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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN AND MATHEMATICAL SCIENCES

Mathematical Sciences

Doctor of Philosophy

QUANTISED VORTICES, MUTUAL FRICTION AND ELASTICITY

IN SUPERFLUID NEUTRON STARS.

by Stuart Wells

This thesis investigates and builds upon the well known approaches to modelling super-

fluid neutron stars. We build single and multiple fluid systems in Newtonian gravity,

introducing mutual friction and elasticity. We then move into general relativity, detailing

how to build a single superfluid system using a quantised vorticity vector. We introduce

multiple interacting fluids into the model, producing the calculation of mutual friction

in general relativity. We then use the variational approach to incorporate elasticity of

the vortex array into the model in order to follow the format of Newtonian calculations.

mailto:stuart.wells@soton.ac.uk




Contents

Declaration of Authorship ix

Acknowledgements xi

1 Introduction 3

2 Neutron Stars 7

2.1 The discovery of neutrons and neutron stars . . . . . . . . . . . . . . . . . 7

2.2 Composition of neutron stars . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Superfluids and vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Neutron star superfluidity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Newtonian Models 25

3.1 Variational principles and Lagrange’s equations . . . . . . . . . . . . . . . 25

3.1.1 Hamilton’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Some techniques of the calculus of variations . . . . . . . . . . . . 26

3.1.3 Derivation of Lagrange’s equations from Hamilton’s principle . . . 30

3.2 Variational approach for a fluid system . . . . . . . . . . . . . . . . . . . . 32

3.3 Single fluid system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Quantised vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1.1 A second look at vortex number conservation . . . . . . . 38

3.3.2 Mutual friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3.1 A more general elasticity . . . . . . . . . . . . . . . . . . 43

3.4 Two fluid system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Incompressible fluids . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.1 Without mutual friction . . . . . . . . . . . . . . . . . . . 51

3.4.2.2 With mutual friction . . . . . . . . . . . . . . . . . . . . 52

3.5 Lagrangian perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Magnus force perturbations . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Mutual friction perturbations . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 Elasticity perturbations . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Relativistic Models 63

4.1 Relativistic fluid dynamics and vorticity conservation . . . . . . . . . . . . 63

v



vi CONTENTS

4.2 Conventional formulation of perfect fluid and simple superfluid theory . . 66

4.3 Vorticity conservation and flux 2-surfaces . . . . . . . . . . . . . . . . . . 69

4.4 Variational fluid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Introduction of the Kalb-Ramond gauge field . . . . . . . . . . . . . . . . 75

4.6 Going forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Quantised Vortices and Mutual Friction 79

5.1 Thin vortex string limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Quantised vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Bivector and vector comparison . . . . . . . . . . . . . . . . . . . . 84

5.3 The Magnus force and mutual friction . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Two-fluid model with friction . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 The Magnus force . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Mutual friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Relativistic Elasticity 91

6.1 Matter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 The configuration gradient . . . . . . . . . . . . . . . . . . . . . . 91

6.1.2 Matter space metric and particle number current . . . . . . . . . . 93

6.2 Relativistic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2.1 Action and stress energy tensor . . . . . . . . . . . . . . . . . . . . 95

6.2.2 Isotropic matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Hookean model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.4 The unsheared state . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.5 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.6 Hookean model perturbation . . . . . . . . . . . . . . . . . . . . . 106

6.2.7 Newtonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Vortex tension and elasticity . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.1 Newtonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Two dimensional formulation . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4.1 The unsheared state . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.3 Newtonian limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Variational approach redux . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Vorticity variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.7 Kalb-Ramond version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7.1 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7.2 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Final Remarks 131

A Additional calculations 137



List of Figures

2.1 A figure demonstrating the basic structure of a pulsar from a review
published in 1971 [1]. Shortly after the discovery of the first pulsar in
1967, neutron star models had most of the components we still consider
to be true today. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 This plot shows the observed orbital decay of PSR B1913+16 with error
bars, along with the decay predicted from general relativity due to gravita-
tional wave emission [2]. The observations coincide with the prediction,
giving strong evidence for Einstein’s General Theory of Relativity. . . . . . 10

2.3 This illustration gives an idea of the depths of each of the different layers
of a neutron star. The crust is solid and made primarily of heavy nuclei.
As you proceed further into the star, neutrons start leaving the nuclei to
form a superfluid. The main component of the core is the neutron super-
fluid, around 90%, with approximately 10% of the core being comprised of
protons. The centre of the star is extremely dense so there may be some
exotic matter such as quark-gluon plasma or colour superconductor. . . . . 12

2.4 Heat capacity of liquid helium as a function of temperature. The peak at
the Lambda point Tλ = 2.17 K marks the phase transition. Helium is
often referred to as helium I above Tλ and as helium II in the superfluid
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 An experiment in which superfluid helium escapes its container. It travels
up the sides and drips off of the bottom, due to zero friction [3]. . . . . . . 14

2.6 The vortex array that forms in superfluid helium due to rotation, with ro-
tation speed increasing from (a) to (l) [4]. The lattice formed is triangular
but also varies slightly depending upon the number of vortices present. . . 16

2.7 A comparison of the possible energy states of bosons and fermions. For
bosons, there is no limit to the number of particles that occupy each energy
level. However, in the case of fermions, only one fermion of a particular
spin may occupy each state. The highest occupied state for fermions is
referred to as the Fermi energy, seen above as Ef [5]. . . . . . . . . . . . . 17

2.8 Left: Neutron singlet gap energy (left axis) and critical temperature (right
axis). Right: Neutron triplet gap energy and critical temperature. See [6]
for more detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Critical temperature Tc for neutron singlet superfluidity as a function
of fractional radius of a neutron star using the APR equation of state
(M = 1.4M�, R = 11.6 km). Different curves correspond to different gap
models which are shown in Figure 2.8. Vertical dotted lines denote the
boundaries between the core, inner crust, and outer crust of the neutron
star. See [6] for more detail. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



viii LIST OF FIGURES

3.1 Path of the system point in configuration space. . . . . . . . . . . . . . . . 27

3.2 Varied paths of the function of y(x) in the one dimensional extremum
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The real part (solid lines) and the modulus of the imaginary part (dotted
lines) of the modes, for proton fraction xp = 0.96 (top left), xp = 0.7 (top
right), xp = 0.4 (bottom left) and xp = 0.1 (bottom right), with k = 10−6.
You can see that, for the high proton fraction case, the real part of the
frequency vanishes where there is an imaginary root and is then damped as
the drag parameter is increased. This imaginary root occurs for values of
R such that the damping time scale τm ≈ 1/2ΩR is approximately equal
to the Tkachenko wave period PT = 2π/ωT with ωT = k

√
κΩ/π (yellow,

red and blue curves). Also, close to this, there is another imaginary root
which can be seen in the yellow curve. As we decrease the proton fraction,
from top left to bottom right, and tend towards the realistic neutron star
core fraction xp = 0.1, the real part does not vanish and there are no
imaginary roots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



Declaration of Authorship

I, Stuart Wells , declare that the thesis entitled Quantised vortices, mutual friction and

elasticity in superfluid neutron stars. and the work presented in the thesis are both my

own, and have been generated by me as the result of my own original research. I confirm

that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• none of this work has been published before submission

Signed:.......................................................................................................................

Date:..........................................................................................................................

ix

mailto:stuart.wells@soton.ac.uk




Acknowledgements

Firstly, I would like to thank ‘past me’ for setting myself the challenge of completing a

Ph.D, it has been a great journey involving many great people. I wouldn’t have arrived

at this stage without the input and encouragement from my parents whilst growing up.

I have worked alongside Tim, John, Lucy and Mike in the nursery and also enjoyed time

with Christian, Stephanie, Vanessa, Yafet, Greg, Marta, Will, Ariana, Kostas, Alice and

Paco. I have made sure to annoy each of them with my questions and discussions during

my time here. In particular, I would like to thank Stephanie and Vanessa for their time

given to discuss their work with me. I would also like to thank Kiki for providing support

and helping me through the final year of my Ph.D, taking my mind away from the stress

and making me fat with good food. Finally, I have to thank Mr Professor Kompressor

himself, Nils, for allowing me the opportunity to fulfil my Ph.D goal and for his help

and guidance throughout the process. He is truly the maddest and greatest professor a

student could wish to work with.

xi





Introduction

1





1

Introduction

Neutron stars are formed during the collapse of main sequence stars. When a massive

star has come to the end of its life, it goes out with a bang. After the star uses up its

supply of hydrogen and helium, heavy elements collect in the core of the star. Once the

mass of the core exceeds the Chandrasekhar limit of 1.44M� (M� ≈ 2 × 1033g is the

mass of the Sun), the core starts to collapse [7, 8, 9, 10]. This collapse causes a shock

wave which throws off the outer layers of the star, while the core continues to compress.

At this point, the resulting structure will depend upon the mass of the stars compressed

core. If its mass is below 2 − 3M�, known as the Oppenheimer-Volkoff limit [11], the

core will compress to form a structure similar to a giant nucleus. However, if the mass in

the core exceeds this limit, then it has no choice other than to collapse to form a black

hole. If the star does not end up as a black hole, then the giant nucleus formed in the

collapse is what we call a neutron star. This explosive ending to a stars life is known as

a supernova. Not all stars experience supernova, as the star must initially have a mass

M & 8M� in order to do so. Stars with mass which is below this threshold will turn

into a giant star and eventually end up as a white dwarf.

3



4 Chapter 1 - Introduction

As you can imagine, a neutron star formed from the violent supernova explosion de-

scribed above will be incomparable to anything we have or can create on Earth. Neutron

stars have masses in the range 1− 2M� and all of this mass is compressed into a sphere

of radius 10−14 km, which is approximately 60, 000 times smaller than the radius of the

Sun. Due to neutron stars having such extreme densities, which we cannot reproduce

on Earth to study further, we still do not know for sure what the composition of this

type of star is. However, observations of these types of stars allow us to predict what

some of their composition must be [12, 13, 14, 15].

We delve deeper into neutron star composition in the following Chapter, as it is im-

portant to have an understanding of the environment one is trying to model. We discuss

the history of neutron stars, including their discovery and how a special type of neutron

star, a pulsar, provided evidence supporting Einstein’s Theory of Relativity. Chapter 2

also investigates how the early models of neutron stars progressed and details what the

stars are thought to be comprised of in today’s understanding. A crucial component of

neutron stars, and the reasoning behind their name, is their large body of fluid neutrons.

The star is comprised mostly of neutrons and once you get below the surface of the star,

this fluid is thought to be in a superfluid state.

This leads us on to the second part of Chapter 2, in which we consider what a superfluid

is and how they behave. Superfluids have been studied via experiments with liquid

helium and most of our knowledge about them come from such experiments. We discuss

why a fluid may enter a superfluid state and the properties that these fluids exhibit.

One of the important features of superfluids, and an important topic for this thesis, is

that they do not rotate like a conventional fluid. When a container of superfluid helium

is rotated, the fluid does not follow the container as it has zero friction. Instead, vortices

form in the fluid and the faster the container is rotated, the greater number of vortices

are formed. These quantised vortices are a key component of our models and are also

likely to play a large role in many of the behaviours observed in neutron stars.

After we have gained knowledge about the environment we are studying, we would like
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to understand how one would usually model these systems and what tools are commonly

used. In Chapter 3 we discuss different approaches to modelling fluid systems. Firstly,

we consider the variational approach for a general fluid and then consider turning this

fluid into a superfluid. We introduce quantised vortices in order to specify that the fluid

is indeed superfluid. This gives rise to complications that come with a vortex array,

that you don’t usually find in a normal fluid. We must add in the behaviours seen

in experiments with superfluid helium, such as the Magnus force, mutual friction and

elasticity.

Once we understand these forces, we introduce a second fluid component to represent

the normal fluid in the system. In the case of a neutron star, this normal fluid would

consist of superconducting protons and electrons, as we will discuss in Chapter 2. We

consider perturbations of this two fluid model, using Lagrangian perturbation theory

and plane wave perturbations. The investigation into plane wave perturbations of the

system is in order to find Tkachenko waves and see if they are likely to play an important

role in neutron stars.

As neutron stars are such extreme environments, the most accurate models of them

must be formulated in general relativity. In Chapter 4 we start to consider how we can

model our system in the framework of general relativity. We first consider existing work

on relativistic fluid dynamics, in order to understand the different methods for creating

fluid models in relativity as opposed to Newtonian gravitation.

With an understanding of relativistic fluid dynamics, we proceed to recreate our New-

tonian superfluid model in general relativity. Chapter 5 discusses how we use quantised

vortices in relativity, following the Newtonian logic of a quantised vorticity vector

rather than the relativistic vorticity tensor. We build a multiple fluid system including

superfluid neutrons, quantised vortices and a second ‘normal’ fluid component. We

include the Magnus force and mutual friction in this relativistic model, as we did in our

Newtonian model in Chapter 3.
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In Newtonian theory, we created a multiple fluid system including mutual friction and

elasticity. Up to this point in our general relativistic model, we have only introduced mu-

tual friction. Chapter 6 addresses the remaining components in order for our Newtonian

and relativistic models to match. We consider relativistic elasticity in three dimensions

and create a two dimensional vortex elasticity. Once we create an elastic contribution

to the model, we have completed our transition of the Newtonian multifluid model with

mutual friction and vortex elasticity to the framework of general relativity.



2

Neutron Stars

2.1 The discovery of neutrons and neutron stars

In order for us to learn about or even consider the existence of neutron stars, we first

need to know that neutrons themselves exist. Thankfully, the neutron was discovered

experimentally by Sir James Chadwick in 1932, while working at the Cavendish Labo-

ratory in Cambridge [16, 17]. Shortly after this discovery, there were discussions that

stars could be comprised of these new neutrons by Rosenfeld, Bohr and Landau [18].

It didn’t take long before Walter Baade and Fritz Zwicky proposed a star which was

composed of neutrons and would be born from supernova explosions [19]. They stated

that such a star would be very dense and much smaller than most stars.

The first modelling of neutron star cores was attempted by Oppenheimer and Volkoff in

1939 [11]. They assumed that the neutron star matter would be comprised of an ideal

gas of free neutrons at high density. It was thought at the time that massive normal

stars may also have neutron cores. However, as our understanding of nuclear fusion

increased, we realised this would not be the case and research into neutron cores faded

7



8 Chapter 2 - Neutron Stars

somewhat. The few people still working with neutron stars were contemplating topics

such as the composition and equation of state of these stars [20]. Another reason that

neutron stars were generally neglected was that they would be too difficult to observe

with the technology of the time, due to their very small size.

Interest in neutron stars was given a boost following the discovery of non solar x-ray

sources in 1962 [21, 22]. This was due to the thought that the source of these x-rays could

be a young, warm neutron star. This triggered investigations to find out more about

neutron star cooling. Interest continued to build after the observation of the first quasar,

but it was shown that there was no connection between neutron stars and quasars. Even

with a great interest developing in the field of compact objects, many people did not

take the work seriously. This could have been due to the vast extrapolation from familiar

physics at the time [18].

Neutron star research was brought back to life after the discovery of pulsars in 1967

[23]. The original observations were made by Jocelyn Bell while working as part of

a team studying quasars using a radio telescope. She noticed a signal which was

pulsing regularly at a rate of approximately one pulse every 1.3 seconds. Due to the

regularity and consistent power of this source, it resembled a signal from a beacon and

was nicknamed LGM-1 for Little Green Men [17]. This discovery was of such significance

that Bell’s PhD supervisor, Anthony Hewish, received the Nobel Prize in 1974 for leading

the team that made the discovery. After the discovery of this regularly pulsing signal, it

was almost immediately proposed by Thomas Gold and Sir Fred Hoyle that the source

could be a rapidly rotating neutron star [24]. Due to this discovery of a pulsar, research

into neutron stars exploded, much like the supernova they themselves are created by.

Already by 1971, the structure of such stars was thought to be comprised of a superfluid

core, solid crust, an atmosphere and a strong magnetic field, as seen in Figure 2.1 taken

from [1]. This description should sound very familiar to current researchers, over 40

years after this original structure was proposed.

In 1969 it was noticed that there was a significant sudden decrease in the periods of
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Figure 2.1: A figure demonstrating the basic structure of a pulsar from a review
published in 1971 [1]. Shortly after the discovery of the first pulsar in 1967,
neutron star models had most of the components we still consider to be true
today.

the Vela pulsar [25]. This behaviour was observed in many other sources and is today

referred to as glitches. This sparked research into the cause of this unusual behaviour and

two explanations stand out from the crowd. The first explanation is that the stars glitch

due to starquakes, much like we have earthquakes here on Earth [26, 27]. The second

explanation was that of vortex unpinning, which relies on properties of the superfluid

interior of the star to cause the glitches [28, 29, 30]. Of course it is likely to be a

combination of several factors which combine to cause glitches at various points in a

stars life.

In 1974 Hulse and Taylor discovered PSR B1913+16 [31], which is a binary system

comprising of a pulsar and a neutron star. A binary system is a pair of objects orbiting

around a common centre of mass. The pulse that we detect from pulsars is a jet of

electromagnetic radiation, which is emitted from the star due to it rotating very rapidly

and being extremely magnetised [32]. This jet is aligned with the magnetic axis of the

star, which is not necessarily in the same direction as its rotation axis. Hence as the

star spins, we see the jet as a pulse as it crosses our line of sight.
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The PSR B1913+16 system was the first binary system to be detected containing a

pulsar. Hulse and Taylor were awarded the 1993 Nobel Prize in Physics for their

discovery. Analysis of this binary system has shown that the orbits of the stars are

decaying, which implies that the system is losing energy somewhere. The amount of

energy that the system is losing can be explained by Einstein’s General Theory of

Relativity, as the energy lost by the system due to gravitational wave emission. Figure

2.2 shows the observed orbital decay (points with error bars), along with the decay

predicted by general relativity due to gravitational wave emission (solid line).

Figure 2.2: This plot shows the observed orbital decay of PSR B1913+16
with error bars, along with the decay predicted from general relativity due to
gravitational wave emission [2]. The observations coincide with the prediction,
giving strong evidence for Einstein’s General Theory of Relativity.

The observations from PSR B1913+16 match the prediction from general relativity.

This is seen as positive evidence for general relativity to be correct and for gravitational

waves to exist, as predicted by the theory. Hence, we arrive at the main reason we wish

to understand neutron stars in greater detail. If we can accurately model neutron stars,
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we can aid the detection of gravitational waves from neutron star systems and determine

that general relativity is the most accurate theory of gravitation.

2.2 Composition of neutron stars

As we saw in the previous section, the standard model of neutron stars was established in

the 1970s. There are many papers and textbooks concerning the composition of neutron

stars. I will use information from [12], [13], [14] and [15] in the following. The neutron

star can be split into four main sections, we call these the outer crust, inner crust, outer

core and inner core. As we can see from Figure 2.3, the crust is quite thin relative to

the radius of the whole star and the bulk of the star is the core. The contents of the

four sections of a neutron star are described below:

Outer crust

The outer crust is relatively thin compared to the radius of the star, approximately

500m. It is comprised mainly of heavy nuclei in the form of a solid lattice, and a

degenerate electron gas.

Inner crust

The inner crust is approximately twice as thick as the outer crust. Throughout this

layer, the pressure increases and neutrons start to be squeezed out of the nuclei.

The neutrons, which drip from the solid lattice, start to form a superfluid as we

go deeper into the star.

Outer core

The outer core is the largest section of the neutron star. Due to the immense

pressure as we proceed into the star, the nuclei we saw in the crust cannot exist

any more. For this reason, the core is flooded with superfluid neutrons, along

with a small proportion of superconducting protons and electrons. The neutron

superfluid makes up approximately 90% of the outer core with the remaining 10%

comprised mainly of protons. The density in this section of the star is comparable

to that of atomic nuclei.
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Inner core

The inner core may or may not exist in a different state to that of the outer core,

this will depend on the mass of the star and how matter behaves at this density.

The density here could be ∼ 1015 g/cm3 and we are currently unsure what happens

to the neutrons in this environment. They could be remain as a superfluid, as they

are in the outer core, in which case there will not be two separate sections to the

core. Another outcome could be that they split, similar to how they exited the

nuclei, into more exotic forms of matter such as hyperons or a quark-gluon plasma.

Figure 2.3: This illustration gives an idea of the depths of each of the different
layers of a neutron star. The crust is solid and made primarily of heavy nuclei.
As you proceed further into the star, neutrons start leaving the nuclei to form
a superfluid. The main component of the core is the neutron superfluid, around
90%, with approximately 10% of the core being comprised of protons. The centre
of the star is extremely dense so there may be some exotic matter such as quark-
gluon plasma or colour superconductor.
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2.3 Superfluids and vortices

As the main component of neutron stars, superfluids are a necessity if you wish to

realistically model a neutron star. We can’t travel to a neutron star and observe how

the superfluid neutrons behave, so we have to find ways of investigating them here on

Earth. In order to understand more about superfluids, we can experiment with liquid

helium. Helium is particularly useful because it enters a superfluid state when it is cooled

to T < 2.17 K, a temperature obtainable experimentally. This is shown in Figure 2.4, the

peak at Tλ shows the phase transition of the fluid helium as it is cooled. The superfluid

phase of helium was discovered by Pyotr Kapitsa, John F. Allen and Don Misener in 1937

[33] [34]. They noticed that instead of the liquid helium cooling down and freezing as its

temperature is decreased, it remained liquid and exhibited some strange properties. The

point in the specific heat capacity of helium at which it undergoes this transition looks

somewhat like the Greek letter Lambda (λ), as can be seen in Figure 2.4, and hence

was denoted the Lambda point. These two states of helium are denoted helium I and

helium II. Helium above the Lambda point is referred to as helium I and the superfluid

helium, below 2.17 K, is denoted helium II.

After the discovery of the superfluid phase of helium, many experiments were developed

in order to understand this new phenomenon. Such experiments with helium [4, 35, 36]

help to develop models for superfluids and show us which behaviours they exhibit. With

this information we can then start to understand how the neutron superfluid within a

neutron star behaves.

So, what is a superfluid? Simply put, a superfluid is a fluid which exhibits zero viscosity,

which means it acts like a fluid but does not experience friction. As superfluids do not

experience friction, they behave very differently in comparison to normal fluids. For

example, in Figure 2.5, the superfluid helium is seen to be creeping up the side of its

container and dripping from the bottom. This is due to the absence of friction between

the superfluid and the container.
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Figure 2.4: Heat capacity of liquid helium as a function of temperature. The
peak at the Lambda point Tλ = 2.17 K marks the phase transition. Helium is
often referred to as helium I above Tλ and as helium II in the superfluid phase.

Figure 2.5: An experiment in which superfluid helium escapes its container. It
travels up the sides and drips off of the bottom, due to zero friction [3].

This zero viscosity behaviour was first seen by J. Reppy and D. Depatie [37], however,

viscous behaviour had also been seen under certain conditions by A. D. B. Woods and

A. C. H. Hallett [38]. This contradictory behaviour was explained by introducing a two

fluid model for the helium. It was proposed that helium II consists of two inseparable
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fluids. The first fluid component exhibits the observed zero viscosity and frictionless flow,

whereas the second component has viscosity and hence exhibits the viscous behaviour.

The two fluid model for helium was advanced by L. Landau [39], who was later awarded

the Nobel Prize in Physics in 1962. Landau proposed that if a fluid is at absolute zero

then it must be in a perfect, frictionless state. When its temperature is increased, this

causes the excitation of phonons, quantised collisionless sound waves and quasi-particles

of higher momentum and energy which he called rotons [40]. These excitations behave

like an ordinary gas and are responsible for any heat transport. Hence, they are the

viscous fluid in the two fluid model. An experiment proposed by Landau measured the

superfluid fraction of rotating helium II as a function of temperature. It was seen that

almost all of the sample was in the superfluid state when the temperature was below

1 K. This experiment was performed by E. Andronikashvili in 1946 and provided key

evidence to help establish the two fluid model of superfluidity.

A key feature of superfluids which experiments with helium have shown us, is that

vortices form in the superfluid when it is rotated. The fluid itself doesn’t move but it

‘rotates’ through the act of forming vortices. These vortices are extremely small and

are also quantised. This means that when the superfluid rotation is increased by a

specific amount, a new vortex will form. The vortices collect in an array that behaves

in a similar way to an elastic lattice and they also exhibit tension as they bend. As

rotation is increased and more vortices are created in the superfluid, the shape of the

lattice changes. Figure 2.6 demonstrates the triangular shape of the vortex array as the

rotation of the superfluid is increased from (a) to (l).

L. Onsager and R. Feynman both independently showed that vorticity enters the super-

fluid through the formation of vortex lines [41, 42]. This lead to the Onsager-Feynman

quantisation condition, which we will use when averaging over a number of vortices later

on. The first measurement of quantised vortex lines in rotating helium II was by H. Hall

and W. Vinen in 1956 [36]. Experiments were undertaken to see how these vortices

behave and interact with each other and their surroundings under various conditions
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Figure 2.6: The vortex array that forms in superfluid helium due to rotation,
with rotation speed increasing from (a) to (l) [4]. The lattice formed is triangular
but also varies slightly depending upon the number of vortices present.

[43, 44, 45]. One effect of rotating superfluid helium, which we will encounter later on

in this thesis, is mutual friction [46, 47, 48]. In the 1950s, many scientists thought that

the quantised vortices formed in a rotating superfluid would act as scattering centres

for the excitations constituting the normal fluid and would give rise to a mutual friction

force. This force was investigated by Hall and Vinen in their papers mentioned above

[35, 36]. We can use the results from experiments to formulate a mathematical model

for a superfluid including its vortices.

2.4 Neutron star superfluidity

On Earth, we need extremely cold temperatures to enable the superfluid state to occur.

This has been demonstrated by the experiments with supercooled helium described in

the previous section. Liquid helium has to be cooled to T < 2.17 K in order for it

to enter the superfluid state. In contrast, neutron stars have very high temperatures,

around 1010− 1011 K at birth. So, is it evidence of madness that we are considering the

occurrence of superfluidity within a neutron star?
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Neutron stars are comprised of neutrons, protons and electrons, which are fermions

(particles with half-integer spin). Fermions must obey the Pauli exclusion principle,

which states that two identical fermions cannot occupy the same quantum state simul-

taneously [49]. However, bosons (particles with integer spin) do not obey the Pauli

exclusion principle, which means that any number of bosons can occupy the same state.

This is demonstrated pictorially in Figure 2.7.

Figure 2.7: A comparison of the possible energy states of bosons and fermions.
For bosons, there is no limit to the number of particles that occupy each energy
level. However, in the case of fermions, only one fermion of a particular spin
may occupy each state. The highest occupied state for fermions is referred to as
the Fermi energy, seen above as Ef [5].

For the neutron fluid to become superfluid, we need it to be possible to send the particles

to the lowest energy state. In 1957, L. Cooper, J. Bardeen and J. Schrieffer discovered

that it is possible for two fermions to combine and form a Cooper pair, which itself is

a composite boson. As we know from Figure 2.7, this would enable multiples of these

Cooper paired fermions to occupy the lowest energy state and allow for superfluidity.

In 1972, the Nobel Prize in Physics was awarded to Cooper, Bardeen and Schrieffer

for their BCS theory. They initially developed the theory to explain superconductivity,

but it was later found that it also applied to nucleons. Hence, it is indeed possible

for superfluidity to occur in nuclear matter [50, 51, 52, 53]. It is estimated that the

critical temperature for neutron superfluidity is Tc ' 5.5× 108 K within a neutron star

[54]. This estimation comes from observations of neutron star glitches and cooling, both

of which are expected to be caused, or heavily influenced, by the neutron superfluid
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within the star. The critical temperature for a superfluid or superconductor is related

to BCS theory via the BCS energy gap. There is a specific amount of energy required

to break the Cooper pairs formed in the fluid or material. If this energy is supplied to

the system, then the composite bosons will separate to fermions and the superfluid or

superconducting behaviour will no longer exist. You can see from Figure 2.8 that there

is a particular Fermi wavenumber for which the neutrons require a significant amount of

energy to break the Cooper pairing and hence the superfluidity. This is then translated

into a critical temperature for the neutron fluid, demonstrated in Figure 2.9.

Figure 2.8: Left: Neutron singlet gap energy (left axis) and critical temperature
(right axis). Right: Neutron triplet gap energy and critical temperature. See [6]
for more detail.

2.5 General relativity

Given the evidence that general relativity is the correct framework in which to model our

system, we would like to know some of the basics. Information on relativity can be found

in a number of sources such as [55, 56, 57, 58, 59, 60]. As we are considering relativity,

we will assume the Einstein Equivalence Principle. This means that [61, 62, 63, 64]

• test bodies fall with the same acceleration independently of their internal structure

or composition;
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Figure 2.9: Critical temperature Tc for neutron singlet superfluidity as a
function of fractional radius of a neutron star using the APR equation of state
(M = 1.4M�, R = 11.6 km). Different curves correspond to different gap models
which are shown in Figure 2.8. Vertical dotted lines denote the boundaries
between the core, inner crust, and outer crust of the neutron star. See [6] for
more detail.

• the outcome of any local non-gravitational experiment is independent of the ve-

locity of the freely-falling reference frame in which it is performed;

• the outcome of any local non-gravitational experiment is independent of where

and when in the Universe it is performed.

If the Equivalence Principle holds, then gravitation must be described by a metric-based

theory [64]. Which means

1. spacetime is endowed with a symmetric metric,

2. the trajectories of freely falling bodies are geodesics of that metric, and

3. in local freely falling reference frames, the non-gravitational laws of physics are

those of special relativity.

The spacetime metric is denoted gab = gba and we take its signature to be − + ++,

demonstrated in (2.2) below. The metric provides the structure of the spacetime we
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are working within. The symmetry of the metric implies that there are in general ten

independent components. The metric can be determined from the line element [61, 65]

ds2 = gabdx
adxb, (2.1)

which, in a local set of Minkowski coordinates {t, x, y, z}, looks like

ds2 = −(dt)2 + (dx)2 + (dy)2 + (dz)2. (2.2)

Here we see the −+ ++ signature mentioned above. The metric has an inverse gab such

that

gabgbc = δac, (2.3)

where δac is the unit tensor. In relativity, one should take into consideration the

covariance and contravariance of vectors, whereas in non-relativistic models this can

be ignored. Covariant vectors are denoted using a lowered index Va and contravariant

vectors are denoted V a with the raised index. The metric gab is used to raise and lower

the indices of the vectors

Va = gabV
b V a = gabVb. (2.4)

A trajectory parametrised by proper time xa(τ) where

dτ2 = − 1

c2
ds2, (2.5)

has a corresponding unit tangent vector

ua =
dxa

dτ
, (2.6)

where ua = γva and u0 = dt/dτ with γ = (1− v2/c2)−1/2. The magnitude of ua is given

by

gabu
aub = gab

dxa

dτ

dxb

dτ
=
ds2

dτ2
= −c2, (2.7)
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which can be seen from the equations given above. It is quite often the case that the

speed of light is taken to be c = 1, which we will use in our calculations. There are

three classes of curves: timelike, spacelike and null. A vector is considered timelike if

gabV
aV b < 0, spacelike if gabV

aV b > 0 and null if gabV
aV b = 0. We can see that ua is

a timelike curve and it will be particularly useful later on.

Covariant and contravariant vectors transform differently when we change coordinates,

from xa to xa say. The different transformations are given by

V
a

=
∂xa

∂xb
V b (2.8)

and

V a =
∂xb

∂xa
Vb, (2.9)

for contravariant and covariant vectors respectively. Tensors with greater rank transform

in the same way by acting linearly on each index with the transformations above.

Before diving straight into relativity, we will first consider how fluids are modelled in

the Newtonian framework. We will return to relativity later on in order to build our

superfluid model.
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3

Newtonian Models

If we wish to model the superfluid system within a neutron star by using general

relativity, we need to be able to confirm that our equations are correct. Hence, we start

by considering superfluid systems in Newtonian gravity, in order to have something to

compare and confirm our relativistic models with later on.

3.1 Variational principles and Lagrange’s equations

3.1.1 Hamilton’s principle

We consider the motion of a system between two times t1 and t2 and small variations

of this motion from the actual motion. The configuration of a system is described by

values of the coordinates q1, . . . , qn. These correspond to a particular point in a Cartesian

hyperspace where the qs form the n coordinate axes, this is known as the configuration

space. As time evolves, the system changes and a curve is traced out in configuration

space, which is the path of motion of the system. Hence, we can parametrise the curve

by time such that each point on the curve has an associated value, or values, of time.

25
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The path given in configuration space is not the motion in space of a particle, as each

point in configuration space represents the whole system at a given time [66].

Hamilton’s principle describes the motion of systems for which all forces are derivable

from a scalar potential, which can be a function of the coordinates, velocities and time.

These systems are called monogenic and if the potential is a function of only the position

coordinates, then it is also conservative. For a monogenic system, Hamilton’s principle

states that the motion of a system from time t1 to t2 is such that the line integral (called

the action or the action integral),

I =

∫ t2

t1

Ldt, (3.1)

where L = T − V is the difference between kinetic T and potential V energies, has

a stationary value for the actual path of the motion. This means that for a system

travelling from t1 to t2, out of all possible paths between these two times, it travels

along the one for which (3.1) is stationary. Stationary means that the integral along the

given path has the same value as along the neighbouring paths (cf. Figure 3.1). This

corresponds to the first derivative vanishing. Hence, we can say that the motion of the

system is such that the variation of the line integral I for fixed t1 and t2 is zero

δI = δ

∫ t2

t1

L(q1, . . . , qn, q̇1, . . . , q̇n, t)dt = 0. (3.2)

3.1.2 Some techniques of the calculus of variations

Before showing that Lagrange’s equations can be found from (3.2), we investigate the

calculus of variations. A main problem is to find the curve for which some given line

integral has a stationary value.

We consider a simple problem of the function f(y, ẏ, x) defined on a path y = y(x)

between two values x1 and x2. Here we denote the derivative with respect to x by a



Chapter 3 - Newtonian Models 27

Figure 3.1: Path of the system point in configuration space.

dot, for example ẏ. We want to find the path y(x) such that the line integral J of the

function f between x1 and x2

ẏ =
dy

dx
,

J =

∫ x2

x1

f(y, ẏ, x)dx,
(3.3)

has a stationary value relative to paths which differ infinitesimally from the correct

function y(x). Here the variable x takes the same role as the parameter t which we saw

previously. We consider paths for which y(x1) = y1 and y(x2) = y2 (cf. Figure 3.2).

Note that this problem is one dimensional and y is not a coordinate, just a function of x.

We will use differential calculus to find the stationary points of our function. J must

have a stationary value for the correct path relative to any neighbouring path. So, the

variation must be zero relative to some particular set of paths labelled by an infinitesimal

parameter α. This set of paths will be denoted y(x, α), whereas y(x, 0) represents the

correct path. If a function η(x) vanishes at x1 and x2, then a possible set of paths will

be given by

y(x, α) = y(x, 0) + αη(x). (3.4)
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Figure 3.2: Varied paths of the function of y(x) in the one dimensional extremum
problem.

We assume that the functions y(x) and η(x) are both well behaved, continuous and

non singular between x1 and x2, with continuous first and second derivatives between

the same two points. For this family of curves, J , seen in (3.3), is also a function of α

J(α) =

∫ x2

x1

f(y(x, α), ẏ(x, α), x)dx. (3.5)

The condition for finding a stationary point is given by

(
dJ

dα

)
α=0

= 0. (3.6)

Taking the derivative of (3.5), we see that

dJ

dα
=

∫ x2

x1

(
∂f

∂y

∂y

∂α
+
∂f

∂ẏ

∂ẏ

∂α

)
dx. (3.7)

The second half of this integral

∫ x2

x1

∂f

∂ẏ

∂ẏ

∂α
dx =

∫ x2

x1

∂f

∂ẏ

∂2y

∂α∂x
dx, (3.8)

integrates by parts to

∫ x2

x1

∂f

∂ẏ

∂2y

∂α∂x
dx =

∂f

∂ẏ

∂y

∂α

∣∣∣∣x2
x1

−
∫ x2

x1

d

dx

(
∂f

∂ẏ

)
∂y

∂α
dx. (3.9)
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We know that all of the varied curves pass through (x1, y1) and (x2, y2), so the partial

derivative of y with respect to α at x1 and x2 must vanish. We can then use (3.9) to

rewrite (3.7) in the form

dJ

dα
=

∫ x2

x1

(
∂f

∂y
− d

dx

(
∂f

∂ẏ

))
∂y

∂α
dx, (3.10)

as the first terms on the right hand side of equation (3.9) vanish. Hence, looking back

to (3.6) we see that the condition for a stationary value can be written

∫ x2

x1

(
∂f

∂y
− d

dx

(
∂f

∂ẏ

))(
∂y

∂α

)
α=0

dx = 0. (3.11)

The partial derivative of y with respect to α is an arbitrary function of x, with continuity

and conditions on the end points. Hence for the integral to vanish it must be the case

that the other term vanishes. Hence, for J to have a stationary value we must have

∂f

∂y
− d

dx

(
∂f

∂ẏ

)
= 0. (3.12)

The differential quantity (
∂y

∂α

)
α=0

dα ≡ δy, (3.13)

is the infinitesimal departure of the varied path from the correct path y(x), at the point

x. As this corresponds to the virtual displacement discussed in Chapter 1 of [66], it will

have the notation δy. We can write the variation of J about the correct path in a similar

fashion (
dJ

dα

)
α=0

dα ≡ δJ. (3.14)
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So, if y satisfies the condition (3.12), then we can write the condition that J is stationary

for the correct path as

δJ =

∫ x2

x1

(
∂f

∂y
− d

dx

(
∂f

∂ẏ

))
δydx. (3.15)

3.1.3 Derivation of Lagrange’s equations from Hamilton’s principle

Now we consider the case in which f is a function of many independent variables yi and

their derivatives ẏi. All of these are considered as functions of the parametric variable

x. Then, a variation of the integral J between points 1 and 2

δJ = δ

∫ 2

1
f(y1(x), y2(x), . . . , ẏ1(x), ẏ2(x), . . . , x)dx, (3.16)

is obtained by considering J as a function of a parameter α, which labels a possible set

of curves y1(x, α). We introduce α by setting

y1(x, α) = y1(x, 0) + αη1(x),

y2(x, α) = y2(x, 0) + αη2(x),

...
...

...

(3.17)

where y1(x, 0), y2(x, 0), . . . are the solutions to the extremum problem and η1, η2, . . . are

independent functions of x. These vanish at the end points and are continuous through

the second derivative, but otherwise are arbitrary.

Following the previous section, the variation of J is given by

∂J

∂α
dα =

∫ 2

1

∑
i

(
∂f

∂yi

∂yi
∂α

dα+
∂f

∂ẏi

∂ẏi
∂α

dα

)
dx. (3.18)

Integration by parts is used for the second sum of the above equation

∫ 2

1

∂f

∂ẏi

∂2ẏi
∂α∂x

dx =
∂f

∂ẏi

∂ẏi
∂α

∣∣∣∣2
1

−
∫ 2

1

∂yi
∂α

d

dx

(
∂f

∂ẏi

)
dx, (3.19)
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where the first term vanishes again, as all curves pass through the fixed end points.

Hence, by combining (3.18) and (3.19) we find that the variation of J becomes

δJ =

∫ 2

1

∑
i

(
∂f

∂yi
− d

dx

(
∂f

∂ẏi

))
δyidx, (3.20)

where the the variation δyi is given in the familiar way

δyi =

(
∂yi
∂α

)
α=0

dα. (3.21)

As the y variables are independent, the variations δyi are independent. This means that,

as before, for the variation of J to vanish we must have that the terms multiplying the

δyi must vanish. Which tells us that for all i = 1, 2, . . . , n,

∂f

∂yi
− d

dx

(
∂f

∂ẏi

)
= 0. (3.22)

The equations above, (3.22), are the generalisation of the equation (3.12) seen in the

previous section to many variables. These are known as the Euler-Lagrange equations.

For Hamilton’s principle, which we saw at the beginning of the chapter,

δI = δ

∫ 2

1
L(qi, q̇i, t)dt = 0. (3.23)

This has the same form as (3.16). All we need to do to relate the two is consider the

transformation

x→ t

yi → qi

f(yi, ẏi, x)→ L(qi, q̇i, t).

(3.24)

Then, as the yi variables are independent, the qi must also be independent in Hamilton’s

principle. If this is indeed the case, then we know that the Euler-Lagrange equations
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for the integral I become the Lagrange equations of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, for i = 1, 2, . . . , n. (3.25)

Hence we have seen that Lagrange’s equations of motion follow from Hamilton’s princi-

ple.

3.2 Variational approach for a fluid system

In the previous section we saw a simple example of how one would use the variational

approach to find equations of motion. Next, we will steer towards our goal by applying it

to a multifluid system. Although this method is used by many people to model fluids, we

will later consider a different approach in Section 3.3. Our approach will use a method

whereby we average over a conserved number of vortices. For now we demonstrate the

variational approach [67, 68, 69, 70, 71].

We know from previous discussions about neutron stars and superfluid helium, that

we require a model comprised of multiple fluids. One fluid component will refer to the

superfluid neutrons and the second fluid component refers to the normal fluid which, in

the case of a neutron star, will be the proton fluid. We denote the separate fluids by

the general labels x and y in the equations below. The variables for a multifluid system

are the number density nx, the kinematic velocity vix and the mass mx, for each of the

x fluid components. From these, we define the mass density

ρx = mxnx (3.26)

and the number current

nix = nxv
i
x. (3.27)

In order to find the total mass density we sum over each of the fluid components

ρ =
∑
x

ρx, (3.28)
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where, for example, if we are modelling a two fluid system of neutrons and protons,

then x ∈ {n,p}. The system is described by a Lagrangian L, which is a function of

the number densities nx, number currents nix and the gravitational potential Φ. We can

write the Lagrangian in the form

L = LH(nx, n
i
x) + Lgrav − ρΦ, (3.29)

where the hydrodynamical term is given by

LH =
∑
x

mxn
x
i n

i
x

2nx
− E (3.30)

and the gravitation contribution is given by

Lgrav = − 1

8πG
(∇Φ)2. (3.31)

The energy E term in the hydrodynamical piece of the Lagrangian represents the equa-

tion of state. This generally has the form E = E(nx, w
2
xy), where wixy = vix − viy is the

velocity difference between the two fluid components.

If we take the variation of our Lagrangian L with respect to the gravitational potential

Φ, we find from (3.25) that

d

dt

(
∂L

∂Φ̇

)
− ∂L

∂Φ
= 0, (3.32)

is calculated to be

∇
(
− 2

8πG
∇Φ

)
+ ρ = 0, (3.33)

which gives us the Poisson equation

∇2Φ = 4πGρ. (3.34)

Then, we vary L with respect to the fluid variables nx and nix in the same way as above,

in order to find the hydrodynamical equations of motion. We assume that the total



34 Chapter 3 - Newtonian Models

number of particles is conserved, which gives us the continuity equation

∂tnx +∇inix = 0. (3.35)

Then the conservation of momentum is given by the collective Euler equation

∑
x

(
nx∂tπ

i
x − nx∇iπx0 − εijknxj εklm∇lπmx

)
= 0, (3.36)

where πxi is the canonical momenta

πxi =
∂L
∂nix

= pxi (3.37)

and pxi is the hydrodynamical momenta

pxi =
∂LH
∂nix

= mx

(
vxi +

∑
x

εxyw
yx
i

)
. (3.38)

In the case of magnetohydrodynamics, as in [68], the canonical momenta (3.37) have an

extra term which originates from the electromagnetic contributions in the Lagrangian.

But, here we are only considering the hydrodynamical case without an electromagnetic

field, so these do not occur in our calculation. The momenta above show the entrainment

term εxy entering the equations. The entrainment between the different fluids

εxy =
2

ρx

(
∂E
∂w2

xy

)
nx

, (3.39)

can cause the misalignment of the momentum pix and the corresponding flux nix. Also

seen above is the scalar function πx0 , which is given by

πx0 = −µx −
1

2
mxv

2
x −mxΦ, (3.40)

where there chemical potential µx for each fluid is given by

µx =

(
∂E
∂nx

)
ny,w2

xy

. (3.41)
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The momentum equation (3.36) can be written in terms of a force balance equation

∑
x

(
FHxi + ρ∇iΦ

)
= 0, (3.42)

where any external forces acting on the system would appear on the right hand side of

the above equation. The hydrodynamical force density seen above is given by [72]

F iHx = nx

((
∂t + vjx∇j

)
pix +∇iµx +mx

∑
y

(εxyw
yx
j )∇ivjx

)
. (3.43)

3.3 Single fluid system

As we learnt in Chapter 2, our aim is to model a superfluid system. The previous section

introduced a multifluid model but we are yet to include information regarding the vortex

array within the system. Here we will formulate the superfluid equation of motion for a

single superfluid, including some interaction from a second fluid. We will consider this

fluid to be rotating, which means that we will need to include details about the vortex

array. To do this, we say that the vortices are quantised and we use a quantised vorticity

vector to determine the equations of motion for the fluid [61, 68, 73].

3.3.1 Quantised vortices

We will consider a system of superfluid neutrons, as one would expect to find such a

fluid in the interior of a neutron star. A neutron star will be rotating about its axis and

can be thought of as a rotating container for the superfluid neutrons. Hence, due to the

stars rotation, the superfluid will form an array of tiny quantised vortices. The number

of vortices in this array depends upon the magnitude of the rotation of the star, but we

will say that the direction of the array is along κ̂i. As the vortices are quantised, we will

say that they have a number density Nv and we can write the macroscopically averaged
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vorticity of the system as

W i
n =

1

m
εijk∇jpnk = Nvκ

i. (3.44)

Here we see the canonical momentum pin, the quantum of circulation κ = h/2m is

contained within the vortex direction κi = κκ̂i and the mass is denoted m. This equation

for the averaged vorticity, (3.44), is known as the Onsager-Feynman condition. If the

rotation of the star, and hence the fluid, is constant, then no vortices will be destroyed

or created. Hence, we will assume here that the number of vortices is conserved, which

gives us a continuity equation for the number density

∂tNv +∇j
(
Nvu

j
)

= 0, (3.45)

where ui is the collective vortex velocity within a fluid element. Our task is to find out

how the vortices behave, so we take the time derivative of (3.44) and see that

∂tW i
n = −κi∇j

(
Nvu

j
)

+Nv∂tκ
i. (3.46)

Combining this with the fact that ∇jWj
n = 0, we find

∂tW i
n = ∇j

(
Wj

nu
i
)
−∇j

(
W i

nu
j
)

+Nv

(
∂tκ

i + uj∇jκi − κj∇jui
)
. (3.47)

The motion of a single vortex is represented by the Lie transportation of the vector κi,

which denotes the direction of the vortex, by the flow ui. This is written

∂tκ
i + Luκi = 0, (3.48)

where the Lie derivative is defined by

Luκi = uj∇jκi − κj∇jui. (3.49)

Using this equation of motion, we can rewrite (3.47) as

∂tW i
n + εijk∇j

(
εklmW l

nu
m
)

= 0, (3.50)
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which shows that canonical vorticity W i
n, is locally conserved and advected by the ui

flow. If we rewrite the evolution equation (3.50) as a total outer product, we find that

∂tp
i
n − εijkεklmuj∇lpmn = ∇iΨn, (3.51)

where Ψn is an unspecified scalar potential.

In reality, it is unlikely that the vortices and the superfluid will be moving together.

There are a number of forces which would disturb the system and cause the vortices to

travel with a different velocity to that of the fluid, which we will see later on. In light of

this, we will now assume that the vortices do not move with the flow by introducing a

velocity difference winv = vin−ui, where vin denotes the velocity of the superfluid neutrons.

This enables us to rewrite (3.51), using the velocity difference and the definition of the

vorticity (3.44), as

nn∂tp
i
n − nnεijkεklmvnj∇lpmn − nn∇iΨn = Nvρnε

ijkκjw
nv
k . (3.52)

We see that we now have a force appearing the right hand side of (3.52), due to the

velocity difference between the vortices and the superfluid neutrons. This is in fact

the Magnus force exerted on the vortices by the fluid. Obviously this only enters the

picture when wnv
k is non zero, or in other words, when the vortices and the fluid are

not moving together. A more common example of the Magnus effect is when a rotating

sphere moving through a fluid curves to one side, as seen in any sport involving a struck

ball. In our case, the Magnus force displaces vortices from their equilibrium position

due to the fluid flow past them. The Magnus force is given by

f iM = −Nvρnε
ijkκjw

nv
k , (3.53)

which has a negative sign because it is defined as a lifting force. Hence, we have arrived

at

nn∂tp
i
n − nnεijkεklmvnj∇lpmn − nn∇iΨn = −f iM (3.54)
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as our equation of motion for the single neutron superfluid. This incorporates the

quantised nature of the vortices and also takes into consideration that the vortices will

not be travelling along with the neutron superfluid.

3.3.1.1 A second look at vortex number conservation

We note here that the conservation of number density used above,

∂tNv +∇j
(
Nvu

j
)

= 0, (3.55)

is usually assumed to hold. The same is true for the motion of a single vortex,

∂tκ
i + Luκi = 0. (3.56)

However, it could be the case that they are only conserved in the vortex plane. If we

consider this new planar approach, then the calculation would be as follows. If the

vortex number density is conserved only in the vortex plane, it would be written

∂tNv +∇⊥j
(
Nvu

j
)

= 0, (3.57)

where the projection is given by ∇⊥j = ⊥kj∇k =
(
δkj − κ̂j κ̂k

)
∇k. We now take the time

derivative of the vorticity to see that

∂tW i
n = −κi∇⊥j

(
Nvu

j
)

+Nv∂tκ
i. (3.58)

Expanding and manipulating this equation leads to

∂tW i
n = −∇⊥j (ujW i) +Nvu

j∇⊥j κi +Nv∂tκ
i. (3.59)

Here we will say that the motion of a single vortex is given by

∂tκ
i +⊥ijLuκj = 0, (3.60)
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where the Lie derivative is defined as before. Remembering that ∇jWj
n = 0 while

plugging the equation of motion of a single vortex into (3.59), leads us to

∂tW i
n = ∇k(uiWk

n )−∇j(ujW i
n). (3.61)

This should look familiar as it gives (3.50) from the previous calculation.

Hence, we see that whether the vortex number density conservation and single vortex

motion is restricted to the vortex plane or not, the equations of motion are the same.

We will see this projected version of the conservation equation and motion of a single

vortex later on in Chapter 5.

3.3.2 Mutual friction

As we have discussed previously, the second fluid interacts with the vortices through a

mutual friction force [74, 75]. This is due to scattering of the second fluid component

off of the vortex cores. We will now add mutual friction into our system to balance with

the Magnus force. The mutual friction force is proportional to the velocity difference

between the vortices ui and the second fluid vip. Hence it is written in the form

fFi = C (vpi − ui) , (3.62)

for the friction force on a single vortex. Ignoring vortex inertia, these two forces balance

each other such that

fMi + fFi = 0, (3.63)

which allows us to rewrite the vortex velocity in the form

ui = vpi −
ρn
C
εijkκ

j
(
vkn − uk

)
. (3.64)

Next, we take the cross product of this form of the vortex velocity with κi to find

εijkκ
juk = εijkκ

jvkp −
ρn
C
εijkε

klmκjκl (v
n
m − um) , (3.65)
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and cross it again to give

εijkε
klmκjκlum = εijkε

klmκjκlv
p
m −

ρn
C
εijkε

klmεmqrκ
jκlκq (vrn − ur) . (3.66)

If we focus on the final term of (3.66) for a moment, we can expand it to see that

ρn
C
εijkε

klmεmqrκ
jκlκq (vrn − ur) = −ρn

C
εijkκ

jκ2
(
vkn − uk

)
, (3.67)

remembering that εijkκ
jκk = 0. This means that (3.66) becomes

εijkε
klmκjκlum = εijkε

klmκjκlv
p
m +

ρnκ
2

C
εijkκ

j
(
vkn − uk

)
, (3.68)

which we can substitute into the first equation we crossed with κi (3.65) to give

εijkκ
juk = εijkκ

jvkp −
ρn
C
εijkε

klmκjκlv
n
m +

ρn
C
εijkε

klmκjκlv
p
m

+
ρ2nκ

2

C2
εijkκ

j
(
vkn − uk

)
.

(3.69)

We can collect the vortex velocities(
1 +

ρ2nκ
2

C2

)
εijkκ

juk = εijkκ
jvkp +

ρn
C
εijkε

klmκjκl (v
p
m − vnm)

+
ρ2nκ

2

C2
εijkκ

jvkn,

(3.70)

which we do in order to plug it into our first equation (3.64). This gives

ui = vpi +
C

ρnκ2

(
1

1 + C2/ρ2nκ
2

)
εijkκ

j
(
vkp − vkn

)
+

1

κ2

(
1

1 + C2/ρ2nκ
2

)
εijkε

klmκjκl (v
p
m − vnm) .

(3.71)

Finally, we plug this into our original form of the mutual friction force (3.62), to see

that

fFi =

(
Cρn

ρ2nκ
2 + C2

)[
Cεijkκ

jwknp + ρnεijkε
klmκjκlw

np
m

]
. (3.72)
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Since this is the force per vortex, we can multiply by the vortex number density in order

to get the mutual friction force on the whole array of vortices

fFi = Nv

(
Cρn

ρ2nκ
2 + C2

)[
Cεijkκ

jwknp − ρnκ2⊥ijwjnp
]
, (3.73)

where ⊥ij = gij − κ̂iκ̂j is the projection orthogonal to κ̂i = κi/κ. The first term in

the mutual friction force (3.73) is analogous to the Magnus force, although it is now

expressed in terms of the velocity difference wnp
i instead of wnv

i . The second term

introduces dissipation into the flow. From the equations we’ve used above, we can

determine that [74]:

1. in the limit C → ∞ we have ui → vpi . This means that the vortices are strongly

coupled to the second fluid.

2. in the opposite limit C → 0 we find that ui → vni . The vortices must flow with

the neutron superfluid as they are weakly coupled to the second fluid.

3. the dissipative part of the mutual friction force vanishes in both the C →∞ and

the C → 0 limit.

The factor of C is usually rewritten in terms of a dimensionless parameter B. The

analysis of this and the estimates for these parameters can be found in [74]. The

dimensionless parameter is related to C via

B =
C

ρnκ
, (3.74)

which leads to the mutual friction force

fFi = ρnκNvB (vpi − ui) = Nv

(
B

1 + B2

)[
Bρnεijkκjwknp − ρnκ⊥ijwjnp

]
. (3.75)

3.3.3 Elasticity

We have seen in previous sections that there are two forces which move the vortex array

out of equilibrium. The first is the Magnus force, caused by the fluid flow past the
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vortices, and the second is the mutual friction force, caused by interactions between

the second fluid component and the vortices. We will now add a restoring force, which

attempts to return the vortex array to equilibrium and cancel out the Magnus and

mutual friction effects. We treat this restoring force as an elasticity, acting between

each of vortices. This elastic behaviour of the vortices is seen in experiments using

superfluid helium [4, 35, 36], so it is logical to include it in our model. We say that this

elastic force balances the Magnus and mutual friction forces, enabling us to write a new

force balance equation

f iM + f iF + f iE = 0. (3.76)

The elastic force is usually denoted σi, and is found from the elastic stress tensor [76],

σi
k = Kξ ll δ

k
i + 2µ

(
ξ ki −

1

3
δ ki ξ

l
l

)
, (3.77)

where K is the bulk modulus and is related to Lamé coefficients by K = λ + (2/3)µ.

Also, the two index ξ ki is related to the elastic displacement ξEi , by

ξ ki =
1

2

(
∂ξEi
∂xk

+
∂ξkE
∂xi

+
∂ξEl
∂xk

∂ξlE
∂xi

)
. (3.78)

The elastic displacement ξEi of a vortex that we see here is the difference between its

displaced position and equilibrium position, x′i − xi. We will denote this elastic vortex

displacement ξvi from now on.

As the displacement of each vortex is extremely small, we ignore higher order terms

and instead use

ξ ki =
1

2

(
∂ξvi
∂xk

+
∂ξkv
∂xi

)
. (3.79)

In our single fluid system (3.54), the force term that entered our equation was −fMi , so

we will balance this and the mutual friction force with the elastic term σi. This gives us

− fMi − fFi = fEi = σi, (3.80)
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where the elasticity σi is found by taking the derivative of the stress tensor (3.77),

σi = ∇kσ k
i . (3.81)

The elasticity of the vortex array acts in the plane of the vortices. There is no elasticity

acting along the vortex direction, so

σ j
i κ̂j = 0. (3.82)

Using this with (3.81) we see that the elasticity is given by

σi = ∇⊥k σ k
i , (3.83)

where ∇⊥i is the gradient perpendicular to the direction of the array. We could also

define the perpendicular gradient using the projection (gij − κ̂iκ̂j)∇j = ∇⊥i as we saw

previously. From equation (3.83) we find that the full elastic term, in terms of the vortex

displacement, is given by

σi = µ

[(
K

µ
+

1

3

)
∇⊥i

(
∇k⊥ξvk

)
+∇⊥k

(
∇k⊥ξvi

)]
. (3.84)

As well as exhibiting elasticity in the vortex array, there may also be a form of elasticity

along the vortex lines themselves. It is possible to consider this scenario of elasticity

along the vortices by including an averaged vortex tension. The tension term would be

of the form [68],

T in =
Evn
κ
Wj

n∇jŴ i
n, (3.85)

where Evn is the energy per unit length of a single vortex, however, we will not be

considering vortex tension in this calculation.

3.3.3.1 A more general elasticity

We note here that although equation (3.84) has the familiar and recognisable form

of the two dimensional vortex elasticity, this assumes that κ̂i will be fixed along a
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coordinate direction. Later on we may prefer a more general form for the elasticity,

whereby the direction of the array is not necessarily along a coordinate axis. Hence we

need to use projections to form a general elasticity term. If we start from (3.81), we

can use the condition (3.82) to find an equation similar to (3.83). Using the projection

⊥ij = gij − κ̂iκ̂j , this is given by

σi = ∇⊥j σij + σi
j∇k⊥kj , (3.86)

which can be written in terms of κ̂i

σi = ∇⊥j σij − σij κ̂k∇kκ̂j . (3.87)

In order for (3.83) to hold, we must assume that κ̂i is a Killing vector. This means that

it must satisfy the Killing equation ∇iκ̂j +∇j κ̂i = 0, which will kill the second term in

(3.87). We can now see that the elastic term takes the form

σi = µ

[(
K

µ
− 2

3

)
∇⊥i ∇kξkv +∇⊥k∇⊥i ξkv +∇⊥k (⊥ij∇k⊥ξjv)

]
. (3.88)

As κ̂i is no longer along a coordinate direction, we cannot commute the orthogonal

derivatives. This is due to the fact that ∇i⊥jk 6= 0. This is the form of elasticity

orthogonal to a general vector κ̂i.

3.4 Two fluid system

As we wish to improve our model in order to more closely replicate what we expect to be

occurring inside of a neutron star, we need to specify an equation for the second fluid.

As we have discussed previously, the interior of a neutron star is thought to be mainly

comprised of neutrons. However, there are also other particles present such as protons

and electrons, which we will now incorporate into our model. We will therefore consider

a two fluid system comprising of both neutrons and protons, where we are assuming

that the electrons are strongly coupled to the proton fluid. In the previous section we

discussed the mutual friction force which arises due to the presence of a second fluid and
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here we will show the equations governing this fluid. The Euler equations for a multiple

fluid system, in a frame rotating at angular velocity Ω, are given by

(∂t + vxj∇j)(vxi + εxw
yx
i ) + 2εijkΩ

jvkx +∇(µ̃x + Φ) + εxw
j
yx∇ivxj = 0. (3.89)

Where x, y ∈ {n, p} denote the components associated to the neutron or proton fluid,

vxi is the velocity of the specified fluid, wyx
i = vyi − vxi gives the difference between the

fluid velocities, εx is the entrainment parameter, µ̃x is the chemical potential per unit

mass and Φx is the gravitational potential. We assume that the neutrons and protons

have equal mass, mn = mp = m. Since we are considering a rotating star, we wish

to include the vorticity in order to impose the neutrons be superfluid. Under rotation,

the superfluid neutrons form an array of singly quantised vortices. We will average over

them, as before, to acquire the macroscopic vorticity

W i = Nvκκ̂
i =

1

m
εijk∇j(vnk + εnwpn

k ), (3.90)

where κ̂i is a unit vector in the direction of the vortex array, κ = 1.99 × 10−3 cm2s−1

is the quantum of circulation and Nv is the number density of the vortices. We assume

that the number of vortices is conserved, which gives us

∂tNv +∇⊥i (Nvu
i) = 0, (3.91)

where ui is the macroscopically averaged vortex velocity and ⊥ denotes orthogonality

to the vortex direction κ̂i, as before. We also find, from the definition of the vorticity

(3.90), that

∂tWi + εijkε
klm∇j (Wlum) = 0. (3.92)

By using (3.91) and (3.92) in the same way as our formulation in Section 3.3, we can

find an equation of motion for the neutron superfluid,

(∂t + vnj∇j)(vni + εnw
pn
i ) + 2εijkΩ

jvkn +∇(µ̃n + Φ) + εnw
j
pn∇ivnj = Nvκεijkκ̂

j(vkn − uk).

(3.93)
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If we were to consider the case without entrainment, when εni is zero, this equation would

match (3.54) up to a rotational term. The extra terms appearing in (3.93) are due to

the presence of a second fluid in the system, when compared to the single fluid system

in Section 3.3. The term on the right hand side of (3.93) should be recognisable as the

Magnus force, which we saw in the single fluid case. The vortices will have an effect

on the movement of the proton fluid, which we will write in the form of a drag force

ρnκNvR(ui − vip). As we have seen, this is the mutual friction caused by interactions

between the second fluid and the vortices. R is a dimensionless drag parameter and

varies depending on what region of the neutron star we are looking at (from R ≈ 10−10

to R ≈ 1 ). In the core, drag occurs due to the scattering of electrons off of the vortex

core, whereas in the crust there will be interactions with the lattice phonons. Hence, we

would like to investigate how the variation of the drag parameter, R, affects the modes

in this system.

Now that we know how the vortices interact with the proton fluid via mutual friction,

we can write the second component equation of motion for the protons

(∂t + vpj∇
j)(vpi − εpw

pn
i ) + 2εijkΩ

jvkp +∇(µ̃p + Φ)

− εpwjpn∇iv
p
j = κNv

(1− xp)

xp
R(ui − vpi ),

(3.94)

where the proton number xp = ρp/(ρn+ρp) and the entrainment parameter εp = εn(1−xp)/xp.

Now that we have formulated the equations both for the superfluid neutrons and the

proton fluid, we would like to have an equation governing the vortices. This comes in

the form of the force balance equation between the Magnus force, mutual friction and

the elastic force of the vortex lattice which we saw previously

Nvκεijkκ̂
j(vkn − uk) + κNvR(ui − vpi ) + σi = 0, (3.95)

where σi is the elasticity given by

σi =
µv
ρn

[
2∇⊥i (∇j⊥ξ

v
j )− (∇2

⊥)ξvi

]
. (3.96)
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Here, ξvi is the displacement of the vortex line from its equilibrium position,

µv =
ρnκ

2Nv

16π
(3.97)

is the shear modulus of the lattice and ∇⊥i is again the gradient perpendicular to the

direction of the vortex array. This elasticity only takes into consideration linear order

lattice displacements, as they are assumed to be very small. As before, we will not

consider the contribution due to vortex tension here but it could be included using a

term of the form [77]

σTi = −ρnκ
2Nv

8π
ln

(
b

a

)
∂2εi
∂z2

, (3.98)

where a is the vortex core radius, b is the intervortex spacing for a triangular lattice and

the rotation axis of the star is taken to be in the z direction.

We can write the continuity equations for the neutrons and protons as

∂tρn +∇i(ρnvni ) = 0, (3.99)

∂tρp +∇i(ρpvpi ) = 0, (3.100)

and the gravitational potential obeys the Poisson equation

∇2Φ = 4πG(ρn + ρp), (3.101)

where G is the gravitational constant. Next, we shall consider how this multifluid system

of neutrons and protons behaves when it is perturbed.

3.4.1 Perturbations

We are only going to consider linear order perturbations, in a background in which the

two fluids rotate together with angular velocity Ω. In this background we have

κNv = 2Ω. (3.102)
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We now perturb the equations of motion for each of the fluids, which we found in the

previous section, to find

∂t(δv
n
i + εnδw

pn
i ) + 2εijkΩ

jδvkn +∇δµ̃n = −2ΩR(δui − δvpi )− δσi (3.103)

and

∂t(δv
p
i − εpδw

pn
i ) + 2εijkΩ

jδvkp +∇δµ̃p = 2Ω
(1− xp)

xp
R(δui − δvpi ), (3.104)

where we have ignored the perturbations of the gravitational potential δΦ, using Cowling

approximation. Here we have made use of the force balance equation (3.95) and you can

see that the elasticity only acts on the superfluid neutrons. The perturbed elastic force,

δσi, is written as

δσi = c2T

[
2∇⊥i (∇j⊥δξ

v
j )− (∇2

⊥)δξvi

]
, (3.105)

where we have defined the Tkachenko wave speed c2T = κΩ/8π. We have also as-

sumed that the vortices are in equilibrium in the background, which means that the

displacement will vanish unless the system is perturbed. Hence, all of the following

displacements will be perturbed quantities and we will drop the perturbation symbol for

them. We would like to consider Lagrangian perturbations of the two fluid system using

∆vu
i = ∂tξ

i
v, as we are already dealing with the displacement vector ξiv. But, since we

are in a rotating frame and the fluids moving together in the background, we find that

∆vu
i = δui. Hence we proceed by using Eulerian perturbations, however, we will revisit

Lagrangian perturbations in later sections. When we perturb the force balance equation

(3.95), we find

2Ωεijkκ̂
jδvkp − 2Ωεijkκ̂

jδwkpn − 2Ωεijkκ̂
jδuk + 2ΩRδui − 2ΩRδvpi + δσi = 0, (3.106)

and the perturbed continuity equations are given by

∂tδρn +∇i(ρnδvni ) = 0 (3.107)
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and

∂tδρp +∇i(ρpδvpi ) = 0. (3.108)

3.4.2 Incompressible fluids

To make our problem simpler, we will consider the case in which the fluids are incom-

pressible, which tells us that δρx = 0. So, from the continuity equations (3.107) and

(3.108), we see that

∇iδvpi = ∇iδvni = 0. (3.109)

Next, we take plane wave perturbations and say that perturbed quantities take the form

δfi(x, t) = f̄i exp(ikjx
j − iωt), (3.110)

where f̄i is a constant amplitude. We choose coordinates such that the rotation axis

of the system aligns with the z axis and the wave vector ki is in the x-z plane, giving

ki = (k sin θ, 0, k cos θ).

Now that we have specified the type of perturbation we will use, we can plug this

into the perturbed equations of motion (3.103), (3.104) and (3.106) and get

− iωv̄ni (1− εn)− iωεnv̄pi + 2εijkΩ
j v̄kn + ikiµ̄n = 2ΩR(iωξ̄vi + v̄pi )− σ̄i, (3.111)

− iωv̄pi (1− εp)− iωεpv̄ni + 2εijkΩ
j v̄kp + ikiµ̄p = −2Ω

(1− xp)

xp
R(iωξ̄vi + v̄pi ) (3.112)

and

εijkκ̂
j v̄kp − εijkκ̂jw̄kpn + iωεijkκ̂

j ξ̄kv − iωRξ̄vi −Rv̄
p
i + σ̃i = 0, (3.113)

where we have defined σ̃i = σ̄i/2Ω and we write µ̄x as the amplitude of δµ̃x. From the

continuity equations (3.109), we can also see that

kj v̄
j
p = kj v̄

j
n = 0. (3.114)
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Next, we contract each of the above equations (3.111), (3.112) and (3.113) with ki, Ωi

and εilmΩlkm. We do this to obtain nine scalar equations, which we can then solve for

the frequency ω2. Contracting the three equations with ki gives us

2εijkk
iΩj v̄kn + ik2µ̄n = 2ΩRiωξ̄vi ki − σ̄iki, (3.115)

2εijkk
iΩj v̄kp + ik2µ̄p = −2Ω

(1− xp)

xp
Riωξ̄vi ki (3.116)

and

εijkk
iκ̂j v̄kp − εijkkiκ̂jw̄kpn + iωεijkk

iκ̂j ξ̄kv − iωRξ̄vi ki + σ̃ik
i = 0. (3.117)

Then we repeat the process, contracting instead with Ωi, to give the following three

equations

− iωv̄ni Ωi(1− εn)− iωεnv̄pi Ωi + ikiΩ
iµ̄n = 2ΩRΩi(iωξ̄vi + v̄pi )− σ̄iΩi, (3.118)

− iωv̄pi Ωi(1− εp)− iωεpv̄ni Ωi + ikiΩ
iµ̄p = −2Ω

(1− xp)

xp
RΩi(iωξ̄vi + v̄pi ) (3.119)

and

iωRξ̄vi Ωi +Rv̄pi Ωi − σ̃iΩi = 0. (3.120)

Finally we contract the equations with εilmΩlkm, to obtain the final set of three equations

−iωv̄ni εilmΩlkm(1− εn)− iωεnv̄pi ε
ilmΩlkm

+2εijkε
ilmΩj v̄knΩlkm = 2ΩRεilmΩlkm(iωξ̄vi + v̄pi )− σ̄iεilmΩlkm,

(3.121)

−iωv̄pi ε
ilmΩlkm(1− εp)− iωεpv̄ni εilmΩlkm + 2εijkε

ilmΩj v̄kpΩlkm

= −2Ω
(1− xp)

xp
RεilmΩlkm(iωξ̄vi + v̄pi )

(3.122)

and

εijkε
ilmΩlkmκ̂

j v̄kp − εijkεilmΩlkmκ̂
jw̄kpn + iωεijkε

ilmΩlkmκ̂
j ξ̄kv

− iωRξ̄vi εilmΩlkm −Rv̄pi ε
ilmΩlkm + σ̃iε

ilmΩlkm = 0.

(3.123)

In order to simplify the equations above, we will need to plug in the components of each

of the terms in the nine equations. In cylindrical coordinates, they are as follows:
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• ki = (k sin θ, 0, k cos θ)

• v̄xi = (v̄x1 , v̄
x
2 ,−v̄x1 tan θ) from (3.114)

• ξ̄vi = (ξ̄v1 , ξ̄
v
2 , ξ̄

v
3 )

• σ̄i = (−c2Tk2ξ̄v1 sin2 θ, c2Tk
2ξ̄v2 sin2 θ, 0) from (3.96)

• Ωi = (0, 0,Ω)

• κ̂i = (0, 0, 1)

Next we plug these into equations (3.115) to (3.123), in order to find the nine equations

that need to be solved to find ω2. We find that

− 2Ωv̄n2 sin θ + ikµ̄n = 2ΩRiω(ξ̄v1 sin θ + ξ̄v3 cos θ)− σ̄1 sin θ, (3.124)

− 2Ωv̄p2 sin θ + ikµ̄p = −2Ω
(1− xp)

xp
Riω(ξ̄v1 sin θ + ξ̄v3 cos θ), (3.125)

− v̄p2 sin θ + w̄pn
2 sin θ − iωξ̄v2 sin θ − iωR(ξ̄v1 sin θ + ξ̄v3 cos θ) + σ̃1 sin θ = 0, (3.126)

iωv̄n1 (1− εn) tan θ + iωεnv̄
p
1 tan θ + ikµ̄n cos θ = 2ΩR(iωξ̄v3 − v̄

p
1 tan θ), (3.127)

iωv̄p1 (1−εp) tan θ+ iωεpv̄
n
1 tan θ+ ikµ̄p cos θ = −2Ω

(1− xp)

xp
R(iωξ̄v3− v̄

p
1 tan θ), (3.128)

iωξ̄v3 − v̄
p
1 tan θ = 0, (3.129)

−iωv̄n2 (1− εn)− iωεnv̄p2 + 2Ωv̄n1 = 2ΩR(iωξ̄v2 + v̄p2 )− σ̄2, (3.130)

−iωv̄p2 (1− εp)− iωεpv̄n2 + 2Ωv̄p1 = −2Ω
(1− xp)

xp
R(iωξ̄v2 + v̄p2 ) (3.131)

and

v̄p1 − w̄
pn
1 + iωξ̄v1 − iωRξ̄v2 −Rv̄

p
2 + σ̃2 = 0. (3.132)

3.4.2.1 Without mutual friction

Firstly we consider the undamped case, in which we ignore the effects of drag by setting

R = 0. We will also say that the entrainment vanishes, εx = 0. In doing this we find
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two sets of solutions. There are the inertial modes given by

ω2 = 4Ω2 cos2 θ, (3.133)

and the Tkachenko waves

ω2 = 4Ω2 cos2 θ + c2Tk
2 sin4 θ −

c4Tk
4

4Ω2
sin4 θ. (3.134)

If we now assume c2Tk
2 � Ω2 and that the propagation is perpendicular to the rotation

axis (cos θ = 0), then we find the Tkachenko wave dispersion relation

ω = ±cTk. (3.135)

By taking cos θ = 0, we are considering how waves propagate within the plane of the

vortex array. If we look at the bigger picture of a neutron star, this plane would be the

equatorial plane of the star.

3.4.2.2 With mutual friction

We would now like to investigate what impact the mutual friction, or drag, in the system

has on the propagation of the waves. This is controlled through the drag parameter R,

which was previously set to zero. For this section we take the entrainment to be zero,

so we have εn = εp = 0 but keep the drag parameter non zero. Firstly, we consider the

propagation along the rotation axis, the z axis, by setting θ = 0. We find two sets of

modes, one which is undamped with dispersion relation

ω = ±2Ω (3.136)

and one that is affected by the mutual friction

ω = ±2Ω

(
1− R2

xp(1 +R2)

)
− i2Ω

R
xp(1 +R2)

. (3.137)
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These agree with the two classes of modes in [78].

Now we consider the wave propagation perpendicular to the rotation axis, where cos θ = 0.

This will tell us how the waves behave within the vortex plane. For this we consider a

typical pulsar with spin rate νstar = 10 Hz and long wavelength oscillations across the

whole superfluid region, such that k = 10−6 cm−1. We plot the frequency of the modes

as a function of the drag parameter R. In Figure 3.3 we see plots over a range of proton

fractions, from large values of the proton fraction xp = 0.96 down to smaller but more

realistic values xp = 0.1.

Figure 3.3: The real part (solid lines) and the modulus of the imaginary part
(dotted lines) of the modes, for proton fraction xp = 0.96 (top left), xp = 0.7
(top right), xp = 0.4 (bottom left) and xp = 0.1 (bottom right), with k = 10−6.
You can see that, for the high proton fraction case, the real part of the frequency
vanishes where there is an imaginary root and is then damped as the drag
parameter is increased. This imaginary root occurs for values of R such that the
damping time scale τm ≈ 1/2ΩR is approximately equal to the Tkachenko wave
period PT = 2π/ωT with ωT = k

√
κΩ/π (yellow, red and blue curves). Also,

close to this, there is another imaginary root which can be seen in the yellow
curve. As we decrease the proton fraction, from top left to bottom right, and
tend towards the realistic neutron star core fraction xp = 0.1, the real part does
not vanish and there are no imaginary roots.
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We see that, for large values of the proton fraction, the real part of the frequency

vanishes and then the damping becomes large for large R. Also, close to this value,

there is an imaginary root. As we tend towards smaller, more realistic, values of the

proton fraction the real part does not vanish and there are no imaginary roots.

3.5 Lagrangian perturbation theory

Modelling a stationary and well behaved system doesn’t usually give any interesting

insight to real world problems. In nature, systems are rarely perfectly behaved, so we

want to see how the star behaves when it is perturbed. We saw previously what happens

to our fluid system when it is perturbed using a specific perturbation, namely a plane

wave perturbation. We will now investigate what happens when we perturb our single

fluid system from Section 3.3 using Lagrangian perturbation theory. This enables us to

write the equations in terms of a displacement vector relating to the component being

perturbed. The Lagrangian perturbation ∆Q of a quantity Q is related to the Eulerian

variation δQ by

∆Q = δQ+ LξQ, (3.138)

where ξi is the Lagrangian displacement. We see from [61, 73, 79] that the Lagrangian

perturbation of the fluid velocity is given by

∆vi = ∂tξ
i. (3.139)

Given that the perturbation of the metric is

∆gij = ∇iξj +∇jξi, (3.140)

we can then deduce that

∆vi = ∂tξi + vj∇iξj + vj∇jξi. (3.141)
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In order to perturb our system, we will assume that there there is no entrainment in the

system, which allows us to rewrite (3.54) in the form

(∂t + Lvn)vni −∇i
(

Ψn

m
+ vjnv

n
j

)
= −f

M
i

ρn
, (3.142)

using pin = m(vin + εnw
i
nv) with the entrainment parameter εn equal to zero. Now we

specify that Ψn is of the form −µn−mΦn−mvjnvnj /2 where µn and Φn are the chemical

and gravitational potentials respectively. We do this in order for the left hand side of

(3.142) to match that of a standard Euler equation for a single fluid. This form of the

equation is also useful because the Lagrangian variation ∆ commutes with (∂t + Lvn)

[80, 81]. After applying the perturbation to (3.142), we find that

(∂t + Lvn)∆vni +∇i
(

∆µ̃n + ∆Φn −
1

2
∆
(
vjnv

n
j

))
= −∆

(
fMi
ρn

)
, (3.143)

where µ̃n = µn/m. We wish to find an equation in terms of the displacement vector ξi,

so using the perturbations of quantities seen above, we can rewrite (3.143) as

∂2t ξi + 2vjn∇j∂tξi +
(
vjn∇j

)2
ξi +∇iδΦn+ξj∇i∇jΦn

−
(
∇iξj

)
∇jµ̃n +∇i∆µ̃n = −∆

(
fMi
ρn

)
.

(3.144)

3.5.1 Magnus force perturbations

We also wish to write the Magnus force term, on the right hand side of (3.143), in terms

of displacement vectors. When the system is relaxed and has no forces applied to it,

the vortices travel along with the fluid. So we know that, in the unperturbed state, the

velocity difference winv = vin − ui vanishes, which gives us

∆

(
fMi
ρn

)
= −Nvεijkκ

j∆wknv. (3.145)

As a consequence of winv vanishing in the background, it is true that ∆winv = δwinv.
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Currently we have only used one displacement vector, which represents the displacement

of the fluid. It is likely the case that the displacement of the vortices when perturbed is

not equal to the displacement of the fluid, so we will use ξiv to denote the corresponding

displacement vector of the vortices. This vortex displacement vector emerges from

the Lagrangian perturbation of the vortex velocity ui, in the same way that the fluid

displacement ξi is related to the fluid velocity vin in equation (3.139). In general, we

know for a certain fluid component x ∈ {n,p, v, . . .} that the Lagrangian displacement

vector for that fluid will be given by

∆xv
i
x = δvix + Lξxvix = ∂tξ

i
x. (3.146)

This tells us that the perturbation of a velocity vix with respect to a different fluid

perturbation ∆y is given by

∆yv
i
x = δvix + Lξyvix = ∆xv

i
x − Lξxvix + Lξyvix, (3.147)

by rearranging (3.146) for δvix and plugging it into (3.147). Hence, in the case of our

Magnus force, we are considering the perturbation of the vortex velocity ui with respect

to the neutron fluid perturbation ∆n, denoted ∆ above. Using the general perturbation

identities above, we can find that

∆ui = ∆vu
i − Lξvui + Lξui. (3.148)

Hence, the perturbed Magnus force, (3.145), takes the form

∆

(
fMi
ρn

)
= −Nvεijkκ

j
(

∆vkn − Lξuk −∆vu
k + Lξvuk

)
, (3.149)

which we can simplify, remembering that the fluid and the vortices are travelling together

in the background, to give

∆

(
fMi
ρn

)
= −Nvεijkκ

j
[
∂t(ξ

k − ξkv)− Lξ−ξvvkn
]
. (3.150)
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Now that we have determined all of our perturbed terms, we discover that our superfluid

equation (3.142) behaves according to

∂2t ξi + 2vjn∇j∂tξi+
(
vjn∇j

)2
ξi +∇iδΦn + ξj∇i∇jΦn

−
(
∇iξj

)
∇jµ̃n +∇i∆µ̃n = Nvεijkκ

j
[
∂t(ξ

k − ξkv)− Lξ−ξvvkn
]
,

(3.151)

when our system of superfluid neutrons and vortex array is perturbed.

3.5.2 Mutual friction perturbations

In order to write down the complete perturbed force balance equation, we need to find

the perturbed form of the mutual friction force and also the elasticity. Here we will see

how the mutual friction force transforms when we apply the Lagrangian perturbation.

In the background, the vortices and the second fluid are moving together, which causes

the mutual friction to vanish in a similar way to the Magnus force before. Hence, the

perturbed mutual friction force is given by

∆fFi = ρnκNvB (∆vpi −∆ui) . (3.152)

We have already seen the form of ∆ui and we can use (3.147) from the previous section

to find that

∆vpi = ∆pv
p
i − Lξpv

p
i + Lξvpi . (3.153)

Putting these back into the mutual friction expression (3.152) we see that

∆fFi = ρnκNvB
(
∆pv

p
i − Lξpv

p
i −∆vui + Lξvui + Lξvpi − Lξui

)
, (3.154)

but as vpi = ui in the background, this simplifies to

∆fFi = ρnκNvB
(
∆pv

p
i −∆vui − Lξp−ξvv

p
i

)
, (3.155)
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and hence we arrive at

∆fFi = ρnκNvB
(
∂t (ξpi − ξ

v
i )− Lξp−ξvv

p
i + vjp

[
∇i
(
ξpj − ξ

v
j

)
+∇j (ξpi − ξ

v
i )
])
.

(3.156)

Now that we have the perturbed form of the Magnus force and mutual friction, all that

remains in our force balance equation is the elasticity, which we will consider next.

3.5.3 Elasticity perturbations

We have already discussed that, in the background, the vortices are in equilibrium.

This means that the elastic displacement ξvi vanishes in the unperturbed system and

only arises when the system is perturbed, along with the Magnus force and mutual

friction.

Using the force balance equation between the Magnus force, mutual friction and elas-

ticity, we can rewrite the superfluid equation (3.143) to include the vortex elasticity.

In doing this, we find a slightly different version of our perturbed superfluid equation,

given by

∂2t ξi + 2vjn∇j∂tξi +
(
vjn∇j

)2
ξi+∇iδΦn + ξj∇i∇jΦn

−
(
∇iξj

)
∇jµ̃n +∇i∆µ̃n = ∆

(
fEi + fFi
ρn

)
.

(3.157)

Yet again we need to consider what form the right hand side will take when the system

is perturbed. However, as we have discussed, the vortices are in equilibrium in the

background, which means that the elastic displacement will be zero unless the system

is perturbed. Hence, the perturbed elastic force remains in the same form that we have

seen previously

∆fEi = µ

[(
K

µ
+

1

3

)
∇⊥i

(
∇j⊥ξ

v
j

)
+∇⊥j

(
∇j⊥ξ

v
i

)]
. (3.158)

We have determined the form of the Magnus force, mutual friction and elasticity when

the system is perturbed. Hence, we note that the perturbed force balance equation for
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the vortices

∆(fMi + fFi + fEi ) = 0, (3.159)

takes the form

Nvρnεijkκ
j
[
∂t(ξ

k − ξkv)− Lξ−ξvvkn
]

= µ

[(
K

µ
+

1

3

)
∇⊥i

(
∇j⊥ξ

v
j

)
+∇⊥j

(
∇j⊥ξ

v
i

)]
+ρnκNvB

(
∂t (ξpi − ξ

v
i )− Lξp−ξvv

p
i + vjp

[
∇i
(
ξpj − ξ

v
j

)
+∇j (ξpi − ξ

v
i )
])
.

(3.160)

So, (3.157) and (3.160) determine how this single superfluid neutron system and its

vortex array behave when they are perturbed, using Lagrangian perturbation instead of

Eulerian perturbation.
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4

Relativistic Models

4.1 Relativistic fluid dynamics and vorticity conservation

Now we will begin to consider the approach we need to take in order to model our system

in general relativity. In the case of a single relativistic fluid, we can formulate an Euler

equation by considering the continuity equation of the stress-energy tensor [61, 82, 83]

∇aT ab = 0. (4.1)

When considering a perfect fluid, we know that the stress-energy tensor is given by

Tab = (ρ+ p)uaub + pgab, (4.2)

where ua is the fluid velocity, p is the pressure and ρ is the total energy density. Given

a relation p = p(ρ), there are four independent variables. The equations of motion are

∇aT ab = 0, which follows from the Einstein equations and the fact that ∇aGab = 0. We

take an equation of state of the form ρ = ρ(n) where n is the particle number density.

63
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The chemical potential µ is given by

dρ =
∂ρ

∂n
dn ≡ µdn, (4.3)

and from the Euler relation we get

µn = p+ ρ. (4.4)

We now eliminate the free index of ∇aT ab = 0 in two ways. Firstly, we contract it with

ub and secondly we project it with ⊥bc. Using uaua = −1 we can see that

∇a(ubub) = 0 ⇒ ub∇aub = 0. (4.5)

So, when we contract the equations of motion with ub we find

ua∇aρ+ (ρ+ p)∇aua = 0. (4.6)

Then, by using the chemical potential and Euler relation, it becomes

uaµ∇an+ µn∇aua = 0 ⇒ ∇ana = 0, (4.7)

where na = nua. If instead, we use the projection ⊥bc, we see that the equations of

motion give

Dcp = −(ρ+ p)ac, (4.8)

where Dc ≡ ⊥bc∇b is a purely spatial derivative and ac ≡ ua∇auc is the acceleration.

This is similar to the Euler equation for Newtonian fluids. Another way of understanding

∇aT ab = 0 is if we define

µb = µub, (4.9)

and note that uadu
a = 0, then

dρ = −µbdnb. (4.10)
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The stress-energy-momentum tensor can now be written in the form

T ab = pδab + naµb. (4.11)

The fluid element momentum µb is conjugate to the particle number density current na.

If we now consider the continuity equation ∇aT ab = 0, we can determine that

naωab + µb∇ana = 0, (4.12)

where the vorticity ωab is defined to be the anti-symmetrised derivative of the momentum

µa = µua

ωab ≡ 2∇[aµb] = ∇aµb −∇bµa. (4.13)

We now contract equation (4.12) with nb and use the fact that the vorticity is antisym-

metric to find that

∇ana = 0, (4.14)

which tells us that the particle flux is conserved. Clearly this result also tells us that

naωab = 0, (4.15)

from equation (4.12). This is our relativistic Euler equation, where na = nua is the

particle flux, ua is the fluid velocity and ωab is the vorticity two form.

The definition of the vorticity, equation (4.13), implies that its exterior derivative

vanishes,

∇[aωbc] = 0. (4.16)

In the case that the Euler equation (4.15) holds, the vorticity is conserved along the

flow. That is, we have

Luωab = 0. (4.17)

Hence, the equations of motion (4.15) can be seen as an integrability condition for the

vorticity. We will investigate these conservation laws further in Section 4.3.



66 Chapter 4 - Relativistic Models

4.2 Conventional formulation of perfect fluid and simple

superfluid theory

The equations of motion found in Section 4.1 are also derivable from a Lagrangian

variation principle [65, 84, 85, 86]. The 4-momentum πa, a combination of the 3-

momentum πi = pi and the energy π0 = E, is defined to be

πa =
∂L

∂ua
, (4.18)

where L is the relevant position and velocity dependent Lagrangian function for the

system and

ua =
dxa

dτ
, (4.19)

which was described previously in Chapter 2. We obtain an equation of motion from

the momentum and Lagrangian by taking

dπa
dτ

=
∂L

∂xa
. (4.20)

For barotropic perfect fluid models, the Lagrangian will have the form

L =
1

2
µgabu

aub − 1

2
µc2, (4.21)

where µ gives the mass in the first term and the potential energy in the second term.

The 4-momentum will be given by the relation

πa = µua, (4.22)

so that we have E = γµc2 and pa = γµva where µ can be interpreted as the relevant

effective mass. We now want to specify an equation of state giving the pressure p in

terms of the density ρ. In order to do this, we first write ρ in terms of the conserved

number density n, in the form

ρ = mn+
ε

c2
, (4.23)
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where m is the mass of the particle we are considering and ε is an extra energy con-

tribution due to compression. We can then write the pressure in terms of the density

as

p = (nµ− ρ) c2, (4.24)

where the effective mass µ is given by

µ =
dρ

dn
= m+

1

c2
dε

dn
. (4.25)

This will be the effective mass term which appeared in the Lagrangian (4.21).

As we are dealing with a fluid flow rather than a single particle, we will convert the equa-

tion of motion (4.20) from a particle evolution equation to the equivalent field evolution

equations. We rewrite the left hand side of the equation using the gradient of the mo-

mentum ∇aπb in the form dπa/dτ = ub∇bπa. Similarly, we rewrite the right hand side of

the equation in terms of the gradient of the Lagrangian ∇aL = ∂L/∂xa+(∂L/∂πb)∇aπb.

Hence, we arrive at the field evolution equation of the form

ub∇bπa + πb∇aub = ∇aL. (4.26)

We can also start from the Hamiltonian function in terms of the position and momentum

variables [87], which comes from the Legendre transformation

H = πau
a − L. (4.27)

In doing this, we can find our previous equations (4.19) and (4.20) when we specify that

dxa

dτ
=
∂H

∂πa
and

dπa
dτ

= − ∂H
∂xa

. (4.28)
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As we wish to model a fluid, not a single particle, we find another field equation in

evolving the Hamiltonian this time instead of the Lagrangian. This takes the form

2ub∇[bπa] = −∇aH, (4.29)

where the square brackets denote antisymmetrisation over the bracketed indices. Con-

tracting (4.29) with ua we obtain the relation

ua∇aH = 0, (4.30)

as the left hand side vanished due to being antisymmetric. This tells us that the

Hamiltonian is conserved along the flow ua.

We can find the Hamiltonian for our perfect fluid by using the Lagrangian (4.21) seen

previously. This determines that the Hamiltonian is given by

H =
1

2µ
gabuaub +

µc2

2
. (4.31)

In order for ua to be correctly normalised, the Hamiltonian must vanish. If this is the

case we get

H = 0 ⇒ uau
a = −c2, (4.32)

as required. Hence, once we use this information in our Hamiltonian field equations

(4.29), we find that

ua∇[aπb] = 0. (4.33)

We found previously that equation (4.15) can be obtained from the Lagrangian equations

of motion given by the Lagrangian in (4.21). Next we need to find the conservation of

number current (4.14) from the action integral

I =

∫
LdS(4), dS(4) =

||g||1/2

c
d4x (4.34)
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where S(4) is the four dimensional background manifold and L is the scalar Lagrangian

functional, in order to complete the system of equations. We simplify things by looking

at the irrotational case, where ωab = 0. In this case, we take the independent variable

to be the phase ϕ from the mesoscopic phase factor eiϕ and the action is taken to be

the pressure p expressed as a function of the effective mass µ. The mass is proportional

to the magnitude of the momentum

µ2c2 = πaπ
a, (4.35)

where the momentum is given by

πa = ~∇aϕ, (4.36)

which applies in the irrotational case. Hence, if we set L = p and use the pressure

variation δp = c2nδµ, the variation of the Lagrangian is given by

δL = −naδπa = −~na∇a(δϕ). (4.37)

If we say that the action integral (4.34) must be invariant with respect to infinitesimal

variations of ϕ, then we find the required conservation law (4.14).

4.3 Vorticity conservation and flux 2-surfaces

We are interested in finding conservation laws which tell us that certain properties

remain the same after being displaced. The variation given by a displacement vector ξa

is written in terms of the Lie derivative along ξa, denoted LξX for some quantity X.

The Lie derivative of the metric is given by

Lξgab = ∇aξb +∇bξa, (4.38)

which vanishes if the displacement vector ξa is a Killing vector. If the displacement is

not a Killing vector, the Lie derivative clearly does not commute with the raising and
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lowering of indices. The Lie derivative of a vector Xa along ξa is given by

LξXa = ξb∇bXa −Xb∇bξa, (4.39)

and we can use (4.38) to see that this changes to

LξXa = ξb∇bXa +Xb∇aξb, (4.40)

for a vector Xa = gabX
b. If we consider our momentum πa, we find the Lie derivative

to be

Lξπa = ξb∇bπa + πb∇aξb = ξbωba +∇a
(
πbξ

b
)
, (4.41)

where ωba = 2∇[bπa] is the relativistic vorticity tensor. Due to this definition of the

vorticity tensor, its exterior derivative will vanish

∇[aωbc] = 0, (4.42)

as we saw previously in (4.16). Lie differentiation commutes with the exterior derivative,

which means that if we take the exterior derivative of (4.41), we find

Lξωab = −2∇[a

(
ωb]cξ

c
)
. (4.43)

If we now look back to the Lagrangian equation (4.26), this can be rewritten in terms

of the Lie derivative as

Luπa = ∇aL. (4.44)

So, as before, if we apply the exterior derivative to this equation we get a conservation

equation for the vorticity

Luωab = 0, (4.45)

which tells us that the vorticity is conserved along the flow ua. We know from (4.33)

that ua is a zero eigenvalue eigenvector of the vorticity tensor ωab. As ωab has a zero
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eigenvalue eigenvector, it must satisfy the degeneracy condition

ωa[bωcd] = 0, (4.46)

which also implies that it has rank two. Hence the flow ua is just one case of a whole

tangent subspace of eigenvectors ea satisfying the same condition as (4.33)

eaωab = 0. (4.47)

This subspace is spanned by a unit worldsheet bivector Eab [65], as long as the vorticity

does not vanish ω =
(
1
2ωabω

ab
)1/2 6= 0. The bivector is proportional to the dual vorticity

tensor

W ab =
1

2
εabcdωcd, (4.48)

and is written

Eab =
1

ω
W ab. (4.49)

We can see that the tangent bivector Eab satisfies

EabEab = −2c2 and Eabωbc = 0. (4.50)

The equation above means that if we contract any covector with the bivector, this new

term will be a solution of (4.47). An example of this can be seen from the helicity ha,

which is given by [88, 89, 90, 91]

ha = ωEabπb. (4.51)

As well as being a solution of the vortex worldsheet tangentiality condition, it also

satisfies the helicity conservation law

∇aha = 0. (4.52)
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4.4 Variational fluid model

Next we will introduce the concept of a matter space into our model and use it within the

variational approach. A more in depth discussion of matter space components will occur

in Chapter 6. We start by reviewing the standard approach, as per the Living Reviews

article [61] and [92, 93, 94]. For simplicity we will consider a single matter component,

represented by a conserved flux na. For an isotropic system, the matter Lagrangian Λ

should be a relativistic invariant and hence should only depend on n2 = −gabnanb. In

effect, this means that the Lagrangian depends on the flux and the space-time metric.

An arbitrary variation of Λ = Λ(n2) = Λ(na, gab) then gives (ignoring terms that can be

written as total derivatives, that is, the ‘surface terms’ in the action)

δ
(√
−gΛ

)
=
√
−g
[
µaδn

a +
1

2

(
Λgab + naµb

)
δgab

]
, (4.53)

where g is the determinant of the metric and µa is the canonical momentum

µa =
∂Λ

∂na
= −2

∂Λ

∂n2
gabn

b. (4.54)

We have also made use of

δ
√
−g =

1

2
gabδgab. (4.55)

Equation (4.53) illustrates why a variational derivation of fluid dynamics is non trivial.

As it stands, the variation of Λ suggests that the equations of motion would be µa = 0,

in essence, none of the fluids carry energy or momentum. This problem is resolved by

imposing constraints on the fluxes. A natural way to do this is to make use of a three

dimensional ‘matter space’.

The coordinates of matter space, XA where A ∈ {1, 2, 3}, serve as labels that distinguish

fluid element worldlines. These labels are assigned at the initial time of the evolution,

say t = 0. The matter space coordinates can be considered as scalar fields on spacetime,

with a unique map obtained by a pull-back construction relating them to the spacetime

coordinates.
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The variational construction then involves three steps. Firstly, we note that the conser-

vation of the individual fluxes is ensured provided that the dual three-form

nabc = εabcdn
d, na =

1

3!
εabcdnbcd, (4.56)

where εabcd is the usual volume form associated with the spacetime, is closed. That is

∇[anbcd] = 0 −→ ∇ana = 0. (4.57)

In the second step, we make use of the matter space to construct three-forms that are

automatically closed on spacetime

nabc = ψA[aψ
B
bψ

C
c]nABC , (4.58)

where the map is given by

ψAa =
∂XA

∂xa
(4.59)

and the Einstein summation convention applies to repeated matter space indices A,B,C.

The volume form nABC , which is assumed to be antisymmetric, provides matter space

with a geometric structure. If integrated over a volume in matter space it provides a

measure of the number of particles in that volume. Specifically, we have

nABC = nεABC . (4.60)

With this definition, the three-form (4.58) is closed provided nABC is a function of the

XA. In other words, the scalar fields XA are taken to be fundamental variables.

The final step involves introducing the Lagrangian displacement ξa and linking back

to the spacetime perturbations. This displacement tracks the movement of a given

fluid element. From the standard definition of Lagrangian variations in the relativistic
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context, we have

∆XA = δXA + LξXA = 0 , (4.61)

where δXA is the Eulerian variation and Lξ is the Lie derivative along ξa, as we have

seen in Chapter 3. This means that convective variations are such that

δXA = −LξXA = −ξa∂X
A

∂xa
= −ξaψAa, (4.62)

as XA acts as a scalar field on spacetime. For later benefit, it is also worth noting that

this leads to

∆ψAa = 0 (4.63)

and after some algebra, one finds that

∆nabc = 0, (4.64)

which in turn implies

δna = nb∇bξa − ξb∇bna − na
(
∇bξb +

1

2
gbcδgbc

)
. (4.65)

This is the key result. By expressing the variations of the matter Lagrangian in terms

of the displacement ξa, we ensure that the flux conservation is accounted for in the

equations of motion. The variation of Λ now leads to

δ
(√
−gΛ

)
=
√
−g
{

1

2

[
(Λ− ncµc) gab + naµb

]
δgab + faξ

a

}
+ S.T. (4.66)

From the constrained variation it thus follows that the equations of motion are simply

given by

fb ≡ na (∇bµa −∇aµb) = 2na∇[bµa] = 0. (4.67)

Equation (4.67) above should look familiar as we derived it in the previous section in the

form (4.33). In the previous derivation we denoted the momentum πa (4.22) whereas
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here we denote it µa. We can read off the stress-energy tensor

T ab =
2√
−g

δ (
√
−gΛ)

δgab
= (Λ− ncµc) gab + naµb. (4.68)

Introducing the matter four-velocity such that na = nua and µa = µua, where µ is the

chemical potential, we see that the energy is given by

ε = uaubT
ab = −Λ. (4.69)

Moreover, from the first law of thermodynamics, we identify the pressure as

p = −ε+ nµ = Λ− ncµc. (4.70)

This means that the stress-energy tensor takes the form

T ab = pgab + naµb = εuaub + phab, (4.71)

where we have used the standard projection

hab = gab + uaub. (4.72)

Finally, we can determine from (4.68) that

∇aT ab = −f b +∇bΛ− µa∇bna = −f b = 0. (4.73)

The second equality follows from i) the fact that Λ is a function only of na and gab, and

ii) the definition of the momentum µa.

4.5 Introduction of the Kalb-Ramond gauge field

For a macroscopic model which will allow for an averaged effect of a number of vortices

in the fluid, we will investigate the Kalb-Ramond gauge field [95]. We wish to start by

writing the current in terms of an antisymmetric tensor field Bab = −Bba. We define
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the exterior derivative of this tensor to be

Nabc = 3∇[aBbc], (4.74)

and its dual is the number current, but written in the form

na =
1

3!
εabcdNbcd. (4.75)

This will be invariant under the gauge transformations given by Bab 7→ Bab + 2∇[aχb].

The closure condition

∇[aNbcd] = 0, (4.76)

is the equivalent condition to the conservation of the number current (4.14).

We will now perform a Legendre transformation L 7→ Λ, where we replace the inde-

pendent scalar field ϕ, seen in Section 5 of [95], with the antisymmetric gauge tensor

Bab. This will create a new yet similar model, in terms of a Lagrangian function Λ,

which takes the form

Λ = − c2

12Φ2
NabcNabc − V {Φ}, (4.77)

in which the potential energy density term V is some suitably chosen algebraic function of

the dilatonic amplitude Φ [95]. We can find the irrotationality condition ωab = 2∇[aπb] = 0

from the new Lagrangian (4.77) in the equivalent dual form

∇a
(

Φ−2Nabc
)

= 0, (4.78)

by requiring invariance with respect to the independent variations of the gauge 2-form

Bab.

We replace the scalar field ϕ by the tensor field Bab to take our model to the more

general perfect fluid case. We want to keep the particle conservation equation (4.76)

but get rid of the condition of irrotationality (4.78). The way to do this is to introduce
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a Lagrangian of the form

L = Λ− 1

4
εabcdBabωcd, (4.79)

where the vorticity 2-form is constructed from independent gauge fields in a similar way

to the current 3-form. The vorticity is constructed such that the property (4.42) remains

true. The independent gauge fields are taken to be two independent scalars χ± and the

vorticity ωab is then written in terms of these as

ωab = 2
(
∇[aχ

+
)
∇b]χ−. (4.80)

If we plug the Lagrangian (4.79) into the action integral (4.34), with the requirement of

invariance with respect to variations of Bab, χ
± and Φ, it returns our original momentum

equation (4.15). Hence, as we already have the particle conservation equation, we now

have a complete set of equations which govern the motion of a perfect fluid, which are

the same as those derived from the stress-energy tensor in (4.1).

4.6 Going forward

In this chapter we have summarised the standard approaches one would take in order to

model fluids in relativity. As we proceed into the development of our model, we will call

on and adapt these methods as we create our own multifluid system including quantised

vortices, mutual friction and elasticity in general relativity.





5

Quantised Vortices

and Mutual Friction

So far we have only seen how to model fluids in relativity. In order for our system to

model superfluids, we must input some information regarding superfluidity. Hence, as

in the Newtonian calculations, we will input the characteristic of quantised vortices into

our model to specify that it be superfluid.

5.1 Thin vortex string limit

Following on from Section 4.3, we will now consider that the vorticity of the system is

concentrated within the neighbourhood of some vorticity flux 2-surface S(2) [95]. This

could correspond to zero values of the scalar gauge fields χ± seen previously. We will

describe this vorticity 2-surface in terms of two coordinates σ0 and σ1.

The worldsheet embedding, {σ0, σ1} 7→ xa = xa{σ}, with induce a 2-surface metric

79
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γab on the worldsheet which is given by

γAB = gabx
a
,Ax

b
,B, (5.1)

where the comma denotes partial differentiation with respect to the 2-surface coordi-

nates. This will in turn specify a worldsheet measure

dS(2) =
||γ||1/2

c
dσ0dσ1, (5.2)

of the 2-surface element spanned by the coordinate variations dσ0 and dσ1.

We assume that the vorticity distribution is confined within a small region given by

the displacements δχ+ and δχ− of the scalar fields. Then we take the thin string limit

as the size of these displacements tend to zero. The dual vorticity (4.48) in this limit,

is given by an integral over the two dimensional worldsheet by

W ab =
c

||g||1/2

∫
W

ab
δ [xa − xa{σ}] dS(2), (5.3)

where the term W
ab

is the antisymmetric vorticity flux tensor on the two dimensional

worldsheet.

If we are considering a continuous vorticity distribution, the vorticity conservation

equation (4.42) can be expressed in this dual form as

∇aW ab = 0. (5.4)

But, if we are considering the thin string limit in which the vorticity dual is of the

form (5.3), the conservation equation above (5.4) will give us a similar condition for the

2-surface vorticity flux W
ab

[95]. We say that ηab is the first fundamental tensor of the

worldsheet, which projects a vector at a point on the worldsheet onto its tangential part

in the worldsheet. This is given by

ηab = c−2EacEcb. (5.5)
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Then we can say that the covariant derivative on the worldsheet is given by

∇a = ηba∇b. (5.6)

Given these, we can note that the conservation condition for the vorticity on the world-

sheet will be in the form

∇aW
ab

= 0. (5.7)

We can see that the worldsheet tangent bivector Eab will also satisfy an equation of the

same form

∇aEab = 0. (5.8)

Hence, (5.7) tells us that the worldsheet vorticity flux tensor W
ab

is of the form

W
ab

= κEab, (5.9)

where κ is constant on the worldsheet, ∇aκ = 0.

For the thin string limit, the constant κ defined by (5.9) is the 2-surface integral of

the vorticity across any spacelike section through the world tube. By Stokes’ theorem,

this is equal to the value of the Jacobi action around a closed curve surrounding the

vortex string. Hence we will have

κ =

∮
dS =

∮
πadx

a = 2π~n, (5.10)

where n is an integer representing the number of individual quantised vortices carrying

the flux. So, in the case in which we are considering a single quantised vortex, we will

have n = +1 and find that

κ = 2π~. (5.11)
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5.2 Quantised vortices

Now we will start our novel calculation in relativity, in which we will follow the Newto-

nian formulation of a superfluid system as in Chapter 3. In order to follow the Newtonian

formulation of the superfluid equations, we will need to use a quantised vorticity vector

instead of the relativistic vorticity tensor ωab. By adapting the kinematic rotation vector

in [88], we form the vorticity vector from the vorticity tensor by saying

Wa =
1

2
εabcdubωcd, (5.12)

which we can reverse to find the vorticity tensor in terms of the vector

ωab = −εabcducWd. (5.13)

We can see from (5.12) that the vorticity vector is orthogonal to the flow, uaWa = 0,

and also from (5.13) that the Euler equation (4.15) holds. Next, we use the conservation

of vorticity (4.17) to find an evolution equation for the vorticity

LuWa +Wa
(
∇bub

)
− ua

(
Wbu̇b

)
= 0, (5.14)

which can be written as

hab

[
LuWb +Wb (∇cuc)

]
= 0, (5.15)

where the projection is given by

hab = δab + uaub. (5.16)

In order to find (5.14) and hence (5.15), we have made use of

Luεabcd = −εabcd (∇eue) . (5.17)
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Next, we express the vorticity in terms of a collection of vortex lines, in the same way as

the Newtonian formulation. So we say that the quantised vorticity vector can be written

Wa = Nκa, (5.18)

where N is the number density of the vortices, κa = κκ̂a is the direction of the vortex

array and κ = h/2 is the quantum of circulation. The conservation of the vortex line

density is found to be

⊥ba∇b (Nua) = 0, (5.19)

where the projection is given by

⊥ba = δba − κ̂aκ̂b. (5.20)

We can then find that the equation of motion for a single vortex is

(δab + ubu
a − κ̂bκ̂a)Luκb = 0. (5.21)

To check that we are indeed reproducing the Newtonian formulation in general relativity,

we take the Newtonian limit of (5.15) and (5.21). We find that (5.15) equates to

∂tW i + εijk∇j(εklmW lumv ) = 0, (5.22)

which is the Newtonian evolution equation for the vorticity (3.50). Also, (5.21) produces

∂tκ
i +⊥ijLuvκj = 0, (5.23)

which is the Newtonian equation for the motion of a single vortex (3.60). As we use ua

to denote the fluid velocity in this chapter, we use uav to denote the collective vortex

velocity in the two equations above.
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5.2.1 Bivector and vector comparison

Although the two methods above are very different, the calculation presented in Section

5.2 for a single superfluid is consistent with that of Carter in [65] and Section 5.1. In

Chapter 4 we used the continuity equation of the stress-energy tensor ∇aTab = 0 to find

the system of equations for a relativistic perfect fluid. The equations for such a system

are the conservation of particle flux

∇ana = 0 (5.24)

and the relativistic Euler equation

naωab = 0. (5.25)

Both of these are shown in the same way in Carter’s calculations. However, from here,

Carter proceeds by using the dual vorticity tensor

Wab =
1

2
εabcdωcd (5.26)

and the unit worldsheet element tangent bivector

Eab =
1

ω
W ab, (5.27)

where ω = (12ωabω
ab)1/2 is the vorticity magnitude. The equation for the conservation

of vorticity is expressible in terms of the vorticity dual as

∇bW
ab

= 0. (5.28)

The bars in equation (5.28) denote the restriction of the dual vorticity tensor and the

covariant derivative to a two dimensional surface. The worldsheet tangent bivector

satisfies a conservation condition of the same form as equation (5.28)

∇bEab = 0. (5.29)
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We determine from these equations that the surface vorticity flux tensor W
ab

must have

the form

W
ab

= kEab, (5.30)

where k is a constant on the worldsheet, ∇ak = 0. The constant k defined by (5.30) is

interpretable as the value of the 2-surface integral of the vorticity.

Our system is related to the one summarised above through the final two equations

(5.29) and (5.30). The 2-surface integral of the vorticity k in Carter’s work relates to

our quantum of circulation κ. Also, it can be shown that the conservation condition for

the worldsheet tangent bivector, equation (5.29), is equivalent to our equation of motion

for a single vortex

(δab + ubu
a − κ̂bκ̂a)Luκb = 0. (5.31)

Hence, our relativistic single fluid system built using the quantised vorticity vector

matches the similar system built by Carter using the dual vorticity tensor.

5.3 The Magnus force and mutual friction

Up until now, the vortices and the superfluid are considered to be moving together.

In this section we will assume that the fluid and vortex velocities are no longer equal,

implying that there is a velocity difference between them. We will then introduce a

frictional force between the vortices and the normal fluid component, causing a second

velocity difference.

5.3.1 Two-fluid model with friction

We now consider a system comprised of two fluids. Let the first fluid component have

particle density n and the second component s. The corresponding fluxes are na = nua

and sa = suas . We say that the first fluid represents massive particles and is conserved

∇ana = 0. (5.32)
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The second fluid represents entropy, and is in general not conserved

∇asa = Γs. (5.33)

We assume that the two fluids are coupled by friction, which gives us the equations of

motion

naωab = Rn
b (5.34)

and

saωs
ab + µsbΓs = Rs

b, (5.35)

where

ωs
ab = 2∇[aµ

s
b] (5.36)

and µsa = µsusa. If we assume that there are no external forces acting on the system then

we can write down a force balance equation

Rn
a +Rs

a = 0. (5.37)

Due to ωab being antisymmetric, we can see from (5.34) that

naRn
a = 0. (5.38)

We also use (5.35) and (5.37) to see that

(saµsa) Γs = saRs
a = −saRn

a = −sanbωba. (5.39)

Next, we define the temperature to be T = µs = −uasµsa and as the two fluids do not

move together we can say that

uas = γ (ua + wa) , uawa = 0, γ =
(
1− w2

)−1/2
. (5.40)

Combining the above equations with (5.39), we find that

sTΓs = sγwanbωba ≥ 0, (5.41)
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in accordance with the second law of thermodynamics. We can also see from (5.39) that

we need

saRn
a = sγwaRn

a ≥ 0, (5.42)

which can be satisfied by assuming a friction force

Rn
a = αwa , where α > 0. (5.43)

5.3.2 The Magnus force

We will now impose that the vortices do not move with the flow. We say that there is

friction between the vortices and the second component in our two fluid model. This

means that we can write the vortex velocity as

uav = γ̃ (ua + va) . (5.44)

In Sections 4.1 and 5.2 the vortices moved with the flow, so we had uav = ua and wrote

the equations using the fluid velocity for simplicity. We will now use the Euler equation

(4.15) in the form

uavωab = 0 (5.45)

and introduce the velocity difference stated in equation (5.44). This enables us to rewrite

the Euler equation as

uaωab = −vaωab ≡ fMb , (5.46)

where the right hand side defines the relativistic analogue of the Magnus force. It is

clearer to see this once we plug in the definition for ωab, (5.13), to get

fMb = −vaωab = N εabcdvaucvκd = N εbadκavd, (5.47)

where we have defined

εabc = εdabcu
d
v. (5.48)
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Hence, from (5.46) and (5.47), we arrive at the final equation of motion

naωab = nN εbacκavc. (5.49)

Taking the Newtonian limit of this equation of motion gives us the correct Newtonian

superfluid equation (3.142),

(∂t + Lvn)vni +∇i
(
µ̃n + Φn −

1

2
vjnv

n
j

)
= Nvεijkκ

jwknv. (5.50)

We can see using (5.34) that the superfluid equation of motion (5.49) means we must

have

Rn
a = nN εabcκbvc. (5.51)

5.3.3 Mutual friction

Microphysically one would expect the mutual friction to arise from the scattering of the

second component off of the vortex core. We represent this by using the relative velocity

between the vortices and the normal fluid

uav = γ̂ (uas + qa) . (5.52)

Combining the relative velocities (5.40), (5.44) and (5.52) we find that

γ̃ = γ̂γ (5.53)

and

qa = γ (va − wa) . (5.54)

Mesoscopically, the vortices move under the influence of two forces. The Magnus force is

balanced by dissipative scattering of the normal component. This leads to an equation

of motion of the form

βqa = −Rn
a = −εdabcudvκbvc, (5.55)
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assuming that the vortices are taken to be massless. We can rewrite this as

wa = va +
1

η
εdabcu

dκbvc, (5.56)

where

η = βγ/γ̃ (5.57)

is the friction coefficient. In fact, is useful to decompose κa into its components parallel

and orthogonal to the flow ua,

κa = κ‖u
a + κa⊥, (5.58)

in which case we have

wa = va +
1

η
εdabcu

dκb⊥v
c. (5.59)

We have enough information to keep track of the vortices as the system evolves. However,

there is a more practical approach in which we do not need to keep track of the vortices.

To do this, we start by rearranging (5.59) to find an expression for va in terms of wa.

Then, we can plug it back into the expression for Rn
a. The method we use to rearrange

(5.59) is exactly the same as in the Newtonian problem [75]. In the first step, we find

that

εeafgueκ
⊥
f wa = η (vg − wg) +

1

η
κ2⊥⊥̃

g
cv
c, (5.60)

where

⊥̃gc = δgc − κ̂
g
⊥κ̂
⊥
c , (5.61)

with κa⊥ = κ⊥κ̂
a
⊥. The second step leads to

εbgcdε
eafgubκc⊥ueκ

⊥
f wa = −κ2⊥⊥̃

c
dwc = −ηεbgcdubκc⊥wg −

(
η2 + κ2⊥

)
(wd − vd) . (5.62)

Then we reach the final result, which is

vd = wd +

(
1

η2 + κ2⊥

)[
ηεbgcdu

bκc⊥w
g − κ2⊥⊥̃

c
dwc

]
. (5.63)
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As mentioned above, we use this in our Magnus force expression (5.51) to find that

fMa = N γ̃
[(

η2

η2 + κ2⊥

)
εdabcu

dκb⊥w
c +

(
η

η2 + κ2⊥

)
κ2⊥⊥̃

c
awc

]
, (5.64)

which gives us the equation of motion containing the Magnus force and mutual friction.

Note that we no longer have to worry about the vortices after rearranging in this way.

We can evaluate γ̃ by using (5.63) to show that

v2 =
η2w2 + (κa⊥wa)

2

η2 + κ2⊥
. (5.65)

Finally, from (5.42), we find that the second law requires us to have η ≥ 0.

We have now completed our relativistic formulation of a multifluid system including

mutual friction between the vortices and the second fluid component. This model

could now be used when considering various mechanisms relating to neutron stars in

which mutual friction could be a factor. Some features of neutron stars which mutual

friction could contribute towards are pulsar glitch relaxation and damping of neutron

star oscillations, as stated in the Newtonian mutual friction calculations [74].



6

Relativistic Elasticity

We have created a two fluid system including quantised vortices and mutual friction in

relativity. This system almost matches the multifluid system we detailed in Chapter

3. However, we are missing one component which is the vortex elasticity. Relativistic

elasticity, or relasticity, is used to model neutron stars in work such as [96]. In this work,

the neutron star is modelled as an elastic ball. We will firstly consider how to work with

elasticity in relativity, before proceeding to look at elasticity specifically related to the

vortices in our model.

6.1 Matter space

6.1.1 The configuration gradient

We have already brushed upon the concept of matter space previously and here we will

go into a little more detail. Following the relativistic framework of [96], [97] and [98,

99, 100, 101] we create a map from the four dimensional spacetime to three dimensional

91
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matter space

χ : M4 → X3. (6.1)

In the local coordinates xa on spacetime and X̃A on matter space, this is written as

xa 7→ X̃A = χA(xa). (6.2)

We will be dealing with derivatives of this map χ, hence we will simplify things by

denoting its derivative dχ by ψ. Hence, ψ has the properties

ψ : M4 → TX3 ⊗ T ∗M4, (6.3)

and in coordinates

xa 7→ ψAa :=
∂X̃A

∂xa
. (6.4)

We now introduce a time foliation of spacetime, such that

χ : R×M3 → X3, (6.5)

with

(t, xi) 7→ X̃A. (6.6)

This has spatial and time derivatives given by

ψAi :=
∂X̃A

∂xi
and ψAt :=

∂X̃A

∂t
. (6.7)

We call χ the configuration and both ψAa and ψAi the configuration gradient.

The matter space coordinates X̃A label particles and are constant along particle world

lines. This means that

uaψAa = 0, (6.8)
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where the four-velocity ua is tangential to the matter world lines. The four-velocity can

be parametrised as

ua = (ut, ui) = α−1W
(
1, v̂i

)
, W =

(
1− vjvj

)−1/2
, (6.9)

which then tells us that

ψAt = −v̂iψAi. (6.10)

6.1.2 Matter space metric and particle number current

The volume form nABC on matter space gives us the number of particles in a given

volume, when integrated over the volume. A conformal metric is required, in order to

define angles on matter space, and hence compare them to spacetime in order to see

deformations. These two properties define a Riemannian metric which we call kAB.

Assuming nABC is compatible with our metric kAB, we know that in matter space

coordinates X̃a, we have

nABC =
√
kX̃δABC , (6.11)

where the determinant is given by

kX̃ :=
1

3!
δABCδDEFkADkBEkCF . (6.12)

The X̃ notation reminds us that this quantity depends upon the matter space X̃A

coordinates.

Matter space has no time by construction, but one can use kAB as a function on spacetime

by considering kab
(
χC
(
xd
))

. The pushforward of kAB to spacetime is denoted kab and

it satisfies the conditions

Lukab = 0, and uakab = ubkab = 0. (6.13)

Any tensor field on matter space could be pushed forward to spacetime and defined

by its contractions with ua and its Lie derivative along ua vanishing. We could also
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consider the components of kab
(
χC
(
xd
))

as scalars on spacetime, which are constant

along particle world lines. This tell us that

uakAB,a = 0, (6.14)

which is given in coordinate form by

kAB,t + v̂ikAB,i = 0. (6.15)

The authors of [96] note that they prefer to work with kAB over kab, due to it having

fewer components and a simpler evolution equation, whereas [98] continues with kab in

spacetime.

Next we consider the pushforward of our volume form nABC to a three dimensional

nabc on spacetime. Applying the map to nABC , we see that

nabc := ψAaψ
B
bψ

C
cnABC . (6.16)

Spacetime already has its own volume form, denoted εabcd which is compatible with the

metric gab. This is defined by

εabcd =
√
gxδabcd, (6.17)

where the determinant is given in the same way as before, by

gx :=
1

4!
δabcdδefghgaegbfgcggdh. (6.18)

We can then define the particle number current in spacetime

na =
1

3!
εabcdnbcd, (6.19)

which is timelike and conserved

∇ana = εabcd∇anbcd = 0, (6.20)
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where ∇a is the covariant derivative. The right hand side vanishes because it is the

pushforward of n[BCD,A]. We split the number current na into a matter four-velocity

and a particle density by saying

na = nua, (6.21)

where the velocity ua is normalised as

uaua = −1. (6.22)

This tells us that n2 = −nana and n = −uana.

6.2 Relativistic dynamics

6.2.1 Action and stress energy tensor

We now consider how elasticity is modelled in a three dimensional fluid system [96]. We

start with the matter action

S =

∫
e(gab, ψAa, kAB, ...)g

1/2
x d4x, (6.23)

where the dots represent any other tensors on matter space. We can vary this with

respect to the metric

δS =
1

2

∫
Tabδg

abg1/2x d4x, (6.24)

to find that the stress-energy tensor Tab is given by

Tab = 2
∂e

∂gab
− egab. (6.25)

We then define hab, which is the projection tensor that projects orthogonally to the

four-velocity

hab = uaub + gab. (6.26)



96 Chapter 6 - Relativistic Elasticity

This allows us to rewrite the stress-energy tensor as

Tab = 2
∂e

∂gab
− ehab + euaub, (6.27)

or, if we define the pressure term

pab = 2
∂e

∂gab
− ehab, (6.28)

we get

Tab = euaub + pab. (6.29)

We wish to take some of the spacetime terms with us to matter space. Hence, we define

the pullback of the spacetime metric to the three dimensional matter space as

gAB = ψAaψ
B
bg
ab, (6.30)

which has a matrix inverse gAB. This means that we now have two Riemannian metrics

on matter space, kAB and gAB. We will say that kAB is the matter space metric, but

raise and lower indices with the gAB and gAB. This tells us that kAB = gACgBDkCD,

but, this is not the matrix inverse of kAB.

We will say that the quantity

ψA
a = ψBbg

abgAB, (6.31)

is the inverse of ψAa in the sense that

ψAaψB
a = δAB, (6.32)

and

ψAaψA
b = ha

b. (6.33)

These can be shown by making use of the properties mentioned above and remembering

that ha
chc

b = ha
b.
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We can now consider the energy as function of gAB, as we have

e(ψAa, g
ab) = e(gAB). (6.34)

Hence, we see that the derivative required for the pressure term in (6.28) now takes the

form

∂e

∂gab
=

∂e

∂gAB
∂gAB

∂gab
=

∂e

∂gAB
ψAaψ

B
b. (6.35)

So, we can see from the property of the map (6.8) that pabu
a = 0 = uahbcT

ab. This tells

us that there is no energy flux relative to the matter and that we are considering ideal, or

non dissipative, elastic matter. As we have mentioned, pab is the pressure tensor, which

for a perfect fluid takes the form pab = phab, where p is the pressure. The Lagrangian e

in the matter action (6.23) is the total energy density in the rest frame of the matter.

Next, we can find that the number density can be written

n2 =
1

3!
nabcnabc =

1

3!
gadgbegcfnabcndef . (6.36)

Since nabc is only comprised of ψAa and nABC (6.16), it is independent of gab. Hence

the derivative of (6.36) gives

∂n

∂gab
=

1

2
nhab, (6.37)

which is considered a function of gab, ψAa and the matter tensors. If we then define the

internal energy per rest mass ε such that

e = n(1 + ε), (6.38)

we see

pab = 2n
∂ε

∂gab
. (6.39)

In a similar way to that of (6.35), we write the pressure as

pab = nτABψ
A
aψ

B
b, (6.40)
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where τAB is defined to be

τAB = 2
∂ε

∂gAB
. (6.41)

6.2.2 Isotropic matter

We will consider the case in which the internal energy ε depends upon gab, ψAa and the

matter space metric kAB. The energies e and ε should transform as scalars on spacetime

and on matter space. Hence we need to find all double scalars that can be made from

gAB and kAB.

We see from (6.30) that gAB transforms as a (2,0)-tensor on matter space and as a

scalar on spacetime. We define the mixed index metric

kAB = gACkBC = gacψAaψ
C
ckBC , (6.42)

which transforms as a (1,1)-tensor on matter space and as a scalar on spacetime. The

eigenvalues of kAB transform as scalars on matter space and are the required double

scalars we are looking for.

We can split our kAB matrix into its determinant k and a unit determinant matrix

ηAB = k−1/3kAB, (6.43)

where the determinant k = n2 is found from the definition of the determinant and the

fact that nABC is the volume form of kAB.

We can now consider the internal energy ε as a function of n and ηAB. It must depend

on the unit matrix ηAB via the two scalar invariants associated to it. Hence we can say

that

ε(kAB) = ε(k, ηAB) = ε(n, I1, I2), (6.44)
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where we have defined the scalar invariants of ηAB to be

I1 = ηAA = k−1/3gABkAB (6.45)

and

I2 = ηABη
B
A = k−2/3gABgCDkACkBD. (6.46)

We note that

∂k

∂gAB
= kgAB, (6.47)

which tells us

∂n

∂gAB
=

1

2
ngAB. (6.48)

With these we can find the form of τAB from the pressure term (6.40), which is

τAB = ngAB
∂ε

∂n
+ 2

[(
ηAB −

1

3
gABI1

)
∂ε

∂I1
+ 2

(
ηACη

C
B −

1

3
gABI2

)
∂ε

∂I2

]
, (6.49)

or

τAB =
p

n
gAB + 2

(
f1π

1
AB + f2π

2
AB

)
, (6.50)

where we have said that

p = n2
∂ε

∂n
, (6.51)

fY =
∂ε

∂IY
, (for Y = 1, 2) (6.52)

π1AB = ηAB −
1

3
gABI1 (6.53)

and

π2AB = 2

(
ηACη

C
B −

1

3
gABI2

)
. (6.54)

Hence, plugging this version of τAB (6.50) into (6.40), can write the pressure tensor in

the form

pab = phab + πab, (6.55)
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where the first term is the same as that for a perfect fluid and the second represents the

anisotropic stress. This stress is given by

πab = ψAaψ
B
bπAB, (6.56)

where

πAB = 2n
(
f1π

1
AB + f2π

2
AB

)
, (6.57)

with f1, f2, π
1
AB and π2AB given by (6.52)-(6.54). We can see that πab is a trace free

spatial tensor, ie.

πabu
a = 0 and πabh

ab = 0, (6.58)

as ψAau
a = 0. The full anisotropic term, written in terms of the unit determinant

matrix ηAB, is

πab = 2nψAaψ
B
b

[
f1

(
ηAB −

1

3
gABη

C
C

)
+ 2f2

(
ηACη

C
B −

1

3
gABη

C
Dη

D
C

)]
(6.59)

6.2.3 Hookean model

Instead of treating the energy as a function of n and the individual invariants, we can

instead use a strain scalar comprised of a combination of the invariants. This scalar

must vanish in the relaxed state, when ηAB = gAB. An example of such a strain scalar

can be found in [98] in the form

s2 =
1

36

(
I31 − I3 − 24

)
, (6.60)

where the invariants are given by

I1 = ηAA , I2 = ηABη
B
A , I3 = ηABη

B
Cη

C
A. (6.61)

It is worth noting that s2 is a function of n as well as gAB and kAB. We need to keep

this in mind when we work out various partial derivatives in the following.
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In general, the energy is ε = ε(n, s2), but as we tend to be mostly interested in slight

deformations, it is natural to consider a Hookean model. Thus we consider the energy

ε = ε̌(n) + µ̌(n)s2, (6.62)

where the checks indicate that the quantity is determined in the relaxed state, and µ̌ is

the shear modulus. Using this, we find that the derivative of the energy with respect to

the matter space metric is given by

∂ε

∂gAB
=
∂ε

∂n

∂n

∂gAB
+

∂ε

∂s2
∂s2

∂gAB
=

1

2
ngAB

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
+ µ̌

∂s2

∂gAB
. (6.63)

Hence, we find the stress-energy tensor

Tab = nhab

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
− εgab + 2µ̌ψAaψ

B
b
∂s2

∂gAB
. (6.64)

Next, let us assume that s2 depends on the simplest invariant I1. Then we need

I1 = ηAA = n−2/3gABkAB, (6.65)

where we recall that kAB is fixed and does not depend on n. This allows us to work out

the partial derivatives required

∂s2

∂gAB
=
∂s2

∂I1

∂I1
∂gAB

=
∂s2

∂I1
ηAB (6.66)

and

∂s2

∂n
=
∂s2

∂I1

∂I1
∂n

= − 2

3n

∂s2

∂I1
I1. (6.67)

This means that we get a contribution to the stress-energy tensor

π1ab = 2µ̌
∂s2

∂I1
ψAaψ

B
b

(
ηAB −

1

3
gABI1

)
= 2µ̌

∂s2

∂I1
ψAaψ

B
bη〈AB〉 = 2µ̌

∂s2

∂I1
η〈ab〉, (6.68)
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where the 〈. . .〉 brackets indicate the removal of the trace. A similar analysis for the

other two invariants I2 and I3 leads to

π2ab = 4µ̌
∂s2

∂I2
ψAaψ

B
bηC〈Aη

C
B〉 = 4µ̌

∂s2

∂I2
ηc〈aη

c
b〉 (6.69)

and

π3ab = 6µ̌
∂s2

∂I3
ψAaψ

B
bη
CDηC〈AηB〉D = 6µ̌

∂s2

∂I3
ηcdηc〈aηb〉d. (6.70)

The general expression would be, depending on the choice of strain scalar s2, some linear

combination of these quantities. We note that each πNab, where (N = 1− 3), is trace-free

and orthogonal to ua.

As a check of these results, note that when using the strain scalar mentioned above

(6.60), we find that

πab =
∑
N

πNab =
µ̌

6

[
(ηcc)

2 η〈ab〉 − ηcdηc〈aηb〉d
]
, (6.71)

which agrees with the result from [98]. The final stress-energy tensor is

Tab = nhab

(
dε̌

dn
+
dµ̌

dn
s2
)
− εgab + πab. (6.72)

6.2.4 The unsheared state

Elastic matter has an unsheared state, when nothing has disturbed it from its preferred

or equilibrium position. Hence, for some number density n, there is a minimum value

for the energy ε which corresponds to this unsheared state.

The unsheared state corresponds to ηAB = δAB. It is seen from (6.59) that the

anisotropic term πab will vanish when it is the case that ηAB = δAB. This tells us

that ηAB is the matrix inverse of gAB

ηAB = gAB. (6.73)
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Hence, in the unsheared state we have that

kAB = n2/3gAB. (6.74)

We will be taking into consideration the unsheared state when looking at perturbations

of the system.

6.2.5 Perturbations

Now that we have an understanding of relasticity, we will extend our relativistic model

which we built in Chapter 5 to include vortex elasticity. In Section 6.2.2 we formulated

the anisotropic pressure term πab. In the unsheared or relaxed state this term will vanish,

leaving us with the perfect fluid equations. Hence, we would like to have a closer look at

this term when the system is perturbed and therefore when the anisotropic term is non

zero. We could try to think of this anisotropic term as the elasticity in the superfluid

vortices. This three dimensional elasticity would have to be split into a two dimensional

piece in the plane of the vortex array and a tension term along the direction of the

vortices. Our starting point will be our pressure term (6.59), which we recall is of the

form

πab = ψAaψ
B
bπAB =2n

[
f1

(
ψAaψ

B
bηAB −

1

3
ψAaψ

B
bgABη

C
C

)

+ 2f2

(
ψAaψ

B
bηACη

C
B −

1

3
ψAaψ

B
bgABη

C
Dη

D
C

)]
.

(6.75)

So far, we have been considering this nonlinear elastic term. We will look at linear

perturbations of the anisotropic term using the Lagrangian perturbation ∆, as seen in

previous chapters.

If we call the pushforward of ηAB to spacetime ηab = ψAaψ
B
bηAB, then equation (6.75)
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can be written in terms of spacetime tensors as

∆πab =∆

{
2n

[
f1

(
ηab −

1

3
habηcdh

cd

)

+ 2f2

(
ha

chb
dhefηdfηce −

1

3
habh

cdhefηdeηcf

)]}
,

(6.76)

where we have applied the Lagrangian perturbation ∆ to the elastic term. Expanding

this to see all of the perturbed quantities we get

∆πab =∆(2n)

[
f1

(
ηab −

1

3
habηcdh

cd

)

+ 2f2

(
ha

chb
dhefηdfηce −

1

3
habh

cdhefηdeηcf

)]

+ 2n

[
∆(f1)

(
ηab −

1

3
habηcdh

cd

)

+ f1

(
∆ηab −

1

3
∆(habηcdh

cd)

)

+ 2∆(f2)

(
ha

chb
dhefηdfηce −

1

3
habh

cdhefηdeηcf

)

+ 2f2

(
∆(ha

chb
dhefηdfηce)−

1

3
∆(habh

cdhefηdeηcf )

)]
.

(6.77)

Any terms outside of the perturbation are in the relaxed state. In the relaxed state, we

know that ηAB = gAB from (6.73). Hence, when we apply the map ψAa to this, we see

that ηab = hab. Using this on the unperturbed terms simplifies the equation to

∆πab =2n

[
f1

(
∆ηab −

1

3
∆(habηcdh

cd)

)

+ 2f2

(
∆(ha

chb
dhefηdfηce)−

1

3
∆(habh

cdhefηdeηcf )

)]
.

(6.78)

Next we expand the equation using the product rule on the perturbations. Simulta-

neously, we will be able to rewrite the relaxed ηab as hab as before. This gives us an
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equation of the form

∆πab =2n

[
f1

(
∆ηab −

1

3
habhcd∆h

cd − 1

3
habh

cd∆ηcd −∆hab

)

+ 2f2

(
2ha

chb
d∆ηcd + hachbd∆h

cd + hac∆hb
c

+ hbc∆ha
c − 2

3
habh

cd∆ηcd −
2

3
habhcd∆h

cd −∆hab

)]
.

(6.79)

We will make use of several identities, which we show in Appendix A, namely

hab∆g
ab = −hab∆gab, (6.80)

hachbd∆g
cd = −hachbd∆gcd, (6.81)

∆ua = ub∆gab +
1

2
uau

cud∆gcd, (6.82)

∆ηab = ha
chb

d∆ηcd, (6.83)

as well as the definition of the projection hab = gab + uaub such that uahab = 0 and

finally that ∆δa
b = 0. These enable us, after some algebra, to write our elastic term πab

in the convenient form

∆πab =2n

[
f1

(
ha

chb
d(∆ηcd −∆gcd)−

1

3
habh

cd(∆ηcd −∆gcd)

)

+ 4f2

(
ha

chb
d(∆ηcd −∆gcd)−

1

3
habh

cd(∆ηcd −∆gcd)

)]
,

(6.84)

which clearly simplifies a step further to

∆πab =2n (f1 + 4f2)

(
ha

chb
d(∆ηcd −∆gcd)−

1

3
habh

cd(∆ηcd −∆gcd)

)
. (6.85)

We have been using the pushforward of the unit determinant matrix ηab in our equations

so far, but we need to consider this term in a little more detail. This originally came
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from the matter space metric kAB in that

ηab = ψAaψ
B
bηAB = n−2/3ψAaψ

B
bkAB. (6.86)

But, the matter space metric kab = ψAaψ
B
bkAB corresponds to the three dimensional

elastic matter in an unstrained state. So in our equation (6.85), we see that we have

the difference between the current state of matter in the gab term and the unstrained

state ηab ∼ kab. Hence, since the matter space metric kab is fixed in matter space and

also flow line orthogonal, since it came from matter space, the Lagrangian perturbation

∆kab will vanish.

Since ∆kab = 0, we can find out what will happen to our ∆ηab term in the elasticity

(6.85). We know from (6.86) that

∆ηab = kab∆n
−2/3, (6.87)

by using ∆kab = 0. Next we use the perturbation of n from [61], given by

∆n = −n
2
hab∆gab, (6.88)

to rewrite (6.87) in the form

∆ηab =
1

3
habh

cd∆gcd. (6.89)

We can then use this to simplify (6.85) a little to

∆πab = −2n (f1 + 4f2)

(
ha

chb
d∆gcd −

1

3
habh

cd∆gcd

)
. (6.90)

6.2.6 Hookean model perturbation

If we use the same method of perturbation on our Hookean model, we arrive at a similar

equation to that above. The perturbation is given by

∆πab = −µ̌
(
ha

chb
d∆gde −

1

3
habh

cd∆gcd

)
, (6.91)
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which means that for the models to be equivalent, the shear modulus must be

µ̌ = 2n(f1 + 4f2). (6.92)

6.2.7 Newtonian limit

If we consider the Newtonian limit of the divergence of our elastic term above, we find

that it matches the expected linear elasticity term, which we saw earlier in Chapter 3.

From Appendix A we see the limit is given by

∇j∆πij = −2n (f1 + 4f2)

(
1

3
∇i∇jξj +∇2ξi

)
. (6.93)

So this relativistic elasticity term does correspond to Newtonian elasticity.

6.3 Vortex tension and elasticity

In the previous section, we created a three dimensional elasticity term ∆πab. However,

in the case of superfluid vortices, we know from experiments discussed previously that

they exhibit elasticity within their array and also tension along the vortices. So in order

to model these behaviours, we would like to have both a tension piece along the vortex

direction κ̂a and also a two dimensional vortex array elasticity orthogonal to κ̂a.

In order to find these two components of the three dimensional elasticity ∆πab, we

project away the κ̂a direction from both indices to get the vortex array elasticity Ev
ab

and then project along the κ̂a direction to find the tension T v
ab. However, there are

still some remaining terms which are not part of the tension or elasticity which we will

denote Sab = ∆πab − Ev
ab − T v

ab. So, after applying the projection δa
b − κ̂aκ̂b to (6.90),

we find a vortex elasticity term in the plane orthogonal to κ̂a

Ev
ab = −2n (f1 + 4f2)

[
(ha

c − κ̂aκ̂c)
(
hb
d − κ̂bκ̂d

)
∆gcd −

1

3
(hab − κ̂aκ̂b)hcd∆gcd

]
.

(6.94)
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Then, by projecting into the direction of the vortices using κ̂aκ̂bκ̂
cκ̂d, we can also find

the vortex tension

T v
ab = 2n (f1 + 4f2) κ̂aκ̂b

[
1

3
hcd − κ̂cκ̂d

]
∆gcd. (6.95)

As we mentioned above, these are not all of the terms that comprise ∆πab. The ‘leftover’

terms are

Sab = 2 (f1 + 4f2)
[
2κ̂aκ̂bκ̂

cκ̂d − hacκ̂bκ̂d − κ̂aκ̂chbd
]

∆gcd. (6.96)

6.3.1 Newtonian limit

Taking the Newtonian limit of the elasticity tensor (6.94) doesn’t quite give the two

dimensional Newtonian elasticity in common usage, such as (3.96). As we discussed

before, it is usually the case that the vortex direction is taken to be along one of the

coordinate axes in Newtonian calculations. Hence, it makes more sense to compare our

limit to (3.88). If we assume again that κ̂a satisfies the Killing equation, we arrive at

the Newtonian limit

∇jEv
ij =2n (f1 + 4f2)

[
2

3
∇⊥i ∇kξk −∇⊥k∇⊥i ξk −∇

j
⊥(⊥ik∇⊥j ξk)

]
. (6.97)

The limit of the tension term is found to be

∇jT v
ij = 2n (f1 + 4f2)

[
2

3
∇‖i∇

kξk − 2∇‖i∇
k
‖ξk

]
. (6.98)

If we were to use a tension term in our Newtonian calculation produced by projecting

the Newtonian elastic stress tensor (3.77), then this limit matches. However, it does not

match what would commonly be used as vortex tension in the Newtonian case, (3.98).

This is due to the assumptions made in Newtonian calculations mentioned previously.

Due to our formulation in general relativity, it is difficult to expand our three dimensional

elastic term ∆πab into a planar elasticity and vortex tension. In Newtonian calculations
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it is easy to pick and choose which terms you would like to keep and also to set unwanted

terms to zero. We will now focus on building the vortex elasticity without including the

vortex tension. This approach should eliminate any need for using projections to obtain

an elastic term and should also mean that there will no longer be unwanted terms such

as those in Sab above.

6.4 Two dimensional formulation

The three dimensional formulation in the previous section gave us a two dimensional

elasticity. However, it also produced unwanted terms which we are not interested in.

Hence we will now try a new approach and create only a vortex elasticity term, using a

similar method and tools to those of the previous sections. Instead of a three dimensional

matter space, we will use a two dimensional version in order to create the vortex elasticity

and we shall exclude the tension. We consider single component isotropic matter, which

represents the ‘vortex fluid’. The stress energy tensor obtained from the energy ε is of

the familiar form

Tab = 2
∂ε

∂gab
− εgab = εuaub + pab, (6.99)

where the pab contribution, which encodes the stresses, is given by

pab = 2
∂ε

∂gab
− εhab (6.100)

and the projection is the usual

hab = gab + uaub. (6.101)

We will soon be concerned with ‘two dimensional’ versions of three dimensional terms.

These two dimensional terms will be denoted with a bar. Our first encounter of a term

of this form is the projection

h̄ab = hab − κ̂aκ̂b. (6.102)
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We would like to work with matter space variables X̃A which, as we know, are scalar

fields in spacetime. We also want to use the matter space map

ψAa =
∂X̃A

∂xa
. (6.103)

As before, the map is such that

ψAaψ
b
A = ha

b (6.104)

and

ψAaψ
a
B = δB

A. (6.105)

It is also the case that

uaψAa = 0. (6.106)

The vortex number flux follows from the usual variation argument, and is given by

Na = Nua =
1

3!
εabcdNbcd. (6.107)

It is easy to see that this flux is conserved, as in the previous discussions,

∇a(Nua) = 0. (6.108)

Next we will consider one of the matter space directions to be related to our vortex

direction, by specifying that

κ̂a =
∂X̃A

∂xa
δA

3 = ψ3
a, (6.109)

which tells us that

ψaBκ̂a = ψaBψ
A
aδA

3 = δB
3 = κ̂B. (6.110)

This leaves us with two other dimensions in the matter space map. We denote the

remaining dimensions of the map with a bar such that

ψ̄Aaκ̂
a = 0 = ψ̄Aaκ̂A (6.111)
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and A ∈ {1, 2} when using ψ̄Aa. Considering this new information, we can rewrite the

number density (6.107) in the form

Na =
1

2
εabcdκ̂dNbceκ̂

e =
1

2
εabcdκ̂bN̄cd, (6.112)

see Appendix A for this manipulation. With this new form of Na, the conservation

equation (6.108) can be written in the form, see Appendix A,

∇⊥aNa = 0, (6.113)

where the derivative is orthogonal to κ̂a. This form of the number density conservation

equation matches that in Chapter 5 and is also familiar from our discussion in the

Newtonian formulation. We also make use of a two dimensional version of the pullback

of the spacetime metric which we saw in (6.30)

ḡAB = gAB − κ̂Aκ̂B, (6.114)

which implies that

ψAaψ
B
bḡAB = h̄ab = ψ̄Aaψ̄

B
bḡAB. (6.115)

For isotropic matter, we have the energy as a function of the matter space map and

spacetime metric

ε(ψ̄Aa, g
ab) = ε(ḡAB), (6.116)

where

ḡAB = ψ̄Aaψ̄
B
bg
ab. (6.117)

Equation (6.116) has to hold since this is the only way to contract the spacetime indices

if the building blocks are the map and the spacetime metric. In the following, we will

raise and lower matter space indices with ḡAB and its inverse ḡAB.
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To build the stress-energy tensor, we need

∂ε

∂gab
=

∂ε

∂ḡAB
∂ḡAB

∂gab
= ψ̄Aaψ̄

B
b
∂ε

∂ḡAB
. (6.118)

This shows that uapab = 0 which means that ε is indeed the energy. For isotropic matter,

we have

∂N

∂ḡAB
=

1

2
NḡAB, (6.119)

which is shown in Appendix A. Equation (6.119) tells us that the stress-energy tensor

can now be written

Tab =
[
ψ̄Aaψ̄

B
bḡAB

]
N
∂ε

∂N
− εgab. (6.120)

Let us now consider elastic matter. To do this we will need to compare the current

shape of the matter to a relaxed reference shape. A key component to this construction

is the matter space metric

k̄ab = ψ̄Aaψ̄
B
bk̄AB, (6.121)

which is a fixed matter space tensor. As long as the deformation is conformal, which we

will assume, k̄ab does not depend on the number density N . The strain associated with

the deformation is quantified by the difference

sab =
1

2
(h̄ab − η̄ab) (6.122)

where

η̄ab = k̄−1/2k̄ab, (6.123)

see Appendix A for details.

Equivalently, we can compare the matter space quantities η̄AB and ḡAB. We know

that in the relaxed state they are equal and this will come into play later on. As we are

dealing with isotropic matter, it is natural to work with invariants. From η̄AB we can
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construct the invariants

I1 = η̄AA and I2 = η̄AB η̄
B
A. (6.124)

However, the number density N2 is also invariant. This follows from the fact that the

determinant of k̄AB is given by

k̄ = N2 =
1

2!

(
N2I21 −N2I2

)
. (6.125)

It is natural to work with N as one of the variables, as this retains the connection

with the standard fluid problem. In addition, we will need another invariant, or some

combination of them. The invariants available to us so far are

k̄ = N2, I1 = η̄AA and I2 = η̄AB η̄
B
A. (6.126)

In general, we have the energy ε = ε(N, s2) where the strain scalar s is some combination

of the remaining invariants, such that it vanishes when the matter is in the relaxed state.

As we tend to be mostly interested in slight deformations, it is natural to consider a

Hookean model, such that

ε = ε̌(N) + µ̌s2, (6.127)

where µ̌ is the shear modulus and the checks indicate that the quantity is determined

in the relaxed state. Let us now return to the stress-energy tensor (6.120). Considering

our energy of the form (6.127), we now have

∂ε

∂ḡAB
=

∂ε

∂N

∂N

∂ḡAB
+

∂ε

∂s2
∂s2

∂ḡAB
=

1

2
NḡAB

(
∂ε̌

∂N
+
∂µ̌

∂N
s2 + µ̌

∂s2

∂N

)
+ µ̌

∂s2

∂ḡAB
. (6.128)

Thus we find that the stress-energy tensor is now given by

Tab = Nψ̄Aaψ̄
B
bḡAB

(
∂ε̌

∂N
+
∂µ̌

∂N
s2 + µ̌

∂s2

∂N

)
− εgab + 2µ̌ψ̄Aaψ̄

B
b
∂s2

∂ḡAB
, (6.129)
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or

Tab = Nψ̄Aaψ̄
B
bḡAB

(
∂ε̌

∂N
+
∂µ̌

∂N
s2
)
− εgab + 2µ̌ψ̄Aaψ̄

B
b
∂s2

∂ḡAB

+Nµ̌ψ̄Aaψ̄
B
bḡAB

∂s2

∂N
,

(6.130)

where the final two terms give us the two dimensional anisotropic stress π̄ab. We will

now assume that the strain scalar s2 depends on the simplest invariant I1. Then we

need

I1 = η̄AA = N−1ḡAB k̄AB, (6.131)

where we recall that k̄AB is fixed and does not depend on N . This allows us to work

out the partial derivatives we need

∂s2

∂ḡAB
=
∂s2

∂I1

∂I1
∂ḡAB

=
∂s2

∂I1
η̄AB (6.132)

and

∂s2

∂N
=
∂s2

∂I1

∂I1
∂N

= − 1

N

∂s2

∂I1
I1. (6.133)

This means that the anisotropic contribution to the stress-energy tensor is

π̄1ab = 2µ̌
∂s2

∂I1
ψ̄Aaψ̄

B
b

(
η̄AB −

1

2
ḡABI1

)
= 2µ̌

∂s2

∂I1
ψ̄Aaψ̄

B
bη̄〈AB〉 = 2µ̌

∂s2

∂I1
η̄〈ab〉, (6.134)

where the 〈. . .〉 brackets indicate the removal of the trace. A similar analysis for the

other invariant I2 tells us that the corresponding partial derivatives are

∂s2

∂ḡAB
=
∂s2

∂I2

∂I2
∂ḡAB

=
∂s2

∂I2
2η̄A

C η̄CB (6.135)

and

∂s2

∂N
=
∂s2

∂I2

∂I2
∂N

= − 2

N

∂s2

∂I2
I2. (6.136)

These give another contribution to the stress-energy tensor

π̄2ab = 4µ̌ψ̄Aaψ̄
B
b
∂s2

∂I2

(
η̄A

C η̄CB −
1

2
ḡABI2

)
= 4µ̌

∂s2

∂I2
ψ̄Aaψ̄

B
bη̄C〈Aη̄B〉

C = 4µ̌
∂s2

∂I2
η̄c〈aη̄b〉

c.

(6.137)
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The general expression would be, depending on the chosen scalar s2, some linear com-

bination of these quantities. We note that each π̄Yab, where Y ∈ {1, 2}, is trace-free and

orthogonal to both ua and κ̂a. The full anisotropic term is given by

π̄ab =
∑
Y

π̄Yab = 2µ̌
∂s2

∂I1
η̄〈ab〉 + 4µ̌

∂s2

∂I2
η̄c〈aη̄b〉

c. (6.138)

6.4.1 The unsheared state

As in the previous three dimensional formulation, the matter has a relaxed state in

which the anisotropic term will vanish. The unsheared state corresponds to η̄AB = δ̄AB,

in which case the anisotropic term π̄ab will vanish. This tells us that η̄AB is the matrix

inverse of ḡAB

η̄AB = ḡAB. (6.139)

Hence it will be the case that

k̄AB = NḡAB. (6.140)

We also know that in the unstrained state, the strain scalar s2 must also vanish. This is

an important feature to consider when constructing a strain scalar. We will see in the

following section that we must choose a scalar such that it vanishes when the system is

unperturbed.

6.4.2 Perturbations

As the anisotropic term derived above vanishes in the relaxed state, we need to consider

what happens when the system is not relaxed. We do this, once again, by considering

perturbations of π̄ab. This anisotropic stress will give us the two dimensional vortex

elasticity. Firstly, we need to use a strain scalar which vanishes when the system is

relaxed. We will use the scalar

s2 =

(
I2 −

I21
2

)
, (6.141)
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which implies that the relevant derivatives are

∂s2

∂I1
= −I1 and

∂s2

∂I2
= 1. (6.142)

Putting these into (6.138) tells us that the anisotropic stress is

π̄ab =
∑
N

π̄Nab = 4µ̌

(
η̄c〈aη̄b〉

c − 1

2
η̄ccη̄〈ab〉

)
. (6.143)

Applying the perturbation ∆ to this equation gives us

∆πab = 4µ̌∆

(
ηc〈aηb〉

c − 1

2
ηccη〈ab〉

)
. (6.144)

We now expand all of the perturbations using the product rule and remember that in

the relaxed or unperturbed state η̄ab = h̄ab = gab+uaub− κ̂aκ̂b. This implies, after some

simplification, that

∆π̄ab = 4µ̌

(
h̄ac∆η̄b

c + h̄b
c∆η̄ca − h̄abh̄cd∆η̄dc −∆η̄ab +

1

2
h̄ab∆η̄

c
c

)
. (6.145)

We will now rewrite this expression using identities similar to those in the previous three

dimensional calculation. We also note that the perturbation of the matter space metric

will again vanish ∆k̄ab = 0, as this represents matter in the unstrained state and is fixed

in matter space. As the perturbation of k̄ab vanishes, we can find that the perturbation

of η̄ab is given by

∆η̄ab =
1

2
h̄abh

cd∆gcd. (6.146)

Hence, using the information and identities discussed above, we arrive at the equation

∆π̄ab =− 4µ̌

(
h̄a

ch̄b
d − 1

2
h̄abh̄

cd

)
∆gcd. (6.147)

This is our two dimensional anisotropic stress contribution to the stress-energy tensor,

from which vortex elasticity arises.
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6.4.3 Newtonian limit

If we consider the Newtonian limit of our two dimensional elasticity term (6.147), we

find

∇j∆π̄ij = 4µ̌
[
∇⊥i ∇k⊥ξk −∇⊥k∇⊥i ξk −∇

j
⊥(⊥ik∇⊥j ξk)

]
. (6.148)

As we found with the three dimensional case, this does not match the commonly used

Newtonian vortex elasticity. However, it does follow the form of the general elasticity

(3.88). You can see that all of the derivatives are orthogonal to κ̂a, as in the Newtonian

vortex elasticity, however we have different terms due to not being able to commute the

derivatives as discussed before.

Combining our new relativistic model from Chapter 5 with our new two dimensional

vortex elasticity built in this chapter completes our construction of a multiple fluid

model including quantised vortices, mutual friction and elasticity in general relativity.

6.5 Variational approach redux

We now return to the variational description in spacetime, with the intention of ex-

tending it to account for elasticity. The main motivation for this exercise is that force

balance equations, such as (4.67), are more readily adapted to multi-fluid settings, where

it is useful to have individual momentum equations for the different constituents. These

equations can, to a certain extent, be extracted from the equations obtained from the

total stress energy tensor, but this route is not as elegant.

The main lesson from the matter space derivation we produced in the previous sections,

is that we need to allow the Lagrangian to depend on kab. Recall that kab is independent

of n and that the contraction nakab vanishes. This leads to

δ
(√
−gΛ

)
=
√
−g
[
µaδn

a +

(
1

2
Λgab +

∂Λ

∂gab

)
δgab +Kabδkab

]
, (6.149)
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where we say that

Kab =
∂Λ

∂kab
. (6.150)

As usual, we replace δna with the Lagrangian displacement ξa. As we have mentioned

previously, kab is constructed from a fixed matter space tensor which means that its

perturbation vanishes, ∆kab = 0. This tells us that the Eulerian perturbation takes the

form

δkab = −ξc∇ckab − kcb∇aξc − kac∇bξc. (6.151)

Again ignoring surface terms and keeping in mind that kab is symmetric, we have

Kabδkab = ξa
[
2∇b

(
Kbckac

)
−Kbc∇akbc

]
. (6.152)

Making use of this result, we arrive at

δ
(√
−gΛ

)
=
√
−g
{[

1

2
(Λ− ncµc) gab +

∂Λ

∂gab

]
δgab + f̃aξ

a

}
, (6.153)

where

f̃a = 2nb∇[aµb] + 2∇b
(
Kbckac

)
−Kbc∇akbc = 0. (6.154)

From this we find that the stress-energy tensor takes the form

T ab = (Λ− ncµc) gab + 2
∂Λ

∂gab
. (6.155)

In order to make contact with the matter space derivation we saw previously, let us

focus on the Hookean model, where

Λ = −ε̌(n)− µ̌(n)s2 = −ε. (6.156)

Again, we build the strain scalar s2 out of the invariants of

ηab = n−2/3kab. (6.157)
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These invariants,

I1 = ηaa, I2 = ηabη
b
a, . . . , (6.158)

still depend on n and hence on na and gab, as well as kab.

We find that

µa =
∂Λ

∂na
=
∂n2

∂na
∂Λ

∂n2
= − 1

n

∂Λ

∂n
gabn

b =
1

n

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
gabn

b, (6.159)

∂Λ

∂gab
= −

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
∂n

∂gab
− µ̌ ∂s

2

∂gab
, (6.160)

where, noting that na is held fixed in the partial derivative,

∂n

∂gab
= − 1

2n
nanb. (6.161)

It is also useful to note that

∂s2

∂gab
= −gacgbd ∂s

2

∂gcd
. (6.162)

Also, when working out this derivative, we need to hold n fixed (as is clear from (6.160)).

This means that that stress-energy tensor takes the form

T ab =

[
Λ +n

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)]
gab

+
1

n

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
nanb + 2µ̌gacgbd

∂s2

∂gcd
,

(6.163)

which condenses to

T ab = Λgab + n

(
dε̌

dn
+
dµ̌

dn
s2 + µ̌

∂s2

∂n

)
hab + 2µ̌gacgbd

∂s2

∂gcd
. (6.164)

Now, as before, let us consider the explicit case when s2 depends on the first invariant,

I1. For this we need

I1 = ηaa = n−2/3gabkab, (6.165)

∂s2

∂n
= −2I1

3n

∂s2

∂I1
, (6.166)
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Kab =
∂Λ

∂kab
= −µ̌ ∂s

2

∂kab
= −µ̌n−2/3gab∂s

2

∂I1
, (6.167)

and finally

∂s2

∂gcd
=
∂s2

∂I1
ηcd. (6.168)

Using these results, we arrive at the stress-energy tensor

T ab = −εgab + n

(
dε̌

dn
+
dµ̌

dn
s2
)
hab + 2µ̌

∂s2

∂I1

(
ηab − 1

3
I1h

ab

)
= −εgab + n

(
dε̌

dn
+
dµ̌

dn
s2
)
hab + 2µ̌

∂s2

∂I1
η〈ab〉

(6.169)

This should look familiar as it is the result we obtained from our matter space derivation

previously. In the same way, we also obtain results for the cases in which s2 depends on

I2

I2 = ηabη
b
a = n−4/3gabkbcg

cdkda, (6.170)

∂s2

∂n
= −4I2

3n

∂s2

∂I2
, (6.171)

Kab =
∂Λ

∂kab
= −µ̌ ∂s

2

∂kab
= −2µ̌n−4/3gacgbdkcd

∂s2

∂I2
, (6.172)

∂s2

∂gcd
= 2

∂s2

∂I2
ηbcηd

b (6.173)

and finally on I3

I3 = ηaa = n−6/3gbdkadg
eckbeg

afkcf , (6.174)

∂s2

∂n
= −6I3

3n

∂s2

∂I3
, (6.175)

Kab =
∂Λ

∂kab
= −µ̌ ∂s

2

∂kab
= −3µ̌n−6/3gcdgaegbfkdfkce

∂s2

∂I3
, (6.176)

∂s2

∂gcd
= 3

∂s2

∂I3
ηabηacηdb. (6.177)

These tell us that the stress-energy contribution, when s2 depends upon all three

invariants, is given by

T ab = −εgab + n

(
dε̌

dn
+
dµ̌

dn
s2
)
hab + πab, (6.178)
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where

πab = 2µ̌
∂s2

∂I1
η〈ab〉 + 4µ̌

∂s2

∂I2
ηc
〈aηb〉c + 6µ̌

∂s2

∂I3
ηcdη

c〈aηb〉d. (6.179)

We can now extend (4.73) to show that the equations of motion are, indeed, given by

(6.154). To see this, we will first rewrite (6.164) in the form

T ab = (Λ− ncµc) gab + naµb + 2µ̌
∂s2

∂I1
ηab + 4µ̌

∂s2

∂I2
ηc
aηbc + 6µ̌

∂s2

∂I3
ηcdη

caηbd

= (Λ− ncµc) gab + naµb − 2gacKbdkcd.

(6.180)

From this, it follows that

∇aT ab = −2gcbna∇[cµa] +Kac∇bkac − 2∇c
(
Kbdkcd

)
= −f̃ b = 0, (6.181)

using the fact that kab is symmetric.

6.6 Vorticity variation

We shall now consider that the Lagrangian depends upon the antisymmetric tensor ωab.

This comes from the matter space tensor ωAB, i.e

ωab = ψAaψ
B
bωAB. (6.182)

This matter space tensor is fixed provided

uaωab = 0 (6.183)

and

Luωab = 0. (6.184)

This means that ωAB only depends on the matter space coordinates XA. The equations

above imply that

∇[aωbc] = 0 (6.185)
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and as we have seen previously, we also have

∆ωab = 0. (6.186)

Now, let us consider a Lagrangian Λ = Λ(N 2) where

N 2 =
1

2
ωabωab =

1

2
gacgbdωabωcd. (6.187)

Then we see that

δ
(√
−gΛ

)
=
√
−g
[(

1

2
Λgab +

∂Λ

∂gab

)
δgab +

∂Λ

∂ωab
δωab

]
. (6.188)

Introducing the Lagrangian displacement as before and ignoring surface terms we have

δωab = −ξc∇cωab − ωac∇bξc − ωcb∇aξc. (6.189)

From this we arrive at

∂Λ

∂ωab
[∇cωab +∇bωca +∇aωbc]− 2ωac∇b

(
∂Λ

∂ωab

)
= 0. (6.190)

Notice that the first bracket vanishes due to the exterior derivative of ωab vanishing

(6.185). This means that we are left with

ωac∇b
(
∂Λ

∂ωab

)
= 0. (6.191)

This could be seen as the equation of motion for the vortices in the absence of the

superfluid condensate.

Let us now ask what would happen if Λ depended on both nabc and ωab. We would

have

δ
(√
−gΛ

)
=
√
−g
[(

1

2
Λgab +

∂Λ

∂gab

)
δgab +

∂Λ

∂nabc
δnabc +

∂Λ

∂ωab
δωab

]
. (6.192)
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From ∆nabc = 0 we can find that

δnabc = −ξd∇dnabc − ndbc∇aξd − nadc∇bξd − nabd∇cξd. (6.193)

Using this and (6.190) we can determine that

∂Λ

∂nabc
[∇dnabc −∇cndab −∇anbcd +∇bncda]− 3ndbc∇a

(
∂Λ

∂nabc

)
− 2ωad∇b

(
∂Λ

∂ωab

)
= 0.

(6.194)

Then since ∇[anbcd] = 0, the first term vanishes and we are left with

−1

2
ndbc∇aµabc + 2ωad∇b

(
∂Λ

∂ωab

)
= 0, (6.195)

using

∂Λ

∂nabc
= − 1

3!
µabc. (6.196)

The first term of (6.195) can be simplified in the follow way. Firstly we write it as

−1

2
ndbc∇aµabc = −1

2
εdbceε

abcfne∇aµf , (6.197)

which can then be simplified to

−1

2
εdbceε

abcfne∇aµf = ne∇dµe − ne∇eµd = neωde. (6.198)

Hence, we arrive at the equation

naωab = 2ωab∇c
(
∂Λ

∂ωac

)
. (6.199)

There is a contradiction here in that the variation of ωab assumed it was fixed in matter

space, but this requires (6.183) to hold. Hence this contradicts the result in (6.199)

above.
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6.7 Kalb-Ramond version

We will now try a variation using the Kalb-Ramond gauge field to see if this helps us

shed some light on the results of the previous section. As we have seen before, the

conservation law

∇ana = 0, (6.200)

is automatically satisfied provided we have

na =
1

3!
εabcdnbcd, (6.201)

with the condition

∇[anbcd] = 0. (6.202)

This last relation implies the existence of a two-form Bab such that

nabc = 3∇[aBbc]. (6.203)

Hence the definition (6.201) can be rewritten in the form

na =
1

2
εabcd∇bBcd. (6.204)

Next we consider the vorticity ωab as an independent, but not entirely ‘free’, variable.

6.7.1 Version 1

Use Legendre transformation;

L = Λ− 1

2
ωabBab = Λ− 1

4
εabcdBabωcd. (6.205)

Assuming that Λ = Λ(n) we get

δL = − 1

3!
µabcδnabc −

1

2
Babδω

ab − 1

2
ωabδBab, (6.206)
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where we have made use of

∂Λ

∂nabc
= − 1

3!
µabc. (6.207)

However, we now know that

δnabc = 3∇[aδBbc], (6.208)

so (6.206) will take the form

2δL = −µabc∇aδBbc −Babδωab − ωabδBab. (6.209)

Ignoring surface terms, we can rewrite this as

δL =
(
∇aµabc − ωbc

)
δBbc −

1

2
Babδω

ab. (6.210)

This suggests that we should have

ωbc = ∇aµabc, (6.211)

which can be rewritten in the form

ωab = −1

2
εabcdω

cd = 2∇[aµb], (6.212)

giving the standard definition of the vorticity tensor. However, with a free variation we

would also have Bab = 0. To avoid this, we introduce a two dimensional matter space

with coordinates χA. We know that this gives

∆χA = 0 −→ δχA = −LξχA. (6.213)

Next, we use ∆ωab = 0 to see that

δωab =
1

2
εabcdδωcd = εabcd∇c (ωdeξ

e) . (6.214)

This means that the last term in (6.210) leads to, ignoring surface terms,

εabcdωde∇cBab = 0. (6.215)
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But, from (6.203), it then follows that

naωab = 0. (6.216)

Thus, we recover the usual perfect fluid equations of motion. Of course, we have not

achieved much other than that. This result shouldn’t be a surprise as we have already

seen that the perfect fluid equations of motion can be found using the Kalb-Ramond

gauge field in Section 4.5.

6.7.2 Version 2

Now let Λ depend on ωab as well, such that

δΛ = − 1

3!
µabcδnabc −

1

2
λabδωab. (6.217)

Then we find

δL = −1

2
µabc∇aδBbc −

1

2
λabδωab −

1

4
εabcd (Babδωcd + ωcdδBab) . (6.218)

Using the same argument as we did previously gives us

δL =
1

2

(
∇aµabc − ωab

)
δBab −

1

2

(
λcd +

1

2
εabcdBab

)
δωcd, (6.219)

and hence (6.211). In addition we get, after introducing the two dimensional matter

space and the associated Lagrangian displacement,

ωde∇c
(
λcd +

1

2
εabcdBab

)
= ωde

(
∇cλcd − nd

)
= 0. (6.220)

The question is: What is this description good for? Suppose we consider an explicit

model where Λ = Λ(n2,N 2). Then we need

N 2 =
1

2
ωabωab =

1

2
gacgbdωabωcd, (6.221)
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which means that

∂Λ

∂ωab
=

∂Λ

∂N 2
ωab = −1

2
λab, (6.222)

and we arrive at

naωab = ωab∇cλca = 2ωab∇c
(
∂Λ

∂N 2
ωac
)
. (6.223)

This brings us back to (6.199) from the previous section. This derivation makes use

of the two dimensional matter space, similar to the elasticity formulation we created

previously and also only requires the variation of ωab.

In Chapter 5 we produced the following equation for a multifluid system in which all of

the components were travelling together

uavωab = 0. (6.224)

Introducing a velocity difference between the vortices and the neutron fluid gave us

uav = γ̃ (ua + va) , (6.225)

which in turn produced the Euler equation for the fluid with the Magnus force

uaωab = −vaωab ≡ fMb . (6.226)

So, comparing this result to (6.223) above, we can see that

naωab = −nvaωab = ωab∇cλca = 2ωab∇c
(
∂Λ

∂N 2
ωac
)
. (6.227)

This enables us to find va and hence the vortex velocity uav. The vortex velocity is given

by

uav = γ̃ua − γ̃

n
∇cλca = γ̃

[
ua +

2

n
∇c
(
∂Λ

∂N 2
ωca
)]

. (6.228)

From here we can use the results from the mutual friction calculation in Chapter 5 in

order to add the vortex mutual friction into this derivation.
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7

Final Remarks

The aim of this thesis was to create a superfluid model in general relativity, closely

following that of Newtonian calculations. Hence, we aimed to include quantised vortices

and their properties in such a system, the Magnus force, mutual friction and elasticity.

A rotating superfluid can be modelled in Newtonian physics using a quantised vorticity

vector as we saw in Chapter 3. This vector contains the information required to propel

the model from a normal fluid to a superfluid model. Another key feature of superfluids

is that they can flow relative to other components due to having zero viscosity. After

the integration of the vortices into the system and finding an equation of motion for the

superfluid, the introduction of velocity differences gave rise to the Magnus and mutual

friction forces. The collection of the equations for the superfluid, the normal fluid and

the force balance equation for the vortices tells us how the system behaves. This is the

system we wished to produce in general relativity.

To create our model we first contemplated current research in fluids, superfluids and

relativity, giving examples of how these are modelled. We then began our quest in the

same manner that the Newtonian models are formed. We created a single fluid system
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using a quantised vorticity vector and produced equations of motion for the vortices as

well as the vorticity equation. We compared our single superfluid system to a two form

calculation produced by Carter, as well as taking the Newtonian limit to show that our

system matches the Newtonian case.

We then continued in Chapter 5, following the Newtonian calculation again, by in-

troducing a velocity difference indicating that the vortices and superfluid do not travel

together. This assumption introduced the Magnus force to our system, as one should

expect to happen. Further to this, we introduced velocity differences indicating the

mutual friction between the vortices and the second fluid. Once more we followed the

Newtonian calculation and rearranged the equations to eliminate the vortex velocity.

This produced the mutual friction force in a familiar form to that of the Newtonian

models. At this point we had created a relativistic multifluid model including quantised

vortices and mutual friction.

Introducing elasticity to the system involved an investigation into how elastic stars

are modelled, in Chapter 6. From this we attempted to create a three dimensional

elasticity term and split it into a vortex tension piece and a vortex elasticity term. In

doing this we were left with cross terms which do not fall under the category of vortex

elasticity nor vortex tension. In the Newtonian calculation these are easily ignored

but in relativity they do not vanish. Hence we decided to focus on creating only the

vortex elasticity, by using a two dimensional version of the matter space argument. We

achieved this by specifying that the vortex array direction should be aligned with one of

the matter space directions. Using this we could use the remaining two dimensional plane

to create a two dimensional anisotropic term, from which we found the vortex elasticity.

The Newtonian limit of this term matched the general form of elasticity used in the

Newtonian framework. From this formulation we have a relativistic Euler equation with

elasticity. Combining this with our Magnus force and mutual friction model gives the

multifluid system including quantised vortices, mutual friction and elasticity in general

relativity.
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Finally, we reconsidered the variational approach in which we let the Lagrangian depend

on the matter space metric. We discovered in earlier derivations that if one is to consider

vortex elasticity, then the matter space metric is a vital component to include. We

showed what one obtains when considering variations with respect to this metric. We

then considered variations with respect to the vorticity tensor and finally the vorticity

tensor along with the number density. These two variations produced the same equation

with a term on the right hand side. The next task would be to understand the outcome

of these variations and find the link between them and the derivation of the matter space

elasticity.

Our model has been extended to the level at which it can be used in applications that

require detailed microphysics. Applications such as the long term variability associated

with Tkachenko waves, the mechanism responsible for causing pulsar glitches and also

the recovery of pulsars after they experience a glitch.
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A

Additional calculations

We note here the calculations which show the equations and identities mentioned and

used in Chapter 6.

hab∆g
ab

∆gab = ∆(gcdg
acgbd), (A.1)

∆gab = gacgbd∆gcd + gcdg
bd∆gac + gcdg

ac∆gbd, (A.2)

hab∆g
ab = hcd∆gcd + hac∆g

ac + hbd∆g
bd, (A.3)

⇒ hab∆g
ab = −hab∆gab (A.4)

hachbd∆g
cd

∆gcd = ∆(gefg
cegdf ), (A.5)

∆gcd = gcegdf∆gef + gefg
df∆gce + gefg

ce∆gdf , (A.6)
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hachbd∆g
cd = ha

ehb
f∆gef + hachbe∆g

ce + hafhbd∆g
df , (A.7)

⇒ hachbd∆g
cd = −hachbd∆gcd (A.8)

∆ua

∆ua =
1

2
uaubuc∆gbc (from [61]), (A.9)

∆ua = ∆(gabu
b), (A.10)

∆ua = ub∆gab + gab∆u
b, (A.11)

⇒ ∆ua = ub∆gab +
1

2
uau

cud∆gcd (A.12)

∆ηab

∆ηab = ∆(ha
chb

dηcd) (as uaηab = ubηab = 0), (A.13)

∆ηab = ha
chb

d∆ηcd + hcaηcd∆h
d
b + hdbηcd∆h

c
a, (A.14)

∆ηab = ha
chb

d∆ηcd + hcahcd∆(δdb + ubu
d) + hdbhcd∆(δca + uau

c), (A.15)

∆ηab = ha
chb

d∆ηcd + had∆(ubu
d) + hbc∆(uau

c), (A.16)

∆ηab = ha
chb

d∆ηcd + hadub∆u
d + hbcua∆u

c, (A.17)

∆ηab = ha
chb

d∆ηcd + hadub

(
1

2
udueuf∆gef

)
+ hbcua

(
1

2
ucueuf∆gef

)
, (A.18)

⇒ ∆ηab = ha
chb

d∆ηcd (A.19)

∆ηab when ∆kab = 0

∆ηab = n−2/3∆kab + kab∆n
−2/3, (A.20)

∆ηab = n2/3ηab

(
−2

3
n−5/3∆n

)
, (A.21)
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∆ηab = − 2

3n
hab

(
−n

2
hcd∆gcd

)
, (A.22)

∆ηab =
1

3
habh

cd∆gcd, (A.23)

Newtonian limit of (6.90)

∆πab = −2n (f1 + 4f2)

(
ha

chb
d∆gcd −

1

3
habh

cd∆gcd

)
, (A.24)

∆πab =− 2n (f1 + 4f2)

(
(δa

c + uau
c)
(
δb
d + ubu

d
)

∆gcd

− 1

3
(gab + uaub)

(
gcd + ucud

)
∆gcd

)
,

(A.25)

∆πab =− 2n (f1 + 4f2)

((
δa
cδb

d + uau
cδb

d + δa
cubu

d + uau
cubu

d
)

∆gcd

− 1

3

(
gabg

cd + uaubg
cd + gabu

cud + uaubu
cud
)

∆gcd

)
,

(A.26)

from the definition of ua = (1− Φ/c2 + v2/2c2, vi/c) and remembering that coordinate

x0 = ct, we simplify this by taking out O(1/c) terms. We also consider the spatial part

of the equation after taking the divergence, which gives

∇j∆πij =− 2n (f1 + 4f2)∇j
(
∇iξj +∇jξi −

2

3
gij∇cξc

)
, (A.27)

∇j∆πij =− 2n (f1 + 4f2)

(
1

3
∇i∇jξj +∇2ξi

)
. (A.28)

Derivative ∂N
∂ḡAB

N2 = −NaNa = −1

2
εabcdκ̂dNbceκ̂

e 1

2
εafghκ̂

hNfgmκ̂m, (A.29)

N2 = −1

4
κ̂dκ̂

hNbceκ̂
eNfgmκ̂m(εabcdεafgh), (A.30)

N2 = −1

4
κ̂dκ̂

hNbceκ̂
eNfgmκ̂m(−[δbf (δcgδ

d
h − 0) + δbg(0− δcfδdh) + 0(0− 0)]). (A.31)
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The 0s come from simplifying the contractions of κ̂a with Nabc, as they will vanish.

Hence

N2 =
1

4
[δbfδ

c
gδ
d
hκ̂dκ̂

hNbceκ̂
eNfgmκ̂m − δbgδcfδdhκ̂dκ̂hNbceκ̂

eNfgmκ̂m], (A.32)

N2 =
1

4
[κ̂dκ̂

dNbceκ̂
eN bcmκ̂m − κ̂dκ̂dNbceκ̂

eN cbmκ̂m], (A.33)

N2 =
1

4
[2Nbceκ̂

eN bcmκ̂m], (A.34)

N2 =
1

2
NbceN

bcmκ̂eκ̂m =
1

2
NbcN

bc. (A.35)

Then we take the derivative

N2 =
1

2
NbceN

bcmκ̂eκ̂m =
1

2
NBCENDFM ḡ

BDḡCF κ̂E κ̂M , (A.36)

2N
∂N

∂ḡPQ
=

1

2
N2εBCEεDFM κ̂

E κ̂M
∂

∂ḡPQ
(ḡBDḡCF ), (A.37)

∂N

∂ḡPQ
=

1

4
NεBCEεDFM κ̂

E κ̂M (ḡBD
∂

∂ḡPQ
ḡCF + ḡCF

∂

∂ḡPQ
ḡBD), (A.38)

∂N

∂ḡPQ
=

1

4
NεBCEεDFM κ̂

E κ̂M (2ḡBD
∂

∂ḡPQ
ḡCF ), (A.39)

∂N

∂ḡPQ
=

1

2
NεBCEεDFM κ̂

E κ̂M ḡBD(
1

2
(δ̄CP δ̄

F
Q + δ̄FP δ̄

C
Q)), (A.40)

∂N

∂ḡPQ
=

1

4
N(εBPEεDQM κ̂

E κ̂M ḡBD + εBQEεDPM κ̂
E κ̂M ḡBD), (A.41)

∂N

∂ḡPQ
=

1

4
N2εBPEεDQM κ̂

E κ̂M ḡBD, (A.42)

∂N

∂ḡPQ
=

1

2
NεBPEε

BGM ḡGQκ̂
E κ̂M , (A.43)

∂N

∂ḡPQ
=

1

2
N(δGP δ

M
E − δMP δGE )ḡGQκ̂

E κ̂M , (A.44)

∂N

∂ḡPQ
=

1

2
N(ḡPQκ̂

E κ̂E − ḡEQκ̂E κ̂P ), (A.45)

∂N

∂ḡPQ
=

1

2
NḡPQ. (A.46)
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η̄ab = k̄−1/2k̄ab

Relating the two with a constant C,

η̄ab = Ck̄ab, (A.47)

det(η̄ab) = 1 = det(Ck̄ab), (A.48)

1 = C2 det(k̄ab), (A.49)

C2 =
1

det(k̄ab)
, (A.50)

C =
1

k̄1/2
. (A.51)

Hence

η̄ab = k̄−1/2k̄ab. (A.52)

New Na

Start with the three index number density and split into the 3rd direction

Nbcd =ψBb ψ
C
c ψ

D
d NBCD = ψBb ψ

C
c ψ

3
dNBC3 + ψBb ψ

C
c ψ̄

D
d NBCD, (A.53)

Nbcd = ψ̄Bb ψ̄
C
c ψ

3
dNBC3 + ψBb ψ

3
c ψ̄

D
d NB3D + ψBb ψ̄

C
c ψ̄

D
d NBCD, (A.54)

Nbcd = ψ̄Bb ψ̄
C
c ψ

3
dNBC3 + ψ̄Bb ψ

3
c ψ̄

D
d NB3D + ψ3

b ψ̄
C
c ψ̄

D
d N3CD, (A.55)

Nbcd =
(
ψ̄Bb ψ̄

C
c ψ

3
d − ψ̄Bb ψ3

c ψ̄
C
d + ψ3

b ψ̄
B
c ψ̄

C
d

)
NBC3. (A.56)

From the definition of Na

Na =
1

3!
εabcdNbcd =

1

3!

(
εabcdψ̄Bb ψ̄

C
c ψ

3
d − εabcdψ̄Bb ψ3

c ψ̄
C
d + εabcdψ3

b ψ̄
B
c ψ̄

C
d

)
NBC3, (A.57)

Na =
1

2
εabcdψ̄Bb ψ̄

C
c ψ

3
dNBC3, (A.58)
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Na =
1

2
εabcdκ̂dNbceκ̂

e =
1

2
εabcdκ̂dN̄bc, (A.59)

as ψ3
a = κ̂a and say that N̄ab = Nabcκ̂

c.

N Conservation

We have the definition

Na = Nua =
1

3!
εabcdNbcd, (A.60)

which obeys the conservation equation

∇a(Nua) = 0. (A.61)

Next we rewrite Na, as in Chapter 6, in the form

Na =
1

3!
εabcdNbcd =

1

2
εabcdκ̂dNbceκ̂

e =
1

2
εabcdκ̂bN̄cd, (A.62)

by specifying that κ̂a = ψAa δ
3
A. From this we see that

∇a(
1

2
εabcdκ̂dNbceκ̂

e) = 0, (A.63)

1

2
εabcd∇a(κ̂dNbceκ̂

e) = 0, (A.64)

1

2
εabcdκ̂dκ̂

e∇aNbce +
1

2
εabcdNbceκ̂

e∇aκ̂d +
1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.65)

1

2
εabcdκ̂dκ̂

e∇aNbce +
1

2
εabcdNbceκ̂

eδ3D∇aψDd +
1

2
εabcdκ̂dNbce∇aκ̂e = 0. (A.66)

The partial derivatives on the second term commute and vanish, giving

1

2
εabcdκ̂dκ̂

e∇aNbce +
1

2
εabcdκ̂dNbce∇aκ̂e = 0. (A.67)

We have that

Na =
1

3!
εabcdNbcd ⇐⇒ Nabc = εabcdN

d (A.68)
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Which we plug into first term of the equation so see

1

2
εabcdκ̂dκ̂

e∇a(εbcefNf ) +
1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.69)

1

2
εbcef ε

bcadκ̂dκ̂
e∇aNf +

1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.70)

− 1

2
2!(δae δ

d
f − δdeδaf )κ̂dκ̂

e∇aNf +
1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.71)

− κ̂f κ̂a∇aNf + κ̂eκ̂
e∇aNa +

1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.72)

−∇‖fN
f +∇aNa +

1

2
εabcdκ̂dNbce∇aκ̂e = 0, (A.73)

as κ̂aκ̂a = 1 and κ̂aκ̂
b∇b = ∇‖a. Also, as ∇a = ∇⊥a +∇‖a we see

∇⊥f Nf +
1

2
εabcdκ̂dNbce∇aκ̂e = 0. (A.74)

Using the same definition of Nabc on second term implies that

∇⊥f Nf +
1

2
εabcdκ̂dεbcefN

f∇aκ̂e = 0, (A.75)

hence

∇⊥f Nf − κ̂fNf∇aκ̂a + κ̂dN
a∇aκ̂d = 0. (A.76)

As κ̂au
a = 0 and ∇a(κ̂bκ̂b) = 0 we get

∇⊥f Nf = 0. (A.77)
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