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Abstract 

Although contemporary stents have been shown to improve short and long term clinical 

outcomes, the optimum dilation protocol is still uncertain in challenging cases characterised by 

long, highly calcified and tortuous anatomy. Recent clinical studies have revealed that in these 

cases, sub-optimal delivery can result in stent thrombosis (ST) and/or neointimal thickening as a 

result of stent malapposition (SM) and/or severe vessel trauma. One of the major contributors to 

vessel trauma is the damage caused by balloon dilation during stent deployment. In the present 

work, a Kriging based response surface modelling approach has been implemented to search for 

optimum stent deployment strategies in a clinically challenging, patient specific diseased 

coronary artery. In particular, the aims of this study were:  i) to understand the impact of the 

balloon pressure and unpressurised diameter on stent malapposition, drug distribution and wall 

stresses via computer simulations and ii) obtain potentially optimal dilation protocols to 

simultaneously minimise stent malapposition and tissue wall stresses and maximise drug 

diffusion in the tissue. The results indicate that SM is inversely proportional to tissue stresses and 

drug deliverability. After analytical multi-objective optimisation, a set of “non-dominated” 

dilation scenarios was proposed as a post-optimisation methodology for protocol selection. Using 

this method, it has been shown that, for a given patient specific model, optimal stent expansion 

can be predicted. Such a framework could potentially be used by interventional cardiologists to 

minimise stent malapposition and tissue stresses whilst maximising drug deliverability in any 

patient-specific case.  
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1. Introduction 

Clinical studies have revealed that contemporary devices, especially DES, demonstrate better 

short and long term outcomes than bare metal stents (BMS) (Stefanini and Holmes, 2013) and 

the second and third generation DES are critically superior to first generation DES. However, 

clinical complications have been reported which are associated with the recent advances in stent 

design, the implantation protocol and the complexity of the treated vessel (Cook et al., 2007; 

Hanratty and Walsh, 2011; Hong et al., 2006; van der Hoeven et al., 2008; Williams et al., 2012).  

One of the adverse outcomes in such anatomies is stent malapposition (SM) in which the stent is 

insufficiently expanded resulting in further unwanted events such as delayed neointimal healing, 

incomplete endothelialisation and higher levels of both neointimal proliferation and thrombus 

deposition, which give rise to clinical sequence in the form of restenosis and ST, respectively 

(Cook et al., 2007; Ozaki et al., 2010). 

SM is largely dependent on multiple factors including the “reference diameter”
1
 and the balloon 

inflation pressure (Cook et al., 2007; van der Hoeven et al., 2008). Depending on the vessel 

length and its anatomy, reference diameter is normally calculated in the distal end of the target 

lesion. This often results in malapposed struts in the proximal end of the stented segment 

particularly in a longer lesion, which has a diameter discrepancy between the proximal and distal 

end. When SM is detected, a non-compliant balloon is inflated in the malapposed region to 

reshape the stent and increase the stent area. However, such post-stenting procedures may trigger 

further clinical complications including vessel wall dissection or stent fracture (Hanratty and 

Walsh, 2011). Therefore, it is preferable to limit stenting to a single step approach resulting in i) 

                                                 
1
 Reference diameter is defined as the diameter of a healthy arterial cross section along the length of the intervened 

segment. Interventional cardiologists size the stent which is to be implanted according to the non-diseased diameter 

in the distal part of the segment. 
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maximum stent strut apposition, ii) minimum vessel stress and iii) maximum drug diffusion to 

the vessel walls. 

In this study, the optimal dilation strategy in a patient-specific right coronary artery (RCA) has 

been investigated by finite element analysis (FEA) and surrogate modelling. Firstly, twenty 

different dilation protocols were parameterised with respect to the balloon unpressurised 

diameter and the balloon pressure. For each dilation protocol FEA simulations were performed 

for the deployment of a representative Xience stent model (Abbott Laboratories, IL, USA) into 

the reconstructed RCA. Performance was measured by three figures of merit (objective 

functions) representing i) tissue stresses, ii) stent malapposition and iii) drug delivery. Surrogate 

models were constructed for each objective function to describe the functional relationship 

between the input parameters and the performance. Then, based on a dedicated population based 

algorithm, non-dominated designs (optimum dilation scenarios) were obtained. Three update 

points were taken along the Pareto front and further computer simulations were carried out to 

improve the surrogates. This process was repeated until a stopping criterion was met. 

2. Materials and methods 

2.1. Geometry & mesh discretisation 

2.1.1. Artery, plaque, dilation catheter, stent platform  

Detailed information on the artery reconstruction process, the stent and balloon models, material 

properties, mesh discretisation and the stability of the numerical simulations can be found in 

previous work (Ragkousis et al., 2015; Ragkousis et al., 2014). 

2.1.2. Dilation strategy parameterisation 

The balloon profile and the inflation pressure were taken as the design variables of this 

optimisation problem. All the balloons were six-folded. However, depending on the 

parameterised balloon-profile length (unpressurised diameter), the folding configuration was 



5 

 

varied to fit in the semi-crimped stent. The design space was defined by: i) the initial diameter 

sampled around ± 20% of the baseline model and ii) the inflation pressure varying between 0.6-

1.5 MPa, a range widely used in stenting practice. 

2.2. Simulations 

2.2.1. Stent expansion 

The expansion simulations were carried out in the commercially available FEA solver, 

Abaqus/Explicit v.6-12 (Simulia Corporation, USA). The events were simulated as quasi-static, 

therefore, the time period of the simulations were defined by running frequency analysis in 

ABAQUS/Standard to extract the first fundamental frequency of the stent structure (Ragkousis et 

al., 2014). For the baseline model, the parameters were chosen according to the reference 

diameter measured in the distal part of the reconstructed segment. Then, a virtual balloon was 

generated and calibrated according to a compliance chart given by the manufacturer (De Beule et 

al., 2008; Ragkousis et al., 2015). 

2.2.2. Drug release 

After stent deployment, the deformed artery and stent geometry was used to simulate drug 

release in the walls of the vessel.  A heat transfer solution scheme was used as an analogue of the 

drug delivery process similarly to the work presented by Hose et al. (2004). The release of the 

drug was simulated as a steady state event by using the forced heat convection analysis 

capability of ABAQUS/Standard. The boundary conditions for the transport simulation were 

defined as in other studies (Feenstra and Taylor, 2009; Hose et al., 2004; Pant et al., 2012; 

Zunino, 2004). 

2.3. Objective functions 

Three objective functions were considered in this study. Two objectives were extracted after the 

stent expansion and one after the drug release simulation (see Appendix A). 
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2.3.1. Volume average stress (VAS) 

The VAS metric represents the induced mechanical environment after the stent expansion. It is 

an index indicating the average stress change within a fixed volume (intima-media wall). VAS 

has been presented by Holzapfel et al. (2005b) and successfully implemented in recent studies 

(Pant et al., 2012; Pant et al., 2011; Ragkousis et al., 2015). 

2.3.2. Area average stent malapposition (AASM) 

Ragkousis et al. (2015) proposed AASM to calculate the average stent malapposition after stent 

expansion in reconstructed arterial segments. This index expresses the area of malapposed struts 

within the fixed outer area of the stent surface. 

2.3.3. Volume average drug (VAD) 

Similarly to the VAS index, a volume average index for drug release was proposed by Pant et al. 

(2012) to measure the amount of drug transported into the tissue. VAD expresses the average 

drug diffusion within a fixed volume (intima-media wall). 

2.4. Optimization problem & solution methodology 

The multi-objective optimisation problem considered in this study was formulated as: 

                  (1.1) 

                   (1.2) 

                   (1.3) 

such that 

               (1.4) 

           (1.5) 

where         are the diameter and the pressure parameters, respectively. Note that VAD index 

should be maximised. However, the negative sign was included so that lower values of -VAD 

indicate better performance. Therefore, the aim was to minimise –VAD.   
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In Fig. 1, a flow chart detailing the optimisation process followed in this study is depicted. The 

process commenced with an optimal distribution of the initial sampling points in the design 

space, followed by structural and drug simulations for each design configuration. Discrete values 

of the performance metrics were extracted to construct Kriging response surface models for each 

metric. The models were then searched by a population-based algorithm to obtain optimum 

solutions for surrogate model improvement. From the optimum set, three points were selected as 

infill points to the initial sampling plan or the previous optimisation step. The process stopped 

when the stopping criterion was met (see section 2.4.2).      

2.4.1. Sampling plan 

The initial two-dimensional design space consisted of twenty points optimally distributed as a 

function of balloon unpressurised diameter and balloon pressure. This sampling plan, or Design 

of Experiment (DoE), was constructed by an optimized Latin-hypercube (LHC) (Morris and 

Mitchell, 1995). 

2.4.2. Surrogate modelling, NSGA-II & infill strategy 

The pyKriging package (http://www.pykriging.com/) (Paulson and Ragkousis, 2015) was used to 

construct the surrogates and guide the multi-objective optimization study. A validation of the 

algorithms that were used in this study is presented in Supplementary material S1. A non-sorting 

genetic algorithm (NSGA-II) (Deb, 2001), as implemented in pyOpt (http://www.pyopt.org) 

(Perez et al., 2012) was used to extract the optimal Pareto Front after each optimisation phase.  

Surrogate models 

To model the response of each objective function to variations in balloon pressure and 

unpressurised diameter a Gaussian Process (GP) methodology, known as Kriging, was used. 

Appendix B contains the basic equations for Kriging model construction. For detailed derivation, 

consult the work by Jones (2001) and Forrester et al. (2008). Kriging models have been also 
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implemented successfully in previous studies on stent optimisation, such as in Pant et al. (2011) 

and Gundert et al. (2012). For a detailed overview in recent optimisation and surrogate modelling 

studies, consult the review paper by Bressloff et al., 2015, including reference to early studies 

such as the one by Timmins et al 2007. 

Validation of surrogates 

Once the surrogates were built, validation was performed using the standardised cross validated 

residual (Jones et al. 1998), expressed as  

       
 (    )   ̂  ( 

   )

√     
          

  
(2) 

where   is the observed value at the i-th point (point that is left out),  ̂   denotes the prediction of 

the i-th leave out point and     is the posterior variance of the prediction at the left out point. 

Validity of each model was tested against the target to have each point within plus or minus three 

standard errors (99.7% confidence). Further, a “leave-one-out” method was used to test for 

model reliability (Jones et al., 1998). Again, for each surrogate model, one point of the DoE was 

left out and a surrogate model with constant parameters constructed for the remaining sampling 

points. Then, a prediction was made at the point that was left out and compared to the actual 

value. This process was repeated for all the points that comprise the DoE and a correlation 

residual was calculated for each model.  

NSGA-II  

The superiority of Gaussian models is the fact that such surrogates contain the estimation of 

model uncertainty, expressed by the mean square error (MSE). This is very useful for the so-

called “exploration” of the design space by adding infill points in regions where the uncertainty 

is the maximum. Additionally, a highly attractive tool in stochastic optimisation is the expected 

improvement (EI) (Jones et al., 1998), which indicates the magnitude of improvement towards 
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the optimum solution. Both the MSE and the EI are defined in Appendix B. Since the EI can be 

evaluated for each objective function, NSGA-II was used to search the Pareto Front for 

maximisation of the multi-objective EI. 

Infill strategy and convergence criterion 

In each optimisation phase, two steps were performed to select update points. In the first step, 

three points were selected with two of the points positioned at the ends and a third point located 

in the middle of the Pareto Front. The second step comprised the mapping of these points to the 

design space to check their shortest distance with respect to the initial/previous sampled points. 

Around each update point, a circle with radius equal to 1% of the variable range (0.01 here since 

the variables were normalised in the range [0-1]
2
) was constructed and if there was no point 

already sampled in this circle, the selection was approved. Otherwise, the point was rejected and 

the next Pareto point was selected. The first step ensures exploitation while the second step 

contributes to the exploration (very essential in a mathematical optimisation routine). In this 

study, due to the high computational cost for each simulation (average point simulation duration 

was approximately 160 hours on a 32GB RAM node, split over 32 domains), a convergence 

criterion was set to avoid a large number of optimisation iterations. In particular, in each step, 

updated surrogates were constructed containing the infill points from the previous iteration and a 

second NSGA-II search (this time on the updated response surfaces of the prediction) were 

carried out. Then, an optimum point was calculated as the Pareto Front point with the minimum 

Euclidean distance from the ideal vector/“utopia” point. More specifically, the obtained Pareto 

Front was normalised with respect to the utopia (ideal vector) and the nadir (maximum objective 

function vector) point as 

  ̅     
        

 

  
     

  
(3) 
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where      ,   
   and   

 , the non-normalised objective function value, the minimum objective 

function value and the maximum objective function value of the i
th

 model, respectively 

(Miettinen, 1998). Then, the minimum Euclidean distance was expressed by the weighted 

          proposed by Miettinen (1998) as  

minimise        (∑   |         
 |  

   )
   

 (4.1) 

subject to     , (4.2) 

with   being the entire search space and ∑      
   . When the predicted optimum point 

(with          = 1/3) was the same in two subsequent iterations, the optimisation process was 

terminated. 

3. Results and discussion 

3.1. Baseline and DoE point simulations and Kriging interpolation 

The results for the baseline model are reported in the first row of Table 1. From the second to the 

last row of Table 1, the discrete objective function evaluations of the initial DoE are reported. 

Surrogate models were constructed for each objective function. The response surfaces along with 

the MSE and the EI of the surrogates are depicted in Fig. 2. The x-axis and the y-axis represent 

the normalised balloon diameter and pressure, respectively. It can be noted that the diameter 

parameter has a stronger effect than the pressure for all models. In the first column of Fig. 2, the 

model predictions indicate that stent malapposition is inversely proportional to tissue stress and 

drug diffusion (note that drug diffusion contours or +VAD, would have the opposite behaviour 

from -VAD). Consequently, VAS is competing against both AASM and -VAD. This can be 

explained by the fact that when SM decreases, more stent struts interact with the vessel walls and 

higher tissue stresses are imposed by the stent, especially when using higher balloon pressures. 

Moreover, since more struts interact with the wall, the drug diffusion is increased. In contrast, 

when malapposition increases, the drug diffusion is decreased (-VAD is increased) as a result of 
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the reduced wall-stent interaction. In the second column of Fig. 2, MSE error indicates that high 

uncertainty exists in the corners for all the surrogates. This is expected as, in this optimisation 

study; LHC was used to generate the initial DoE leaving the corners and the edges of the design 

space un-sampled. Finally, in the third column, the EI indicates where model improvement can 

be obtained via infilling the design space in regions where EI is maximum. In general, the EI 

tends to be large in regions where the predicted value is larger than the minimum actual value 

(extracted by the simulations) and/or there is a high level of uncertainty associated with the 

prediction. 

3.2. Validation of the surrogates 

On the left column of Fig. 3, the        values for all the Kriging models are reported. It can be 

observed that all points lie within the interval         for all the surrogate models. The leave-

one-out plots are depicted in the right column of Fig. 3. As can be observed, all the surrogate 

models predict close function values to their corresponding “actual” values (extracted by the 

computational analyses). This is evident by the fact that the leave-one-out plot has approximately 

linear behaviour with in all cases (    was 0.97, 0.92 and 0.95 for VAS, AASM and VAD, 

respectively). 

3.3. Infill point simulations, update Kriging construction and selection criteria 

The nine infill point parameter values along with the objective function evaluations at each point 

are reported in Table 2. The corresponding updated surrogates in each optimisation iteration are 

depicted in Fig. 4. It can be noted that the maximum and minimum values of all the surrogates 

appear to be close to convergence from the second optimisation iteration. In Fig. 5, the EI of 

each model from the initial step (first row), to the last optimisation step (last row) are depicted. 

The implemented algorithm selects points on the Pareto Front where the EI is the maximum. 

Since two of the objectives (AASM and VAD) have relatively similar behaviour, the first update 
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is chosen based in an average of both maximum EI values. The second update is selected where 

the EI for VAS is the maximum and the third update is selected in the middle part of the Pareto 

front. As discussed in section 2.4.2, the optimisation process is stopped when the convergence 

criterion is met. In the last two optimisation steps the Pareto Front obtained by NSGA-II run 

using the prediction surfaces is not significantly changed. Consequently, the same optimum point 

is predicted. 

3.4. Visualisation of the simulated sampling points 

In Figs. 6 and 7, spatial SM and wall circumferential stress contours, respectively, are mapped to 

the deformed simulated models. It is evident that models with reduced SM result in higher tissue 

stresses (c.f. Tables 1 and 2), for instance DoE_08, DoE_11, DoE_12, DoE_16, DoE_18, 

UPD_12, and UPD_22. This is expected from the fact that luminal gain leads to higher stresses 

in the arterial wall. Especially in DoE_08, DoE_11, UPD_12 and UPD_22, the increased VAS 

index is as a result of stent over-expansion.  Interestingly, while DoE_11 and DoE_12 have 

similar strut apposition results, the VAS index for the DoE_11 is 12.66% higher. Such stress 

differences between models may lead to biomechanical responses which in turn may result in 

different restenosis rates in the dilated segment. This has been shown in recent studies (Keller et 

al., 2014; Timmins et al., 2011) reporting localised biological response as a result of mechanical 

forces imposed by the stent system during deployment and, consequently, the radial compression 

of the arterial wall. On the other hand, models with low induced mechanical environment are as a 

result of suboptimal stent and wall interaction or stent under-expansion. This is well 

demonstrated in models DoE_02, DoE_09, UPD_11 and UPD_21 where, especially for the 

proximal parts, severe stent malapposition is observed which, in clinical practice, would likely 

necessitate post-operational manoeuvrings to restore the malapposed struts. These findings 
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suggest that a dilation protocol should be used that balances lumen gain and the imposed 

mechanical stress environment for a given specific case.  

3.5. Post-optimisation point selection 

Generally, once a final Pareto Front is obtained, the weighted           can be implemented 

to locate optimum points according to a user’s preference. This post-optimisation technique, 

which is also known as “compromise programming”, picks a solution which is minimally located 

from a given reference point (Deb, 2001). Then, according to the user’s judgment and the given 

patient-specific case, corresponding weights to each objective function can be applied and, by 

minimising the weighted          , the optimum point can be located. In the current study, 

the reference point was the ideal vector (utopia point). The first point selected was the closest 

Pareto Front point to the ideal vector. To locate this point, equal weights were used in Eq. 4. In 

Fig. 8, the final Pareto Front obtained by a NSGA-II search of the prediction models is depicted. 

The Pareto Front is normalised according to the nadir and utopia point (c.f. Eq. 3). The minimum 

Euclidean distance or, alternatively, the weighted            is the same in the last two 

iterations. Consequently, the same optimum point is predicted. In Fig. 8a, the sphere represents 

equal weighted           (with          = 1/3), and its radius is tangent to the Pareto Front 

point which, in turn, is the closest point to the utopia point. In Fig. 8b, the elliptical sphere 

represents a non-equal weighted          . By way of example, the weights that were applied 

to the minimisation problem were                       . Its long axis is equal to the 

Euclidean distance between the ideal vector and the point for which the weighted            is 

the minimum. Its short axes are equal to the minimum weighted          . Therefore, with 

this method, a Pareto Front point can be easily located in which an objective function is made to 

have higher importance than the others. In Fig. 8b, AASM has been assigned a greater weight to 

locate a dilation protocol for which stent malapposition is of greater importance. 
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3.6. Model limitations 

The main limitations of this work are associated with the constitutive material models 

characterising i) the walls of the vessel and ii) the balloon models. The vessel walls were 

assumed to be hyper-elastic and isotropic, modelled by reduced polynomial strain energy 

functions (Gastaldi et al., 2010; Pant et al., 2011). In reality, the wall deformation is 

characterised by hyper-elastic anisotropic behavior and has been successfully modelled by more 

advanced constitute laws such as the model proposed by Holzapfel et al. (2005a). With respect to 

the balloon, inflation behavior was considered to be linear elastic and isotropic where, in reality, 

the balloon behaves as a non-linear cylindrically orthotropic membrane (Kiousis et al., 2009). 

However, the balloon models were calibrated according to actual compliance charts. Therefore, 

the virtual expansion behavior closely matches that which occurs in clinical practice, especially 

at nominal pressures. Due to the comparative nature of the current work along with the fact that 

there is no clinical record of the investigated performance indices, the implemented constitutive 

models can still provide valuable and reliable results. 

4. Conclusion 

The presented work investigated the optimisation of a dilation protocol in a patient-specific RCA 

using balloon pressure and unpressurised balloon diameter as variables. In particular, the 

mechanical performance of a modest number of protocol realisations was predicted for metrics 

that quantify tissue stress, stent strut malapposition and drug delivery. Due to the expense of 

FEA simulations for each realisation, a Kriging surrogate modelling approach was employed 

using updates selected from the multi-objective Pareto front derived from the expected 

improvement of each objective function. Then, a post-optimisation method was used to 

demonstrate how, for a given patient specific case, optimum interventional protocols can be 

derived, balancing the competing objectives of tissue stress and strut malapposition. The 
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proposed approach thus provides a tool for dilation system selection (e.g. alternative size 

balloons and compliance charts could be supplied for a given stent) and design optimization of 

lesion-specific dilation systems, a process that will become realizable in non-urgent cases with 

increases in computer power. 
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Figure 1. Flow chart on the description of the adopted optimisation methodology of this 

study 

 

Figure 2. Surrogate models interpolated to the objective function evaluations after the 

initial DoE. From up to bottom, surrogates for VAS, AASM, and VAD are depicted. From 

left to right, Kriging interpolation surface of the prediction, MSE and EI for each model.   

 

Figure 3. Surrogate model validation: On the left panel, SCVR values for all models 

(rows). On the right panel, leave-one-out plots for all models (rows).   

 

Figure 4. GP interpolation surfaces for the three models (columns) after each optimisation 
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iteration (rows).  

 

Figure 5. NSGA-II search in the EI of the GP models (columns) in the initial DoE and 

each optimisation iteration (rows). The Pareto non-dominated solutions along with the 

update points are also mapped onto the design space to ensure exploitation and 

exploration.     

 

Figure 6. Spatial SM superimposed on the deformed stent models after balloon deflation: 

the spatial SM was calculated as the Euclidean distance between triangulated vertex points 

on the external surface of the deformed stent and their normal projections to the deformed 

lumen surface after the virtual stent expansion. 

 

Figure 7. Maximum principal stress plots superimposed on the deformed lumen surface 

after balloon deflation 

 

Figure 8. Final PF obtained by NSGA-II search in the updated surrogates (third iteration 

step): a) the optimum point is selected according to the minimum distance from utopia 

criterion, by applying equal    to the weighted          . b) optimum point selected by 

setting                       .  
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Table 1. Baseline and DoE point parameters and objective function evaluations 

Design  Diameter 

X1 (0 - 1) 

Pressure 

X2 (0 - 1) 

Diameter 

X1 (mm) 

Pressure 

X2 (MPa) 

VAS AASM VAD 

Baseline  0.532 0.268 3.383 0.842 0.0199895 0.0531295 -0.0785628 

DOE_01 0.625  0.525 3.507 1.0725 0.0264650 0.0400620 -0.0859427 

DOE_02 0.474 0.025 3.306  0.622 0.0172700  0.0849213 -0.0672303 

DOE_03 0.275  0.174 3.039 0.757 0.0153593 0.0885886 -0.0630614 

DOE_04 0.174  0.775 2.905 1.297 0.0147054 0.0969262 -0.0610030 

DOE_05 0.325  0.925 3.106 1.432 0.0196714 0.0632130 -0.0757653 

DOE_06 0.925  0.125 3.907 0.712 0.0385187 0.0246679 -0.0927742 

DOE_07 0.074  0.574 2.772 1.117 0.0115248 0.1412866 -0.0463872 

DOE_08 0.974  0.724 3.974 1.252 0.0452974 0.0233686 -0.0926703 

DOE_09 0.025  0.275 2.705 0.847 0.0088470 0.2035017 -0.0310349 

DOE_10 0.125  0.074 2.838 0.667 0.0102840 0.1660097 -0.0377240 

DOE_11 0.824  0.875 3.774 1.387 0.0398379 0.0265523 -0.0912732 

DOE_12 0.724  0.675 3.640 1.207 0.0347925 0.0265455 -0.0914798 

DOE_13 0.525  0.824 3.373 1.342 0.0274498 0.0394250 -0.0873315 

DOE_14 0.574  0.225 3.440 0.802 0.0248069 0.0443346 -0.0833497 

DOE_15 0.375  0.625 3.173 1.162 0.0197208 0.0646653 -0.0746734 

DOE_16 0.775  0.325 3.707 0.892 0.0338754 0.0291174 -0.0906493 

DOE_17 0.424  0.375 3.239 0.937 0.0174558 0.0744635 -0.0690409 

DOE_18 0.875  0.474 3.841 1.027 0.0391969 0.0238637 -0.0924370 

DOE_19 0.225  0.424 2.972 0.982 0.0138717 0.1115204 -0.0552826 
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DOE_20 0.675  0.974 3.573 1.477 0.0325380 0.0308955 -0.0907502 

 

Table 2. Infill point parameters and objective function evaluations 

Design  Diameter 

X1 (0 - 1) 

Pressure 

X2 (0 - 1) 

Diameter 

X1 (mm) 

Pressure 

X2 (MPa) 

VAS AASM VAD 

UPD_01 0 0 2.672  0.6 0.0087020 0.2116110  -0.0291556 

UPD_02 0.935  0.176  3.921  0.758  0.0380468  0.0243901  -0.0923420  

UPD_03 0.715  0 3.627 0.6 0.0276499  0.0394574  -0.0861582 

UPD_11 0.028  0  2.710  0.6 0.0089423  0.2058367  -0.0304440 

UPD_12 0.897  0.767  3.870 1.291  0.0466347  0.0227087 -0.0929400 

UPD_13 0.262  0.761  3.022  1.285  0.0172374  0.0837953 -0.0679390 

UPD_21 0 0.367  2.672  0.931  0.0087822  0.2133572 -0.0294927 

UPD_22 0.901 0.617  3.876 1.156  0.0425773  0.0226643  -0.0920894 

UPD_23 0.651  0.145  3.541  0.731  0.0268951  0.0405922 -0.0851674 

 

 

 




