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Estuaries are among the most biologically productive ecosystems on the planet, per unit 

area, with intertidal habitats and particularly saltmarshes providing a variety or ecosystem 

services and supporting large numbers of both primary and secondary producers. These 

habitats are globally important and are found throughout tropical to temperate climates. 

Micro-tidal estuaries are found throughout the world and particularly sensitive to sea-level 

rise, as they are limited in their ability to adjust and are considered vulnerable to future 

changes .Hence, at a broad scale, understanding the drivers and mechanisms of saltmarsh 

change in micro-tidal systems is crucial in aiding decision making in future coastal 

management.  This thesis explores the drivers and mechanisms of saltmarsh change 

through the development of a conceptual model, which is then tested using Poole Harbour, 

UK as a case study site. The potential drivers of saltmarsh change were investigated using a 

multidisciplinary approach, combining a GIS historic change analysis utilising aerial 

photography, charts and maps, a bathymetric analysis of the harbour morphology and a 2D 

hydrodynamic TELEMAC model. Spartina anglica rapidly colonised the Harbour at the end of 

the 19
th

 Century increasing the saltmarsh area from approximately 120ha to over 900ha 

during the 1920’s, after which there was a decline in area that has continued to present day 

However, saltmarsh extent in 2005 was still approximately three times the extent prior to 

the colonisation of Spartina anglica. Poole Harbour is large and dendritic and spatially 

within the Harbour separate tributaries exhibit clearly distinct saltmarsh erosion and 

accretion trends.  Accretion was seen to occur in relatively sheltered locations with short 

fetches, fronted by high mudflats, in areas that are flood dominant both in terms of 

hypsometry as well as tidal peak flow and slack duration. Erosion was seen to occur in 

relatively exposed areas where the marsh top and fringing mudflats are significantly lower 

and local sediments have a lower shear velocity than in accretionary regions. Saltmarsh 

erosion tends to occur in morphologically ebb dominant areas but not exclusively, 

suggesting multiple drivers are in operation.  

Poole Harbour is used in this study as an example of a wider global problem. At a broad 

scale, observations emphasise that saltmarsh changes occurring elsewhere in the UK, and 



 

[ii] 

 

potentially elsewhere in the world, may be more complex than often portrayed. Highlighting 

the need for detailed case by case studies, that use all the data available over a sufficient 

time period. Multiple drivers of change control the net evolution of saltmarsh in Poole 

Harbour and this is likely to be a widespread conclusion for other estuaries globally. 
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1 Introduction 

On geological timescales tidal basins can be considered as temporary, short-lived features. 

Their existence is the result of a complex interaction between the inherited morphology and 

substrate, sea-level variations and tidal motions, sediment availability and sediment 

distribution processes (Van Goor et al., 2003). Within estuaries physical processes form the 

main driver for the many complex and linked sedimentological, biological and chemical 

processes (Dyer, 1997). Historically, estuaries have been focal points for human activities 

and development. Some uses such as ports, exploit the shelter offered by the physical 

structure of the estuary (Buck, 1997). Other uses include exploiting the rich natural 

resources of fish and shellfish available within estuarine environments. Estuaries are often 

used by certain fish species as breeding and nursery grounds, attracting large numbers of 

predatory bird and wildlife species. Estuaries have also in recent years become the focus for 

leisure activities such as sailing and other water sports.  

The use of estuaries has increased, not only for transport and port development, but also in 

new uses such as water extraction and discharges of waste. Population growth and 

development of urban industrial and agricultural areas has led to reclamation and draining 

of low lying areas, all of which impose pressures on river and estuary systems. 

Anthropogenic effects have historically been a major agent influencing the morphology of 

estuaries, either directly by means of engineering works or indirectly by modifying the 

physical, chemical and/or biological processes within the estuary.  

Overexploitation, physical modification, nutrient and sediment pollution, introduction of 

invasive species,  global climate change and sea-level rise have led to a decline in coastal 

habitats (Waycott et al., 2009, Valiela, 2006, Duarte et al., 2009), such as seagrass beds, 

saltmarshes and mangroves over the last century. As estuaries are among the most 

biologically productive ecosystems on the planet, per unit area, with intertidal habitats 

supporting large numbers of birds and fish, this is a serious issue. For example, Costanza 

et al., (1997) estimated that of the US$33 trillion worth of annual global ecosystem services, 

US$10.6 trillion was contributed by coastal systems and a further US$10.3 trillion was 

contributed from other marine services. 
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Coastal habitats occur in many different settings globally, however those situated within 

micro-tidal systems are particularly vulnerable, due to their inability to adapt to rising sea 

levels and these micro-tidal systems occur widely around the world.  

As an acknowledgement of the ecological functions that estuaries perform, large areas in 

the UK, Europe (and more widely) have been designated as protected areas. Within Europe 

under the EC Habitats and Species Directive, habitats including saltmarshes and mudflats, 

reedbeds, sand dunes, vegetated shingle, coastal grazing marsh, saline lagoons and sea 

grass beds are protected. However, habitat areas in estuaries are widely found to be 

declining (UK National Ecosystem Assessment, 2011).  

Intertidal areas in the UK have been shown to have declined with the building of extensive 

defence networks (notably during the 19
th

 Century). Land reclamation, changes in sediment 

availability and slow subsidence due to glacial isostatic adjustment all being important 

influences (Carpenter and Pye, 1996).  Consequently, significant losses are likely to continue 

into the future and these are likely to be exacerbated by sea-level rise (UK National 

Ecosystem Assessment, 2011, Doody, 2008). Expected responses to sea-level rise are 

vertical accretion and migration inland, both of which have been restricted by coastal 

defences (Nicholls and Wilson, 2001, de la Vega-Leinert and Nicholls, 2008, Lee, 2001).  

In light of the importance of estuaries, both environmentally and commercially, 

understanding the processes which drive habitat change in them, the complex mechanisms 

by which change occurs and the consequences of change is crucial. This is needed to better 

manage these areas and conserve the habitats situated within them, as well as giving 

insight into the changes that may occur in these areas with future development. Saltmarsh 

loss is of particular concern (Valiela, 2006, UK National Ecosystem Assessment, 2011) and 

this thesis will focus on saltmarsh change (gains and losses). 

1.1 Research Aims 

Understanding the drivers and mechanisms of coastal saltmarsh change, is crucial to future 

coastal and resource management in estuarine environments under rising sea levels. 

Although much research has been done to understand the drivers of saltmarsh loss within 

estuaries, the balancing process of gain has received less attention, reflecting the global 

concern about these losses.  Hence, the main aim of this research is to identify drivers and 

mechanisms of saltmarsh change at estuary and sub-estuary scales for gains as well as 
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losses. The focus is on micro-tidal systems due to their high vulnerability and relatively 

frequent global occurrence.  

This research will allow a better understanding of historic trends and the prognosis for 

these systems over the coming decades.  

1.2 Research Objectives 

In summary, the research has the following objectives which are expanded upon in Chapters 

2, 3 and 4. 

1. Develop a conceptual framework  

 

Through a literature review, thoroughly investigate the previously studied drivers and 

mechanisms of salt marsh change, creating a conceptual framework to assist in 

estuarine management (Section 2). 

 

2. Select a suitable micro-tidal estuary as a test location. 

 

In order to study saltmarsh changes within a micro-tidal climate a suitable case study 

site will be selected. Criteria for the choice of case study site are determined through 

two main factors; local management issues involving saltmarshes and data availability 

(Section 3).  

 

3. Assess historic saltmarsh trends to identify candidate mechanisms of change at the test 

location using an historic change analysis;  

 

The historic change analysis will identify any changes within the intertidal zone and will 

quantify historic saltmarsh trends within the selected region, using maps, charts and 

aerial photography available.  

 

4. Assess the drivers and mechanisms of change; 

 

Firstly the setting of the changes observed from the historic change analysis will be 

examined by investigating the morphology of the estuary. 
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Using the conceptual understanding developed in Section 2 and the historic change 

analysis, the drivers and primarily the physical mechanisms of the changes observed will 

be investigated.  

 

Mechanisms of change will also be assessed and quantified. Through this process 

erosional and accretional trends at an estuary and sub-estuary scale can be defined and 

drivers for these changes identified.  

 

Finally chemical and biological mechanisms of change are discussed through the use of 

the conceptual model developed as part of objective 1. 

 

5. Assess the implications of these results for other estuarine saltmarsh systems 

 

1.3 Novelty/Originality of Research 

This research requires a multidisciplinary approach in order to understand the complex 

biogeomorphology of saltmarsh change and by combining a thorough knowledge of the 

potential causes of saltmarsh change a broad overview of the drivers and mechanisms can 

be assessed. Several methods of analysis will be used in order to investigate the setting of 

the change and mechanisms of saltmarsh erosion and accretion and link these to drivers. 

Saltmarshes globally as well as in Europe have been in decline throughout the 20
th

 Century 

and in the future will be under increasing pressure due to sea-level rise, even if legislation, 

such the Habitats Directive in Europe, addresses the pressure of coastal development. 

Saltmarshes are important both in terms of designated habitats (which are protected by 

European law) as well as providing a variety of ecosystem services. Hence, at a broad scale, 

identifying and understanding the drivers and mechanisms of change in saltmarsh systems 

and the timescales they operate over, is crucial in assisting decision making in future 

coastal management.  

1.4 Structure of Thesis 

This thesis is organised into nine Chapters.  Chapter 2 will review the relevant literature, 

firstly discussing coastal and estuarine hydrodynamics and morphology in general and then 

outlining the key drivers and mechanisms of saltmarsh change, which can then be 
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developed into a conceptual model of change. Both natural and human drivers will be 

considered as well as the relevant biological, chemical and physical mechanisms. This 

analysis focuses primarily on the importance of physical mechanisms and drivers over 

biological and chemical components and they form the focus in the rest of the thesis. 

Biological and chemical drivers are discussed as part of the conceptual model of saltmarsh 

change. Chapter 2 also introduces the concept of estuarine modelling as a tool for 

investigating the fundamental physical processes at different spatial scales. Chapter 3 

outlines the selection of a suitable case study site and a background literature review to 

identify locally relevant potential saltmarsh change drivers and mechanisms. Chapter 4 

outlines the data and methods used to investigate historic saltmarsh change  and the 

setting of change, at the selected case study site. This involves several methods: 1) 

identifying the magnitude of saltmarsh change via historical analysis, 2) understanding the 

mechanisms of change and their relationship to physical changes, including the (a) 

morphology and hypsometry of the site and (b) tidal asymmetry. The results from these 

methods are presented in Chapters 5, 6 and 7, respectively, with a summary presented at 

the end of each Chapter. A discussion, of these results and their wider implications to other 

sites, including recommendations for further work, are presented in Chapter 8. Chapter 9 

presents the overall conclusions. 
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2 Literature Review 

The following chapter reviews the relevant literature with respect to the aims and objectives 

discussed in Chapter 1. Saltmarshes can occur in many different forms but are generally 

developed in low-energy environments where wave action is limited, such as barrier coasts, 

embayments and estuaries (Allen, 2000). Within this study the focus is on saltmarshes 

situated within estuaries or semi-enclosed water bodies. However, many of the drivers and 

mechanisms of change are expected to be universally applicable to other saltmarshes and 

coastal habitats, such as mangroves. 

Although each estuary has unique physical features that influence its biogeomorphology, 

driven by the general bathymetry, tidal range, river discharge and sediment availability, 

some generalisations across estuaries can be made. Firstly estuaries are discussed in 

general and with regards to their hydrodynamics, morphology and physical setting and 

ecology. For clarity these are discussed discretely, however there are crucial interactions 

and non-linear feedbacks that occur between the hydrodynamics, morphology and ecology. 

Secondly these fundamental processes are discussed in terms of saltmarsh drivers and 

mechanisms of change and a conceptual model of saltmarsh change is developed. Thirdly 

estuarine modelling as a tool to assist the classification of estuaries and saltmarsh change 

is described. 

2.1 Estuaries 

The term estuary, derived from the latin ‘aestus’ meaning tide, refers to a tongue of the sea 

reaching inland (Woodroffe, 2002). A widely used definition describes an estuary as ‘a semi-

enclosed coastal body of water having a free connection with the open sea and within which 

sea water is measurably diluted with fresh water derived from land drainage’ (Woodroffe, 

2002).  

Estuarine shape and extent are constantly altered by the erosion and deposition of sediment 

and hence have a wide variety of forms that evolve over different time scales (Table 2.1). 

Most estuaries are geologically young and have developed when the last post-glacial rise in 

sea level inundated coastlines and drowned river valleys. Two main processes drive the 

evolution of an estuary. Firstly the long term sediment budget, being either from inland 

(predominantly from fluvial sources) or the open coast, along with the direction and 



Chapter 2 Literature Review 

[7] 

 

magnitude of the long-term averaged sediment transport, (Dronkers, 1986). Secondly 

abrupt and cyclical changes in  estuarine morphology cause hydrodynamic processes to vary 

over temporal and spatial scales, from storm events and engineering works, individual tidal 

cycles to the spring–neap cycle, seasonally or the 18.6 year nodal cycle, (Hanson and 

Nicholls, 2003, Townend, 2002). Estuaries are also home to complex habitats that develop 

under these conditions, evolving to cope with the extremes of constantly changing salinity 

and tidal levels. Through biogeomorphological feedback mechanisms, coastal habitats also 

contribute to the form and extent of the estuary and sediment distribution.  

Table 2.1 Geomorphological scales in an estuary. After (Hanson and Nicholls, 2003, 

Townend, 2002, Stive et al., 2003).  

SCALE TIME SPACE 

Very 

Long 

Geological 

(1,000s-

1,000,000s years) 

Underlying form and geology of area and 

adjacent sea area. 

Long 

Historical (100s 

years) 

Large scale features (channels/islands) 

Human Influence (protection/dredging, 

landclaim) 

Medium 

Decadal (10-100 

years) 

18.6 year nodal 

cycle 

Internal relationships- mudflats, 

saltmarshes, channels, creeks 

Cumulative effects of long term change 

(e.g. sea level, sediment supply) 

Short Seasonal/Annual 

Fluxes in and out of estuary. Internal 

relationships 

Very 

short 

Tidal period 

(hours) 

Ebb and flood tides 

 

Wave period 

(minutes/seconds) 

Ripples 
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2.1.1  Estuarine Hydrodynamics 

2.1.1.1   Tides 

Tides are shallow water waves, generated by the gravitational forces exerted by the sun and 

moon on the Earth’s oceans (Brown et al., 1997). The tide is the central feature around which 

saltmarsh functions through platform accretion, (Allen, 2000): it sets the altitudinal range of a 

marsh and is crucial to the development and maintenance of the creek networks.  

Tidal Range 

The tide sets the altitudinal range of a marsh and the zonation of species within an estuary. The 

tidal range within an estuary, along with the slope, determines the amount of space available 

for the marsh to colonise. 

Tidal range is typically classified into three categories, macro (> 4 m), meso (2-4 m) and micro < 

2 m) tidal. The global distribution of tidal range for the M2 constituent is shown in Figure 2.1, 

from the OSU TOPEX/Poseidon Global Inverse Solution (TPXO), (Egbert and Erofeeva, 2002). 

Examples of macro-tidal ranges can be seen in the Bristol Channel, (UK), the Fly River, (Papua 

New Guinea), San Sebastien Bay, (Tierra del Fuego) and the Bay of Fundy, (US/Canada).  Meso-

tidal ranges are found throughout the World, including large areas of the west coast of Europe, 

New Zealand, the Atlantic coast of Europe and Africa and large coastal areas of North and South 

America. Micro-tidal regions are also found extensively across the world including the 

Mediterranean Sea, Caribbean Sea, Red Sea, Baltic Sea, the Sea of Japan, regions in Madagascar, 

Brasil, Sri Lanka, South east Asia and South Australia.  Micro-tidal regions are more sensitive to 

sea-level rise, as they are limited in their ability to adjust with sea-level rise and are considered 

vulnerable to future changes (cf(Nicholls et al., 1999)). 
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Tidal waves can become distorted when entering estuaries and embayments, either becoming 

compressed and increasing in tidal range as the sides of the estuary converge, or decreasing in 

tidal height due to the friction between the tidal waters and the estuary bed. For estuaries 

where the effect of convergence is greater than friction, the tidal range increases upstream and 

is called a hypersynchronous estuary. These types of estuaries may form a tidal bore on the 

incoming tide. For estuaries where the effect of convergence is less than friction, the tidal range 

decreases up stream and is called a hyposynchronous estuary. Where convergence equals 

friction the tidal range is uniform and is called a synchronous estuary (Dyer, 1997)  

Tidal Asymmetry 

The importance of asymmetric tidal cycles in the transport and accumulation of sediment in 

shallow estuaries is well established, (Boothroyd and Hubbard, 1975). Flood dominant 

estuaries, have shorter duration, higher velocity flood tides, and tend to infill channels with 

sediment. Whereas ebb dominant systems, have shorter, higher velocity ebb tides, and tend to 

flush bed-load sediment seaward, (Friedrichs and Aubrey, 1988).  

Flood dominance occurs when the combined effects of bottom friction and tidal variation of the 

deep water is large, causing the tidal wave crest (HW) to move more quickly than the trough 

(LW) producing a short duration flood phase of the tide and more rapid flood currents, 

(Dronkers, 1986). Ebb dominance occurs within estuaries essentially by interactions between 

the deep channels and the shallow water areas, and the varying distribution of friction during 

the tide. Aldridge (1997) illustrated that tidal asymmetry throughout an estuary could be linked 

to sediment transport pathways and morphodynamics, it was also demonstrated that although 

estuaries are often generalised as either flood or ebb dominant, variations within the estuary 

may also occur. Large areas of tidal flats and marshes significantly alter the dynamics of an 

estuary, through frictional forces, sediment sinks and water storage. 

The influence of tidal asymmetry on the residual fluxes of coarse and fine sediment is different 

owing to different transport properties of the sediments, which is later discussed in Section 

2.1.2.1. The suspension load of coarse sediment (e.g. sand) is strongly limited by current speed 

and adapts to changes in current speed rapidly. For fine sediment (e.g. silts and clays), 

saturation of the suspended load rarely occurs, with most sediment deposition occurring at 

only very low current speeds with a settling time delay (settling lag) which can be an important 

control on sediment transport, (Dronkers, 1986). In general the asymmetry of peak tidal flows 

is considered to be the main driver of coarse sediment, whereas the difference in slack water 
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duration before flood and ebb affects the residual transport of fine fractions (Dronkers, 1986, 

Friedrichs and Perry, 2001, Friedrichs, 2011). In shallow water a larger proportion of the 

suspended sediment will have time to settle, favouring net deposition in shallow areas for the 

period of the slack duration (Friedrichs, 2011). However, this is also controlled by the settling 

velocity which is complicated when applied to fine sediments, due to the formation of 

flocculates (section 2.1.2.1) which affects the settling velocity. 

Dronkers (1986) distinguished two types of channel geometry in irregularly shaped estuaries 

(Figure 2.2). Type 1 estuaries with shallow channels that decrease with depth landward and 

tidal flats below mean sea level and type 2 estuaries with deep channels throughout and tidal 

flats above mean sea level. Where, in Type 1 estuaries the slack water period before ebb will 

exceed the slack water period before flood, hence a residual import of fine sediments is 

favoured. The opposite is true in case 2. A natural feedback between these 2 forms of sediment 

accretion and then erosion leads to a fluctuation of form around an equilibrium. The concept of 

estuarine equilibrium suggests that under a given set of hydrodynamic conditions an estuary 

will evolve to a stable equilibrium morphology (Moore et al., 2009). However, it is unlikely that a 

fully stable estuary can exist as external forces acting on the estuary are not uniform over time 

(Dronkers, 1986), such as human interference, tides and waves. 

 

Figure 2.2 Illustration of channel form with tidal asymmetry and feedbacks (ABPmer, 

2008, Pethick, 1994) 

Type 2 

estuary 

Type 1 

estuary 

Newly 

formed 

estuary 
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Dronkers (1986) developed the asymmetry ratio, shown in Equation 2.4. 
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                                                                                            Equation 2.4 

Where: h = the average depth of the channel or the mean hydraulic depth given by, 

h=a+V
lw

/S
lw

, a = the tidal amplitude, S
lw

 = the surface area at low water, S
hw

 = the surface area 

at high water and V
hw 

and V
lw

, the volumes at high and low water. 

A value of γ equal to 1 suggests a uniform tide, with values >1 indicating flood dominance 

and <1 indicating ebb dominance. This equation was applied by Townend (2005) to 155 

estuaries across the UK, a large amount of scatter was noted in the results, potentially as a 

consequence of data quality, however at a cursory level a large number of UK estuaries were 

observed to be ebb dominant. 

An alternative approach to investigate tidal asymmetry is given by Freidrichs and Aubrey 

(1988).  It was found, in shallow estuaries of the US Atlantic coast, that the magnitude of 

the ratio tidal amplitude and hydraulic depth can indicate overall tidal asymmetry. For small 

a/h values (<0.2) estuaries tend to be ebb-dominant, regardless of the extent of the tidal 

flats or marshes. Equally for large a/h values (>0.3) estuaries tend to be flood dominant. 

However, a/h is often most applicable to flood dominant systems and the parameter derived 

from the ratio between the intertidal storage in flats and marshes and volume of channels at 

mean sea level is mostly responsible for asymmetric tides in ebb dominant estuaries. Where 

a/h does not signify either flood or ebb dominance If 0.2>a/h<0.3 then Vs/Vc can be used 

as a relative indicator between different estuaries.  

Other tidal asymmetry relationships,  including asymmetry that arises as a result of the 

distortion of the tidal wave through frictional affects, are discussed by Freidrichs and 

Aubrey (1988), Wang et al, (2002). This can be related to changes in the relative phase and 

amplitude of the M4 and M2 tidal constituents. A direct measurement of non-linear 

distortion and therefore the magnitude of the asymmetry are calculated as the M4 and M2 

amplitude ratio (M4
Amp

/M2
Amp

 ). A ratio of 0 indicates a completely undistorted tide and a 

ratio > 0.01 indicates significant distortion of the tidal wave. 

Secondly, the direction of the asymmetry (flood or ebb) can be defined by calculating the 

phase of M4 relative to M2 (2M2
phase

-M4
phase

 ). Where a relative phase between 0° and 180° 



Chapter 2 Literature Review 

[13] 

 

indicates that the duration of the ebb tide is longer than the duration of the flood tide, as 

the same volume of water flows in and out of the estuary during both the ebb and the flood 

tidal stage the flow rate will be greatest and therefore the tide will be flood dominant.  

Other values of relative phase indicate that the duration of the ebb tide is shorter than the 

duration of the flood tide and therefore the tide can be considered ebb dominant, 

(Friedrichs and Aubrey, 1988). 

Pethick (1980) and later Friedrichs (2010) described channel depth with relation to tidal 

velocities in estuaries (Figure 2.3). Illustrating how the timing of peak tidal velocity varies 

depending on the local morphology: an estuary dominated by channel depth (a) vs an 

estuary dominated by width (c). 

 

Figure 2.3 Illustrative tidal velocity curves (b) and (d) for estuaries dominated by tidal 

variations in the channel depth  (a) and estuaries dominated by tidal variations in 

estuary width (c) respectively. 

Pethick (1994) describes tidal asymmetry in terms of tidal wave progression within an 

estuary. When estuaries are wide and deep and the mean depth is significantly greater at 
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high tide than at low tide, the tidal wave progression is more rapid at high water than low. 

Hence an asymmetric wave, giving a flood dominant velocity, resulting in the estuary 

behaving as a sediment sink with net sediment input. Pethick (1994) suggests that as 

sedimentation continues the elevation of the intertidal would increase and hence the mean 

depth of channel would decrease. Leading to a reduction in sedimentation rates and 

perhaps even a reversal to short term erosion, the estuarine form would in this way 

fluctuate around an equilibrium form. Hence the ratio between mean depth at high water 

(MDhw) and mean depth at low water (MDlw) can indicate tidal asymmetry (MDhw > MDlw flood 

dominant, MDhw < MDlw ebb dominant).  

These asymmetry calculations and ratios are discussed further in Chapter 7 when applied in order to 

assess the tidal asymmetry within Poole Harbour. 

2.1.1.2   Waves 

Locally generated wind waves can have a large impact on the morphological equilibrium of  

shallow estuaries (Fagherazzi and Wiberg, 2009), creating bed shear stresses and affecting 

turbidity (Anderson, 1972, Ward et al., 1984).  Fagherazzi and Wiberg (2009), consider wave 

generated shear stresses to be the main mechanism responsible for erosion of sediment 

from tidal flats, influencing sediment budgets, biogeochemical processes and ultimately the 

evolution of the estuary. Waves mobilise sediments at the seabed through orbital velocities 

which attenuate with depth (Soulsby, 1997), this attenuation means that orbital velocities 

(and therefore bed shear stresses) are greater over intertidal areas compared to subtidal 

areas during windy periods.  Conversely, during calm periods tidal currents are stronger in 

the subtidal areas compared to the intertidal areas increasing bed shear stresses in the 

subtidal relative to the intertidal.  This gradient in bed shear stress and therefore suspended 

sediment, results in a seaward flux of sediment (and erosion of intertidal areas) during wave 

events and a landward flux of sediment (and intertidal accretion) during periods dominated 

by tides (Friedrichs, 2011).  Field studies support this transport pattern and showing that 

tidally averaged fluxes of suspended sediment, in the absence of waves, are landward, but 

switched to a flux offshore as wave height increased (Allen and Duffy, 1998, Janssen-

Stelder, 2000). 

Erosion at marsh edges has been shown to be linked to wave attack in several different 

studies (van der Wal and Pye, 2004, Mariotti et al., 2010). Waves create bed shear stresses 

over intertidal mudflats eroding the sediment and depending on the local hydrodynamics 



Chapter 2 Literature Review 

[15] 

 

exporting and depositing this sediment elsewhere, potentially leading to a drop in the 

mudflat level leading to cliffing at the edge of the mudflat. Marsh cliffs expose bare 

sediment that can be eroded by the incoming waves resulting in cliff collapse and a lateral 

retreat. The typical cross sectional profile for a wave dominated mudflat is discussed further 

in Section 2.1.2.2. 

Depending on the morphology of the estuary, the potential for erosion from wind-waves 

tends to vary over the tidal cycle as the fetch changes due to the emergence and 

submergence of sand bars or mudflats (Green et al., 1997) and so the amount of wave 

energy acting in an estuary can be strongly related to the morphological form. It is clear 

that there must be a critical water depth where the bottom shear stresses produced by local 

wind waves are at their maximum, above this depth shoaling is not prevented by wind 

waves allowing the tidal flat to accrete and potentially form saltmarsh (Fagherazzi et al., 

2006, McGlathery et al., 2013). Furthermore studies by Mariotti et al., (2010) using a wind-

wave model have shown that if sediment were available in the system for saltmarshes to 

accrete further, a 15cm increase in elevation of the subtidal platform could reduce wave 

erosion by nearly 25%. This reduction in wave erosion potential illustrates how relatively 

small changes in estuary morphology and sediment supply can lead to a regime shift. 

2.1.1.3   Estuarine mixing 

Net sediment transport can also occur due to gravitational circulation driven by salinity 

gradients in the estuary,  these effects increase with increasing vertical stratification (Dyer, 

1997, Winterwerp, 2011). Salinity is also important in controlling the behaviour of fine 

sediments, facilitating cohesion and flocculation in clay minerals (Maggi, 2005) and 

therefore increasing settling velocities (Portela et al., 2013).  Commonly estuaries are 

classified based on the way in which these salinity gradients form, on this basis three main 

types are identified: salt wedge, partially mixed and well-mixed estuaries. 

A salt wedge estuary is stratified with a sharp density and salinity gradient between the less 

dense river water at the surface and the more dense saline seawater beneath. This occurs 

where there is little tidal current to mix the two water bodies, although some mixing occurs 

at the stratified interface due to shear stresses as the water bodies move, creating internal 

waves and turbulence (Brown et al., 1997). In river flow dominated estuaries of this kind 

most sediment is fluvial in origin, coarse sediments settle out through the halocline whereas 

cohesive sediments can be carried towards the sea, where the increase in salinity leads to 
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flocculation. The reduction in flow leads to deposition of fine sediments and if sediment 

discharges are large, extensive deltas can accumulate (e.g. where the Nile enters the 

Mediterranean Sea). 

Partially mixed estuaries occur when the local tidal range and hence currents are significant 

causing mixing between the fresh and saline water. In addition to current shear stresses at 

the interface between fresh and saline water bodies, turbulence and shear stresses caused 

by friction at the estuary bed result in further vertical mixing (Brown et al., 1997). Isohalines 

in the estuary are distorted longitudinally by the seaward flow of fresh-saline mixed water at 

the surface and the corresponding landward flow of the saline-fresh mixed water beneath 

(Brown et al., 1997). The origins of sediments in partially mixed estuaries can be from either 

fluvial or marine sources. The flow landwards of saline water can be sufficient to move 

sediments up-estuary (Brown et al., 1997), fluvial sediments flocculate as they are mixed 

into more saline water. In some estuaries a turbidity maximum is formed where residual 

flows are low and sediment transport ceases, turbulence at this location, along with the 

high concentration of suspended sediments, enhance the flocculation of cohesive sediments 

(Brown et al., 1997). This turbidity maximum can migrate within the estuary depending on 

the spring/neap tidal cycle and enhanced/decreased river flows. 

Well mixed estuaries have little vertical stratification between saline and freshwater due to 

the strong tidal flows with relation to river flows. However, as a result of the Coriolis force 

horizontal stratification can occur as more saline water flows into the estuary on the 

flooding tide on the right side (facing landwards, Northern Hemisphere), with any fluvial 

discharge flowing on the left (Brown et al., 1997), leading to a horizontal residual 

circulation. Thus marine sediments are deposited on the right of the estuary and fluvial 

sediments deposited on the left. 

2.1.1.4   Extreme events 

Extreme events range in both time and spatial scale and despite being generally of low 

occurrence can have a disproportionately large impact on the coastal landscape (Woodroffe, 

2002). Events range from extreme impact but very low occurrence phenomena, such as 

volcanic eruptions and tsunamis, to medium scale impact and occurrence, such as 

hurricanes and cyclones, to moderately frequent storms, high winds, rainfall and surges.  

Determining how significant high magnitude, low frequency events are, is difficult as they 

are non-linear (Woodroffe, 2002), with coastal systems exhibiting a range of sensitivity to 
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changes in salinity, water quality, tide height and hence hydroperiod, sediment supply and 

ability to withstand strong currents and wave energy. Micro-tidal habitats are likely to be 

particularly sensitive to extreme events, with habitats submerged for long periods during 

storm surges and prolonged spring high tides. 

These extreme events can be catastrophic and long reaching for coastal habitats, Woodroffe 

(2002) discusses several examples of hurricanes and cyclones devastating mangroves, with 

negligible re-establishment over 30 years later. However, in contrast small frequently 

occurring wave events play a significant role in the resuspension of bed sediments (Green, 

2011) and therefore over a long time scale will also have a significant effect on morphology 

(Fagherazzi et al., 2006). 

2.1.2 Estuarine Morphology 

Estuarine morphology is a result of interactions between sediments and non-linear tidal 

propagation, (Dronkers, 1998). As discussed in the previous section, non-linear tidal effects 

can lead to a tidal distortion or asymmetry where flood and ebb duration are unequal, 

resulting in velocity differences during each stage of the tide. Friedrichs (2011) notes that 

flood/ebb dominance plays a pivotal role in estuarine sediment transport and 

morphodynamics. Waves are also a critical forcing factor in shaping estuarine morphology 

(Fagherazzi et al., 2006, Fagherazzi and Wiberg, 2009, Swales et al., 2004, Roberts et al., 

2000). In this section the role of waves and tides are discussed in terms of estuarine 

morphology. 

2.1.2.1   Sediments  

Sediment Sources and Types 

Sediments in estuaries can be from a combination of many different sources, including from 

the catchment and rivers, localised cliff erosion or from a seaward source, but will vary 

greatly in both type and volume between different systems.  Both cohesive (mud, silt, clay) 

and non-cohesive (sand, gravel) sediments are found within estuaries. However, they behave 

in significantly different ways with regards to sediment transport.  
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Sediment Transport 

The movement of sediment on the seabed begins when the shear stress (τ
0

) becomes 

sufficiently great to overcome the frictional and gravitational forces holding the grains on 

the bed, this value is the critical shear stress (τ
c

). Therefore for any given sediment there will 

be a critical shear velocity (u
*c

) which determines sediment movement, (Soulsby, 1997). 

The relationship between grain size and critical shear stress is not a linear one, particularly 

for cohesive sediments such as silts and clays that are found on mudflats and in 

saltmarshes. Although individual particles of cohesive sediments are by definition small, 

comprising clays (0.0005mm-0.002mm), silts (0.002mm-0.0625mm), and sometimes a 

subsidiary amount of sand (>0.0625 mm) (Brown et al., 1997), there are strong binding 

forces that hold the grains together once they have been deposited. They are lifted as 

flocculates or clumps and if they have become partially consolidated, such as on exposed 

mud flats, then they require high shear velocities in order to initiate transport. So although 

the particles only take a small velocity to transport them in water, once deposited are not 

easily eroded despite the fine grain size, this process is called scour lag, (Woodroffe, 2002). 

The cohesion of these very fine grained sediments is also influenced by water content, 

mineral composition, biological factors and salinity of overlying water and water trapped 

between the grains, (Brown et al., 1997). Mud and silts are generally transported as a 

suspended load. However, when the shear stress falls beneath the critical depositional shear 

stress is the sediment will begin to settle towards the bed. The sediment will continue to be 

transported for a time, this processes is called settling lag, and can be particularly 

important in sediment deposition within estuaries. Lags of up to 1.3 hours between 

maximum currents and peak suspended sediment concentrations have been recorded, 

(Mantovanelli et al., 2004). It was also observed that current velocities less than 0.2 m/s 

indicated periods of slack water where sediment mixing was suppressed.  Widdows et 

al.(1998) deployed in-situ flumes in the Humber Estuary to measure critical erosion 

velocities, where an average critical velocity of 0.31 m/s was recorded on the upper shore 

immediately below the saltmarsh, and an average of 0.235 m/s on the mid shore, 

respectively. Other deployments found that a marked reduction in the critical erosion 

velocity from 0.26 m/s to 0.15 m/s between ridge and pool areas, where the pool areas are 

constantly submerged and the ridge areas are exposed to air for around 7 hours per tidal 

cycle (Widdows et al., 1998). 
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Sediment transport for non-cohesive sediment such as sand initiates when the value of the 

bed shear velocity just exceeds the critical threshold of motion, particles are carried along 

the estuary bottom via saltation as bed-load.  As the velocity increases the sediment 

particles are taken into suspension as suspended load (van Rijn, 1984). As tidal velocities 

decrease, sand grains settle more rapidly than mud particles and thus the transport of sand 

adjusts to the hydrodynamic fluctuations much more quickly 

In reality estuarine sediments are often a combination of cohesive and non-cohesive 

sediments which make studying these systems more complex, furthermore the mix of 

sediment can vary both spatially and temporally. The critical shear stress for erosion of 

mixed mud and sand sediments was studied by Panagiotopoulos et al. (1997) where an 

increase in the critical shear stress was found with an increase in mud content. As the mud 

fraction increased, (> 30%), the available space between the sand grains decreased until they 

were no longer in contact and the mix essentially behaving  as a cohesive sediment (Waelas 

et al., 2007). Conversely it was found in experiments by Torfs et al. (2001) that for very 

small mud fractions (< 5%) within a sandy substrate, that the critical shear stress for erosion 

was lower than for pure sand. This was attributed to a reduction in friction between grains, 

with mud particles acting as a lubricant for the sand grains. Manning and Schoellhamer. 

(2013) investigated settling velocities with varying sediment sand/mud mixtures, for both 

microflocs (D<160 µm) and macroflocs (D>160 µm). Microflocs with a mix of sand and mud 

had higher settling velocities than microflocs consisting of 100% mud, whereas macroflocs 

consisting of a mix of sediments had a lower settling velocity than macroflocs consisting of 

100% mud. 

2.1.2.2   Cross shore profile 

As discussed in Section 2.1.1.2, sediment transport can occur due to spatially varying 

sediment concentrations driving sediment from areas of high concentration to areas of low 

concentrations (Friedrichs, 2011) e.g. seaward transport of sediments from intertidal to 

subtidal areas during energetic wave events (Janssen-Stelder, 2000). Simplified modelling of 

one dimensional cross sections (Roberts et al., 2000, Kirby, 2002, Le Hir et al., 2000) and 

two dimensional basins (Mariotti and Fagherazzi, 2013a) shows that a spatially consistent 

value of bed shear stress (i.e. no sediment concentration gradient and therefore no 

advection) occurs for different shaped profiles depending on whether the hydrodynamics 

are dominated by waves or tides. These analyses concluded that a high concave up cross 

shore profile occurs due to tides and/or an accretional regime and a convex up cross shore 
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profile occurs due to waves and/or an erosional regime (Figure 2.4). These analytical 

approaches are supported by empirical data, for example the study conducted by Bearman 

et al. (2010), in San Francisco Bay.  Figure 2.4 summarises the morphological difference 

between an accreting or eroding shoreline.  

 

Figure 2.4 Conceptual model of mudshore equilibrium shape (the Mehby Rule), 

contrasting shape of accreting / tidally dominated and eroding / wave dominanted 

shores. (From Kirby, 1992). 

2.1.2.3   Hypsometry 

Hypsometry measures the cumulative area of the tidal basin with relation to elevation and 

allows a non-dimensional representation of tidal flat morphology to be produced. This can 

then be directly compared to different systems at different scales (Friedrichs and Aubrey, 

1996). 

Strahler (1952) describes the use of hypsometry to analyse the morphology of drainage 

basins, where the percentage hypsometric curve ‘relates horizontal cross-sectional area of a 

drainage basin to relative elevation above basin mouth’. Dimensionless parameters allow 

curves to be described and compared regardless of original scale, with curves showing 

distinctive differences in sinuosity of form and proportionate area below the curve, (Strahler, 

1952). Different forms could be linked to stages of estuary development with a young 

estuary exhibiting little sediment infill and a mature estuary typified by large volumes of 

sediment infill. 
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Several more recent studies have investigated the application of empirical formulae to 

hypsometrical relationships in estuaries including (Boon and Byrne, 1981, Townend, 2008, 

Wang et al., 2002). Other studies including (Eiser and Kjerfve, 1986, Friedrichs and Aubrey, 

1996, Boon, 1975) also discuss the role of saltmarsh and intertidal storage areas, with 

relation to hypsometry. Boon and Byrne (1981) derived a technique to calculate the 

hypsometric curve for estuaries, following equations 2.1-2.3: 

a/A = G/(r+G(1-r)                                                                                             Equation 2.1 

where;  G=(1-h/H)
γ                                                                                                                                                                                      

Equation 2.2
 

 

            r=A
min

/A                                                                                               Equation 2.3
 

Where h=height above minimum basin elevation, H=height between maximum and 

minimum basin elevation, A=total/maximum basin area, A
min

=minimum basin area, a=basin 

area lying below contour at height h, and γ=factor controlling the area below the 

hypsometric curve (i.e. the volume of sediment in the basin, Figure 2.5).  

 

 

 

Figure 2.5 Derivation of the dimensionless parameters used in equations 2.1-2.3. 

 

The parameter γ is calculated using curve fitting, this can be used to describe the 

morphological state of the estuary. An estuary where γ=3.5-5.0, will be little in-filled and 
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flood dominant, while an estuary where γ= 1.8-2.5 will be well in-filled and will be ebb 

dominant. Hence, this method may give some insight into the future evolution of an 

estuary. Hypsometry can be simply observed by plotting x= a/A and y=h/H, where a= cross 

Sectional area at height h, A is the total area of the basin and H the total height of the basin. 

This results in a hypsometric curve allowing the comparison of the forms of basins of 

different sizes and elevations (Strahler, 1952). Moore et al. (2009), applied this method to 

the Dee estuary, usually categorised as flood dominant. However, it was found that γ= 2.2 

and so it could be reaching morphological equilibrium and possibly switching to an ebb 

dominant phase. This could result in a decrease in accretion and possible erosion in the 

future. 

2.1.3 Estuarine Habitats 

Estuaries are among the most biologically productive ecosystems on the planet, per unit 

area, with intertidal habitats supporting large numbers of both primary and secondary 

producers. These habitats are globally important and are found throughout tropical to 

temperate climates. The broadscale global distributions of saltmarsh, mangrove and 

seagrass habitats are illustrated in Figures 2.6-2.8. 

The upper reaches of temperate-latitude estuaries tend to be dominated by mildly salt 

tolerant species such as reedbeds. As salinity increases, intertidal saltmarsh communities 

dominate, this is replaced in tropical and subtropical latitudes by mangroves. In the 

shallow sub-tidal region seagrass communities and macroalgae inhabit mudflat and 

sandbars. Subtidal sandbar and mudflat communities may also be colonised by 

epipsammic algae, consisting of benthic diatoms or colonised by thick biomats of algae.  

In this study saltmarshes are the primary focus, however many of the drivers and 

mechanisms that affect saltmarsh stability are also relevant to other intertidal habitats such 

as seagrass and mangroves. 
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Figure 2.6 Global saltmarsh abundance (Data derived by The Nature Conservancy and 

UNEP World Conservation Monitoring Centre, published in The Atlas of Global 

Conservation http://nature.org/atlas. (Hoekstra et al., 2010) 

 

Figure 2.7 Global distribution of mangroves (Data source: International Union for 

Conservation of Nature and Natural Resources http://www.iucnredlist.org 

http://www.iucnredlist.org/
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Figure 2.8 Global distribution of seagrass (Data source: International Union for 

Conservation of Nature and Natural Resources http://www.iucnredlist.org/technical-

documents/spatial-data#seagrasses). 

2.1.3.1   Saltmarshes 

Saltmarshes are defined as intertidal areas of fine sediments stabilised by characteristically 

halophytic vegetation, and are widely developed in low-energy environments where wave 

action is limited (Boorman et al., 1996). The upper limit of saltmarsh colonisation appears 

to be determined by interspecies competition with terrestrial plants at higher elevations, as 

they are less well adapted to those conditions (Hughes and Paramour, 2004). However, this 

upper limit can often be roughly defined as the level of highest astronomical tide. The 

relative positioning of mudflats and saltmarsh within the tidal frame is illustrated in Figure 

2.9. 
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Figure 2.9 Typical natural upland to tidal flat profile in North West Europe. The 

different saltmarsh zones are indicated, adapted from Williams and Lester, (1994). 

Saltmarshes can be found across coastal regions of the world (Figure 2.6), with a 

considerable range in terms of species composition and plant community structure 

(Boorman, 2003, Dijkema, 1987). More temperate marshes tend to have fewer species and a 

simple structure greatly influenced by the limited growing season. Sub tropical marshes 

tend to have a much wider range of species and are characterised by all year growth 

(Boorman, 2003). 

Within Europe the EC Habitats and Species Directive requires member states to designate 

areas of importance, including saltmarshes, for particular habitats and species as Special 

Areas of Conservation. Together with Special Protection Areas designated under the 

Conservation of Birds Directive, these areas form a Europe wide network known as ‘Natura 

2000’. These set out measures to maintain at, or restore to a ‘favourable conservation 

status’ these designated sites and requires appropriate steps to avoid destruction or 

deterioration of habitats. Saltmarshes provide important ecosystem services being 

important habitats within the coastal zone, both as protected areas for wildfowl species, 

nurseries for fisheries stocks and providing an important component of coastal protection 

via wave dissipation (Moller et al., 2001). 

Saltmarsh distribution across Great Britain has been described in several studies (Boorman, 

2003, Burd, 1989, UK National Ecosystem Assessment, 2011). They are found all around the 

coastline of Great Britain, and vary considerably in character, Boorman (2003), describe 
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essentially two types of saltmarsh, lowland and upland. Lowland marshes being associated 

with major estuaries in low lying areas such as the Wash, Essex, North Kent, the Solent, the 

Severn estuary Liverpool Bay and the Solway Firth. Upland areas are described as being 

scattered in distribution with small isolated marshes associated with minor estuaries or at 

the heads of sea lochs. Patterns of saltmarsh evolution are locally or regionally based, 

however it is clear that in areas where relative sea-level rise and constraints on saltmarsh 

migration are present, there will be a tendency towards low-level and often degenerating 

marsh forms (Boorman, 2003).  

2.1.3.2   Saltmarsh change and conceptual model 

Many of the UK’s saltmarshes were altered as a result of the introduction of cord grass 

Spartina alterniflora by ship from America in the early 19th century. Hybridisation occurred 

with the native Spartina maritima and the first specimen of Spartina anglica was collected 

from Lymington, Hampshire, UK in 1892 (Gray et al., 1991). Rapid expansion followed along 

the South coast of the UK, including Pagham, Christchurch and Poole Harbour (Oliver, 

1925). Migration across the English Channel also occurred with records of Spartina anglica 

in the River Orne, on north coast of France and at the mouth of the River Seine (Oliver, 

1925). By the mid 1960’s it is estimated that there was 4000 to 8000ha of saltmarsh in the 

estuaries on the north coast of France (Ranwell, 1967). However the worldwide distribution 

and spread of Spartina has been influenced and altered by the deliberate introduction of the 

species, as a method of reclaiming mudflats for agriculture (Gray et al., 1991). Spartina 

anglica is now found across Europe (Nehring and Hesse, 2008) and the world, in countries 

including Australia (Hedge and Kriwoken, 2000, Kriwoken and Hedge, 2000), New Zealand 

(Lee and Partridge, 1983 , Swales et al., 2004) China (Chung, 2006) and the US (Daehler and 

Strong, 1996). In the UK rapid expansion of Spartina anglica led to it becoming a dominant 

saltmarsh species, but this was followed by extensive die-back, the causes of which are still 

not clear (Fowler, 2000).  

Since the expansion of Spartina anglica saltmarsh has generally declined in area within the 

UK (UK National Ecosystem Assessment, 2011), studies in south-east England have 

calculated rates of loss of about 40 ha year-1 for the past 50 years (Royal Haskoning, 

2004a, Pye and French, 1993). Studies in the Solent region illustrate how some saltmarshes 

have halved in area since 1970 (Baily and Pearson, 2007, Royal Haskoning, 2004a, Cope et 

al., 2008). 
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A conceptual model has been developed, using a driver-mechanism-outcome framework 

(Figures 2.10 and 2.11). Drivers are classed as either natural or human, although it is 

important to note that these are not isolated and have direct links to one another. Natural 

drivers force humans to migrate and adapt to the environment, whereas through the 

burning of fossil fuels and the development of agriculture, humans have increased global 

atmospheric concentrations of carbon dioxide, methane and nitrous oxide, leading to 

anthropogenic induced climate change which intrinsically affect the natural drivers.  

Human drivers for saltmarsh change are ultimately controlled by societal, economic and 

policy decisions which drive development in coastal and catchment regions, agriculture, 

fisheries, pollution, invasive species. Human drivers can also be positive through the 

conservation and designation of habitats and species, with requirements for re-creation of 

habitats affected by development through conservation policies such as realignment and 

habitat recreation. 

Natural drivers of saltmarsh change act over broad timescales, from short term drivers such 

as meteorology, which control physical mechanisms such as estuary and coastal 

morphology and hydrodynamics. Medium scale drivers include natural cycles of climate 

change and sea level rise and astronomical affects such as tidal variation, (e.g.  18.6 year 

lunar nodal cycle and Milankovitch cycles). Over long time scales evolution of saltmarsh 

species and geological changes also act as a natural driver. These processes can also be 

directly linked to human drivers, through the migration and adaptation of people and 

development geographically. 

These drivers can either have a direct mechanistic effect on saltmarsh, eg reclamation of a 

marsh area for development where the habitat is directly destroyed. There are also many 

complex indirect mechanisms that can have linear and non-linear effects on the saltmarsh 

habitat. Finally within the conceptual model a saltmarsh state is observed, this will depend 

one spatial and temporal time scales, as different mechanisms and drivers out-weigh one 

another in importance, depending on the location and time. 

Mechanisms of saltmarsh change broadly fall into three categories driven by, physical, 

biological and chemical processes. Key mechanisms for each of these three categories are 

discussed and an attempt at illustrating how they are interlinked with other mechanisms is 

shown in Figure 2.10. The non-overlapping regions in Figure 2.10 highlight mechanisms 

that act purely on some aspect of the estuary to bring about saltmarsh change, e.g. where 
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agriculture allows livestock to trample and feed on the saltmarsh this is a biological 

mechanism. In areas where 2 or even 3 of the biogeochemical mechanisms overlap this 

indicates that there are feedbacks, which are potentially complex e.g. an increase in sewage 

has been linked to an increase in bioturbators, which in turn destabilise sediments and thus 

destabilise creek systems (Beardall et al., 1988) The list and model presented are by no 

means exhaustive, the field of saltmarsh change mechanisms crosses many disciplines, with 

many of the complex feedbacks still unknown or unquantified.  

Physical mechanisms 

With rising sea levels, a lack of available accommodation space for habitats to migrate into 

is a challenge, which can lead to saltmarshes drowning if there is a lack of sediment in the 

system (Ravens et al., 2009).  This process is termed ‘Coastal squeeze’ and it is driven by 

climate change and sea level rise, coastal squeeze is predicted to become more important 

as sea levels rise further in the future (Townend et al., 2007, Long et al., 1999, Morris et al., 

2002, Pethick, 1981). Other development issues include dredging and disturbance resulting 

in changes to the tidal prism that has been linked to marsh front retreat (Cox et al., 2003, 

Pethick, 1994). 

However, the presumption that historic saltmarsh loss is mainly due to coastal squeeze, 

where seawalls prevent the migration of saltmarsh landward in response to sea-level rise 

may be over simplified. The pattern of vegetation loss, primarily of pioneer species, is 

opposite of what it should be, where upper plants are squeezed out first (Hughes and 

Paramour, 2004). Also decline has occurred in areas where there is ample sediment 

available for the marshes to accrete and yet they do not (Hughes and Paramour, 2004). 

However, coastal squeeze may become an increasingly major factor in saltmarsh loss over 

the next century. In England, flood defences have removed most opportunities for natural 

landward migration, (Nicholls and Wilson, 2001, Lee, 2001). Further, while most previous 

research has tended to focus on single drivers, multiple drivers may be in operation. Hence, 

it is important that trends in coastal ecosystems, including saltmarshes, are rigorously 

investigated and analysed using historic data sources. Historic saltmarsh changes have been 

studied at a spatial scale in the Westerschelde (Netherlands) (van der Wal et al., 2008). In 

this study a relatively short time period, 30 years, was used. However, the study 

demonstrated the necessity to consider the local feedback mechanisms between plant 

growth, morphology and hydrodynamics of both the saltmarsh and the mudflat, when 

assessing the status of saltmarshes 
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Meteorological drivers and mechanisms include cyclic- el Nino, la Nina and ENSO events 

alongside extreme weather events such as cyclones and surges. These affect the seasonal 

fluctuations of temperature, precipitation and U.V. and can have significant affects on the 

salinity of the marshes and surrounding estuary. As salinity affects osmotic adjustment in 

saltmarsh plants (Reed, 1990, Vasquez et al., 2006) these are important factors. 

Storms and extreme events also supply important sediments to the marshes (French, 2006). 

Increased turbidity and sediment supply may help the marshes to accrete (Anderson 1972, 

Ward et al 1984, Burd 1992, Swales et al 2004) however locally produced wind-wave 

exposure can cause erosion of the marshes (Fagherazzi and Wiberg, 2009, Mariotti and 

Fagherazzi, 2010, Mariotti and Fagherazzi, 2013b, Tonelli et al., 2010) and have many 

feedback effects on an estuary. Waves from boat wakes have also been shown to result in 

marsh front erosion (Ravens et al., 2009)  

Increased wave action, particularly at the seaward edge, has been suggested to contribute 

to saltmarsh decline (Burd, 1992). Studies in Manukau Harbour, New Zealand (Swales et al., 

2004) have also linked wave energy gradients with spatial differences in long-term Spartina 

growth. However, lateral erosion has been observed in both exposed and sheltered 

locations (Burd, 1992) and in areas where there is sediment sufficient for the mudflats to 

accrete in pace and so this cannot simply be due to sea-level rise leading to greater wave 

attenuation at the marsh front at these locations. However it may be a contributing factor in 

areas that are exposed and have seen a drop in mudflat profile, physically or relative to sea 

levels. Since the 1930s intertidal sea grass beds have also declined in abundance and 

distribution (Hughes et al., 2000). This may also contribute to increased wave attenuation at 

the marsh front. 

Sediment distribution is also  facilitated by tidal asymmetry and the relative slack water 

durations between flood and ebb dominance  affecting the sediment settling lag (Aubrey 

and Speer, 1985, Dronkers, 1986, Voulgaris and Meyers, 2004, Wang et al., 2002). 

Complex feedbacks between meteorology, geography and astronomical effects all act on 

the hydrodynamics of an estuary which can affect propagule supply and hence marsh 

distribution (Rand, 2001). This process can also facilitate the spread and distribution of 

predator larval species (eg snails, crabs and bivalves) that may feed on or damage the 

marshes and the sediments they inhabit.  
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Variations in tidal range including microtidal vs macrotidal spring/neap cycles and18.6 year 

cycles (Morris et al., 2002) along with the relative morphology of the setting dictate where 

saltmarshes are likely to inhabit. With large areas available in gently sloping estuaries with 

large tidal ranges and smaller areas suitable in steep sided estuaries with smaller tidal 

ranges. The geographical and latitudinal positioning can also influence the local 

saltmarshes with  low-latitude marsh plants less palatable (Pennings and Silliman, 2005) and 

so less likely to be eaten by predators, but then they are susceptible to ice damage (Adam, 

1990). 

Biological Mechanisms 

Biological mechanisms tend to either have a direct impact on the marshes or in some way 

affect the sedimentology or chemistry that control saltmarsh health.  

Poaching and physical damage to saltmarsh occurs from livestock such as sheep and cattle 

(Kiehl et al., 1996, Ranwell, 1961). As well as from deer and other wild animals (Diaz et al., 

2005). Some parasitic plants have been recorded limiting the abundance and distribution of 

host saltmarsh plants (Callaway and Pennings, 1998).  

Direct herbivory of saltmarsh plants also occurs from geese (Kerbes et al., 1990), crabs 

(Bortolus and Iribane, 1999), snails (Silliman and Zieman, 2001), beetles (Rand, 2001), 

ungulates and livestock sheep (Turner, 1987). Where these species go unchecked due to the 

decline in major predators they can cause considerable damage e.g. an increase of 

population of herbivorous crabs feeding on saltmarshes was caused by the over fishing of 

top predatory fish (Altieri et al., 2012). Bioturbation and herbivory by species such as Nereis 

diversicolor  (Paramour, 2002, Paramour and Hughes, 2004) , particularly in areas where 

this species may be in abundance due to sewage pollution (Beardall et al., 1988) is another 

possibility. Studies have shown that not only does Nereis diversicolor  disrupt pioneer 

species, but they can also contribute to creek erosion (Paramour and Hughes, 2004). 

As previously discussed, wave action can lead to the erosion of the marsh fringe, in regions 

that have seen a decline in sea grass beds there will be an increase in wave exposure of the 

marsh edge (Waycott et al., 2009). Saltmarsh sediments are sensitive to changes in 

chemistry, during macro algae blooms lack amounts of nitrogen are released causing 

eutrophication of marsh sediments(Jones and Pinn, 2006, Newton and Thornber, 2013).  
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Cohesive sediment flocculates consist of both organic and inorganic material affecting 

settling and scour of sediments including organic coatings influencing the electrostatic 

stability of the particles (Gibbs, 1977, Loder and Liss, 1985, Neihof and Loeb, 1972), 

polymer bridging(Alldredge et al., 1988, Gregory, 1978) and faecal pellet production by 

filter feeders (Martens and Krause, 1990). How sediments flocculate and their behaviour 

with regards to settling velocity and shear threshold are critically important to how 

saltmarshes accrete. 

Chemical Mechanisms 

Chemical mechanisms often affect the saltmarsh directly, but can also have an impact on 

the sediment properties and other species within the estuary which in turn affects the 

saltmarsh distribution indirectly. 

The increased use of agricultural herbicide, has directly lead to a decline in the ability of 

saltmarsh plant to photosynthesise (Mason et al., 2003). The use of agricultural herbicide 

has also led to a decline in microphytobenthos, and epipelic diatoms which play a role in the 

flocculation of cohesive sediments, resulting in lower sediment stability (Mason et al., 

2003). Heavy metals have also be shown to inhibit photosynthetic activity in marsh 

species(Weis and Weis, 2004). Heavy oiling, reported after the Deepwater Horizon spill, 

caused almost complete mortality of Spartina alterniflora and Juncus roemerianus species 

(Lin and Mendelssohn, 2012). 

Nutrient enrichment leads to more vigorous saltmarsh growth. However, fewer roots and 

rhizomes are formed and this weakens sediment cohesion (Deegan et al., 2012). Added 

nutrients also boost microbial decomposition of leaves stems and biomass, destabilising 

creek banks (Deegan et al., 2012)  

Bioturbation and herbivory by species such as Nereis diversicolor  (Paramour, 2002) and 

(Paramour and Hughes, 2004), particularly in areas where this species may be in great 

abundance due to sewage pollution (Beardall et al., 1988) may be another alternative. 

Studies have shown that not only does Nereis diversicolor  disrupt pioneer species, but they 

can also contribute to creek erosion (Paramour and Hughes, 2004). Salinity also affects both 

the growth and biomass of saltmarsh species and estuary macroinfaunal species such as 

decapods and polychaetes (Reed, 1990, Rutger and Wing, 2006, Vasquez et al., 2006).  



Chapter 2 Literature Review 

[32] 

 

 



Chapter 2 Literature Review 

[33] 

 

 

                             Figure 2.10 Key biogeochemical mechanisms of saltmarsh change and their interactions (blue indicates natural drivers, pink human drivers, see figure 2.11
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Figure 2.11 Conceptual model of saltmarsh loss 
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2.2 Estuarine Modelling 

Mathematical models are widely used to represent estuarine processes. Numerical estuarine 

models can be split into three different categories process based models (bottom-up 

models), regime or systems approach models (top-down models) and hybrid models which 

combines elements of both process and regime models.  

Process based (bottom-up) models aim to replicate physical processes by solving a set of 

equations that describe water and sediment movement.  The basis of process models is 

usually a hydrodynamic module that represents parameters such as water levels, 

discharges, currents, waves, density currents and secondary circulation, this can then be 

coupled to a sediment transport and morphological model to predict changes to 

sedimentary processes (Cronin et al., 2007, Cronin et al., 2009, ABPmer, 2008)  Examples 

of process based models include Delft 3D, MIKE and TELEMAC.  

Regime or equilibrium models assume that the estuarine system is approaching a target 

state of equilibrium therefore based on the dimensions and hydrodynamics within the 

estuary it is possible to predict this future equilibrium form of the estuary (ABPmer, 2008).  

A number of hybrid models that combine regime (or equilibrium) theory with 

hydrodynamics have been developed so that the long-term predictive capability of regime 

models are combined with a more detailed description of the prevailing hydrodynamics 

(ABPmer, 2008).  When using a hybrid regime model it is common to define the equilibrium 

or target state of the estuary and then use a hydrodynamic model in a iterative process that 

continually adjusts conditions towards this defined morphological state (O'Connor et al., 

1990, Spearman et al., 1998). 

An example of a regime model that has been used to assess the critical rate of sea-level rise 

that triggers the loss of intertidal volume within estuaries is ASMITA (Aggregated Scale 

Morphological Interaction between Inlets and Adjacent coast), (Rossington, 2008, 

Rossington and Nicholls, 2007). It was first presented as a behaviour-based model and 

consists of a schematised tidal inlet system with three main morphological elements, ebb-

tidal delta volume, channel volume and flat volume (Kragtwijka et al., 2004).  These 

elements are described by one variable representing their morphological state. A major 

assumption is that under constant hydrodynamic forcing each element tends towards a 

morphological equilibrium which can be defined as a function of hydrodynamic forcing and 

basin properties (van Goor et al., 2003). 
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As described in Section 2.1 estuarine processes are complex with linear and nonlinear 

biogeomorphological feedback mechanisms and therefore it is inevitable that the models 

are simplified and rely on inherent assumptions (Cronin et al., 2009). Process based 

morphological models in particular aim to replicate these complex feedback systems and 

the outcome of morphological modelling is highly dependent on the way these feedbacks 

are represented within the model. The models are also extremely sensitive to other factors 

such as grain size distribution, entrainment properties of cohesive sediments, compaction 

and flocculation processes (Coco et al., 2013, Cronin et al., 2009).   

Process based models are usually more suited to short-term (days to months) predictions of 

morphological change as over longer time scales any prediction errors will accumulate and 

become amplified (ABPmer, 2008).Therefore the operation of a process based model 

requires a thorough understanding of the estuaries behaviour, in both morphological and 

hydrodynamic terms.  This enables the model to be calibrated and validated and thereby 

reduces the accumulation of errors when making long-term predictions. 

More recently coupled geomorphological and ecological process models are being 

developed as predictive models of landform evolution (Fagherazzi et al., 2012). However 

these are still extremely simplified in terms of sediment transport dynamics, with the need 

to account for more complex cohesive sediment behaviour. The inclusion of the temporal 

variability of drivers such as storms is needed, and to account for the expansion of the 

channel network, wave scour and lateral erosion of the marsh edge (Fagherazzi et al., 

2012). 

Despite the shortcomings, numerical models are useful in understanding the behaviour of 

estuarine systems and the processes that drive morphological change, particularly when 

used in conjunction with an historical analysis of change and field observations (Cronin et 

al., 2009) 

2.3 Summary 

The main natural mechanisms controlling estuarine form and evolution is the non linear 

feedback between hydrodynamics and morphology, including tides, waves, estuarine mixing as 

well as the type and amount of sediment available.  Hence, these are critical in understanding 

saltmarsh change. A conceptual model has been developed which shows that where and how 

saltmarshes and coastal habitats form, are controlled through complex feedback systems, 
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including biological, physical and chemical mechanisms (Figure 2.10), driven by both human 

and natural drivers (Figure 2.11).  This conceptual model will be applied to the study site in 

Section 3. 

Mathematical models are widely used to represent estuarine processes and despite the 

limitations the careful use in conjunction with other sources of data and analysis provides 

useful insight into saltmarsh change. 
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3 Site Selection 

In order to study the physical drivers of saltmarsh changes in a micro-tidal estuary a suitable 

case study site will be selected. Criteria for the choice of case study site are determined through 

two factors; local management issues involving saltmarshes and data availability. Saltmarsh 

management issues to be considered include; regions of human impacted saltmarsh (such as 

seawall construction, dredging and marina/port development) as well as pristine saltmarsh in 

close proximity, saltmarsh with varied aspect and distribution throughout the estuary, 

saltmarsh of high quality and habitat designation. Considerations for data include the 

availability of: historic aerial photographs, maps and charts, bathymetric/topographic data such 

as LIDAR, some knowledge of the basic hydrodynamic processes, and potential existing models 

of the estuary that can be utilised and accessibility for field data. 

Due to constraints regarding accessibility for field data collection, the choice of estuary was 

narrowed to those on the South coast of the UK, the advantages and disadvantages of these are 

outlined in Table 3.1. The main limiting factor was the requirement for a micro-tidal climate and 

after assessing the estuaries Poole Harbour was identified as a appropriate case study site.  

Poole Harbour was chosen as a suitable study area for three main reasons. Firstly it has large 

areas of pristine saltmarsh on the southern and western sides with little human impact. Yet the 

northern and eastern sides hold large urban populations and an active and expanding ferry 

port. The saltmarshes in Poole Harbour are extensive and varied in aspect with both pristine 

areas as well as those impacted by dredging, reclamation and coastal squeeze along seawalls 

and although previous reports on saltmarsh trends exist for the Harbour (Born, 2005, Hubbard, 

1965, Burd, 1989, Edwards, 2005) they are generalised and do not examine the saltmarsh 

changes within a spatial context. Secondly data availability was good for Poole Harbour, with 

readily available historic aerials for three years throughout the 20
th

 Century. Thirdly the 

hydrodynamics in the Harbour are well characterised through previous numerical modelling 

conducted by Falconer (1986b) and HR Wallingford (2004).  

Table 3.1 Case study site selection criteria 

Site Advantages Disadvantages 
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Pagham 

Harbour 

Studies underway by the Environment 

Agency and Royal Haskoning, with 

conceptual and tidal models being 

developed. Major management 

issues. 

Models not yet fully 

developed 

Chichester 

Harbour 

ASMITA model applied (Rossington, 

2008), intertidal area mapped. 2D 

TELEMAC flow model developed by 

HR Wallingford 

Some historic aerial 

photography available, but 

further research required to 

assess dates and timescales. 

Langstone 

Harbour 

ASMITA model applied (Rossington, 

2008). Quite a lot of research on 

habitats, Spartina dieback noted. 

Lacks pristine saltmarsh 

environment to compare to 

the human impacted regions.  

Some historic aerial 

photography available, but 

further research required to 

assess dates. 

Portsmouth 

Harbour 

Management issues and Spartina 

dieback recorded, but with limited 

data on the health of the plants  

ASMITA model applied (Rossington, 

2008) 

Lacks pristine saltmarsh 

environment to compare to 

the human impacted regions 

Southampton 

Water 

Major management issues, port 

development,  large local population.  

ASMITA model applied (Rossington, 

2008). Spartina dieback recorded 

and highly designated. 

Very large estuary, with sub-

estuaries, Hamble, Itchen. 

Saltmarsh development 

previously well studied 

(Williams, 2006 ) 

Beaulieu 

River 

Some localised studies of saltmarsh 

habitats and CASI classification 

Lacks major management 

issues on a regional scale. 

Lacks extensive historic 

datasets and models 

Christchurch 

Harbour 

Detailed sediment analysis in the 

Harbour. Recorded tidal asymmetry 

at the mouth so potentially also 

throughout the Harbour. 

Some Spartina dieback, 

however not extensively 

recorded. 

Poole 

Harbour 

Large Harbour with varied aspects, 

both pristine saltmarsh and human 

impacted. Seawalls, dredging and 

reclamation. Some historic datasets 

including aerial photography. 

Bathymetry available from Poole 

Harbour Commissioners. Two models 

independently developed to observe 

impacts of dredging and pollution, 

respectively, by HR Wallingford and 

Falconer and Liu (1995). Microtidal 

and therefore vulnerable to sea-level 

rise. 

Large and potentially 

complex 

Newtown 

Harbour 

Highly designated saltmarsh regions 

of both Spartina anglica and 

Spartina maritima. Some historic 

management issues with realignment 

Limited historic data 

available, no existing models. 

Limited human impacts, in 

comparison to other local 



Chapter 3 Case Study-Poole Harbour 

[40] 

 

(and more recent, unplanned seawall 

breaching resulting in new saltmarsh 

colonisation) 

estuaries 

Medina 

Estuary 
 Small estuary 

Western Yar 

Estuary 

Studies on sediment rates Port 

management issues, some habitat 

mapping with Spartina dieback 

noted. 

Small estuary 

All these features allow for a broad-scale spatial study of saltmarsh change that will be 

applicable to many other estuaries both in direct comparison and at a conceptual level. It is also 

relatively unique in the UK in that it is micro-tidal, making it particularly vulnerable to sea-level 

rise. However, globally there are many regions that support coastal habitats within a microtidal 

climate (e.g. Mediterranean, Baltic, Southern Australia and the Caribbean) all of which are 

sensitive to changes in sea level. Hence, an understanding about the processes and 

mechanisms driving saltmarsh change and development in Poole Harbour, are significant on a 

global scale. 

The following chapter reviews the relevant literature on the history and development of Poole 

Harbour and the studies that have been previously conducted on saltmarshes, these are set into 

the conceptual model framework developed in section 2.1.3.2, in order to identify and test the 

suspected key drivers and mechanisms of change within the system. The models of Poole 

Harbour used in this study are also introduced.  

3.1 Poole Harbour: Situation and Characteristics 

Poole Harbour is a large tidal estuary situated on the south coast of Britain (Figure 3.1) with an 

intertidal area of 2050ha, (Buck, 1997). . It was formed during Holocene sea-level rise as the sea 

inundated a system of river and valley streams. The geomorphology of the Harbour results from 

the combined effects of marine and sub-aerial processes on both intertidal zone and shoreline, 

the channel hydrodynamics, anthropogenic modifications of the shoreline and channels, 

catchment hydrology affecting both the freshwater and sediment inputs and the spread and 

decline of the saltmarshes, (May, 2005).  

Spartina anglica was first recorded in Poole Harbour in the 1890s. It initially spread rapidly, 

however, during the 1920s it began to decline. The average rate of saltmarsh loss, reported 

from 1972 to 1993, is 7.5 ha per year (accounting for 157.5 ha of saltmarsh loss over that time. 

This may not be a universal trend, it has been reported that in some areas of the Harbour 
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saltmarsh has expanded. However this is not fully described in the previous literature and so 

this thesis will thoroughly characterise the trends and their mechanisms and drivers for south 

coast marshes. Previous studies concerning saltmarsh changes within Poole Harbour have been 

conducted at a less detailed level than within this study and have overlooked small scale 

changes within creek systems. Neither localised trends of erosion or accretion, or the drivers 

and mechanisms of the changes observed were investigated in these previous studies and the 

Harbour has never been studied from a comprehensive systems approach 

 

Figure 3.1 Location of Poole Harbour including available local and regional tide gauge 

locations 

The Harbour has a complex dendritic form with many tributaries and some discrete bays. 

Holes Bay, on the northern side of the Harbour, is an almost enclosed muddy northern arm, 

much affected over the years by land reclamation and the spread and subsequent decline of 

Spartina anglica. Since the mid 1900’s the intertidal area has been reduced from c.330 to 
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less than 250 ha, mainly due to reclamation along the east shore for port and urban 

development, (Gray, 1985).   

Holes Bay is lined by artificial sea walls, boulder embankments and quays, as in much of the 

northern shore of the Harbour. In its natural state this would have been a gradual transition 

from mudflat and saltmarsh through reedbeds and grazing marsh. East of Holes Bay, 

Lytchett Bay is considerably less modified by reclamation and has generally less muddy and 

nutrient-enriched sediments. The west shore which receives the outfall of the Sherbourne 

River in its centre is lined by a series of low earthen embankments with extensive reedbeds 

and woodland. Principal rivers, the Frome and the Piddle, enter the Harbour from west to 

east and drain the chalklands of Dorset, with a catchment area exceeding 70,000 ha along 

with two other minor rivers, the Sherford and the Corfe. These river outflows make the 

Wareham arm of the Harbour partially mixed with regards to salinity, whereas the rest of the 

Harbour is considered vertically homogenous (Humphreys, 2005). Large areas of floodplain 

have been historically reclaimed within these surrounding river valleys. In its centre are five 

main islands, Brownsea, Furzy, Green, Round and Long. Deep water channels within the 

Harbour are maintained by natural scour supplemented by dredging and are restricted, with 

some 80% of the Harbour area comprising of inter-tidal, fine grained mud, sandflats and 

marshes. The southern shore of the Harbour is made up of more pristine habitats, with 

extensive mudflats and saltmarsh that naturally grade to pasture, unrestricted in most areas 

by seawalls or infrastructure. 

Poole Harbour  is regionally important in terms of Nature conservation, particularly with 

habitat and saltmarsh losses occurring nearby in the Western Solent (Gardiner et al., 2007).  

There is no one main current threat but the combination of shipping, habitat loss, 

reclamation, erosion and Phragmites colonisation seaward over the saltmarshes may result 

in a loss of habitat and biodiversity. The long term threat is that there is not enough 

sediment entering the system to keep pace with sea-level rise, which would result in a loss 

of intertidal area, and in the long term submersion of the estuary. This could be 

exacerbated by dredging and development particularly along the northern shore where 

defences prevent migration of habitats. However along the south and west there may be 

sufficient accommodation space as there are no artificial barriers to migration and the areas 

are largely managed for nature conservation purposes. 
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3.1.1 History and development 

3.1.1.1  Human Development 

Poole Harbour has been used for trade and fisheries since the Iron Age, with extensive 

reclamation of the Frome and Piddle floodplains in the medieval period. By the thirteenth 

century Poole was a prosperous commercial port, it developed further from the seventeenth 

to nineteenth centuries, thriving on trade with Newfoundland. During the Second World War 

the Harbour was used intensively and was important in the preparation for the D-Day 

landings in 1944. From the mid-1950s, development continued with the construction of a 

power station on the shore at Hamworthy, reclamation and waterfront development. There 

are currently eight yacht clubs and ten boatyards as well as marinas attached to residential 

developments. Europe’s largest onshore oilfield lies beneath the Harbour with wells on 

Furzy Island and Goathorn Peninsula and the port has recently been enlarged to 

accommodate larger cross channel ferries and roll-on roll-off freight. 

3.1.1.2  Geological Development 

Melville and Freshney (1982), and Royal Haskoning (2004b) suggest that the majority of 

surface sediments around Poole Harbour today originate from alluvial deposits laid down by 

the rivers feeding the Harbour and that beneath and within these deposits there are seams 

of gravel and peat.  

Edwards (2001) describes the stratigraphy at Arne saltmarshes, where 3 transects of 40 

boreholes were taken. The pre-Holocene surface underlying the saltmarsh exhibits a 

stepped profile, in boreholes deeper than -1.1 m OD, organic-rich humefied basal peat 

deposits are widespread. Whereas in boreholes where the Bagshot beds (bedrock) occurs 

above this height the peat layers are absent. Edwards (1998), describes a similar study at 

Newton Bay in Poole Harbour, Here the boreholes indicate that the slope of the pre-

Holocene surface is steeper than that at Arne but is similar in general form, with the 

Bagshot Beds sloping from +0.2m OD to -0.6m OD, where a step occurs down to -1.0m OD, 

again peat is observed in the boreholes where the Bagshot beds are beneath -1.0m OD. 

Edwards (2001), also uses a foraminiferal transfer function for mean tidal levels in 

combination with radiocarbon dated material to construct a record of relative sea level 

change in Poole Harbour. The study concludes that since the start of the Holocene there was 

a composite sequence of events consisting of four phases of sedimentation and relative sea 
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level change. Between ca. 4700 yr BP and ca. 2400yr BP, mean tidal levels appear to have 

risen in Poole, inundating and preserving the sequence of peat deposits. Between ca. 

2400yr BP and at least ca. 1200yr BP the rate of sea-level rise appears to decrease with 

mean tidal levels remaining at or below -1.0m OD. During this time deeper water sediments 

accumulated, with the stratigraphy interrupted by sandy layers. Edwards (2001), suggest 

that these sandy deposits may suggest an erosional phase, with the sands derived from 

local cliff erosion. However, May (2005), implies that the sand layers do not necessarily 

imply an erosional phase and that the deposition of such material would depend upon 

transport patterns. Phases of greater wave energy or shifts in wind direction may also 

produce areas of deposition also changes in the geomorphology of the Harbour mouth 

could also alter depositional trends. Edwards (2001) suggests that as tidal levels fell the 

Harbour mouth narrowed and thus reduced the tidal prism, this would result in slower 

currents. Conversely, during a rise in tidal levels after ca. 1200 yr BP, the mouth may have 

widened under the influence of enhanced current velocities, potentially causing a switch 

from ebb to flood dominant tides, resulting in an influx of sandy sediments. After ca. 

1200yr BP the data indicates a brief rise in mean tidal level, and by ca. 800yr BP the major 

phase of sand deposition has ceased with no other indications for further changes in tidal 

level until ca 400yr BP. 

The fourth phase described in Edwards (2001), is the renewed relative sea-level rise, with an 

apparent rise in relative sea-level between ca 400yr BP and 200 yr BP, resulting in marsh 

submergence. This is indicated by the end of organic lagoonal sedimentation and the 

beginning of minerogenic silt-clay. 

3.1.2 Hydraulic Characteristics 

3.1.2.1  Waves 

In shallow regions, such as estuaries, wind-waves can have an effect on turbidity (Anderson, 

1972, Ward et al., 1984). However, this tends to vary over the tidal cycle as the fetch 

changes due to the emergence and submergence of sand bars or mudflats (Green et al., 

1997) and so the amount of wave energy acting in an estuary can be strongly related to the 

form and morphology of the estuary. Increased wave action, particularly at the seaward 

edge, has been suggested to contribute to saltmarsh decline (Burd, 1992). Studies in 

Manukau Harbour, New Zealand (Swales et al., 2004) have also linked wave energy gradients 

with spatial differences in long-term Spartina growth. 
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Figure 3.2 Wind rose for speed and  direction at North Haven, 1996 

Wind data collected at North Haven (Figure 3.2) suggests that the dominant wind direction 

for Poole Harbour is from the South-west with a smaller peak from the north-east. For this 

particular year south-westerly winds dominated most of the year with strong north-easterly 

winds occurring during the November to January period. Wind speeds rarely exceed 15m/s, 

with a maximum yearly wind speed of 49m/s. The fetch across Poole Harbour, particularly 

from southwest to northeast, is large enough for significant locally-produced wind-waves to 

occur, with 1:100 year wave conditions reaching a Hs of 1m (Halcrow Maritime, 1998) and 

so wind direction and speed are potentially significant to erosional processes.  

The capability for wave propagation within the Harbour is illustrated by the degradation of 

bluffs around the Harbour margins, as has historically been noted by May (1969). There is 

no comprehensive study into waves in Poole Harbour. However, data is available for site 

specific studies (Hydraulics Research Ltd, 1990, HR Wallingford, 1993a, HR Wallingford, 

1993b, HR Wallingford, 1996). The wave climate is dominated by depth limited locally 

generated waves as storm waves do not penetrate beyond the immediate area of the 

Harbour entrance due to diffraction and refraction effects, (SCOPAC, 2004). Halcrow 

Maritime (1999) have modelled extreme wave heights based on hind casting from local and 

regional wind data, these varied from 0.5 to 1.2m for a 1 in 100 year reoccurrence, but this 

was dependant on location with respect to fetch. North-eastern parts of the Harbour are the 

most energetic and are exposed to longer fetches from dominant south south-westerly 

winds/waves.  It is has been suggested that sandy sediments from Poole Bay would have 
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been driven by waves into the Harbour, (SCOPAC, 2004). However, Royal Haskoning (2004b) 

concluded that although wave breaking has a significant effect on the currents in the 

breaker area, the flow regime of the Harbour and approach channel is dominated by tidal 

action. 

3.1.2.2  Tides 

The tides within Poole Harbour are highly variable in shape (Figure 3.3) due to the proximity 

of a local minimum in the amplitude of the micro-tidal main semi-diurnal tidal constituents 

in Poole Bay and the M2 degenerate amphidromic point of the English Channel. Hence, the 

tidal regime is characterised by a small double high water effect, with a mean tidal range of 

approximately 1.8m at springs and 0.6m at neaps (however these values vary with location 

throughout the Harbour, Table 3.2). Although relatively rare on a global scale the double 

high water is not unique to this region with double highs in the semi-diurnal tide observed 

at Den Helder, The Netherlands and Buzzards Bay, Massachusetts (Bowers et al., 2013).Tidal 

levels are above mean water from about 2 hours after low to approximately 2 hours before 

the next low (i.e. for nearly 8 hours per tidal cycle).  This is of ecological significance as it 

limits the availability of mudflats as feeding grounds for important wader populations, while 

conversely increases the feeding time for many filter feeding invertebrates living in the 

mudflats which contribute to the diet of waders and also provide local fisheries.  This also 

results in a relatively poor zonation of the vegetation, with a limited area between MHWN 

and HAT in which saltmarsh can colonise (Figure 3.3). Due to the double high water within 

the Harbour, with the main peak followed by a lesser high water peak, calculated mean high 

water spring and mean high water neaps are lower than would be expected, 0.8 and -0.8 m 

OD respectively (Royal Haskoning, 2004b). There is a time lag in the tide within the 

Harbour, which is most prominent at low tide, the North Haven and Ro-Ro tide gauges are 

shown on Figure 3.1.  
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Figure 3.3 An example of spring and neap tides for January 1997, North Haven and RO-

RO terminal (see Figure 3.1 for location of tide gauges) 

The mean tidal range at the Harbour entrance for 2007 was 1.5m and 1.12m at the Ro-Ro 

ferry terminal (Proudman Oceanographic Laboratory, pers. comms.). However, the maximum 

range can be much larger and also varies throughout the Harbour with up to 2.2m recorded 

at the Ro-Ro ferry terminal (Poole Harbour Commissioners, pers. comms.), 1.2m at Arne 

peninsula and 1.6m at Newtown Bay, (Edwards, 2001).  

Table 3.2 Tidal levels in Poole Harbour (mOD) 

 

 MHWS MHWN MLWN MLWS 
Range on 

Spring 

Range on 

Neap 

Harbour mouth (Royal Haskoning, 

2004b) 
0.8 0.3 -0.2 -0.8 1.6 0.5 

Harbour mouth (Proudman 

Oceanographic Lab, pers comms) 
0.6 0.2 -0.2 -0.9 1.5 0.4 

Arne Peninsula (Edwards, 2001) 0.6 0.3 -0.1 -0.6 1.2 0.4 

Newton Bay (Edwards, 2001) 0.7 0.1 -0.2 -0.9 1.6 0.3 
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The ebb tidal stream at the Harbour entrance has been recorded as having higher velocities 

than those of flood, with max speeds of around 2m/s (SCOPAC, 2004). Characteristic 

velocities in the main channel are 0.5m/s (SCOPAC, 2004), indicating ebb dominant peak 

velocities from these Figures. 

3.1.2.3 Sea-level Rise and Surges 

Mean sea-level trends for the English Channel over the 20
th

 Century have been calculated as 

between 0.8 and 2.3 mm/yr,  with the trend at nearest stations of Southampton and 

Weymouth (3.1) of 1.30 ± 0.18 mm/yr and 1.81 ± 0.28 mm/yr, respectively (Haigh et al., 

2009).   

This region is dominated by surges generated from depressions in the western English 

Channel approaches. Surges recorded in Southampton water can reach levels of 1.5m, and 

within the English Channel positive surges tend to occur more frequently and are of greater 

amplitude than negative surges, (Haigh et al., 2004). The maximum water levels 

experienced tend to correspond with moderate rather than extreme surge levels. However, 

this trend is not as evident at Poole due to the smaller tidal range (Haigh, et al., 2004). With 

a low tidal range the surge can also potentially play proportionally greater role in 

influencing extreme water levels, (Haigh et al., 2004). 

Due to its microtidal regime this also suggests that the estuary, within a UK context, will be 

limited in its ability to adjust with sea-level rise and is vulnerable to future changes 

(cf(Nicholls et al., 1999)). The long term threat is that there is not enough sediment entering 

the system to keep pace with sea-level rise, which would result in a loss of intertidal area, 

and in the long term submergence of the estuary. This will be exacerbated by development 

particularly along the northern shore where defences prevent migration of habitats. 

However, along the southern shore there will be accommodation space for this migration. 

3.1.3 Sediment Budget  

The geomorphology and sedimentation of Poole Harbour is poorly described within the 

literature. However, localised studies have been conducted, with focus on the accumulation 

and release of sediments associated with the spread and dieback of Spartina anglica (Bird 

and Ranwell, 1964, Gray, 1985, Gray et al., 1990, Raybould, 1997) and the sedimentation 
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and dredging of the main navigable channels (Halcrow Maritime, 1999, Hydraulics Research 

Ltd, 1990, Hydraulics Research Ltd, 1991, Green, 1940, Green et al., 1952).  

May (1969) undertook a survey of Poole Harbour to assess the way in which shoreline 

changes have taken place, focusing particularly on Holes Bay. In this study it was attempted 

to recreate the shoreline at the end of the last marine transgression (6,000 years BP), Figure 

3.4., this was also illustrated in Halcrow Maritime (1998). Since that date, it was concluded 

that change has mainly taken the form of; 

 Deposition of sediment 

 Cliff erosion 

 Build-up of marshland as a result of vegetation growth on mudflats (e.g. Spartina) 

 Human interference, including the construction of seawalls and embankments, dumping 

of town waste and reclamation of marshland 

 

Figure 3.4 a and b. Inferred evolution of Poole Harbour (Halcrow Maritime, 1998, May, 

1969)  

The possible sources of sediment to the Harbour were assessed  as from offshore, cliff 

erosion, saltmarsh erosion, beach erosion, channel erosion, and river flows, (Halcrow 

Maritime, 2003) . Of these the offshore source has been identified as the most significant 

source of sandy material, although this has not been quantified. Neither cliff erosion, beach 

erosion, channel erosion nor river flows have been considered to provide significant 

amounts of sediment to the system and hence the system is considered a closed or near-

closed system with regards to fine sediments. From bathymetric studies (Royal Haskoning, 



Chapter 3 Case Study-Poole Harbour 

[50] 

 

2004b) calculated the net loss of fine sediment from Poole Harbour being between 56,000 

and 76,000 m
3

/year, the sediment was not specified as being sand or silt/clay. This was 

derived using the best available data in each area and chart analysis for the years 1984 and 

2003. This study concluded that broadly speaking the intertidal mudflat area is staying 

approximately constant, with the source of the sediment is predominantly from the eroding 

saltmarshes.  

3.1.3.1 Poole Bay 

Studies of sand mobility at the Harbour entrance indicate an un-quantified potential for 

sediment transport into the Harbour during combinations of storm wave and flood tide 

conditions (SCOPAC, 2004, Hydraulics Research Ltd, 1986, Hydraulics Research Ltd, 1988, 

Hydraulics Research Ltd, 1991, HR Wallingford, 1993b). Sand and gravel flood tidal deltas at 

the entrance of Poole Harbour, alongside sandy sediments on the bed support the 

occurrence of this process, (SCOPAC, 2004). Generally the Harbour bed comprises sandy 

material around the swash channel at the entrance and in the eastern part of the middle 

ship channel, further in towards the port the bed sediments contain an increasing 

proportion of fine sediment, (Royal Haskoning, 2004b).  

3.1.3.2  Fluvial Sources 

Two major rivers flow into Poole Harbour, the Frome and Piddle, along with two smaller 

ones (Sherford and Corfe), there are also a number of small streams from tributary 

catchments which may supply sands and clays.  

Both the Piddle and the Frome rivers have been recently studied through the Natural 

Environment Research Council’s Lowland Catchment Research (LOCAR) thematic 

programme, which was created to improve the knowledge about lowland catchments, 

investigating hydrological, chemical, biological and physical processes. Some of the results 

of which are presented in (Collins and Walling, 2007).  

The upper Frome and Piddle basins are formed in chalk, the upper Corfe in mainly Wealdon 

clays and sands, with the lower basins on tertiary deposits, which are composed of a series 

of sands and clays that are easily erodible by gullying and sheet erosion. These deposits 

form the major source of sediments carried into the Harbour by rivers, (May, 1969). The 

amount of sediment carried in the rivers depends on a number of variable factors linked to 
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surface run-off.  The run-off depends on local sub-soils with more surface movement during 

periods of heavy rainfall. Due to this it is considered difficult to assess the past volumes of 

sediment moved by the rivers, the rate of run-off depends largely on not only immediate 

rainfall amounts but also on the degree of previous saturation of the soil, (May, 1969). 

Changes in landuse of the area will also affect run-off, (May, 1969) identified 3 major 

changes in land use that are likely to have had major effects on sediment transport. The 

planting of conifers on the tertiary deposits will have decreased surface run-off 

(approximately 200 yr BP), thus slowing the amount of sediment to the rivers. However the 

creation of Ministry of Defence ranges and the expansion of them in 1943, with the 

subsequent destruction of surface vegetation and soil by vehicles on the tank ranges near 

Wool will have increased the run-off. Another change in landuse that will have affected the 

dynamics and sediment movement in the rivers is the creation of water meadows, 

particularly in the Piddle valley, where they interfere with water movement and trap large 

quantities of sediment. The extensive reclamation of the Frome and Piddle floodplains 

began in the medieval period. 

The Frome and Piddle catchment areas are ~437 km
2

 and ~183km
2

 respectively. Average 

annual precipitation decreases eastwards from 1040 to 860 mm in the Frome and from 

1020 to 840 mm in the Piddle. Collins and Walling (2007) measured the mean daily flow for 

the Frome (at Holne Bridge) as exceeding 6.4 m
3

 s
-1

 and the Piddle (at Baggs mill) as 2.4 m
3

 

s
-1

 , it was noted that both rivers are considered to be impacted by channel sedimentation. 

Total values of fine sediment storage over the study period between Feb 2003-July 2004, 

were calculated as 795t (7 t km
-1

) in the Frome with a mean of 918 g m
-2 

and a range of 410-

2630 g m
-2

 over 16 sites, and 730t (9 t km
-1

)  in the Piddle with a mean of 1580 g m
-2

 and a 

range of 260-4340 g m
-2

 over 13 sites. It was noted that no consistent pattern was seen to 

occur with respect to sediment storage. Temporal variation also occurred over the sampling 

period of fine bed storage.  

Continuous monitoring of discharge and suspended sediment concentration at East Stoke in 

the Frome and Baggs Mill in the Piddle were also conducted throughout the LOCAR 

programme, Feb 2003-July 2004 (Collins and Walling, 2007). The mean annual suspended 

sediment load in the Frome was calculated as 4370t, and 1281t in the Piddle.  
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3.1.3.3  Localised Erosion 

Much of the natural shoreline is marked by a low bluff (commonly less than 5m in height) 

and eroding cliffs (May, 2005). Cliff erosion provides the source of the many small beaches 

with gravel and sand, with gravels often forming layers on the upper part of the intertidal 

flats, (May, 2005).  For much of the twentieth century Spartina protected existing cliffs and 

retreat rates fell with many former cliffs degraded to form well vegetated slopes. However, 

as saltmarsh in the Harbour has retreated, cliff erosion rates increased to an average of 

0.85m year
-1

, (May, 2005). 

Elsewhere in the Harbour erosion has been reported, although rates have not always been 

calculated, these areas include Rockley Cliff, (Gray, 1985), (May, 1969), Brands Bay and 

Goathorn Peninsula (Gray, 1985) and Shipstal Point, (May, 1969). During several field trips 

as part of this research in May, 2008, erosion was also noted at several locations within 

Poole Harbour, including Furzey Island and along the south coast of Brownsea Island. 

Royal Haskoning (2004b) reported observations under stormy conditions showing peak 

suspended concentrations of up to 600mg/l, these concentrations were considered the 

result of erosion due to locally generated wind-waves. Data collected by the EA indicated 

that suspended sediment concentrations were of the order of 10mg/l or less, with 

background levels in creeks with intertidal areas being in the order of 50mg/l, (Royal 

Haskoning, 2004b). 

3.1.4 Dredging 

Regular maintenance dredging of navigation channels occurs, with detailed records held by 

Poole Harbour Commissioners, historic volumes are shown in Table 2. The majority of 

dredging is carried out on a bi-annual basis by trailing a suction dredger. Sandy material 

arising from maintenance is now used for beach nourishment within Poole Bay and Swanage 

Bay. 

Dredge volumes in Poole Harbour are low in comparison to dredging activities that occur in 

other south coast estuaries, for example the volume of sediment extracted within 

Southampton water from 1994-1997 was over 6,000,000 m
3 

for capital dredging, 

maintenance dredging in the estuary has been calculated between 1994-2002 with a total 

volume over that period of over 4,000,000 m
3

, (Horter, 2003).  
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Table 3.3 Historic Dredge Volumes 

Date 1969-1975 1975-1984 1985-1990 1990-1997 1969-1997 

Volume (m
3

) 138,618 349,800 2,017,000 1,531,336 4,036,754 

Source 

(McMullen, 

1982, 

McMullen, 

1985) 

(McMullen, 

1982, McMullen, 

1985) 

(Hydraulics 

Research Ltd, 

1990) 

(Hydraulics 

Research Ltd, 

1990) 

 

The middle ship channel has been progressively deepened since 1986. Prior to 1986 the 

natural depth was around 3m below CD, deepening to 10m below CD at Brownsea Island. In 

1986 the channel was dredged to a declared depth of 5m below CD and in 1991-92 the 

channel was deepened to a declared depth of 6m below CD. Prior to 1986 the North 

Channel was primarily used as the navigation channel with a minimum depth of 3.6 m 

below CD, (Royal Haskoning, 2004b). 

Since the channel deepening in 1991-92 it has been noted that changes to the local seabed 

morphology has occurred, (Royal Haskoning, 2004b). This includes the deepening of Wych 

channel, with the intertidal areas to the south of Brownsea and the north of the channel 

reducing in their extent. However, between the middle and north channels the shoals of 

Parkstone shoal and Middle ground have become larger, (Royal Haskoning, 2004b). 

More recently a channel deepening project was conducted to widen and increase the depth 

of the middle ship channel from 6m to 7.5m in order to accommodate larger ferries at all 

states of the tide, the turning basin, little channel and swash channel were all dredged 

during this scheme. Almost 2,000,000 m
3

 of sand, gravel and silt were removed from the 

channels both inside the Harbour and from the approaches. Of this 1,100,000 m
3 

were 

made available for beach replenishment at Bournemouth and Swanage. Unsuitable material 

was disposed of at a licensed disposal ground off the coast at Swanage. Additionally trials 

for the disposal of silt and muddy material, dredged through maintenance dredging, to be 

redistributed within the Harbour started in May, 2008. 

3.1.5 Habitats, Species and Historic Change 

Poole Harbour is an estuarine environment and therefore exhibits high biological 

productivity, the enclosed and sheltered nature of the estuary has contributed to a notable 

diversity of habitats and species. Over 65% of the Harbour is intertidal area, this includes 
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extensive mud and sand flats mostly fringed by reedbeds or saltmarshes, Figure 3.1. Much 

of the saltmarsh is dominated by Cord grass (Spartina anglica) with Eelgrass beds (Zostera 

sp.) occurring in areas of the sub-littoral. However, various types of saltmarsh are found 

within Poole Harbour, these include Atlantic salt meadows, Salicornia species colonising 

mudflats and Mediterranean and thermo-Atlantic halophilous scrubs and salt meadows. 

Surveys held by Dorset environmental records centre indicate that of the 480 ha of 

saltmarsh within Poole Harbour in 2001, around 200 ha were made up of the saltmarsh 

types mentioned above, none of which include the species Spartina. This leaves 280 ha of 

unspecified saltmarsh which presumably is made up of Spartina sp. 

Since 1999, Poole Harbour has been classified as a Special Protection Area (SPA) under the 

European Birds Directive due to its internationally important population of birds. The islands 

within the Harbour give ecological value, small colonies of Blackheaded and Mediterranean 

Gulls as well as sandwich and common terns shelter on the Islands. The Harbour and its 

adjacent landscape hold a number of other European and national statutory designations 

including that of a European Marine Site, others include: 

 Poole Harbour Site of Special Scientific Interest (SSSI) 

 Poole Harbour Ramsar Site 

Despite its high conservation value the Harbour has a history of problems of contamination 

and hyper-nutrification, which appears to have affected species abundance and distribution 

(Langston et al., 1987, Langston et al., 2003). The rivers are suggested to be the main 

sources of nutrient input to the Harbour, together with effluent discharge from the three 

main sewage treatment plants at Poole (Holes Bay), Lytchett Minster and Keysworth, as well 

as storm water discharge (Falconer and Liu, 1995). Diffuse pollution, particularly from 

agricultural land runoff, is seen as an important issue within the Harbour, farm animal 

waste and fuel oil storage are also potential sources of pollution to rivers feeding Poole 

Harbour. 

3.1.5.1  Saltmarsh Loss 

Both the rapid spread of Spartina anglica and the subsequent decline have been previously 

described (Gray and Pearson, 1984, Born, 2005, Raybould, 2005, Hubbard, 1965). The first 

record of Spartina anglica in Poole Harbour is generally reported as a single clump in Ower 

Bay in 1899 (Hubbard, 1965). After this date, it was reported to spread rapidly and by 1913 
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was found throughout the Harbour. The colonisation did not occur uniformly and was 

confined initially to the margins of the Harbour, with a gradual invasion of central regions, 

(Oliver, 1925).  Channels deepened (Gray et al., 1990) as Spartina  spread within the 

Harbour, presumably removing from circulation large volumes of sediment. 

The expansion was dramatic or short-lived: and by the 1920s, some of the saltmarshes were 

reported to have begun to erode, (Raybould, 2000). This was initially attributed to creek and 

channel migration, undercutting saltmarsh stands, but it was also reported that tidal scour 

had occurred around projecting spits of saltmarsh (Oliver, 1925). It is noted that the 

continuous high winds of 1924 caused wave driven erosion in exposed areas, ‘resulting in 

hundreds of acres of saltmarsh loss’ (Oliver, 1925). From the early 1930s onwards shoaling 

occurred in the major navigation channels, consistent with the release of sediments from 

the eroding marshes (Gray et al., 1990). The broad pattern within the Harbour by the 1940’s 

was a general decline in saltmarsh area. However, even in the 1960’s Spartina continued to 

thrive in some locations, with vertical annual accretion rates recorded as 80 mm in 1963 

and up to 150mm in 1966 (Hubbard and Stebbings, 1968) in localised studies at Keysworth 

marshes in the west of the Harbour.  

Previous Harbour wide studies have focused primarily on the loss of saltmarsh post 1924. 

Studies prior to this time tend to be localised and have focused on accretion rates rather 

than the location and mapping of Spartina. Hubbard (1965) describes the pattern of 

colonisation of Spartina in the Harbour and includes the earliest Harbour wide estimation of 

saltmarsh area in 1924. This is compared to the extent in 1952 with a decrease of 172ha or 

19.8% loss of the 1924 area. Significant losses have also been described between 1947 and 

1993, with the area of saltmarsh in the whole Harbour decreasing by 245 ha (38% of 1947 

extent) (Born, 2005). The corresponding rate of saltmarsh loss between 1972-1993 

averaged 7.5 ha per year, accounting for 157.5 ha of saltmarsh loss over that time, (Halcrow 

Maritime, 2003). A survey of saltmarsh extent was also undertaken in 2001-2002 using a 

hand held GPS, (Edwards, 2005). According to this study approximately 423 ha of saltmarsh 

remained with the vast majority of this being lower saltmarsh dominated by Spartina 

anglica. Middle and upper vegetation was found to be limited in extent and frequently 

found as linear stands just below mean high water. It also indicated a present loss of around 

5 ha per year, (Edwards, 2005).  

However, all the previous studies only consider erosion and do not discuss the possibility of 

accretion or migration of saltmarsh occurring within the Harbour. Further east within the 
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Solent region, saltmarsh losses have been widely reported. However where estuaries are not 

fully constrained by seawalls, some migration and accretion has occurred, eg. Newtown and 

Pagham Harbours (Baily and Pearson, 2007, Gardiner et al., 2007): hence this is also 

possible in Poole Harbour.  

Raybould (2005) discusses several reasons for the decline of saltmarsh in Poole Harbour, 

the first is erosion at the marsh edge, particularly the break up of marsh islands on 

intertidal flats rather than marshes fringing land. The second reason is saltmarsh die-back, 

where the Spartina has been observed to degenerate in patches within the body of the 

sward rather than at the edge. This process seems to be associated with badly drained, 

highly anaerobic soils in which the Spartina rhizomes may be poisoned by sulphide ions 

and lack of oxygen (Gray et al., 1991). Another potential driver is that Spartina may be lost 

through the invasion of other species from the landward edge, in areas with low salinity 

Phragmites communis has replaced marsh. 

The maximum submergence tolerance for Spartina is  6 hours (Oliver, 1924, Oliver, 1925) 

and (Goodman et al., 1959). However Ranwell et al. (1964) recorded tidal submergence of as 

much as 9 hours at equinoctial spring tides within Arne Bay. This however would be a rare 

occurrence and was recorded outside of the active growing season for the plants (April to 

October). It was also theorised that the rapid development of marshlands around Poole 

Harbour since the 1890s has reduced the extent of tidal exchange in the upper Harbour, 

with result of prolonged tidal submergence in the lower Harbour, this may also be a 

contributing factor to the dieback of Spartina in this area. 

There appears to be little discussion in the literature regarding the future trends of 

saltmarsh in Poole Harbour. Born (2005) extrapolated historic losses linearly to 2053, 

suggesting expected losses to be between 183ha and 244 ha (47%-63% of 1993 extent).  

3.1.5.2 Saltmarsh Gain 

Long term sediment accretion within Poole Harbour has been observed using Pinus pollen 

frequencies as a biostratigraphic marker (Long et al., 1999). Sediment accretion rates 

between ca.1750 AD and ca.1890 AD rose from 0.29 to 1.14 mm/yr: it has been suggested 

that this may reflect an acceleration in the rate of sea-level rise as observed at the Brest tide 

gauge (Woodworth, 1990). However, following the establishment of Spartina anglica in 
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ca.1890 AD, sediment rates accelerated to 7.17 mm/yr, and so the marshes rose relatively 

within the tidal frame. 

Accretion rates on the intertidal area were first recorded between 1961-62, (Ranwell, 1964). 

It was found that quarterly changes of sediment levels were too small to be considered 

significant, although a uniform slight accretion of between 5-10mm per year was suggested. 

It was noted that the landward end of the transect used, passed through a belt of 

Phragmites communis, which has been observed invading the Spartina marsh. Again in the 

Phragmites zone annual accretion rates were recorded as 5-10mm. It was concluded that 

most of the Poole Harbour marshes were nearing their upper limit of growth and were 

accreting very slowly and since many of the marshes are cliffed at their seaward edges and 

eroding, the mud supply must be limited and is being recycled. 

Ranwell (1964) notes that Spartina anglica rosettes were found at least 1m below the 

surface at Keysworth marsh and so indicate that prior to this at least 1 m of silt has 

accumulated since Spartina first invaded approximately 50 years previously. This would 

therefore give an average accretion rate for the first 50 years of colonisation as 20mm/year, 

the saltmarshes may have simply risen within the tidal frame as observed elsewhere, (Allen 

and Duffy, 1998, Allen, 2000, French and Reed, 2001). Studies by Marshall et al. (2007) 

investigated accretion rates on Arne marshes using radionucleotides, this indicted that the 

accretion rate remained at 1.9mm/yr during the early twentieth century and rose to 

8.3mm/yr around 1972, this sudden acceleration was explained by an episode of localised 

die back in a nearby part of Poole Harbour, releasing sediments to be re-deposited on the 

Arne saltmarshes. These Figures do appear to be fairly low, although, it was noted in  

Hubbard and Stebbings (1968) that an accretion gradient occurs within the Harbour. In the 

study it was found that 180 cm had accreted at the Keysworth marshes since Spartina 

colonisation whereas only 70cm had accreted on the Arne marshes. 

In Hubbard and Stebbings (1968), the stratigraphy of Keysworth Marsh was investigated for 

Spartina rhizomes, which was generally down to a level of -0.06 m OD with an extreme 

value of -0.96m OD.  The surface level of Keysworth marsh at the time of this study (1968) 

was between +0.11m and +0.85 m OD with approximately 95% of the area above +0.65m 

OD. 

Elsewhere in the Harbour bathymetric surveys of south deep, south of Brownsea Island 

(Royal Haskoning, 2004b), show significant accretion in the subtidal areas, erosion in the 
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intertidal areas of the lower foreshore and some deposition on the upper intertidal profile 

between 1984 and 2003. According to Gray et. al.(1995), there was little change in patterns 

and channels, mudflats and fringing marshes until the end of the nineteenth century.  

3.1.5.3  Reedbed Change 

The area of reedbeds in Poole Harbour was reported to have increased by 47 ha (63% of 

1947 extent) between 1947 and 1993, (Born, 2005), replacing S. anglica (i.e. it is a Spartina 

loss mechanism). Born (2005), extrapolated historic gains linearly to 2053, gains are 

expected to be between 0 and 61ha (0-50% of 1993 extent). All areas of major reed beds 

were surveyed again in 2000, (Cook, 2001), 175 ha were recorded during this survey 

representing 60% of the county’s reedbeds and 30% of the reedbed total for the southwest 

of England. However, erosion around the Harbours edge is posing a future threat to this 

habitat in areas and changes in future salinity levels due to sea level rise and changing 

weather patterns will also have a significant effect on this habitat.  

3.1.6 Poole Harbour Models 

As this study aims to relate the distribution of saltmarsh to hydrodynamics, a process based 

model capable to replicating tidal velocities and water levels at an appropriate resolution is 

required. 

Several models have been developed for Poole Harbour, including a TELEMAC 2D model by 

HR Wallingford and a hydrodynamic water quality model, developed to predict water 

elevations, depth averaged velocity and pollutant concentrations (Falconer, 1986a, Falconer, 

1984a, Falconer, 1986b, Falconer, 1984b, Falconer and Chen, 1991, Falconer and Liu, 

1995) both are process based models. The HR Wallingford TELEMAC model was used in this 

study as it was considered to be the most up to date and model outputs were more easily 

integrated with the results of the saltmarsh change analysis. 
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Poole Harbour TELEMAC Hydrodynamic model 

With permission from HR Wallingford and Poole Harbour Commissioners, the TELEMAC 

model for Poole Harbour was used for this study. The TELEMAC model satisfies the 

requirements of this research and can provide average tidal flow vectors under present 

conditions indicating areas within the harbour that are flood and ebb dominant and 

potential correlations with saltmarsh and mudflat erosion from the historic analysis. 

The underlying tin mesh varies with accuracy throughout the Harbour, as the model was 

developed to investigate possible effects of dredging in the main channels, reported in (HR 

Wallingford, 1993a), therefore it is these areas that have the highest resolution. However 

the model resolution will be sufficient to give insight into hydrodynamic processes in other 

areas of the Harbour also, particularly the southern intertidal shore and Wareham Channel. 

The model was calibrated by HR Wallingford using flow data collected from current meters 

at 7 locations within Poole Harbour and 6 tidal diamonds, during the 11
th

 and 12
th

 March, 

1990, tidal data was also collected at this time. However, these validation points were all 

positioned in the north-east of the Harbour adjacent to the main channel, which was 

originally the focus of the model. Further details on the calibration of the model are 

outlined in the methods section 4.3.2. 
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3.2  Summary 

 

Figure 3.5 A conceptual model of saltmarsh change in Poole Harbour noting significant 

drivers and mechanisms from the literature. 
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Based on the conceptual model framework created in Chapter 2, a site specific framework 

has been developed for Poole Harbour that brings together the potential drivers of change 

and the relative pressures from human developments, and policy. 

Saltmarshes are important coastal habitats providing multiple ecosystem and coastal 

protection services. Hence, understanding the processes which affect saltmarsh areas and 

the services they provide is vital. Within the last century saltmarsh changes in Poole Harbour 

have been dramatic with several studies identifying saltmarsh losses. However, these 

studies tend to be localised rather than Harbour-wide, and those which have studied the 

entire Harbour have done so at a low resolution. Future trends have been predicted by 

simply interpolating historic losses without identifying drivers of loss. Chapter 4 describes 

the methods undertaken for the three stages of analysis, firstly the historic change analysis, 

secondly investigating the morphology of the Harbour through hypsometry and cross shore 

profiles and thirdly investigating tidal asymmetry in order to identify the drivers of 

saltmarsh changes. 
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4 Methodology 

The main aim of this research is to explore saltmarsh change, identifying both accretional 

and erosional drivers and mechanisms and identifying trends of saltmarsh change at estuary 

and sub-estuary scales exploring the physical processes of these changes in detail.  

This study has been undertaken in four main stages. Stage 1 is a re-examination of historic 

saltmarsh trends within Poole Harbour and uses multiple sources, encompassing a historic 

analysis using Ordnance Survey (OS) maps, charts and aerial photography and gives 

improved insight into historic trends and processes within the Harbour. Intertidal features, 

such as saltmarshes and creek systems have been re-examined, mapped and changes 

quantified. An uncertainty analysis also examines the potential errors. In previous research 

crucial spatial trends have not been investigated which may provide insight into long term 

saltmarsh change trends. 

In Stage 2 the morphology of the Harbour is analysed using bathymetric data, both from 

LIDAR and admiralty charts. Hypsometry at estuary and sub-estuary scale is calculated and 

the examination of intertidal profiles gives insight in to contemporary saltmarsh processes. 

Velocity shear thresholds from sediment samples taken from the Harbour are also analysed 

using flume tests. In Stage 3 tidal hydrodynamics and in particular tidal asymmetry is 

explored in the Harbour, firstly using generalised geometric and hydrodynamic 

relationships. Secondly tidal flow vectors are investigated, particularly flood and ebb 

dominance, using modelled data, in order to illustrate the spatial distribution of flow within 

the Harbour and the drivers that instigate the changes seen from the historic saltmarsh 

change analysis 

Stage 4 involves using an annular flume to assess the critical shear velocitiy of sediment 

samples taken from the Harbour, these critical velocities will be used to alongside the 

hydrodynamic model outputs in Chapter 7 to define slack durations within the Harbour. 

The methodology of each of these three stages is described in the following Sections. 



Chapter 4 Methodology 

[63] 

 

4.1  Stage 1: Historic Analysis of Change 

Several techniques to look at historic changes within the Harbour were applied across a 

range of scales. The analysis of maps, charts and aerial photography have been assessed 

and are discussed in turn and then the results are integrated together  

Whilst examining historic changes within an estuary it is important to understand the 

geomorphological scales involved and appropriate drivers (Table 2.1). Several important 

drivers must be taken into consideration, the first being the 18.6 year nodal cycle. This is 

caused by the amplitude of the lunar declination increasing and decreasing over an 18.61 

year period. The effect of this is a decrease of the equilibrium tide by 3.7% when the 

declination amplitudes are greatest and a corresponding 3.7% increase 9.3 years later 

(Pugh, 2004). Sufficient data was not available at Poole Harbour to chart the possible effects 

of the lunar cycle, Figure 4.1 shows the lunar nodal cycle at Newlyn. Both calculated and 

measured data are shown indicating a small variation around the calculated values, key 

dates of data used within this study are shown.  As the tides in Poole are generally 

considered to be micro-tidal 1.8m (although variations throughout the Harbour occur, 

Section 3.1.2.2), the variation of 3.7% increase and corresponding decrease in tides due to 

the lunar nodal cycle will be small, 6.6cm on springs and 2.2cm on neaps. However, this is 

still an important driver to be aware of and its potential impact on any results, especially in 

areas where the foreshore has a low gradient.  

Seasonal variations are also important, particularly when observing ecosystems and 

saltmarshes. Several studies have been conducted on the accretion and heights of 

saltmarshes. Surface heights of saltmarsh creeks have been found to have seasonal 

variations of up to 2cm (Carr and Blackley, 1986), with the changes attributable to the 

swelling of clay particles during the winter months.  
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Figure 4.1The 18.6 year lunar nodal cycle calculated and measured at Newlyn and 

dates of data used within the study. (Data supplied by Ivan Haigh, pers. comms.) 

Other studies within the UK (Ranwell, 1964) have suggested that 75% of accretion occurs 

during the period between August and October and may be connected to the high tides 

rising through August and September to the maximum levels of the autumn equinox. 

Unfortunately the time of year at which the data sources were collected is not always 

available.  However, this must be acknowledged as a source of uncertainty, but is unlikely to 

be important over the medium- to long-scale of relevance to this study. 

4.1.1 Historic Maps 

Historic map sources can be digitised in order to study coastal change (Carr, 1986, Crowell 

et al., 1991, Moore, 2000). In the UK, maps are produced by the Ordnance Survey (OS). 

When using OS maps, it is important to be aware of the limitations of the data, inaccuracies 

within OS data can be from a number of sources and occur either during the mapping or 

surveying of the data. Historically mapping was achieved using a line and sight. However, 

during the 1990s this was superseded by GPS measurements. The estimated accuracy from 
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OS maps ranges from 3.5m (Lee and Clark, 2002) to 10m (Nicholls et al., 2000) based on 

cliff interpretation: errors for saltmarsh are harder to assess but may be larger.  

MHW  and MLW locations would originally have been surveyed by hand in the nineteenth 

century, this practice continued until the 1940’s when aerial surveys took over (Baily and 

Collier, 2010). Depending on the shore slope this can lead to errors in the mapping of MHW.  

In a large estuary the flight can be long enough that the tide height varies from start to 

finish. This can lead to a gradient effect within the estuary and so the data can have errors 

related to the tide level at which the data was collected.  When using historic datasets, 

shoreline indicators can be used to observe change MHW, MLW and cliff tops, out of these 

MLW is the least reliable in historic maps due to the methods used before aerial 

photography was widely available, (Nicholls et al., 2000, Hanson and Nicholls, 2003). OS 

maps are also prone to displacement errors where datasets do not exactly match up, 

however this can be avoided by taking prominent points that have not changed, such as 

prominent buildings (e.g. churches), in order to reposition the data sets directly above one 

another. 

Historic OS maps of Poole Harbour were acquired through Digimap 

(http://edina.ac.uk/digimap/description/overview.shtml) and studied within a GIS 

environment. Freely available maps only extend back to 1890, a summary of the data used 

can be seen in Table 4.1. These were compared to one another in order to identify changes, 

including reclamation and realignment. MLW and MHW lines were digitised and areas of 

apparent saltmarsh noted, maps used include; Country series 1:2500 1
st

 Ed. 1890, Country 

series 1:10560, 2
nd

 revision 1925, National grid 1:10560 1963, and National grid 1:10000 

latest edition (1993). Subsequent years could then be compared to one another in order to 

observe and quantify area changes and reclamation. 

 

 

 

 

 

http://edina.ac.uk/digimap/description/overview.shtml
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Table 4.1 Summary of digital data used including details of Aerial Photography and OS 

maps of Poole Harbour 

Date 
Scale/cell 

size 
Source Description Data issues 

Pub.1890 

(1849-1890) 
1:2500 Digimap Rectified OS map 

Surveys collected between 1849-

1890, published in 1890 

Pub. 1925 

(1900-1925) 
1:10560 Digimap Rectified OS map 

Surveys collected between 1900-

1925, published in 1925 

1947 0.5-0.6m 
Dorset County 

Council 

B/W photographs 

(59 images 

unrectified) 

Missing data: Arne, Lytchett Bay, 

Sandbanks, Brownsea Island 

1963 1:10560 Digimap Rectified OS map  

1972 0.5-0.6m 
Dorset County 

Council 

B/W photographs 

(34 images, 

unrectified) 

 

1993 1:10000 Digimap Rectified OS map  

2005 0.1m 

Channel 

Coastal 

Observatory 

Colour photograph 

(1 image rectified) 
Missing data: Lytchett Bay 

 

4.1.2    Historic Charts 

A number of issues must be considered when interpreting historic charts; the primary factor 

of which is accuracy. Where possible the original sounding data on fair charts should be 

used rather than the interpretive charts created from them.  For earlier charts, bathymetry 

was measured with a hand lead line and for more recent charts by an echo sounder.  The 

use of an echo sounder improved both the accuracy and coverage of soundings (Lee and 

Clark, 2002, van der Wal and Pye, 2003). Even more recently, greater improvements in 

accuracy have been made through the use of high-resolution swathe multibeam bathymetric 

systems.  The methods used for the positioning of the measurements have also improved; 

whereas in the past fixes where made using triangulation, GPS has been used more recently 

contributing to the overall accuracy and precision of the charts (van der Wal and Pye, 2003).   

Bathymetry charts are attended for navigation and therefore do not necessarily provide an 

accurate representation of the seabed and land but instead draw attention to features of  

navigational interest, such as dangerous waters (Lee and Clark, 2002).  Because of this 
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charts are unlikely to provide a complete and accurate representation of the bathymetry or 

intertidal areas outside those areas of navigational interest. 

Bathymetry charts were scanned and digitised within a GIS environment and georectified 

using the OS map National grid 1:10000 latest edition (1993), and 2005 aerial photography. 

Spot heights from each individual map were then digitised and the resulting data 

interpolated within ArcGIS and initially added to the LIDAR (2007) data to create a 

continuous digital terrain model (DTM). However, a more contemporary bathymetric data 

(2005) of a better quality was supplied by Poole Harbour Commissioners (PHC), which 

replaced data set. 

4.1.3   Aerial Photography 

Aerial photography used in the production of maps and charts is of a high resolution and as 

such, is suitable for the analysis of shoreline movement, cliff erosion and saltmarsh change.  

As previously mentioned (Section 3.1.2.2), low tide within Poole Harbour only occurs for a 

short duration which may affect interpretation of the photography, including the location of 

channels. Errors can also arise through interpretation of the images, for example, when 

interpreting cliff lines or distinguishing saltmarshes from surrounding mudflats.  

Aerial photography was acquired for three years; 1947, 1972 and 2005 (Table 4.1). The 

2005 data was supplied processed into one single georectified image in full colour. 

However, the 1947 and 1972 aerial photography data was supplied as 59 and 34 individual 

black and white, non-rectified images, respectively. These images were georectified within a 

GIS environment using the 2005 aerial photography and OS maps as a guide. Throughout 

this process the RMS (root mean square) errors of the georectification points were 

monitored to ensure that accuracy was maintained and that the error was minimised. 

Typical RMS errors for the georectification varied between 0 and 5m. Saltmarsh extent and 

channel location were then digitised into polygons for all datasets, this was supplemented 

with data supplied by Dorset Environmental Records Centre, showing generalised saltmarsh, 

reedbed and intertidal habitat extent within the Harbour in 2003. Incomplete coverage of 

aerial photography was noted (Figure 4.2) the 1947 dataset has a 73% coverage of the 

Harbour and the 2005 dataset a 96.6% coverage. The digitised saltmarsh areas and channel 

locations for 1947, 1972 and 2005 was then compared, to observe accretional and 

erosional trends within the Harbour. 
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Figure 4.2 Poole Harbour regions used for saltmarsh analysis (Boxes show areas of 

missing aerial photography) 

1) Holes Bay, 2) Wareham North, 3) Wareham Islands, 4) Wareham West, 5) Wareham South, 6) Grip 

Heath, 7) Middlebere Lake, 8) Wych Lake North, 9) Wych Lake South, 10) Wych Farm, 11) Wych Lake 

East, 12) Fitzworth North, 13) Long and Round Islands, 14) Fitzworth Islands, 15) Ower Bay, 16) 

Cleavel Point North, 17) Newtown Bay, 18) Brands Bay, 19) Green Island, 20) Furzey Island, 21) 

Sandbanks, 22) Arne 

Several interpretive difficulties were encountered whilst digitising saltmarsh extent. The 

landward extent of the saltmarsh, particularly on black and white aerials, was not easily 

identifiable and so the well-defined landward extent from the 2005 aerials was used to 

interpret all the photographs. This prevented the identification of saltmarsh migration 

inland but still allowed the measurement of the important process of frontal 

retreat/expansion. Given that sea level rose by a maximum level of 14 cm since 1947 
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(following Haigh et al., 2009) any landward migration is expected to be negligible. 

Distinguishing reedbed from saltmarsh in the black and white aerials was also problematic; 

these were generally small isolated locations accounting for less than 10ha. Where possible, 

these areas were compared to previous work and maps of current known reedbed extent in 

order to verify habitat type. Misidentification of reedbed areas in the historic aerials may 

lead to either an over or under-estimation of reedbed take-over, but is unlikely to greatly 

affect the large scale trends affecting the saltmarsh change over the entire Harbour. 

Channels were not obvious in many locations, both geographically and for different years, 

this may be due to the time relative to the tidal stage at which the photographs were 

obtained, with the lower flats already covered in water, obscuring channel networks. 

4.2 Stage 2: Analysis of Estuary Morphology 

As discussed in Section 2.1.2, the morphology of an estuary or Harbour is closely linked to 

the hydrodynamic regime. Using detailed bathymetry data some of these relationships can 

be investigated. LIDAR (Light Detection And Ranging) is an airborne laser mapping 

technique for obtaining topography data (x, y and z coordinates) of terrain surfaces and 

features such as buildings, roads and trees.  It has been used successfully to investigate 

coastal habitats (Gardiner et al., 2007, Blott and Pye, 2004). A complete LIDAR dataset of 

Poole Harbour is available from the UK Environment Agency, dated 2007. This dataset, 

combined with bathymetry data (2005)  provided by PHC, can be used to investigate areas 

of saltmarsh and creeks, the position of intertidal habitats within the tidal frame, areas that 

are prone to flooding now and in the future and the morphology of the estuary.  

4.2.1 Estuary Hypsometry 

Estuary hypsometry, as discussed in Section 2.2.2, is the way in which the plan area of a 

drainage basin varies with elevation: variations in this form can alter the way the tide 

propagates and can change the flood and ebb tidal properties, (Townend, 2008).   The 

LIDAR data was used to investigate the hypsometry of the estuary. However, the LIDAR 

coverage is patchy and inaccurate over deep water areas, this can be remedied by 

combining the data with navigation charts or bathymetric data. Bathymetry data (dated 

2005), in the form of digitised contours, was acquired from Poole Harbour Commissioners 

(PHC). This was then interpolated within ArGIS to form a continuous digital terrain model 

(DTM) for the channels within the Harbour. This dataset was then added to the 2007 LIDAR, 
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which had data missing within deep water areas and a complete DTM was created. From 

this, the hypsometry of Poole Harbour was calculated as described in Section 2.2.2 by 

calculating how the area of the Harbour changes with height above the seabed. 

4.2.2 Intertidal Profiles 

The tidal flat shape was investigated to identify erosional/depositional trends. Figure 4.3 

shows the 151 intertidal profiles that were extracted from the 2007 LIDAR dataset within a 

GIS environment. The focus of this area of study was informed by the results of the historic 

saltmarsh change analysis. 

As discussed in Section 2.1.2 and illustrated in Figure 2.2, eroding and accreting 

mud/intertidal shores can exhibit distinct profile shapes with high and convex cross-

sectional shapes attributed to an accreting or tidally dominated shore and low concave 

cross-sectional shapes attributed to an eroding or wave dominated shore. Therefore 

correlations between areas of erosion and accretion and hydrodynamic forces may be 

evident. 
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Figure 4.3 Profiles extracted from the 2007 LIDAR dataset to examine intertidal 

morphology 

4.3 Stage 3: Analysis of Tidal Asymmetry 

The type and direction of tidal asymmetry due to both peak velocity and slack duration has 

been assessed using two approaches.  Firstly, using calculations that infer net tidal 

asymmetry (over the whole basin) based on the estuaries dimensions and tidal constituents, 

and secondly by directly extracting flow speeds and water levels from a hydrodynamic 

model. 
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4.3.1 General Asymmetry Calculations 

As discussed in Section 2.1.1.1 general asymmetry parameters can be used to describe the 

tidal asymmetry patterns in estuaries and therefore infer the net direction of sediment 

transport based on the estuaries dimensions and tidal constituents. These are broad scale 

methods and give a indication of estuary-wide tidal asymmetry. A DTM of Poole Harbour 

was created using LIDAR (2007) data supplied by the Channel Coastal Observatory, 

combined with sub-tidal bathymetry data collected and supplied by Poole Harbour 

Commissioners (2005), as described in Section 4.2.1. Tidal parameters were analysed in 

MATLAB using tide gauge data (one year duration collected in 1997) located near the mouth 

at North Haven (Figure 3.1) using T-tide, (Pawlowicz et al., 2002). 

Six indicators of tidal asymmetry have been calculated (Section 2.1.1.1 for complete 

description); 

 a/h (Friedrichs and Aubrey, 1988) Indicating the magnitude and direction of asymmetry 

 Vs/Vc (Friedrichs and Aubrey, 1988) Used in combination with the first indicator and only 

applicable if a/h does not indicate significant asymmetry 

 MDhw vs MDlw (Pethick, 1994) Indicates magnitude and direction of asymmetry 

 Gamma γ (Dronkers, 1986) Indicates magnitude and direction of asymmetry 

 M4/M2 (amp) (Friedrichs and Aubrey, 1988) Indicates magnitude of asymmetry 

 2M2 - M4 (phase) (Friedrichs and Aubrey, 1988) Indicates direction of asymmetry 

4.3.2 TELEMAC 2D Model 

To compare processes with the spatial variation in saltmarsh change a sufficiently detailed 

description of hydrodynamic processes was required. As discussed in Section 2.2 this is 

possible through the use of a numerical process based model representing Poole Harbour. 

Several models have been developed for Poole Harbour (Section 2.2), including TELEMAC 

(HR Wallingford, 2004) and a hydrodynamic model described in  (Falconer, 1986b).  Both 

models were made available within this study however, the TELEMAC model was used as it is 

created in a more contemporary modelling software program, is based on more recent 

calibration data and the results were more easily integrated with the results from the 

historic saltmarsh analysis. 
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The TELEMAC process modelling system was developed initially at the Laborotoire National 

d’Hydraulique, a department of the research branch of Electricite de France (Hervouet, 

2000). TELEMAC-2D provides the hydrodynamics: horizontal depth-averaged velocities and 

water depth. Many physical phenomena are taken into account, such as friction, turbulence, 

wind velocity, variations of atmospheric pressure and astronomic tide-generating processes. 

TELEMAC has been used for many different studies, including modelling of cohesive 

sediment transport (Le Normant et al., 1998, Le Normant, 2000) modelling the 

hydrodynamics of river flow (Corti and Pennati, 2000) modelling the flows within a dam 

break (Le Normant et al., 1998) and modelling tidal flows  (Kuang and Stansby, 2006). 

The 2D TELEMAC model for Poole Harbour provides depth-average tidal flow vectors under 

present conditions, (http://www.opentelemac.org/). TELEMAC-2D uses an unstructured 

triangular grid that allows variable model resolution and the direct incorporation of 

observational data regardless of how it is distributed (Figure 4.4). The 2D hydrodynamic 

model was built and calibrated using a variety of existing and newly surveyed bathymetric 

and flow data as part of the Poole Approach Channel deepening studies. The model was 

validated against newly surveyed tidal flow data observed using a vessel mounted acoustic 

Doppler current profiler (ADCP) across three transects at the harbour entrance as well as 

current meters at 7 locations within Poole Harbour and 6 tidal diamonds, during the 11
th

 

and 12
th

 March, 1990, tidal data was also collected at this time (HR Wallingford, 2004). The 

spatial resolution of the unstructured triangular mesh used by the model in Poole Harbour 

is variable and ranges between 20 and 100 m. 

Using this data, potential correlations with saltmarsh and mudflat loss and gain from the 

historic analysis and the flow asymmetry can be analysed.  For the present analysis, a grid 

of points was created in ArcGIS, with a spatial scale of 250m. At each point, data was 

extracted from the TELEMAC model and processed, the data included x and y coordinates, 

time, velocity U m/s, velocity V m/s, water depth and velocity magnitude m/s. These were 

supplied for every 20 minutes over the 12.5 hour tidal cycle for neap and spring tides. 

Figure 4.5 shows the gridded point locations at which data was extracted. 

The limitations and advantages of a process based hydrodynamic model to calculate tidal 

dynamics is discussed in Section 2.2. 
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Figure 4.4 Tin mesh within the TELEMAC model of Poole Harbour 

 

Figure 4.5 Gridded points used to extract data from the TELEMAC hydrodynamic 

model. 

 

4.4 Stage 4: Assessing the critical shear velocity of sediment samples 

Based on the results of the historic saltmarsh change analysis, sediment samples from both 

regions that have experienced historic erosion and expansion were taken from Poole 
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Harbour. These samples were analysed using the annular flume at the Southampton 

Oceanographic Centre (SOC) (Figure 4.6) to assess the shear velocity threshold for 

sediments in Poole Harbour and determine if there are differences in sediment composition 

and characteristics between regions of historic erosion and expansion, results are presented 

in Section 6.3 and Figures A1 –A8 in Appendix A.  The velocity thresholds calculated by the 

annular flume were also used when determining the critical velocity thresholds for the tidal 

asymmetry analysis (Sections 4.3 and 7). 

 

Figure 4.6  Annular mini flume at Southampton Oceanography Centre used to assess 

critical shear velocities of sediments. 

The flume is equipped with 3 optical backscatter sensors and an electromagnetic (EM) flow 

meter. The flume sits within a tray containing the sediment sample to be tested, this is 

prepared several days in advance and left to settle, the tray is covered to prevent a biofilm 

from forming. The sediment sample is subjected to steady flows of increasing magnitude in 
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a series of steps and data analysed to assess the critical shear threshold over which 

suspended sediment concentrations rose and thus the bed erosion threshold. 

4.5 Summary 

A wide variety of methods have been used to assess historic saltmarsh changes in Poole 

Harbour and to link these changes to sediment types and composition and also the main 

physical drivers and mechanisms of change. This is summarised in Figure 4.7. The following 

Chapters 5, 6 and 7 outline the results of these methods, and briefly summarise these 

results before being discussed together in Chapter 8 and final conclusions presented in 

Chapter 9. 
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5 Historic Analysis Results 

As discussed in the literature review Poole Harbour has historically experienced a significant 

change in the area of saltmarsh, with previous studies focusing on more recent large scale 

changes post Spartina anglica colonisation (Born, 2005). Smaller-scale processes that may 

contribute to change, such as creek accretion, have been over-looked, potentially leading to 

an overestimation of historic erosion and the assumption that erosion is the only process 

and will be the long term trend in the future, with accretion being negligible or zero. 

Previous studies have also not investigated or linked drivers to these changes. 

This chapter describes the results from a study to investigate historic changes within Poole 

Harbour, quantifying rates of saltmarsh gain and loss and reinterpreting previous results 

from the literature. In this study this is achieved by investigating three main data types, 

historic OS maps presented in section 5.1, hydrographic charts presented in section 5.2 and 

aerial photographs presented in section 5.3. Uncertainties encountered through the analysis 

of these datasets are assessed in Section 5.4 and the suitability of using these datasets to 

observe historic change is discussed in Section 5.5. The main findings are summarised in 

Section 5.6. 

5.1 Historic Maps 

Historic OS maps were acquired from Digimap (Table 5.1) and potential changes within 

Poole Harbour were measured by digitising Mean High Water (MHW) (Figure 5.1), Mean Low 

Water (MLW) levels and the indicated saltmarsh are using a Geographical Information System 

(GIS) system. 

 

Table 5.1Historic OS maps used in analysis. 

Year 1890 1925 1963 1993 

Map type 
Country series 

1:2500 1
st

 Ed. 

Country series 

1:10560, 2
nd

 

revision 

National grid 

1:10560 

National grid 1:10000 

latest edition 
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Figure 5.1Mean High Water contours from historic maps. (Box indicates location of 

following figure 5.2) 

From examining the mapped changing historic shorelines, one prominent historic trend of 

saltmarsh change identified in these sources is the land claim that has taken place along the 

north shore and the adjacent bays. Figure 5.2 shows the land claim within Holes Bay and the 

northern shoreline, land claim is often to the detriment of saltmarsh and mudflat. According 

to these datasets approximately 150 ha of former intertidal area has been lost to land claim 

between the 1890’s and 1993.  

Figure 5.3, shows the area below mean low water within Poole Harbour, as digitised from 

1890 and 1993 maps. Changes between the data sets are quite clear, where areas that were 

classed as above MLW in 1890, with detailed creek systems, were below MLW in 1993. 

Figure 5.4 illustrates the change in area below MHW and MLW from 1890 to 1993. The 

change in MHW also includes the 150 ha lost through land claim, the rest are areas where 

mudflats have become colonised by saltmarsh, lifting it above MHW. The area below MLW 

has increased greatly, suggesting that the MLW contour has moved landward with a 

Figure 5.2 
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reduction of nearly half the intertidal area. However, this could be due to errors within the 

datasets and how MLW was plotted, as discussed in Section 4.1.1.    

 

Figure 5.2 Historic OS data illustrates land-claim between 1963 and 1993 along the 

north shore of Poole Harbour in Holes Bay. 

Channel movement can be identified from these datasets (Figure 5.5) the Wareham Channel 

appears to have straightened and widened. No records could be found for direct man-made 

intervention, and hence it is assumed to be a natural process. In the 1890 dataset channels 

and a lake-like area below MLW exist where now saltmarsh is present. 
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Figure 5.3 Area below Mean Low Water (MLW) for Poole Harbour from; Country series 

1:2500 1st Ed. 1890 and National grid 1:10000 latest edition (1993). (Boxed area shows 

location of figure 5.5) 

The Historic OS maps clearly suggest that change has occurred in Poole Harbour, but it is 

difficult to accurately quantify without verification alongside other datasets.  These results 

are incorporated into the results presented in Section 5.3. 

 

Figure 5.5 
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Figure 5.4 Area below Mean Low Water (MLW), Mean High Water (MHW) and the 

‘intertidal’ area between MHW and MLW, between 1890 and 1993 for Poole Harbour. 

From digitised OS map data. 

 

Figure 5.5 Changes in area below MLW in the Wareham Channel, between 1890 and 

1993. (See boxed area on figure 5.3) 
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5.2 Historic Hydrographic Charts 

Charts were acquired and digitised for 1785, 1849, 1878, 1910 and 1934. These were often 

only partial charts of the Harbour and contained limited information regarding saltmarsh 

and tidal flats. The small tidal range prevents major surveys of the intertidal and the charts 

are referenced back to OS maps. These charts were unsuitable for the study of saltmarsh 

change. Most of the detail on the Charts was focused on the main channels at the mouth 

and leading up to the ferry terminals and docks and hence the analysis of this data source 

was not pursued further in this study. 

5.3 Aerial Photography 

Results are firstly presented at the Harbour scale, integrating previous studies, results from 

Section 5.1 and the newly digitised aerial photographs and OS data into a consistent and 

comprehensive perspective of change. Localised saltmarsh changes at a sub-estuary scale 

are then analysed in greater detail to examine both losses and gains of saltmarsh area and 

finally the setting of change is discussed. 

5.3.1  Saltmarsh Change in Poole Harbour 

Trends of saltmarsh change, between 1947 and 2005 digitised from aerial photographic 

analysis are illustrated in Figure 5.6., showing large losses of saltmarsh across the intertidal 

region and accretion in the upper creek systems. 

In order to measure saltmarsh changes over a longer time period, digitised saltmarsh areas 

from OS maps (Section 5.1) were combined with aerial photographic results and other 

published literature. A historic timeline of saltmarsh area within Poole Harbour has been 

created and is shown in Figure 5.7. This extends the historic saltmarsh change analysis, 

back to 1849 and gives a longer assessment of changes. Published data from various 

sources (later discussed) are also incorporated into the timeline.  
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Figure 5.6 General trends of saltmarsh change in Poole Harbour (100m cell size). 

(Boxes indicate where aerial photographic data is missing). 

No data1947 

No data 

2005 
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Figure 5.7  Trends in saltmarsh area in Poole Harbour from OS maps and Aerial 

Photography analysis. Other data plotted from previous studies and surveys. 

Horizontal errors include published date ranges for OS data. Uncertainties include 

assessment of accuracy for aerial photographic and OS data interpretation of 

saltmarsh area. Errors not published and available for previous studies in the 

literature. 

An expansion of saltmarsh area is clearly seen during the early 1900’s, interpreted as the 

colonisation of Spartina anglica, leading to a rapid fourfold expansion. Followed by a slower 

decline in saltmarsh area post 1925 (Raybould, 2000, Hubbard, 1965). A loss of 140 ha of 

saltmarsh was calculated between 1947 and 1972. However, 29 ha were gained through 

accretion during this period, giving a net loss of 111ha. It should be noted that the datasets 

for this calculation were clipped to a common area as they do not have uniform coverage, 

hence the error range. The 1947 aerials lack data for Arne and Sandbanks, and so for the 

whole Harbour losses and gains could be larger. Between 1972 and 2005 101ha were lost 

and 25 ha gained, giving a net loss of 76 ha. Figure 5.7 puts into perspective the relatively 
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recent changes alongside the longer term trends, with saltmarsh area in 2005 exceeding 

that prior to Spartina anglica colonisation at the end of the 19
th

 Century, in round terms, by 

a factor of three. Other data plotted on figure 5.7 was derived from previous studies and 

surveys of saltmarsh extent within Poole Harbour, these studies do not discuss in any detail 

errors, accuracy or how data was processed. The values were calculated using various 

techniques, including fixed point photography, (Hubbard, 1965) analysis of aerial 

photography, (Born, 2005) and GPS surveys, (Edwards, 2005). According to Hubbard (1965) 

the maximum extent of saltmarsh occurred between 1917 and 1924, which unfortunately 

has not been captured in the OS maps or aerial photography available, and so uncertainties 

are difficult to assess.  In general, the other studies report slightly higher values of 

saltmarsh extent; the largest variation is the survey by Burd (1989), which is over 300 ha 

more than the amount recorded in 1993, both in this thesis and Born (2005). 

Figure 5.8 shows the average rate of loss and gain of saltmarsh for the entire study period, 

1849-2005 and between each year of data analysed. Again the colonisation of saltmarsh 

and the subsequent loss is clear, but when observed over the long-term there has been a 

net gain over the past 156 years, which was not recognised in the previous studies. The rate 

of loss has also decreased over time since 1947, suggesting there may be a slowdown of 

erosion within the Harbour. 

 

Figure 5.8 Annual rates of change, loss and gain of saltmarsh, between available 

datasets. 
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These losses and gains can be analysed over the entire Harbour allowing potential patterns 

of zonation to be identified, in order to understand the factors that may have driven them. 

In figures 5.9-5.12 the location of saltmarsh change has been identified and the proportion 

of erosion/loss and accretion/gain calculated for 50m
2

 cells. This allows the change to be 

linked to the geomorphic settings and the possible physical processes causing the change. 

For example where only accretion has occurred in an area this is indicted by ‘all gain’ 

(white) hence in this cell no loss (erosion) was recorded. Where only erosion has occurred 

this is indicated by ‘all loss’ (black), hence in this cell no gain (accretion) was recorded. 

Where a combination of erosion and accretion processes has occurred locally together, this 

is represented by a varying tint of grey depending on the proportion. Figures 5.9-5.12 show 

which of these processes have been the dominant driver of change between each dataset 

investigated for the whole Harbour. Figures 5.9 and 5.10 use OS map derived data and so 

are generally only useful for observing large scale trends, such as the widespread saltmarsh 

colonisation in the centre of the Harbour and reclamation in the eastern part of Holes Bay. 

Figures 5.11 and 5.12 illustrate the dominance of saltmarsh loss, between 1947 and 2005, 

within the centre of the Harbour and the dominance of accretion up tidal creeks and to the 

west of the Harbour. A mixture of both accretion and erosion appears to occur within the 

creek systems of the fringing marshes where channel and creek migration occurs. 
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Figure 5.9 Trend of saltmarsh change processes between 1849 (+41 years) and 1900 

(+25 years), by area (cell size 50x50m). 
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Figure 5.10 Trends of saltmarsh change processes between 1900 (+25 years) and 1947, 

by area (cell size 50x50m). 
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Figure 5.11 Trends of saltmarsh change processes between 1947 and 1972, by area 

(cell size 50x50m). 
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Figure 5.12 Trends of saltmarsh change processes between 1972 and 2005, by area 

(cell size 50x50m). 

 

5.3.2 Localised Saltmarsh Change 

Figures 5.9-5.12 show that there are patterns of erosion and accretion trends within the 

Harbour, these trends are analysed further in this section. The net saltmarsh trends have 

been divided by region: Figure 5.13 shows the resulting regions within Poole Harbour, with 

saltmarsh loss and gain calculated (Table 5.2). Relative spatial trends (by percentage) are 

shown in figure 5.14, relative to 1947.  
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Figure 5.13 Poole Harbour regions used for saltmarsh analysis (Boxes show areas of 

missing aerial photography) 

1) Holes Bay, 2) Wareham North, 3) Wareham Islands, 4) Wareham West, 5) Wareham South, 

6) Grip Heath, 7) Middlebere Lake, 8) Wych Lake North, 9) Wych Lake South, 10) Wych 

Farm, 11) Wych Lake East, 12) Fitzworth North, 13) Long and Round Islands, 14) 

Fitzworth Islands, 15) Ower Bay, 16) Cleavel Point North, 17) Newtown Bay, 18) Brands 

Bay, 19) Green Island, 20) Furzey Island, 21) Sandbanks, 22) Arne 
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Table 5.2 Saltmarsh area (ha) by region, overall change in area between 1947 and 2005 

and percentage change 

Location 

Saltmarsh (ha) 

Net Change % Change 

1947 2005 

1) Holes Bay 87.5 52.7 -34.8 -39.8 

2) Wareham North 9.1 7.0 -2.1 -23.1 

3) Wareham Islands 11.0 4.5 -6.5 -59.1 

4) Wareham West 62.9 66.0 3.1 4.9 

5) Wareham South 9.9 18.2 8.3 83.8 

6) Grip Heath 21.7 19.9 -1.8 -8.3 

7) Middlebere Lake 25.9 35.3 9.4 36.3 

8) Wychlake North 31.3 30.2 -1.1 -3.5 

9) Wychlake South 5.3 7.4 2.1 39.6 

10) Wytch Farm 12.9 14.1 1.2 9.3 

11) Wychlake East 10.3 9.6 -0.7 -6.8 

12) Fitzworth North 19.9 17.6 -2.3 -11.6 

13) Long and Round Island 24.2 15.2 -9 -37.2 

14) Fitzworth Island 22.2 1.5 -20.7 -93.2 

15) Ower Bay 13.2 11.1 -2.1 -15.9 

16) Clevel Point North 6.3 2.5 -3.8 -60.3 

17) Newtown Bay 18.1 7.6 -10.5 -58.0 

18) Brands Bay 67.7 22.8 -44.9 -66.3 

19) Green Island 15.7 3.4 -12.3 -78.3 

20) Furzey Island 20.5 2.4 -18.1 -88.3 

Total 495.450 348.946 -146.6 -29.6 

Five regions in Figure 5.13 have experienced an overall net gain in saltmarsh area: 

Middlebere, Wych Farm, Wych Lake south, Wareham south and Wareham west. These 

accreting regions are all at the western end of the Harbour up tidal creeks and are mostly 

protected from waves produced by the locally dominant south-westerly winds. An important 

and widespread trend is the decline in accretion and erosion rates from 1947-1972 to 1972-

2005 (Figure 5.14). The most pronounced exception is the Wareham Islands area, where the 

percentage of loss has accelerated. This is due to the area being composed entirely of 

islands not attached to the mainland; they have no room for migration and as the islands 

are eroding from all sides there is proportionally greater loss and potentially a absolute 

loss. 
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Wareham Islands also experienced the highest lateral erosion rate, calculated as nearly 

3m/yr between 1972 and 2005. Elsewhere within the Harbour average lateral erosion rates 

between 1947 and 1972 were 1.7m/yr and between 1972 and 2005 were 1.3m/yr reflecting 

the decreasing trend of saltmarsh loss. Lateral accretion rates have also been recorded, with 

up to 2m/yr noted at Wareham south and Wareham west sites for both the 1947-1972 

period and the 1972-2005 period. 
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Figure 5.14 Percentage change in saltmarsh area for regions within Poole Harbour 

(numbers according to Figure 13) 
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5.3.3 Classification of Saltmarsh Change Mechanisms 

Although the OS map data was useful for measuring Harbour wide trends, it is not accurate 

enough to observe small local scale trends. This section focuses mainly on the results from 

the aerial photographic analysis from 1947-2005. Examples of the types of loss in Poole 

Harbour are illustrated in figure 5.15 and include: 1) island erosion, 2) frontal erosion and 

3) creek erosion. 

Island erosion was classified where islands of marsh, unconnected to the mainland with no 

elevation over HAT have partially or wholly eroded, frontal erosion was classified as where 

areas on open or semi-open saltmarsh had retreat landwards from the front edge, this is 

essentially the same as island erosion but the marsh is backed by land and potentially able 

to migrate. Creek erosion was classified as any erosion that had taken place within 

sheltered creek systems. 

 

Figure 5.15 Examples of saltmarsh loss mechanisms (1974 to 2005)  

Erosional mechanisms are presented in Figure 5.16a by area and Figure 5.16b by rate, to 

make the datasets and rates of loss comparable they have been cut to the same area for 

1947, 1972 and 2005. The main mechanisms of loss for both the 1947-1972 and 1972-

2005 periods are island erosion followed by frontal erosion. Together these make up 83% 

and 69% of all erosion experienced during those time periods, respectively. Understanding 

why and where island erosion occurs is important to fully understand these historic losses 

and to better understand the future changes that may happen at this site.  
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Figure 5.16 Saltmarsh loss by different mechanisms (a) area loss and (b) rate of area 

loss 

Mechanisms such as reed bed conversion, spit roll-back and channel migration are limited 

to small, specific locations and although these are important locally, they have much less of 

an impact at the scale of Poole Harbour. The reclamation within Holes Bay is clearly relevant 

to the entire Harbour representing 13% of all saltmarsh loss since 1947. However, this is a 

direct anthropogenic impact so the cause of loss is quite apparent. Saltmarsh and intertidal 

area has been deliberately built over, rather than a natural process or an indirect 

anthropogenic mechanism e.g. dredging, pollution or ship-wash.  The mechanisms of 

saltmarsh gain in the Harbour can be similarly classified to the saltmarsh losses (Table 5.4 

and Figure 5.17). 

The realignments that have occurred in Poole Harbour are mainly small localised former 

agricultural areas, situated in Ower Bay and Wych Lake East (figure 5.13 for location). These 

account for less than 1ha of saltmarsh gain.  However, in the future realignment around 

Poole Harbour could be significant, particularly in the valleys of the Frome and Piddle rivers. 

Saltmarsh gain mechanisms are seen in Figures 5.18a by area and 5.18b by rate, to make 

the datasets and rates of gain comparable they have been cut to the same area for 1947, 

1972 and 2005. The main mechanisms for both the 1947-1972 and 1972-2005 periods is 

creek side accretion; accounting for 14ha, 48% of accretion between 1947 and 1972 and 

12ha, 49% of overall saltmarsh gain between 1947 and 2005. Frontal accretion accounts for 

12ha, 43% of saltmarsh accretion between 1947-1972 period and 11 ha, 43% of saltmarsh 

accretion between 1972 and 2005. Understanding these dominant processes of accretion 
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may give insights into how the net saltmarsh area in Poole Harbour may change in the 

future.  Channel infill, island accretion and realignment together account for 9% and 8% of 

accretion for 1947-1972 and 1972-2005 periods, respectively.  

 

Figure 5.17 Examples of saltmarsh gain mechanisms (1974-2005 extent) 

  

Figure 5.18 Saltmarsh gain by different mechanisms (a) area gain and (b) rate of area 

gain 
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5.4 Uncertainty analysis 

No previous analyses of saltmarsh changes in Poole Harbour considered uncertainty in their 

estimates of saltmarsh area. Here these uncertainties are considered in order to define our 

confidence in the results and particularly the trends observed in Figure 5.7. 

5.4.1 Date Uncertainties 

Uncertainties were found in the dates of the OS maps. The dates specified are when they 

were published. However, surveys may have been up to 41 years prior to this date, as in the 

survey from 1890. When compared to previous data collected on saltmarsh within Poole 

Harbour, particularly the 1925 OS map and the 1924 analysis by Hubbard (1965), the OS 

map appear to be from an earlier date than published when Spartina was not as well 

established. Hence the range of dates of survey has been considered. 

5.4.2 Uncertainty Analysis From OS Maps 

Errors for the area of saltmarsh calculation were also assessed. From the OS data, MHW was 

digitised. However, saltmarshes are often found between HAT and MHWN, and so this 

indicates a minimum extent, particularly for pioneer species such as Spartina anglica. All 

the OS datasets lack detail in these areas. However, some earlier OS maps did indicate 

saltmarsh areas not bound by MHW, and this was also digitised. The data from the 1993 OS 

map lacked this indicative data and neglected to show any saltmarsh within Brands Bay, 

Newtown Bay or from the north of Holes Bay (see figures 5.13 for locations). When 

compared to the aerial photography for 2005 it is clear that saltmarsh still exists in these 

areas, although it may be below MHW and so an approximate area of saltmarsh was 

calculated from the aerial photography to compensate for this error. Due to the inaccuracies 

previously discussed (section 4.1.1) error buffers either side of the digitised saltmarsh, of 

3.5 metres and 10 metres was applied and the area calculated. Hence, an error range can be 

defined, Table 5.5. 
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Table 5.5 Estimated digitising errors from OS map analysis. 

Published 

Date 

Saltmarsh 

Area 

3m Buffer 

% Difference 

(3m) 

10m Buffer 

% Difference 

(10m) 

1849 117.1 12.2 10.4 36.6 31.2 

1900 172.5 13.8 8.0 40.5 23.5 

1963 588.5 30.9 5.3 104.8 17.8 

1993 348.6 25.2 7.2 65.9 18.9 

5.4.3 Area Uncertainties For Aerial Photography 

Error calculations for saltmarsh digitised from aerial photography was performed by 

repeating the digitisation of one area and calculating the standard deviation. Hence a 

percentage error can be calculated (Table 5.6). 

The errors made when digitising the 2005 aerial photography are much lower than for the 

other datasets. This is because the photographs are colour rather than black and white and 

so the interface between the mudflats and saltmarsh is much easier to distinguish. Also the 

resolution of the 2005 data is 0.1m (Table 2) as opposed to 0.5-0.6m resolution as in the 

earlier photographs. Hence the total area of saltmarsh in Poole Harbour amounts to 377.4 ± 

0.6 ha in 2005, 461.1 ± 3 ha in 1973 and 537.3 ± 3.2 ha in 1947. This still demonstrates 

significant net losses between these observations even taking into account the errors 

calculated here.  

The 1947 aerial photography did not have full coverage for the Harbour, the most 

significant areas missing being the Arne peninsula, the top of some creek systems in the 

Wych Channel and a small area at Sandbanks (see figure 4.2 for locations). Rates of loss at 

these locations between 1972 and 2005 were calculated and extrapolated linearly 

backwards to give a figure for saltmarsh in this area in 1947, this is also included in the 

error on the graph.  

Other errors such as displacement may occur during the georectification of the datasets. 

The implications of this are not likely to affect the total area of the saltmarsh, but could be 

significant when looking into the details of saltmarsh location and thus where erosion or 

accretion has occurred over time 
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Table 5.3 Estimated digitising errors from aerial photography analysis.  

Year 2005 1972 1947 

Original (m2) 25339 19730 24950 

Rep 1 (m2) 25368 19552 25259 

Rep 2 (m2) 25332 19736 25050 

Rep 3 (m2) 25296 19559 25230 

Rep 4 (m2) 25348 19607 25149 

Rep 5 (m2) 25411 19801 24895 

Rep 6 (m2) 25286 19896 25260 

Mean (m2) 25340 19697 25113 

Stad Dev. 42.4 129.9 150.5 

% Diff 0.2 0.7 0.6 

.  

5.5 Assessment of Historic Datasets 

To summarise, different data was found to be suitable for different purposes and scales of 

assessment. Historic OS maps were useful to observe large scale changes over time, such as 

reclamation and building development. However, it was found that saltmarsh indicators on 

the maps could be inaccurate and that MHW was sometimes mapped landward of saltmarsh 

areas and at other times seaward of it. Similarly MLW lines on the graphs are not up to date 

and do not reflect the positioning of channels at the published date. However, for a general, 

large scale view of changes within a system they are useful to inform the smaller scale 

studies. Historic charts were found to be most detailed in main channel areas. Whereas 

intertidal areas were often not surveyed, with data taken from OS maps. Poole Harbour has 

extensive areas of shallow intertidal areas, and this combined with the micro-tidal climate 

make these areas difficult to survey. Within other estuaries charts may be much more 

accurate and so their usefulness in studying intertidal changes must be assessed on a site 

by site basis. 

Aerial photography is particularly useful for studying intertidal habitat changes, as well as 

reclamation and development within the coastal zone. However, historic aerial photography 

is fairly scarce and is often incomplete. Major errors can be incurred through the processing 
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of the historic photography, which must be correctly georectified. Errors are frequently also 

made during the interpretation of coastal habitats. Historic data is often black and white, 

which makes observing the landward extent of saltmarsh difficult, particularly when backed 

by reedbeds and other marshland habitats. The time at which the aerial photographs are 

taken also dictates their usefulness, the data for Poole Harbour was not taken at low tide 

and so channel networks are difficult to interpret.  

It must also be noted that due to the limited data available, short term changes and 

fluctuations will not have been observed. The formation of pans within saltmarshes has 

been observed in many other estuaries (Boston, 1983, Pethick, 1974), although this process 

was not observed within Poole Harbour. However, if these pans form over a short time 

period this process may have been missed or obscured by other long term processes such 

as frontal erosion or subsequent reedbed takeover. 

 

 

5.6 Summary  

The main findings from the preceding chapter are summarised below, a detailed discussion 

of the findings of this chapter set in the context of the aims and objectives, laid out in 

Chapter 1, is presented in Chapter 8. 

The main objective of this Chapter has been to quantify historic saltmarsh trends within 

Poole Harbour. This has been achieved through the analysis of maps, charts and aerial 

photography. 

When set into a post-1849 context, saltmarsh area expanded significantly due to the 

colonisation of Spartina from 1900 to 1920, followed by a decline which continues today. 

While saltmarsh in Poole Harbour area has declined rapidly during the latter half of the 20th 

century, the changes are more complex than previously reported, with a net loss as erosion 

exceeded accretion. However, the rate of saltmarsh loss is decreasing and the total area of 

saltmarsh in 2005 exceeds the area estimated in 1849 and 1900, this is an important 

contemporary process in Poole Harbour. The processes that are controlling these changes 

can be inferred from the geomorphic setting of the change. The dominant erosional 

processes are island and frontal erosion occurring in exposed areas of the Harbour. The 
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dominant accretional processes are frontal and creekside accretion occurring in sheltered 

creek systems and the potential for erosion and accretion to continue in these locations 

needs to be considered when evaluating future possible trends. Hence while the future of 

saltmarsh in Poole Harbour needs to be carefully evaluated, recent changes are not as 

adverse as earlier work suggests (as discussed in Chapters 1 and 3). 

 The main findings of this stage are: 

 A more complex set of saltmarsh changes, than those reported by earlier research, 

is occurring in Poole Harbour and both accretion and erosion have been observed. 

 Saltmarsh extent in 2005 was approximately three times the extent in 1900 prior to 

Spartina colonisation. 

 Peak saltmarsh extent occurred around the 1920 ‘s and can be attributed to 

Spartina colonisation 

 Since 1947 the saltmarshes, have experienced a net loss of 187ha, including 241 ha 

of loss and 54 ha of accretion. 

 Observed erosion and accretionary trends are spatially variable 

 The dominant erosional processes are frontal and island erosion 

 The dominant accretional processes occurs up creek systems and are creek-side and 

frontal accretion 

 Rates of loss have declined since 1947, in all but one region of the Harbour 

surrounding the Islands in the Wareham Channel 
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6 Estuary Morphology Results 

Chapter 5 described the detailed historic trends of saltmarsh change within Poole Harbour, 

in Chapter 6 these historic results are examined with respect to the second stage of 

research, as proposed in Section 1.2. The main objective was to examine the morphology of 

the Harbour and how it varies between eroding and expanding regions of saltmarsh. This 

includes an analysis of the hypsometry of the Harbour (Section 6.1) which can indicate 

whether the estuary is importing or exporting sediment. This will have an impact on the 

intertidal habitats ability to keep pace with local relative sea-level rise and erosional or 

accretional trends. Sub-estuary variations in hypsometry are also assessed and compared to 

the historic change analysis, discussed in Chapter 5, to observe any correlations with 

saltmarsh change.  Saltmarsh morphology is examined in Section 6.2, through mapping of 

cross sections of the intertidal. The cross shore profile shape can indicate erosional and 

accretional trends; this will give insight into contemporary processes within the saltmarshes 

and drivers of change. These results are then combined with a sediment analysis for 

selected areas within the Harbour, where velocity shear thresholds were analysed through 

flume testing (Section 6.3). Then further combined with knowledge of dominant wind and 

wave directions and fetch (Section 6.4), which may be responsible for the changes observed 

in Chapter 5. The main findings are summarised in Section 6.5 

6.1  Hypsometry 

As previously discussed in Section 2.1.2.3, hypsometry describes how the horizontal surface 

area of an estuary varies with respect to the elevation (or depth). The resulting hypsometry 

curves can help to describe an estuarine system in terms of tidal asymmetry and its 

morphological state, e.g. is it an eroding or accreting system, (Boon and Byrne, 1981, 

Strahler, 1952).  The Hypsometry relationship between area and height used in this study 

was defined in equations 2.1-2.3 (Boon and Byrne, 1981) and figure 2.5 (Section 2.1.2.3). 

In some previous studies (Boon, 1975, Dieckmann et al., 1987, Kirby, 1992),  hypsometry 

has been used to describe the changes that occur over the intertidal region only. Hence, A is 

the total basin area (area at highest astronomical tide) and A
min

 would be the basin area 

below lowest astronomical tide, which can be used to find the value of parameter r. The 

smaller the value of r the larger the proportion of area above LAT in the estuary and hence 

the larger the intertidal area. However, in studies investigating the total estuary profile A
min 

is 
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no longer applicable in the calculations and hence r cannot be resolved and so is empirically 

determined, Boon and Byrne (1981) use a value of 0.01. The parameter γ is often found 

through curve fitting (Boon and Byrne, 1981, Strahler, 1952), in order to illustrate the 

affects that these values have on the morphology of an estuary an idealised case has been 

calculated using equations 2.1-2.3. 

Figures 6.1 and 6.2 illustrate how γ alters the hypsometric curve and intertidal profile. In 

this example the curve and intertidal profile are similar as the estuarine model used to 

illustrate the profile changes was a simple circular basin in shape, with other estuary shapes 

the profiles may vary. The value γ, adjusts the area below the hypsometric curve and 

describes the maturity of the estuary, or how infilled it is. An estuary where γ=3.5-5.0 will be 

little in-filled and will be flood dominant, while an estuary where γ= 1.8-2.5 will be ebb 

dominant (Boon and Byrne, 1981). The parameter r, when applied to whole estuary 

calculations, controls the amount of basin curvature in terms of slope at the point of 

inflection (Boon and Byrne, 1981). Hence, r determines the steepness of the channel sides 

and the extent of the intertidal areas. This is illustrated in figures 6.3 and 6.3, as r increases 

the shape of the hypsometric curve flattens with a lowering of the intertidal region. 

 

 

Figure 6.1 llustration of how value γ alters the hypsometric curve (r=0.01) 
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Figure 6.2 Illustration of how value γ alters the intertidal profile (r=0.01) 

 

Figure 6.3 Illustration of how value r alters the hypsometric curve (γ=2) 
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Figure 6.4 Illustration of how value r alters the intertidal profile (γ=2) 

 

 

Using a simple model to plot intertidal profiles from a hypsometric curve, it can also be 

illustrated that although several profiles may have the same γ and r values and hence the 

same hypsometric curve, that they may have different cross-shore profiles (Figure 6.5). 

Depending on the tidal amplitude within these estuaries, they may have very different 

intertidal distributions. However, if the tidal ratio to depth is the same for each estuary then 

they would have the same distribution of intertidal area (assuming no other changes in 

external forcing). 

 

Figure 6.5 Illustration of how changing depth affects the intertidal profile (γ=2, r=0.01) 
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By combining LIDAR data collected in 2007 (source Channel Coastal Observatory), with 

hydrographic bathymetry of the sub-tidal areas (2005), supplied by Poole Harbour 

Commissioners, a digital terrain model (DTM) of the Harbour has been created. From this 

DTM, hypsometric curves for the entire Harbour (Figure 6.6) and for sub-sections of the 

Harbour (figure 6.7) could be extracted (Figures 6.8 and 6.9). Hypsometry in this example is 

applied to the full depth (approximately 14 m) of the Harbour. These profiles can then be 

compared to empirical hypsometry curves derived in (Boon and Byrne, 1981, Strahler, 

1952). Parameters from these curves can then be calculated to indicate whether these areas 

are likely to behave as flood or ebb dominant and hence importing or exporting sediments. 
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Figure 6.6 Hypsometric plot for the whole of Poole Harbour 

Figure 6.6 shows hypsometry plots for the whole Harbour, mathematically derived lines 

using equations 2.1-2.3 in Section 2.1.3 for γ=1.5 and γ=5, represent a theoretical mature 

and immature estuary respectively. The immature estuary would describe Poole Harbour in 

its early stages of evolution with low intertidal areas of limited extent, prior to initial 

infilling at the start of the Holocene. This morphology would have a tendency towards flood 

dominance and hence import sediment into the system (Pethick, 1994), which would accrete 

in the intertidal areas, in extent and height. Conversely the mature estuary could potentially 

be represented by Poole Harbour at the peak of Spartina colonisation with high expansive 

mudflats and intertidal areas stabilised by saltmarshes. This form tends to be ebb dominant 

(Dronkers, 1986, Fortunato et al., 1999) and hence following the rapid build up of intertidal 
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areas the ebb dominance could have increased tidal currents to a magnitude whereby 

export of sediment and hence erosion, occurred. 

These two models illustrated in Figure 6.6 represent two extreme examples or end points 

on continuum in estuary evolution and as such these forms are inherently unstable, 

therefore following Spartina dieback the intertidal areas have eroded with a tendency to 

conform to a dynamic equilibrium state between the two extremes. 

The hypsometry of the whole Harbour is now compared to individual creek systems within 

the Harbour. Figure 6.7 defines these sub-regions, while Figures 6.8 and 6.9 shows the 

results for the areas that have had historic accretion and erosion, respectively. The 

hypsometric curves of these sub-regions deviate substantially from the Harbour as a whole. 

The accreting and eroding areas are grouped in terms of the form of the hypsometry, 

plotting closer to the mature and immature theoretical endpoints, respectively (Figures 6.8 

and 6.9). In fact the eroding regions often extend below the expected lower theoretical 

boundary of Boon and Byrne (1981). This can be attributed to these regions not being 

closed systems and instead need to be considered within the estuary system as a whole, as 

sediment can move between these sub-regions.  Or in other words, when averaged over the 

entire system (Poole Harbour) these extreme results (for the sub-regions) are averaged out 

resulting in a hypsometric curve that falls between the expected hypsometry envelope 

(Figure 6.6).  Although the sub-section curves do not conform to the general hypsometric 

thresholds, the hypsometric method still represents a useful tool. Morphologically the areas 

that are delineated through hypsometry as flood dominant (accreting) and ebb dominant 

(eroding) correlate with historic saltmarsh changes mapped in Chapter 5. 
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Figure 6.7 Areas at a sub-estuary scale for which hypsometry curves have been 

derived. (1. Holes Bay; 2. Lytchett Bay; 3 Wareham Channel; 4. Wych Lake left; 5, Wych 

Lake right; 6. Ower Bay; 7. Newtown Bay; 8. Brands Bay) 

 

Figure 6.8 Hypsometric plot of accreting regions of Poole Harbour (reference numbers 

on figure 6.7) 
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Figure 6.9 Hypsometric plots of selected eroding regions within Poole Harbour 

(reference numbers on figure 6.7) 

6.2 Saltmarsh Morphology 

 

The morphology and shape of the intertidal profile has been linked to erosion and accretion 

(Kirby, 2002, Roberts et al., 2000) as discussed in section 2.1.2. This section analyses the 

shape and morphology of the intertidal and further links to the results in Chapter 5 of the 

spatial variation in historic erosion and accretion. Profiles were taken across the saltmarsh 

and mudflats using LIDAR data (section 4.2.2), Figure 6.10. In total 151 representative 

profiles around the Harbour were examined and plotted to show their shape and 

morphology, these were positioned at relatively uniform intervals around the Harbour as a 

representative sample. However, it must be noted some errors, +7cm (Montane and Torres, 

2006), may occur in the LIDAR data and for areas of thick vegetation it may show the top of 

the saltmarsh canopy rather than the intertidal flats they are situated on.  On each profile 

graph, mean high water spring (MHWS), mean high water neap (MHWN), mean low water 

neap (MLWN) and mean low water spring (MLWS) have been plotted.  
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Figure 6.10 Location of saltmarsh profiles (Profiles in red used as example in figures 

6.11-6.17.) 

Figures 6.11 and 6.12 both show saltmarsh to mudflat profiles from areas where frontal 

erosion has been observed. The saltmarsh platform occurs around 0.8m OD (MHWS) in 

these areas, in most cases this then drops fairly steeply to below 0m OD between MLWS and 

MLWN, with a more gentle slope evident in profiles 28 and 16.  
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Figure 6.11 Long and Round Island (areas of frontal erosion). 
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Figure 6.12 Wych Lake (area of erosion) 

Figure 6.13, shows a cross creek profile where saltmarsh on both sides of the creek has 

been observed as eroding. The amount of historic erosion on the western side has been 

fairly small in comparison to the eastern side. On the eastern side the profile drops straight 

from the saltmarsh platform at around 0.8m OD to below 0m OD and into a tidal creek. The 
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western side drops from the saltmarsh platform at 0.8 m OD to just above 0, where it gently 

slopes downwards across the mudflat to the channel.  
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Figure 6.13 Wych Lake (across channel W-E both eroding) 

Figure 6.14 shows profiles across a saltmarsh promontory, from north to south, in West 

Wareham. On the southern side of the marsh, erosion is the dominant process and the 

marsh platform (between 1 and 0.8m OD) sharply drops to around -0.5m OD. However, at 

profile 54 on the northern side there has been accretion and the mudflat in front of the 

saltmarsh is much higher gently decreasing from 0.25m to 0m OD. Erosion has been 

observed on the northern side for profiles 5 and 55b, where the mudflat is lower and sits 

between -0.5 and 0m OD. 
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Figure 6.14 West Wareham (across saltmarsh promontory, N-S)  

Figure 6.15 and Figure 6.16 show profiles across an accreting creek system from the mouth 

to the head of the creek. As shown in Figure 6.15, the creek entrance is wide and gradually 

narrows inwards towards the head. The channel is shallow and high in the tidal frame at 

0.18m OD, with broad mudflats either side at the mouth, which slope up to the marsh 

platform at around 0.8m OD. As the profiles progress towards the head of the creek, the 

mudflat area either side of the creek narrows and the creek becomes relatively deeper, until 

the mudflats disappear and the marsh drops straight into the creek. In Figure 6.16, profile 

20 is furthest towards the mouth of the creek and profile 4 furthest away. Again the creek 

has broad mudflats either side before sloping up to the saltmarsh platform. However, in this 

case the saltmarsh is at different heights on either side of the creek, on the south side it is 

around 0.8m OD but is over 1m OD on the north side, and the channel is much deeper at -

0.5 m OD. 
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Figure 6.15 Fitzworth north (across accreting creek, N-S) 
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Figure 6.16 Middlebere (accreting creek, N-S) 

Figure 6.17 shows profiles along an eroding creek system, profile 49 is at the mouth of the 

creek, the sides are steep from the saltmarsh platform, at 0.8m OD, dropping straight into 

the channel with no fringing mudflat. The channel depth gradually decreases from the head 

of the creek to profile 52, however, the profile stays the same. 
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Figure 6.17 Wareham west (eroding creek S-N) 

These profiles help classify accreting and eroding areas within the Harbour and illustrate 

processes that may be driving the saltmarsh change. For example in exposed areas, where 

cliffs occur extending below MLWS, wave attack is likely and could be the dominant driver of 

saltmarsh erosion. However, if cliffing occurs in sheltered locations, such as creeks, this 

may be due to instability of sediments due to bioturbation. 

The height of the saltmarsh at the marsh edge and the height of the mudflat immediately in 

front of the marsh were measured for areas of erosion and accretion. These trends were 

then linked to rates of historic changes (Figure 6.18), there appears to be no significant 

relationship between the rate of accretion and either the height of the marsh or the fronting 

mudflats. In areas of historic saltmarsh erosion, the rate of saltmarsh loss increases with 

the lower elevations of both marsh and fronting mudflat height. 

 Statistical analysis of the data sets, involving homoscedastic, unpaired T-tests, were 

performed, in order to determine whether the levels of mudflat and saltmarsh in accreting 

and eroding areas were significantly different in height. It was concluded that there is a 

significant difference between the levels of eroding and accreting saltmarsh and mudflats. 
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Figure 6.18 Relationship between rate (m/yr) of saltmarsh change and the height (OD) 

of saltmarsh at marsh edge and mudflat directly in front of the marsh. 

The histogram in Figure 6.19 shows the present bed height (from LIDAR and bathymetry ) 

where saltmarsh accretion and erosion trends have historically occurred since 1947 

Although the height at which previously eroded saltmarshes were positioned cannot be 

calculated, it can be shown to what level these areas have been reduced to or changed. The 

majority of area now sits between 0.2 and -0.8 m (OD) which corresponds to between MLWN 

and MLWS and has been converted from saltmarsh to intertidal mudflat. Some regions lower 

than this, down to roughly -3.0 m (OD), can be seen and are where channel migration has 

occurred.  
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Figure 6.19 Histogram of height at which saltmarsh change has occurred 

As discussed in Section 5.3.3, channel migration has been one driver of saltmarsh loss in 

Poole Harbour as well as some reclamation for marinas in Holes Bay which are responsible 

for this drop in elevation. Some areas of previous erosion, can be observed high in the tidal 

frame and extend up to 2m (OD), reclamation and reed bed take over are responsible for 

the losses in these regions. The height of saltmarsh that has previously accreted is situated 

between 0 and 1.5m (OD) peaking at 0.8-0.9m (OD) around MHWS. This correlates with the 

profiles taken across the intertidal regions presented in figures 6.11-6.17.  

6.3 Sediment Properties 

As previously discussed in Section 2.1.2 estuarine morphology is a result of interactions 

between sediments and hydrodynamics. The critical shear velocity of different sediments 

determines sediment transport and movement. Hence, in order to help understand the 

spatial variation in saltmarsh erosion and accretion within the Harbour, sediment samples 
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were taken within Poole Harbour and the critical shear threshold assessed using annular 

flume experiments.  The critical shear threshold was used in Chapter 7, alongside modelled 

tidal velocity outputs to infer erosion and deposition spatially and throughout the tidal cycle 

in Poole Harbour. Samples were collected from both eroding (E) and accreting (A) areas 

(Figure 3.1). 

Figures A1 –A8 in Appendix A, show time series plots of annular flume experiments for 

each site and sample, including erosion rate, total suspended solids (TSS) and shear stress 

(Tau). The calibration of the OBS sensor to suspended sediment concentration, measured 

from samples taken from the flume, are shown in Figures A9 – A16. Estimates of shear 

thresholds using the relationship between bed shear stress and suspended sediment 

concentration are calculated in Figures A17-A25. 

The average critical shear velocity threshold for eroding sites was 0.16 m/s and 0.24m/s for 

accreting sites, giving an overall average shear velocity threshold of 0.2m/s (Table 6.1). 

Table 6.1 Samples taken at eroding (E) and accreting (A) sites.  

Sample 

Critical Shear Velocity 

Pa m/s 

E1-1 0.33 0.2 

E 1-2 0.13 0.13 

E 2-1 0.18 0.15 

E 2-2 0.15 0.14 

A1-1 0.36 0.21 

A 1-2 0.3 0.19 

A 2-1 0.86 0.33 

A 2-2 0.43 0.23 

Average 0.34 0.2 

 

Examination of organic content showed that the sample taken from the erosionary sites had 

an average organic content of 13.5% whereas the samples from the accretion sites had an 

organic content of 9.5%. Visually the sediment from the erosion sites had large pieces of 

organic matter, including dead saltmarsh stems, within the mud. No large organic matter 

was observed in the accretion samples.  
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Grain size analysis using a coulter counter (Figures A25-A33) revealed an average grain 

diameter of 17µm and 16µm for sediments from erosionary and acretionary areas 

respectively, indicating a medium silt (Figure 6.20). It was also shown that there are 2 

distinct types of sediment within the Harbour with a bimodal spike on the sediment 

distribution graph at approximately 17µm and 100µm, indicating that there is both fine silt 

fractions and very fine sand fractions within the Harbour, (Wentworth, 1922). Although 

some fine sediment may be input to the Harbour from cliff erosion (Section 3.1.2) fine sand 

may have been transported through the mouth of the Harbour.  

 

Figure 6.20 Sediment size classification (Table from Wentworth (1922)). 

 

6.4 Wind/wave effects 

In shallow regions wind-waves can affect turbidity and is considered a major factor in 

saltmarsh decline in other esturies, as discussed in Section 2.1.1, with wave energy linked 

to spatial differences in long-term Spartina growth (Swales et al., 2004). Rates of saltmarsh 

change (Figure 4.3) and fetch length were compared for sites in Poole Harbour. 

The highest rates of saltmarsh gain within the Harbour occur where the marshes are 

orientated towards the North-west and the South-east (Figure 6.21), which is opposite to the 

predominant wind directions and hence most sheltered from locally derived wind-waves. 
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However, rates of saltmarsh loss do not appear to be directly related to orientation within 

the Harbour (Figure 6.22).  

 

 

 
 

Figure 6.21 Rose showing the 

orientation and rate of saltmarsh gain 

within Poole Harbour 

Figure 6.22 Rose showing the 

orientation and rate of saltmarsh loss 

within Poole Harbour 

 

Figure 6.23 illustrates that the majority of accreting sites have a fetch less than 250m. 

However, accretion does occur in a few regions within the Harbour where the fetch exceeds 

1000m, the majority of these are aligned to the South-east (91-180 degrees). Areas where 

saltmarsh erosion has occurred are often exposed to longer fetches, particularly from 0-89 

degrees and 180-269 degrees. However, there is no clear correlation between rate of 

erosion to either distance of fetch or direction of fetch. 
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Figure 6.23 Relationship between the rate of saltmarsh change between 1947 and 2005 

(m/yr), the distance of fetch perpendicular to the saltmarsh front and the direction of 

fetch 
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6.5 Summary 

The main findings from Chapter 6 are summarised below. A detailed discussion of the 

findings of this chapter set in the context of the aims and objectives (Chapter 1) is 

presented in Chapter 8. 

The main objective of this Chapter has been to investigate the morphology of the Harbour 

and how this relates to the saltmarsh changes observed in Chapter 5. This was achieved by 

examining the hypsometry and cross sectional profiles of the saltmarshes.  In summary, 

saltmarsh accretion and loss have been observed within close geographical proximity in 

Poole Harbour and appear to be linked to various physical drivers. 

Accretion has generally been observed where: 

 The height of the fringing mudflat is significantly higher than in eroding areas 

 The height of the marsh front is significantly higher (than in eroding areas) 

 Hypsometry profiles are convex in form 

 Sediment shear thresholds are higher than in eroding areas 

 It is sheltered from the prevailing wind direction and hence locally produced wind-waves 

 Fetch lengths are generally less than 1000m (but not entirely limited to) 

Accretion occurs in relatively sheltered locations with short fetches, but is not limited to 

these areas, as seen in the Wareham Channel where some of the highest accretion rates 

occur fronting a fetch length of over 2000m. The saltmarshes tend to be fronted by high 

mudflats, in areas indicated through the hypsometry as being flood dominant. This is likely 

to be due to the hydrodynamics transporting sediments eroded from other regions and 

depositing them in sheltered (flood dominant) locations, facilitating saltmarsh accretion in 

this area. Fronting mudflats may also be accreting through this process, which acts as a 

postive feed back dissipating any wave energy that may otherwise contribute to frontal 

erosion.  

Erosion has generally been observed where; 

 The height of the fringing mudflat is significantly lower than in accreting areas 

 The height of the marsh front is significantly lower than in accreting areas 

 Hypsometry profiles are concave in form 
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 Sediment shear thresholds are lower than in accreting areas and contain more biological 

content 

Erosion occurs in relatively exposed locations and often occurs where the fetch is large. 

However, no clear Harbour-wide correlation between fetch direction and erosion and hence 

wave height has been observed. The marsh top and fringing mudflats are significantly lower 

and the mudflats have a lower sediment shear velocity than in accretionary regions, which 

may lead to greater erosion of the fronting mudflats than elsewhere. This may allow larger 

waves to propagate across the fringing mudflats leading to edge erosion. Hypsometric 

analysis suggests that saltmarsh erosion tends to occur in ebb dominant areas but not 

exclusively, suggesting a complex combination of drivers. 
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7 Tidal Asymmetry Analysis 

This chapter describes the results from the third stage of research as proposed in Section 

1.2. The main objective was to investigate tidal asymmetry and hydrodynamics within Poole 

Harbour. As discussed in Section 2.1.2, tidal asymmetry can lead to dominant flow 

directions, which controls net sediment transport and distribution.  This in turn has a major 

impact on intertidal habitat location and stability. Saltmarshes rely on sufficient sediment 

supplies in order to accrete vertically within the tidal frame and maintain relative position in 

response to sediment compaction and local sea-level rise. Where the opportunity to migrate 

and/or sufficient sediment are not available, these habitats will slowly drown and revert to 

mudflat. Hence, understanding the hydrodynamics is fundamental to determine future 

trends and then develop suitable management strategies for these habitats. 

The objectives were completed using three general approaches. Firstly, asymmetry was 

calculated using generalised geometric and hydrodynamic relationships, which is described 

in Section 7.1. Secondly, tidal flow vectors and tidal asymmetry were investigated spatially, 

particularly flood and ebb dominance, using data from a numerical model of tides for Poole 

Harbour (Section 7.2). Thirdly tidal stage diagrams for locations around the Harbour were 

examined to see at what stage of the tide the peak tidal flows and slacks occur with relation 

to the saltmarsh zonation and the general morphology of the Harbour. The limitations of 

the methods used are discussed in section 7.3, and the main findings of this chapter are 

summarised in section 7.4. 

7.1 General tidal asymmetry parameters 

For the first stage of this analysis, direct measurements of both Poole Harbour’s geometry 

and tidal characteristics were analysed. 

Geometric parameters were extracted from a DTM of Poole Harbour, created using LIDAR 

(2007) data supplied by the Channel Coastal Observatory, combined with sub-tidal 

bathymetry data collected and supplied by Poole Harbour Commissioners (2005). Tidal 

parameters were extracted using tide gauge data (one years duration collected in 1997) 

located at North Haven (Figure 3.5) using T-tide (Pawlowicz et al., 2002). 

Six indicators of tidal asymmetry, as discussed in Section 2.1.2 were calculated, using the 

data in Table 7.1. These are broad scale methods which give an initial indication of estuary-
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wide tidal asymmetry. The results are shown in table 7.2 and unanimously suggest that 

Poole Harbour is flood dominant in character. 

Table 7.1 Morphological parameters for Poole Harbour 

 

 

 

 

 

 

 

 

 

Table 7.2 Tidal asymmetry indicators for Poole Harbour 

Asymmetry 

relationship 
Definition Theoretical values 

Poole 

Harbour 
Result 

a/h (Friedrichs and 

Aubrey, 1988) 

Magnitude and 

direction of 

asymmetry 

<0.2 ebb 

>0.3 flood 

0.39 Flood 

Vs/Vc (Friedrichs and 

Aubrey, 1988) 

Only applicable if 

a/h does not 

indicate significant 

asymmetry (ie 

0.2<a/h<0.3) 

n/a (can be used as a 

relative indicator 

between different 

estuaries) 

0.8 n/a 

MDhw vs MDlw 

(Pethick, 1994) 

Magnitude and 

direction of 

asymmetry 

MDhw > MDlw flood 

dominant 

MDhw < MDlw ebb 

dominant 

MDhw>MDlw Flood 

Gamma (Dronkers, 

1986) 

Magnitude and 

direction of 

asymmetry 

γ=1 uniform 

γ>1 flood 

γ< 1 ebb 

1.446 Flood 

Parameter Value 

Mean depth (MD) at HW (m) 2.04 

Mean depth (MD) at LW (m) 0.66 

Volume at LW 20078384 

Volume at HW 79509880 

Surface area at HW 38838716 

Surface area at LW 13269610 

Inter-tidal storage (m3) 38200120 

Volume in Channels LW 30694072 

M2 (phase/amp) 306.82/0.4224 

M4 (phase/amp) 99.11/0.1599 

Tidal amplitude 0.8m 
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M4/M2 (amp) 

(Friedrichs and 

Aubrey, 1988) 

Magnitude of 

asymmetry 

Negligible distortion< 

0.01 
0.379 

Strongly 

distorted and 

hence 

asymmetric 

2M2 - M4 (phase) 

(Friedrichs and 

Aubrey, 1988) 

Direction of 

asymmetry 

0-180 flood dominant 

180-360 ebb dominant 

153 Flood 

 

7.2 Modelled asymmetry parameters 

The HR Wallingford’s 2D TELEMAC model for Poole Harbour was used to investigate the 

spatial variability of tidal curves, peak flows and slack duration of tides. A description of 

this model is given in Section 4.3.2. This is then compared to the historic saltmarsh change 

analysis from Chapter 5. Firstly velocity shear thresholds are investigated, when the tidal 

velocities within the Harbour exceed this threshold there is potential for bed erosion and 

sediment transport. Both of which are crucial to the mudflats that saltmarshes inhabit as 

discussed in Section 2.1.2.  Secondly the timing and position of peak tidal flows and slack 

duration are investigated. Flood dominant estuaries, discussed in Section 2.1.4, have a 

shorter duration, higher velocity flood tide, which erodes sediment and carries it into the 

estuary, tending to infill with sediment. If the longest slack duration occurs after the flood 

then sediments have a longer period to drop out of suspension and accrete on the bed. . 

Ebb dominant estuaries, discussed in Section 2.1.4, have a shorter duration, higher velocity 

ebb tide, which erodes sediment and carries it out of the estuary. If the longest slack 

duration occurs after the ebb then sediments are deposited outside of the estuary. 

7.2.1  Velocity shear thresholds 

The shape of the tide curve in Poole Harbour is unusually variable due to higher order tidal 

harmonics and the complex morphology of the site.  Spring tides generated within the Poole 

Harbour TELEMAC model have several different forms (Figures 7.1-7.5), these occur in 

different areas of the Harbour.  A velocity shear threshold of 0.2m/s was used to assess the 

duration of slack water, derived from sediment samples taken from within the Harbour, as 

discussed in Section 6.3. 
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Figure 7.1 Example from TELEMAC Model where a single flood peak exceeds the shear 

velocity for a tidal cycle (Black line- tidal height, red line –modelled tidal velocity) 

 

Figure 7.2 Example from TELEMAC Model where a single ebb peak exceeds the shear 

velocity for a tidal cycle (Black line- tidal height, red line –modelled tidal velocity)  
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Figure 7.3 Example from TELEMAC Model where a single flood and single ebb peak 

exceed the shear velocity for a tidal cycle (Black line- tidal height, red line –modelled 

tidal velocity) 

 

Figure 7.4 Example from TELEMAC Model where a double flood and single ebb peak 

exceeding the shear velocity for a tidal cycle (Black line- tidal height, red line –

modelled tidal velocity) 
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Figure 7.5 Example from TELEMAC Model where a double flood and double ebb peak 

exceeding the shear velocity for a tidal cycle (Black line- tidal height, red line –

modelled tidal velocity) 

The different forms of tidal curve affect currents and hence how sediment is transported 

and deposited within the Harbour. Peak flows for flood and ebb have been calculated and 

are important for non-cohesive sediment transport, (Dronkers, 1986). However, slack 

duration is particularly important for the deposition of fine silts and cohesive sediments, as 

discussed in Section 2.3.1. In areas where there is just one peak above the velocity shear 

threshold any sediment eroded during the peak flows will have the rest of tide to settle out 

of suspension before the next tidal cycle. However, where the flows exceed the velocity 

shear threshold many times over the tidal cycle, this results in transport of the sediments 

backwards and forwards within the Harbour. 

Neap tides for the Harbour were also analysed.  They produced similar patterns to Spring 

tides but rarely exceed the threshold of 0.2m/s, so negligible sediment transport is thought 

to occur on neap tides, and they are not considered further here. 
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7.2.2 Peak flows 

Peak flows are defined as the maximum velocity reached for flood and ebb stands during a 

tidal cycle. Therefore if the maximum velocity occurs during the flood or ebb stage of the 

tide the system is often described as flood or ebb dominant respectively. 

Figure 7.6 shows peak flow velocities on the flood and ebb, also indicating were the flows 

exceed the sediment shear threshold of 0.2m/s. The key has six categories, category one 

shows where peak flows occur on the flood and both flood and ebb flows are below 0.2m/s, 

category two shows where peak flows occur on the ebb but both flood and ebb flows are 

below 0.2m/s. In these situations we would not expect to see any sediment transport 

occurring. Category three shows where only the peak flood flow is higher than 0.2m/s and 

the peak ebb below 0.2m/s, and category four shows where only the peak ebb flow is 

higher than 0.2m/s and the peak flood below 0.2m/s. In these situations sediment 

transport would be limited to the flows where they are higher than 0.2m/s, therefore 

showing strong tidal asymmetry. Category five shows where peak flow is on flood, but peak 

flows on flood and ebb are both above 0.2m/s and category six where peak flow is on ebb, 

but peak flows on flood and ebb are both above 0.2m/s. In this situation we would see 

sediment transport occurring on both flood and ebb but to differing extents.  Data from 

figure 7.6, of peak flows during ebb and flood dominance, and data from Figure 7.7, of 

dominant saltmarsh accretion or erosion over 100x100 m cells, were combined. A chi-

squared test was performed, Table 7.3, to identify if there was any statistical significance 

between areas where flood dominance and saltmarsh gain were present and saltmarsh loss 

and ebb dominance were present.  
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Figure 7.6 Peak flows on flood and ebb according to flow speed (2004 mean spring) 
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Figure 7.7 Dominant saltmarsh process between 1947 and 2005 at a 100x100 m 

resolution. Black = Loss, White = Gain 

Table 7.3 Chi-square test for saltmarsh changes and peak flow velocity 

Saltmarsh Gain Peak Flow 

 

Saltmarsh Loss Peak Flow 

 flood ebb  flood ebb 

observed (o) 10 1 observed (o) 27 10 

expected (e) 11 0 expected (e) 0 37 

deviation (o-e) -1 1 deviation (o-e) 27 -27 

Deviation
2

 (d2) 1 1 Deviation
2

 (d2) 729 729 

d2/e 0.009 0 d2/e 0 19.7 

 

For saltmarsh gain, the test shows a significant relationship (p>0.05). Hence the null 

hypothesis that there is no statistical significance between flood dominance and saltmarsh 
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gain in Poole Harbour was rejected. Thus, indicating that accretion is significantly 

associated with flood dominance. For saltmarsh loss the test shows an insignificant 

relationship (p<0.05). Hence, the null hypothesis that there is no statistical significance is 

accepted. This indicates that saltmarsh erosion is not strongly related to ebb dominance, 

and while it may be a factor in some cases other drivers of loss are playing an important 

role.   

7.2.3 Slack duration 

Slack duration was defined as, the period of time when the tidal flow velocity was less than 

the critical shear velocity of 0.2m/s. 

Figure 7.8 shows whether the longest slack period over a tidal cycle was on the flooding or 

ebbing tide. Figure 7.9 shows what proportion of the total slack period over a tidal cycle, is 

taken up by flood or ebb slacks. Maps for slack duration were compared to historic gain in 

saltmarsh area, Figure 7.7. For areas of gain 61% were in regions where the flow velocities 

did not exceed the critical shear velocity of 0.2m/s, over the tidal cycle and hence slack 

duration was not possible to calculate. Locally it is unlikely that erosion will occur, however 

if sediment is eroded in nearby areas and carried into this region then it will likely be 

deposited. For regions that have a clearly defined slack duration a chi-squared test was 

performed to investigate if there was any statistical correlation to the historic saltmarsh 

gain. This is presented in Table 7.4 and shows that areas of saltmarsh accretion are 

statistically correlated with regions where the after flood slack is longer in duration than the 

after ebb slack.  
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Figure 7.8 Maximum slack duration on flood or ebb. (2004 mean spring) 
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Figure 7.9 Percentage of total slack duration over tidal cycle taken up by flood or ebb 

slack (2004 mean spring) 

Table 7.4 Chi-square test for saltmarsh gain and slack duration 

Saltmarsh Gain Slack duration 

 After flood After ebb 

observed (o) 12 2 

expected (e) 14 0 

deviation (o-e) -2 2 

Deviation
2

 (d2) 4 4 

d2/e 0.285714 0 
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7.3 Tidal stage diagrams 

Tidal stage diagrams, plotted from the results of the HR Wallingford’s Telemac Poole 

Harbour model, for locations throughout the Harbour (Figure 7.10) on a spring tide are 

shown in Figures 7.11-7.20. Peak tidal flows and slacks with relation to vertical saltmarsh 

zonation and the velocity shear threshold (0.2m/s) for sediments in the Harbour are also 

shown.  

 

Figure 7.10 Locations of tidal stage diagrams 
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Figure 7.11 Tidal velocity curve at site 1 , Wareham South channel 

 

Figure 7.12 Tidal velocity curve at site 2, Wareham North. 

Saltmarsh 

Saltmarsh 
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Figure 7.13 Tidal velocity curve at site 3, Wareham North Channel 

 

Figure 7.14 Tidal velocity curve at site 4, Central Harbour 

Saltmarsh 

Saltmarsh 
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Figure 7.15 Tidal velocity curve at site 5, Wych Channel 

  

Figure 7.16 Tidal velocity curve at site 6, Newtown Bay 

Saltmarsh 

Saltmarsh 



Chapter 7 Results of Tidal Asymmetry Analysis 

 
[142] 

 

Figure 7.17 Tidal velocity curve at site 7, Brands Bay 

 

Figure 7.18 Tidal velocity curve at site 8, the Harbour mouth 

Saltmarsh 

Saltmarsh 
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Figure 7.19 Tidal velocity curve at site 9, Main Channel 

 

Figure 7.20 Tidal velocity curve at site 10, Holes Bay. 

 

 

 

Saltmarsh 

Saltmarsh 
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Figure 7.21 Tidal velocity curve at site 11, Wareham South Flats. 

 

Figure 7.22 Tidal velocity curve at site 12, Wych South. 

 

 

 

In Section 7.2 the asymmetry of the tide, in terms of peak flows and slack duration, was 

assessed spatially throughout the Harbour. The tidal velocity curves in figures 7.11-7.22 

Saltmarsh 

Saltmarsh 
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illustrate at what stage of the tide these velocity peaks and slacks occur in relation to the 

vertical position of the saltmarsh within the Harbour. The most prominent feature of these 

tidal stage curves is the effect the double high water has, illustrating how a tidal distortion 

of this kind leads to long duration slack periods after the flood in Poole Harbour. Slack 

duration extends both over the upper marsh region and the marsh-tidal flat interface, 

allowing sediments to settle over the entire marsh region. As seen in section 7.2.2, tidal 

asymmetry of peak flows changes throughout the Harbour. However, it can be seen that the 

peak flows for flood and ebb sections of the tide mainly occur at a tidal stage corresponding 

to the low intertidal flat region rarely exceeding the critical shear velocity during tidal stages 

corresponding to salt marsh zonation. 

The largest velocities can be seen in Figure 7.18 at site 8, the Harbour mouth, where flows 

exceed 0.2m/s for the majority of the tide both for flood and ebb, the slack duration after 

both the high water stands are clear. Conversely at both sites in the Wareham South area, 

furthest from the Harbour mouth (Figure 7.11 site 1 Wareham South channel and Figure 

7.21, site 11 Wareham South flats), velocities do not generally exceed the critical shear 

velocity threshold, although both sites still show a flood dominant tidal asymmetry with 

regards to peak flows.  

7.4 Limitations of Approach 

Chapter 7 describes three different approaches to describing hydrodynamics and tidal 

asymmetry within an estuary. The first utilised broad geometric descriptions, which are 

often used for a preliminary assessment of estuaries throughout the world. The second and 

third used a more sophisticated numerical modelling approach which requires substantial 

time, effort, skill and data, but provides more information on spatial variability. 

The general asymmetry parameters have two major limitations, in that flood and ebb 

asymmetry vary throughout an estuary and this cannot be characterised by a single 

descriptor. Also these parameters have a number of inherent limitations, these have been 

discussed in Section 2.1.2, and are summarised below. 

 Dronkers (1986) equations were derived on the basis that the tide is roughly sinusoidal 

with periods of equal flood and ebb tide, and hence due to the complex tidal curve in 

Poole Harbour this may not be wholly applicable. 

 Friedrichs and Aubrey (1988), derived their equations from the application of a 1D 

model for estuaries along the east coast of the United States. As Townend (2005) 

discusses, this may not be appropriate for UK estuaries. In addition the Friedrichs and 
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Aubrey (1988) study focused on tidal distortion within the estuary, and did not consider 

distortion occurring on the adjacent shelf. Other tidal constituents are likely to 

contribute to distortion of the tidal curve within Poole Harbour, the impacts of these 

constituents on tidal asymmetry are not well understood, (Wang et al., 2002). 

 Due to the complex nature of the Poole Harbour tidal curve, pertaining to the double 

high water and large variability in shape between neap and spring tides, the 

characterisation of mean high and low water, and hence mean sea level, is problematic. 

As the basis of these equations relate to the relationship between intertidal height and 

mean sea level, depending on how this value is calculated could greatly influence the 

inferred tidal asymmetry. 

 

Although, numerical modelling also has limitations, particularly when dealing with an 

estuary that has complex morphology and tides such as Poole Harbour, it is a preferential 

method of analysis when compared to the broad scale descriptive methods, enabling the 

mapping of tidal asymmetric spatial variability, rather than one single value for a large and 

complex system. Descriptions of the Poole Harbour model and how it was calibrated is 

discussed in Section 4.3.2 and is summarised in HR Wallingford (2004). 

7.5 Summary 

The main findings from the preceding chapter are summarised below, a detailed discussion 

of the findings of this chapter set in the context of the aims and objectives, laid out in 

Chapter 1, is presented in Chapter 8. 

The main objective of this Chapter has been to investigate the key hydrodynamic drivers of 

tidal asymmetry in Poole Harbour. This has been achieved through the analysis of 

generalised geometric and hydrodynamic relationships and using modelled data to map 

tidal flow vectors and tidal asymmetry. 

The main findings of this stage are: 

 Simplified geometric and constituent asymmetry parameters indicate that Poole Harbour is 

flood dominant in character.  

 Numerical modelling shows that the Harbour experiences variations in tidal velocity 

exceeding the critical shear threshold, both spatially and throughout the tidal cycle. This is 

particularly relevant where it exceeds shear thresholds only once per tidal cycle either on 

the flood or ebb, allowing the sediments to resettle for the rest of the tidal cycle.  
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 Peak flows on the flood tend to occur up tidal creeks and to the west of the Harbour. With 

regions in the centre of the Harbour and around the mouth experiencing, peak flows on the 

ebb, which is important for non-cohesive sediment transport.  

 Peak flood velocity is correlated with areas of historic saltmarsh accretion. However, peak 

ebb velocity is not correlated with historic saltmarsh erosion 

 Slack duration is important for the settling and consolidation of cohesive sediments and the 

modelled results suggests that the longest overall slack durations occur after the flood for 

the majority of the Harbour.  

 Regions where the longest slack is after the flood are correlated with areas of historic 

saltmarsh accretion.  

 A few areas in the centre of the Harbour experience the longest slack after the flood, even 

though these regions may have the peak flow on the ebb, suggesting complex sediment 

transport patterns in these regions. 

 Tidal velocity stage curves illustrate the affect that the double high water has on slack 

duration and the elevation, with relation to saltmarsh zonation, at which it occurs. 

 Peak flows for both flood and ebb stages rarely exceed the critical shear threshold of 

0.2m/s 

A broad scale single descriptor of tidal asymmetry is often used to summarise the 

morphology of an estuary system and its patterns of sediment transport.  These 

generalisations can often be misleading and result in assumptions being made concerning 

how an estuary may evolve in the future and hence the future viability of the coastal 

habitats within it. This is illustrated within Poole Harbour, where flow asymmetry trends at 

an estuary scale are not uniform at a sub-estuary scale, with more complex spatial 

variations occurring for peak flows and slack durations.  It appears that historic saltmarsh 

accretion, described in Chapter 5, is correlated with peak flows on the flood and areas that 

have the longest slack duration after the flood. This facilitates the transport and deposition 

of sediments, which enable the saltmarsh to accrete and migrate and also the saltmarsh 

rhizomes that allow colonisation of new areas. However, there does not appear to be any 

correlation between historic saltmarsh erosion and peak tidal velocities on the ebb, 

suggesting that erosion is controlled by other drivers. 
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8 Discussion and Synthesis 

Within this chapter the main findings of the thesis are discussed and placed within the 

context of the research objectives detailed in Chapter 1. Firstly the conceptual model of 

drivers and mechanisms of saltmarsh change, developed in Section 2.1.3.2. is described. 

Secondly the study site at which the conceptual model has been tested is reviewed. Thirdly 

historic saltmarsh changes and the setting of changes observed are discussed, including the 

spatial variations in morphology, and hydrodynamics. Mechanisms for these changes are 

evaluated and the drivers of these changes are discussed in order to revaluate and refine 

the initial conceptual model. The management implications resulting from the findings are 

considered not only for the study site, but also for micro-tidal estuaries and other estuarine 

systems in general. Finally, further work arising from this thesis is discussed.  

8.1 A preliminary conceptual framework of drivers and mechanisms of 

saltmarsh change. 

A conceptual model of saltmarsh change has been developed, using a driver-mechanism-

outcome framework. Where and how saltmarshes and coastal habitats form are controlled 

through complex feedback systems: including biological, physical and chemical 

mechanisms (Figures 2.10 and 2.11), driven by both human and natural drivers. This 

conceptual model illustrates the multidisciplinary nature of coastal habitats and is useful in 

identifying the multiple drivers and mechanisms that can result in changes in habitat extent. 

Although this conceptual model was developed in order to test saltmarsh changes in Poole 

Harbour, a micro-tidal environment within a temperate region, it has applicability to other 

coastal habitats such as seagrass and mangroves, other climatic zones and meso or macro-

tidal ranges. The Poole specific model (figure 3.5) was limited by the published literature on 

local saltmarsh change drivers, however using a conceptual model to explore all the 

potential drivers and mechanisms, provides a broad overview of a system and identifies key 

aspects to investigate further or knowledge gaps that should be addressed. 

8.2 Site selection  

Micro-tidal estuaries are found throughout the world including the Mediterranean Sea, 

Caribbean Sea, Red Sea, Baltic Sea, the Sea of Japan, regions in Madagascar, Brazil, Sri 

Lanka, South East Asia and South Australia. Saltmarshes and other coastal habitats in these 



Chapter 8 Discussion and Synthesis 

 
[149] 

regions  are particularly sensitive to sea-level rise, as they are limited in their ability to 

adjust and are considered vulnerable to future changes (cf(Nicholls et al., 1999)). Hence, 

understanding the drivers and mechanisms of saltmarsh change in micro-tidal systems is 

crucial for informed decision making in future coastal management. 

Poole Harbour was chosen as a suitable study area for three main reasons. Firstly the 

saltmarshes in Poole Harbour are extensive and varied in aspect with both pristine areas as 

well as those impacted by dredging, reclamation and coastal squeeze along seawalls and 

although previous reports on saltmarsh trends exist for the Harbour (Born, 2005, Hubbard, 

1965, Burd, 1989, Edwards, 2005), they are generalised and do not examine the saltmarsh 

changes within a spatial context. Although the micro-tidal regime within Poole Harbour 

makes the saltmarsh setting relatively unique within a UK context, the development and 

colonisation of Spartina anglica is not unique to micro-tidal systems and has been observed 

in estuaries across the globe (as discussed in Chapter 2). The subsequent decline of 

Spartina anglica is common to many other estuaries locally, such a Portsmouth, Langstone 

and Chichester harbours (Burd, 1989, UK National Ecosystem Assessment, 2011). Hence the 

outcomes of this research based on the Poole Harbour case study are relevant and 

applicable elsewhere. 

Secondly the hydrodynamics in the Harbour are well characterised through previous 

numerical modelling conducted by Falconer (1986b) and HR Wallingford (2004). The tidal 

curve in Poole Harbour is complex, with a double high water; in a UK context this is unique. 

However, other areas with saltmarsh exhibit a similar double high water tidal curve such as 

at Den Helder, The Netherlands and Buzzards Bay, Massachusetts (Bowers et al., 2013).  

Thirdly data availability was good for Poole Harbour, with readily available historic aerials 

for three dates throughout the 20th Century as well as historic charts. In order to study the 

spatial changes in saltmarsh extent over a suitable time period this data was crucial and is 

lacking in many other estuaries. This requirement for historical data highlights the 

importance of consistent, long term monitoring and data collection. Although aerial 

photography was available, bathymetric and topographic surveys of the harbour and its 

intertidal regions were lacking, and this data gap subsequently caused problems in fully 

identifying the key drivers and mechanisms of saltmarsh changes observed within the 

Harbour (illustrated in Chapter 6). The issue of data availability is encountered across many 

estuaries throughout the world and where management of the coastal environment is 

required, effort should be made to establish baselines and effective monitoring 

implemented to address this data gap.  

fulldraft_correctons2.doc#_ENREF_167
fulldraft_correctons2.doc#_ENREF_29
fulldraft_correctons2.doc#_ENREF_215
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8.3  Historic saltmarsh trend analysis 

When set into a post-1849 context, saltmarsh area expanded significantly in Poole Harbour 

due to the colonisation of Spartina anglica between 1900 and 1920 (Chapter 5, Figure 5.7), 

followed by a decline which continues to the most recent dataset. While saltmarsh area in 

Poole Harbour has declined rapidly during the latter half of the 20th century, the changes 

are more complex than previously reported (Born, 2005, Hubbard, 1965, Burd, 1989, 

Edwards, 2005), with a net loss, as erosion exceeded accretion. However, the rate of 

saltmarsh loss is decreasing and the total area of saltmarsh in 2005 exceeds the area 

estimated in 1849 and 1900, this colonisation and subsequent dieback of Spartina anglica 

is an important contemporary process in Poole Harbour. 

When investigating saltmarsh change it is important to look at the settings of the change in 

order to identify mechanisms and ultimately drivers. Many different biogeochemical 

mechanisms and drivers can lead to saltmarsh change with complex non-linear feedbacks 

between them. When Poole Harbour is broken down into separate regions comprising of 

tributary arms, some areas experience a net gain of saltmarsh (Figure 5.14). This complex 

behaviour of both loss and gain in close spatial proximity has not been identified in 

preceding studies: for example, Born (2005) only describes saltmarsh loss, estimating 245 

ha between 1947 and 1993, whereas in this study losses were only 187 ha.  This suggests 

that although some saltmarsh loss has occurred, concerns regarding saltmarsh loss in this 

region may be overstated, and put into an historical context the saltmarsh area is currently 

roughly four times larger than that recorded in 1849, or even 1900. Due to erosion and 

accretion occurring in close proximity within the Harbour large scale biological and 

chemical mechanisms were considered to be the unlikely key mechanisms of change. Hence 

within this study physical mechanisms were the main focus. 

The saltmarsh losses and gains identified within this study can be linked to discrete 

mechanisms following their geomorphic setting (Tables 8.1 and 8.2). This allows the 

dominant loss mechanisms to be identified (e.g., (Downs et al., 1994)). 
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Table 8.1 Classification of saltmarsh loss mechanisms for Poole Harbour. The observed 

loss mechanisms are linked to the typology of loss mechanisms of Crooks and Pye (2000) where 

appropriate and the physical mechanism of loss. (Arrows indicate where processes may be 

linked through feedback mechanisms) 

Inferred setting of loss in 

Poole Harbour (see figure 

5.15) 

Generic saltmarsh loss 

mechanism (Crooks and Pye, 

2000) 

Physical mechanism of 

loss 

Island Erosion– erosion on the 

front of island stands of 

saltmarsh separate from the 

main land 

Stripping of root bound turf 

immediately landward of 

clifflet top 

 

Changing 

hydrodynamics and/or 

morphology                    

Direct Wave Attack   

Sediment supply 

Retreat of ramped marsh 

front 

Frontal Erosion– erosion 

occurs along the fronting edge 

of a saltmarsh backed by land 

Retreat of near-vertical 

clifflets at the marsh edge 

Channel migration- a channel 

moves across an area of 

saltmarsh directly eroding it 

Not described 

Changing hydrodynamics 

and/or morphology 

Creek side erosion- erosion 

occurs up creek systems away 

from significant wave affects 

Incision of the natural marsh 

creek with associated bank 

collapse and headward 

erosion 

Direct wave 

attack/channel edge 

processes including draw 

down driven by changing 

sediment budget 

Conversion to reedbed– reed 

beds overtake saltmarsh 

Not described 

Changing hydrology 

(reduced salinity) 

Spit roll-back– a spit migrates 

landward across saltmarsh 

area. 

Not described 

Indirect wave 

effects/reduced sediment 

supply 

Direct Human destruction– 

saltmarsh directly destroyed 

Not described Direct human destruction 

Crooks and Pye (2000), identified six main mechanisms of erosion within saltmarshes: 1) 

retreat of near-vertical clifflets at the marsh edge, 2) stripping of a root bound turf 

immediately landward of the clifflet top, 3) retreat of a ramped marsh front, which may be 

incised by erosional furrows, 4) incision of the natural marsh creek with associated bank 

collapse and headward erosion, 5) vegetation die-back and erosion of the surface mud over 

large areas of the interior of the marsh, and 6) incision coalescence of drainage ditches or 

agricultural ridge and furrow systems. It has been  found within this research that in 
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addition to those mechanisms described by Crooks and Pye (2000) a further four processes 

of saltmarsh loss exist, which cannot be classified according to the generic saltmarsh loss 

mechanisms that they describe (Table 8.1). These are; 1) Channel migration- where a 

channel moves across an area of saltmarsh directly eroding it, 2) Conversion to reedbed– 

reed beds overtake saltmarsh, 3) Spit roll Back– a spit migrates landward across saltmarsh 

area, 4) Direct Human destruction– saltmarsh is directly destroyed. 

Channel migration and creek side erosion was observed at a local scale, these processes are 

likely driven by a change in hydrodynamics, potentially through a change in morphology 

which could also lead to increased wave attack. The conversion of upper saltmarsh to reed 

beds was also observed, where the marsh had accreted out of the tidal frame. Alternatively 

this was often observed in areas of development. It is hypothesised that in such areas where 

large regions are paved or made impermeable this could lead to the flow of fresh water 

during periods of heavy rainfall which may lower the salinity in the upper marshes and thus 

create a habitat more favourable for reed beds. Similar observations of development and 

reed bed take over has been noted within the Hamble Estuary (BRANCH partnership, 2007).  

However, no field work was conducted to verify this theory; further work could be 

completed in this area. Spit roll-back occurred at a few discrete locations within the 

Harbour, the mechanisms of which are indirect wave effects and sediment supply. The 

second largest mode of saltmarsh loss observed within Poole Harbour was the development 

of marinas and land reclamation, with the driver being direct human destruction of 

saltmarshes due to coastal development. 

The primary modes of saltmarsh loss appears to be island erosion and frontal erosion 

(Figure 5.16), which is similar to the other Harbours in the Solent region (Baily and Pearson, 

2007). Island erosion tends to occur as fragmentation, with channels forming and incising 

the saltmarsh, whereas frontal erosion is a steady lateral movement landward across the 

saltmarshes. Once island loss is complete the landward saltmarsh frontage is more 

exposed, potentially leading to increased wave exposure and hence greater rates of frontal 

erosion in the future. However, the increase in frontal loss has not been observed as yet, 

with rates of loss having declined in all but one area in Poole Harbour over the past 58 

years, although this must remain a concern for the future. The mechanisms responsible for 

these losses are likely driven by a change in hydrodynamics; potentially through a change in 

morphology which could also lead to increased wave attack. 

Accretion occurred generally within sheltered creek systems along creek-sides (Figure 5.18), 

some channels were entirely in-filled with sediment and saltmarsh. However this process 
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was not entirely limited to sheltered areas, some frontal accretion did occur within the open 

estuary in small local areas and even some new island stands colonising mudflat area was 

observed. Through field observations, it was also noted that these areas of accretion were 

of mixed marsh species, including Spartina anglica. The main mechanisms of accretion are 

hydrodynamics, potentially through a change in local morphology and sediment supply. 

A very small (0.028ha) region of realignment had also occurred within the Harbour, 

recreating some saltmarsh, this is a result of a direct human driver and depending on local 

management decisions, room exists for substantial realignment options within the Frome 

and Piddle river valleys. 

Table 8.2 Classification of saltmarsh gain mechanisms for Poole Harbour. (Arrows 

indicate where processes may be linked through feedback mechanisms) 

Inferred setting of gain in Poole 

Harbour (see figure 5.17) 

Physical Mechanism 

Channel Infill– an area formerly 

occupied by a channel infill’s with 

sediment to the level where saltmarsh 

can colonise it 

Change in hydrodynamics- 

channel migration Localised 

reduction in hydrodynamic 

forcing/localised increase in 

sediment supply 

Creek side accretion- accretion has 

occurred up creek systems 

Localised reduction in 

hydrodynamic forcing/localised 

increase in sediment supply 

Frontal accretion– accretion occurs 

along the fronting edge of a saltmarsh 

backed by land 

Island accretion– new stands of 

saltmarsh accrete to form islands 

separate to the mainland or around a 

n already existing island 

Realignment– an area previously 

reclaimed from the intertidal is 

allowed to re-flood (this can be either 

planned or unplanned breaching 

Human intervention 

A more complex set of changes than those reported by earlier research has occurred in 

Poole Harbour. Poole Harbour experienced a net gain of over 400 ha of saltmarsh between 

1849 and 1947, with a peak of up to 800ha gain reported in the 1920’s (Hubbard, 1965). 

This extent would have represented 25% of the area of the Harbour as opposed to the just 
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under 10% that saltmarsh occupied in 2005. Between 1947 and 2005 the Harbour 

experienced a net loss of 187ha, representing 241 ha of loss, and an accretion of 54 ha 

(where data coverage permits). This saltmarsh loss reflects the recent general trends 

elsewhere on the UK south coast, such as within the Solent to the east, where significant 

saltmarsh loss has been recorded  (Burd, 1989, UK National Ecosystem Assessment, 2011). 

However, these trends are spatially variable and Poole Harbour does appear to be behaving 

in a similar manner to other large estuaries such as Pagham Harbour and the Newtown 

River, where saltmarsh accretion has also been observed, (Baily and Pearson, 2007, Gardiner 

et al., 2007).  

Saltmarsh and wider coastal habitat loss is a global problem, overexploitation, physical 

modification, nutrient and sediment pollution, introduction of invasive species,  global 

climate change and sea-level rise have led to a decline in coastal habitats (Waycott et al., 

2009, Valiela, 2006, Duarte et al., 2009). As coastal habitats are amongst the most 

biologically productive ecosystems, supporting large numbers of birds and fish, it is crucial 

that these systems are managed carefully based on a thorough understanding of the drivers 

and mechanisms of change, these are discussed in the following section. 

8.4  Physical mechanisms and drivers of saltmarsh change 

Chapters 6 and 7 within the thesis examined the results from the historic change analysis 

and investigated the relevant morphological and hydrodynamic mechanisms and drivers 

responsible for the changes observed, the main mechanisms of change identified through 

this study are discussed below. 

Mechanisms of saltmarsh change 

Previous authors (Bearman et al., 2010, Kirby, 2002, Roberts et al., 2000, Friedrichs and 

Aubrey, 1996), describe a correlation between cross shore tidal shape and the dominant 

hydrodynamic mechanisms. With wave dominated and/or erosional regions typified by a 

concave shape and tidal flow and/or accretional dominated regions typified by convex 

shape. Within this study this distinction is not apparent and appears to be due to the 

existence of a marked cliff between the saltmarsh and the intertidal. However, a difference 

in cross shore saltmarsh profile shape is observed between the areas of erosion and 

accretion, areas of erosion showing a lower frontal marsh height and a lower height of 

mudflat immediately seaward of the marsh (Figure 6.18).  It is not clear whether the 

elevations are lower due to another mechanism which accelerates erosion rates, or whether 

fulldraft_correctons2.doc#_ENREF_29
fulldraft_correctons2.doc#_ENREF_215
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the higher erosion rates cause slumping and a lowering of these areas. Whatever the cause 

of the lower elevations of the mudflat region, this will allow larger waves to reach the marsh 

face facilitating erosion.  

Sediment samples taken from areas of erosion and accretion, when tested in flume 

experiments, had different critical shear thresholds. The average threshold for eroding sites 

was 0.16 m/s and 0.24m/s for accreting sites, giving an overall average shear threshold of 

0.2m/s These thresholds are similar to other studies on critical shear values of estuarine 

sediments (Widdows et al., 1998). Eroding sites have a lower average critical shear threshold 

than accreting sites, which will also potentially contribute to erosion and the removal of 

sediments from these regions. The organic content of the eroding samples was higher than 

that of the accreting samples, containing large pieces of dead saltmarsh stems. It was 

observed during the flume tests that these stems created extra friction on the bed and when 

the critical shear threshold was met, surrounding sediment was also taken into suspension 

attached to the stems, thus enhancing erosion. Sediment samples contained both sand and 

silt fractions (Section 6.3), this mix may contribute to larger critical shear velocities for 

erosion, but can also lead to mixed flocculates which can potentially lead to higher settling 

velocities, enhancing sediment deposition (Manning and Schoellhamer, 2013) 

The distance of fetch within the Harbour varies with tidal height, as mudflats emerge and 

submerge. Due to the unusual tidal curve in Poole Harbour and the extended period of high 

tide (Section 3.1.2.2), wind/wave effects due to the extended fetch may be more significant 

than in other estuaries. But this is not readily identified from the results, particularly for 

areas where erosion has occurred. However, accretion does appear to have occurred in 

sheltered areas orientated away from the predominant wind directions of South-west and 

North-east (Section 6.4). Elsewhere locally generated short period waves are considered to 

be a major contributing factor to saltmarsh erosion (Fagherazzi and Wiberg, 2009, Mariotti 

and Fagherazzi, 2010, Mariotti and Fagherazzi, 2013b, Tonelli et al., 2010). As discussed in 

Green et al (1997) waves contribute to and can control the vertical re-suspension of 

sediment from the intertidal flat. However, it is the tidal current that controls the movement 

and horizontal flux of the suspended sediment (Green et al. 1997) and so in estuaries the 

two processes are intrinsically linked in understanding the sediment regime.   

A number of simplified geometric and constituent asymmetry parameters were applied 

(Friedrichs and Aubrey, 1988, Pethick, 1994, Dronkers, 1986), as described in detail in 

Section 2.1.1.1. When applied to measured parameters for Poole Harbour these 

unanimously showed that the Harbour is flood dominant in character and is inconsistent 
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with the hypsometry, which suggests the Harbour is mature and potentially ebb dominant. 

A main limitation of these approaches is that they assess the asymmetry of the Harbour as 

an entire system and therefore do not account for spatial variability. An illustration of this is 

where tidal current measurements were taken at the mouth of the Harbour (SCOPAC, 2004) 

showing that the ebb current reached higher speeds than the flood current and hence the 

Harbour was incorrectly classed as ebb dominant. 

A single descriptor of tidal asymmetry is often used to summarise the morphology of an 

estuary system and infer patterns of sediment transport.  These generalisations can often 

be misleading, as found by Brown and Davies (2010) and Wang et al., (2002) who note a 

large variability of tidal asymmetry throughout an estuarine system. This study has taken 

this approach a step further by comparing the spatial variability in tidal asymmetry with 

patterns of habitat change (Section 7.2). Using only these single descriptors can result in 

false assumptions being made concerning how an estuary may evolve in the future and 

hence the future viability and management of the coastal habitats within it.  

A hydrodynamic model was used to investigate both peak flows and slack durations. Peak 

flows are considered to be more important in the transport of coarse bedload material 

whereas slack duration is more important for the transport of the cohesive sediment 

fraction (Dronkers, 1986). Although both of these measures of tidal asymmetry are 

important in understanding sediment transport, slack duration is likely to be more 

applicable to the study of erosion and deposition of sediments within saltmarshes due to 

the inherent nature of the fine sediments. 

Results from the numerical modelling, Section 7.2, show that the Harbour experiences 

variations in tidal velocity exceeding the critical shear threshold, both spatially and 

throughout the tidal cycle. This is particularly relevant where it exceeds shear thresholds 

only once per tidal cycle either on the flood or ebb, allowing the sediments to resettle for 

the rest of the tidal cycle. This would lead to large spatial variations of erosion and 

deposition throughout the estuary. If the geometric and constituent asymmetry parameters, 

derived in Section 7.1, were used exclusively then this spatial variability would not be 

apparent, and therefore could be misleading for coastal habitat management. 

Peak flows on the flood were observed to occur up tidal creeks and to the west of the 

Harbour (Section 7.2.2). With regions in the centre of the Harbour and around the mouth 

experiencing, peak flows on the ebb, which is important for non-cohesive sediment 
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transport. Peak flood velocity is correlated with areas of historic saltmarsh accretion. 

However, peak ebb velocity is not correlated with historic saltmarsh erosion. 

The modelled results suggest that the longest overall slack durations occur after the flood 

for the majority of the Harbour, this pattern is reinforced by the distinctive double high 

water tidal curve, which prolongs slack water over the intertidal region (Section 7.3). 

Regions where the longest slack occurs after the flood are also correlated with areas of 

historic saltmarsh accretion. A few areas in the centre of the Harbour experience the longest 

slack after the flood, even though these regions may have the peak flow on the ebb, 

suggesting complex sediment transport patterns in these regions. With the potential for the 

net import and deposition of fines and the net export of coarse sediments 

Despite the shortcomings (discussed in Section 2.2), numerical models are useful in 

understanding the behaviour of estuarine systems and the processes that drive 

morphological change, particularly when used in conjunction with an historical estuarine 

habitat change analysis this process can also be used for habitats such as mangroves and 

seagrass beds (McGlathery et al., 2013).  

Other potential mechanisms 

Agriculture, fisheries and pollution were all noted as being potential contributors to 

saltmarsh change within the literature review. Agricultural runoff such as herbicides, 

nutrient enrichment due to fertilisers or sewage act by destabilising sediments, enhancing 

bioturbation and directly affect the saltmarshes through biogeochemical processes. 

Although these mechanisms may affect small discrete regions of the case study site in close 

proximity to their input into the system, their relative impact is more likely to be as a more 

secondary contribution rather than the dominant estuary wide driver. This conclusion is 

primarily due to the spatial patterns of change, where gains and losses of saltmarsh have 

been observed together over short geographical scales. 

Medium scale factors such as the 18.6 year nodal tidal cycle are important to take into 

account as the historic analysis results are simply snapshots of several states of the 

saltmarsh over many years. The years for when aerial photography was analysed, 1947, 

1972 and 2005, all lie close to or on, the lowest points of this nodal cycle, thus the tides at 

these points will have been of a similar magnitude and so we can assume that the results 

are comparable. In a Harbour such as Poole with low gradients the effect of the nodal cycle 
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on tidal height could lead to large areas covered or uncovered by the tides and may 

facilitate cycles of saltmarsh colonization and erosion over 18/19 years.  

Sea-level rise could be a contributing factor to saltmarsh changes by modifying the tidal 

prism, increasing fetch lengths where intertidal areas are submerged, and thus increasing 

wave attack at the saltmarsh front. Haigh et al., (2009) estimated average sea-level rise from 

tide gauges along the English Channel. It was found that local mean sea level at 

Southampton and Weymouth had risen by 1.30 ± 0.18 mm/yr and 1.81 ± 0.28 mm/yr, 

respectively over the past century. Which while typical globally, is more rapid than that 

recorded in the 19
th

 Century (Woodworth et al., 2011, Woodworth et al., 2009) and while 

these are small rises, micro-tidal estuaries are expected to be sensitive to even small 

changes in tidal height due to their small tidal range. 

Coastal squeeze has been identified as an important mechanism of future saltmarsh loss 

(Townend et al., 2007, Long et al., 1999, Morris et al., 2002, Pethick, 1981). Within this 

research coastal squeeze as a driver may be contributing to some losses but there is no 

obvious evidence of this processes having been a major contributor to losses observed over 

the past century. In the north and east of the Harbour surrounding Holes Bay, saltmarshes 

in this region cannot migrate due to seawalls backing the fringing saltmarshes. However, 

this is only an issue where sediment starvation prevents the marshes from accreting 

vertically (Paramour and Hughes, 2004) and in this region although net losses were 

observed, the erosion was not spatially uniform as might be expected as a result of coastal 

squeeze with marked areas of accretion also apparent. Elsewhere in the south and west of 

the Harbour there are no restrictions on saltmarsh migration other than natural topography.  

Locally, natural elevation constraints will limit saltmarsh migration to along stream and 

creek systems. Overall the lack of coastal squeeze identified within this study shows that 

sediment supply and favourable hydrodynamics allow the continued accretion of saltmarsh 

and the presence of seawalls does not necessarily result in habitat loss. However, with 

future sea-level rise coastal squeeze may become an increasingly major factor in saltmarsh 

loss over the next century. In many coastal regions, flood defences have removed most 

opportunities for natural landward migration, (Nicholls and Wilson, 2001, Lee, 2001). Poole 

Harbour is thought to be a closed or near-closed system in terms of sediment budget, 

implying an exchange between erosion in one area and accretion elsewhere. Just as erosion 

rates have slowed between 1972 and 2005, so have the accretion rates, supporting this 

interpretation. If erosion does slow in the future, accretion rates will presumably follow this 

pattern, potentially leading to coastal squeeze in some areas constricted by seawalls, 

especially if sea-level rise accelerates. 
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Drivers of saltmarsh change 

Two prominent drivers of saltmarsh change were clearly identified from this study both as a 

result of human development, including the direct destruction of saltmarsh and the invasive 

colonisation of Spartina anglica. From the historic aerial photographic analysis it was seen 

that13% of all saltmarsh loss since 1947 was due to direct destruction from reclamation and 

marina development, mostly concentrated around Holes Bay (Figure 5.16), this is also 

clearly observed from the historic OS chart analysis (Figure 5.2).  

One of the most prominent drivers of the change in the recent history of Poole Harbour is 

the human assisted, invasive colonisation of Spartina anglica. However, in lacking long term 

and accurate baseline data it is difficult to determine whether the recent changes in 

saltmarsh extent are also part of long term cyclical trends (meteorology and regime shifts). 

8.5 A refined conceptual framework of drivers and mechanisms of salt 

marsh change in micro-tidal estuaries 

The use of conceptual models is useful in allowing dynamics and linkages to be seen in 

context and relative importance weighted, giving a broad overview of a system across 

disciplines. The conceptual model developed within this study is applicable elsewhere and 

to other estuarine habitat systems such as mangroves and seagrass beds that occupy 

similar ecological niches (McGlathery et al., 2013). Figure 8.1 shows the primary, secondary 

and tertiary drivers in terms of importance, as identified within this study. Other drivers and 

mechanisms that were identified as part of the literature review (Chapter 3) may also be 

important within the case study site but were not identified within this analysis.  
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Figure 8.1 Refined conceptual model for Poole Harbour showing the primary, 

secondary and tertiary drivers and mechanisms as recognised from the study. 
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While saltmarsh area within Poole Harbour has experienced a net loss since 1947, the 

changes are complex at a sub-estuary scale, with both erosion and accretion being 

important processes in Poole Harbour. The processes that are controlling these changes can 

be inferred from the setting of the change and are summarised in Figure 8.2. The dominant 

erosional process is frontal loss including the islands: once these islands are gone, erosion 

will continue in the fronting flats, which will become increasingly exposed, but the future 

rate of loss is uncertain. The dominant accretional processes are creekside and frontal 

accretion. 

 

Figure 8.2 Synthesis of erosion and accretion mechanisms in Poole Harbour and the 

settings for these mechanisms . 

Flow asymmetry trends at an estuary scale are not uniform at a sub-estuary scale, with more 

complex spatial variations occurring for peak flows and slack durations, this has been 

observed elsewhere (Brown and Davies, 2010).  It appears that historic saltmarsh accretion, 

described in Chapter 5, is correlated with peak flows on the flood and areas that have the 
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longest slack duration after the flood. This facilitates the transport and deposition of 

sediments, which enable the saltmarsh to accrete and migrate. Accretion also occurs in 

sheltered areas orientated away from the predominant wind directions of South-west and 

North-east and hence away from locally produced wind-waves. 

Historic saltmarsh erosion has not only occurred in regions of peak ebb tidal velocities, 

suggesting that erosion is not entirely controlled by this mechanism. Elsewhere locally 

generated short period waves are considered to be a major contributing factor to saltmarsh 

erosion (Fagherazzi and Wiberg, 2009, Mariotti and Fagherazzi, 2010, Mariotti and 

Fagherazzi, 2013b, Tonelli et al., 2010) and it is likely that a combination of peak ebb tidal 

velocities driven by the local morphology and exposure to large fetch length and hence 

locally generated waves, are the likely cause of the majority of erosion in Poole Harbour. 

The contemporary hypsometric form of Poole Harbour exhibits characteristics typical of a 

relatively mature estuary (Section 6.1). However, without a time series of bathymetry to 

assess the previous hypsometric form, it is difficult to predict whether the future trend will 

be to infill further or erode, as this analysis only gives us one snapshot in time. The 

observations in Chapter 5 suggest that, although trends are spatially variable, the estuary is 

currently in an erosive stage. However the fate of this sediment is unknown and therefore 

may not be removed from the system and instead is redistributed elsewhere in the Harbour 

and is the source of sediment for the accreting regions of saltmarsh. Large sediment infill, 

the source of which is unknown, occurred in some locations of the Harbour during Spartina 

anglica colonisation and this sedimentation would have raised the elevation of the intertidal 

areas.  Although, we know from anecdotal evidence that the channels in Poole Harbour were 

shoaling prior to Spartina colonisation and hence there was sediment available to facilitate 

a shift in regime. 

An increase in elevation of the intertidal areas can enhance ebb dominance (Boon and Byrne, 

1981, Friedrichs, 2011)  and therefore would result in the subsequent saltmarsh losses 

observed. However, some regions are still accreting and the hypsometry of these areas 

reflects this. To test this theory further it would be necessary to assess the Harbours 

hypsometric form in ten or twenty years. If the Harbours morphology is adjusting to the 

Spartina anglica colonisation, through intertidal erosion, then the overall hypsometric form 

will change to a less in-filled form in the future. This would demonstrate that Poole Harbour 

could be approaching a quasi-equilibrium form, following the large sediment volumes 

accumulated in the intertidal during Spartina anglica colonisation. Thus, historic losses may 
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not reflect future changes and these should not simply be linearly extrapolated to predict a 

future state, as is often done (Born, 2005). 

Spartina anglica colonisation occurred throughout the south of the UK and so changes 

observed in these other estuaries may also be a result of the change in estuarine 

morphology that occurred because of this, with estuaries now returning slowly back to a 

new equilibrium form. Hence, saltmarsh trends require a more detailed analysis concerning 

erosion and accretion than appears to have been the customary in many earlier 

assessments. This includes assessing the likely levels of uncertainty to provide better data 

for scientific and management analysis. 

A wide variety of saltmarsh change mechanisms have occurred across the case study site 

(e.g. spit roll- back, small scale realignment, reed bed conversion) and only through a 

spatial assessment, categorising the change mechanisms can this be measured. Models 

where only singular drivers or mechanisms are used eg. (Fagherazzi et al., 2006) are useful 

in their approach, allowing the isolation of single hydrodynamic parameters, but are over 

simplistic. Coastal habitat change is driven by complex process with feedbacks between 

multiple biological, physical and chemical mechanisms and within this study it has been 

difficult to identify a singular driver of habitat change at the case study site and it is likely to 

be a combination of drivers contributing to the overall net changes observed. Therefore the 

simple single parameter models will need to become more complex in the future with the 

inclusion of more variables in order to adequately replicate the observations of saltmarsh 

change within this research. 

8.6 Management implications  

The conceptual diagram developed in Section 2.1.3.2 and the associated mechanisms 

analysis from Section 2.1.3.1 are applicable to other saltmarsh habitats as well as being 

easily adaptable for other intertidal habitats such as mangroves. Clearly there are many 

different mechanisms and drivers of change, the key ones and the relevant inputs of 

secondary drivers will change on a case by case basis. Estuaries are naturally driven with 

varying levels of human influence and together with the associated complex mechanisms of 

change, contribute to the wide form and function of estuaries.  

In identifying these mechanisms and drivers accurately, effort can be made to assess how 

best to mitigate for these. For example if habitat loss in an estuary was due to 

eutrophication  as a result of sewage outflow, leading to the destabilisation of sediments 
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from bioturbators and saltmarsh loss, this would be unacceptable and efforts would be 

made to ensure waste water was treated appropriately. Conversely if saltmarsh was lost due 

to shingle spit roll back due to a natural change in hydrodynamics and sediment supply, 

this may be more acceptable. Although saltmarsh may be lost due to natural causes, other 

important habitats may be gained and maintaining a natural system that is allowed to 

evolve as a whole, may be more important than maintaining stocks of habitat. However, 

without examining the setting of the change and identifying the mechanisms and drivers, 

management of the system may not be appropriate. This reinforces the need to make more 

detailed spatial analyses concerning saltmarsh change in order to fully understand the 

system as a whole.  

How is the baseline defined? 

‘Shifting baseline syndrome’ is a phenomenon first identified by Pauly (1995), in this 

instance it arose because each generation of fisheries scientists accepted the baseline stock 

size and species composition as that at the beginning of their careers. As generations of 

fisheries scientists progressed this resulted in a shift of baseline, a gradual accommodation 

of the decline in resources and an inappropriate reference point for evaluation or for 

identifying targets for rehabilitation. 

Shifting baseline syndrome extends beyond population level or relative size of species to 

the perception and functioning of habitats and entire ecosystems, in order to counter this 

we need firmly formed baselines, based on as much evidence as possible. Pauly (1995) 

advocated this through the collection of historic anecdotal evidence, any evidence or trend 

noted was of relevance in order to question the preconceived notions surrounding the 

‘current’ knowledge and to overcome shifting baseline syndrome.   

During this study the use of historic map data, despite the inaccuracies involved, has had 

similar results, in that historic trends of saltmarsh colonisation and subsequent decline have 

been substantial when put into perspective alongside the recent trends in Poole Harbour, 

Figure 8.3. The colonisation of Spartina anglica in Poole has been described in previous 

literature; however the magnitude of the changes experienced were not explicit. This study, 

along with Kirwan et al., (2011), have illustrated that this is not an isolated case and that 

other estuaries may have experienced dramatic changes, we simply have not been looking 

for them, using an arbitrary state as the baseline. Mariotti et al., (2010) have shown that a 

regime shift can occur rapidly with relatively little sediment input or change, fundamentally 

altering the system over only a short period of time. 
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Figure 8.3 Trends in saltmarsh area in Poole Harbour from OS maps and Aerial 

Photography analysis. Other data plotted from previous studies and surveys. Horizontal errors include 

published date ranges for OS data. Uncertainties include assessment of accuracy for aerial photographic and 

OS data interpretation of saltmarsh area. Errors not published and available for previous studies in the 

literature. 

One of the most interesting results of the study is shown in Figure 8.3, the change in 

saltmarsh area over time, clearly showing Spartina anglica colonisation and the subsequent 

decline. Poole Harbour was designated in 1964 as a National Nature Reserve (UK), a Site of 

Special Scientific Interest (UK) in 1990 and in 1999 it was designated as a Special Protection 

Area and Special Area of Conservation (EU) and a Ramsar site (Global). Although saltmarsh 

extent has declined since Poole Harbour was designated, marsh extent is still larger than it 

was prior to colonisation. If sites are designated with little knowledge or understanding of 

the state of the system, how is the baseline defined and what should the goals and priorities 

be? It is likely that for many estuaries in Europe and particularly further afield, where data is 
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limited, there is little understanding of what the baseline state is and hence there is no way 

of knowing if these sites are degrading or fulfilling their ecosystem role. 

What should the goals and priorities be? 

Often even anecdotal evidence does not exist so a clear baseline and understanding of the 

system is not feasible, in this case an idea of exactly what is required of an ecosystem and 

thus the form of designation is needed. For example often the conservation requirement 

and the ecosystem service that we value may be mutually compatible, but there may be 

cases where they are not. Natural temporal shifts from seagrasses to mudflats, where both 

are important habitats, may facilitate localised erosion due to an increase in wave exposure. 

Another example may be the eradication of an invasive species such as Spartina anglica 

that provides increased wave dissipation, yet is considered un-natural and a threat to native 

species. Current ecological designations rightly tend to focus on the conservation 

requirements of species, e.g. birds (Ramsar sites, Globally, SACs, Europe) or on habitat 

assemblages e.g. SPAs Europe and SSSIs UK.  However, as ecosystem services are further 

examined and economically quantified the conflict between what is beneficial for the habitat 

or species vs required or exploited by humans may lead to conflicts and a re-examination of 

how we view these habitats. Furthermore this has implications for the current policy of 

maintaining stocks of habitat through managed realignment, the purpose of this practice is 

to recreate an equivalent habitat to the one damaged/lost, but this may not recreate the 

ecosystem service that was valued in the original site. 

A fundamental question is whether the focus is to maximise ecosystem services or to 

conserve  a natural state, in which case we must be prepared that habitats evolve and 

migrate, and flexibility to allow for this is needed, (Gardiner et al., 2007). Maximising 

ecosystems services of designated areas and the relative impacts on the original reason of 

designation, is beginning to be explored at some locations in the UK (Eastwood et al., 

2013). 
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8.7 Further Research 

This research has highlighted a number of different directions for further study, both for 

Poole Harbour, in micro-tidal estuaries and more widely. These are summarised within the 

following Section.  

Poole Harbour 

1. Is Poole Harbour evolving back to a less ebb dominant/equilibrium state? 

One of the main requirements for habitat change analysis, highlighted in this study 

is the need for consistent, long term monitoring of the estuarine system in order to 

clearly understand the spatial patterns of saltmarsh change (Section 8.2).Specifically 

within Poole Harbour, further LIDAR and bathymetry surveys of the saltmarsh, 

intertidal and sub-tidal areas, could be used to compare the morphology of the 

Harbour over time, in order to assess the long term changes in morphology and 

hence hypsometry. This could confirm whether the Harbours morphology is evolving 

to a less ebb dominant and potentially equilibrium state. Previous bathymetric data 

was collected in 2005 and LIDAR in 2006 and so data collected from 2016 onwards 

would have an adequate timescale of 10 years in order to observe broad scale 

morphological changes, considering the errors involved in collecting and processing 

these kinds of datasets. 

 

2. Sediment sampling to rule out/confirm other drivers and mechanisms  

Sediment samples were taken from eroding and accreting regions within Poole 

Harbour, when tested in flume experiments the sediments had different critical 

shear thresholds and organic content. A larger sediment sampling campaign, 

involving systematic sampling from across the Harbour, adequately covering regions 

of saltmarsh loss and gain as well as sampling from regions where different settings 

of change have been identified, would be useful in examining other potential 

mechanisms of change. Alongside flume experiments to quantify shear velocity, 

analysis of organic content and sediment grain size, biological and chemical analysis 

could be performed, investigating the presence of sewage, bioturbators and other 

biota, chemicals likely to occur in run off, pesticides and herbicides, nitrogen 
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content and other factors identified as potential drivers of change (Mason et al., 

2003, Paramour, 2002, Paramour and Hughes, 2004, Beardall et al., 1988, Deegan 

et al., 2012) and outlined in Figure 2.10. Thus ruling out or potentially adding extra 

drivers and mechanisms of change within the Harbour, and as a result of this any 

current management of the systems could be reviewed. 

3. Is fishing a potential mechanism of change? 

The impact of fisheries was identified within the Poole conceptual model, as being 

potentially relevant to saltmarsh changes in the region (Figure 8.1). During field 

work, deep grooves in some mudflats fronting the saltmarshes were observed. It was 

presumed that these were made during shellfish dredging by the local fishing fleet. 

As these mudflats are relatively high in the tidal frame, they would only be 

accessible at high tide and hence any sediment suspended into the water column 

during dredging could be redistributed during the following ebb tide. A study on the 

fishing practices within Poole Harbour and the impacts this may have on sediments 

could be useful in understanding some sediment transport pathways and identifying 

or dismissing further potential drivers of change. 

4. What is the driver of reedbed takeover? 

At a local scale within Poole Harbour, reedbed takeover was observed as a 

mechanism of saltmarsh loss (Section 5.3.3 and Figure 8.1), future work to identify 

the drivers of this process could include monitoring the salinity of the upper 

marshes. This could be a result of local development, which may lead to more fresh 

water flow into the marshes or alternatively the marshes could have accreted out of 

the local tidal range. In which case the level of the upper marshes with relation to 

the local tidal levels could also be measured. Both processes would create a more 

favourable habitat for reedbeds to colonise which could then out-compete the 

saltmarsh species. Reedbed takeover accounted for a very small proportion of 

saltmarsh loss, however as it has also been potentially observed elsewhere as a 

driver of change (Branch Partnership, 2007) this process may be worth examining in 

more detail. 

Micro-tidal Estuaries 
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1. What are the drivers and mechanisms of change in other micro-tidal estuaries, are 

tides also important elsewhere? 

Within micro-tidal estuaries the relatively small tidal range means that currents are 

generally weaker than might be found in a meso or macro-tidal estuary. These 

weaker tidal currents mean that other hydrodynamic factors, such as waves, may be 

proportionally more important in controlling coastal habitat extent. This study has 

illustrated that despite the small tidal ranges encountered within micro-tidal 

estuaries, tidal processes are still important in the development of coastal habitats 

within these regions (Chapter 7). Studying the relevant mechanisms and drivers of 

change in other micro-tidal estuaries will allow a greater understanding of the 

proportional effects tidal currents vs other hydrodynamic drivers have on habitat 

changes at a broader scale. 

2. Are micro-tidal estuaries more vulnerable to coastal squeeze?  

Micro-tidal estuaries are cited as being more sensitive than other estuaries to sea-

level rise, due to their inability to adjust and hence the coastal habitats within them 

are likely to be more susceptible to coastal squeeze, particularly where coastal 

development restricts their migration. Overall the lack of coastal squeeze identified 

within this study shows that sediment supply and favourable hydrodynamics allow 

the continued accretion of saltmarsh and the presence of seawalls does not 

necessarily result in habitat loss (Section 8.4). This could involve the examination of 

other case study locations or preferably with the support of an idealised modelling 

approach, using a range of basin geometries and a variety of tidal ranges in order to 

explore the amount of sediment required to allow the saltmarsh to maintain its 

position within the tidal frame. This would allow the quantification of the relative 

adaptability of different basins and different tidal regimes. 

3. Are micro-tidal estuaries more sensitive to invasive species such as Spartina? 

Micro-tidal estuaries may also be more sensitive to the colonisation of invasive 

species; the results within this study illustrate the vast changes that can occur as a 

result of a new species introduced to a system (Figure 8.3). Further research could 

focus on the impacts caused by invasive species within estuaries, firstly by collating 

data already collected through coastal management programmes where relevant. 

Secondly identifying other suitable locations that have not previously been mapped, 
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but have sufficient data to allow the rate of colonisation to be quantified. In 

understanding the susceptibility of micro-tidal estuaries to external influences, they 

can be better managed. 

General Estuaries 

1. Does the conceptual model work elsewhere? 

A conceptual model was created to identify and link the setting of the change, 

mechanisms of change and the over-arching drivers (Figure 2.11). Further work 

could be to apply this framework to other estuaries, (macro-tidal and meso-tidal), 

other intertidal habitats such as mangroves and seagrass beds and potentially to 

other marine ecosystems such as reefs or maerl beds. Testing the conceptual model 

in a range of environments would improve the models robustness. 

2. A re-examination of Spartina anglica colonisation using all available data 

Historic trends of saltmarsh colonisation and subsequent decline have been shown 

to be substantial when put into perspective alongside more recent trends (Figure 

8.3). In light of this a re-examination of  saltmarsh colonisation within other 

estuaries where Spartina anglica has colonised, using historic charts and anecdotal 

evidence, could be undertaken in order to gain a better understanding of what the 

baseline was prior to Spartina anglica colonisation (Section 8.6). This is particularly 

relevant in estuaries that have yet to be formally designated, but it is also important 

where active management is being used to preserve coastal habitats that may be in a 

state of flux, due to perturbations due to species invasion. 

3. Why and how do regime shifts occur? 

Further examples of documented regime shifts can be investigated, in order to 

understand the drivers that lead to them occurring. Within this study it is clear that 

the colonisation of Spartina anglica has led to dramatic changes within the case 

study site and likely contributed to a regime shift. With an increase in globalisation 

and worldwide marine traffic, combined with climate change and shifting ecological 

niches, the migration of invasive species is likely to increase. Elsewhere changing 

sediment supply created an estuarine regime shift (Kirwan et al.,2011).  Future 

coastal management, where ‘do nothing’ or ‘realignment’ shoreline management 

strategies are adopted, may cause dramatic changes and widespread feedbacks 
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resulting in unforeseen changes (Section 8.6). Hence observing where these regime 

shifts have been triggered previously, the drivers of them and the timescales over 

which they occur will enable better future coastal management. 
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9 Conclusions 

Coastal habitat loss is a global issue, with many contributors including sea-level rise, 

exploitation, pollution and development leading to degradation and decline (Waycott et al., 

2009, Valiela, 2006, Duarte et al., 2009). Micro-tidal regions containing coastal habitats are 

found throughout the world are more vulnerable to future changes, due to their limited 

ability to adjust to sea-level rise (cf(Nicholls et al., 1999)). 

A multidisciplinary approach was taken to assess the drivers and physical mechanisms of 

saltmarsh change. Studying saltmarsh changes in a conceptual and spatial context allows an 

understanding of drivers and mechanisms of change and provides a broad overview of a 

system, identifying key aspects to investigate further or knowledge gaps that should be 

addressed. Studies of saltmarsh change often focus on one facet without considering the 

impacts of other mechanisms. In order to explore and assess the complex feedback systems 

involved in habitat change, including physical biological and chemical mechanisms, a 

conceptual framework was created (Figures 2.10 and 2.11). 

The conceptual framework has applicability elsewhere, both in examining other saltmarsh 

systems as well as for other coastal habitats such as seagrass and mangroves, other climatic 

zones and meso or macro-tidal ranges. To apply the model at a case study level requires an 

understanding of the potential local drivers and requires both historic and contemporary 

data on the spatial extent of the habitats, which is often lacking. Within this study the 

conceptual model assisted in the identification of multiple mechanisms and drivers of 

saltmarsh change. The conceptual model was supported by a multidisciplinary analysis of 

historic saltmarsh trends using aerial photography, OS maps, bathymetric data and a 

hydrodynamic model. This method allowed the spatial settings of the change to be 

identified and hence the potential mechanisms and drivers. This approach was found to be 

advantageous due to the complexity of the biogeochemical feedback processes within 

intertidal habitat systems.  

Multiple drivers and mechanism responsible for the changes observed were identified, small 

scale localised changes were caused by spit roll- back, realignment and reed bed 

conversion, alongside large scale hydrodynamic and morphological mechanisms. Flood 

dominant tidal flows were correlated with saltmarsh accretion, undoubtedly waves are 

important in shaping the morphology of micro-tidal environments (Fagherazzi et al., 2006, 

Fagherazzi and Wiberg, 2009). However this study shows that despite the small tidal ranges 
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encountered within micro-tidal estuaries tidal processes are still often important in the 

development of coastal habitats.  

The most prominent overall driver of saltmarsh change, both for losses and gains, was 

human influence, including the human facilitated invasive colonisation of Spartina anglica, 

and coastal development, consisting of marina development and land reclamation. The 

historical analysis suggests that Spartina anglica colonisation expanded saltmarsh area, at 

the case study site, substantially between 1900 and 1920 (Figure 8.3). As Spartina anglica 

colonised the intertidal area, the morphology and hydrodynamics would have been 

significantly modified shifting the estuary regime from an accretional to an erosional state 

and the erosion that continues to the present day results from the system adjusting to this 

perturbation, although the rate of saltmarsh loss as well as gain are slowing. Evidence 

shows that it only takes a small change in intertidal height and therefore sediment supply to 

potentially shift a regime.  Studies by Mariotti et al., (2010) have illustrated, using a wind-

wave model, how a 15cm increase in elevation of the subtidal platform could reduce wave 

erosion by nearly 25%. In this case the shift was driven by an invasive species that could 

tolerate longer tidal submergence times, allowing it to colonise previously un-vegetated 

mudflats. Similar human-driven shifts, resulting in large scale wetland habitat expansion, 

have been observed in the United States, due to land use changes releasing large volumes 

of sediment into estuaries (Kirwan et al., 2011), creating habitats that have diverged from 

their natural equilibrium state. The changes seen are not likely to be unique to micro-tidal 

climates. Micro-tidal coastal regions are more sensitive to sea-level rise due to their inability 

to adjust and hence they are also more likely to be more sensitive to changes in sediment 

supply, this may have been a contributing factor to the dramatic extent to which Spartina 

anglica colonised the case study site. Historically Spartina anglica colonisation occurred 

throughout the south of the UK, as well as in many countries around the world, changes 

observed in these other estuaries may also be a result of the adjusting estuarine 

morphology that occurred as a result of colonisation, with estuaries now returning slowly 

back to a new equilibrium form.  

At a broad scale, results from this thesis emphasise that saltmarsh changes occurring 

throughout the UK, and potentially elsewhere in the world, are more complex than often 

portrayed. Previous studies of saltmarsh change within the case study area, neglected to 

record the accretion that was occurring or fluctuations of the rates of change through time, 

with future saltmarsh area calculated assuming a linear loss with time. This is a gross over 

simplification and this is likely to be a widespread conclusion. This is particularly true when 
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historic changes are calculated using limited data sources over short time scales, not 

allowing for a full understanding of dynamic and evolving habitats in a spatial context.  

The case study chosen was considered to be an estuary that is relatively undeveloped; 

however the main drivers of change were related to human influence. From the direct 

destruction of habitats for coastal development and land reclamation, through to the 

introduction of invasive species. The wider implications of this finding is that any coastal 

activity that directly affects the distribution of coastal habitats should be assessed 

thoroughly with a full understanding of the complex driver and mechanisms feedbacks that 

can occur.  

One of the main issues with quantifying this kind of study is the lack of baseline data and 

our perception of what the baseline should be. Humans have modified and developed the 

coastal zone for thousands of years and it is now difficult to envisage coastal habitats 

without human influence. Many coastal habitats worldwide are protected and within Europe 

coastal habitats are designated under the EC Habitats and Species Directive (Council 

Directive 92/43/EEC). Habitats were often originally designated for the conservation 

requirements of a particular species or for its habitat assemblage with little knowledge or 

understanding of the physical state of the system. As these habitats develop and change, 

naturally or un-naturally, with no valid baseline other than the state the system was in when 

it was designated, we will have no comprehension of whether the habitat is degrading or 

simply evolving. 

This study illustrates the need to base future coastal management on accurate studies 

which use all the available information on a case by case basis. Many studies focus on the 

last 50 to 60 years when aerial photographs are available, but there is merit in using earlier 

sources, even if they are less accurate as they give a better sample of the range of 

conditions. With a lack of quantitative data available to understand the historic changes, 

anecdotal evidence can be used to gain an insight into the trends of change that have 

occurred in the past. Where no data exists then a concept of what role the habitat fulfils 

ecologically and therefore the requirement from the habitat should be assessed. However, 

in the future as ecosystem services are further assessed and economically quantified, 

conflict between what is beneficial for the habitat or species vs what is required or exploited 

by humans, may lead to questions as to whether the focus should be to maximise 

ecosystem services or to conserve a natural state. 
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A.  Appendix A 

 

 

Figure A.1Time series plots of results from annular flume at site E1_1 
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Figure A.2 Time series plots of results from annular flume at site E1_2 

 

Figure A.3 Time series plots of results from annular flume at site E2_1 
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Figure A.4 Time series plots of results from annular flume at site E2_2 

 

Figure A.5 Time series plots of results from annular flume at site A1_1 
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Figure A.6 Time series plots of results from annular flume at site A1_2 

 

Figure A.7 Time series plots of results from annular flume at site A2_1 
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Figure A.8 Time series plots of results from annular flume at site A2_2 

 

Figure A.9 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (E1_1). 
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Figure A.10 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (E1_2). 

 

Figure A.11 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (E2_1). 
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Figure A.12 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (E2_2). 

 

Figure A.13 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (A1_1). 
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Figure A.14 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (A1_2). 

 

Figure A.15 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (A2_1). 



Appendix A 

 
[204] 

 

Figure A.16 Calibration of OBS sensor to suspended sediment concentration measured 

in samples from the annular flume (A2_2). 

 

Figure A.17 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site E1_1. 
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Figure A.18 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site E1_2. 

 

Figure A.19 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  E2_1. 
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Figure A.20 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  E2_2. 

 

Figure A.21 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  A1_1 
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Figure A.22 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  A1_2 

 

Figure A.23 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  A2_1  
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Figure A.24 Estimations of the shear threshold for from the relationship between bed 

shear stress and suspended sediment concentration for site  A2_2 

 

  

Figure A.25 Sediment size distribution curve for site E1.( Diameter 50% 16.15µm) 
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Figure A.26 Sediment size distribution curve for site E1_2 (Diameter 50% 18.87µm) 

 

Figure A.27 Sediment size distribution curve for site E1_3(Diameter 50% 16.21µm) 

 

Figure A.28 Sediment size distribution curve for site A1_1 (Diameter 50% 17.81µm) 
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Figure A.29 Sediment size distribution curve for site A1_2 (Diameter 50% 16.01µm) 

  

Figure A.30 Sediment size distribution curve for site A1_3 (Diameter 50% 14.29µm) 

 

Figure A.31 Sediment size distribution curve for site A2_1 Diameter 50% 14.27µm 
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Figure A.32 Sediment size distribution curve for site A2_2 Diameter 50% 19.81µm 

 

Figure A.33 Sediment size distribution curve for site A2_3 Diameter 50% 14.77µm 

 


