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ABSTRACT The network connectivity of selfish wireless networks (SeWNs) constituted by selfish
nodes (SeNs) is investigated. The SeN’s degree of node-selfishness (DeNS) is used for characterizing the
effects of its energy resources and the benefits of the incentives provided for enhancing its transmission
willingness. Furthermore, the SeNs’ signal to interference plus noise ratios are defined in terms of both their
DeNSs and their interference factors. We then continue by quantifying the effect of node-selfishness on the
grade of network connectivity and derive both the upper and lower bounds of the critical DeNS. Explicitly,
the network is deemed to be connected when the DeNS is below the lower bound and unconnected for a
DeNS above the upper bound. This allows us to quantify the asymptotic critical DeNSs for our SeWNs.
In addition, we develop an energy-conscious node-selfishness model for characterizing the relationship
between the SeN’s residual energy and its DeNS. Based on this model and on the asymptotic critical
DeNS derived, the critical amount of residual energy required for maintaining a specific grade of network
connectivity is determined, which is verified by our simulation results.
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INDEX TERMS Network connectivity, selfish wireless network, percolation theory, node-selfishness,
energy resource.

I. INTRODUCTION15

Maintaining connectivity within a wireless network is the

AQ:1

16

prerequisite for guaranteeing efficient networking relying on17

the functions of routing, power control, topology control,18

etc. Given the proliferation of smart devices in intelligent19

networks, each node is expected to be endowed with smart20

autonomic functions. By instinct, the individual network21

nodes would prefer to act selfishly rather than altruistically in22

distributed network scenarios. For instance, while forwarding23

the packets of other nodes at the cost of sacrificing their24

own limited resources, they expect to satisfy some of their25

own objectives, such as maximizing their own transmission26

rate and/or minimizing their own resource consumption.27

A wireless network which consists of nodes exhibiting28

a selfish behavior is hence referred to as a selfish wireless net-29

work (SeWN). In such network scenarios, the selfish behavior30

of network nodes may reduce the throughput of the nodes31

and/or their integrity, thus potentially leading to a degraded32

network connectivity.33

The management of node-selfishness has been widely34

investigated [1]–[7]. For example, the detection regime of35

selfish nodes (SeNs) was investigated in [1] by relying 36

on a low-complexity sliding-window aided non-parametric 37

cumulative sum-rate maximization protocol, while a novel 38

‘‘node-selfishness’’ detection approach was proposed in [2] 39

for assisting the SeNs to efficiently exploit the available 40

channels. Furthermore, with the objective of stimulating the 41

willingness of the SeNs to cooperatively relay messages, an 42

efficient and fair incentive mechanism was conceived in [3]. 43

A range of resource-exchange-based incentive mechanisms 44

were advocated in [4] with the same objective, while in [5] a 45

double-auction-based user-assignment scheme was studied. 46

Additionally, in order to enforce ‘‘genuine truth-telling’’ for 47

the SeNs, several strategy-proof approaches were conceived 48

in [6] for finding trusted routers. Finally, the d’Aspremont and 49

Gerard-Varet approachwas employed in [7] for improving the 50

entire network’s performance. The viability of the aforemen- 51

tioned schemes relied on the assumption that at least one route 52

existed between any two nodes in the SeWNs considered. 53

The connectivity of wireless networks has attracted sub- 54

stantial research attention. A matrix-decomposition aided 55

method was provided in [8] for deriving an expression for 56
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the probability of a k-connected1 vehicular ad hoc network.57

The network’s connectivity was enhanced by the open-access58

algorithm of [9] and by the tree-cluster-based data-gathering59

algorithm [10]. The necessary conditions of the network con-60

nectivity were detailed in [11] and [12] by investigating both61

the number of isolated nodes and the boundary effects of a62

network. The node’s critical transmit power was determined63

in [13], which was sufficient for guaranteeing the network64

connectivity, subject to the level of the maximum tolerable65

mutual interference. The connectivity of homogeneous ad66

hoc networks has been widely studied with the aid of per-67

colation theory2 [14]. The sufficient and necessary condi-68

tions of the network connectivity were detailed in [15] by69

studying both the outer and inner bounds on the connectivity70

region with the aid of percolation theory. The connectivity71

of dynamic wireless networks was studied in [16] and [17]72

both with the aid of continuum percolation theory [18] and73

by relying on ergodic stochastic processes3 [19]. The impact74

of interference imposed by the imperfect orthogonality of75

spreading codes in the code divisionmultiple access (CDMA)76

on the connectivity was studied in the context of large-scale77

ad hoc networks based on percolation theory in [20], where78

the critical interference level increased inverse-proportionally79

with the node-density. All the above-mentioned contributions80

assumed that the network nodes were unselfish and hence81

would altruistically cooperate for the sake of forwarding82

the packets of other nodes. By contrast, the connectivity of83

SeWNs was investigated in [21], but the detrimental effects84

of node-selfishness and the mutual interference amongst the85

nodes routinely imposed by resource sharing were neglected.86

Against this background in this paper, we will investigate87

the effect of node-willingness on the network’s grade of con-88

nectivity. In order to characterize the effects of both the SeN’s89

energy resources and the benefits of incentives on its node-90

selfishness, we define the degree of node-selfishness (DeNS)91

for quantifying the node’s willingness of cooperatively trans-92

mitting packets. Furthermore, we also define the SeNs’ signal93

to interference plus noise ratios (s-SINR) at their receivers as94

the functions of their DeNSs, which play an important role in95

quantifying the effects of the node-selfishness on the grade of96

network connectivity.97

The main contributions of this paper are as follows:98

1) We derive both the upper and lower bounds of the99

DeNS in SeWNs with the aid of percolation theory.100

The network is said to be connected, when the DeNS is101

below the lower bound; and it is deemed to be uncon-102

nected, when the DeNS is above the upper bound.103

2) The critical value of the DeNS is determined, as the104

node density tends to infinity and simultaneously the105

interference factor (InF) tends to zero.106

1Being k-connected implies that given a graph associated with a set of
nodes, any node is connected to at least k closest neighbors in this graph.

2Percolation theory describes the behavior of connected clusters in a
random graph.

3An ergodic stochastic process has the same behavior averaged over time
as averaged over the space of all the system’s states.

3) We develop an energy-conscious node-selfishness 107

model for characterizing the effects of both the SeN’s 108

residual energy and the specific incentive received 109

on the DeNS. Furthermore, we determine the critical 110

amount of residual energy, above which the network 111

connectivity is guaranteed with a certain probability. 112

The remainder of this paper is organized as follows. Our 113

system model is introduced in Section II. Section III inves- 114

tigates the SeWN’s connectivity with the aid of percolation 115

theory. Section IV details the connectivity of the SeWN under 116

an energy-conscious node-selfishness model. Our simulation 117

results are provided in Section V, while Section VI concludes 118

this paper. 119

II. SYSTEM MODEL 120

In SeWNs, the presence or absence of connection between a 121

pair of SeNs is affected both by their node-selfishness and 122

by the channel attenuation, as well as by the interference 123

imposed by other nodes. Accordingly, we define both the 124

bidirectional link connectivity of these two SeNs and the 125

probability of being connected for the sake of characterizing 126

the network connectivity of SeWNs. 127

A. THE NODE-SELFISHNESS MODEL 128

An SeWN is characterized by a graph G(V, E), where V is 129

the set of SeNs and E is the set of all connected bidirectional 130

links amongst the SeNs in V . In order to forward the packets 131

in such an SeWN, at least one adequately connected route is 132

required, which consists of several links. When forwarding 133

packets through a specific link, an SeN which has success- 134

fully received the packets might decide to behave selfishly by 135

refusing to altruistically forward these packets, for example, 136

owing to its limited available resources denoted by ϒ . 137

In order to circumvent this problem, an incentive denoted 138

by 4 might be offered to the SeN for stimulating its packet- 139

forwarding inclination. Accordingly, both the SeN’s avail- 140

able resources ϒ and its received incentive 4 directly affect 141

its willingness to forward the packets and hence they also 142

affect the specific link’s state of connection, which is either 143

‘‘on’’ or ‘‘off’’. Explicitly, the link’s ‘‘on’’ or ‘‘off’’ state is 144

affected by its selfish/altruistic behavior, despite the fact that 145

the physical link may be of high quality. Specifically, the 146

SeN’s DeNS is defined as follows. 147

Definition 1 (DeNS): The SeN’s DeNS, denoted 148

by S(ϒ,4) quantifies the effects of both its available 149

resources ϒ and that of the incentive 4 influencing its 150

selfish/altruistic behavior, which spans from 0 (altruistic) to 1 151

(completely selfish), i.e., we have 0 ≤ S(ϒ,4) ≤ 1. 152

From Definition 1, the SeN’s DeNS depends on both its 153

available resourcesϒ and the incentive4 received. When the 154

SeN’s available resources ϒ are abundant, its DeNS S(ϒ,4) 155

is close to 0, while if the SeN’s available resources ϒ are 156

close to the minimum, its DeNS S(ϒ,4) may get close to 1. 157

Hence, the SeN’s DeNS S(ϒ,4) increases, as its available 158

resourcesϒ become depleted. To elaborate a little further, for 159

a fixed amount of available resources ϒ , the DeNS S(ϒ,4) 160

2 VOLUME 3, 2015



IE
EE

Pr
oo

f

J. Li et al.: Connectivity of SeWNs

decreases, as the incentive 4 is increased. For the sake161

of compactness, we use S and S(ϒ,4) interchangeably to162

denote the SeN’s DeNS, unless this might lead to ambiguity.163

B. POISSON POINT PROCESS164

In this subsection, we introduce both the classic point165

process (PP) [22] and the Poisson point process (PPP)166

for modeling the location of the nodes in our SeWN.167

A PP represents a mapping 8 from a probability space to a168

space of points marking the node-location, which is formally169

stated as 8 : � → N , where � is the set of possible170

outcomes in Rd and N is the set of point sequences in Rd .171

Furthermore, a PPP having the average point density of λ172

is the PP, where the number of points in any unit-size area173

is Poisson distributed with a density of λ. A PPP has the174

following two properties: the number of points in disjoint175

sets is independent of each other; furthermore, the number176

of points in any set is a Poisson-distributed random variable.177

We classify the SeWN into homogeneous and inhomoge-178

neous SeWNs in terms of the SeNs’ DeNS. In homogeneous179

scenarios, all SeNs possess the same DeNS. By contrast, in180

inhomogeneous scenarios, different SeNs exhibit different181

values of DeNS. Since all SeNs behave independently of each182

other, the PPP of the inhomogeneous SeNs having dissimilar183

DeNSs can be regarded as the superposition of the PPPs of184

the SeNs possessing the same DeNS. Hence, an inhomoge-185

neous SeWN can be decomposed into several homogeneous186

SeWNs, whose connectivity may then be determined in par-187

allel. Therefore, the connectivity of the homogeneous SeWN188

provides insight into the connectivity characteristics of an189

inhomogeneous SeWN. Accordingly, we focus our attention190

on the connectivity of homogeneous SeWNs.191

C. THE PATHLOSS MODEL192

In the SeWN, the pathloss of the link between node u and193

node v is expressed as l(‖ xv − xu ‖), where xu and xv are194

the corresponding node locations, and ‖ xv − xu ‖ is the195

Euclidean distance between node u and node v. Let pu denote196

the transmit power of SeN u ∈ V , which is within a given197

range [0,P], with P being the maximum affordable transmit198

power. The sufficient and necessary condition for ensuring199

that the aggregate received power
∑

u∈V,u 6=v pul(‖ xv− xu ‖)200

at node v is almost surely (a.s.) finite is given by [23]201 ∫
∞

D
l(t)tdt <∞ (1)202

for a sufficiently large value of the distance D between203

node v and u (∀v, u ∈ V, u 6= v). The most common pathloss204

model l(t) is l(t) = t−σ , with the pathloss exponent σ ranging205

from 3 to 6. In this paper, we assume the channel attenuation206

to be a non-increasing isotropic function, which has the fol-207

lowing additional properties [20]:208

l(‖ xv − xu ‖) = 0, s.t. ‖ xv − xu ‖≥ ρ, (2)209

ζN0

P
< l(‖ xv − xu ‖) < M , s.t. ‖ xv − xu ‖≤ δ, (3)210

for ∀xv, xu ∈ R2, 0 < δ < ρ and PM > ζN0, where 211

ρ is the minimum distance of the nodes u and v required 212

for ensuring that the power received at node v is deemed to 213

become negligible, namely Pl(‖ xv − xu ‖) ≈ 0. By contrast, 214

δ is the maximum effective distance of the nodes u and v, over 215

which the transmitted signal of node u cannot be successfully 216

received at node v. Furthermore, M is the maximum channel 217

attenuation value, N0 is the power of the thermal noise and 218

ζ is the threshold to be exceeded at the receiver of node v for 219

ensuring successful detection. 220

D. BIDIRECTIONAL LINK CONNECTION 221

In this subsection, we scrutinize the connectivity of the link uv 222

spanning from node u to node v. In an altruistic network, the 223

signal power received at node v from node u is formulated 224

as pul(‖ xv − xu ‖). Nevertheless, since the DeNS affects 225

its transmit power earmarked for forwarding packets, node u 226

reduces its transmit power pu according to (1 − Su), thus 227

its final signal power received at node v from node u can 228

be expressed as pul(‖ xv − xu ‖)(1 − Su). Additionally, the 229

connectivity of the link is also affected by the interference 230

imposed by other nodes, for instance, owing to the imperfect 231

orthogonality of the spreading codes used in CDMA [24]. 232

Below we introduce the formal definition of the s-SINR, 233

which is similar to the definition of the traditional SINR. 234

Definition 2 (s-SINR): The s-SINR of the link spanning 235

from node u to node v is jointly affected by the DeNS, by 236

the pathloss and by the total amount of interference imposed 237

by other SeNs, which is formulated as 238

s-SINRuv =
pu(1− Su)l(‖ xu − xv ‖)

N0 + γ
∑

k 6=u,v
pk (1− Sk )l(‖ xk − xv ‖)

, (4) 239

where γ is the InF.4 240

Naturally, when the value of s-SINRuv is above the 241

successful-detection threshold ζ , the signal received from 242

node u can indeed be successfully detected by node v. Given 243

the definition of s-SINR, the bidirectional link connection is 244

defined as follows. 245

Definition 3 (Bidirectional Link Connectivity): The con- 246

nectivity of a bidirectional link uv is defined as a Boolean 247

variable Buv, formulated as 248

Buv =
{
1, if s-SINRuv ≥ ζ and s-SINRvu ≥ ζ
0, otherwise

(5) 249

where the logical 1 implies that the bidirectional link uv is 250

indeed ‘‘on’’, i.e., connected, and 0 means that the bidirec- 251

tional link uv is ‘‘off’’, i.e., unconnected. 252

Based on Definition 3, the bidirectional link uv is said 253

to be connected, if the signals transmitted from node 254

u to v and from node v to u are both successfully detected. 255

4The InF of γ (0 ≤ γ ≤ 1) quantifies the level of mutual-interference
imposed by the resource reuse. For instance, this might be imposed by the
imperfect orthogonality of the spreading codes used in CDMA and hence
it is related to the frequency reuse factor. For example, γ = 0 represents
that the spreading codes used by different nodes are completely orthogonal.
By contrast, γ = 1 implies that the same spreading code is reused in the
immediate vicinity.
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The SeWN G(V, E), which contains the bidirectional link uv,256

is further formulated as u, v ∈ V and E = {uv : Buv = 1}.257

For convenience, we define the link-connectivity258

component (LCC) as259

K(x) = {y ∈ V : ∃x ! y}, (6)260

where x ! y represents a bidirectional path between node x261

and node y. An example is shown in Fig. 1, where a bidirec-262

tional path exists between node 1 and node 4, i.e., we have263

1 ! 4. Furthermore, nodes 2 and 3 are also connected with264

node 1, thus the LCC of node 1 is K(1) = {2, 3, 4}, and its265

cardinality is |K(1)| = 3.266

FIGURE 1. An example of network topology for interpreting the LCC,
|K(1)| = |K(2)| = |K(3)| = |K(4)| = 3 and |K(5)| = |K(6)| = |K(7)| = 2.

The bidirectional connection of each link in the path267

depends on the s-SINRs of the corresponding receivers.268

Observe in Eq. (4) that the s-SINR of the received signal269

is related to the pathloss, to the number of interferers, as270

well as to the InF γ and to the DeNS S. Additionally, both271

the pathloss between two adjacent nodes and the number272

of interferers are determined by the node density λ. For273

instance, as the node-density increases, the average distance274

or pathloss between two adjacent nodes decreases, and this275

also increases the average number of interferers. Hence, the276

node density λ can be used as the common parameter to277

characterize both the effects of the pathloss and of the average278

number of interferers. As a result, we claim that the s-SINR279

is related to both the node density λ, to the InF γ as well280

as to the DeNS S. Accordingly, given an s-SINR threshold ζ281

in Eq. (5), the LCC K(x) defined in Eq. (6) is a function of282

the triplet (λ, γ, S). Following from the percolation theory283

of [17], a simple measure of the network connectivity is given284

by the maximum cardinality of all LCCs (K(x),∀x ∈ V) in285

the SeWN. This is rooted in the fact that an SeN in the LCC286

of higher cardinality is capable of communicating with more287

SeNs, which are generally distributed across a wider area of288

the SeWN, thus potentially enhancing the network connec-289

tivity. From this perspective, the LCC of infinite cardinality290

(i.e., infinite size) implies the network connectivity of large-291

scale networks, where the number of nodes tends to infinite.292

Hence, we define the connectivity probability of the large-293

scale SeWN as follows.294

Definition 4 (Connectivity Probability of Large-Scale295

SeWNs):The connectivity probability of our SeWN is defined296

as the probability that there exists an LCC of infinite size,297

expressed as5 298

P(λ, γ, S) = P (|K(x)| = ∞,∀x ∈ V) , (7) 299

where P(·) is the probability operator. 300

Since the LCC K(x) is a function of the triplet (λ, γ, S), 301

the connectivity probability P(λ, γ, S) of Definition 4 is a 302

function of the triplet (λ, γ, S) as well. Furthermore, 303

P(λ, γ, S) = 0 implies that there is no infinite-size LCC, 304

and P(λ, γ, S) > 0 implies that there may exist an infinite- 305

size LCC with a certain probability. Nevertheless, when the 306

SeWN includes a large number of nodes, it becomes a chal- 307

lenge to compute the probability P (|K(x)| = ∞,∀x ∈ V), 308

hence it is difficult to determine the exact expression of the 309

connectivity probability P(λ, γ, S) with the triplet (λ, γ, S). 310

In the following sections we focus our attention on 311

determining whether the SeWN is connected or not, while 312

neglecting the exact expression of P(λ, γ, S) with the 313

triplet (λ, γ, S). In order to facilitate our further analysis, let 314

us reformulate our SeWN G(V, E) as G(λ, γ, S). 315

III. CONNECTIVITY OF SeWNs 316

In this section, we first introduce the concept of connectivity 317

region in the SeWN G(λ, γ, S) and then derive the upper 318

and lower bounds of the network connectivity of SeWNs. 319

Finally, a pair of critical DeNSs is obtained for different 320

SeWN scenarios. 321

A. CONNECTIVITY REGION 322

Again, the network connectivity of the SeWN G(λ, γ, S) is 323

affected by the node density λ, the InF γ and the DeNS S. 324

We hence formally define the connectivity region of the 325

SeWN in terms of the parameter space S(λ, γ, S), which 326

is represented by a specific set of the parameter triplets 327

(λ, γ, S). Explicitly, the connectivity region C is defined as 328

the particular set of the parameter triplets (λ, γ, S), for which 329

there may exist an infinite-size LCC in G(λ, γ, S), and we 330

have 331

C = {(λ, γ, S) : P(λ, γ, S) > 0} ⊆ S(λ, γ, S), (8) 332

where P(λ, γ, S) was defined in Eq. (7). There are two 333

basic properties of the connectivity region in such SeWNs 334

(cf. [15, Th. 1]). 1) The connectivity region C is contiguous, 335

which implies that there exists at least one path in C con- 336

necting any two points (λ1, γ1, S1), (λ2, γ2, S2) ∈ C. This 337

property can be shown to hold with the aid of the coupling 338

property6 of [18]; 2) Almost surely there exists either no 339

5In Definition 4, we have defined the connectivity probability of
the large-scale SeWN (cf. [25]). However, we may also appropriately
adapt this definition to a finite-scale network. Explicitly, the connec-
tivity probability of a finite-scale network is given by the probability
that any two nodes are connected to each other, which is formulated as
P(λ, γ, S) = P (|K(x)| = |V|,∀x ∈ V), where |V| is the total number of
nodes in this finite-scale network.

6In probability theory, coupling refers to the construction of different
models over the same probability space in some sensible way, in order to
directly compare the models. For example, let X1 and X2 be two random
variables defined over the probability spaces ω1 and ω2. Then a coupling of
ω1 and ω2 is a new probability space ω over which there are two random
variables Y1 and Y2 such that Y1 has the same distribution as X1, while Y2
has the same distribution as X2.

4 VOLUME 3, 2015



IE
EE

Pr
oo

f

J. Li et al.: Connectivity of SeWNs

infinite-size LCC or a single unique infinite-size LCC in340

G(λ, γ, S), which follows from the properties of ergodic341

stochastic processes [19].342

B. CONNECTIVITY OF SELFISH NETWORKS343

In the preceding subsection, the connectivity region344

S(λ, γ, S) has been defined for employment in investigating345

the network connectivity of SeWNs. When the parameter346

triplet (λ, γ, S) is within the connectivity region C, the cor-347

responding SeWN G(λ, γ, S) is connected with a certain348

probability. By contrast, having a parameter triplet (λ, γ, S)349

outside the connectivity region C implies that the SeWN350

remains unconnected. Hence, the critical surface SF(λ, γ, S)351

defining the boundary of this connectivity region separates352

the parameter space S(λ, γ, S) into two parts, namely the353

connectivity region associated with P(λ, γ, S) > 0 and the354

unconnected region having P(λ, γ, S) = 0. In this paper,355

our objective is to determine the critical surface SF(λ, γ, S)356

for characterizing the network connectivity, but determin-357

ing the exact expression of the connectivity probability358

P(λ, γ, S) with the triplet (λ, γ, S) is beyond the scope of this359

contribution.360

For example, as the DeNS S increases, some of the pre-361

viously connected bidirectional links may become broken362

according to Eqs. (4) and (5), hence the connectivity of the363

SeWN G(λ, γ, S) may be jeopardized for S < 1. Specifically,364

an altruistic network G(λ, γ, 0) retains its connectivity for365

a sufficiently high node density λ, provided that the InF366

obeys γ < γ ∗(λ), with γ ∗(λ) being the critical value of367

the InF γ in [20]. By contrast, in the extremely selfish sce-368

nario of G(λ, γ, 1), none of the nodes are capable of com-369

municating with each other. Hence, these parameter triplets370

(λ, γ ∗(λ), 0) belong to the critical surface SF(λ, γ, S). For371

the sake of determining the critical surface SF(λ, γ, S), we372

provide Proposition 1 below.373

Proposition 1: For the connectivity of the SeWN, the prob-374

lem of finding the critical surface SF(λ, γ, S) is equivalent375

to finding the critical InF γ ∗(λ, S) quantifying the maxi-376

mum tolerable interference level or finding the critical DeNS377

S∗(λ, γ ) from a node-selfishness point of view.378

Proof: Please refer to Appendix A.379

Based on Proposition 1, whether the SeWN is connected380

or not is determined in terms of the critical InF γ ∗(λ, S)381

or the critical DeNS S∗(λ, γ ). Given λ and S, if we have382

γ < γ ∗(λ, S), the SeWN G(λ, γ, S) is connected with a383

certain probability, otherwise, it is unconnected. Likewise,384

given λ and γ , if we have S < S∗(λ, γ ), the SeWN G(λ, γ, S)385

is connected with a certain probability, otherwise, it is386

unconnected.387

1) ASYMPTOTIC CRITICAL InF388

Without loss of generality, we consider the SeWN G(λ, γ, S),389

where all SeNs are homogeneous and have the same DeNS S.390

From Definition 2, the s-SINRuv is rewritten as391

s-SINRuv =
pul(‖ xu − xv ‖)

N0
(1−S) + γ

∑
k 6=u,v

pk l(‖ xk − xv ‖)
. (9)392

By employing the result of [20, Th. 4], we arrive at the 393

following result. When we have λ → ∞ and S → 0, the 394

asymptotic behavior of the critical InF is encapsulated into7 395

γ ∗(λ, S) = 2
(

1
λ(1− S)

)
. (10) 396

When the InF is less than its critical InF value, i.e., γ < γ ∗, 397

the SeWN is connected with a certain probability. Other- 398

wise, it is unconnected. Avoiding the violation of the critical 399

InF γ ∗(λ, S) is used for guiding and informing the 400

interference-based design of the system for maintaining the 401

connectivity of the SeWN. 402

2) UPPER AND LOWER BOUNDS OF THE CRITICAL DeNS 403

Let us investigate the network connectivity from a node- 404

selfishness perspective, and determine both the upper bound 405

Su(λ, γ ) and the lower bound S l(λ, γ ) of the critical DeNS 406

in the SeWN G(λ, γ, S) with the aid of percolation theory so 407

that the critical DeNS S∗ satisfies S l(λ, γ ) ≤ S∗(λ, γ ) ≤ 408

Su(λ, γ ). For any S ensuring that 0 ≤ S ≤ S l(λ, γ ), 409

there exists an LCC of infinite size in the SeWN G(λ, γ, S), 410

i.e., we have P(λ, γ, S) = 1. For any S satisfying that 411

Su(λ, γ ) ≤ S ≤ 1, there is only a limited number of 412

LCCs of finite size in the SeWN G(λ, γ, S), i.e., we have 413

P(λ, γ, S) = 0. The upper and lower bounds of the critical 414

DeNS are provided by the following pair of theorems. 415

Theorem 1 (Lower Bound of the Critical DeNS): For 416

a sufficiently high node density λ, as λ → ∞ and 417

γ ≤ 1
12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
with ε > 0, the lower bound 418

of the critical DeNS is shown to be 419

S l(λ, γ ) = 1−
ζN0

Pψ(λ)− 12λζγPMρ2(1+ ε)
, (11) 420

where ψ(λ) denotes the pathloss of the link which is a mono- 421

tonically increasing function of the node density λ, where we 422

have lim
λ→∞

ψ(λ) = M . 423

Proof: Please refer to Appendix B. 424

Theorem 2 (Upper Bound of the Critical DeNS): For 425

a node density of λ > 16PM
(1−ε)N0ζ δ2

and an InF of 426

γ ≤
8PM−8N0ζ

(1−ε)ζ 2λδ2N0−16PMζ
with ε > 0, the upper bound of 427

the critical DeNS obeys 428

Su(λ, γ ) = 1−
8N0ζ

8PM (1+ 2ζγ )− (1− ε)λγN0ζ 2δ2
. (12) 429

Proof: Please refer to Appendix C. 430

We have determined both the upper and lower bounds of 431

the critical DeNS with the aid of percolation theory [18]. 432

This was achieved by mapping the SeWN G(λ, γ, S) onto 433

a discrete lattice L, as shown in Fig. 2 and by assum- 434

ing that we have an open edge8 for the discrete lattice in 435

terms of the s-SINR of any node in the SeWN G(λ, γ, S). 436

7Knuth’s notation [26] is used throughout the paper: f (z) = 2(h(z)) iff
there exist a sufficiently large z0 and two positive constants c∗1 and c∗2 , so
that for any z > z0, we have c∗1h(z) ≥ f (z) ≥ c

∗
2h(z).

8The open edge of a discrete lattice is defined in Appendix C.
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FIGURE 2. Mapping the SeWN G(λ, γ,S) onto the discrete lattice L.

If we have S ≤ S l(λ, γ ), there exists an infinite-length path437

comprised of open edges in a discrete lattice, thus leading438

to a connected SeWN with P(λ, γ, S) = 1. By contrast,439

if S ≥ Su(λ, γ ), there are only finite-length paths in the440

corresponding discrete lattice, thus leading to a unconnected441

SeWN, namely its connectivity probability P(λ, γ, S) = 0.442

In the next subsection, the upper and lower bounds443

of the critical DeNS are considered, which have to be444

satisfied for maintaining the network connectivity in the445

SeWN G(λ, γ, S).446

3) ASYMPTOTIC CRITICAL DeNS447

In this subsection, we determine the critical DeNS S∗(λ, γ )448

that has to be satisfied for maintaining the connectivity of449

the SeWN according to the upper bound Su(λ, γ ) and the450

lower bound S l(λ, γ ) of the critical DeNS. The sufficient451

condition for maintaining the network connectivity in the452

SeWN G(λ, γ, S) is S < S l(λ, γ ), since the node density λ453

is sufficiently high and the InF is sufficiently low, obey-454

ing γ ≤ 1
12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
, as stated in Theorem 1.455

By contrast, the necessary condition for the connectivity456

of this SeWN G(λ, γ, S) is S < Su(λ, γ ), since we have457

λ > 16PM
(1−ε)N0ζ δ2

and γ ≤ 8PM−8N0ζ

(1−ε)ζ 2λδ2N0−16PMζ
, as stated458

in Theorem 2.459

From the pathloss model of Eqs. (2) and (3), we have460

N0ζ < PM and δ2 < ρ2, and hence we readily obtain461

(1 − ε)λγN0ζ
2δ2/8 < 12λζγPMρ2(1 + ε), which leads462

to PM (1 + 2ζγ ) − (1 − ε)λγN0ζ
2δ2/8 > Pψ(λ) −463

12λζγPMρ2(1 + ε). By comparing Eqs. (11) and (12), we464

arrive at S l(λ, γ ) < Su(λ, γ ), which implies that there465

exists a critical DeNS S∗(λ, γ ), so that we have S l(λ, γ ) ≤466

S∗(λ, γ ) ≤ Su(λ, γ ).467

Theorem 3 (Asymptotic Critical DeNS): For the node den-468

sity of λ→∞ and the InF γ → 0, the critical DeNS obeys469

the following asymptotic behavior470

S∗(λ, γ ) = 1−
1

PM
N0ζ
−2(λγ )

. (13)471

Proof: Please refer to Appendix D.472

Weobserve fromEq. (13) that the asymptotic critical DeNS 473

depends on the product of the node density λ and the InF γ . 474

In the SeWN having a sufficiently high node density of λ 475

(λ → ∞) and a sufficiently low positive InF γ (γ → 0), 476

the asymptotic critical DeNS can be used as the criterion of 477

determining the effect of node-selfishness on the network’s 478

connectivity. If we have S < S∗(λ, γ ), the SeWN G(λ, γ, S) 479

is connected with a specific probability; otherwise, it is 480

unconnected. 481

In the SeWN, which is free from mutual interference 482

(γ = 0), the following theorem related to the critical DeNS 483

holds. 484

Theorem 4 (Asymptotic Critical DeNS for γ = 0): For 485

the node density obeying λ→∞, the critical DeNS has the 486

following asymptotic behavior 487

S∗(λ) = 1−2
(

1
ψ(λ)

)
. (14) 488

Proof: Please refer to Appendix E. 489

From Eq. (14), the critical DeNS increases and tends to 490

a certain asymptotically near-constant value, as the node 491

density increases. Meanwhile, the probability of attaining 492

connectivity for the SeWN increases, as the critical DeNS 493

increases. 494

Based on the asymptotic DeNS S∗ defined in Theorem 3 495

and Theorem 4, we characterize the network connectivity of 496

the SeWN G(λ, γ, S) by comparing the SeNs’ DeNS S to 497

the asymptotic critical DeNS S∗. If we have S < S∗, this 498

SeWN is connected with a certain probability; otherwise, 499

it is unconnected. Hence, the asymptotic critical DeNS is 500

capable of characterizing the network’s connectivity from 501

a node-selfishness perspective. Furthermore, since both the 502

SeN’s available resources ϒ and the received incentive 4 503

affect its selfish/altruistic inclination, we also maintain the 504

network connectivity of the SeWN, which consists of the 505

SeNs having different amounts of available resources, by 506

adjusting the incentives for stimulating these SeNs. In the 507

following section, we provide an example for analyzing the 508

relationship between the residual energy possessed by 509

the SeNs and the connectivity of the SeWNs. 510

IV. CONNECTIVITY OF SeWN UNDER 511

ENERGY-CONSCIOUS NODE-SELFISHNESS MODEL 512

In our SeWN, we assume that the SeNs have limited energy 513

resources, but a sufficiently large number of long CDMA 514

spreading codes, which implies that the mutual interference 515

amongst the SeNs is negligible. Hence we have γ = 0. 516

We refer to the specific nodes generating data packets as 517

the sources and those finally receiving these data pack- 518

ets as the corresponding destinations. The shortest line-of- 519

sight (LOS) distance between the source-destination pair is 520

denoted by L1, and the set of SeNs within the rectangu- 521

lar area (L1 × L2) is denoted by M with a cardinality of 522

|M| = λL1L2. To deliver data packets from the sources 523

to their corresponding destinations, the connectivity of such 524

a SeWN has to be retained for guaranteeing that there 525
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exists a path consisting of several SeNs between the source-526

destination pair.527

Again, the SeN’s node-selfishness is characterized by both528

its energy resources ϒ , i.e., its residual energy and the529

amount of its instantaneously consumed energy, and the530

incentive4. In our SeWN scenario, the resource consumption531

of a packet’s transmission for all SeNs is assumed to be iden-532

tical. Therefore, the effect of the instantaneously consumed533

resources on the node-selfishness is also approximately534

equal. For simplicity, in this contribution, we pay more atten-535

tion to the dissecting of the residual energy resource asso-536

ciated with the node-selfishness, given the globally known537

effects of the instantaneously consumed resources. Addition-538

ally, a price-based incentive mechanism [7] is employed by539

the sources for stimulating the specific SeNs only having a540

small residual energy to connect with their neighbor nodes541

in the interest of sustaining connectivity. In this mechanism,542

the source pays an energy price β in exchange for the SeN’s543

residual energy resource. The energy price β increases, as the544

amount of the SeN’s residual energy decreases. In the fol-545

lowing subsections, we propose an energy-conscious node-546

selfishness model for characterizing the effects of both the547

SeN’s residual energy E and the received energy price β548

on its DeNS, and consequently also on the connectivity of549

this SeWN. In our regime, the SeNs of different residual550

energy are paid to avoid increasing their DeNS in the inter-551

est of retaining the network’s connectivity, as formulated552

in Theorem 4.553

A. ENERGY-CONSCIOUS NODE-SELFISHNESS MODEL554

In this subsection, we formulate the relationship between the555

SeN’s DeNS and its residual energy. The DeNS increases as556

the residual energy retained at the SeN is depleted. Typically,557

when an SeN has a high residual-energy level, it is likely to558

bemore willing to forward packets received from its neighbor559

nodes, while in the presence of mediocre residual-energy560

level, the willingness of forwarding packets reduces. Finally,561

in the presence of a low residual-energy level, the SeN562

may refuse to forward packets all together. By mapping the563

residual energy to the DeNS (c.f. the hyperbolic selfishness564

behavior in [27]), we arrive at the plausible energy-conscious565

node-selfishness model of566

S(E, β) = 1−
(
1− e−βE

1− e−Ē

)α
, (15)567

where E is the residual energy amount, Ē is the amount of568

the total energy initially possessed by the SeN, α and β are569

the individual characteristics of the SeN and the energy price.570

When α = 1, the SeN does not have any prejudice against571

dissipating its energy resources; when α < 1, the SeN has an572

altruistic inclination concerning its energy dissipation; while573

for α > 1, the node has a selfish inclination, hence aiming for574

conserving energy. In a price-based incentive mechanism, the575

SeN’s willingness of forwarding packets is affected by the576

energy price paid by other nodes. The SeN’s willingness of577

forwarding packets increases as the energy price increases,578

thus leading to that its DeNS decreases. Let us briefly 579

consider two extreme cases: for E = 0, the DeNS S = 1, 580

which means that no SeNs are willing to forward packets; 581

by contrast, for E = Ē , the DeNS S = 0, which means 582

that the SeNs are altruistically willing to forward packets. 583

Naturally, it is more common that we have 0 < E < Ē , 584

yielding 0 < S < 1, which is also affected by the energy 585

price β. 586

B. IMPACT OF RESIDUAL ENERGY 587

ON NETWORK CONNECTIVITY 588

Recall that Theorem 4 illustrates the relationship between the 589

critical DeNS and the network connectivity in the case of 590

ignoring the nodes’ mutual interference, while the energy- 591

conscious node-selfishness model characterizes the relation- 592

ship between the SeN’s DeNS and its residual energy. Hence, 593

both Theorem 4 and the energy-conscious node-selfishness 594

model are exploited here for evaluating the impact of resid- 595

ual energy on the network connectivity, whilst ignoring the 596

nodes’ mutual interference. We define the critical amount 597

of residual energy E∗ as a threshold value for determining 598

whether the SeWN is connected with a specific probability or 599

not. If the residual energy E possessed by the SeN is higher 600

than the critical amount of residual energy E∗, the SeWN 601

maintains the network connectivity with a certain probability; 602

otherwise, the SeWN is unconnected. 603

Theorem 5 (Critical Amount of Residual Energy):By using 604

Theorem 4, the critical amount of residual energy for the 605

SeN required for maintaining the network connectivity with 606

a certain probability is expressed as 607

E∗(λ, β) = −
1
β
ln
(
1− η α

√
c6
ψ(λ)

)
, (16) 608

which is a monotonically decreasing function of node 609

density λ and β, and where η = 1 − exp(−Ē) and c6 is a 610

constant related to P, N0 and ζ . 611

Proof: Please refer to Appendix F. 612

To guarantee the connectivity of the SeWN with a cer- 613

tain probability, the source evaluates the critical amount of 614

residual energy as a function of λ, α and β. We stipulate the 615

idealized simplifying assumption that this information may 616

be inferred by learning techniques from the surrounding envi- 617

ronment. The critical amount of residual energyE∗ is amono- 618

tonically decreasing function of β, as seen from Theorem 5. 619

Accordingly, the sourcemay pay a commensurately increased 620

energy price β to decrease the corresponding critical amount 621

of residual energy E∗ of each and every SeN for the 622

sake of maintaining the network’s connectivity formulated 623

as E∗ ≤ E . Nevertheless, for the sake of minimizing the 624

energy price, the source also decreases its critical amount of 625

residual energy E∗ to its residual energy E , thus arriving at 626

the optimal condition of E∗ = E . Therefore, in the SeWNs, 627

where all SeNs have different amounts of residual energy, the 628

critical amount of residual energy E∗ in Theorem 5 is used for 629

the sake of satisfying the network’s connectivity. 630
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V. SIMULATION RESULTS631

In this section our simulation results are provided for char-632

acterizing the connectivity of the SeWN. We set the s-SINR633

threshold as ζ = 0dB.634

A. THE NETWORK CONNECTIVITY635

Fig. 3, Fig. 4 and Fig. 5 show the topological examples of the636

connectivity of the SeWN in the simulation area having an637

edge-length of 40m and a node density of λ = 0.5/m2. The638

central node is marked with ‘‘M’’, and the SeNs are denoted639

by themarker ‘‘+’’, which are directly or indirectly connected640

to the central node. The points denoted by the marker ‘‘x’’ are641

unconnected to the central node either directly or indirectly.642

FIGURE 3. There are only LCCs of finite size in the simulation area having
an edge-length of 40m with λ = 0.5, γ = 0.08 and S = 0.

FIGURE 4. There exists an LCC spanning from one side to the other side
of the simulation area having an edge-length of 40m with λ = 0.5,
γ = 0.008 and S = 0.

Fig. 3 shows the topology of this SeWN for the643

InF γ = 0.08 and the DeNS S = 0. We readily observe644

that the central node is unable to connect to all nodes of645

the entire SeWN. Fig. 4 depicts a topology example of the646

SeWN for a reduced InF γ = 0.008 and the DeNS S = 0,647

where the central node is now readily capable of establishing648

connection with any of the nodes. As expected, given a fixed649

node density λ and a DeNS S, the probability of maintaining650

the connectivity of the SeWN reduces, as the InF increases.651

FIGURE 5. The central node cannot connect to all edge-nodes in the
simulation area having an edge-length of 40m with λ = 0.5, γ = 0.008
and S = 0.95.

Fig. 5 illustrates a topology example of the SeWN for 652

γ = 0.008 and S = 0.95, where the central node is unable 653

to connect with all nodes of the entire SeWN. By observing 654

the results of Fig. 4 and Fig. 5, we infer that the probability 655

of maintaining the connectivity of the SeWN reduces, as the 656

DeNS increases. 657

FIGURE 6. The upper bound of the critical DeNS for λ = [0.5,2] and
γ = [0,0.002] evaluated from Eq. (11).

Fig. 6 and Fig. 7 show the lower and upper bounds of the 658

critical DeNS, as evaluated from Eqs. (11) and (12) versus 659

both the InF γ and the node density λ. Observe in these two 660

figures that as λ → ∞ and γ → 0, the DeNS varies with 661

the product of λ and γ . When the DeNS is S = 0 at the 662

top of these surfaces, we observe that the InF γ decreases, 663

as the node density λ increases. Furthermore, when the InF 664

is γ = 0, the DeNS S increases and tends to a certain fixed 665

value, as the node density obeys λ→∞. It becomes explicit 666

from Fig. 6 and Fig. 7 that the upper bound of the critical 667

DeNS is higher than its lower bound. 668

B. CONNECTIVITY OF SeWN VERSUS 669

ENERGY RESOURCES 670

In practical networks, there are parallel source-destination 671

pairs. Furthermore, some SeNs may be simultaneously used 672
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FIGURE 7. The lower bound of the critical DeNS for λ = [1000,2000] and
γ = [0,0.1] evaluated from Eq. (12).

for assisting the packet transmissions of different source-673

destination pairs. Considering that an SeN is shared by several674

source-destination pairs and its residual energy is also known675

to these pairs, the energy price paid to this SeN by a certain676

source-destination pair is correlated with this specific SeN’s677

residual energy, but it is independent of the actions of the678

other pairs. Equivalently, we may assume that the parallel679

source-destination pairs are independent of each other. This680

allows us to simplify the simulation scenario by considering681

only a single source-destination pair. Fig. 8 shows the SeWN682

topology with the SeN’s DeNS S = 0.5 in the area of683

(40m×1m). The source and the destination are marked as684

‘‘M’’ and ‘‘◦’’, respectively. The points denoted by the marker685

‘‘+’’ are the nodes, which are either directly or indirectly686

connected to the source, while the nodes denoted by the687

marker ‘‘x’’ are isolated from the source. The top subplot688

shows the SeWN topology for a node density of λ = 1,689

where the SeN is unable to connect to the destination. The690

bottom subplot shows the SeWN topology for a node density691

of λ = 2, where the source successfully transmits its packets692

to the destination. This implies that a higher node density693

results in a higher successful probability of packet delivery.694

FIGURE 8. The SeWN topology for different node densities in the area
of (40m×1m).

Fig. 9 shows the variation of the critical DeNS evaluated 695

from Eq. (14) as well as its upper and lower bounds ver- 696

sus the node density. We employ the classic Monte Carlo 697

method for determining the proportion of packets success- 698

fully transmitted from the source to the destination in the 699

area of (40m×1m). By randomly generating 30 different 700

network topologies, we evaluated both the upper and lower 701

bounds of the critical DeNS. The lower bound of the DeNS 702

is determined under the condition that all random network 703

topologies remain connected, while the upper bound is deter- 704

mined under the condition that all random network topologies 705

are unconnected. Observe from Fig. 9 that the theoretical 706

value of the critical DeNS evaluated from Eq. (14) is between 707

the upper bound and the lower bound generated by the 708

Monte Carlo method. Furthermore, the theoretical value, 709

the upper bound and the lower bound of the critical DeNS 710

increase, as the node density increases. This implies that this 711

theoretical result of the critical DeNS can be invoked for 712

determining whether the SeWN is connected or not. 713

We further illustrate the effect of the SeN’s residual energy 714

on the network connectivity in the SeWN, while ignoring the 715

nodes’ mutual interference. Fig. 10 shows the variations of 716

the critical amount of residual energy with the node density 717

for different energy prices of β = {0.1, 0.5, 1}. Observe that 718

FIGURE 9. The critical DeNS versus node density as evaluated from
Eq. (14).

FIGURE 10. The critical amount of residual energy versus node density
for different energy prices of β = {0.1,0.5,1} as evaluated from Eq. (16)
and by Monte Carlo simulations respectively.
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FIGURE 11. The critical amount of residual energy versus the energy price
for node densities of λ = {1,1.2,2,8} as evaluated from Eq. (16) and by
Monte Carlo simulations respectively.

the theoretical value of the critical amount of residual energy719

is between the upper bound and the lower bound generated by720

the Monte Carlo method, and the critical amount of residual721

energy decays to a certain constant value, as the node density722

increases for a specific energy price. Meanwhile, the theoret-723

ical value of the critical amount of residual energy evaluated724

from Eq. (16) decreases, as the energy price increases in725

the SeWN scenario associated with a certain node density λ.726

Fig. 11 depicts the critical amount of residual energy versus727

the energy price for λ = {1, 1.2, 2, 8} as evaluated from728

Eq. (16). In an SeWN scenario associated with a certain node729

density, the critical amount of residual energy of transmitting730

the packets decreases, as the energy price increases. Thus, for731

the SeWN relying on SeNs possessing a low residual energy732

level, the source has to provide a sufficiently high energy733

price for maintaining the network connectivity. At a specific734

energy price paid by the source, the critical amount of residual735

energy decreases, as the node density increases.736

VI. CONCLUSIONS737

In this paper, we determined the impact of the node-738

selfishness on the network’s connectivity and derived both739

the upper and lower bounds of the DeNS with the aid740

of percolation theory. Then the asymptotic critical DeNSs741

were obtained for SeWNs with the aid of these two742

bounds. Furthermore, we developed an energy-conscious743

node-selfishness model, which is a function of both its own744

residual energy and the energy price paid by the source. The745

critical amount of residual energy derived from the asymp-746

totic critical DeNS was used for characterizing the network’s747

connectivity from a residual-energy perspective. Therefore,748

both the asymptotic critical DeNS and the critical amount of749

residual energy were taken into account by our analysis of the750

network’s connectivity.751

APPENDIX A752

PROOF OF PROPOSITION 1753

In SeWNs, the interference level and the DeNS criti-754

cally affect the network connectivity. The interference level755

directly impacts the quality of the received signal. Likewise,756

the DeNS degrades the probability of successfully757

forwarding packets and thus may destroy the link’s connec- 758

tivity all together. Since the InF and the DeNS are directly 759

related to the relative user-load and the DeNS respectively, 760

we may determine the critical surface 761

SF(λ, γ, S) = 0 (17) 762

from an interference level and a node-selfishness perspective 763

in the SeWN G(λ, γ, S), respectively. Considering the effect 764

of the interference level on the connectivity of the SeWN, we 765

define the critical InF as 766

γ = γ ∗(λ, S), (18) 767

given a specific node density λ and a DeNS S. Thus we 768

have the parameter triplet (λ, γ ∗(λ, S), S), which separates 769

the parameter space S(λ, γ, S) in two parts, corresponding 770

to the connectivity resigon and the disconnectivity region, 771

respectively. Similarly, when considering the effect of the 772

node-selfishness on the connectivity of the SeWN, we define 773

the critical DeNS as 774

S = S∗(λ, γ ), (19) 775

given a specific node density λ and a particular InF γ . 776

Furthermore, we have the parameter triplet (λ, γ, S∗(λ, γ )), 777

which also divides the parameter space S(λ, γ, S) in two 778

parts: the connectivity region and the disconnectivity region. 779

Therefore, determining the critical surface SF(λ, γ, S) is 780

equivalent to finding the critical InF γ ∗(λ, S) or to determin- 781

ing the critical DeNS S∗(λ, γ ) for maintaining the SeWN’s 782

connectivity with a specific probability. 783

APPENDIX B 784

PROOF OF THEOREM 1 785

In order to prove this theorem, we first prove the bond per- 786

colation of [14] on the square lattice, which is related to the 787

SeWN, and then find the sufficient condition of the network 788

connectivity based on the bond percolation. 789

The SeWN G(λ, γ, S) is mapped onto a square lattice L 790

with edge length ρ over the plane, as depicted in Fig. 12. 791

FIGURE 12. Lattice L with length ρ and its dual L′ (dashed), and a
square has some subsquares of area ρ

K ×
ρ
K .
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Let L′ be the dual lattice of L, which is created by placing792

a vertex in the center of every square of L and an edge across793

every edge of L. Let us now consider the PPP of the node794

density λ over the plane, where each square of the original795

lattice L contains on average λρ2 SeNs. The parameter K is796

related to the node density λ and we set it to a value satisfying797

the condition of ‖ x ‖≤
√
5ρ
K ≤ δ, where ‖ x ‖ is the average798

distance between two adjacent SeNs. In the original lattice L,799

each square is again divided intoK 2 subsquares of size ρ
K×

ρ
K .800

A square ofL is said to be populated [20], if all its subsquares801

contain at least one SeN. An edge of the original lattice L is802

said to be open, if the following conditions are satisfied:803

1) both squares adjacent to this edge are populated; 2) the804

total number of SeNs located in the two squares adjacent to805

this edge as well as all their direct neighboring squares (that806

is, all the squares having at least one vertex in common with807

these two squares) is less than or equal to (N + 1), where the808

integer parameter N is defined as809

N = inf
s.t. ‖x‖≤

√
5ρ
K

⌊
1

γ (1− S)M

(
(1− S)l(‖ x ‖)

ζ
−
N0

P

)⌋
,810

(20)811

with b·c being the integer floor operator. Eq. (20) puts a812

limit to the interference contribution. An edge of the dual813

lattice L′ is said to be open (resp. closed) if and only if814

the corresponding edge of L is open (resp. closed). A path815

(in L or L′) is said to be open (resp. closed), if all edges816

forming this path are open (resp. closed).817

Based on the above definitions, we now prove the bond818

percolation on the dual lattice L′. The number of the SeN in819

a subsquare and a square is denoted by X and Y , which are820

two independent Poisson random variables of the parameters821

λ( ρK )
2 and 10λρ2, respectively. In the dual latticeL′, the event822

of an arbitrary open edge happens to include the following823

events: the first event is that 1 ≤ X ≤ N
12K2 , while the second824

event is that Y ≤ 5N
6 . Therefore, in L′ the probability of an825

arbitrary open edge obeys826

1− S = P2K2
(
1 ≤ X ≤

N
12K 2

)
P
(
Y ≤

5N
6

)
. (21)827

Since both X and Y are independent Poisson random vari-828

ables of the parameters λ( ρK )
2 and 10λρ2, respectively, by829

invoking the Chebyshev’s inequality [28] we arrive at830

lim
λ→∞

P2K2
(
1 ≤X≤

λρ2(1+ ε)
K 2

)
P
(
Y ≤10λρ2(1+ ε)

)
=1.831

(22)832

For the sake of combining of IEq. (21) and Eq. (22), we833

have to set the number of SeNs N = b12λρ2(1 + ε)c.834

Based on this number together with Eq. (20), we obtain the835

DeNS S = S l(λ, γ ), where we have836

S l(λ, γ ) = 1−
ζN0

Pψ(λ)− 12λζγPMρ2(1+ ε)
(23)837

for ε > 0 and γ ≤
1

12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
, with 838

ψ(λ) = l
(√

5ρ/K
)
being a monotonically increasing func- 839

tion of the node density λ, such that limλ→∞ ψ(λ) = M . 840

Thus, it may be readily seen from IEq. (21) and Eq. (22), 841

that the probability of an arbitrary edge being open is 842

limλ→∞ S = 0. With the aid of [20, Lemma 3 and Th. 3], 843

we can also state that there a.s. exists an open path 844

of infinite size in L′ for λ tending to infinity, while 845

γ ≤ 1
12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
and S ≤ S l(λ, γ ). 846

We still have to show that there exists an LCC of infinite 847

size, namely P(λ, γ, S) = 1, in the SeWN G(λ, γ, S) with λ 848

tending to infinity, while γ ≤ 1
12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
and 849

S ≤ S l(λ, γ ). In two adjacent subsquares of the edge 850

length ρ/K , the distance between any two SeNs is at 851

most
√
5ρ/K . Since

∑
k 6=i,j pk l(‖ xk − xi ‖) ≤ NMP from 852

Eq. (2) and IEq. (3), the s-SINR received by the SeN in a 853

subsquare is 854

pil(‖ xj − xi ‖)(1− S)
N0 + γ

∑
k 6=i,j

pk l(‖ xk − xi ‖)(1− S)
≥ ζ. (24) 855

Each SeN in a given subsquare is connected to all the SeNs 856

in the adjacent subsquares, and the SeNs in all subsquares 857

of a certain square belong to the same LCC. If there exists 858

an open path of infinite size in L′, there exists an LCC of 859

infinite size in the SeWN G(λ, γ, S). Therefore, we proved 860

that there exists an infinite-size LCC in the SeWN G(λ, γ, S), 861

as λ tends to infinity, while γ ≤ 1
12Mλρ2(1+ε)

(
ψ(λ)
ζ
−

N0
P

)
862

and S ≤ S l(λ, γ ). 863

APPENDIX C 864

PROOF OF THEOREM 2 865

In order to prove this theorem, we first prove the site per- 866

colation [14] on the square lattice, which is related to the 867

SeWN, and then find the necessary condition of the network 868

connectivity based on this site percolation. 869

The SeWN G(λ, γ, S) is similarly mapped onto a new 870

square lattice L′′ over the plane as the lattice L mentioned in 871

the proof of Theorem 1, except for the difference that it was 872

an edge length of δ/2, when considering an arbitrary node in 873

G(λ, γ, S) as the origin of the square of L′′. With the aid of 874

Eq. (3), we arrive at
∑

k 6=i,j pk l(‖ xk−xi ‖) ≥ ζN
′N0−2PM , 875

where N ′ is the number of the SeNs in a square. We thus have 876

the following result 877

pjl
(
‖ xj − xi ‖

)
(1−S)

N0+γ
∑
k 6=i,j

pk l (‖xk−xi‖)(1−S)
≤

PM (1−S)
N0+γ (ζN ′N0−2PM)(1−S)

. 878

(25) 879

If the right-hand side of the above inequality is clearly smaller 880

than ζ , node i is unable to communicate with any other nodes 881

in this square. If the number of SeNs is 882

N ′ ≥
(1− S)PM (1+ 2ζγ )− N0ζ

(1− S)γN0ζ 2
, (26) 883
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all SeNs in this square are isolated. Using the site percolation884

theory [14], we declare a square of L′′ open, if this square885

contains at most 2 (1−S)PM (1+2ζγ )−N0ζ

(1−S)γN0ζ 2
SeNs; otherwise, the886

square of L′′ is declared closed. Note that the number of887

SeNs inside a square is a Poisson random variable of the888

parameter λδ2/4. If we have889

lim
λ→∞

P
(
2
(1−S)PM (1+2ζγ )− N0ζ

(1−S)γN0ζ 2
≤

(1−ε)λδ2

4

)
= 0,890

(27)891

which is obtained with the aid of the Chebyshev’s inequal-892

ity [28], we can obtain that limλ→∞ P(a square is open) = 0893

and hence limλ→∞ P(a square is closed) = 1. This means894

that the origin is a.s. surrounded by a closed circuit (that895

consists of some closed squares in L′′). From Eq. (27), we896

can obtain the DeNS of897

Su(λ, γ ) = 1−
8N0ζ

8PM (1+ 2ζγ )− (1− ε)λγN0ζ 2δ2
, (28)898

for λ > 16PM
εN0ζ δ2

and γ ≤ 8PM
(1−2ε)ζ 2λδ2N0

.899

For λ > 16PM
εN0βδ2

, γ ≤ 8PM
(1−2ε)ζ 2λδ2N0

and S ≥ Su(λ, γ ),900

we have proved that the origin is surrounded by a closed901

circuit inL′′, but we still have to prove that there is no infinite-902

size LCC in the SeWN G(λ, γ, S). Let us consider the pair of903

nodes i and j, such that node i is located inside an open square904

surrounded by a closed circuit, while node j is located inside905

another open square, but on the other side of the previous906

circuit. As these two SeNs are separated by the circuit, the907

distance ‖ xi − xj ‖ between them is larger than δ
2 . For908

δ
2 <‖ xi − xj ‖< δ, the s-SINR observed at node i upon909

receiving from node j becomes910

s-SINRji ≤
PM (1− S)

N0 + γ (1− S)(ζN ′N0 − 2PM )
. (29)911

Substituting IEq. (26) into the above inequality, we find that912

s-SINRji ≤ ζ , which means that there is no connected913

bidirectional link between node i and node j. Furthermore,914

for δ >‖ xi − xj ‖, we obtain915

s-SINRji ≤
Pl(‖ xi − xj ‖)(1− S)

N0 + γ (1− S)(ζN ′N0 − 2PM )
. (30)916

Likewise, we still have s-SINRji ≤ ζ , which implies the917

absence of the connected bidirectional link between node i918

and node j. Consequently, this origin belongs to a finite-919

size LCC. Because the origin is arbitrary, we only have some920

finite-size LCCs in the SeWN. Therefore, we have proved921

that there only exist some finite-size LCCs in G(λ, γ, S),922

namely P(λ, γ, S) = 0, for λ > 16PM
εN0βδ2

, γ ≤ 8PM
(1−2ε)ζ 2λδ2N0

923

and S ≥ Su(λ, γ ).924

APPENDIX D925

PROOF OF THEOREM 3926

From Eqs. (11) and (12), S l(λ, γ ) and Su(λ, γ ) are expressed927

as S l(λ, γ ) , 1
c1ψ(λ)−c2λγ

and Su(λ, γ ) , 1
c3+c4γ−c5λγ

928

respectively, where c1, c2, c3, c4 and c5 are corresponding 929

constants. As the node density obeys λ → ∞ and the InF 930

obeys γ → 0, both c1ψ(λ) and c3 + c4γ tend to PM
N0ζ

. 931

Then we can find a pair of constants ν and υ, so that 932

lim
λ→∞,γ→0

P(c2λγ ≤ νc5λγ ) = 1 and lim
λ→∞,γ→0

P(c5λγ ≤ 933

υc2λγ ) = 1. Thus, we have a unified asymptotic expres- 934

sion of 2(λγ ) for both c2λγ and c5λγ , as the node density 935

λ → ∞ and the InF γ → 0. Now, this theorem has been 936

proven. 937

APPENDIX E 938

PROOF OF THEOREM 4 939

In the SeWNwhich is free from mutual interference (γ = 0), 940

the lower bound of the DeNS is S l(λ, 0) = ζN0
Pψ(λ) , while 941

its upper bound is Su(λ, 0) = ζN0
PM . There exists a pair 942

of constants ν′ and υ ′ so that we have lim
λ→∞

P(S l(λ, 0) ≤ 943

ν′κ l(λ, 0)) = 1 and lim
λ→∞

P(Su(λ, 0) ≤ υ ′κu(λ, 0)) = 1. 944

Based on this point together with lim
λ→∞

ψ(λ) = M , we have a 945

unified expression2(1/ψ(λ)) for both S l(λ, 0) and Su(λ, 0), 946

as the node density obeys λ → ∞. Hence this theorem has 947

been proven. 948

APPENDIX F 949

PROOF OF THEOREM 5 950

If the DeNS of a specific node is known, its residual energy 951

is evaluated from Eq. (15). By finding the inverse function of 952

Eq. (15), we arrive at 953

E = −ln(1− η α
√
1− S)/β, (31) 954

which is a monotonically decreasing function of the DeNS S, 955

because Eq. (15) is a monotonically decreasing function of 956

the residual energy E . Theorem 4 formulates the condition of 957

the network connectivity in terms of the DeNS as 958

S = 1− c6/ψ(λ), (32) 959

which indicates that a sufficiently high node density λ is 960

required for maintaining the network connectivity. Hence, the 961

critical amount of residual energy of the SeN is expressed 962

as E∗(λ, β) = − ln(1 − η α
√
c6/ψ(λ))/β with the aid of 963

Eqs. (31) and (32). 964

Furthermore, bearing in mind that Eq. (31) is a mono- 965

tonically decreasing function of the DeNS S and that the 966

function S = 1− c6
ψ(λ) is a monotonically increasing function 967

of λ, the critical amount of residual energy E∗(λ, β) is a 968

monotonically decreasing function of λ. 969

Additionally, setting the derivative of Eq. (31) with respect 970

to β yields 971

∂E∗(λ, β)
∂β

=
ln
(
1− η α

√
c6/ψ(λ)

)
β2

, 972

for 0 < η < 1 and 0 <
c6
ψ(λ) < 1. We can now verify 973

that ∂E
∗(λ,β)
∂β

< 0. Since we have ∂E∗(λ,β)
∂β

< 0, the critical 974

amount of residual energy is a monotonically decreasing 975

function of β. This completes the proof. 976
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