
 1 

Using Electrochemical SERS to Measure the Redox 

Potential of Drug Molecules Bound to dsDNA – a 

Study of Mitoxantrone 

Marta Meneghello,
‡
 Evanthia Papadopoulou,

†
 Paolo Ugo,*

‡
 and Philip N. Bartlett*

†
 

†
Chemistry, University of Southampton, Southampton, SO17 1BJ, UK  

‡
Department of Molecular Sciences and Nanosystems, University Ca'Foscari of Venice, via 

Torino 155, 30172 Venezia Mestre (Italy) 

 

KEYWORDS: Electrochemical SERS, Mitoxantrone, dsDNA, Redox reaction 

 

Abstract 

Interaction with DNA plays an important role in the biological activity of some anticancer drug 

molecules. In this paper we show that electrochemical surface enhanced Raman spectroscopy at 

sphere segment void gold electrodes can be used as a highly sensitive technique to measure the 

redox potential of the anticancer drug mitoxantrone bound to dsDNA. For this system we show 

that we can follow the redox reaction of the bound molecule and can extract the redox potential 
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for the molecule bound to dsDNA by deconvolution of the SER spectra recorded as a function of 

electrode potential. We find that mitoxantrone bound to dsDNA undergoes a 2 electron, 1 proton 

reduction and that the redox potential (-0.87 V vs. Ag/AgCl at pH 7.2) is shifted approximately 

0.12 V cathodic of the corresponding value at a glassy carbon electrode. Our results also show 

that the reduced form of mitoxantrone remains bound to dsDNA and we are able to use the 

deconvoluted SER spectra of the reduced mitoxantrone as a function of electrode potential to 

follow the electrochemically driven melting of the dsDNA at more negative potentials. 

1. Introduction 

 The biological and therapeutic activities of many compounds of pharmacological interest, 

including anticancer drugs [1] and antibiotics [2], correlate with their ability to bind to, or 

intercalate into, double stranded (ds) DNA. Consequently the interaction of drug molecules with 

dsDNA has been widely studied using a variety of techniques including circular dichroism, infra-

red, Raman and UV-visible spectroscopies, NMR, SFM, mass spectrometry, and electrochemical 

techniques including potentiometry, cyclic voltammetry and differential pulse voltammetry, see 

Rauf et al. [3] and Sirajudin et al. [4] for recent reviews. These literature studies focus on the 

modes of binding of the drug molecule to the dsDNA, intercalation and/or minor and major 

groove binding and the binding constant for the drug molecule.  

In addition, due to the ability of intercalators to selectively interact with dsDNA, they 

have been widely used as indicators for DNA hybridization utilizing fluorescence [5, 6], surface-

enhanced Raman spectroscopy (SERS) [7] and electrochemical measurements [8-10]. An 

intercalator allows a “label free” DNA analysis because it selectively binds to the dsDNA, 
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removing the need to covalently attach the optical or electroactive indicator on the DNA 

sequence using complicated chemistry.  

Many anticancer drugs are redox active and this redox activity is biologically important 

[1, 11].  For example anthracyclines are a class of anthraquinone derived drugs used in cancer 

therapy that can inhibit DNA and RNA synthesis after intercalation between the oligonucleotide 

bases [12, 13]. It has been reported that the one-electron reduction of quinone anticancer drugs is 

more damaging at a biological level because of the possibility of associated generation of 

reactive oxygen species [1]. In order to improve the understanding of the role of these 

interactions in the therapeutic action of these anti-cancer drugs, it is therefore important to be 

able to study how the properties of an electroactive intercalator change with its binding to DNA 

and/or as a consequence of changes in the redox state of the intercalator itself. Electrochemistry 

has been widely used both to study the redox reactions of anticancer drugs in solution and to 

study their interaction with DNA [2, 3, 14].   

 In this study we used the anticancer drug mitoxantrone (MTX) as a model compound to 

demonstrate the possibility of using electrochemical SERS as a very sensitive technique to study 

the redox behaviour of a drug molecule bound to dsDNA. MTX is an anthracycline analogue, 

Figure 1, and is one of the most promising anticancer drugs due the planar heterocyclic ring 

structure and side chains that allow interaction with dsDNA [15-17]. It has major clinical value 

in the treatment of certain types of cancer, such as lymphoma, acute leukaemia as well as ovarian 

and breast cancer [18-20]. MTX can be reduced enzymatically in living organism as well as in 

vitro at the electrode surface via one-electron or two-electron reduction processes [21]. The 

interactions of MTX with DNA and the electrochemistry of MTX have been extensively studied.  

For example the binding of MTX to dsDNA has been studied by UV-vis spectroscopy [15, 22-
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25], FTIR [22], Raman [25, 26], circular dichroism [22, 23], fluorescence [23, 25], mass 

spectrometry [27], and calorimetry [28]. Electrochemical techniques have been used to study the 

redox reactions of MTX in solution, generally at carbon electrodes [29, 30], and to study the 

binding of MTX to dsDNA either in solution [25, 31, 32] or by using DNA modified electrodes 

[33, 34].  For example Oliveira Brett et al. [34] studied the electrochemistry of DNA modified 

glassy carbon electrodes with and without MTX present.  The glassy carbon electrodes were 

modified by drying solutions of either single stranded or double stranded DNA on the surface.  

In the presence of MTX they found enhanced signals by differential pulse and square wave 

voltammetry for the oxidation of DNA bases, guanine and adenine, indicating DNA damage over 

several hours. Li et al. [25] studied the electrochemistry of MTX in solution with dsDNA using 

linear sweep voltammetry at glassy carbon.  On addition of dsDNA they saw a significant 

decrease in the amplitude of the MTX reduction current and a small positive shift in the peak 

position.  A similar effect is reported by Wang et al. [32] in their study using a waxed graphite 

working electrode. In both cases the shift is not quantified and is difficult to interpret as the 

voltammetry was irreversible. 

Figure 1 here 

 

 Our approach builds on, and extends, earlier work using methylene blue as a binding 

agent to detect DNA hybridization and discrimination of mutations in the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene utilizing an electrochemical melting 

procedure monitored by SERS [7]. In those studies, dsDNA was bound on a sphere segment void 

(SSV) surface and then exposed to a solution of methylene blue to bind to the double stranded 

DNA. SSV surfaces are thin, structured gold films with a regular array of spherical segment 
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cavities that provide tuneable and reproducible SERS enhancements and can also be used as 

electrodes [35, 36]. The binding of methylene blue to the double stranded DNA was monitored 

by recording the SERS signal of the intercalator bound to the DNA. Application of increasingly 

negative potential causes DNA denaturation, which is monitored by the changes in the intensity 

of methylene blue SERS spectra. As with many DNA binders, methylene blue is 

electrochemically active, therefore application of a negative potential causes its reduction to 

leucomethylene blue which has a different spectral signature compared to the oxidised form. For 

methylene blue the reduction occurs before the denaturation process, allowing the SERS 

intensity of the reduced form, leucomethylene blue, to be used to follow the electrochemically 

driven melting of the dsDNA. 

 In the present work we demonstrate the ability to use the electrochemical SERS to follow 

the redox reaction of the anticancer drug mitoxantrone when bound to dsDNA. This is a 

challenging goal since, in contrast with methylene blue, the MTX reduction process overlaps 

with the denaturation of the dsDNA. We show that we can still monitor the reduction process by 

monitoring the changes of the Raman spectra of the oxidised form of MTX. The results are 

correlated with the redox behaviour of mitoxantone measured by differential pulse voltammetry. 

Finally, we demonstrate that the MTX reduction and dsDNA melting can be well separated by 

operating at pH 5.  

2. Experimental Section 

 All reagents used were of analytical grade and obtained from Sigma-Aldrich unless 

otherwise stated. Oligonucleotide synthesis was performed using standard methods by ATDBio 

Southampton, United Kingdom. The DNA probe (Table 1) had a three di-thiol linker at the 5’ 
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end. This linker is chosen to ensure that the DNA probe remains attached to the electrode at high 

cathodic potentials. 

Table 1 here 

 

2.1 Preparation of Sphere Segment Void (SSV) Substrates. The fabrication and application of 

SSV substrates for SERS has been extensively described in the literature (see, for example, 

Abdelsalam et al. [35] and Cintra et al. [36]). In the present work an SSV surface fabricated 

using 600 nm sphere voids in a 480 nm thick film was selected as the plasmonics of this gold 

surface in aqueous solution are well suited to application with the 633 nm excitation used [37-

39]. To prepare the SSV substrates a gold-chrome coated microscope slide was prepared by 

thermal vapour deposition of a 10 nm chromium adhesion layer followed by approximately 200 

nm of gold onto a standard glass microscope slide. A monolayer template of 600 nm polystyrene 

spheres (Fisher Scientific as a 1% wt aqueous suspension) was formed at the surface using a 

convective assembly method. Gold was deposited through the template to a height of 480 nm at -

0.72 V vs. SCE from a commercial gold plating solution (ECF 60, Metalor) containing 100 µL 

brightener (E3, Metalor) in 20 mL of plating solution. After deposition, the polystyrene spheres 

were removed by immersion in dimethylformamide (Rathburn, HPLC) for 30 min and the 

substrates were rinsed in deionised water before immediate use. 

2.2 DNA hybridization, binding with MTX and immobilisation on the SSV substrates. A 

solution with both the DNA probe (5 µM) and target (10 µM) in 10 mM Tris buffer (pH 7.2), 

containing 0.3 M NaCl, was prepared and heated until 90 °C for 5 min; then 50 µM MTX was 

added. After slow cooling down to room temperature, the solution was diluted 1:5 with 10 mM 
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Tris/1 M NaCl buffer (pH 7.2) and SSV substrates were immersed in it for 24 h in order to allow 

the immobilization of the duplex DNA. Finally the substrates were passivated with 1 mM 

mercaptohexanol for 30 min, then washed with the buffer and kept in the Tris buffer until Raman 

spectra were recorded. 

2.3 Electrochemical SERS Measurements. Electrochemical SERS experiments were carried 

out in a custom-built spectro-electrochemical Raman cell (Ventacon Ltd.) specifically designed 

for use with a Renishaw 2000 Raman microscope. It utilizes a horizontal geometry for viewing 

under the microscope, maintaining a thin 150 µL liquid film on the substrate. Electrochemical 

control is provided by a three-electrode arrangement inside the cell, where the SSV substrate is 

used as the working electrode, a platinum wire as the counter electrode and a silver/silver 

chloride pellet as the reference electrode (E(vs. SCE) = E(vs. Ag/AgCl) + 45 mV, value 

measured experimentally), Figure 2. In a typical electrochemical SERS experiment, the potential 

was swept at 1 mV/s from a starting potential of -0.3 to −1.3 V in 10 mM Tris buffer/0.1 M NaCl 

(pH 7.2). All electrochemical measurements were carried out using an EcoChemie AutolabIII 

potentiostat/galvanostat at room temperature. 

Figure 2 here 

2.4 Raman instrumentation. Raman spectra were acquired using a 50× objective on a 

Renishaw 2000 microscope instrument equipped with a 633 nm He-Ne laser and Prior XYZ 

stage controller. The laser power was 2.3 mW, spectra were recorded with an exposure time of 

10-15 s and a spot size of 5 m. 

2.5 Data analysis. SERS spectra presented were baseline-corrected using a polynomial 

multipoint fitting function in Origin 9.1. The Raman intensities of the peaks are taken as height 
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above the baseline. A sigmoidal function was used to fit the melting profiles (Origin 9.1) and the 

first derivative of the fits was used to determine the melting points (inflection points of the 

melting curves). See below for details. 

2.6 UV-visible absorption spectra. A solution with 50 µM MTX alone and one with 50 µM 

MTX and dsDNA (25 µM probe/50 µM target) were prepared in 10 mM Tris buffer (pH 7.2) 

containing 0.1 M NaCl. UV-visible absorption spectra were recorded using a spectrophotometer 

Varian (50 Probe). The baseline was subtracted using the Tris buffer as blank. 

2.7 Differential Pulse Voltammetry. DPV experiments of MTX were performed at four 

different pH (5, 6.2, 7.2 and 9) using buffered solutions containing 10 mM acid/base and 0.1 M 

NaCl. Homemade glassy carbon electrodes (3 mm diameter, 0.071 cm
2
 area) were polished by a 

standard procedure before each experiment: rubbed on metallographic abrasive paper (1200) and 

on polishing cloths (Bluehler) with alumina slurries (1.0 and 0.3 µM), followed by sonication in 

ethanol for 15 min. MTX was adsorbed on the surface of mirror like glassy carbon electrodes by 

dropping 4 µL aliquots of 1 mM MTX in ethanol on the electrode surface. The solvent was 

allowed to evaporate at room temperature for some minutes before the electrode was placed in 

the three-electrode cell with a homemade SCE as reference and a platinum mesh as counter 

electrode. The cell, connected to an Autolab PGSTAT30 potentiostat/galvanostat, was filled with 

20 mL of the chosen buffer and deoxygenated by bubbling argon gas for 20 min. Three 

differential pulse voltammograms were acquired for each pH, using the Nova 1.6 software. The 

potential was scanned from -0.5 to -1 V using a modulation amplitude of 50 mV, a step potential 

of -5 mV and a step time of 0.5 s. 

3. Results and Discussion 



 9 

3.1 Absorption spectra. Figure 3 shows the visible absorption spectra of mitoxantrone in Tris 

buffer at pH 7.2: absorbance maxima of free MTX are located at 660 and 610 nm with a shoulder 

at 565 nm. It is well established that the absorption bands of the anthraquinone chromophore, 

usually in the visible region, are attributed to substitution of the anthraquinone ring by electron-

donating substituents such as amino and hydroxyl groups [24]. In the MTX molecule, both 

hydroxyl and amino groups are present, and the absorbance bands can be attributed to the charge 

transition from the hydroxyl and amino substituents on the anthraquinone ring to the ring itself 

[22, 26]. When the MTX-DNA complex is formed, a bathochromic shift (red shift) of 20 nm is 

observed for both absorbance maxima, which move to 630 and 680 nm respectively (Figure 3, 

dotted line). The observed red shift agrees with previous literature reports [22, 25] and is 

consistent with reduced hydrogen bonding of the ring substituents upon binding to DNA; a 

similar bathochromic shift is observed for free MTX when using solvents with decreasing 

polarity [26]. 

 Another phenomenon observable in Figure 3 is the change in intensity of the two main 

bands: upon binding to DNA, the band at 610 nm decreases, while the one at 660 nm increases. 

This effect has not been previously reported for MTX-DNA complexes, but Volanschi et al. 

reported that the shape of the MTX absorption spectrum is dependent on its concentration as a 

consequence of the formation of molecular aggregates in solution [40]; the band at 660 nm was 

assigned to the monomer and the band at 610 nm to the dimer of MTX. Such a role for the 

possible dimerization of MTX in concentrated solutions is confirmed by the evidence that at very 

low concentrations (up to 10 µM) the intensity of both absorption maxima is comparable (see 

also Fig. 4 in [25]), but with increasing concentration the band at 610 nm becomes more intense 

than the 660 nm band because of the formation of the dimer (this is the case in the free MTX 
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spectrum in Figure 3). Most probably, when MTX intercalates into dsDNA, the prevalent form is 

the monomer, so that the band at 660 nm (shifted to 680 nm by interaction with the dsDNA) 

strongly increases in intensity. 

 In the present context, it is worth noting that the absorbance maximum is always located 

between 600 and 700 nm and, consequently will be in resonance with the 633 nm laser used in 

our Raman experiments leading to a significant resonance contribution to the surface 

enhancement at the SSV substrates. Note that, at the same time, any fluorescence from the MTX 

will be heavily quenched due to the proximity of the molecule to the gold SSV surface.   

Figure 3 here 

3.2 SERS Spectra. SSV substrates with immobilised dsDNA and MTX as intercalator were 

prepared as described in the Experimental section. Note that in our experiments the dsDNA is 

held at the gold surface by six gold thiol bonds provided by the three dithiol groups joined to the 

DNA by a hexaethyleneglycol spacer (see Table 1).  This ensures flexibility in the linkage of the 

dsDNA.  The surface coverage is also low [41-43] (around 3 pmol cm
-2

) to minimise interactions 

between adjacent dsDNA strands. Under these conditions we expect the interaction of the MTX 

with the dsDNA to be similar to that in free solution. 

Figure 3 shows a typical SERS spectrum of MTX intercalated into dsDNA at an SSV 

substrate. Control experiments showed that, although MTX adsorbed on bare gold gave strong 

SER spectra, when the gold surface was coated in mercaptohexanol this was greatly suppressed 

(typically the spectra were around 40 times less intense at the mercaptohexanol coated surface). 

When SSV gold surfaces were modified with ssDNA and mercaptohexanol the MTX SER 

spectra were again either weak or not evident.  In all cases MTX spectra for control electrodes 
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coated in mercaptohexanol, or ssDNA and mercaptohexanol, were >25 times less intense than 

those for the dsDNA modified electrodes discussed below indicating that for the dsDNA 

modified electrodes the spectra come from MTX associated with the dsDNA and not from MTX 

simply adsorbed at the electrode surface or associated with ssDNA.  The spectra are in good 

agreement with published SER spectra for MTX at Ag colloids [44, 45]. The SERS signals for 

MTX are very intense, in particular the peak at 1300 cm
-1

, which is used to monitor the changes 

in MTX Raman intensity in the experiments showed below. It is worth noting that the surface 

enhanced (resonant) Raman technique gives very high sensitivity - based on the laser spot size 

and the DNA surface coverage we estimate that the spectrum is acquired from around 20,000 

dsDNA molecules. On the basis of previous studies [26, 44] the MTX bands were assigned as 

follows: 1300 cm
-1

 ring stretch mode coupled with ν(C-O) mode of ring A; 1360 cm
-1

 ν(C-O) 

motions coupling the vibration with the chelate system of the chromophore; 1445 and 1495 cm
-1

 

ν(C=C) motions; 1565 cm
-1

 ring stretch vibration of the phenolic ring; 1642 cm
-1

 ν(C=O) mode. 

Figure 4 here 

Figure 5 here 

 Figure 5 shows a typical set of SERS spectra of mitoxantrone collected in the course of 

an electrochemical SERS experiment scanning the potential between -0.6 and -1.2 V (vs. 

Ag/AgCl). In each experiment, the potential was ramped from a starting potential of -0.3 V to a 

final potential of -1.3 V (vs. Ag/AgCl), at a scan rate of 0.8 mV/s, and SER spectra were 

recorded every 25 mV. Upon application of the cathodic scan, the spectral intensity of MTX 

initially increases reaching the intensity maximum around -0.75 V and then decreases sharply. 

The initial increase in intensity is reversible and can be attributed to a change in the orientation 
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of the dye molecules with respect to the SSV surface, as a consequence of a potential-dependent 

change in the orientation of the DNA strands, as previously reported by Bartlett et al. [42]. On 

the other hand, the decrease in SERS signal at higher cathodic potentials (from around -0.8 V) is 

irreversible but does not arise from reductive desorption of the probe strands from the electrode 

surface (see below). Indeed, by using DNA probes designed with six thiols at the 5’ end, 

reductive desorption does not become significant until the potential is taken more negative 

than -1.3 V vs. Ag/AgCl. This has been confirmed in earlier work showing that the target strands 

can be re-hybridised to the surface and SERS signal recovered [42]. 

 If we look more closely at the spectra and compare those around -0.8 V with those at the 

more cathodic potentials (Figures 5 and 6), we can see that, in addition to the significant decrease 

in the intensity of the major band at 1300 cm
-1 

together with a slight shift to lower wavenumber, 

there are significant changes in the relative intensities of the other bands. The band at 1642 cm
-1

, 

attributed to the C=O stretching mode, disappears after -0.9 V: this would be consistent with 

reduction of the quinone groups of the anthraquinone ring at negative potential (see Scheme 1). 

Moreover, as shown in Figure 6, when the applied potential is around -0.9 V, a new band at 1340 

cm
-1

 appears and, sweeping the potential toward more negative values, it becomes more intense 

compared with the main band at 1300 cm
-1

. The band at 1340 cm
-1

 can be assigned to the 

aromatic ring stretching of the anthracene structure, since the reduction of MTX leads to gain of 

aromaticity between all the three rings. According to several authors, the main peak of 

anthracene is around 1400 cm
-1

 [46-48], but it shifts to increasingly lower frequencies when the 

aromatic rings are substituted with more electron-donor groups, as in the case of MTX. 

Therefore, we attribute these changes to the reduction of the intercalated MTX.  
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 Unfortunately, there are no Raman or SERS spectra for the reduced form of MTX 

reported in the literature. However, the changes in the absorption spectra after chemical 

reduction of MTX, as reported by Enache et al. [31], indicate that we expect a reduced 

contribution from resonance in the SER enhancement upon reduction, consistent with our 

interpretation here. Indeed, by increasing the concentration of tetrabutylammonium hydroxide 

during the reduction, the absorbance maximum of MTX shifts toward higher wavelength, 

resulting in a considerable decrease of the absorbance at 633 nm [31]. 

Figure 6 here 

 The changes in intensity of the main MTX peak at 1300 cm
-1

 can be plotted as a function 

of the applied potential (Figure 7) and fitted with the following sigmoidal function 

   𝐼 = 𝐼max +
𝐼𝑚𝑖𝑛−𝐼max

(1+𝑒
𝐸−𝐸m
d𝐸 )

       (1) 

where I is the absolute spectral intensity of the band at 1300 cm
-1

 at the applied potential E; Imin 

and Imax are the average intensity values at the plateaux for the sigmoidal curve; Em is the half 

wave potential when I equals (Imax – Imin) /2, and dE is a constant that describes the sharpness of 

the curve (the gradient of the curve at Em is (Imax – Imin) /4dE). The data from each experiment 

were normalised to their respective Imax values before plotting the melting curves to allow direct 

comparison. Note that the half wave potential in Figure 7 is -875 mV vs. Ag/AgCl (average of 

three replicate measurements). This is more positive of the electrochemically driven melting 

potential measured for the same DNA sequence in previous work by our group (-990 mV vs. 

Ag/AgCl) using the target strand labelled with Texas Red, therefore we do not believe that the 

decrease in SERS intensity seen around -875 mV in the present experiments can be accounted 
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for by electrochemically driven melting of the dsDNA and loss of the intercalator from the 

electrode surface. We return to this point below. To support this interpretation, we investigated 

the pH dependence of the electrochemical SERS, since we know from the literature that the 

redox reaction for a quinone should be strongly pH-dependent [49], whereas the 

electrochemically driven melting of dsDNA is not [50]. 

Figure 7 here 

 

3.3 Effect of pH on MTX reduction. It is well-known that in buffered aqueous media at acidic, 

neutral and alkaline pH, anthraquinones and other para-quinones undergo reversible two-

electron, one proton or two proton reduction [51] in which the reduction potential changes with 

pH in a straightforward Nernstian manner [49]. For comparison, electrochemical SERS 

experiments with intercalated MTX were performed by using buffered solutions at pH 5 and 9, in 

addition to the typical pH used in DNA melting experiments, which is 7.2. The sigmoidal curves 

obtained at the three different pH are well separated from each other. In order to deconvolute the 

spectra at each pH and separate out effects of the redox reaction of the intercalated MTX from 

possible electrochemically driven melting of the dsDNA and loss of intercalated MTX or 

reduced MTX, the spectra acquired during the electrochemical SERS experiments (xmix) were 

fitted with the following equation 

𝐱mix = 𝐴𝐱ox + 𝐵𝐱red + 𝛆      (2) 

where A and B are constants at each pH and potential, the arrays xox and xred (pairs of Raman 

shift and corresponding intensity data recorded at 1 cm
-1

 intervals from 1200 to 1700 cm
-1

) are 

the spectra of the oxidised and reduced forms of MTX, respectively, and  are the residuals. For 
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the spectra for the oxidised form, xox, at each pH the spectra at -0.675 V for pH 5, -0.75 V for pH 

7 and -0.825 V for pH 9 were used. For the spectra for the reduced form, xred, at each pH the 

spectra at -0.975 V for pH 5, -1.05 V for pH 7, and -1.15 V for pH 9, in which the band at 1340 

cm
-1

 is clearly visible were used. Note that the parameters A and B were allowed to vary 

independently of each other. 

 The parameter A, which describes the proportion of oxidised MTX, can be plotted versus 

the applied potential to monitor the reduction process of MTX. Figure 8 shows the plots of 

parameter A at different pH: it shows the decrease in MTX oxidised form as the potential is 

swept negative. The three curves for the three different pH are well separated but have the same 

general shape and similar values for dE (22 mV). By fitting the data of each curve to equation (1) 

we obtain half wave potentials of -780, -870 and -950 mV (vs. Ag/AgCl) for pH 5, 7.2 and 9, 

respectively. These values should correspond to the pH dependent formal reduction potentials for 

the intercalated mitoxantrone and can be compared to those obtained by differential pulse 

voltammetry (see below).  

Figure 8 here 

 In the same way, the reduction of MTX can be monitored by the increment of parameter 

B (increment of reduced form) in the same potential range in which the parameter A decreases. 

3.4 DPV measurements. Preliminary cyclic voltammetric measurements with a glassy carbon 

disk electrode in 500 µM MTX in 10 mM Tris buffer, 1 M NaCl, pH 7.2 (results not shown), 

indicate that MTX undergoes a reversible (or slightly quasi-reversible) two-electron reduction 

process with E1/2 = (Epc + Epa)/2 =  -0.770 V vs. SCE, ΔEp = Epc - Epa  equal to ≈35 mV at a scan 

rate of 0.1 V/s and  42 mV at 1.0 V/s, and with a reduction peak current which scales linearly 
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with the square root of the scan rate (from 0.1 to 1.0 V/s). On this basis, in order to study the 

dependence of the MTX reduction potential on pH, we performed a series of differential pulse 

voltammetric measurements. DPV signals were recorded at different pH for MTX deposited by 

drop casting on glassy carbon electrodes (solubility in water is 89 mg/mL), Figure 9. The 

reduction peak potential shifts cathodic with increasing pH by approximately 30 mV/pH unit and 

at pH 7.2 the peak potential is -0.790 V vs. SCE, corresponding to a formal potential for the 

adsorbed MTX of -0.760 V vs. SCE taking account of the DPV pulse amplitude (using Ep = E°’ - 

ΔEp/2, where ΔEp is the pulse amplitude, 0.05 V). This value is in good agreement with the 

formal potential of the MTX evaluated above by cyclic voltammetry from the mid-peak 

potential. 

Figure 9 here 

These results indicate that, in the pH range investigated here, the reduction of MTX 

follows a two-electron, one-proton mechanism, Figure 10. 

Figure 10 here 

Figure 11 shows a comparison of the formal potentials for the intercalated MTX derived from 

the analysis of the electrochemical SERS data and for the MTX adsorbed on glassy carbon 

obtained from the DPV experiments as a function of solution pH. Both sets of data show 

essentially the same shift with pH, around 30 mV per pH unit, consistent with a 2e
-
/1H

+
 redox 

reaction. There is an approximately constant offset between the two with the formal potentials 

obtained from the electrochemical SERS experiments for the intercalated DNA shifted by 110 to 

120 mV to more negative potentials. It is not surprising that the values are different given the 

different environments of the MTX in the two cases. The cathodic shift indicates that 
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intercalation in dsDNA stabilises the oxidised form, relative to the reduced form, more than 

adsorption on the GC surface. The stabilisation effect of MTX on the double stranded DNA is 

discussed below. 

Figure 11 here 

 The results presented so far show that we can obtain the redox potential for MTX bound 

to dsDNA by deconvolution of the SER spectra for the oxidised and reduced forms of MTX as a 

function of potential.  The results also demonstrate that the reduced form of MTX remains bound 

to the dsDNA at the surface since we see SERS for this species at the more negative potential. 

3.5 E-melting. At more negative potentials the SERS signal for MTX around 1300 cm
-1

 falls to 

zero (see for example Figure 7 at potentials beyond -1.05 V vs. Ag/AgCl). This corresponds to 

the electrochemically driven melting (E-melting) of the dsDNA and subsequent loss of the 

intercalated reduced MTX from the SSV surface. We can follow this process using the results for 

the parameter B from our deconvolution of the spectra using equation (2) since this corresponds 

to the contribution from the reduced MTX. Figure 12 shows a plot of B as a function of the 

applied potential for the three different pH. It is pleasing that three sets of data are essential 

identical, as expected if the E-melting of the dsDNA is pH-independent.  

 The solid curves were obtained by fitting the B values to equation (1) and give a melting 

potential, Em, of around -1.12 V vs. Ag/AgCl. The E-melting potential measured in other work of 

our group for this same DNA sequence labelled with Texas Red was -0.99 V vs. Ag/AgCl. The 

cathodic shift in melting potential of 120 mV seen with MTX is consistent with the generally 

observed stabilisation of dsDNA by interaction with intercalating agents [52]. Indeed, thermal 

melting studies showed that the melting temperature increases when intercalators were inserted 
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into the DNA duplex, and that this increase is even sharper when two or more molecules are 

bound to the same oligonucleotide because of a cooperative stabilization [53, 54]. 

Figure 12 here 

4. Conclusions. 

 Our results show that electrochemical SERS at sphere segment void electrodes is a highly 

sensitive technique to probe the interaction of drug molecules, such as mitoxantrone, with double 

stranded DNA. We have shown that we can follow the redox reaction of the bound molecule 

using spectra acquired from around 20,000 dsDNA molecules, and that we can extract the redox 

potential for molecule in the bound state by deconvolution of the spectra. 

 For mitoxantrone we find that the redox potential for the molecule bound to dsDNA 

is -0.87 V vs. Ag/AgCl at 7.2. This is around 0.12 V cathodic of the corresponding value for the 

molecule adsorbed on glassy carbon. In addition, we find that the redox potential is pH 

dependent, shifting by approximately 30 mV per pH unit as expected for a 2 electron, 1 proton 

reaction.   

 Our results also show that the reduced form of mitoxantrone remains bound to the 

dsDNA. We are therefore able, using the deconvoluted spectra, to follow the electrochemically 

driven melting of the dsDNA at more negative potentials. We find that binding of the 

mitoxantrone stabilises the dsDNA. Comparison of our results at pH 5, 7.2 and 9 shows that this 

electrochemically driven melting is pH-independent over this range. 
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Table 1. Oligonucleotide sequence used and the structures of the 3’ and 5’ anchors. 

Probe (5´-3´) XXXH-GCAGCATCATTTGCTTTAGAGGC  

Target (3´-5´)              CGTCGTAGTAAACGAAATCTCCG  

H = hexaethyleneglycol spacer; X = dithiol monomer 

 

   

 

 

 

  



 23 

 

Figure Legends 

Figure 1. Chemical structure of mitoxantrone (MTX). IUPAC name: 1,4-dihydroxy-5,8-bis[[2-

[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione. 

Figure 2. Schematic top view of the spectroelectrochemical cell used in this work. The cell is 

sealed by an optical window to give a 150 l working volume and is ~2 cm in diameter. 

Figure 3. The visible absorption spectra of 50 µM mitoxantrone in the absence (solid line) and 

presence of 25 µM dsDNA (dotted line). Both the spectra were recorded in 10 mM Tris/0.1 M 

NaCl buffer (pH 7.2). 

Figure 4. SERS spectrum of mitoxantrone intercalated into dsDNA, acquired with 633 nm 

excitation laser. The spectrum was collected in 10 mM Tris/0.1 M NaCl buffer (pH 7.2) in static 

mode using one acquisition of 10 s, 5 μm spot size. The spectrum is normalised with collection 

time and laser power has been background subtracted for clarity.  

Figure 5. SERS spectra of mitoxantrone bound to dsDNA at increasing negative potentials. The 

potential at the electrode surface was swept cathodic at a scan rate of 0.8 mV/s in a 10 mM Tris 

buffer (pH 7.2) containing 0.1 M NaCl. All potentials are measured against the Ag/AgCl 

reference electrode. The spectra have been background subtracted for clarity. 

Figure 6. SERS spectra of mitoxantrone intercalated into dsDNA at different applied potentials 

(vs. Ag/AgCl), acquired with 633 nm laser. The potential at the electrode surface was swept 

cathodic at 0.8 mV/s in a 10 mM Tris buffer (pH 7.2) containing 0.1 M NaCl. Spectra have been 
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background subtracted and the intensity of each spectrum has been normalised to the intensity of 

the 1300 cm
-1

 peak to make the comparison easier. 

 

Figure 7. Three repeated experiments (shown by circles, triangles and squares) at pH 7.2 with 

mitoxantrone intercalated into dsDNA. The variation of the peak intensity close to 1300 cm
-1

 is 

plotted as a function of applied potential. In each case the potential was swept cathodic at 0.8 

mV/s in 10 mM Tris buffer (pH 7.2) containing 0.1 M NaCl. Spectra were acquired every 25 mV 

in static mode with a single 10 s acquisition, using a 633 nm laser. 

Figure 8. Plot of the values of the A parameter obtained from the equation (2) as a function of 

applied potential for mitoxantrone intercalated into dsDNA at three different pH. In each case, 

the potential was swept cathodic at 0.8 mV/s in 10 mM buffer containing 0.1 M NaCl. SERS 

spectra were acquired every 25 mV in static mode with a single 10 s acquisition. In the graph, 

only the data used to construct the sigmoidal curves (see equation 1) are shown. 

Figure 9. Differential pulse voltammograms of MTX adsorbed on glassy carbon at different pH. 

Potential was scanned between -0.5 and -1.0 V vs. SCE (modulation amplitude: 0.05 V, interval 

time 0.5 s). 

Figure 10. Reduction scheme of mitoxantrone in aqueous media. 

Figure 11. Reduction potential of mitoxantrone versus pH. The first set of data (●) was obtained 

through DPV experiments using MTX absorbed onto glassy carbon electrodes, while the second 

set (■) was obtained through SERS experiments using MTX intercalated into dsDNA (these data 

were converted in mV vs. SCE since the spectroelectrochemical cell has a Ag/AgCl electrode as 
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reference). For DPV the mean of three measurements is shown at each pH, errors were  2.5 

mV; for SERS the values come from the fitting and the standard error on the fitted values was  

5 mV or less. All the experiments were performed in buffer solutions containing 10 mM 

base/acid and 0.1 M NaCl. 

Figure 12. Plot of the parameters B obtained with the equation (2) as a function of applied 

potential between -0.95 and -1.3 V for MTX intercalated into dsDNA at different pH. In each 

case, the potential was swept cathodic at 0.8 mV/s in 10 mM acid/base buffer containing 0.1 M 

NaCl. SERS spectra were acquired every 25 mV in static mode with a single 10 s acquisition. 

For each pH, parameters B were normalised to their respective maximum value to allow direct 

comparison.  
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