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Abstract

It has become an established fact that the constrained `1 minimization is capable of
recovering the sparse solution from a small number of linear observations and the reweighted
version can significantly improve its numerical performance. The recoverability is closely
related to the Restricted Isometry Constant (RIC) of order s (s is an integer), often denoted
as δs. A class of sufficient conditions for successful k-sparse signal recovery often take the
form δtk < c, for some t ≥ 1 and c being a constant. When t > 1, such a bound is often called
RIC bound of high order. There exist a number of such bounds of RICs, high order or not.
For example, a high order bound is recently given by Cai and Zhang [10]: δtk <

√
(t− 1)/t,

and this bound is known sharp for t ≥ 4/3. In this paper, we propose a new weighted `1
minimization which only requires the following RIC bound that is more relaxed (i.e., bigger)
than the above mentioned bound:

δtk <

√
t− 1

t− (1− ω2)
,

where t > 1 and 0 < ω ≤ 1 is determined by two optimizations of a similar type over the
null space of the linear observation operator. In tackling the combinatorial nature of the two
optimization problems, we develop a reweighted `1 minimization that yields a sequence of
approximate solutions, which enjoy strong convergence properties. Moreover, the numerical
performance of the proposed method is very satisfactory when compared to some of the
state-of-the-art methods in compressed sensing.

Keywords: Compressed sensing, weighted `1 minimization, restricted isometry constant,
null space property.

1 Introduction

Over the past decade, compressed sensing has seen revolutionary advances both in theory and
algorithms. A significant number of publications have appeared in various disciplines and we
only list a few of ground-breaking papers that pioneered the advances [16, 13, 12]. For more
references, see the survey papers [5, 31] and the monographs [18, 20, 29]. Among many beautiful
theoretical results is the well-established fact that the constrained `1 minimization is capable of
recovering the sparse information based only on a small number of observations. Moreover, the
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reweighted `1 minimization provides a more robust numerical performance. This has been well
argued by Candès, Wakin and Boyd [14]. The recoverability of `1 minimization is closely related
to the Restricted Isometry Constant (RIC) of the observation operator and a large number of
RIC bounds have been derived, see e.g., [11, 6, 2, 3, 27, 8, 9, 40, 10], which also motivated
our research in this paper. In particular, some RIC bounds have been known to be sharp (i.e.,
tight). The purpose of this paper is to show that one of the recently discovered sharp bounds
for the constrained `1 minimization can actually be relaxed when the weighted `1 minimization
is used. Our result prompts us to design a corresponding reweighted `1 minimization, whose
convergence and numerical performance are demonstrated to be satisfactory when compared to
other popular methods. In the following, we explain how we have derived our weighted scheme.

(a) `1 minimization and RIC bounds. Suppose we have a known measurement matrix
Φ ∈ IRm×n with m � n and the actual observation vector b ∈ IRm. The purpose is to recover
the sparsest vector x ∈ IRn such that Φx = b. The underlying optimization model is the `0
minimization:

min ‖x‖0, s.t. Φx = b, (1)

where ‖x‖0 is `0-norm of x, i.e., the number of nonzero entries in x. It goes without needing to
explain further that under certain conditions this combinatorial optimization problem (1) can
be satisfactorily solved by its convex relaxation: the `1 minimization:

min ‖x‖1, s.t. Φx = b, (2)

where ‖x‖1 =
∑n

i=1 |xi| is the `1 norm of x. As commented in [14], “the use of `1 relaxation has
become so widespread that it could arguably be considered the modern least squares”, see, e.g.,
[5, 6, 8, 9, 10, 22, 27, 34, 38, 40].

One of the key theory behind the `1 minimization is about the RIC of the measurement
matrix Φ introduced by Candès and Tao [13]. Suppose 1 ≤ k ≤ n is an integer, the RIC of order
k is defined as the smallest number δk such that for all k-sparse vectors x ∈ IRn (i.e., ‖x‖0 ≤ k),
it satisfies

(1− δk)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δk)‖x‖2,

where ‖x‖ is the Euclidean norm of x (also known as the `2 norm). The RIC of order k is denoted
as δk. In general, δtk for t > 1 is often referred as the RIC of a high order. There certainly
exists a research race in deriving better (i.e., higher values) RIC bounds [1, 6, 8, 9, 10, 27, 40].
For example, δ2k < 0.5746 jointly with δ8k < 1 [40], an improved bound δ2k < 4/

√
41 [1], sharp

bounds δ2k <
√

2/2 [10] and δk < 1/3 [8]. In particular, Cai and Zhang [10, Theorem 1.1] proved
an RIC bound of high order in the form:

δtk <

√
t− 1

t
, (3)

and this bound is sharp for t ≥ 4/3. Note that (3) implies sharp bound δ2k <
√

2/2 by choosing
t = 2. Under each of those bounds, the constrained `1 minimization (2) is able to exactly recover
the k sparse solution of Φx = b provided that it exists. One interesting question is whether those
sharp bounds can be improved in the weighted scheme. The answer is positive under certain
circumstances.

Before moving on, we would like to clarify the usage of two terminological terms, namely
RIC bound and Bound of high order. In compresed sensing, a class of sufficient conditions for
successful sparse signal recovery through the `1 minimization (2) often take the following form:

δtk < c, (4)
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for some t ≥ 1 and c being a constant. In this paper, we refer (4) as the RIC bound or simply
the bound. This follows the routine taken up by Cai et al. [6]. The term of RIC bound is often
used when the focus of research was to improve it (i.e., to improve c). Otherwise, referring (4)
as a sufficient condition would be adequate. We further distinguish the situation t = 1 from the
remaining case t > 1. If t > 1, we refer it as the RIC bound of high order. For example, the
bound in (3) is one of high order tk. The usage of high order was also adopted in Cai and Zhang
[10].

(b) Weighted `1 minimization and RIC bounds. Let w ∈ IRn be nonnegative (wi ≥ 0
for i = 1, . . . , n). The w-weighted norm of x ∈ IRn is defined as

‖x‖1,w :=

n∑
i=1

wi|xi|.

The w-weighted `1 minimization is

min ‖x‖1,w, s.t. Φx = b. (5)

At this point, it is convenient to introduce another notation for the weighted `1: w ◦ x, which is
the vector of the componentwise product (wixi) between w and x. The operation ◦ in literature
is known as the Hadamard product of vectors of same size. Therefore ‖x‖1,w = ‖w ◦ x‖1.
This new notation will be very convenient later on for our convergence analysis. In numerical
implementation, w is often updated each step, resulting in the reweighted `1 minimization scheme
in compressed sensing. This scheme has proved to be much more efficient than the unweighted
version [14]. Ever since, there have appeared a large number of reweighted `1 minimization with
a variety of updating rules, see [32, 21, 39, 38, 36] and the references therein.

A particular weighting scheme that has attracted much attention is when partial information
is available for the actual support of the optimal sparse solution [32]. Suppose that x∗ is the
k-sparse solution and we let T∗ to denote its support (i.e., the set of indices of nonzero elements
in x∗). Suppose T0 is another index set that approximates T∗. Friedlander et al. [21] proposed
the following weighting scheme to define w ∈ IRn:

wi :=

{
ω if i ∈ T0

1 if i ∈ T c0 ,
(6)

where T c0 denotes the complementary set of T0 in {1, . . . , n} and 0 ≤ ω ≤ 1. What makes this
weighting scheme more valuable than many others is that it gives rise to RIC bounds of high
orders (see [21, Theorem 3]). In particular, when |T0| = k (i.e., there are k indices in T0 and this
implies ρ = 1 in [21, Eq.(15)]), the sufficient condition in [21, Eq.(15)] that guarantees successful
signal recovery becomes

δ2k <
1√

2(ω + (1− ω)
√

2(1− α)) + 1
, (7)

where α = |T0 ∩ T∗|/k (i.e., the percentage of true indices in T ). An interesting property of
this sufficient condition is that δ2k → 1 as α → 1 and ω = 0. In other words, the high order
bound of δ2k gets close to 1 if the more and more accurate support set is used in the weighted
scheme. The corresponding (sharp) bound for the unweighted scheme is

√
2/2. A significant

improvement is achieved through this particular weighting scheme, though it remains an issue
as how to accurately approximate the true support T∗.

In this paper, we propose a novel choice of T0 based on the null space of Φ. We will derive
a RIC bound of high order δtk for any t > 1, following the spirit of Cai and Zhang [10]. We
explain our bound below.
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(c) A new weighting scheme. Let N be the null space of Φ. We consider the `1-unit
sphere in the null space defined by

B1 := {h ∈ IRn | h ∈ N , ‖h‖1 = 1} .

Let I(k) denote the collection of all index sets of size not greater than k:

I(k) := {S ⊂ {1, . . . , n} | |S| ≤ k} .

For an index set T and x ∈ IRn, we let xT be the vector of x with its elements not indexed by
T being set 0. Our selection of T0 for the weighting scheme (6) is obtained from the following
(combinatorial) optimization problem:

(T0, ĥ) := arg max
T∈I(k), h∈B1

‖hT ‖1. (8)

Our main result (see Theorem 3.2) states that there exists 0 ≤ ω = γΦ ≤ 1 (see (13) for the
definition of γΦ) such that the condition

δtk <

√
t− 1

t− (1− ω2)
, (9)

for some t > 1 is sufficient for the weighted `1 minimization (5) to recover a k sparse solution of
(2). Here, if tk is not an integer, we replace it by dtke, where dae stands for the smallest integer
that is no less than a. It is easy to see that the bound in (9) is bigger than the Cai-Zhang
bound in (3) [10] when ω < 1. An interesting property is that this bound also approaches 1 if ω
approaches 0. This property is similar to that enjoyed by (7). The difference is that our bound
in (9) is for any high order t > 1, while (7) is just for t = 2. We also note that in the extreme
case where α = 1 (i.e., when the true support is used for T0 in (6)) and t = 2, the bound in (9)
is bigger than that in (7). In general, they belong to different types of bounds.

Before we finish this part, we would like to point out that problem (8) is not easy to solve.
In the numerical part, we will propose an update mechanism (see (27)) that approximates the
solution of this problem. This results in a new iteratively re-weighted `1 minimization. We
will show that, under reasonable assumptions, our update formula will correctly identify the
actual support set (see Theorem 4.4). Moreover, the numerical results show that it performs
satisfactorily comparing to some of the state-of-the-art algorithms in compressed sensing.

The paper is organized as follows. In Section 2, we introduce the known weighted null space
property in terms of the `1-unit sphere B1. We prove our new bound (9) in Section 3. In
Section 4, we describe our reweighted `1 scheme and study its convergence analysis. We report
some numerical results in Section 5, where extensive comparison with a number of popular
methods shows the satisfactory performance of our proposed method. We conclude the paper
with a few remarks in Section 6.

2 Weighted Null Space Property

In this section, we introduce the Weighted Null Space Property (WNSP) [25], which is a gen-
eralization of the famous Null Space Property (NSP) in compressed sensing. We rephrase the
WNSP in a slightly different way to suit our need later in deriving the new RIC bound. We also
include an example to highlight the key difference between WNSP and NSP.

It is well known that the NSP is a necessary and sufficient condition for the `1 minimization
(2) to produce the k-sparse solution of Φx = b [17, 22, 23]. We say that the matrix Φ satisfies
the NSP of order k if it holds

‖hS‖1 < ‖hSc‖1, ∀ S ∈ I(k), 0 6= h ∈ N .
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It can also be defined by restricting h to be in the `1 unit sphere in N and we state this below.

‖hS‖1 < ‖hSc‖1, ∀ S ∈ I(k), h ∈ B1. (10)

Our definition of WNSP is to replace the `1 norm in (10) by the weighted `1 norm and we
formally describe it below.

Definition 2.1 (WNSP) For a given weight w ∈ IRn with w ≥ 0 the matrix Φ is to said to
have the w−weighted null space property of order k if it holds

‖hS‖1,w < ‖hSc‖1,w, ∀ S ∈ I(k), h ∈ B1. (11)

We note that this definition is equivalent to the one defined in [25], where 0 6= h runs over the
null space N . It is known that the WNSP of order k is a necessary and sufficient condition
for the weighted `1 minimization (2) to recover the k-sparse solution of Φx = b (assuming it
has one). The next example shows a scenario in which `1 minimization (2) fails to recover the
1−sparse solution, while we have a plenty of choices for the weighted `1 minimization (5) to
recover it. The problem will be used again to explain our main result.

Example 2.2 Let the measurement matrix Φ and observation vector b be given as

Φ =

(
4/5 0 3/10
0 4/5 3/10

)
, b =

(
3/5
3/5

)
.

It is easy to verify the unique solution of `0 and `1 minimizations are x(0) = (0, 0, 2)> and
x(1) = (3

4 ,
3
4 , 0)> respectively. However, if we set the weight w ∈ IR3 to satisfy: w2 = w1,

w3 <
3
4w1 and 0 < w1 ≤ 1, we can verify that the weighted `1 minimization (5) is able to recover

the 1−sparse solution x0. This is because the w-weighted NSP (11) is satisfied by verifying it
by directly using

B1 =

{
h = (3h3/8, 3h3/8, −h3)>

∣∣∣ h3 = ±4

7

}
.

It is also easy to verify that NSP (10) is not satisfied by choosing S = {3}, which yields

‖hS‖1 = |h3| > |
6

8
h3| = ‖hSc‖1, for h ∈ B1

violating the NSP inequality (10).

In next section, we will derive our main RIC bound that generalizes the Cai-Zhang bound (3)
to the weighted `1 minimization. Some of our proof techniques are taken from [10]. In particular,
we will use the main technical lemma about sparse representation of a special polytope in [10,
Lemma 1.1], which is stated below for easy reference.

Lemma 2.3 For a positive number α and a positive integer s, define the polytope T (α, s) ⊂ IRn

by
T (α, s) = {v ∈ IRn | ‖v‖∞ ≤ α, ‖v‖1 ≤ sα} ,

where ‖ · ‖∞ is the infinity norm. For any v ∈ IRn, define the set U(α, s, v) ⊂ IRn of sparse
vectors by

U(α, s, v) = {u ∈ IRn | supp(u) ⊆ supp(v), ‖u‖0 ≤ s, ‖u‖1 = ‖v‖1, ‖u‖∞ ≤ α}.

Then v ∈ T (α, s) if and only if v is in the convex hull of U(α, s, v). In particular, any v ∈ T (α, s)
can be expressed as

v =

N∑
i=1

λiui, and 0 ≤ λi ≤ 1,

N∑
i=1

λi = 1, ui ∈ U(α, s, v).
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3 New RIC Bound

Our main purpose in this section is to prove that the use of the weight defined by (6) and (8)
will lead to an improved RIC bound (9). We first address the choice of ω in (6). We consider
the following problem:

(T1, h̃) := arg max
T∈I(k)\{T0}, h∈B1

‖hT ‖1. (12)

We define a quantity that is the ratio of the optimal objectives from (8) and (12):

γΦ :=
‖h̃T1‖1
‖ĥT0‖1

. (13)

Obviously, 0 ≤ γΦ ≤ 1. We note that both problems (8) and (12) may have multiple solutions.
Hence, for technical correctness, (T0, ĥ) should be one of the optimal solutions. We use =
(instead of ∈) in (8) for the sake of simplicity (this comments also applies to problem (12)). We
also note that the quantity γΦ is well defined because only the optimal objectives from the two
optimization problems are involved. Furthermore, γΦ would depend on the choice of T0 in (8)
in the case there are multiple solutions. Different choices of T0 may lead to different numerators
in (13), but with the same denominator. However, this dependence does not enter into our
analysis. What actually matters to us is the optimality condition of (12).

We have the following technical results. The first result says that ĥ is also the w-weighted
`1 solution over the `1-unit sphere B1. The second result says that if ω is chosen bigger than
γΦ in (6), then (T0, ĥ) is also an optimal solution of the w-weighted problem of (8). The third
result studies when it further satisfies the weighted NSP.

Lemma 3.1 Let the weight vector w be defined as in (6) in which T0 is a solution of (8), and
γΦ be defined as (13) and (12) corresponding to such T0, the following results hold.

(i) For any 0 ≤ ω ≤ 1 in (6), ĥ has the following minimality property:

‖ĥ‖1,w = min
h∈B1

‖h‖1,w. (14)

(ii) If ω in (6) is chosen to satisfy γΦ ≤ ω ≤ 1, we must have

‖ĥT0‖1,w = max
T∈I(k), h∈B1

‖hT ‖1,w. (15)

(iii) For any weight vector w that has the property of (15), the w-weighted NSP of order k holds
provided that

‖ĥT c
0
‖1 > ω‖ĥT0‖1. (16)

Proof. (i) For any 0 ≤ ω ≤ 1 and for h ∈ B1, we have

‖ĥ‖1,w = ω‖ĥT0‖1 + ‖ĥTC
0
‖1 = ω‖ĥT0‖1 + 1− ‖ĥT0‖1

≤ (ω − 1)‖hT0‖1 + 1 = (ω − 1)‖hT0‖1 + ‖hT0‖1 + ‖hT c
0
‖1

= ω‖hT0‖1 + ‖hT c
0
‖1 = ‖h‖1,w,

where the first inequality used the optimality property in (8). This establishes (14).
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(ii) There are two cases to consider. Case 1: (T0, h) is an optimal solution of the optimization
problem in (15) for some h. Case 2: T0 is not an optimal set of (15). For Case 1, we have for
any h ∈ B1,

‖hT0‖1,w ≤ ‖hT0‖1,w = max
T∈I(k), h∈B1

‖hT ‖1,w

= max
h∈B1

‖hT0‖1,w (because T0 is optimal)

= ω max
h∈B1

‖hT0‖1 (because of the definition of w)

= ω‖ĥT0‖1 (because of (8))

= ‖ĥT0‖1,w.

For Case 2, for any h ∈ B1 and any T ∈ I(k) \ {T0}, one has

‖ĥT0‖1,w = ω‖ĥT0‖1 (by definition of w)

≥ ‖h̃T1‖1 (because of ω ≥ γΦ)

≥ ‖hT ‖1 (because of (12))

≥ ‖hT ‖1,w (because of w ≤ 1).

For both cases, we established that ‖ĥT0‖1,w is an upper bound of the problem (15). Since (T0, ĥ)

is feasible with respect to (15), ‖ĥT0‖1,w is actually the optimal objective of (15).
(iii) It follows from (16) that we have

‖ĥT c
0
‖1,w = ‖ĥT c

0
‖1 > ω‖ĥT0‖1 = ‖ĥT0‖1,w. (17)

For any h ∈ B1 any T ∈ I(k), we have the following chain of inequalities:

‖hT c‖1,w = ‖h‖1,w − ‖hT ‖1,w
≥ ‖ĥ‖1,w − ‖hT ‖1,w (because of (14))

= ‖ĥT0‖1,w + ‖ĥT c
0
‖1,w − ‖hT ‖1,w

> 2‖ĥT0‖1,w − ‖hT ‖1,w (because of (17))

≥ ‖hT ‖1,w, (because of (15))

This establishes the w-weighted NSP. �

We are ready to present our first main result, which is a sufficient condition in terms of δtk
to ensure the sufficient condition (16) for the w-weighted NSP.

Theorem 3.2 For any given ω in defining the w-weight (6) that has the property (15), in
which T0 is a solution of (8), if the matrix Φ satisfies

δtk < δN (t) :=

√
t− 1

t− (1− ω2)
(18)

for some t > 1, then each k-sparse solution x̂ of the weighted `1 minimization (5) is the solution
of (1).

Proof. Since it is known that the w-weighted NSP of order k is necessary and sufficient for
the w-weighted `1 minimization to produce the k-sparse solution of (1) [25], it is sufficient for
us to prove that the condition (18) is sufficient for the condition (16) to hold in Lemma 3.1(iii).
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For simplicity, we denote h := ĥ and it will not cause any confusion in this proof. Then, the
condition (16) becomes

‖hT c
0
‖1 > ω‖hT0‖1.

Suppose on the contrary that we have

‖hT c
0
‖1 ≤ ω‖hT0‖1. (19)

We will derive a contradiction.
By setting β := ‖hT0‖1 /k, (19) becomes

‖hT c
0
‖1 ≤ ωkβ.

The following proof technique is taken from [10]. We now decompose hT c
0

into two parts, hT c
0

=

h(1) + h(2), where

h
(1)
i =

{
(hT c

0
)i, |(hT c

0
)i| > β/a,

0, otherwise,
h

(2)
i =

{
(hT c

0
)i, |(hT c

0
)i| ≤ β/a,

0, otherwise,

and a > 0 satisfies ωka being an integer. Therefore h(1) is at most ωka-sparse as a result of the
facts that ‖h(1)‖1 ≤ ‖hT c

0
‖1 ≤ ωkβ and all non-zero entries of h(1) have magnitude larger than

β/a. By letting ‖h(1)‖0 = m, we have

‖h(2)‖1 = ‖hT c
0
‖1 − ‖h(1)‖1 ≤ [ωka−m]β/a,

‖h(2)‖∞ ≤ β/a.

Applying Lemma 2.3 with s := ωka − m, h(2) can be expressed as a convex combination of
sparse vectors, i.e.,

h(2) =
N∑
i=1

λiui,

where ui is s-sparse, ‖ui‖1 = ‖h(2)‖1, ‖ui‖∞ ≤ β/a, i = 1, 2, . . . , N . Therefore, we have

‖ui‖2 ≤ (ωka−m)‖ui‖2∞ ≤
ωk

a
β2 ≤ ω

a
‖hT0‖2 ≤

ω

a
‖hT0 + h(1)‖2, (20)

where the third and last inequalities are respectively the consequences of ‖hT0‖1 ≤
√
k‖hT0‖2

and the disjoint supports of hT0 and h(1).
For any µ ≥ 0, denoting ηi := hT0 + h(1) + µui, we obtain

N∑
j=1

λjηj − ηi/2 = hT0 + h(1) + µh(2) − ηi/2 = (1/2− µ)
(
hT0 + h(1)

)
− µui/2 + µh, (21)

where ηi,
∑N

i=1 λjηj −
1
2ηi − µh are all (ωka+ k)-sparse vectors due to the facts: ‖hT0‖0 ≤

k, ‖h(1)‖0 = m and ‖ui‖0 ≤ ωka−m. Since Φh = 0, together with (21), we have

Φ
( N∑
j=1

λjηj −
1

2
ηi

)
= Φ

(
(
1

2
− µ)(hT0 + h(1))− 1

2
µui

)
.

It follows from [10, Eq.(25)] (setting c = 1/2 there), we have

N∑
i=1

λi

∥∥∥Φ(
N∑
j=1

λjηj −
1

2
ηi)
∥∥∥2

=
1

4

N∑
i=1

λi‖Φηi‖2. (22)
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Let µ :=

√
(a+ω)a−a

ω > 0. Suppose it holds:

δ := δωka+k <

√
a

a+ ω
. (23)

We now derive a contradiction from (22) with (23). We omit some computation in the following
chain of inequalities.

0 =
N∑
i=1

λi

∥∥∥Φ
(

(
1

2
− µ)(hT0 + h(1))− 1

2
µui

)∥∥∥2
− 1

4

N∑
i=1

λi‖Φηi‖2

≤ (1 + δ)
N∑
i=1

λi

[
(
1

2
− µ)2‖hT0 + h(1)‖2 +

µ2

4
‖ui‖2

]
− 1− δ

4

N∑
i=1

λi

(
‖hT0 + h(1)‖2 + µ2‖ui‖2

)
=

N∑
i=1

λi

[(
(1 + δ)(

1

2
− µ)2 − 1− δ

4

)
‖hT0 + h(1)‖2 +

1

2
δµ2‖ui‖2

]

≤
N∑
i=1

λi‖hT0 + h(1)‖2
[
µ2 − µ+ δ

(1

2
− µ+ (1 +

ω

2a
)µ2
)]

= ‖hT0 + h(1)‖2
[
µ2 − µ+ δ

(1

2
− µ+ (1 +

ω

2a
)µ2
)]

= ‖hT0 + h(1)‖2
(1

2
− µ+ (1 +

ω

2a
)µ2
)[
δ −

√
a

a+ ω

]
< 0,

which is the contradiction we have desired. Here, the second inequality is derived from (20) and
the last inequality holds because of (23) and the fact:

1

2
− µ+ (1 +

ω

2a
)µ2 = (1 +

ω

2a
)(µ− 1

2(1 + ω/2a)
)2 +

1

2
− 1

4(1 + ω/2a)
≥ 1

2
− 1

4(1 + ω/2a)
> 0.

By setting a = t−1
ω in condition (23), we obtain condition (18). This proves that condition (18)

is a sufficient condition for the w-weighted NSP to hold. Hence the proof is completed. �

We note that the special choice ω = 1, which is always feasible for (18), recovers the Cai-
Zhang bound (3). The chance is that ω can take a much smaller value than 1 and hence the
bound in Theorem 3.2 significantly improves its original version (3). We illustrate this point by
revisiting Example 2.2. We already showed that there exist weights w such that the weighted
`1 minimization can recover the `0 minimization solution. It is straightforward to calculate that

T0 = {3}, ĥ = (3/14, 3/14, 4/7)> ,

T1 = {1} or {2}, h̃ = (3/14, 3/14, 4/7)> .

Therefore, γΦ = 3/8. Setting the weight w in (6) by choosing ω ≥ γΦ will ensure (15). The
quantity δN (2) = 0.9363.

On the other hand, we can use the formula (see [27, 40])

δ2k = max
S∈I(2k)

‖Φ>SΦS − I2k‖,

to calculate δ2, where ‖ · ‖ denotes the spectral norm of a matrix. By setting n = 3 and k = 1,
we obtain δ2 = 0.9224. Hence, we have δ2 < δN (2). Theorem 3.2 guarantees that the weighted
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`1 minimization will be able to recover the `0 solution of the problem in Example 2.2. As a
matter of fact, any choice of ω ≥ 3/8 will be enough.

As highlighted in Introduction, the high order bound in (18) can go near 1 if ω is allowed
to approach 0. The following table indicates this trend and can be used to compare to existing
bounds of various high orders.

ω δ2k δ3k δ4k

1
√

2/2
√

6/3
√

3/2
3/4 0.800 0.883 0.917
1/2 0.894 0.942 0.960
1/4 0.970 0.984 0.989

Table 1: Bounds on δtk of high order t = 2, 3, 4 base on formula (18)

4 A Reweighted `1 Minimization

The main remaining task is to identify T0 in (8), which is as hard to solve as the original `0
minimization (1). Therefore, it has to be iteratively and numerically approximated and this
naturally leads to the reweighted `1 minimization approach. In this section, we will propose a
novel updating rule for the weight vector w. Our ultimate result is that the new rule will allow
us eventually identify T0 to be the true support of an optimal solution of the `1 minimization
problem. To accomplish this task, we adopt the popular reweighted `1 approach to solve (2):

x` := arg min
x∈IRn

f(x;µ`,w
`) :=

1

2
‖Φx− b‖2 + µ`‖x‖1,w` , (24)

where µ` > 0 is the penalty parameter and w` is the current weight vector at the `th itera-
tion. One advantage of the approach in (24) is that the powerful YALL1 solver (available at
http://yall1.blogs.rice.edu/) can be called to solve it at each iteration.

We describe the rule and the resulting algorithm in the first subsection below. Convergence
analysis of reweighted `1 algorithms is never going to be trivial and there seems to be no standard
scheme to follow, as well demonstrated in Zhao and Li [39]. Our main convergence result relies
on a few very technical lemmas concerning the new updating rule. We report those results in
the second subsection.

4.1 The Rule for Updating the Weight Vector and the Algorithm

Let x`, x`−1 be the two iterates already computed. Let k` be the size of the support of x` (i.e.,
k` := |supp(x`)|). Let h` := x`−x`−1 and sort h` in decreasing order in terms of absolute values
of its elements:

|h`
j`1
| ≥ |h`

j`2
| ≥ · · · ≥ |h`

j`k`
| ≥ |h`

j`k`+1
| ≥ · · · ≥ |h`jn |. (25)

We further define two index sets that respectively corresponds to T0 in (8) and T1 in (12):

T `0 := {j`1, j`2, · · · , j`k`}, T `1 := {j`2, j`3, · · · , j`k`+1}. (26)

We define γ`Φ below to mimic the quantity γΦ in (13), and γ` in case that γ`Φ is too small:

γ`Φ :=
‖h`

T `
1
‖1

‖h`
T `

0
‖1

and γ` := ε1 + θ`γ
`
Φ,
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where ε1 < 1 is a small positive number and θ` = α1θ`−1 with α1 > 1 and θ0 > 0 being given.
The weight vector w is updated according to the following rule:

w`+1
i =

 γ`, if i ∈ T `0 ,

ε1 + θ` + 1
|x`i |+ε2

, if i 6∈ T `0
(27)

where 0 < ε2 ≤ 1. We have two brief comments on (27).

(i) The quantity γ`Φ ≤ 1 is well defined. Its denominator ‖h`
T `

0
‖ can only be zero when h` = 0.

Our algorithm would have already terminated if ‖h`‖ is small enough. The weighting
scheme in (27) is actually a scaled version of what we used in (6). In fact, the sequence
{θ`} goes to ∞ and hence we have

w`+1

θ`
=

 γ`Φ + ε1
θ`
, if i ∈ T `0 ,

1 + ε1
θ`

+ 1
θ`(|x`i |+ε2)

, if i 6∈ T `0
≈

 γ`Φ, if i ∈ T `0 ,

1, if i 6∈ T `0 .

T `0 will be proved to be unchanged for all sufficiently large `. In addition, the weight
sequence {w`} are bounded from below by ε1.

(ii) The updating rule for the indices not in T `0 drew experiences from [14], where w`+1
i =

1/(|x`i |+ ε) (ε > 0 is small) is used and from [19], where w`+1
i = 1/(|x`i |+ ε)1−q, q ∈ (0, 1)

is used. The key feature of ours is that we update w based on the two consecutive iterates
rather than just using the current iterate. We like to point it out that we chose the
difference vector between the two consecutive iterates to approximate the null-space. This
is the cheapest approximation as the iterates are already computed. It remains to be
explored if there are other heuristic (better and cheaper) approximation to the null space.

The overall algorithm is stated in Table 2. We note that the refinement step in Step 3
will be justified by our main result Thm. 4.4(ii). To distinguish the method from the many
existing ones, we call it the Modified Iterative Reweighted `1 Minimization MIRL1 and we state
its convergence analysis in next subsection.

Table 2: The framework of MIRL1.

Modified Iterative Reweighted `1 Minimization (MIRL1)

Step 0 Initialize x0, ω1, µ1, θ0 > 0, 1 > α0 > 0, α1 > 1. tol is the given tolerance. Set t⇐ 1;

Step 1 Compute

x` ∈ argminx f(x; µ`, w`);

Step 2 If ‖x`−x`−1‖
max{1,‖x`−1‖} ≤ tol, go to Step 3. Otherwise, update w`+1 from x`, x`−1 by (27)

and µ`+1 by

µ`+1 =

{
α0µ`, if β` > 1

β`µ`, if β` ≤ 1
with β` =

‖x`‖
1,w`

‖x`‖
1,w`+1

set `⇐ `+ 1, go to Step 1.

Step 3 Refine x` to output x̂ by x̂Γ ∈ arg miny∈R|Γ| ‖ΦΓy − b‖, x̂Γc = 0, where Γ = supp(x`).
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4.2 Convergence Analysis

In this part, we will first establish a few technical results and then state our main result. Let
{x`} be the sequence generated by our MIRL1 method. Since x`+1 = arg minx f(x, µ`+1,w

`+1),
we have the first-order optimality condition involving the `1 norm

Φ>(Φx`+1 − b) + µ`+1

(
w`+1 ◦ v`+1

)
= 0 and v`+1

i =


1 x`+1

i > 0

−1 x`+1
i < 0

β x`+1
i = 0, β ∈ [−1, 1].

(28)

In fact, the vector v`+1 is a subgradient of the `1 norm ‖x‖1 at point x`+1. In all, we have
the following sequences to consider: {x`, µ`, w`, v`}. Our first result shows that the function
values {f(x`; µ`, w`)} are decreasing.

Proposition 4.1 Let the sequence {x`, µ`, w`} be generated by MIRL1. The sequence enjoys
the following properties.

(i) It holds

µ`‖x`‖1,w` ≥ µ`+1‖x`‖1,w`+1

(ii) Denote f(x`, µ`, w`) by f`. We then have

f` − f`+1 ≥
1

2
‖Φx`+1 − Φx`‖2 + µ`‖x`‖1,w` − µ`+1‖x`‖1,w`+1 .

Therefore, by the property in (i), the sequence {f`} is decreasing.

Proof. (i) It follows from the definition of µ`+1 and β` in Step 2 of MIRL1 that

µ`‖x`‖1,w` − µ`+1‖x`‖1,w`+1 =

{
µ`‖x`‖1,w` − α0µ`‖x`‖1,w`+1 , if β` > 1

µ`‖x`‖1,w` − β`µ`‖x`‖1,w`+1 , if β` ≤ 1

≥

{
µ`‖x`‖1,w` − α0µ`‖x`‖1,w` , if β` > 1

µ`‖x`‖1,w` − µ`‖x`‖1,w` , if β` ≤ 1

≥ 0.

(ii) Direct calculation yields

f` − f`+1

=
1

2
‖Φx`+1 − Φx`‖2 + 〈x` − x`+1,Φ>(Φx`+1 − b)〉+ µ`‖x`‖1,w` − µ`+1‖x`+1‖1,w`+1

=
1

2
‖Φx`+1 − Φx`‖2 + 〈x`+1 − x`, µ`+1w`+1 ◦ v`+1〉+ µ`‖x`‖1,w` − µ`+1‖x`+1‖1,w`+1 (29)

≥ 1

2
‖Φx`+1 − Φx`‖2 + µ`+1‖x`+1‖1,w`+1 − µ`+1‖x`‖1,w`+1 + µ`‖x`‖1,w` − µ`+1‖x`+1‖1,w`+1

=
1

2
‖Φx`+1 − Φx`‖2 + µ`‖x`‖1,w` − µ`+1‖x`‖1,w`+1 , (30)

where the second equality is from (28), and the first inequality is due to v`+1
i x`+1

i = |x`+1
i | and

|v`+1
i | ≤ 1. �
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By the updating rule for µ` in Step 2 of MIRL1 algorithm, it is easy to see that the sequence
{µ`} is decreasing and is bounded from below by 0. Hence it converges. We let

µ := lim
`→∞

µ` ≥ 0

The case that µ = 0 is not desired as it essentially implies that the reweighted `1 optimization
(24) will eventually lead to the least-square solution without the `1 regularization term (i.e.,
this term eventually vanishes). Consequently, no sparse solutions would be guaranteed. Un-
fortunately, we were unable to ensure this case not happening through the update scheme of
µ`. Therefore, we assume µ > 0. We also assume each subproblem (24) always finds a sparse
iterate that satisfies

τ := inf
`≥1

{
min

i∈supp(x`)
|x`i |
}
> 0. (31)

This technical assumption will greatly simplify the techniques used to derive our main result.
We note that some of the results are still true without this assumption. However, the technical
gain without it is not significant.

The following technical result first establishes the boundedness of the sequence {x`}. It
then establishes the useful fact that for any two consecutive iterates of the subgradient vectors
{v`, v`+1} and the weight vectors {w`, w`+1}, the change over the support set of the iterate x`

will be vanishing as ` goes to ∞.

Lemma 4.2 We have the following technical results:

(i) The sequence {x`} is bounded.

(ii) For any i` ∈ supp(x`), we have

lim
`→∞

|v`i` − v`+1
i`
| = 0 and lim

`→∞
|w`
i` − w`+1

i`
| = 0.

Proof. (i) Since µ > 0, and µ` ≥ µ, w` ≥ ε1 for all ` = 1, 2, . . ., we have

µε1‖x`‖1 ≤ µ`‖x`‖1,w` ≤
1

2
‖Φx` − b‖2 + µ`‖x`‖1,w` = f(x`, µ`,w

`) ≤ f(0, µ`,w
`) =

1

2
‖b‖2.

Therefore, the sequence {x`} is bounded.

(ii) It follows from Prop. 4.1(ii) that {f`} is monotonically decreasing and bounded below
(f` ≥ 0). Thus it converges and we have

lim
`→∞

‖Φx`+1 − Φx`‖ = 0, (32)

lim
`→∞

µ`‖w` ◦ x`‖1 − µ`+1‖w`+1 ◦ x`‖1 = 0. (33)

It then follows from (28) and (32) that lim`→∞(µτw`◦v`−µτ+1w`+1◦v`+1) = lim`→∞Φ>(Φx`+1−
Φx`) = 0, which combining lim`→∞ µ`+1 = lim`→∞ µ` = µ > 0 yields

lim
`→∞

w` ◦ v` = lim
`→∞

w`+1 ◦ v`+1. (34)

By (29) we have

f` − f`+1 =
1

2
‖Φx`+1 − Φx`‖2 + µ`‖w` ◦ x`‖1 − µ`+1‖w`+1 ◦ x`‖1 + (35)〈
x`+1 − x`, µ`+1w`+1 ◦ v`+1

〉
+ µ`+1‖w`+1 ◦ x`‖1 − µ`+1‖w`+1 ◦ x`+1‖1︸ ︷︷ ︸

:=Θ

.
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which further implies

Θ = µ`+1

n∑
i=1

w`+1
i

(
|x`i | − |x`+1

i | − v`+1
i x`i + v`+1

i x`+1
i

)
= µ`+1

n∑
i=1

w`+1
i

(
|x`i | − v`+1

i x`i

)
≥ ε1µ

n∑
i=1

(
|x`i | − v`+1

i x`i

)
≥ 0,

where the last inequality is due to |v`+1
i | ≤ 1, i = 1, . . . , n. Now taking into account of the limits

in (32)-(35) and lim`→∞ f` − f`+1 = 0, we derive that

lim
`→∞

|x`i | − v`+1
i x`i = 0, i = 1, 2, . . . , n,

which indicates that

lim
`→∞

|v`i` − v`+1
i`
||x`i` | = lim

`→∞
||x`i` | − v`+1

i`
x`i` | = 0, ∀ i` ∈ supp(x`), (36)

Since Assumption (31) holds, we must have lim`→∞ |v`i` − v`+1
i`
| = 0, ∀ i` ∈ supp(x`), which

combining (34) yields lim`→∞ |w`
i`
− w`+1

i`
| = 0, ∀ i` ∈ supp(x`). This completes our proof. �

The next result says that the support set at x` is identified by our index set T `0 for sufficiently
large `.

Lemma 4.3 The following results hold.

(i) For all sufficiently large index `, we have supp(x`) = T `0 .

(ii) lim`→∞ ‖x` − x`+1‖ = 0.

Proof. (i) We are going to establish three facts in order to prove the claim in (i). They are:
For sufficiently large `, we must have

supp(x`) ⊆ T `−1
0 and supp(x`) ⊆ T `0 ,

and the whole sequence {γ`} is bounded. We proved one by one.

Suppose there exists a subsequence {`j} such that supp(x`j ) 6⊆ T
`j−1
0 . There exists a sub-

subsequence of {`j} (for simplicity, we still denote it as {`j}) such that there exists an infinite

index sequence {i`j} such that i`j ∈ supp(x`j ), but i`j 6∈ T `j−1
0 . For notational simplicity, denote

i := i`j . According to the update rule (27), we have

w
`j
i = ε1 + θ`j−1 +

1

|x`j−1
i |+ ε2

→ ∞ (because θ`j−1 →∞).

This leads to the following contradiction:

∞ = lim
`j→∞

µτw
`j
i ≤ lim

`j→∞
µ`j‖w

`j ◦ x`j‖ ≤ lim
`j→∞

f(x`j , µ`j ,w
`j ) ≤ 1

2
‖b‖2. (37)

Therefore, we must have

supp(x`) ⊆ T `−1
0 (38)

for sufficiently large `.
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We now prove the sequence {γ`} is bounded. Because of (38) and by the update rule (27),
we have for i` ∈ supp(x`), w`

i`
= γ`−1 for all ` sufficiently large. Same reasoning as in (37), we

can claim that the sequence {γ`−1} is bounded, which also means the boundedness of {γ`}.
Finally, we suppose that there exits a subsequence {`j} such that supp(x`j ) 6⊆ T

`j
0 . As

reasoning in the first case, there exists an infinite index sequence {i`j} such that i`j ∈ supp(x`j ),

but not in T
`j
0 . Similarly, denote i := i`j . According to the update rule (27), we have

w
`j+1
i = ε1 + θ`j +

1

|x`ji |+ ε2
→ ∞ (because θ`j →∞).

In the meantime, because of the established fact (38), we have i ∈ T `j−1
0 , hence w

`j
i = γ`j−1,

which is bounded. Therefore (
w
`j+1
i − w

`j
i

)
→ ∞,

which contradicts Lemma 4.2(ii) on the index set supp(x`). Hence, we must have

supp(x`) ⊆ T `0 (39)

for sufficiently large `.
By the definition of T `0 , its size equals the size of supp(x`). It follows from (39), we must

have supp(x`) = T `0 for sufficiently large `.

(ii) We note that γ` = ε1 + θ`γ
`
Φ. Since {γ`} is bounded and θ` →∞, we must have γ`Φ → 0

as ` → ∞. By the definition of γ`Φ, we can only have the following cases. Case 1: h` → 0; and
Case 2:

h0 := lim inf
`→∞

|h`
j`1
| > 0 and lim

`→∞
h`i = 0, ∀ i 6= j`1,

where we use j1 to denote the index of the first largest absolute value of the elements in h`

(Note: j1 should depend on `, for simplicity we drop the dependence). Case 1 is what the result
claims. Now we prove that Case 2 is impossible.

Performing the inner product on both sides of (28) with x`+1 and using the property of v`+1,
we have

〈Φx`+1, Φx`+1 − b〉+ µ`+1‖w`+1 ◦ x`+1‖1 = 0.

We then have

µ`‖w` ◦ x`‖1 − µ`−1‖w`−1 ◦ x`−1‖1
= −〈Φx`, Φx` − b〉+ 〈Φx`−1, Φx`−1 − b〉
= 〈Φx`−1 − Φx`,Φx`−1 + Φx`〉+ 〈Φx` − Φx`−1, b〉.

The limit in (32), the boundedness of {x`} (proved in Lemma 4.2(i)), and lim`→∞ µ` = µ lead
to

0 = lim
`→∞

(
µ`‖w` ◦ x`‖1 − µ`−1‖w`−1 ◦ x`−1‖1

)
= µ lim

`→∞

(
‖w` ◦ x`‖1 − ‖w`−1 ◦ x`−1‖1

)
.

Since µ > 0,

lim
`→∞

‖w` ◦ x`‖1 − ‖w`−1 ◦ x`−1‖1 = 0. (40)

We note that we have established in (i) that supp(x`) = T `0 and in (39) that supp(x`) ⊆ T `−1
0

for all sufficiently large `. We therefore have

supp(x`) = T `0 ⊆ supp(x`−1) = T `−1
0 ⊆ supp(x`−2) = T `−2

0
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for all sufficiently large `. Since j`1 is the first index in T `0 we must have

j`1 ∈ T `−1
0 ⊆ T `−2

0

for all sufficiently large `. Those facts will be used in the following proof, where for simplicity
we denote j1 := j`1 and T := supp(x`−1). It follows that

lim
`→∞

∣∣∣‖w` ◦ x`‖1 − ‖w`−1 ◦ x`−1‖1
∣∣∣

= lim
`→∞

∣∣∣w`
j1 |x

`
j1 | − w`−1

j1
|x`−1
j1
|+
∑
i 6=j1

(w`
i |x`i | − w`−1

i |x
`−1
i |)

∣∣∣
≥ lim

`→∞

(∣∣∣w`
j1 |x

`
j1 | − w`−1

j1
|x`−1
j1
|
∣∣∣− ∑

i( 6=j1)∈T

∣∣∣w`
i |x`i | − w`−1

i |x
`−1
i |

∣∣∣−∑
i/∈T

w`
i |x`i |

)
= lim

`→∞

(
|γ`−1x

`
j1 − γ`−2x

`−1
j1
| −

∑
i(6=j1)∈T

|γ`−1x
`
i − γ`−2x

`−1
i | −

∑
i/∈T

w`
i |x`i |

)
≥ lim

`→∞

(
|γ`−1h

`
j1 | − |(γ`−1 − γ`−2)x`−1

j1
| −

∑
i( 6=j1)∈T

|γ`−1x
`
i − γ`−2x

`−1
i | −

∑
i/∈T

w`
i |x`i − x`−1

i |
)

= lim
`→∞

∣∣∣γ`−1h
`
j1

∣∣∣ ≥ ε1|h0| > 0,

which contradicts the established fact (40). Here, the second equality follows by the facts that
for sufficiently large ` and all i ∈ T , it holds i ∈ T = T `−1

0 , w`
i = γ`−1, and i ∈ T ⊆ T `−2

0 ,
w`−1
i = γ`−2 from the definition of w`, and lim`→∞ |v`−1

i −v`i | = 0; the last equality follows from
lim`→∞ γ`−1 − γ`−2 = 0 and lim`→∞ x

`
i − x

`−1
i = lim`→∞ h

`
i = 0, for i 6= j`1. This contradiction

means that Case 1 holds, which is the claim in the result. �

We can even make a stronger claim based on the result in Lemma 4.3(ii). Assume that x∞

is an isolated limit of {x`}. It then follows from Moré and Sorensen [28] (also see [24, Prop. 7])
that the whole sequence {x`} converges to x∞. The following result, which would be much easier
to prove for x∞ being isolated, concerns any accumulation point of the whole sequence.

Theorem 4.4 Suppose the condition (31) holds and µ > 0. Then we have the following results.

(i) There exists a support set Γ ⊂ {1, 2, · · · , n} such that

supp(x`) = T `0 = Γ for all sufficiently large `.

(ii) Let {x`j} be any converging subsequence with its limit denoted as x∞. Then x∞ =
(x∞Γ ; x∞Γc) with

x∞Γ = argmin
y∈R|Γ|

1

2
‖ΦΓy − b‖2 + γ∞µ‖y‖1 and x∞Γc = 0,

where ΦΓ consists of columns in Φ indexed by Γ, and

γ∞ = lim
`j→∞

γ`j =
‖Φ>Γ (Φx∞ − b)‖1

µ|Γ|
.

Proof. (i) It is sufficient to prove that supp(x`) = supp(x`+1) for all sufficiently large `.
Suppose it is not true, then there exists a subsequence {`j} such that supp(x`j ) 6= supp(x`j+1).
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Without loss of generality, we assume that there exists an infinite index sequence {i`j} such that
i`j ∈ supp(x`j ), but not in supp(x`j+1). With Lemma 4.3(ii), we obtain that

0 = lim
`j→∞

‖x`j − x`j+1‖ ≥ lim
`j→∞

|x`j
i`j
− x`j+1

i`j
| = lim

`j→∞
|x`j
i`j
| ≥ τ > 0.

This contradiction establishes (i), noting the fact supp(x`) = T `0 that has been established in
Lemma 4.3(i).

(ii) In view of the result in (i), the weight vector w in (27) is updated by (when ` is sufficiently
large)

w`+1
i =

{
γ`, i ∈ Γ
ε1 + θ` + 1

ε2
, i ∈ Γc.

(41)

The first order optimality condition (28) at x`+1 with the additional information that supp(x`+1) =
Γ implies

0 = Φ>Γ (ΦΓx
`+1
Γ − b) + µ`+1γ`v

`+1
Γ

0 = Φ>Γc(ΦΓx
`+1
Γ − b) + µ`+1w`+1

Γc ◦ v`+1
Γc

0 = x`+1
Γc ,

(42)

where (and hereafter) x`+1
Γ denotes the subvector of x`+1 indexed by Γ. By (41), w`+1

i → ∞,

for ∀ i ∈ Γc, which implies v`+1
i → 0, ∀ i ∈ Γc.

Now we compute the convergence on the subsequence {x`j}. From the first equation in (42)
for sufficient large `j , we have

γ`j = |γ`j | =
‖Φ>Γ (ΦΓx

`j+1
Γ − b)‖1

µ`j+1‖v
`j+1
Γ ‖1

=
‖Φ>Γ (ΦΓx

`j+1
Γ − b)‖1

µ`j+1|Γ|
−→
‖Φ>Γ (Φx∞ − b)‖1

µ|Γ|
:= γ∞,

Taking the limit of the first equation in (42), we get

0 = Φ>Γ (ΦΓx
∞
Γ − b) + µγ∞v∞Γ , (43)

where v∞ is the limit of v
`j+1
i on the support i ∈ Γ (the limit exists because of (28)). Dividing

the both sides of the second equation in (42) by ‖w`+1
Γ ‖ (which goes to ∞), using the fact that

v
`j+1
i → 0 for i ∈ Γc, and taking the limit, we have

0 = 0>Γc(ΦΓx
∞
Γ − b) = lim

`j→∞

{
Φ>Γc

‖w`j+1
Γc ‖

(ΦΓx
`j+1
Γ − b) + µ`j+1

w
`j+1
Γc

‖w`j+1
Γc ‖

◦ v
`j+1
Γc

}
. (44)

where 0 is the zero matrix. The equations in (43) and (44) are actually the optimality conditions
for the following optimization problem

x∞Γ ∈ argmin
y∈R|Γ|

1

2
‖ΦΓy − b‖2 + γ∞µ‖y‖1, x∞Γc = 0.

Thus, we complete the whole proof. �

5 Numerical Experiments

In this section, we will report some numerical comparison between our proposed MIRL1 algorithm
and some of the latest algorithms in compressed sensing. We will test the exact recovery y = Φx
by utilizing the sensing matrix Φ which is chosen as in [35]. More specifically, two types of
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sensing matrices of Φ = [Φ1, · · · ,Φn] ∈ Rm×n will be generated, namely, random Gaussian
matrix and random partial discrete cosine transform (DCT) matrix:

Gaussian: Φj
i.i.d.∼ N (0,m−1Im), j = 1, 2, . . . , n,

DCT: Φij = m−1/2 cos(2π(j − 1)ψi), i = 1, 2, · · · ,m, j = 1, 2, . . . , n,

where ψ ∈ Rm i.i.d.∼ U([0, 1]m) whose components are uniformly and independently sampled from
[0, 1]. We generate the ’true’ original signal and the measurement vector b by the following
pseudo Matlab codes:

xorig = zeros(n, 1), Γ = randperm(n), xorig(Γ(1 : k)) = randn(k, 1),

where k is the sparsity of the original signal xorig. To remove the possibility of xorig containing
too many elements of small magnitude, we add 0.01 to each none zero entry:

xorig = xorig + 0.01 ∗ sign(xorig), b = Φxorig.

For the convenience of comparison, we denote by x the signal which is to be recovered by our
algorithms. All the experiments are carried out on a CPU 3.2GHz RMA 4.0GB desktop.

5.1 Interpretation for Parameters

The stopping criterion used in Step 2 of MIRL1 algorithm is

‖x` − x`+1‖
max{1, ‖x`‖}

≤ 10−2.

The stopping criterion for YALL1 solver is tol = 10−4. We will utilize the default Matlab package
linsolve in Step 3. For initialization, we always start with x0 = 0 and the initialized weight
w1 = (1, 1, · · · , 1)>, and the remaining parameters are set as ε1 = 10−10, θ0 = 0.1µ1m/n, α1 =
1.005, α0 = 0.2, µ1 = 0.01‖Φ>b‖∞. For x`, we sort its components in decreasing magnitude:
|x`j1 | ≥ |x

`
j2
| ≥ · · · ≥ |x`jn |. Instead of fixing ε2 in updating w in (27), we use ε`2 as suggested by

[14]:

ε`2 = max{10−3, |x`j0 |}, and j0 = d m

4 log(n/m)
e. (45)

A crucial quantity in defining T `0 is the number of nonzero entries in x`. In order to avoid
including too many such elements because x` tends to have many elements of small magnitude,
we propose to use

k`(r) := min
{
s :

s∑
i=1

|x`ji | ≥ r‖x
`‖1
}
, (46)

where r ∈ (0, 1) controls the total percentage of the contribution of the first s largest elements
(in terms of the magnitude) in x` to its `1 norm ‖x`‖1. Throughout the computation, r is chosen
by (we also tried other values and this value seemed to give a balanced results in all tests).

r0 =

{
1

ln(n/m) , ln(n/m) > 1,

0.7, otherwise .

Next, we highlight the benefit of Step 3 in MIRL1, which is justified by our main result
Thm. 4.4(ii). We call this step the refinement step. In the test reported in Table 3, we run 100
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n k = d0.01ne k = d0.05ne
‖x− xorig‖ cpu Time (s) ‖x− xorig‖ cpu Time (s)

1000 1.94e-03 | 1.73e-15 0.040 | 0.034 6.16e-03 | 5.06e-15 0.049 | 0.047
2000 1.73e-03 | 3.46e-15 0.241 | 0.232 8.39e-03 | 1.00e-14 0.300 | 0.311
3000 2.15e-03 | 4.97e-15 0.716 | 0.714 9.19e-03 | 1.33e-14 0.967 | 0.961
4000 2.35e-03 | 5.97e-15 1.167 | 1.169 1.08e-02 | 1.81e-14 1.556 | 1.560
5000 2.31e-03 | 7.37e-15 1.812 | 1.813 1.33e-02 | 2.22e-14 2.341 | 2.357
6000 3.68e-03 | 8.42e-15 2.495 | 2.500 1.26e-02 | 2.62e-14 3.443 | 3.476
7000 3.24e-03 | 1.04e-14 3.456 | 3.459 1.58e-02 | 3.06e-14 4.926 | 4.991
8000 3.46e-03 | 1.29e-14 5.088 | 5.114 1.52e-02 | 3.39e-14 6.355 | 6.482
9000 4.08e-03 | 1.44e-14 5.853 | 5.848 1.62e-02 | 4.02e-14 8.360 | 8.665
10000 2.78e-03 | 1.56e-14 7.660 | 7.696 1.59e-02 | 4.33e-14 10.77 | 11.36

Table 3: Results of MIRL1 with and without the refinement step. The first column under each
measurement column of ‖x−xorig‖ and cpu Time is without the refinement step and the second
column is with the refinement step.

independent trials from n = 1000 to n = 10000 with m = n/4, and k = d0.01ne and d0.05ne,
respectively. We report the results by MIRL1 with and without the refinement step. The left
column underneath ‖x− xorig‖ and Time in Table 3 is for without the refinement step and the
right column is after the refinement step. One can easily observe that MIRL1 with the refinement
returns far more accurate solutions than it does without the refinement step. Moreover, the cpu

time (in seconds) is almost the same.

To finish this subsection, we would like to emphasize that the refinement step is also useful
for all other methods tested in this paper, but only in the situation when they were able to
obtain the correct support set. In fact, if one method gets a wrong support set, this refinement
step would lead to a far worse solution. We did test the idea of including this refinement step in
all other methods. Our finding is that this refinement step failed to make a difference in terms
of the success rate of recovery explained in the next subsection, over 100 random runs for each
test problem. Because of this, we will not include this refinement step in the other methods in
the subsequent comparisons.

5.2 Comparison of Different Algorithms

We will compare our method MIRL1 with ADMML1 [4], IRL1 [14], IRLSLq [26], DCAL1−2 [35] and two
greedy algorithms CoSaMP [30] and SP [15], which try to solve the following problems respectively,

ADMML1 : minx
1

2
‖Φx− b‖2 + µ‖x‖1;

IRL1 : minx

n∑
i=1

log(|xi|+ ε), s.t. Φx = b;

IRLSLq : minx
1

2
‖Φx− b‖2 + µ‖x‖qq;

DCAL1−2 : minx
1

2
‖Φx− b‖2 + µ(‖x‖1 − ‖x‖).

The MATLAB codes for ADMML1, IRLSLq, DCAL1−2, CoSaMP and SP can be downloaded from the
respective authors’ websites. Similar to [35], we also take advantage of YALL1 solver to solve
the weighted `1 minimization subproblems of IRL1 instead of the default `1-MAGIC. Moreover in
IRL1, the smoothing parameter ε is adaptively updated as introduced in [14], i.e., (45), and the
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outer stopping criterion is the same as that of MIRL1. In particular, we used the following values
in Table 4 for those methods and the remaining parameters are set to their default values.

IRL1 tol = 10−5 CoSaMP tol = 10−5,maxit = 1000
IRLSLq maxit = 1000, q = 0.5, tol = 10−5 SP tol = 10−5,maxit = 1000
ADMML1 λ = 10−5, ρ = 10−5, α = 1,

εabs = 10−7, εrel = 10−5

Table 4: Values of some parameters in different algorithms.

(a) Gaussian and Partial DCT matrix. We begin with running 100 independent trials
and recording the corresponding success rates at sparsity levels from 10 to 40. It is well known
that greedy algorithms CoSaMP and SP would perform relatively well when the true sparsity
k = ‖xorig‖0 is known in advance. From Figure 1, one can observe that MIRL1 behaves the best
for both sensing matrices, followed by IRLSLq and IRL1 which both are better than DCAL1−2, SP
and CoSaMP. It appears that ADMML1 came last.
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(b) Partial DCT Matrix

Figure 1: Success rates using sensing matrices. m = 64, n = 256, 10 ≤ k ≤ 40.

When the true signal is relatively sparse, for instance k = d0.01ne, it is known that the
greedy algorithms CoSaMP and SP have their exceptional advantages compared with regularized
algorithms. However, as the signal becoming less sparse, they do not perform as well as, even
much worse than the others. Therefore in the remaining test, we will not include these two
methods any more. Now let m = n/4, k = d0.01ne, d0.05ne, and d0.08ne for different dimension
n. We run 100 independent trials for Gaussian matrices and record the average errors ‖Φx− b‖,
‖x− xorig‖ and cpu time. As indicated in Figure 2, MIRL1 tends to outperform others in terms
of the smallest recovered errors and computing time. When k = d0.01ne, DCAL1−2 and ADMML1

behave much better than IRL1 and IRLSLq. However, when k = d0.08ne, DCAL1−2 and ADMML1

fail to recover the signal because the ‖x− xorig‖ are larger than 1 when n ≥ 1500, see Table 5.

(b) Toeplitz Correlation matrix. Next, we test examples related to the Toeplitz Corre-
lation matrix which is widely used in statistics, and recently sparse property of variables under
such matrices has drawn large amounts of attention, see, i.e., [33]. In this simulation, each row
φi(i = 1, · · · ,m) of the design matrix Φ is generated from N (0,Σ) distribution with Toeplitz
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Figure 2: Recovered errors and cpu time. Data shown in the first and second row is generated
with k = d0.01ne and d0.05ne respectively.

Correlation matrix Σij = 2−|i−j|. Then, each row of Φ possesses the following format

φi
i.i.d.∼ Σ1/2N (0, In), i = 1, 2, . . . ,m.

We still run 100 independent trials for this test, and record the data (in left part of Figure 3)
generated by the 5 algorithms in terms of their success rate for the instances whose sparsity
ranges from 10 to 40. Clearly, MIRL1 behaves the best in such circumstance, followed by IRLSLq,
IRL1 and DCAL1−2 which all perform better than ADMML1.

(c) Over-sampled partial DCT matrix. Our final test is on the over-sampled partial
DCT matrices whose definition is:

Φij = m−1/2 cos(2π(j − 1)ψi/F ), i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

where ψ ∈ Rm i.i.d.∼ U([0, 1]m) and the positive integer F is the refinement factor. Similarly to
[35], the ’true’ signal xorig is generated to satisfy

min
i,j∈supp(xorig)

|i− j| ≥ 2F.

We again run 100 independent trials for this test with F = 10, and plot in right part of
Figure 3 the performance of the 5 algorithms in terms of their success rate for the instances
whose sparsity ranges from 10 to 36. It can be clearly seen that DCAL1−2 performs exceptionally
well indeed, followed by MIRL1, ADMML1 and IRL1 with almost same performance. Moreover,
IRLSLq behaves not as strongly as others.

6 Conclusion

In this paper, we studied a novel weighted `1-minimization, which makes use of the null space
of the observation matrix. Our main result shows that the tight RIC bound on high order
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‖x− xorig‖ cpu Time

n MIRL1 IRL1 DCAL1−2 IRLSLq ADMML1 MIRL1 IRL1 DCAL1−2 IRLSLq ADMML1

1000 7.6e-15 5.3e-4 9.3e-1 6.8e-5 2.0e+0 0.10 0.53 2.60 0.39 1.17
1500 1.0e-14 6.0e-4 1.7e+0 1.7e-4 2.8e+0 0.24 1.20 6.33 1.06 1.88
2000 1.4e-14 7.9e-4 2.0e+0 1.8e-4 3.2e+0 0.64 1.78 16.43 1.95 3.33
2500 1.7e-14 8.8e-4 2.7e+0 2.0e-4 3.7e+0 1.35 2.66 28.27 3.46 5.36
3000 2.1e-14 9.3e-4 2.6e+0 2.1e-4 3.6e+0 2.14 3.83 40.98 5.26 7.75
3500 2.4e-14 1.0e-3 3.1e+0 1.4e-4 4.2e+0 2.62 4.34 52.97 7.84 9.54
4000 2.7e-14 1.3e-3 3.6e+0 2.3e-4 4.6e+0 3.62 5.41 75.31 10.93 12.68

Table 5: Comparison of MIRL1, IRL1, DCAL1−2 and IRLSLq when k = d0.08ne.
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Figure 3: Success rates using other matrices. m = 100, n = 2000.

δtk (t > 1) by Cai and Zhang [10] for the `1-minimization can be relaxed when the weighted
scheme is used. The significance of this result is that there is a way to improve the Cai-Zhang
bound via a weighted scheme. We proposed one such scheme. We hope that this research will
stimulate alternatives (e.g., less expensive ones) to improve this type of the RIC bound. The
main drawback of our scheme is that the optimization problem on the null space is as hard
to solve as the original `0-minimization problem. We overcome this drawback by proposing a
novel updating rule for the weight vector, leading to the reweighted `1-minimization scheme.
The new rule is motivated by the constant γΦ used in our RIC bound. We proved that under
reasonable conditions the reweighted method is capable of identifying the correct support of the
sparse solution. This has led to the refinement step, which solves the weighted `1 minimization
on a reduced subspace. Numerical comparison with other leading `1 solvers demonstrated the
effectiveness of our method.

The proof techniques developed for the high order δtk can actually be extended to study
new RIC bounds for δk itself. We did not include this part mainly because we intend to focus
exclusively on the RIC bounds of the Cai-Zhang type (3). We will explore this in separate
research.
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