
A cycle-based evolutionary algorithm for the fixed-charge

capacitated multi-commodity network design problem

Dimitris C. Paraskevopoulos

School of Management, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Tolga Bektaş

Southampton Business School, Centre for Operational Research, Management Science and

Information Systems (CORMSIS), University of Southampton, Southampton, SO17 1BJ,

UK

Teodor Gabriel Crainic

Département Management et Technologie, École des Sciences de la Gestion,

Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT), Université du Québec à Montréal, C.P. 8888, succ. Centre-ville, Montréal

QC Canada H3C 3P8

Chris N. Potts

Mathematical Sciences, CORMSIS, University of Southampton, Southampton, SO17 1BJ,
UK

Abstract

This paper presents an evolutionary algorithm for the fixed-charge multi-

commodity network design problem (MCNDP), which concerns routing mul-

tiple commodities from origins to destinations by designing a network through

selecting arcs, with an objective of minimizing the fixed costs of the selected

arcs plus the variable costs of the flows on each arc. The proposed algorithm

evolves a pool of solutions using principles of scatter search, interlinked with

an iterated local search as an improvement method. New cycle-based neigh-

bourhood operators are presented which enable complete or partial re-routing

of multiple commodities. An efficient perturbation strategy, inspired by ejec-

tion chains, is introduced to perform local compound cycle-based moves to

explore different parts of the solution space. The algorithm also allows infea-

sible solutions violating arc capacities while forming the “ejection cycles”, and

subsequently restores feasibility by systematically applying correction moves.

Email addresses: d.paraskevopoulos@bath.ac.uk (Dimitris C. Paraskevopoulos),
t.bektas@soton.ac.uk (Tolga Bektaş), TeodorGabriel.Crainic@cirrelt.ca (Teodor
Gabriel Crainic), c.n.potts@soton.ac.uk (Chris N. Potts)

Preprint submitted to European Journal of Operational Research December 29, 2015

Computational experiments on benchmark MCNDP instances show that the

proposed solution method consistently produces high-quality solutions in rea-

sonable computational times.

Keywords: multi-commodity network design, scatter search, evolutionary

algorithms, ejection chains, iterated local search

1. Introduction

The fixed-charge capacitated multi-commodity network design problem

(MCNDP) consists of designing a network on a given graph by selecting arcs

to route a given set of commodities between origin-destination pairs. Each

arc has a predefined capacity specifying the maximum flow that the arc can

accommodate. Also, associated with each arc are fixed and variable costs,

where the fixed cost is incurred only if the arc is selected, and the variable

cost is a cost per unit of flow along the arc. Each commodity has an origin

and a destination node and the amount to be transported. The objective is

to minimize the total cost of establishing the arcs and routing the flows.

The MCNDP has attracted much attention in the literature due to both its

complexity (the problem is NP-hard in the strong sense), and a wide variety

of applications in the areas of telecommunications, logistics, production and

transportation systems (Balakrishnan et al., 1997; Magnanti and Wong, 1986;

Minoux, 1986). Despite the significant efforts devoted to the development

of exact methodologies for the MCNDP (Crainic et al., 2001; Hewitt et al.,

2010), the literature still favours heuristic approaches when large-scale prob-

lem instances are involved. One of the most successful local search strategies

for the MCNDP is proposed by Ghamlouche et al. (2003), where new cycle-

based neighbourhood operators are incorporated in a tabu search framework.

The cycle-based operators are subsequently used within a path-relinking algo-

rithm (Ghamlouche et al., 2004), a multilevel cooperative framework (Crainic

et al., 2006), and a scatter search (SS) (Crainic and Gendreau, 2007). In the

latter paper, the authors conclude that the proposed SS failed to meet their

expectations and further research is needed to realize the full potential of SS.

Inspired and motivated by the advances in the heuristic approaches for

the MCNDP, this paper contributes to the existing body of work by: (i)

proposing an efficient iterated local search (ILS) that utilizes new and en-

hanced cycle-based neighbourhood operators, long and short term memory

structures, and an innovative perturbation strategy based on ejection chains

(Glover, 1996) that aims at guiding the search towards unexplored regions of

the solution space; (ii) introducing an efficient SS that considers the search

history and “solvency-based” measures to produce offspring; (iii) presenting

2

results of computational experiments conducted on benchmark instances us-

ing an algorithm incorporating the various elements described above. The

majority of the heuristics for the MCNDP utilize a trajectory-based or an

evolutionary framework to select arcs for inclusion in the design, and subse-

quently call a commercial optimizer (e.g., CPLEX) to solve the corresponding

flow subproblem. As the flow subproblems become larger, the solution time

for repeatedly finding minimum cost flows might become significant, even

though linear programming optimizers are relatively efficient. Towards this

end, we call the linear programming (LP) solver as few times as possible in

the proposed algorithm in order to reduce its computational requirements.

The remainder of this paper is organized as follows. Section 2 provides a

brief review of the recent literature on the MCNDP. Section 3 presents our

evolutionary algorithm and all of its components, namely the initialization

phase, the SS, and the ILS. In Section 4, we describe details of our compu-

tational experiments, and we also present results of applying the proposed

algorithm to benchmark MCNDP instances from the literature. Conclusions

are given in Section 5, where future research directions are also presented.

2. Literature

A number of efficient algorithms have appeared in the literature to address

the inherent complexity of solving the MCNDP. In this section, we provide

a brief review of the available methods but focus on heuristic, as opposed to

exact, solution algorithms for reasons stated earlier.

Crainic et al. (2000) propose a simplex-based tabu search method for the

MCNDP using a path-flow based formulation of the problem. Their method

combines column generation with pivot-like moves of single commodity flows

to define the path flow variables. In a similar fashion, Ghamlouche et al. (2003)

describe cycle-based neighbourhoods for use in metaheuristics aimed at solv-

ing MCNDPs. The main idea of the cycle-based local moves is to redirect

commodity flows around cycles in order to remove existing arcs from the net-

work and replace them with new arcs. They use the proposed neighbourhood

structures in a tabu search algorithm, where a commodity flow subproblem is

solved to optimality at each iteration.

Ghamlouche et al. (2004) propose an evolutionary algorithm for the MC-

NDP. Their solution framework is based on path relinking, in which cycle-

based neighbourhoods are used to generate an elite candidate set of solutions

in a tabu search algorithm and for moving from the initial to the guiding

solution. When updating the pool of solutions, the dissimilarity of solutions

is considered as an additional component in calculating the solution value.

Alvarez et al. (2005) describe an SS algorithm for the MCNDP. They use

3

GRASP, originally proposed by Feo and Resende (1995), to produce a diversi-

fied initial set of solutions. Each commodity path is subject to an improvement

process. The solutions are combined by choosing the best path for each com-

modity among the solutions that are being combined. A feasibility restoration

mechanism is also available for solutions that are infeasible. In contrast to

the recombination process of Alvarez et al. (2005), our SS does not consider

commodity paths to build a solution; instead, independent arcs are combined

to create offspring. We believe that the latter enhances the SS algorithm’s

capabilities, as more combinations can occur when arcs instead of paths are

combined together, leading to a rich pool of offspring.

A parallel cooperative strategy is described by Crainic and Gendreau

(2002) using tabu search and various communication strategies. In a simi-

lar fashion, Crainic et al. (2006) propose a multilevel cooperative search on

the basis of local interactions among cooperative searches and controlled in-

formation gathering and diffusion. The focus of their algorithm is on the

specification of the problem instance solved at each level and the definition of

the cooperation operators.

Katayama et al. (2009) propose a column and row generation heuristic for

solving the MCNDP. The authors relax the arcs’ capacity constraints, while a

column and row generation technique is developed to solve the relaxed prob-

lem. Using similar ideas, Yaghini et al. (2013) present a hybrid simulated

annealing (SA) and column generation (CG) algorithm for solving the MC-

NDP. The SA is used to define the open and closed arcs, wherein the flow

subproblem is solved via CG.

A local branching technique for the MCNDP is proposed by Rodŕıguez-

Mart́ın and Salazar-González (2010). Even though the method, originally pro-

posed by Fischetti and Lodi (2003), is exact by nature, high quality heuristic

solutions can be produced using an MIP solver as a “black box”. A solution

framework that employs a combination of mathematical programming algo-

rithms and heuristic search techniques is introduced by Hewitt et al. (2010).

Their methodology uses very large neighbourhood search in combination with

an IP solver on an arc-based formulation of the MCNDP, and a linear program-

ming relaxation of the path-based formulation using cuts discovered during

the neighbourhood search. A follow-up study by Hewitt et al. (2012) intro-

duces a generic branch-and-price guided algorithm for integer programs with

an application to the MCNDP.

3. Solution Methodology

In this section, we first present a formal definition of the problem including

the notation that will be used in the rest of the paper and then describe in

4

detail the components of the main algorithm.

3.1. Problem definition

The MCNDP is defined on a graph G = (N ,A), where N is the set of

nodes and A is the set of arcs. Each arc (i, j) ∈ A has an associated fixed

cost fij that is incurred if it is selected for inclusion in the network, has a cost

per unit of flow cij, and has a capacity uij. A set of commodities denoted by

P is given, where each commodity has an origin, a destination, and a quantity

to be shipped from origin to destination. Problems with more than one origin

or destination per commodity can be modelled by splitting commodities (see

Holmberg and Yuan, 2000).

The goal of the problem is to select a subset of arcs that are to be included

in the final design of the network along with the commodity flows on these

arcs, to minimize the total cost of the selected arcs and the flow distribution on

the resulting network. For simplicity, we will refer to the arcs that are included

in the final design of the network as open arcs; otherwise, the arcs should be

considered as closed. Binary variables yij are used, where yij = 1 if the arc

(i, j) ∈ A is open, and yij = 0 otherwise. The flow on each arc (i, j) ∈ A that

is used for shipping each commodity p ∈ P from its origin to its destination

is denoted by xp
ij. Conservation of flow constraints must be satisfied at each

node, and there are capacity constraints of the form
∑

p∈P xp
ij ≤ uij for each

(i, j) ∈ A. The cost f(s) of a solution s that is defined by variables xp
ij and

yij for (i, j) ∈ A and p ∈ P is computed using

f(s) =
∑

(i,j)∈A

∑
p∈P

cijx
p
ij +

∑
(i,j)∈A

fijyij. (1)

We adopt the convention that f(s) =∞ if solution s is infeasible.

Two types of mathematical formulations for the problem appear in the

literature; an arc-based and a path-based formulation. We refer to Gendron

et al. (1998), Frangioni and Gendron (2001) and Hewitt et al. (2010) for details

of these mathematical formulations.

3.2. Evolutionary algorithm

Our proposed solution methodology is an evolutionary algorithm that

evolves a population of solutions using the principles of SS and applies ILS

(Lourenço et al., 2002) as an improvement method. Following the basic tem-

plate of the SS framework, our solution approach is composed of three distinct

phases: (i) an Initialization phase where a population of good and diverse so-

lutions is produced and a Reference Set (set R) is initialized; (ii) a Scatter

Search phase where a recombination process takes place to produce offspring;

5

and (iii) an Education phase where these offspring (hosted in set C) are “ed-

ucated” by attempting to improve their quality via the proposed ILS. Com-

putational time is used as the termination criterion. The framework is given

in Algorithm 1.

Algorithm 1: Evolutionary Algorithm

Input: λ (initial population size), µ (Reference Set size), where λ ≥ µ,

δ (number of local search iterations without an improvement),

κ (Candidate Set size), ϑmax (number of LP solver calls within

local search without an improvement)

Output: R, sbest ∈ R

1. Initialization phase

R← ConstructionHeur(λ, µ);

while termination conditions do
2. Scatter Search phase

C ← SolutionCombination(κ, µ);

3. Education phase

for individual s of C do
s′ ← ILS(s, δ, ϑmax);

UpdateRefSet(R, s′);

Figure 1 illustrates the proposed evolutionary algorithm in a flow chart, the

different components making up different process steps, as they are described

in the following. The Scatter Search is composed of the Solution Combination

method and the pool of offspring, while the Iterted Local Search (described in

Section 3.6) consists of the Local Search and the Ejection Cycles. Evaluation

of the solutions is performed by the Reference Set Update rationale (described

in Section 3.5.1).

Figure 1: A flow chart of the proposed Evolutionary Algorithm

Details of the three phases of Algorithm 1 are explained in the subsections

6

below. Prior to this, however, we describe a flow routing procedure that is

used in each phase of our algorithm.

3.3. Routing/re-routing procedure

In the Initialization phase of Algorithm 1, solutions are created by suc-

cessively adding flow to an existing partial solution by selecting a commodity

and routing its required flow from origin to destination. A similar solution

creation method is used in some iterations of the Scatter Search phase where

some open arcs are selected by the solution recombination method but more

are needed to create a feasible flow. Finally, when applying Iterated Local

Search within the Education phase, re-routing of flow is applied both in the

process for creating neighbours of the current solution and in the procedure

for perturbing the current solution. In each of these phases, the routing or

re-routing is determined from the solution of a shortest path problem that is

obtained by applying Dijkstra’s algorithm. We now provide details of how

these shortest path problems are defined.

Consider a partial solution defined by yij = ȳij and xp
ij = x̄p

ij for each arc

(i, j) ∈ A and each commodity p ∈ P . Thus, ȳij = 1 for each arc (i, j) that is

open in the partial solution, uij −
∑

p∈P x̄p
ij is the remaining capacity in each

arc (i, j). The aim is to route wp units of flow of some commodity p from

node ip to node jp, for appropriately defined wp and nodes ip and jp.

There are two alternative shortest path problems that we define. For a

single-path routing, a path from ip to jp is required such that each of arc of

the path has a remaining capacity of at least wp, thereby allowing all of the

desired wp units of flow to be routed along this path. On the other hand, for

multiple-path routing, it is sufficient to find a path where each of its arcs has a

non-zero remaining capacity. For both types of routing, we define a shortest

path problem on the original graph G with a cost c̄ij for each arc (i, j) ∈ A,
for suitably defined values of c̄ij.

For single-path routing, we define for each arc (i, j) ∈ A

c̄ij =

{
wpcij + fij(1− ȳij) if wp ≤ uij −

∑
p∈P x̄p

ij,

∞ otherwise.

Thus, only arcs that can accommodate an additional wp units of flow have a

finite cost. For an arc (i, j) that can accommodate this additional flow, c̄ij is

the cost of that flow in arc (i, j) plus any additional cost of opening arc (i, j)

if it is not already open in the current partial solution.

For multiple-path routing, we similarly define for each arc (i, j) ∈ A

c̄ij =

{
min{uij −

∑
p∈P x̄p

ij, w
p}cij + fij(1− ȳij) if

∑
p∈P x̄p

ij < uij,

∞ otherwise.

7

In this case, arc (i, j) can be used for an additional min{uij −
∑

p∈P x̄p
ij, w

p}
units of flow. If this value is strictly positive, then c̄ij is the is the cost of that

flow in arc (i, j) plus any additional cost of opening arc (i, j); otherwise, arc

(i, j) cannot accommodate any additional flow and therefore the value of c̄ij
is set to infinity.

For both types of routing, Dijkstra’s algorithm is applied to find the short-

est path from node ip to node jp. If the shortest path length is not finite, then

no routing of flow is possible. Otherwise, in the case of single-path routing, a

flow augmentation process adds wp units of flow to all arcs of the shortest path

from node ip to node jp. Analogously, in the case of multiple-path routing, if

P is the shortest path from ip to jp, then min{min(i,j)∈P{uij −
∑

p∈P x̄p
ij}, wp}

units of flow are added to all arcs of P .

3.4. Initialization phase

In the Initialization phase, each iteration of the construction heuristic se-

lects an unrouted or partially routed commodity p at random. Then, a random

choice is made as to whether a single-path or multiple-path routing is to be

attempted with an equal probability for each choice.

For a single-path routing, wp is amount of flow for commodity p that is to

be routed, and ip and jp are the origin and destinations nodes for this flow. If

the shortest path computation, as described in Section 3.3, provides a solution

with a finite shortest path length, then the flow is augmented. After removing

commodity p from the set of unrouted or partially routed commodities and

updating the variables ȳij and x̄p
ij, the heuristic proceeds to the next iteration.

Otherwise, no single-path routing of the chosen commodity exists, and this

iteration is repeated using multiple-path routing.

For a multiple-path routing, wp, ip and jp are defined as above. Following

the shortest path computation described in Section 3.3, the flow is augmented

and the values of w̄p, ȳij and x̄p
ij are updated (with commodity p removed

from the list of unrouted or partially routed commodities if wp is reduced to

zero), and the heuristic proceeds to the next iteration.

The construction heuristic is applied repeatedly until λ different solutions

are created, among which µ are selected to build the Reference Set. Details

about the creation of the initial Reference Set are given in Section 3.5.1.

3.5. Scatter Search

The SS phase evolves the Reference Set of solutions using an efficient

recombination method as follows. A subset generation method selects κ so-

lutions from the Reference Set, which form the Candidate Set (CS), and a

solution combination method is then applied to produce one solution. This

procedure is repeated until 2µ offspring are produced, which is double the

8

number of parent solutions in the Reference Set. We choose µ best solutions,

in terms of the solution cost, out of the 2µ offspring to proceed to the next

phase. Other strategies were also tested, such as randomly choosing µ of 2µ

solutions, but the algorithm performs better by choosing µ best solutions.

The offspring are checked as to whether they meet the criteria to be inserted

into the Reference Set or not, before proceeding to the Education phase. In

the Education phase, ILS is used to improve the quality of each offspring,

before these offspring are checked again for insertion into the Reference Set

according to elitist criteria. These procedures are explained further in the

following subsections.

3.5.1. Reference Set

The goal of using a Reference Set R is to maintain a balance between

quality and diversity of solutions, and to avoid a premature convergence of

the algorithm. An obvious measure of the quality of a solution s is its cost f(s).

An alternative quality measure that becomes relevant after the evolutionary

process has started is the Solvency Ratio, defined by

SR(s) = neo(s)/hits(s), (2)

where hits(s) denotes the number of times that solution s has participated

in the recombination process to produce an offspring, and neo(s) denotes

the number of educated offspring of s, which is the number of times that

an offspring of s has been educated and included in R. The smaller the

Solvency Ratio, the lower the value of the particular solution s is to the

evolution process. In this way, a higher cost solution with respect to the

usual objective function f may be beneficial to the search if it produces well-

educated offspring. The purpose of this ratio is to measure and consider

the solvency performance of the solutions into the reference set, regardless

of the solution cost. We wanted it to be independent of the solution cost,

and represent clearly the solvency. It happens, lower solution costs parents

to provide very high quality and well educated offspring. Nevertheless, we

consider the solution cost when combining the solutions (see Section 3.5.2).

Our diversity measure uses the Hamming distance between pairs of so-

lutions, D(s, s′) =
∑

(i,j)∈A |ysij − ys
′

ij |, for two solutions s and s′. The total

dissimilarity for Reference Set R is then defined by

TD(R) =
∑
s,s′∈R

D(s, s′), (3)

where the sum is over all µ(µ− 1)/2 pairs of solutions in set R.

The creation of the initial Reference Set proceeds as follows. The first µ

solutions among the λ generated within the Initialization phase are inserted

9

into R. The remaining λ − µ solutions are then considered sequentially for

replacing a solution in R. Specifically, if such a solution s satisfies the con-

dition f(s) < f(sbest), where sbest is a least cost solution in R, or if there is

a solution r ∈ R for which f(s) < f(r) and D(r, sbest) < D(s, sbest), then s

is inserted into R. Otherwise, s is not included in R. When s is inserted,

solution sworst ∈ R, where sworst has the largest cost among solutions in R, is

removed from R.

At each SS iteration of the evolutionary process, 2µ offspring are generated,

and a sequence of decisions is made on whether to replace a solution in R

with the offspring under consideration. In the later stages of the evolutionary

process, this decision depends on the value of the SR obtained from (2), but

a different process is used at the start of the evolutionary process when SR

cannot be meaningfully computed. Specifically, let scand ∈ R be the candidate

for removal from the reference set R, where scand = sworst for the first two

iterations of the evolutionary process, and scand is the solution in R having

the smallest Solvency Ratio from the third iteration onwards. An offspring

s replaces scand in the Reference Set R if either f(s) < f(sbest), or if f(s) <

f(scand) and TD(R) < TD(R\{scand}∪{s}). This procedure differs from other

studies where the usual practice is always to remove the worst-cost solution

sworst from R without taking into account any effect it might have on the

evolution.

3.5.2. Solution combination method

In this section, we discuss how our proposed solution combination method

generates each offspring.

Each offspring is generated from the candidate set (CS) comprising κ so-

lutions from the Reference Set R. The solutions in CS are chosen probabilis-

tically with a bias towards promising parents as determined by their Solvency

Ratios. Specifically, the probability of a solution s being included in the can-

didate set is proportional to SR(s). In this way, a solution s with a low SR(s)

is gradually neglected, and the focus is on new solutions that produce well-

educated offspring. Because the Solvency Ratio changes while SS iterations

are being performed, the scatter search phase has a dynamic character, and

premature convergence is typically averted. Furthermore, to enable diversi-

fication, a penalty (as expressed by the term αhits(s) in equations (4) and

(5) below) is used to weaken the impact of a frequently selected parent and

thereby enable diversification.

The arcs of the solutions in CS are combined to produce an offspring. For

a given solution s, each arc (i, j) is either open if ysij = 1 or closed if ysij = 0.

We associate a value f(s) + αhits(s) with solution s, where f(s) and hits(s)

are previously defined, and α is a scaling parameter. We now introduce a

10

scoring procedure to determine whether an arc (i, j) will be open or closed in

the offspring, according to the following scores:

Opij =
∑
s∈CS

ysij
f(s) + αhits(s)

∀(i, j) ∈ A (4)

Clij =
∑
s∈CS

1− ysij
f(s) + αhits(s)

∀(i, j) ∈ A. (5)

Opij and Clij are the scores for arc (i, j) being open and closed, respectively,

and if Opij > Clij, the preferred arc status is open; otherwise its preferred

status is closed.

The preferred status of open or closed for each arc (i, j) is our starting point

for creating a new solution from the solutions in the CS. We first assume that

the open and closed arcs correspond to their preferred status, which implies

that the values of the yij variables are fixed. To determine values of the

xp
ij variables or conclude that there is no feasible solution with the fixed yij

variables, the associated capacitated multicommodity network flow problem

is solved using an LP optimizer. If a feasible solution is obtained, then this is

the offspring obtained from the candidate set (but with any open arc having

a zero flow having its status changed to closed).

If the multicommodity network flow problem is infeasible, then the off-

spring is created using similar methodology to that of the Initialization phase

as described in Section 3.4. Specifically, for each arc (i, j) with a preferred

status of open, we temporarily change the fixed cost to fij/M and the cost

per unit of flow to cij/M , where M is a large constant. With these updated

costs, the construction heuristic is applied, and the resulting solution is the

offspring obtained from the CS. The low costs associated with the arcs having

a preferred status of open encourages Dijkstra’s algorithm to find shortest

paths containing some of these arcs, which results in a large proportion of

such arcs being open in the offspring solution.

3.6. Education phase: the ILS heuristic

The µ elite offspring, chosen among the 2µ produced by the SS phase, are

individually “educated” (i.e., improved) using ILS. The components of the

ILS are shown in Algorithm 2.

The proposed ILS has two main components, namely a local search and

a perturbation strategy. The proposed local search uses new neighbourhood

operators and short term memory (represented by memory structure g⃗) to

avoid cycling. The perturbation strategy, namely Ejection Cycles, partially

modifies the current solution according to information gathered during the

search (long-term memory depicted by h⃗) in the spirit of Ejection Chains

(Glover 1996).

11

Algorithm 2: Iterated Local Search

Input: s (current offspring), δ (number of local search iterations

without an improvement), ϑmax (number of LP solver calls

without an improvement)

Output: sILSBest (the best solution found by ILS)

ϑ = 0; h⃗← 1; sILSBest ← s;

while ϑ < ϑmax do
g⃗ ← 0; iter = 0; s′ ← s;

while iter < δ do
(s′′, g⃗)← NeighbourhoodSearch(s′, g⃗);

if f(s′′) ≤ f(s) then
s← s′′; g⃗ ← 0;

else
iter = iter + 1;

s′ ← s′′;

s′ ← LPsolver(s);

if f(s′) ≥ f(sILSBest) then

s∗ ← EjectionCycles(s′ ,⃗h);

s← s∗; ϑ = ϑ+ 1;

else
ϑ = 0; s← s′; sILSBest ← s′;

3.6.1. Neighbourhoods and moves

Our ILS neighbourhood is based on the cycle-based operator, as originally

proposed by Ghamlouche et al. (2003). Their approach is to select a pair of

nodes containing a positive flow and then re-route the flows of the individual

commodities between these nodes. In this paper, we design a more efficient

and effective approach based on the notion of inefficient arcs and inefficient

chains, as described below. Further, we allow a partial re-routing of flow that

maintains flow feasibility. In contrast, Ghamlouche et al. (2003) remove all

flow between the two selected nodes, and if the new flows do not result in a

feasible solution, then a feasibility restoring routine is applied.

Consider a solution defined by the variables xp
ij and yij for each arc (i, j) ∈

A and each commodity p ∈ P . For each open arc (i, j), where yij = 1 and

xp
ij > 0 for at least one commodity p, we define the inefficiency ratio as

Iij =

∑
p∈P cijx

p
ij + fij∑

p∈P xp
ij

, (6)

which is a measure of the average cost per unit of flow that is sent along

arc (i, j). The lower the value of Iij, the more efficient we regard arc (i, j)

12

for accommodating flows. The average inefficiency ratio is defined as Ī =∑
(i,j)∈A Iijyij/

∑
(i,j)∈A yij, and we define a set of inefficient arcs as AI =

{(i, j)|yij = 1, Iij > Ī}, so that (i, j) ∈ AI if arc (i, j) has an inefficiency ratio

that is higher than the average. Our aim is to create neighbourhood moves

that remove flows from some of the inefficient arcs in set AI .

We now describe how our inefficient chains are constructed from a subset

of the inefficient arcs. First, an arc is randomly chosen from the set AI

of inefficient arcs to form a component of the first inefficient chain. If the

current partial inefficient chain extends from node i to node j, then an arc

(h, i) ∈ AI or (j, k) ∈ AI is added to the current chain (where nodes h and

k are not included in the current chain). The arc added is chosen such that

it has an inefficiency ratio that is as large as possible. Whenever an arc is

included in a chain, it is deleted from AI . The process of extending the

current chain continues until no further extension is possible. Unless AI is

empty or contains a single arc, the process iterates with a random arc chosen

to start a new chain. When the process ends, any chains containing a single

arc are discarded. The latter are likely to be included in inefficient chains

in a subsequent ILS iteration, since inefficient chains are reconstructed from

scratch at each ILS iteration.

Having constructed a set of inefficient chains, we now describe how our

neighbourhood is formed. Each neighbour is based on a sub-chain of an in-

efficient chain and is defined by the starting node i and the ending node j

of the sub-chain. If a chain comprises nodes n1 − n2 − · · · − nm, then the

(i, j) values are considered in the order (n1, n2), (n1, n3),. . . , (n1, nm), (n2, n3),

(n2, n4), . . . , (n2, nm), . . . , (nm−1, nm). On the basis of our initial computa-

tional tests, we restrict our attention to sub-chains between i and j comprising

at most ζ arcs, which helps to reduce computation times but, at the same time,

does not significantly restrict the diversity of potential neighbourhood moves.

The key aspect of our neighbourhood is the re-routing of flow from arcs

of the sub-chain to other arcs of the network. An initial random decision is

made as to whether a full re-routing or a partial re-routing is to be attempted

for this sub-chain, with an equal probability for each choice. First, a list PI

of commodities is formed that have a positive flow through at least one arc

of the sub-chain. To obtain a neighbour solution, the list of commodities is

scanned and a re-routing of flow is attempted for each commodity p of PI

in turn. Suppose that the flow enters the sub-chain at node ip, leaves the

sub-chain at node jp and the amount of flow is wp.

Dijkstra’s algorithm is applied to find a shortest path from node ip to

node jp with the goal of finding a suitable path for the re-routing of flow.

The shortest path problem is created according to the description given in

Section 3.3, but with c̄ij = ∞ for each arc between ip and jp in the selected

13

chain. For the case of full re-routing, the method for single path routing

of Section 3.3 is used, while for partial re-routing the multiple-path routing

method is used. If the resulting shortest path length is not finite, then the

flow remains unchanged in the trail solution being constructed. Otherwise the

flow is augmented as described in Section 3.3, and a corresponding reduction

is made to the flows in the sub-chain. When all of the commodities of PI are

considered, the trial solution is a potential candidate for being selected as the

neighbour defining the next move. Additional trial solutions are created by

removing the first element of list PI and repeating the process, again starting

with a random decision as to whether a full or partial re-routing is to be

attempted, until PI is empty. The completed procedure is executed for every

possible sub-chain.

Figure 2: A typical inefficient chain and flow re-routing

We illustrate the idea of re-routing flows by an example shown in Figure 2.

The example shows three commodities each with a different line pattern, and a

graph where origin node 3 and destination node 8 define a part of the inefficient

chain. The re-routing of the flows between nodes 3 and 8 causes individual

commodity flow disconnections. The flow re-routings take place independently

for each different commodity between its origin and destination nodes, i.e., the

commodity shown with the solid black line must travel from node 4 to node

7, the dotted one must travel from node 6 to node 8, and the dashed one from

node 3 to node 8. The grey lines depict possible alternative re-routing paths

within the network. All three flow re-routings, for this particular example,

result in one single neighbour.

Another important component of our ILS is a frequency-based memory fea-

ture adopted by Paraskevopoulos et al. (2012) that penalizes potential moves

that alter flows that have been changed frequently in previous iterations of

the search. A vector g⃗ of size |A| is used to store each value gij, which is the

number of times that the value of xp
ij is changed for some p ∈ P . After an

improvement in the current solution is observed, g⃗ is reinitialized to the zero

vector.

The following equation defines the local move cost from solution s to a

14

trial solution s′ as

∆fmove(s, s
′) = f(s′)− f(s) + β

∑
(i,j)∈A

bijgij, (7)

where β is a scaling parameter, and bij has a value equal to 1 if the arc (i, j)

participates in the current local move from s to s′, and a value 0 otherwise.

The component β
∑

(i,j)∈A bijgij is added to the cost of the local move to

penalize moves that involve frequently selected arcs.

Trial solutions with smaller values of ∆fmove are generally preferred. How-

ever, it may be that this number is large enough to prevent the search from

selecting a high-quality neighbour s′. To avert such cases, an aspiration cri-

terion is used: if f(s′) < f(sILSbest), the penalty component is ignored so

that ∆fmove = f(s′)− f(s). The neighbourhood search procedure is shown in

Algorithm 3.

Algorithm 3: neighbourhood Search

Input: s′ (current solution), M a large number

Output: s′′ (best neighbour)

min = M ;

for All inefficient chains k of s′ and for all combinations of nodes i, j

in k do
PI ← IdentifyDifferentCommodities(k, i, j);

while PI is not empty do

if isFeasible(k, i, j,PI) then
s∗ ← CreateNeighbour(k, i, j,PI);

else
RemoveFirstElement(PI);Continue;

if ∆fmove(s, s
∗) < min then

s′′ ← s∗ ; min = ∆fmove(s, s
∗) ;

RemoveFirstElement(PI);

In Algorithm 3 the function IdentifyDifferentCommodities forms the list PI

by identifying the different commodities that have positive flows between the

nodes i and j of an inefficient chain k. CreateNeighbour creates a neighbouring

solution of s′, and RemoveFirstElement removes the first element of the list.

Finally, the isFeasible is a boolean function that returns “true” if a particular

combination (k, i, j) leads to some re-routing of flow.

3.6.2. Ejection Cycles

A major component of the ILS is its perturbation strategy (Lourenço,

Martin and Stützle 2002). The goal is to partially rebuild the current local

15

optimum solution, such that the new diversified solution preserves some infor-

mation from the local optimum. The proposed perturbation strategy in this

paper, namely Ejection Cycles (EC), applies multiple cycle-based moves in the

spirit of ejection chains (Glover 1996). The main idea of the ejection-chains

strategy is to apply a compound move consisting of a series of consecutive

local moves. Adopting this idea, our EC comprise a series of consecutive cycle

moves of the type described in Section 3.6.1. The aim of EC is to perturb the

structure of the current solution to achieve diversification, and also to remove

some of the inefficient arcs from the solution.

The are two phases to creating the sequence of local moves. The first phase

creates inefficient chains to re-route flow using similar ideas to Section 3.6.1,

but considers the previous usage of arcs in local moves instead of cost and

also allows flows in arcs to violate capacity constraints. The second phase

attempts to remove infeasibility by doing further flow re-routing, again using

arc usage in determining the path.

We now present more precise details of how our sequence of local moves

is determined. In the first phase, we first find a set of inefficient chains and

focus on sub-chains containing at most ζ arcs. For a given sub-chain, the

list PI is formed, and ip, jp and wp are computed. The list of commodities

is scanned and a re-routing of flow is performed for each commodity p of PI

in turn. However, in this re-routing, feasibility with respect to arc capacities

is not enforced, as the second phase essentially operates a repair mechanism

to restore feasibility. The first phase employs a full re-routing by applying

Dijkstra’s algorithm to find a shortest path from ip to jp, where cost for each

arc (i, j) ∈ A is

c̄ij =

{
cijhij + fij(1− ȳij) if (i, j)/∈ F ,
∞ otherwise,

(8)

where hij − 1 is the number of times that arc (i, j) has participated in

a local move, and initialization sets hij = 1 for all (i, j) ∈ A, and F is a

set of forbidden arcs that initially comprises all arcs between ip and jp in

the subchain. The hij values have a similar purpose to the gij values of

Section 3.6.1 except that the method of initialization is different. Also, the

re-initialisation for gij is replaced by a scaling process for the hij. Specifically,

to avoid hij become very large for some arcs (i, j), we periodically divide hij

by hmin for all (i, j) ∈ A, where hmin = min(i,j)∈A hij. If Dijkstra’s algorithm

returns a shortest path length of infinity, then the current sub-chain is not

considered further and another one is selected. Otherwise, a flow of value wp is

added to each arc of the shortest path in the perturbed solution and removed

from each arc of the sub-chain.

16

When re-routing of flow between nodes ip and jp of the sub-chain is com-

plete for each p ∈ PI , we check if any arc has a flow that violates its capacity

constraint. If there is no violation, then a new feasible solution is found and

the EC terminates with a perturbed solution. When some flows violate arc

capacities, we proceed as follows. Let AV denote the set of arcs having a

capacity violation. For all arcs (i, j) ∈ AV , a set of commodities P ′
I is selected

whose removal from (i, j) restores feasibility but keeps the capacity utilisation

of the arc as high as possible. Specifically, the process of repeatedly selecting

a commodity p with the largest flow xp
ij in (i, j) is inserted in P ′

I and the flow

in (i, j) is reduced by xp
ij is applied until the flow in (i, j) is reduced to exactly

uij or the next selection would cause the flow in (i, j) to become strictly less

than uij. In the latter case, the final commodity p selected for insertion into

P ′
I is chosen to have minimal flow in (i, j) from among those commodities

where the removal of their flow from (i, j) reduces the total flow in (i, j) to

be less than or equal to uij. Having formed P ′
I , the respective ip, jp and wp

are computed, and infeasibility chains that are formed in the same way as for

inefficient chains, as described in Section 3.6.1.

Having formed the infeasibility chains, the aim is to re-route the flow in the

chain using the method described above. More precisely, Dijkstra’s algorithm

to find a shortest path from the the starting node ip of the sub-chain to the

ending node jp, where all arcs between ip and jp of the sub-chain are added

to the set F and costs for the shortest path problem are defined by (8). If

a suitable path for re-routing is found, then the trial solution s∗ is updated.

The process of re-routing flow in other infeasibility chains continues until

no capacity violations occur or no further re-routing is possible due to the

constraints imposed by set F . If the former case, the EC terminates with a

perturbed solution. In the latter case, the EC returns to the initial feasible

solution s′, the first commodity of set PI is deleted and EC is applied on

the remaining commodities in the set. As in Section 3.6.1, additional trial

solutions are created by removing the first element of list PI and repeating

the process until PI is empty. The complete procedure is applied to all sub-

chains, and terminates when the first feasible perturbed solution is found.

The pseudo code of the EC is given in Algorithm 4.

IdentifyViolatedArcs identifies the set of violated arcs AV . The function

NeighbourExists is a boolean function that returns “true” if there exist an

alternative path that the flow can be re-routed, regardless the capacity con-

straints at arcs. If no alternative paths are found (in case all neighbouring arcs

have been assigned a cost of infinity), then NeighbourExists returns “false”.

The function UpdateV iolatedArcs identifies which of the arcs of the re-routed

paths are violated in terms of capacity constraints and updates the set of vi-

olated arcs AV . The function IdentifyExcessCommodities identifies the

17

Algorithm 4: Ejection Cycles

Input: s′ (current solution)

Output: s∗ (best neighbour)

for All inefficient chains k of s′ and for all combinations of nodes i, j

do
PI ← IdentifyDifferentCommodities(k, i, j);

while PI ̸= ∅ do
First EC Iteration

AV ← IdentifyViolatedArcs(k, i, j);

if AV = ∅ then
EndAlgorithm;

else
P ′

I ← IdentifyExcessCommodities(AV);

Next EC Iterations

while P ′
I ̸= ∅ do

if NeighbourExists(P ′
I) then

s∗ ← CreateNeighbour′(P ′
I);

AV ← UpdateViolatedArcs(k, i, j);

if AV = ∅ then
EndAlgorithm;

else
P ′

I ← UpdateExcessCommodities(AV);

else
RemoveFirstElement(PI); P ′

I ← ∅;

excess commodities that need to be removed from the violated arcs to restore

capacity feasibility, while similarly UpdateExcessCommodities updates the

excess commodities in the next iterations.

4. Computational Results

This section presents the computational analyses conducted to evaluate

the performance of the proposed algorithm and comparisons with the state-

of-the-art. The section is structured as follows: In Section 4.1, we describe

the data sets used in the experiments, followed by Section 4.2 which explains

the way that the algorithm parameters are calibrated. Sections 4.3 and 4.5

look at the effect of the network efficiency and the solvency ratio strategies

used on the performance of the algorithm. The way in which the components

of the proposed algorithm affect the solution quality is tested in Section 4.4.

18

Finally, Section 4.6 presents extensive comparison results with state-of-the-art

algorithms that have been proposed for the problem.

4.1. Data sets

To evaluate the performance of the proposed algorithm, computational ex-

periments are conducted on the C and C+ benchmark instances described in

Crainic et al. (2000) and are available online (http://pages.di.unipi.it/frangio/).

These sets include instances with 20, 25, 30 and 100 nodes, 10 to 400 com-

modities and 100 to 700 arcs, and have been widely used in the literature.

These instances differ from one another with respect to the nature of the arc

capacities, which are either loose (L) or tight (T), and with respect to the rel-

ative importance of fixed costs (F) and the variable flow costs (V) per unit of

flow. There also exist benchmark instances described by Alvarez et al. (2005)

defined on an undirected graph using edges as opposed to a directed graph

using arcs. These define a different problem than the one we address in this

paper, as is discussed by Crainic et al. (2000), and is the reason why this set

is not considered here.

The proposed algorithm was implemented in a Visual Studio 2010 envi-

ronment using the C++ programming language, and all runs were performed

on a single core Xeon E5507 2.27 GHz using CPLEX 12.6 as the optimizer.

4.2. Calibration

The proposed Cycle-based Evolutionary Algorithm (CEA) uses five param-

eters; the number λ of initial solutions examined to produce the Reference Set

R, the cardinality µ of R, the cardinality κ of CS, the maximum number δ

of local search iterations without an improvement in the solution quality, and

the maximum number ϑmax of CPLEX calls for which an improvement in the

current solution is not observed. The termination criterion is the computa-

tional time. Various time limits were used to test our algorithm according to

different time limits used by the state-of-the-art algorithms of the literature.

The scaling parameters α and β are self-calculated during the solution

process, and are equal to the average cost of an arc in the current best solution

found, i.e., α=β=f(sbest)/
∑

(i,j)∈A ysbestij . The parameter λ does not appear

to have a significant impact to the quality of the solutions; however, to have

an adequate initial population size, we set it to 1500. Another parameter that

seemed not to have significant impact is the size ζ of the sub-chains where

local search takes place (see Section 3.6.1 for details). Parameter ζ was set

equal to 4, which means that local search attempts to re-route the flows of a

maximum of four arcs of a sub-chain. Larger values led to infeasibilities in the

neighbouring solutions, either in the connectivity of the paths or the capacity

of arcs.

19

We set κ = 3 to preserve the SS character of the proposed algorithm. Pa-

rameter κ needs to be larger than 2 to enhance the recombination process,

but should be relatively small to ensure that a large number of possible com-

binations among the solutions of the Reference Set is considered. We tried 4

and 5 which resulted in a poor variety of offspring, due to the limited number

of combinations. The latter problem was more prominent in the later SS iter-

ations, when convergence is close and the need for different offspring is more

apparent.

Parameters δ and ϑmax are interrelated as they typically control the total

number of local search iterations. In particular, ϑ tracks CPLEX iterations;

it is initialized to 1 and is incremented by one unit until ϑmax is reached. At

each iteration, the number δ of local search iterations is set equal to 10ϑ. Our

experiments indicate that values of ϑmax equal to 6, 7, and 8 are appropriate,

with values below 6 resulting in deterioration in the solution quality, and

values greater than 8 slowing down the process without yielding any significant

gain in the solution quality.

Table 1 shows the computational experiments conducted to investigate

on the algorithm’s behaviour with respect to different sets of parameters.

Different parameter sets were used for different groups of problems. For large-

scale problems, the Reference Set was of relatively small sizes and δ was

assigned high values, whereas opposite settings were used for small to medium

scale problems, for reasons described above. Table 1 shows the C and C+

benchmark instances classified into 6 groups according to their size. The

label for each group is a vector depicting the number of nodes, the number

of arcs and the number of commodities. The problem instances within each

group differ in the tightness of the arc capacity constraints and the relative

importance of the fixed costs and the costs of per unit of flow. The calibration

was conducted by using one problem instance from each group, shown in the

headings of the six main columns of Table 1. For each instance, ten runs, each

with a run time of two hours, were conducted to retrieve the average solution

values for each instance shown under the second column for each group. The

parameter set that produces the best average (shown in bold font) for each

group is fixed and used to solve the rest of the instances in that group to

produce the results presented in the tables of this section.

As Table 1 shows, the effect of the parameters of CEA varies according to

the size of the problem solved. In small to medium scale instances, the evo-

lutionary strategy had more impact than local search, since the cardinality of

the neighbourhood is relatively small and local search is unable to adequately

explore the search space. In contrast, the solution neighbourhood is enriched

with more solutions and the impact of the local search is more prevalent in

the solution process as the size of the problem instance increases. Driven

20

Table 1: Calibration of the algorithm’s parameters

Group 25-100-(10 & 30) 20-(230 & 300)-40 20-(230 & 300)-200

ϑmax, µ 25-100-30FT ϑmax, µ 20,230,40FT ϑmax, µ 20,230,200VT

6,30 86294 6,30 644352 6,30 100343

6,40 86107 6,40 644118 6,40 99457

6,80 85870 6,80 643537 6,80 100317

Parameter 7,30 86333 7,30 644346 7,30 100283

Sets 7,40 86189 7,40 644346 7,40 99560

7,80 85963 7,80 643735 7,80 99607

8,30 86237 8,30 644483 8,30 100023

8,40 86296 8,40 644133 8,40 99939

8,80 85894 8,80 643995 8,80 99786

Best 6,80 85870 6,80 643537 6,40 99457

Group 100-400-(10 & 30) 30-(520 & 720)-100 30-(520 & 720)-400

ϑmax, µ 100-400-30FT ϑmax, µ 30,700,100FL ϑmax, µ 30,700,400FT

6,20 142086 6,20 61045 6,20 134911

6,30 142697 6,30 62209 6,30 134930

6,40 142969 6,40 61872 6,40 135278

Parameter 7,20 142235 7,20 61969 7,20 134745

Sets 7,30 143173 7,30 61414 7,30 135362

7,40 143448 7,40 62182 7,40 135535

8,20 142499 8,20 61658 8,20 134810

8,30 142749 8,30 61648 8,30 134921

8,40 143099 8,40 61937 8,40 135522

Best 6,20 142086 6,20 61045 7,20 134745

Table 2: Indicative t-tests for the results derived by using different parameter settings

Parameter settings (θ1max, µ1), (θ2max, µ2)

25,100,30FT (6,30), (6,80) (7,30), (7,80) (8,30), (8,80) (6,80), (8,80)

p-value 0.011 0.001 0.002 0.171

20,230,40FT (6,30), (6,80) (7,30), (7,80) (8,30), (8,80) (6,80), (7,80)

p-value 0.006 0.047 0.033 0.105

20,230,200VT (6,30), (6,40) (7,40), (7,80) (8,40), (8,80) (6,40), (7,80)

p-value 0.123 0.470 0.459 0.366

100,400,30FT (6,30), (6,20) (7,30), (7,20) (8,30), (8,20) (6,20), (7,20)

p-value 0.196 0.134 0.364 0.433

30,700,100FL (6,30), (6,20) (7,30), (7,20) (8,30), (8,20) (6,20), (8,20)

p-value 0.002 0.045 0.489 0.032

30,700,400FT (6,30), (6,20) (7,30), (7,20) (8,30), (8,20) (7,20), (8,20)

p-value 0.317 0.042 0.402 0.450

by these observations, the size µ of the Reference Set takes larger values for

small to medium scale problems, and relatively small values for the larger

scale instances.

We also conducted indicative t-tests for different parameter settings and

we include the results in Table 2. Table 2 has six parts that refer to results

regarding six different benchmark instances. Each part of the table has two

rows; the first row indicates the pairs of parameters (θmax, µ) and the second

row reports the p-value derived by comparing the two different sets of results

derived by 10 runs of the algorithm. As Table 2 shows, for some of the pairs one

can identify statistical significance (i.e., p-value ≤ 0.05), nevertheless for some

21

other the difference is not statistically significant. We select the parameter

setting with the best average value (see Table 1), and we keep it fixed for each

group of instances to perform our experiments, regardless of the statistical

significance status.

4.3. Network efficiency vs total cost

To illustrate the impact of the network efficiency on the solution cost, we

have conducted analyses to shed light into the behaviour of the search on two

problem instances, namely 20,230,200VT and 30,700,400VL. The network ef-

ficiency is defined with respect to either the maximum arc inefficiency or the

average arc inefficiency, where the inefficiency measure is as defined in Section

3.6. The results are given in Figure 3, which shows how the two efficiency

measures and the total cost change as the search progresses over time, sep-

arately for instance 20,230,200VT on the left and for instance 30,700,400VL

on the right.

Figures 2(a) and 2(b) respectively show the changes observed in the value

of the best solutions found for the 20,230,200VT and 30,700,400VL problem

instances over time. Similarly, Figures 2(c) and 2(d) show the maximum

inefficiency of an open arc for different solutions found over time. We observe

that as the algorithm iterates, the maximum arc inefficiency is dramatically

reduced and follows a logarithmic trend. Conversely, Figures 2(e) and 2(f)

show an increase in the average efficiency of the arcs as the search progresses,

which is indicative of an increase in the overall efficiency of the network as

the solution quality is improved.

4.4. The impact of the CEA’s main components on the solution quality

Experimentation was conducted on different versions of the proposed CEA

to investigate the effect of various components on the final solution quality.

Three versions of CEA were thus considered: (i) Version “\EC” is where a

random perturbation strategy is used instead of EC. According to this ran-

dom strategy, 25% of the commodities are selected at random, which are then

removed and re-routed via the construction mechanism as discussed in Section

3.4. (ii) Version“\SolvR” replaces the Solvency ratio strategy with a random

strategy for the parent selection and the Reference Set updating criteria. Ac-

cording to the random strategy, the parents that comprise the Candidate Set

are selected at random and the elitist updating criteria described in 3.5.1 are

used. (iii) Version “\Ineff”, performs local moves on chains composed by all

arcs of the network, disregarding any preference given to inefficient chains.

The results of the experiments are reported in Table 3. In this table,

column “CEA” shows the best results of these experiments, derived from 10

runs for each problem instance, where the computational time of each run

22

(a) Total cost vs time (b) Total cost vs time

(c) Maximum arc inefficiency vs time (d) Maximum arc inefficiency vs time

(e) Average arc efficiency vs time (f) Average arc efficiency vs time

Figure 3: Arc efficiency and total cost tracked over time for instances 20,230,200VT (left)

and 30,700,400VL (right)

23

Table 3: Results from different versions of CEA on the benchmark instances of Crainic et

al. (2000)

Instances CEA
% Deviations

Instances CEA
% Deviations

\EC \SolvR \Ineff \EC \SolvR \Ineff
25,100,10VL 14712 0.00 0.00 0.00 100,400,10FL 23949 −0.30* −0.30* −0.30*

25,100,10FL 14941 0.00 −0.09 −0.09 100,400,10FT 66240 −4.24 −4.03* −8.93

25,100,10FT 49899 0.00* −1.34 −1.44 100,400,30VT 385163 −0.12 −0.14 −0.14*

25,100,30VT 365272 0.00* 0.00* 0.00 100,400,30FL 49577 −2.04 −2.84 −2.32

25,100,30FL 37324 −0.53 −2.15 −1.56 100,400,30FT 139661 −1.78* −2.41 −1.66

25,100,30FT 85530 −0.54 −0.54 −0.77 30,520,100VL 54109 −0.99* −0.99* −0.99*

20,230,40VL 423848 −0.05 −0.05 −0.07 30,520,100FL 95302 −0.10 −1.12* −1.25*

20,230,40VT 371475 −0.08 0.00 −0.08 30,520,100VT 52284 −0.49 −1.27* −1.31

20,230,40FT 643187 −0.27 −0.25 −0.19 30,520,100FT 98525 −0.56* −1.26 −2.04

20,300,40VL 429398 0.00* 0.00* 0.00* 30,700,100VL 47619 −0.24* −0.51* −0.51*

20,300,40FL 586077 −0.37 −0.47 −0.67 30,700,100FL 60596 −1.05 −2.61 −2.55

20,300,40VT 464509 −0.38 −0.32 0.00 30,700,100VT 46084 −1.07 −1.17 −1.48*

20,300,40FT 604198 −0.19 −0.01 0.00 30,700,100FT 55271 −1.17 −1.55 −2.21

20,230,200VL 94468 −0.63* −1.22* −2.75 30,520,400VL 113694 −1.42 −1.02 −1.49

20,230,200FL 139002 −1.54 −0.71 −1.92 30,520,400FL 154134 −1.28 −1.03 −2.16

20,230,200VT 98209 −0.81 −0.27 −2.75 30,520,400VT 116322 −0.67* −1.13 −1.52

20,230,200FT 137131 −3.33 −0.28 −4.80 30,520,400FT 154425 −1.53* −1.73* −2.62

20,300,200VL 75288 −0.86 −0.80 −1.74 30,700,400VL 99222 −0.56* −0.85 −1.50

20,300,200FL 117320 −0.44* 0.00* −1.58* 30,700,400FL 137112 −1.84 −2.25 −3.83

20,300,200VT 75607 −0.83 −0.83 −1.35 30,700,400VT 96388 −1.13* −1.20* −1.61

20,300,200FT 108459 −0.07 −2.16 −3.20 30,700,400FT 133245 −0.89* −0.25 −1.46

100,400,10VL 28426 −0.18* −0.18* −0.20

*not statistically significant

is limited to two hours. The values under column “% Deviations” in Table

3 show the percent deviations of the solution values obtained by the three

versions of the CEA from those of the best solution value. In particular, the

deviations are calculated as 100(v(CEA) − v(Alg))/v(CEA), where v(Alg) is

the solution value obtained by one of the three versions of CEA. We conducted

statistical t-tests between the runs of CEA and the runs of different versions

of CEA, and an asterisk is put next to the deviation when the tests were not

significant.

From Table 3, it can be easily observed that the impact of the EC in the

quality of the final solution is significant, and can yield reductions of up to

4.24% in total cost. The maximum improvements afforded by the Solvency

Ratio and the Inefficiency Measures are 4.03% and 8.93%, respectively. A

negative deviation value in this table indicates that the solution found by

the CEA is better. On average, the most significant impact comes from the

Inefficiency Measures component with an average deviation of −1.56%. The

same statistics for the Solvency Ratio and the EC are −0.96% and −0.80%,

respectively.

24

4.5. Solvency Ratio vs random parent selection

To illustrate the effectiveness of the Solvency Ratio, tests were conducted

on two instances, namely 100-400-30-FT and 20,300,200FT, for the reason that

these two instances typically present the general behaviour of the algorithm

using solvency-based and random parent selection strategies.

Figure 4 presents the comparisons between the two strategies. The first

two SS iterations are used as a warm up for the solvency strategy, which is

enabled from the third SS iteration onwards as is apparent from the figures.

Figures 3(a) and 3(b) show how the best solution values evolve over time.

For 100,400,40FT, it is easily seen that solutions obtained by the random-

based strategy are quickly trapped in a local optimum, whereas the solvency-

based strategy is slower to improve the best solution initially, but displays a

gradual yet continual reduction in the overall cost as the generations evolve,

and terminates with a better overall solution. Instance 20,300,200FT exhibits

a similar pattern, i.e., the solvency strategy provides a large improvement in

the early SS iterations and then follows a less steep drop as the algorithm

continues to improve the total cost. The random strategy is again trapped

in a local optimum at iteration 12. Figures 3(c) and 3(d) show the changes

in the average solution cost in the Reference Set over the SS iterations. The

main observations on the behaviour of the solvency-bases strategy are similar

to the first two figures.

A “healthy” evolutionary process should typically produce a decent num-

ber of educated offspring at each SS iteration. Figures 4(e) and 4(f) show that

this is also the case in the proposed algorithm. In particular, the figures show

that the random strategy has difficulties in producing educated offspring and

therefore results in premature convergence. In contrast, the solvency strat-

egy is able to update the Reference Set with educated offspring even near

termination.

4.6. Comparative analysis

In this section, we report comparative computational results of the pro-

posed algorithm with the Cycle-based Tabu Search (CTS) of Ghamlouche et

al. (2003), Path Relinking (PR) by Ghamlouche et al. (2004), Multilevel Coop-

erative Algorithm (MCA) by Crainic et al. (2006), Capacity Scaling Heuristic

(CSH) by Katayama et al. (2009), IP Search (IPS) by Hewitt et al. (2010),

the two algorithms based on Simulated Annealing and Column Generation

(SACG1 and SACG2) described by Yaghini et al. (2013) the results for which

are reported with time limits 600 and a 18000 seconds, respectively, and Lo-

cal Branching (LocalB) by Rodŕıguez-Mart́ın and Salazar-González (2010).

The algorithm described by Alvarez et al. (2005) could not be included in

the comparisons as the authors do not report any results with the instances

25

(a) Total cost: 100-400-30FT (b) Total cost: 20,300,200FT

(c) Average cost for R: 100-400-30FT (d) Average cost for R: 20,300,200FT

(e) Educated offspring: 100-400-30FT (f) Educated offspring: 20-300-200FT

Figure 4: Solvency-based vs random-based strategies for instances 100-400-30FT (left) and

20,300,200FT (right)

26

tested here; instead they use their own benchmark instances. The reason for

not being able to test our algorithm on the Alvarez et al. (2005) benchmark

set is that these instances are based on an undirected graph and work with

edges, whereas the problem we solve is on a directed graph and our algorithm

has been developed to operate on arcs.

Table 4 shows the comparison results where the first column shows the

name of the instance as characterized by the number of nodes, the number

of arcs and the number of commodities. The solution values obtained by the

proposed algorithm are reported under column “CEA”. The remaining five

columns report the relative percentage deviations of the solution values found

by the CEA from those reported by the papers quoted above, and is calculated

as 100(v(CEA)− v(Alg))/v(CEA), where v(Alg) indicates the solution value

produced by the corresponding algorithm and v(CEA) the solution value pro-

duced by the CEA. A negative value indicates that the solution found by the

CEA is better.

The first seven rows describe, to the best that we were able to extract,

the computational resources used to run the algorithms. The row titled

“T.Lim.(sec)” reports the time limit used by the authors of the correspond-

ing algorithm, whereas the “Used Cores” row indicates how many cores from

the original configuration of the CPU were used to run the algorithm. It is

assumed that the computational power increases linearly with the number of

cores used. Due to different computing facilities, we have normalized the com-

putational times using the approach described in Dongarra (2014) and data

from http://www.cpubenchmark.net/. All comparisons were made according

to the Passmark CPU Score (PCPUS). As we were unable to find PCPUS for

Sun systems on http://www.cpubenchmark.net/, we used the Dongarra (2014)

list, and selected an Intel equivalent. The final scores are reported in the row

titled “PCPU Score”. The running times were normalized by using CEA as the

reference point, i.e., Norm.TL(Alg)= PCPUS(Alg)TL(Alg)/PCPUS(CEA).

The table also reports some summary statistics in the last six rows, in-

cluding the median and the average of the deviations. The “MaxImpr.” row

shows the maximum improvement afforded by the CEA. The lower this value

is, the better the performance of the algorithm. The LeastGap row shows

the maximum deviation over instances for which CEA did not find a better

solution. Finally, the row named “Impr./43” shows the number of instances

out of the total 43 tested, where CEA yielded the same or better results over

the algorithm it is compared with.

As the results shown in Table 4 indicate, the CEA is competitive with

the state-of-the-art. In particular, CEA is able to produce optimal solutions

for the 25,100,10, 20,300,40 sets of instances as well as for the large scale

problem instances 100,400,10FL and 30,700,100VL. Furthermore, the CEA

27

T
ab

le
4:

C
o
m
p
a
ri
so
n
s
to

th
e
st
at
e-
of
-t
h
e-
ar
t
al
go

ri
th
m
s
on

th
e
C

an
d
C
+

se
ts

o
f
b
en

ch
m
a
rk

in
st
a
n
ce
s
o
f
C
ra
in
ic

et
al
.
(2
0
00

)

I
n
s
t
a
n
c
e
s

O
P
T
/
L
B

C
E
A

%
D

e
v
ia

t
io

n

C
T
S

P
R

M
C
A

C
S
H

IP
S

S
A
C
G
1

S
A
C
G
2

L
o
c
a
lB

T
.L

im
(s
e
c
)

2
0
0
0
0

3
6
0
0
0

3
6
0
0
0

1
8
0
0
0

2
6
1
0

9
0
0

6
0
0

1
8
0
0
0

6
0
0

C
P
U

X
e
o
n

S
u
n

U
.

S
u
n

E
n
.

S
u
n

E
n
.

P
e
n
ti
u
m

8
x
X
e
o
n

C
o
re

2
D
u
o

C
o
re

2
D
u
o

C
o
re

2
D
u
o

E
5
5
0
7

6
0
/
2
3
0
0

1
0
0
0
0

1
0
0
0
0

E
5
8
0
0

E
6
8
5
0

E
6
8
5
0

E
4
6
0
0

G
H
z

2
.2
7

0
.4

0
.4

0
.4

3
.2

2
.6
6

3
.0
0

3
.0
0

2
.4

U
se

d
C
o
re

s
1

1
1
.0
0

6
4

2
8
x
1

2
2

2

P
C
P
U

S
c
o
re

3
2
1
2
/
4

2
3
8

1
4
5

6
4
x
2
3
8

1
6
6
4

4
3
5
x
8

1
9
8
5

1
9
8
5

1
3
7
9

N
o
rm

.
T
L

2
0
0
0
0

2
3
5
3

1
4
3
4

4
5
8
7
7

5
4
0
8

3
9
0
0

1
4
8
3

4
4
4
9
6

1
0
3
0

2
5
,1
0
0
,1
0
V
L

1
4
7
1
2

O
1
4
7
1
2

0
.0
0

0
.0
0

0
.0
0

0
.0
0

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,1
0
F
L

1
4
9
4
1

O
1
4
9
4
1

0
.0
0

0
.0
0

0
.0
0

−
0
.6
4

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,1
0
F
T

4
9
8
9
9

O
4
9
8
9
9

0
.0
0

0
.0
0

−
0
.0
8

−
1
.7
5

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,3
0
V
T

3
6
5
2
7
2

O
3
6
5
2
7
2

−
0
.0
3

−
0
.0
3

−
0
.0
3

0
.0
0

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
5
,1
0
0
,3
0
F
L

3
7
0
5
5

O
3
7
3
2
4

−
0
.6
9

−
0
.8
8

−
0
.7
6

−
0
.3
9

n
/
a

0
.7
1

0
.7
1

−
0
.0
1

2
5
,1
0
0
,3
0
F
T

8
5
5
3
0

O
8
5
5
3
0

−
0
.9
0

−
1
.0
5

−
1
.0
9

−
0
.3
2

n
/
a

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
V
L

4
2
3
8
4
8

O
4
2
3
8
4
8

−
0
.2
2

−
0
.1
3

−
0
.6
7

−
0
.0
5

−
0
.1
3

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
V
T

3
7
1
4
7
5

O
3
7
1
4
7
5

−
0
.1
1

−
0
.0
9

0
.0
0

−
0
.1
2

−
0
.0
8

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,4
0
F
T

6
4
3
0
3
6

O
6
4
3
1
8
7

−
0
.4
1

−
0
.3
7

−
1
.5
1

−
0
.2
0

0
.0
0

0
.0
2

0
.0
2

0
.0
2

2
0
,3
0
0
,4
0
V
L

4
2
9
3
9
8

O
4
2
9
3
9
8

−
0
.0
3

0
.0
0

−
0
.1
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,3
0
0
,4
0
F
L

5
8
6
0
7
7

O
5
8
6
0
7
7

−
1
.2
4

−
0
.7
4

−
1
.2
7

−
0
.2
9

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,3
0
0
,4
0
V
T

4
6
4
5
0
9

O
4
6
4
5
0
9

−
0
.0
5

0
.0
0

−
0
.3
2

−
0
.0
1

0
.0
0

−
0
.0
3

−
0
.0
3

0
.0
0

2
0
,3
0
0
,4
0
F
T

6
0
4
1
9
8

O
6
0
4
1
9
8

−
0
.4
8

−
0
.9
6

−
2
.4
8

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

2
0
,2
3
0
,2
0
0
V
L

9
2
5
9
8

L
9
4
4
6
8

−
4
.7
9

−
6
.2
8

−
4
.3
5

0
.2
3

−
0
.6
7

−
0
.8
8

−
0
.8
8

−
0
.8
8

2
0
,2
3
0
,2
0
0
F
L

1
3
3
5
1
2

L
1
3
8
9
5
4

−
5
.4
6

−
6
.5
0

−
3
.0
2

0
.9
4

−
1
.6
5

−
0
.5
8

−
0
.5
8

−
3
.2
3

2
0
,2
3
0
,2
0
0
V
T

9
7
3
4
4

L
9
8
2
0
9

−
6
.6
6

−
6
.6
0

−
3
.8
9

0
.2
5

−
1
.2
2

0
.2
3

0
.2
3

0
.1
7

2
0
,2
3
0
,2
0
0
F
T

1
3
2
4
3
2

L
1
3
7
1
3
1

−
7
.4
8

−
7
.6
0

−
2
.9
6

0
.7
3

−
2
.2
9

−
2
.6
5

−
2
.6
5

−
2
.9
1

2
0
,3
0
0
,2
0
0
V
L

7
3
7
5
9

L
7
5
2
7
9

−
7
.3
6

−
3
.8
6

−
3
.8
9

0
.4
9

−
0
.0
5

−
0
.9
6

0
.5
0

−
1
.4
6

2
0
,3
0
0
,2
0
0
F
L

1
1
1
6
5
5

L
1
1
6
8
0
1

−
5
.6
0

−
5
.7
2

−
4
.4
1

0
.8
7

−
0
.6
3

−
0
.9
8

0
.3
2

−
2
0
.0
0

2
0
,3
0
0
,2
0
0
V
T

7
4
9
9
1

O
7
5
4
4
4

−
5
.5
3

−
4
.5
4

−
2
.4
0

0
.1
9

−
1
.0
0

0
.0
3

0
.6
0

−
0
.9
6

2
0
,3
0
0
,2
0
0
F
T

1
0
4
3
3
4

L
1
0
7
5
4
6

−
6
.4
5

−
5
.6
1

−
3
.3
7

−
0
.2
9

−
2
.6
0

−
2
.0
1

−
1
.0
2

−
2
.1
0

1
0
0
,4
0
0
,1
0
V
L

2
8
4
2
3

O
2
8
4
2
3

−
0
.8
9

−
0
.2
2

−
0
.4
6

−
0
.0
1

0
.0
0

0
.0
0

0
.0
0

0
.0
0

1
0
0
,4
0
0
,1
0
F
L

2
3
9
4
9

O
2
3
9
4
9

0
.0
0

−
0
.3
0

−
0
.3
0

−
2
.1
3

0
.0
0

0
.0
0

0
.0
0

−
3
.0
9

1
0
0
,4
0
0
,1
0
F
T

5
9
4
7
0

L
6
5
5
6
3

−
2
.2
1

0
.4
3

−
1
.1
0

−
1
2
.2
1

−
0
.4
9

0
.6
0

0
.6
0

−
2
.7
4

1
0
0
,4
0
0
,3
0
V
T

3
8
4
5
6
0

L
3
8
4
9
9
9

−
0
.1
3

0
.0
2

−
0
.1
0

0
.0
3

0
.0
4

0
.0
5

0
.0
2

0
.0
5

1
0
0
,4
0
0
,3
0
F
L

4
7
4
5
9

L
4
9
4
6
6

−
4
.2
2

−
3
.7
6

−
2
.0
0

−
5
.0
3

−
0
.4
6

−
0
.3
5

0
.4
0

−
0
.8
2

1
0
0
,4
0
0
,3
0
F
T

1
2
7
8
2
5

L
1
3
9
5
3
5

−
4
.0
2

−
1
.3
1

−
4
.4
3

−
3
.4
2

−
1
.3
1

−
1
.4
4

−
1
.0
6

−
1
.5
0

3
0
,5
2
0
,1
0
0
V
L

5
3
9
5
8

L
5
4
0
9
9

−
1
.5
9

−
1
.4
9

−
3
.0
6

0
.0
2

−
0
.0
3

0
.2
1

0
.2
1

0
.1
3

3
0
,5
2
0
,1
0
0
F
L

9
1
2
8
5

L
9
4
6
2
1

−
5
.2
5

−
7
.8
6

−
5
.4
9

−
0
.1
9

0
.2
5

0
.3
3

0
.5
9

−
1
.7
3

3
0
,5
2
0
,1
0
0
V
T

5
1
8
2
5

L
5
2
1
8
2

−
1
.5
4

−
1
.6
0

−
2
.5
5

−
0
.1
9

0
.0
2

−
0
.4
0

−
0
.1
2

0
.1
0

3
0
,5
2
0
,1
0
0
F
T

9
4
6
4
6

L
9
7
8
5
6

−
7
.8
3

−
8
.4
6

−
4
.7
2

−
1
.0
0

−
1
.0
5

−
2
.3
8

−
0
.7
0

−
3
.3
2

3
0
,7
0
0
,1
0
0
V
L

4
7
6
0
3

O
4
7
6
0
3

−
1
.6
7

−
2
.3
5

−
2
.6
6

−
0
.0
7

−
0
.0
2

−
0
.8
3

0
.0
0

0
.0
0

3
0
,7
0
0
,1
0
0
F
L

5
8
7
7
2

L
6
0
5
3
8

−
3
.1
9

−
4
.2
2

−
5
.3
2

0
.5
7

−
0
.2
7

−
0
.0
7

0
.2
4

0
.4
4

3
0
,7
0
0
,1
0
0
V
T

4
5
5
5
2

L
4
6
0
8
2

−
2
.0
5

−
2
.4
5

−
2
.9
8

−
0
.1
9

0
.0
8

−
0
.1
4

0
.2
7

0
.3
8

3
0
,7
0
0
,1
0
0
F
T

5
4
2
3
3

L
5
5
1
3
5

−
4
.9
9

−
2
.6
1

−
3
.2
2

−
0
.4
1

−
0
.8
6

0
.2
2

0
.2
9

0
.0
6

3
0
,5
2
0
,4
0
0
V
L

1
1
1
9
9
2

L
1
1
3
1
9
3

−
6
.5
9

−
5
.5
0

−
2
.1
9

0
.3
1

−
0
.7
5

−
0
.8
9

−
0
.4
7

−
1
.0
4

3
0
,5
2
0
,4
0
0
F
L

1
4
6
8
0
9

L
1
5
1
1
4
5

−
6
.5
9

−
7
.9
2

−
3
.6
1

1
.1
2

−
2
.0
3

−
3
.1
0

0
.0
9

−
4
.3
5

3
0
,5
2
0
,4
0
0
V
T

1
1
4
2
3
7

L
1
1
5
6
9
7

−
5
.0
9

−
3
.8
7

−
4
.5
7

0
.9
1

0
.6
7

0
.0
7

0
.1
0

0
.4
0

3
0
,5
2
0
,4
0
0
F
T

1
5
0
0
0
9

L
1
5
4
4
2
5

−
8
.7
5

−
5
.9
9

−
3
.7
5

1
.0
9

−
0
.1
2

−
3
.5
9

N
/
A

−
9
.1
5

3
0
,7
0
0
,4
0
0
V
L

9
6
7
4
1

L
9
8
7
2
9

−
8
.1
5

−
6
.4
7

−
3
.9
5

0
.7
7

0
.0
1

−
3
.0
4

−
0
.5
9

−
5
.1
2

3
0
,7
0
0
,4
0
0
F
L

1
3
0
7
2
4

L
1
3
7
1
1
2

−
8
.6
3

−
5
.7
7

−
5
.0
1

1
.4
9

−
1
1
.2
8

−
1
7
.0
7

2
.2
9

−
2
3
.8
1

3
0
,7
0
0
,4
0
0
V
T

9
4
1
1
8

L
9
6
1
3
0

−
5
.7
7

−
5
.2
9

−
3
.1
9

0
.8
6

−
0
.0
4

−
0
.9
5

0
.6
2

−
0
.5
7

3
0
,7
0
0
,4
0
0
F
T

1
2
7
6
6
6

L
1
3
2
4
2
5

−
7
.8
2

−
6
.4
9

−
4
.4
1

1
.7
2

0
.6
0

−
6
.8
5

0
.7
2

−
9
.4
4

M
e
d
ia
n

−
3
.1
9

−
2
.4
5

−
2
.6
6

0
.0
0

−
0
.0
8

0
.0
0

0
.0
0

0
.0
0

A
v
g

−
3
.4
9

−
3
.1
3

−
2
.4
6

−
0
.3
8

−
0
.7
4

−
1
.0
9

0
.0
4

−
2
.2
4

M
a
x
Im

p
r.

−
8
.7
5

−
8
.4
6

−
5
.4
9

−
1
2
.2
1

−
1
1
.2
8

−
1
7
.0
7

−
2
.6
5

−
2
3
.8
1

L
e
a
st
G
a
p

0
.0
0

0
.4
3

0
.0
0

1
.7
2

0
.6
7

0
.7
1

2
.2
9

0
.4
4

Im
p
r.
/
4
3

4
3

4
1

4
3

2
4

3
0

3
3

2
3

3
4

28

finds optimal solutions for 25,100,30FT and 20,230,40VL which could not be

found by any of the heuristics used for comparisons with the exception of

the ones described by Yaghini et al. (2013). The maximum deviations of the

CEA are −8.75% compared with CTS, −8.46% compared with PR, −5.49%
compared with MCA, −12.21% compared with CSH, −11.28% compared with

IPS,−17.07% and −1.06% compared with SACG1 and SACG2, respectively,

and −23.81% compared with LocalB.

Noteworthy is the fact that on large-scale problem instances 20,300,200FT,

100,400,30FT and 30,520,100FT, new best solutions were obtained with values

107546, 139535 and 97856, respectively. These instances have up to 100 nodes,

520 arcs and 200 commodities, and the new best solutions deviate by −0.29%,

−1.06% and −0.70% over the previous best known solutions, respectively.

On average measures, CEA outperforms CTS, PR and MCA by achieving

average improvements of −3.49%, −3.13%, and −2.46%, respectively. Com-

pared with the rest, the CEA still remains competitive with average deviations

sitting at −0.38% from CHS, −0.74% from IPS, −1.09% from SACG1, 0.04%

from SACG2 and −2.24% from LocalB. Compared with CHS, the proposed

algorithm produces better results by −0.37% on average. Similarly, SACG2

produces results that are better by 0.04%. We also note that we are unable to

consider the result of SACG2 for instance 30,520,400FT as this value is lower

than the lower bound 150009 reported by Katayama et al. (2009), and any

comparison for this instance would therefore be misleading.

The above comparisons are based on the results derived by using the run-

ning time limits imposed by the original authors. Even though our time limit

was 20000 sec, the CEA was able to discover the best solution in less than two

hours for most problem instances. In fact 34 out of 43 solutions CEA produces

are derived within 2 hours, out of which 9 refer to large scale instances (which

are in total 16). For very large-scale instances, improvements were observed

in later SS iterations which necessitated additional running time. The latter

observation is as one would expect with evolutionary algorithms, i.e., a num-

ber of SS iterations are needed in order that the initial population of solutions

can be evolved such that high quality solutions can be produced.

To conduct more objective comparisons, we have run our algorithm under

different time limits, the ones used by the authors of the state of the art al-

gorithms in the literature. The results are shown in Table 5 where the time

limits are normalized according to the approach described in Dongarra et al.

(2014) and data from http://www.cpubenchmark.net/. Table 4 provides the

percentage deviations of the solution values produced by the CEA compared

with other algorithms under different time limits, i.e., 1034, 1434, 1483, 2353,

3900, 5408, 44496, 45877 refer to the time limits (in secs) applied by LocalB,

PR, SACG1, CTS, IPS, CSH, SACG2 and MCA, respectively. Negative devi-

29

Table 5: Comparisons to the state-of-the-art algorithms under the different time limits

% Deviation

LocalB PR SACG1 CTS IPS CSH SACG2 MCA

Time limit 1034 1434 1483 2353 3900 5408 44496 45877

25,100,10VL 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00

25,100,10FL 0.00 0.00 0.00 0.00 N/A −0.64 0.00 0.00

25,100,10FT 0.00 0.00 0.00 0.00 N/A −1.75 0.00 −0.08

25,100,30VT 0.00 −0.03 0.00 −0.03 N/A 0.00 0.00 −0.03

25,100,30FL 0.52 −0.35 0.71 −0.69 N/A −0.39 0.71 −0.76

25,100,30FT 0.01 −1.04 0.00 −0.90 N/A −0.32 0.00 −1.09

20,230,40VL 0.00 −0.13 0.00 −0.22 −0.13 −0.05 0.00 −0.67

20,230,40VT 0.00 −0.09 0.00 −0.11 −0.08 −0.12 0.00 0.00

20,230,40FT 0.08 −0.37 0.02 −0.41 0.00 −0.20 0.02 −1.51

20,300,40VL 0.00 0.00 0.00 −0.03 0.00 0.00 0.00 −0.10

20,300,40FL 0.00 −0.74 0.00 −1.24 0.00 −0.29 0.00 −1.27

20,300,40VT 0.00 0.00 −0.03 −0.05 0.00 −0.01 −0.03 −0.32

20,300,40FT 0.00 −0.96 0.00 −0.48 0.00 0.00 0.00 −2.48

20,230,200VL −0.09 −5.45 −0.09 −3.97 −0.67 0.23 −0.88 −4.35

20,230,200FL −2.32 −5.56 0.31 −4.52 −1.62 0.94 −0.58 −3.02

20,230,200VT 1.76 −4.90 1.82 −4.96 −1.22 0.25 0.23 −3.89

20,230,200FT −0.80 −5.39 −0.54 −5.27 −2.29 0.73 −2.65 −2.96

20,300,200VL 0.27 −2.10 0.75 −5.54 −0.05 0.49 0.50 −3.89

20,300,200FL −0.49 −3.51 0.52 −4.04 −0.64 0.87 0.32 −4.41

20,300,200VT −0.31 −3.87 0.67 −4.86 −1.00 0.19 0.60 −2.40

20,300,200FT 0.07 −3.36 −0.28 −4.64 −1.08 0.55 −2.65 −3.37

100,400,10VL 0.02 −0.19 0.00 −0.89 0.00 −0.01 0.00 −0.46

100,400,10FL −3.09 0.30 0.00 0.00 0.00 −2.13 0.00 −0.30

100,400,10FT 0.21 3.29 1.61 −1.17 −0.49 −12.21 0.60 −1.10

100,400,30VT 0.21 0.18 0.09 −0.16 0.01 0.00 0.02 −0.10

100,400,30FL 2.24 −0.61 0.16 −3.68 0.05 −5.03 0.40 −2.00

100,400,30FT 0.42 0.62 0.49 −2.05 −1.22 −3.33 −1.06 −4.43

30,520,100VL 0.71 −0.90 0.79 −1.00 0.39 0.02 0.21 −3.06

30,520,100FL −0.44 −6.50 1.04 −4.50 0.77 −0.19 0.59 −5.49

30,520,100VT 0.67 −1.02 0.18 −0.96 0.59 0.26 −0.12 −2.55

30,520,100FT −1.76 −6.82 −0.85 −6.22 −1.05 −1.00 −0.70 −4.72

30,700,100VL 0.43 −1.91 −0.40 −1.23 0.26 −0.07 0.00 −2.66

30,700,100FL 1.64 −2.96 1.14 −1.95 0.79 1.62 0.24 −5.32

30,700,100VT 0.78 −2.04 0.25 −1.64 0.08 −0.19 0.27 −2.98

30,700,100FT 0.75 −1.90 0.92 −4.26 −0.15 0.30 0.29 −3.22

30,520,400VL 0.38 −3.95 0.48 −5.14 0.61 1.65 −0.47 −2.19

30,520,400FL −1.94 −5.42 −0.72 −4.12 −0.17 2.93 0.09 −3.61

30,520,400VT 1.31 −2.91 0.99 −4.13 1.20 1.45 0.10 −4.57

30,520,400FT −7.87 −4.74 −2.38 −7.47 1.06 1.09 N/A −3.75

30,700,400VL −3.88 −5.21 −1.81 −6.87 0.51 1.26 −0.59 −3.95

30,700,400FL −20.45 −2.90 −13.90 −5.69 −11.28 1.49 2.29 −5.01

30,700,400VT 0.60 −4.06 0.22 −4.53 0.97 1.85 0.62 −3.19

30,700,400FT −8.01 −5.09 −5.45 −6.41 1.90 3.01 0.72 −4.41

Avg −0.89 −2.17 −0.31 −2.70 −0.38 −0.16 0.04 −2.46

Median 0.00 −1.90 0.00 −2.00 0.00 0.00 0.00 −2.66

MaxImprov −20.45 −6.82 −13.90 −7.47 −11.28 −12.21 −2.65 −5.49

LeastGap 2.24 3.29 1.82 0.30 1.90 3.01 2.29 0.00

Impr./43 23 39 22 42 22 22 23 43

ations show that our algorithm yields better quality solutions. In particular,

CEA produces solutions that are, on average, lower in cost by 0.89% as com-

pared to LocalB, 2.17% as compared to PR, 0.31% as compared to SACG1,

2.70% as compared to CTS, 0.38% as compared to IPS, 0.16% as compared to

CSH and 2.44% as compared to MCA. It yields results that are higher in cost

by only 0.04% on average as compared to SACG2. These extensive results in-

dicate that the performance of the CEA is competitive to the state-of-the-art

based on comparisons under different time limits.

The final set of comparisons relate to the computation times needed by the

CEA and other state-of-the-art algorithms to obtain the best solutions, which

are shown in Table 6. The times for the latter group have been adjusted using

the PCPUSs introduced in Table 4, such that an objective comparison can

30

Table 6: Computational times (in sec) and comparisons with the state-of-the-art

Instances CTS PR MCA CSH SACG2 IP CEA

CPU score 238 145 238x64 371 1985 3480 803

25,100,10VL 14.5 2.3 118.6 2.7 291.7 n/a 12.8

25,100,10FL 15.9 2.5 133.7 14.7 954.2 n/a 29.1

25,100,10FT 15.2 4.4 228.6 7.7 415.3 n/a 876.3

25,100,30VT 66.3 18.3 961.7 6.6 6081.1 n/a 127.7

25,100,30FL 63.8 13.6 713.2 30.5 2719.2 n/a 786.3

25,100,30FT 66.6 17.5 920.0 20.7 5811.6 n/a 48.0

20,230,40VL 109.8 26.9 1411.3 6.2 3087.5 151.7 1082.2

20,230,40VT 129.1 28.3 1488.1 6.8 487.0 39.0 123.8

20,230,40FT 125.5 31.1 1633.2 7.9 699.6 3523.3 965.2

20,300,40VL 181.2 40.6 2133.0 6.6 274.4 1430.1 108.2

20,300,40FL 172.5 41.2 2165.3 12.8 454.8 3839.7 378.9

20,300,40VT 174.8 44.8 2351.2 7.9 7326.9 3848.4 3456.1

20,300,40FT 166.1 38.7 2033.5 9.1 2585.7 17.3 267.2

20,230,200VL 789.3 450.5 23662.7 916.1 9942.3 177.7 3765.2

20,230,200FL 805.7 519.7 27299.0 3435.8 6145.3 195.0 4054.2

20,230,200VT 760.4 399.2 20969.1 1084.8 3391.6 3562.3 3300.3

20,230,200FT 924.8 611.4 32112.4 4028.0 2294.0 2994.6 3129.2

20,300,200VL 1211.3 643.9 33821.5 720.5 22561.8 3558.0 3245.8

20,300,200FL 1294.6 724.6 38057.2 2673.0 2491.8 676.1 4111.6

20,300,200VT 1128.6 708.6 37218.8 888.4 31898.4 82.3 3567.2

20,300,200FT 1380.4 696.5 36582.4 3567.8 24054.8 125.7 7823.1

100,400,10VL 99.7 16.1 846.0 12.0 44495.6 104.0 98.2

100,400,10FL 90.9 15.0 786.3 193.3 23103.1 294.7 567.2

100,400,10FT 185.7 37.9 1990.8 115.2 14295.5 3475.7 3782.1

100,400,30VT 585.5 89.0 4673.9 36.9 9868.1 2973.0 1987.0

100,400,30FL 385.5 56.9 2987.6 1287.9 10384.8 1681.5 4003.2

100,400,30FT 554.2 86.8 4561.1 318.9 16918.2 1716.2 12763.7

30,520,100VL 994.7 215.6 11325.4 55.7 44495.6 944.8 5323.5

30,520,100FL 1195.2 263.6 13847.3 842.4 34563.2 979.4 6234.2

30,520,100VT 1031.8 273.3 14356.6 77.3 44495.6 1971.9 12878.2

30,520,100FT 1164.0 275.0 14441.9 413.8 35314.7 3532.0 3678.1

30,700,100VL 1303.0 336.0 17646.7 79.8 61.8 1707.5 4100.8

30,700,100FL 1409.3 331.8 17427.6 237.3 42.0 3250.3 12345.2

30,700,100VT 1351.6 342.0 17964.5 95.9 71.7 2691.3 4801.2

30,700,100FT 1442.3 308.1 16181.4 200.6 160.7 2019.5 11432.2

30,520,400VL 10827.3 4961.7 260607.6 1177.0 182.9 138.7 15328.2

30,520,400FL 12723.8 6621.5 347787.5 5409.3 496.9 3211.3 12333.2

30,520,400VT 8362.3 4169.3 218987.0 476.6 402.9 1607.8 4234.3

30,520,400FT 11858.8 9421.1 494833.2 3468.7 479.6 1677.2 6453.5

30,700,400VL 7355.4 4029.4 211643.2 983.9 417.8 962.1 6345.7

30,700,400FL 20610.9 13663.0 717638.7 3694.6 1058.0 3727.0 3456.3

30,700,400VT 10366.2 4385.9 230366.5 1552.3 2316.2 1581.8 10053.2

30,700,400FT 15376.0 8114.3 426196.3 3081.6 2983.7 975.1 12342.8

Avg 2764.4 1466.9 77049.1 959.7 9780.9 1768.8 4553.3

be made. As CEA outperforms CTS, PR and MCA in terms of the solution

quality, the main focus will be on comparisons with CSH, SACG2 and IP. As

Table 6 shows, CEA needs 47% less running time than SACG2 on average, for

producing solutions that deviate by 0.04% from the ones produced by SACG2.

Lastly, the version of CPLEX we use (12.6) is estimated to be 10% faster

than versions 9.1 and 11 (internal communication with IBM). Nevertheless, to

be able to conduct further comparisons the number of times that the state-of-

the-art algorithms call CPLEX should be known. At any case, 10% difference,

regarding CPLEX speed, is typically considered to be small, so that it can be

ignored.

5. Conclusions and Further Research

This paper presented an evolutionary algorithm for the Fixed Charge Ca-

pacitated Multi-Commodity Network Design Problem. The proposed method-

31

ology evolves a pool of solutions using Scatter Search principles, and includes

an Iterated Local Search as an improvement method. The latter introduces

new cycle-based neighbourhood structures, short and long term memory struc-

tures for guiding the search, and an efficient perturbation strategy, inspired

by Ejection Chains, to enable the search escape from local optima. An ef-

ficient recombination strategy is introduced which dynamically adjusts the

preferences for inherited solutions based on the search history.

Computational experiments on the benchmark instances of Crainic et al.

(2000) show that the proposed CEA is highly competitive compared to state-

of-the-art approaches. In particular, CEA is able to reproduce the 13 out

of 17 optimum solutions for 17 problem instances previously solved by exact

algorithms. CEA was also able to produce three new best solutions, in large-

scale problem instances. In general terms, CEA’s performance is strong, thus

placing it among the most efficient algorithms for the MCNDP.

In terms of further research, a promising research direction is the use of a

knowledge base where favourable paths for the commodities would be stored

not only for speeding up the algorithm but also for guiding the algorithm

towards producing unexplored solution structures. Another direction is to

look at decomposition techniques to solve the flow subproblems with a view

to reducing the computational times. Finally, it is worthwhile to explore the

proposed evolutionary algorithm for solving other variants of the MCNDP or

even to other problems that share common features with MCNDP.

Acknowledgements

Thanks are due to the anonymous reviewers for providing valuable com-

ments on an earlier version of the paper. The authors gratefully acknowledge

the following sources of funding for this project: the Engineering and Physi-

cal Sciences Research Council (EPSRC), the Rail Safety and Standards Board

(RSSB) and Department of Transport, UK, the Natural Sciences and Engi-

neering Council of Canada (NSERC) through its Discovery Grant programs,

the Faculty Strategic Research Fund provided by the Faculty of Business and

Law at the University of Southampton, Fonds de recherche du Québec, Canada

for their infrastructure grants.

References

Alvarez, AM, JL González-Velarde, K De-Alba. 2005. Scatter search for net-

work design problem. Annals Oper. Res. 138 159–178.

32

Balakrishnan, A, TL Magnanti, P Mirchandani. 1997. Network design.

F Dell’Amico, M Maffioli, S Martello, eds., Bibliographies in Combinato-

rial Optimization. John Wiley and Sons, 311–334.

Crainic, TG, M Gendreau, J Farvolden. 2000. A simplex-based tabu search

for capacitated network design. INFORMS J. Comput. 12 223–236.

Crainic, TG, A Frangioni, B Gendron. 2001. Bundle-based relaxation methods

for multicommodity capacitated fixed charge network design. Discrete Appl.

Math. 112 73–99.

Crainic, TG, M Gendreau. 2002. Cooperative parallel tabu search for capaci-

tated network design. J. Heur. 8 601–627.

Crainic, TG, M Gendreau. 2007. A scatter search heuristic for the fixed-

charged capacitated network design problem. Doerner, KF, M Gendreau,

P Greistorfer, WJ Gutjahr, RF Hartl and M Reimann, ed., Metaheuristics

- Progress in Complex Systems Optimization. Springer, 25–40.

Crainic, TG, Y Li, M Toulouse. 2006. A first multilevel cooperative algorithm

for capacitated multicommodity network design. Comput. Oper. Res. 33

2602–2622.

Dongarra JJ. 2014. Performance of Various Computers Using Standard Linear

Equations Software. CS - 89 - 85, University of Manchester .

Feo, TA, MGC Resende. 1995. Greedy Randomized Adaptive Search Proce-

dures. J. Global Optim. 6(2) 109–133.

Fischetti M, Lodi A. 2003. Local branching. Math. Programming 98 23–47.

Frangioni, A, B Gendron. 2001. 0–1 Reformulations of the multicommodity

network design problem. Discrete Appl. Math. 112 73–99.

Gendron B, TG Crainic, A Frangioni. 1998. Multicommodity capacitated

network design. P Soriano, B Sanso, eds., Telecommunications Network

Planning . Kluwer, 1–19.

Ghamlouche, I, TG Crainic, M Gendreau. 2003. Cycle-based neighbourhoods

for fixed-charge capacitated multicommodity network design. Oper. Res.

51 655–667.

Ghamlouche, I, TG Crainic, M Gendreau. 2004. Path relinking, cycle-based

neighbourhoods and capacitated multicommodity network design. Annals

Oper. Res. 131 109–134.

33

Glover, F. 1996. Ejection chains, reference structures and alternating path

methods for traveling salesman problems. Discrete Appl. Math. 65 223–

253.

Hewitt M, GL Nemhauser, MWP Savelsbergh. 2010. Combining exact and

heuristic approaches for the capacitated fixed-charge network flow problem.

INFORMS J. Comput. 22(2) 314–325.

Hewitt M, GL Nemhauser, MWP Savelsbergh. 2012. Branch and price guided

search for integer programs with an application to the multicommodity

fixed-charge network flow problem. INFORMS J. Comput. Articles in

advance 1–15.

Holmberg, K, D Yuan. 2000. A Lagrangian heuristic based branch-and-bound

approach for the capacitated network design problem. Oper. Res. 48 461–

481.

Katayama, N, M Chen, M Kubo. 2009. A capacity scaling heuristic for the

multicommodity capacitated network design problem. J. Comput. Appl.

Math. 232 90–101.

Lourenço, HR, O Martin, T Stützle. 2002. Iterated local search. Dorigo M

Corne D, Glover F, eds., Handbook of Metaheuristics: International Series

in Operations Research & Management Science. Kluwer, 321–353.

Magnanti, TL, RT Wong. 1986. Network design and transportation planning:

models and algorithms. Transportation Sci. 1 1–55.

Minoux, M. 1986. Network synthesis and optimum network design problems:

models, solution methods and applications. Networks 19 313–360.

Paraskevopoulos DC, CD Tarantilis, G Ioannou. 2012. Solving Project

Scheduling Problems with Resource Constraints via an Event List-based

Evolutionary Algorithm. Expert Systems Appl. 39(4) 3983–3994.

Rodŕıguez-Mart́ın I, Salazar-González JJ. 2010. A local branching heuristic

for the capacitated fixed-charge network design problem. Comput. Oper.

Res. 37(3) 575–581.

Yaghini M, M Rahbar, M Karimi. 2013. A hybrid simulated annealing and col-

umn generation approach for capacitated multicommodity network design.

J. Oper. Res. Soc. 64 1010–1020.

34

