0s?
Kab — 7 — 97 —4/3 ac bdk 6.172
8kab Makab a 8[ ( )
0s? 0s> )
Aed = 277 Mhe 6.173
agcd 8]’2 Mocld ( )
and finally on I3
Iy = 1% = 0" 3" koqg kpeg™ ke, (6.174)
852 6[3 882
A= T ar 6.175
on 3n 813’ ( )
oA 0s? Os2
Kab _ — — — 30 6/3 cd ae bfk‘ Koo 6.176
O T fin 9" Fagkee ( )
0s? 0s? b
a7 = 3" ac . 1
gl 3 g, Mactlab (6.177)

These tell us that the stress-energy contribution, when s> depends upon all three

invariants, is given by

dé  dji
T — _cg® 4 p (di + dZ 2) heb 4 7@ (6.178)
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where

832 (ab>

7 (a,,b) (a,,b)d
o1,

. _0s? _0s?
w = 271 g+ S nean® 0. (6.179)

We can now extend (4.73) to show that the equations of motion are, indeed, given by

(6.154). To see this, we will first rewrite (6.164) in the form

_0s? _0s? _0s?
Tab — (A _ TLC/LC) gab + na'ub + 2u87nab + 4/187776&”7176 + 6MaTncd,r/canbd
1 2 3 (6.180)
= (A —n‘uc) g* +nu® — 29°° K k..
From this, it follows that
VT = —2gnV iy + K*VPkge — 2V (Kbdk:cd) — =y, (6.181)

using the fact that k. is symmetric.

6.6 Vorticity variation

We shall now consider that the Lagrangian depends upon the antisymmetric tensor wgp.

This comes from the matter space tensor wap, i.e

wap = PP ywap. (6.182)

This matter space tensor is fixed provided

uwap =0 (6.183)

and

Loyway = 0. (6.184)

This means that w4z only depends on the matter space coordinates X“. The equations
above imply that
V[awbc} =0 (6.185)
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and as we have seen previously, we also have

Awgp, = 0. (6.186)

Now, let us consider a Lagrangian A = A(N?) where

1 1
NZ _ Qwabwab _ §gacgbdwabwcd. (6187)
Then we see that
1 oA oA
—gA) = =g | [ =Ag® 8Gap + ——0wap | - 6.188
5 (vV—=gA) \/ngg +8gab> gab + g 0ab (6.188)

Introducing the Lagrangian displacement as before and ignoring surface terms we have

Owap = —EVewap — Wae V€ — wep Vo £°. (6.189)
From this we arrive at
oA OA
—— [Vewap + Vwea + Vawpe] — 2wae Vi =0. (6.190)
Owap Owap,

Notice that the first bracket vanishes due to the exterior derivative of wg, vanishing

(6.185). This means that we are left with

A
Wae Vs (8(1 b) =0. (6.191)

This could be seen as the equation of motion for the vortices in the absence of the

superfluid condensate.

Let us now ask what would happen if A depended on both ngy,. and wy,. We would

have

5 (V=gA) = v=5 KAg
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From Ang,. = 0 we can find that

Mape = —EV anabe — NabeVab? — Nade VpE? — napaVeE? (6.193)

Using this and (6.190) we can determine that

OA OA
[vdnabc - Vcnclab - Vanbccl + vbncdoJ - 3ndbcva
8nabc anabc
IA (6.194)
— 2w, =0.
Wad Vb <3wab>
Then since Vignyg = 0, the first term vanishes and we are left with
1 b O0A
— =gV a1 + 2w, =0, 6.195
5MdbeVal™ + 2waaVe (awab> ( )
using
oA 1w
= ——pu*. 6.196
Bnabc 3!“ ( )

The first term of (6.195) can be simplified in the follow way. Firstly we write it as

1 1
_indbcva,uabC = _iedbceeabcfnevaufa (6197)

which can then be simplified to

1
_§6dbce€abcf nVaps = nVapte — n°Vefig = nwee. (6.198)
Hence, we arrive at the equation
Owqe

n%wap = 2wap Ve ( oA ) ) (6.199)

There is a contradiction here in that the variation of wg,, assumed it was fixed in matter
space, but this requires (6.183) to hold. Hence this contradicts the result in (6.199)

above.
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6.7 Kalb-Ramond version

We will now try a variation using the Kalb-Ramond gauge field to see if this helps us

shed some light on the results of the previous section. As we have seen before, the

conservation law

with the condition

V[anbcd} =0.

This last relation implies the existence of a two-form B, such that
Nabe = 3v[aBbc]'
Hence the definition (6.201) can be rewritten in the form

1
n® = ieadeVbBcd.

(6.200)

(6.201)

(6.202)

(6.203)

(6.204)

Next we consider the vorticity wgy, as an independent, but not entirely ‘free’, variable.

6.7.1 Version 1
Use Legendre transformation;

L=A- %wabBab =A- %eadeBabwcd.
Assuming that A = A(n) we get

1 1 1
oL = —3 1 — §Bab6w“b — §mbaBab,

(6.205)

(6.206)
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where we have made use of
OA 1 abe
R 6.207
Bnabc 3! ( )
However, we now know that
6nabc = 3V[a53bc}, (6.208)
so (6.206) will take the form
20L = — ™V 46 Bye — Bapdw™ — w5 By, (6.209)
Ignoring surface terms, we can rewrite this as
abc be 1 ab
3L = (vau —w ) 6 Bae = 5 Bapio™. (6.210)
This suggests that we should have
Wb = V,ue, (6.211)
which can be rewritten in the form
1 cd
Wab = _§€abcdw = 2v[aiub]7 (6212)

giving the standard definition of the vorticity tensor. However, with a free variation we

would also have By, = 0. To avoid this, we introduce a two dimensional matter space

with coordinates x. We know that this gives
AxA=0 — o4 = —EgXA.
Next, we use Awgp = 0 to see that

1
5wab — §€abcd6wcd — Eabcdvc (Wdefe) )

This means that the last term in (6.210) leads to, ignoring surface terms,

EadewdeVCBab =0.

(6.213)

(6.214)

(6.215)
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But, from (6.203), it then follows that

nwap = 0. (6.216)

Thus, we recover the usual perfect fluid equations of motion. Of course, we have not
achieved much other than that. This result shouldn’t be a surprise as we have already
seen that the perfect fluid equations of motion can be found using the Kalb-Ramond

gauge field in Section 4.5.

6.7.2 Version 2

Now let A depend on wg, as well, such that

1 1
SA = 5 1S ngpe — §A“b6wab. (6.217)
Then we find
1 1 1
5L = —§M“bcva6Bbc - §>\ab5wab - 16“"“1 (Bapdwed + wead Bap) - (6.218)

Using the same argument as we did previously gives us

1 1 1
0L = 5 (Van™ —w™) 6By — (Acd + 2eabchab> Seeds (6.219)

and hence (6.211). In addition we get, after introducing the two dimensional matter
space and the associated Lagrangian displacement,

1
WaeVe (Acd + 26“bchab> = wae (VC)\Cd - nd) ~0. (6.220)

The question is: What is this description good for? Suppose we consider an explicit
model where A = A(n?, N'?). Then we need
1 b 1 ac bd

N2 — 5wa Wap = ig G WapWed, (6.221)
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which means that
OA oA 1

ab
— - __ 222
&uab 8./\/2w 2)\ ’ (6 )
and we arrive at
a ca aA ac
N Wap = Wap VA = 2w Ve a—/\[zw . (6.223)

This brings us back to (6.199) from the previous section. This derivation makes use
of the two dimensional matter space, similar to the elasticity formulation we created

previously and also only requires the variation of wgp.

In Chapter 5 we produced the following equation for a multifluid system in which all of

the components were travelling together
Ugwap = 0. (6.224)
Introducing a velocity difference between the vortices and the neutron fluid gave us
uy =4 (u* +v?), (6.225)
which in turn produced the Euler equation for the fluid with the Magnus force
wwep = —0%wWep = fé\/[. (6.226)
So, comparing this result to (6.223) above, we can see that
Nz

A
n“wab = —nvawab = wabVC)\C“ = 2wach < a ac> . (6227)

This enables us to find v* and hence the vortex velocity u%. The vortex velocity is given

by

a_ ~a ) ca _ = |,a g oA ca
Uy = Ju nvc/\ —’y{u +nvc (8/\/,200 >] (6.228)

From here we can use the results from the mutual friction calculation in Chapter 5 in

order to add the vortex mutual friction into this derivation.
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Final Remarks

The aim of this thesis was to create a superfluid model in general relativity, closely
following that of Newtonian calculations. Hence, we aimed to include quantised vortices
and their properties in such a system, the Magnus force, mutual friction and elasticity.
A rotating superfluid can be modelled in Newtonian physics using a quantised vorticity
vector as we saw in Chapter 3. This vector contains the information required to propel
the model from a normal fluid to a superfluid model. Another key feature of superfluids
is that they can flow relative to other components due to having zero viscosity. After
the integration of the vortices into the system and finding an equation of motion for the
superfluid, the introduction of velocity differences gave rise to the Magnus and mutual
friction forces. The collection of the equations for the superfluid, the normal fluid and
the force balance equation for the vortices tells us how the system behaves. This is the

system we wished to produce in general relativity.

To create our model we first contemplated current research in fluids, superfluids and
relativity, giving examples of how these are modelled. We then began our quest in the

same manner that the Newtonian models are formed. We created a single fluid system
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using a quantised vorticity vector and produced equations of motion for the vortices as
well as the vorticity equation. We compared our single superfluid system to a two form
calculation produced by Carter, as well as taking the Newtonian limit to show that our

system matches the Newtonian case.

We then continued in Chapter 5, following the Newtonian calculation again, by in-
troducing a velocity difference indicating that the vortices and superfluid do not travel
together. This assumption introduced the Magnus force to our system, as one should
expect to happen. Further to this, we introduced velocity differences indicating the
mutual friction between the vortices and the second fluid. Once more we followed the
Newtonian calculation and rearranged the equations to eliminate the vortex velocity.
This produced the mutual friction force in a familiar form to that of the Newtonian
models. At this point we had created a relativistic multifluid model including quantised

vortices and mutual friction.

Introducing elasticity to the system involved an investigation into how elastic stars
are modelled, in Chapter 6. From this we attempted to create a three dimensional
elasticity term and split it into a vortex tension piece and a vortex elasticity term. In
doing this we were left with cross terms which do not fall under the category of vortex
elasticity nor vortex tension. In the Newtonian calculation these are easily ignored
but in relativity they do not vanish. Hence we decided to focus on creating only the
vortex elasticity, by using a two dimensional version of the matter space argument. We
achieved this by specifying that the vortex array direction should be aligned with one of
the matter space directions. Using this we could use the remaining two dimensional plane
to create a two dimensional anisotropic term, from which we found the vortex elasticity.
The Newtonian limit of this term matched the general form of elasticity used in the
Newtonian framework. From this formulation we have a relativistic Euler equation with
elasticity. Combining this with our Magnus force and mutual friction model gives the
multifluid system including quantised vortices, mutual friction and elasticity in general

relativity.
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Finally, we reconsidered the variational approach in which we let the Lagrangian depend
on the matter space metric. We discovered in earlier derivations that if one is to consider
vortex elasticity, then the matter space metric is a vital component to include. We
showed what one obtains when considering variations with respect to this metric. We
then considered variations with respect to the vorticity tensor and finally the vorticity
tensor along with the number density. These two variations produced the same equation
with a term on the right hand side. The next task would be to understand the outcome
of these variations and find the link between them and the derivation of the matter space

elasticity.

Our model has been extended to the level at which it can be used in applications that
require detailed microphysics. Applications such as the long term variability associated
with Tkachenko waves, the mechanism responsible for causing pulsar glitches and also

the recovery of pulsars after they experience a glitch.
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Additional calculations

We note here the calculations which show the equations and identities mentioned and

used in Chapter 6.

habAg ab

Ag™ = A(geag™g™), (A1)
Ag® = g% g" " Ageq + 9eag” Ag™ + geag™Ag™, (A.2)
hapAg™ = hUAGeq + haeAg™ + hpaAgh?, (A.3)
= habAgab = *habAgab (A4)

hachbdAg od
Ag™ = A(gergg™), (A.5)
Ay = g°g¥ Ager + gerg¥ Ag + gergeAgY, (A.6)
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hachbdAng = haehbngef + hachbeAgce + hafhbdAgdfa (A7)
= hachbdAng = —hachbdAgcd (A8)
Auy,
a 1 a, b c
Au® = Uy Agye (from [61]), (A.9)
Attg = Algayt), (A.10)
Aug = ubAgab + gabAubv (All)
b 1 c,.d
= Aug = uAGep + o Uall"Y Ageq (A.12)
A77ab
Angy = A(hahy™ea)  (as gy = uPna, = 0), (A.13)
Anap = ha hp* Aneq + hneaAhi, + hineaAb, (A.14)
ANy = hahp Aneg + hEhea A6 + upu®) + hdheg A(6E + uqu), (A.15)
A"r/ab = hachbdAncd + hadA(ubud) + hbcA(uauc)a (A16)
Anab = hachbdAncd + hadubAud + hbcuaAuc, (Al?)
cp d Lod e f Lo e f
Angy = ho“hy* Aneg + haquy Fuiuty Ages | + hpctiq Fuutu Agey | (A.18)
= Anap = hahp Aneg (A.19)

Ang when Aky =0

Angy = 123 Akgy + ko An=2/3, (A.20)

Anab = n2/377ab <—§H_5/3An) s (A21)
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_ 2 N cd
Aﬁab = _%hab (_Eh Agcd) y (A22)
1
Anap = haoh* Aged, (A.23)
Newtonian limit of (6.90)
1
ATap = —2n(f1 +4/2) <hachbdAgcd - 3hathdAgcd> , (A.24)

ATy = —2n (f1 +4f2) < (00 + uqu) <5bd + ubud) Ageq

) (A.25)
- g (gab + Uaub) (ng + ucud) Agcd) ,
Amgp = —2n(f1 +4f2) ( <5acébd + uquép? + 0, upud + uaucubud> Ageq
) (A.26)
-3 (gabg“’ + uaupg™ + gapuu’ + uauwcud> Agcd) :

from the definition of u® = (1 — ®/c? + v?/2¢?,v'/c) and remembering that coordinate
20 = ct, we simplify this by taking out O(1/c) terms. We also consider the spatial part

of the equation after taking the divergence, which gives

VjAmj =—2n (fl + 4f2) Vj (vlf] + ngi — igi]’vcfc>, (A27)
VAR, = — 20 (f1 +4f2) (;,vivjsj " v?a) | (A.28)
ON

Derivative @W

1 1

N? = =N*No = =€ FiaNpee i €afoni" NI by, (A.29)
1

N2 = = " Nocoh N0 o (€€ gn), (A.30)

1
N2 = _igd,%hNbcegeNfgm/%m(—[5;(5;5,% —0) 46,0 — 6561) +0(0 — 0)]).  (A.31)
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The 0s come from simplifying the contractions of &% with Ng., as they will vanish.

Hence
1
= Z[(s}agagl%dghzvbce%ezvfgm%m — 800501 kah" Nyce ki NTI™ ],

1
N?% = Z[&dﬁ;dNbcegeN”cmgm — AR Ny RE NP o],
2 1 ~e ntbem -

N* = Z[QNbce/‘é NGl

1 1
N2 = S Npee NP i = & Noe N,

Then we take the derivative

N? = Ny N* 5% = & NiopNprag®Pg RP4Y,
2Naijzycg 1N EBCEEDFM"GE"GM&;?DQ(gBD_CF)y
sora = i Nenomeprui i PP 5 D g " 4 6T S St
8(;]5@ ! NEBCEEDFMHEHM(QQBD 95 ((jaQ 7°"),
a?}];fQ 1NGBCE6DFMHEHMQBD( (5555 + 5558))’
agggQ B iN(eBpEeDQM&E&Mg +epopeppui”#MgoP),
;E]JIYQ = iNQEBPEGDQM"%E"%MgBD
ai% 1NeBpEe Macor® ki,
5ang = 350 — 6¥oDacor .
aiJ]fQ . %N(gpQgE&E — Groiip),

ON
agPQ NgPQ

(A.32)

(A.33)
(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)

(A.46)



Appendix A - Additional calculations 141
= 1.—1/271.
Nab = k / kab
Relating the two with a constant C,
Tlab = Ckap, (A.47)
det(ap) = 1 = det(Ckgp), (A.48)
1 = C?%det(kqp), (A.49)
o (A.50)
N det(iab)’ '
C= Tz (A.51)
Hence
Tab = k™ kap. (A.52)
New N
Start with the three index number density and split into the 3rd direction
Nyca =P VS ) Npep = v 8 viNpes + o v ) Npep, (A.53)
Noca = P39SV NBes + 03 v307 Nsp + vy ¥ 07 Neo, (A.54)
Nica = V%S VINBes + Yy ¥ Npsp + i ©F Nacp, (A.55)
Nyca = (G905 — O30T + v PoS) Npes. (A.56)
From the definition of N¢
1 1 -5 - . - -5 -
N = e Ny = o (ePIpPgCys — ety Pyig + e gl uT ) Npca, (A57)
1 o
N =~ PPy CyiNpes, (A.58)

2
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1 1 _
Na — ieade’%dNbce'%e — §6abcdl%dNbc, (A59)

as wg = Rq and say that Nab = Napck®.

N Conservation

We have the definition
1
N = Nu® = —®d N, 4, (A.60)

which obeys the conservation equation
Vo(Nu®) =0. (A.61)
Next we rewrite N%, as in Chapter 6, in the form
a abed 1 abed ;. re 1 abed 5. A7
N® = —¢ Nbcd = 56 /idNbce"f = §€ HbNCda (A.62)

by specifying that &, = fé‘jg. From this we see that

va(%e“bcd,%djvbcege) =0, (A.63)

%e“bcdva(;%dz\fbw/%e) =0, (A.64)

%eabcd/%d/%evaNbce + %e“bchbw,%eva;%d + %e“de/%dNbceVa/%e =0, (A.65)
%e“bcd,%d/%evajvbce + %eabchbceffa%vawf + %eabcd;%dzvbcevage =0. (A.66)

The partial derivatives on the second term commute and vanish, giving
1 1
§eabcd%d/%6vaz\fbce + ieabcd&dNbcevake = 0. (A.67)

We have that

1
Ne = geabchbcd < Nupe = €apeaN? (A.68)
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Which we plug into first term of the equation so see
1 1
ieabcd/%d;%eva(ebcefjvf )+ §eabcd,%dNbceva/%e =0, (A.69)
1 1
5 Ebee 1505V NT 4 §eabcdﬁ;dNbceva;%€ =0, (A.70)
1 1
- 52!(535? — 0269)kai*VoNT + ieabcdngbceva;@@ =0, (A.71)
1
— RpROVNT 4 5oV N 4 ieabcd/%dNbceva;%G =0, (A.72)
1
~ VINT + v N+ S € RaNbee Ve = 0, (A.73)
as h%gq = 1 and 44kPV) = ll Also, as V, = Vj + V! we see
1
VNS + §eabcd&dNbcevaff =0. (A.74)
Using the same definition of Ng,. on second term implies that
1
VN + §eabcd&debcefzvf V¢ =0, (A.75)
hence
VNS — iy NIV " + 5NV i = 0. (A.76)
As kqu® = 0 and V4 (ApR%) = 0 we get
VN =0. (A.77)
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