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Abstract We revisit herein the formation and structure of dihydroxy dioxanes, which 

can be obtained from prebiotically available precursors and can be regarded as primeval 

sugar surrogates. Previous studies dealing with the heterogeneous composition of 

interstellar bodies point to the existence of significant amounts of small polyalcohols 

along with oxygen-containing oligomers. Even though such derivatives did not give rise 

to nucleosides and oligonucleotides, nor they were incorporated into subsequent 

metabolic routes, molecular chimeras based on sugar-like species could be opportunistic 

scaffolds in pre-evolutionary scenarios. We could figure out that pseudosugars, 

assembled by hemiacetalic bonds from available precursors in both interstellar and 

terrestrial scenarios, were presumably more abundant than thought. Moreover, these 

species share some key features with naturally-occurring sugar rings, such as anomeric 

preferences, coordinating ability, and the prevalent occurrence of racemic compounds. 
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Introduction  

 

Unlike amino acids and other biomolecular signatures, which have long been 

scrutinized in meteorites and astronomical observations through spectroscopic emission 

lines, carbohydrates have received considerably less attention. Despite their inherent 



lability, the putative formation of sugars and sugar-like structures may however be 

inferred from the large abundance of oxygen-containing molecules in the interstellar 

medium and bodies, and icy moons (Kaiser 2002; Williams and Viti 2013; Ruiz-Mirazo 

et al. 2014).   It is generally agreed that the origin of carbohydrate structures, pentoses 

and hexoses in particular, is most likely related to the so-called formose reaction, the 

autocatalytic self-condensation of formaldehyde occurring in alkaline medium and the 

presence of some metal ions, which may be triggered under both thermal and radiation 

conditions (Harman et al. 2013; Gollihar et al. 2014). The overall transformation is a 

low-yielding, messy reaction leading to mixtures of pentoses and hexoses with different 

configurations. This extremely complex pathway arises from sequential aldol reactions 

accompanied by tautomerization and isomerization steps (Benner et al. 2010; Kim et al. 

2011; Benner et al. 2012). Moreover, the process appears to be astrochemically relevant 

as HCHO and glycolaldehyde, the first aldol, are present and abundant in interstellar 

space and comets (Irvine 1999; Hollis et al. 2000; Meierhenrich 2015). Extracts isolated 

from Murchison and Murray meteorites contain variable amounts of ketone and polyol 

structures, such as dihydroxyacetone, glyceric acid, and 4C-6C alditols, among others, 

although the stereochemical bias of inherently chiral substances, if any, remains 

unknown (Cooper et al. 2001; Sephton 2001).  

 The formation of sugar and nucleosides has also been formulated by non-

classical pathways that involve the in-situ generation and accumulation of heterocyclic 

precursors, in particular 2-aminooxazol as hypothesized by Sutherland and coworkers, 

thus overcoming the limitations of multistep formose cycles (Powner et al. 2009; Patel 

et al. 2015). 

 A plausible source of oxygen-containing precursors and heteropolymers should 

be comets as such organic compounds may be generated by UV photolysis or plasma 

discharge irradiation of condensed ices rich in H2O/CO/CH3OH plus CH4/C2H6 in 

rough mimicry of cometary chemistry (Meierhenrich 2015). The resulting ice tholins 

were analyzed by Sagan and associates through GC-MS, who found a wide range of 

polyalcohols, including ethylene glycol and glycerol, along with ethers, esters, 

carbonyls, and organic acids (McDonald et al. 1996). Polyoxymethylenes, generated by 

polymerization of formaldehyde, could not be detected, although the presence of ether 

linkages make them more volatile than higher alcohols containing OH groups bound by 

intermolecular hydrogen bonding. Further condensations of the above-mentioned 

molecules would also have given rise to more complex structures as conjectured from 



UV and IR data. In this context, the term tholin appears to be appropriate as 

synonymous with complex organic matter, often intractable mixtures (Schwartz 2007). 

The term tholin, first coined by Sagan and Khare in the late 1970s, describes sticky 

brownish residues formed by photochemical or electrical discharges of cosmically 

significant gas mixtures (Sagan and Khare 1979). Accordingly, such residues are 

usually interpreted within the borderline of planetary simulations leading to aerosol or 

solid deposits of variable chemical composition, which may not reproduce the actual 

conditions present in solar moons like Titan (Cable et al. 2012). Obviously these 

premises do not exclude the prebiotic formation of similar structures in either watery 

environments or gas-rich atmospheres, even though the chemistry of dust grains and 

interstellar bodies seems to be largely dominated by surface and solid state reactions 

(Williams and Viti 2013).  Furthermore, as reported recently, meteoritic samples 

(presumably containing tiny amounts of organics) can also catalyze the formation of 

numerous prebiotic molecules and analogs by irradiation with high-energy protons of 

formamide serving as versatile scaffold (Saladino et al. 2015). 

Here we describe lab experiments that lead to dioxanes from glycols and 

carbonyls present in prebiotic scenarios, with solid-state features similar to those 

observed in oxygen-rich tholins, thus accounting for the putative formation of cyclic 

polyalcohols. Such oxygenated rings are also a structural motif shared by the simplest 

sugars, namely glycolaldehyde and glyceraldehyde in the solid state, though they 

exhibit complex dynamics in solution. The presence of OH functionalities is also 

responsible for ion coordination and dictates the fate of crystal packing. Finally, this 

study was motivated by the search of inherently chiral dioxane structures, which may 

help solving the puzzle of homochirogenesis in prebiotic sugar chemistry. 

 

 

Materials and Methods 

 

Materials All reagents (Sigma-Aldrich) and solvents (Scharlau) were purchased from 

commercial suppliers and used as received. Distilled water was produced in-house and 

used for all sample preparations and experiments. 

  

Methods FT-IR spectra were recorded on a Thermo IR3000 spectrophotometer between 

4000 and 600 cm-1 using KBr pellets (spectrophotometric grade). NMR spectra were 



recorded on a Bruker spectrometer at either 500 or 400 MHz for 
1
H nuclei (125 or 100 

MHz, respectively, for 
13

C nuclei) in deuterated solvents. Chemical shifts (δ values) are 

in parts per million (ppm) relative to tetramethylsilane (TMS, δ 0.00 ppm) as internal 

standard. Coupling constants (J) are given in Hertz (Hz). Peak identification was 

facilitated by deuterium exchange (D2O), double resonance experiments, and DEPT 

(distortionless enhancement by polarization transfer) experiments on decoupled 
13

C 

NMR spectra. Low-resolution mass spectra (electrospray technique, positive mode, 0.1 

M formic acid) were performed by the Servicio de Apoyo a la Investigación (SAIUEX) 

at the University of Extremadura. 

 

Theoretical simulations to evaluate the stability of dioxane conformers in both gas 

phase and solution were performed at the M06-2X/6-311++G(d,p) level of theory (Zhao 

and Truhlar 2008) using the Gaussian09 package (Frisch et al. 2009). 

 

Crystal Data Colorless block-shaped crystals of 2,3-dihydroxy-1,4-dioxane (C4H8O4) 

were obtained from a saturated aqueous solution. A suitable crystal (0.26 x 0.14 x 0.12) 

was selected and mounted on a Mitgen holder in perfluoroether oil on a Rigaku AFC12 

FRE-HF diffractometer equipped with an Oxford Cryosystems Cobra low-temperature 

apparatus. The crystal was kept at T = 100(2) K during data collection. Using OLEX2 

(Dolomanov et al. 2009), the structure was solved by Direct Methods using the ShelXT 

structure solution program (Sheldrick 2015). The model was refined with ShelXL 

(Sheldrick 2008) using least squares minimization. The structure was solved in space 

group Pbca (orthorhombic); a = 9.5101 Å, b = 9.3995 Å, c = 12.0120 Å,   =  =  = 

90
°
, V = 1073.76(4) Å

3
, T = 100(2) K, Z = 8, Z' = 1, (MoK) = 0.135; 6659 reflections 

measured, 1748 unique (Rint#= 0.0184) which were used in all calculations. The final 

wR2 was 0.0834 (all data) and R1 was 0.0289 (I > 2(I)). All non-hydrogen atoms were 

refined anisotropically. Hydrogen atom positions were calculated geometrically and 

refined using the riding model. 

 

Dioxane Formation from Ethylene Glycol and Glyoxal The synthetic procedure 

involves the condensation of ethylene glycol (1 mL, 17.2 mmol) and glyoxal (40% 

aqueous solution: 2 mL, 17.5 mmol) under stirring at room temperature for 24 h. After 

evaporation at reduced pressure, the resulting 2,3-dihydroxy-1,4-dioxane crystallized on 

standing at room temperature, and the crystalline material was collected and washed 

successively with acetone and diethyl ether (1.95 g, 95%). This material (mp 102 ºC) 



was employed as intentional seeding in further experiments. The dioxane derivative (1) 

could also be obtained by heating the reaction mixture at ca. 60 ºC for a week followed 

by water removal. Moreover, compound 1 could be isolated (67%, mp 105 ºC) without 

water removal, after seeding with the crystalline material obtained above. In the absence 

of seeding, dioxane crystals were likewise obtained (50% yield), though the process 

took long (several weeks at 4 ºC). Finally, the condensation was also conducted in 

benzene; the dioxane could be isolated from this solvent on seeding (16% yield, mp 104 

ºC). 

 

Dioxane Formation from Glycerol and Glyoxal The crude product, 2,3-dihydroxy-5-

hydroxymethyl-1,4-dioxane as inferred from IR and NMR data, was obtained by mixing 

glycerol (2.2 mL, 30.1 mmol) and glyoxal (40% aqueous solution: 3.5 mL, 30.6 mmol) 

under stirring at room temperature for 24 h, followed by water evaporation at reduced 

pressure. All attempts to purify the mixture by crystallization failed. 

 

NMR Monitoring In order to verify the formation and stability of dihydroxy dioxanes in 

aqueous and dilute conditions, samples of either ethylene glycol or glycerol plus glyoxal 

(0.1 M each in D2O) were prepared in NMR tubes. Proton NMR spectra were recorded 

for 4 days. The stability in acidic solution was checked by adding an equimolar amount 

of glacial acetic acid.  

 

Boron Complexation Experiments To a suspension of borax (0.49 g, 1.3 mmol) in water 

(10 mL) was added 2,3-dihydroxy-1,4-dioxane (0.12 g, 1 mmol) and the mixture was 

stirred until complete dissolution. NMR monitoring was performed on D2O solutions at 

different reaction times. After 16 h, however, the boron reagent precipitated in part. The 

complexation was repeated in methanol (10 mL), where both reagents remained in 

solution for a few weeks; borax precipitation was then observed. The crude residue of 

2,3-dihydroxy-5-hydroxymethyl-1,4-dioxane (0.15 g) was likewise treated with borax 

(0.49 g) in water (5 mL) and kept at room temperature. Borax precipitation occurred 

after 3 weeks. 

 

Results and Discussion 

 

If polyalcohols were formed in oxygen-containing tholins, such molecules could have 

been delivered to the early Earth by cometary or meteoritic impacts (McDonald et al. 



1996). Such polyalcohols, glycerol in particular, yet achiral structures, were once 

proposed as surrogates for pentoses in acyclic nucleotide analogs (Joyce et al. 1987, 

Joyce 1989, Schwartz 1993). Glyceronucleosides, however, show a poor ability to form 

duplex structures when they are incorporated into an oligonucleotide chain (Schneider 

and Benner 1990). Because of the coexistence of polyalcohols and carbonyl compounds 

in the condensed matter of interstellar bodies, it is quite plausible to anticipate the 

generation of their reaction products, which are on the one hand simpler to prepare than 

ribo- or deoxyribonucleosides and, on the other, less reactive than the raw precursors. 

Hydroxylated dioxanes are thus valuable candidates that can easily be formed from 

bifunctional molecules such as ethylene glycol and glyoxal. The former has been 

unequivocally identified in comets and the interstellar medium (Hollis et al. 2002; 

Crovisier et al. 2004). Likewise, glycerol is present in comets (Briggs et al. 1992) and 

its formation can also be simulated in ice analogs subjected to UV irradiation (Nuevo et 

al. 2010).  

Such structures depicted in Fig. 1, 2,3-dihydroxy-1,4-dioxane (1) and 2,3-

dihydroxy-5-hydroxymethyl-1,4-dioxane (2), show a close resemblance to 

glycolaldehyde and glyceraldehyde, known to be dimers in the solid state: 2,5-

dihydroxy-1,4-dioxane (3) and 2,5-dihydroxy-3,6-dihydroxymethyl-1,4-dioxane (4), 

respectively. Glycolaldehyde itself can be obtained from irradiated ethylene glycol 

(Hudson et al. 2005). It is pertinent to highlight that, like 3 and 4, structures 1 and 2 

may be chiral species in the solid state (see last subsection, Results and Discussion), an 

extra motivation in the search for homochiral pseudosugars. 

 

 

 

Fig. 1 Dioxanes generated from ethylene glycol (1) and glycerol (2) plus glyoxal, together with 

the dimeric structures of glycolaldehyde (3) and glyceraldehydes (4) 

 

 The survivability and stability of glyoxal in interstellar ices is however 

debatable. This species should reasonably be an intermediate en route to more stable 

derivatives and higher carbonaceous structures (Pavlovskaya and Telegina 1974). 



Glyoxal remains stable in aqueous solution yielding monomeric hydrates (5, Fig. 2) at 

low molar concentrations, while dimeric and trimeric hydrates (6, 7) form above 1M 

concentrations. According to a theoretical study, the dioxolane hydrate (6) appears to be 

kinetically favored over both hydration to the open dimer dihydrate and the dioxane 

dimer formed by ring closure (Kua et al. 2008). 

 

 

Fig. 2 Representative glyoxal hydrates in aqueous solution 

 

As expected, the coupling of glycols and glyoxal to yield the corresponding 

adducts is deceptively simple and dates back to the early 1950s at least (Head 1955; 

Chitwood 1944). Product isolation may be tedious due to water removal, while the use 

of anhydrous glyoxal, prone to rapid polymerization, requires transformations to be 

conducted at 0 ºC. In the 1980s, a useful variation was reported in anhydrous benzene at 

reflux with concomitant azeotropic removal of water (Venuti 1982). 2,3-Dihydroxy-1,4-

dioxane was thus introduced as a synthetic equivalent of anhydrous glyoxal that can be 

released upon reaction with numerous organic partners. While these conditions are far 

from being prebiotic, we re-examined the condensation of neat reagents (glyoxal being 

ca 40% aqueous solution) and found that the dioxane adduct crystallized on standing 

after complete water evaporation, which is presumably akin to environmental 

conditions. Crystallization could also be observed in saturated aqueous solution, though 

this process may take long (several weeks at 4 ºC, often cooling at 0 ºC). Likewise, 

product crystallization took place in solution and open flasks after seeding, which gave 

rise to incipient crystallization in lower yields nevertheless,  

All the samples, isolated by precipitation or re-crystallization, gave similar IR 

patterns. Notably, such spectra (Fig. 3) were quite similar to those of major and minor 

HPLC fractions separated from ice tholins (McDonald et al. 1996), thereby pointing out 

the dominance of hydroxylated compounds by photoirradiation. A very strong band at 

3336 cm
-1

 supports the existence of O–H bonds associated by hydrogen bonding. This 

broad band nearly overlaps C–H stretching bands between 3005 and 2888 cm
-1

. The 



strong bands located at 1148 and 1024 cm
-1

 are indicative of C–O and C–C vibrational 

modes. Unlike tholin mixtures, no significant bands appear in the range 1600-1700    

cm
-1

, which could be attributed to carbonyl and alkene absorptions. 

 

 

Fig. 3 FT-IR spectrum (KBr disc) of 2,3-dihydroxy-1,4-dioxane 

 

 The dihydroxylated dioxane can also exist as a mixture of four distinct 

stereoisomers and their corresponding conformers in solution (vide infra). It is well 

established that while glycolaldehyde exists essentially as stable dimer in the solid state 

(dioxane structure), a complex equilibrium between acyclic and cyclic forms (both five 

and six-membered rings) takes place in solution (Yaylayan et al. 1998).  As shown in 

Fig. 4, four stereoisomeric structures are possible for dioxane 1 owing to the presence of 

two chiral centers. The trans isomer is a mixture of compounds (1A) and (1C) bearing 

an enantiomeric relationship, each existing in both diaxial and diequatorial conformers. 

For the sake of clarity, only one conformer is shown for a given enantiomer. The cis 

isomer is actually a meso diastereomer (1B = 1D). Such forms are isoenergetic as they 

invariably possess one hydroxyl group in axial disposition and the other in equatorial 

orientation. Compounds 1B and 1D are identical albeit, as above, depicted in different 

conformation.  

In principle, the anomeric effect should account for the greater stabilization of 

diaxial structures, yet counterbalancing steric hindrance. Most proton NMR spectra (as 

recorded in perdeuterated DMSO) show only one signal set that points to a single 

diastereomer; although a minor product (less than 1% on the NMR accuracy) could also 

be detected in a few crystallization batches (Fig. 5). 



 
 

Fig. 4 Chair structures in equilibrium for 2,3-dihydroxy-1,4-dioxane 

   

 
 

Fig. 5 
1
H NMR spectrum of dioxane 1 recorded in DMSO-d6  

 



 The spectrum shows four non-equivalent (magnetically) proton sets, whose 

assignments were accomplished by selective irradiation plus deuterium exchange 

experiments. The OH groups resonate downfield at 6.45 ppm which exert electron-

withdrawing effects on the vicinal hydrogens at C-2 and C-3 (4.29 ppm). Hydrogen 

atoms at C-5 and C-6 are much more shielded and resonate as two signal sets, which 

should reasonably be ascribed to either axial or equatorial arrangements. It is well 

known that axial protons are usually more deshielded than their equatorial counterparts 

in chair structures (Klod et al. 2002). As we shall see later, the diaxial structure is 

further supported by theoretical analysis. Accordingly, the minor isomer with proton 

signals at 4.55 ppm would correspond to the diequatorial structure. In line with the 

preceding statement, those signals can be attributed to axial protons, whereas the major 

diaxial isomer places the same protons in equatorial positions at 4.29 ppm (upper field). 

It was often difficult to remove ethylene glycol from crystalline samples and the signal 

at 3.33 ppm does correspond to its methylene groups. This was further corroborated by 

adding deliberately ethylene glycol and recording the spectrum anew, which enhances 

the above-mentioned signal with the concomitant appearance of the OH resonance at 

4.42 ppm. The apparent coupling constants measured on the coupled spectrum are JH,OH 

= 6 Hz, Jaxial,equatorial = 2.5 Hz, and Jgem = 11 Hz; the latter lies in the expected range for 

geminal couplings in chiral structures. The H/D exchange removes the OH signals and 

gives rise to a singlet (at 4.30 ppm) for the geminal protons. This collapse is also 

observed for the minor isomer, which supports the above assignments. The 
13

C NMR 

spectrum is quite simple and shows only two resonances at 92.5 (C-2, C-3) and 60.6 

ppm (C-5, C-6) as the diaxial isomer exhibits magnetic equivalence in both methylene 

and CH atoms; a fact that also rules out the existence of a structure with two OH groups 

in different orientations (axial and equatorial). 

 A preliminary assessment of stereoisomer stability, which corroborates in 

addition NMR data, comes from a high-level DFT computation with the MO6-2X 

hybrid functional and the extended basis 6-311++G(d,p) in both the gas phase and 

solution, the latter using the SMD method, as implemented in the Gaussian package 

(Frisch et al. 2009). On simulating structures 1A-1D that differ by the spatial orientation 

of the OH functionality, the one showing both hydroxyl groups in axial dispositions 

(1A) corresponds to an energy minimum in water (Fig. 6, Table 1). 

 

 



 
 

1A 1C 

  

1B 1D 

  

 
Fig. 6 Computation-based geometries for structures 1A-1D of 2,3-dihydroxy-1,4-dioxane 

 

 Even though energy differences are less than 1 kcal/mol, the diaxial isomer 

appears to be the most stable structure. Structures 1B and 1D bear an enantiomeric 

relationship and their energies are identical, which ensures the validity of the 

computational approach. In other polar solvents, for instance DMSO where NMR data 

have been recorded, the diaxial isomer is again the most favored structure. This trend 

however changes in the gas phase (Table 2), where the axial-equatorial structure 

becomes the minimum along the conformational profile. 

 
Table 1. Relative stabilities of dioxane 1 structures in water* 

Conformer E (kcal/mol) H (kcal/mol) G (kcal/mol) 

1A 0.00 0.00 0.00 

1B 0.69 0.42 0.54 

1C 0.83 0.10 0.07 

1D 0.69 0.43 0.55 

*At the M062X/6-311++G(d,p) level and the SMD model 

 

 

 

 



Table 2. Relative stabilities of dioxane 1 structures in the gas phase* 

Conformer E (kcal/mol) H (kcal/mol) G (kcal/mol) 

1A 0.77 1.01 0.94 

1B 0.00 0.00 0.00 

1C 3.21 2.84 2.34 

1D 0.00 0.00 0.00 

*At the M062X/6-311++G(d,p) level 
  

  

 These variations can be altered significantly if one takes into account 

intramolecular hydrogen bonding present in these species. Table 3 gathers the relative 

energies of dioxane 1D in DMSO, where the intramolecular bonding largely stabilizes 

the structure. 

 

  

1D-HB1 1D-HB2 

 

 
Table 3. Relative stabilities of HB-dioxane conformers 1D in DMSO* 

Conformer E (kcal/mol) H (kcal/mol) G (kcal/mol) 

1D-HB1 2.79 2.76 2.59 

1D-HB2 0.00 0.00 0.00 

*At the M062X/6-311++G(d,p) level and the SMD model 

 

  

At this stage one should necessarily move to dilute and aqueous conditions, 

which would be akin to prebiotic syntheses. We were still able to detect the formation 

of dioxane 1 under neutral conditions (from ethylene glycol and glyoxal, 0.1 M each in 

D2O). Hydrolysis and concomitant release of ethylene glycol do indeed occur in water, 

but the system reaches an equilibrium state with little or no evolution after 24 h (peak 

integration remains essentially constant after 4 days). 



Remarkably, the dioxane signals disappeared when NMR samples were heated 

at ca. 60 ºC, thereby suggesting that ring hydrolysis is accelerated under thermal 

conditions. Notably, the presence of an acidic medium (by adding an equimolar amount 

of acetic acid) did promote the appearance of dioxane 1. Although it is well-known that 

hemiacetals and ketals are sensitive to slightly acidic conditions, acid catalysis also 

favors their formation (Smith and March 2001). Likewise, an aqueous solution of 

dioxane 1 (0.1 M in D2O) under acid conditions (equimolar amount of glacial acetic 

acid) gave rise to a steady equilibrium as evidenced by NMR monitoring. 

In agreement with our theoretical predictions, 
1
H NMR spectra of dioxane 1 in 

D2O reveal the formation of the three structures (not only the diaxial one 1A and 

occasionally 1C), which were identified again through inspection of the proton 

resonances at C-2 and C-3. Such data together with an approximate estimation of 

stereoisomeric populations are gathered in Table 4. 

 

Table 4. Proton resonances (H-2, H-3) for dioxane 1 structures in D2O 

Conformer Proton shifts (ppm) Population* 

1A 4.62 62.5 % 

1C 4.88 21.2 % 

1B/1D 4.59, 4.85 16.3 % 

*By integration of peak areas 
 

 

The analogous condensation of neat reagents, glycerol and glyoxal, to afford the 

corresponding dioxane (2) by spontaneous crystallization was unsuccessful. There is 

little doubt about the formation of such adduct by IR inspection of the syrupy residue 

(Fig. 7). The spectrum resembles that of ice tholin II where glycerol and other alcohols 

formed upon irradiation (McDonald et al. 1996). The major peak is a strong and broad 

O-H stretching band centered at 3372 cm
-1

. Medium-size C-H stretching bands at 2939 

and 2884 cm
-1

, indicative of aliphatic bonds, are accompanied by a strong band between 

1000 and 1200 cm
-1

 attributed to C-O-C linkages. The spectrum shows in addition a 

relatively strong band at 1636 cm
-1

, which suggests a side product or unreacted glyoxal. 

However, its frequency is not consistent with a typical C=O stretching band; in fact the 

signal could not be corroborated through NMR spectroscopy either.  Proton (Fig. 8) and 



13
C NMR spectra were more complex than those of dioxane 1, probably due to the 

existence of additional diastereomers in equilibrium (Fig. 9), each existing as a mixture 

of several conformers. 

 

 
  
Fig. 7 FT-IR spectrum (KBr disc) of 2,3-dihydroxy-5-hydroxymethyl-1,4-dioxane (crude 

product) 

 

 
Fig. 8 

1
H NMR spectrum of dioxane 2 (crude residue) recorded in DMSO-d6  
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Fig 9 Diastereomeric equilibria for 2,3-dihydroxy-5-hydroxymethyl-1,4-dioxane 

 

 

 A further structural analysis could be accomplished for this dioxane derived 

from glycerol, although the iterative protocol is much more complex due to the potential 

existence of multiple conformers for structures 2A-2H. Thus, series of conformers are 

depicted below (Fig. 10) by considering in every case the rotation around the 

hydroxymethyl group. 

 

  

 

2A-1 2A-2 2A-3 



 
  

2B-1 2B-1 2B-3 

 

  

2C-1 2C-2 2C-3 

 
 

 

2D-1 2D-2 2D-3 

 
 

 

2E-1 2E-2 2E-3 



 

  

2F-1 2F-2 2F-3 

   

2G-1 2G-2 2G-3 

  
 

2H-1 2H-2 2H-3 

 

 
Fig. 10 Computation-based geometries for structures 2A-2H of 2,3-dihydroxy-5-

hydroxymethyl-1,4-dioxane 

 

 Table 5 shows the relative energies computed in water. The most stable structure 

(which is also obtained in DMSO and the gas phase) is the one having the hydroxyl 

groups in axial and equatorial dispositions and the hydroxymethyl substituent in 

equatorial position (2G). The energy differences increase in DMSO owing to its greater 

polarity, while decrease in water as a result of favorable hydrogen-bonding interactions. 

 

 



Table 5. Relative stabilities of dioxane 2 structures in water* 

Conformer E (kcal/mol) H (kcal/mol) G (kcal/mol) 

2A-1 5.35 5.63 5.84 

2A-2 2.81 2.98 3.16 

2A-3 1.43 2.03 2.10 

2B-1 0.90 1.28 2.38 

2B-2 0.93 1.23 1.96 

2B-3 2.51 2.41 2.36 

2C-1 4.78 4.40 4.13 

2C-2 3.64 3.15 2.88 

2C-3 2.13 1.92 2.04 

2D-1 4.80 4.76 4.96 

2D-2 3.76 3.73 3.84 

2D-3 3.20 3.32 3.43 

2E-1 2.33 2.22 1.86 

2E-2 1.60 1.68 1.69 

2E-3 1.92 1.93 2.09 

2F-1 1.99 1.51 1.33 

2F-2 2.49 2.02 1.89 

2F-3 1.04 0.62 0.53 

2G-1 0.01 0.07 0.28 

2G-2 1.41 1.51 1.69 

2G-3 0.00 0.00 0.00 

2H-1 1.03 1.28 1.48 

2H-2 1.53 1.86 1.76 

2H-3 0.07 0.42 0.48 

*At the M062X/6-311++G(d,p) level and using the SMD method 

 

 



As expected and like dioxane 1, 
1
H NMR spectra of glycerol and glyoxal 

mixtures (ca. 0.1 M ech in D2O) point to more complex configurational and 

conformational equilibria, which are consistent with the preceding computational 

assessment given the low energy differences. Such proton spectra are indeed complex, 

although on zooming the zone between 4.3 and 5.0 ppm the existence of multiple 

resonances with different coupling constants suggests the formation of at least four 

structures in freshly prepared solutions. The most abundant species, inferred from peak 

area integration, should most likely be structure 2F (diequatorial isomer), which appears 

with two doublets resonating at 4.57 and 4.48 ppm (J  7 Hz).  In the aqueous medium 

progressive hydrolysis is observed, albeit ca. 10% of dioxane signals (relative to 

glycerol) remain unaffected after 4 days.  

Finally we have recorded low-resolution mass spectra (electrospray technique, 

positive mode in 0.1 M formic acid solution) for dioxanes 1 and 2. Although this 

technique in question appears to induce other in-situ transformations, significant peaks 

at m/z 117 for dioxane 1 (MW = 120) and m/z 147 for dioxane 2 (MW = 150) were 

observed. Such peaks would be consistent with the M+1 signals of the corresponding 

dilactones (i.e. generated by oxidation of the secondary hydroxyl groups).  

 

Boron Coordination 

 As hydroxylated derivatives and, despite the fact that the OH function is a weak 

coordinating group, these dioxanes generated from polyalcohols are prone to undergo 

complexation with metal ions; actually a credible mechanism in environmental niches 

that channels subsequent evolutionary stages. There has been considerable controversy 

about the role and prebiotic abundance of certain metal species, although boron has 

emerged as the most promising candidate in selective sequestration of sugar-like 

molecules as chiefly proven by Benner and his coworkers (Kim et al. 2011; Ricardo et 

al. 2004; Scorei 2012).  

 It has long been established that boron-containing reagents coordinate with 

diols; an ability largely exploited in organic synthesis with boronic acids in organic 

solvents (Hall 2011). In general, the reactivity of boronates toward sugar diols follow 

the order cis-1,2-diol > 1,3-diol >> trans-1,3-diol. Although boron minerals are scarce, 

our preliminary test was conducted with dioxane 1 and borax, which is readily available 

as disodium salt, and monitored by proton NMR in D2O. In this deuterated medium, 

borax shows a single resonance at 4.71 ppm. On recording the spectrum of a sample 



containing equimolar amounts of 1 and borax, immediate changes were visible and 

strongly pointed to complexation. Thus, the two signal sets of axial and equatorial 

hydrogens collapse into a single signal at 3.57 ppm, while the hydrogen atoms at C-2 

and C-3 resonate at 5.25 ppm (Fig. 11). As a result of rapid H/D exchange in D2O, no 

signals for OH groups appear. Unfortunately, borax precipitated partly after 16 h, and 

the results should likely be interpreted in terms of complexation and rapid equilibration 

between the trans and cis-1,2-diol isomers. 

 

 

 

Fig. 11 
1
H NMR spectrum of borax and dioxane 1 in D2O solution  

 

 

Stereochemical Identity of 2,3-Dihydroxy-1,4-dioxane  

Can dioxanes shed light into the stereochemical bias of pseudosugars in 

particular and sugars in general? As oxycarbacycles that mimic closely the structure of 

pyranoid sugars, dioxanes may certainly be prototypical models. Although natural 

sugars exhibit a distinctive D-configuration, the origin of this homochirality remains 

essentially unknown. One could envisage an a priori scenario where other chiral 



molecules and auxiliaries would have deracemized the primeval sugars; on the other 

hand, in an a posterori scenario, mirror symmetry breaking would have been 

unavoidable as a consequence of the increasing constitutional complexity, i.e. the 

number of oligonucleotide sequences from an inherently racemic mixture of 

components always exceeds a critical limit (Eschenmoser 2011).  

Unprotected sugars do no form conglomeratic phases and, therefore spontaneous 

segregation by crystallization cannot be invoked. Pure enantiomers are difficult to 

obtain and, as paradigmatic example, D-ribose (for which at least two polymorphs exist) 

resisted all attempts to generate suitable crystals for X-ray diffraction studies until a few 

years ago (Šišak et al. 2010). Racemic DL-ribose crystallizes easily instead due to 

conformational preferences and H-bonding interactions (Patyk and Katrusiak 2014).  

Having demonstrated that crystalline 2,3-dihydroxy-1,4-dioxane most likely 

corresponds to the trans isomer, which is inherently chiral (the cis isomer is obviously a 

meso, achiral isomer), our next task was the clear-cut identification of the racemate, i.e. 

either conglomerate (racemic mixture with separation of homochiral domains) or 

racemic compound possessing heterochiral domains within every crystal. Detection of 

conglomerates can usually be accomplished by methods that enable comparisons 

between enantiomers and racemates like IR, Raman, solid-state NMR spectroscopies, or 

X-ray powder diffraction (XRPD). Since pure enantiomers of 2,3-dihydroxy-1,4-

dioxane were not available to us, we thought, rather naively, that further efforts could be 

paid to the search for conglomerates. To this end, the condensation of ethylene glycol 

and glyoxal was performed repeatedly under vigorous stirring looking for secondary 

nucleation conditions. Unfortunately, the solids collected showed no optical activity. To 

ascertain unequivocally the nature of such a racemate, we turned the attention to second 

harmonic generation (SHG), a non-linear method that is reliable enough for spotting 

conglomerates, based on signal detection at /2 wavelengths (Galland et al. 2009; 

Dupray 2012). Detection of SHG signals may be indicative of non-centrosymmetric 

crystals, which point to either conglomerates or racemic compounds crystallizing in 

non-centrosymmetric space groups. Still, false positives may also be encountered for 

centrosymmetric crystals exhibiting photoluminescence phenomena. However, the 

absence of a SHG signal most likely evidences the existence of a racemic compound 

(centrosymmetric space group), which turned to be the situation of dioxane 1, thereby 

ruling out resolution by secondary nucleation. A few chiral space groups (e.g. P41212 or 

P43212), indeed rare among conglomerates, have been reported to be SHG inactive, 



although the intensity of laser beams currently employed discard such false negatives 

too (Galland et al. 2009).  

We were at last able to grow crystals of dioxane 1 suitable for X-ray diffraction 

after slow evaporation. It is relevant to note that, despite the structural simplicity of this 

dioxane, it has not yet been deposited with the Cambridge Structural Database (CSD). 

The ORTEP diagram and unit cell are shown in Fig. 12 (orthorhombic, space group 

Pbca, Z = 8), which exhibits a chair structure with axial OH groups, thus suggesting 

strong anomeric effects in the crystal lattice.
1
  

This structure is closely related to that of glycolaldehyde dimer as inferred from 

X-ray studies too (Mohaček-Grošek et al. 2013). As mentioned, the first chiral sugar, 

glyceraldehyde, may form a stable dimer in the solid state. rac-Glyceraldehyde adopts 

in its dimer form a chair symmetrical p-dioxane structure with all the hydroxyl and 

hydroxymethyl groups bound equatorially nevertheless (Senma et al. 1973; Lehmann 

and Luger, 1991). This arrangement, similar to that of -D-glucopyranose, favors a 

heterochiral crystal packing (spatial group P21/a; Z = 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (registry 

number CCDC-1407505). Such data can be retrieved upon permission or from the authors 

 



 

 

 

 

Fig. 12 Solid-state structure of 2,3-dihydroxy-1,4-dioxane (1). Thermal ellipsoids drawn at the 

50 percent probability level. A representation of the unit cell indicates the number and 

orientation of dioxane molecules 

 

In conclusion, formation of dioxane structures from polyalcohols and carbonyls 

present in both astrochemical and terrestrial arenas, should be plausible and 

prebiotically credible, especially in the solid state like the archetypal cases of 

glycolaldehyde and glyceraldehyde. This work documents in detail structural features 

that should be useful guidelines for future pursuits, as well as aqueous chemistry where 

formation of various stereoisomers might however have hampered selective routes of 

chemical biogenesis in favor of monohemiacetalic structures. The dioxane intermediates 

arguably complement the chemical space of sugar-like structures. Although the goal of 

achieving homochirality has not yet been fulfilled given the absence of chiral space 

groups in the solid state, at least for dioxane 1, the formation of chiral dioxanes with 



close resemblance to pyranoid rings suggests this effort is worthwhile. Similar 

condensations involving glycolaldehyde or glyceraldehyde, both in monomeric and 

dimeric form, with carbonyls or alcohols would afford additional routes within the 

puzzle of prebiotic carbohydrate chemistry. Such studies are under way in our 

laboratories.  
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