*Highlights (for review)

Highlights

- Total peatland C accumulation is related to growing season conditions across a climate gradient
- Peatlands at the southern limit of distribution show divergent trends to those in the north
- Early succession peatlands have higher rates of peat accumulation
- Projections of C sink changes need to account for spatially differentiated responses in peatlands

Drivers of Holocene peatland carbon accumulation across a climate

2 gradient in northeastern North America

3	
4	Dan J. Charman* ¹ , Matthew J. Amesbury ¹ , William Hinchliffe ¹ , Paul D. M. Hughes ² , Gunnar Mallon ³ ,
5	William H. Blake ⁴ , Tim J. Daley ⁴ , Angela V. Gallego-Sala ¹ , and Dmitri Mauquoy ⁵ .
6	
7	¹ Geography, College of Life and Environmental Sciences, University of Exeter, Amory Building,
8	Rennes Drive, Exeter, EX4 4RJ, UK.
9	² Geography and Environment, University of Southampton, University Road, Highfield, Southampton,
10	Hampshire, SO17 1BJ, UK.
11	³ Department of Geography, University of Sheffield, Sheffield, S10 2TN, UK.
12	⁴ School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus,
13	Plymouth, Devon, PL4 8AA
14	⁵ School of Geosciences, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen,
15	AB24 3UF, UK.
16	
17	* Corresponding author: d.j.charman@exeter.ac.uk
18	
19	

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Peatlands are an important component of the Holocene global carbon (C) cycle and the rate of C sequestration and storage is driven by the balance between net primary productivity and decay. A number of studies now suggest that climate is a key driver of peatland C accumulation at large spatial scales and over long timescales, with warmer conditions associated with higher rates of C accumulation. However, other factors are also likely to play a significant role in determining local carbon accumulation rates and these may modify past, present and future peatland carbon sequestration. Here, we test the importance of climate as a driver of C accumulation, compared with hydrological change, fire, nitrogen content and vegetation type, from records of C accumulation at three sites in northeastern North America, across the N-S climate gradient of raised bog distribution. Radiocarbon age models, bulk density values and %C measurements from each site are used to construct C accumulation histories commencing between 11200 and 8000 cal. years BP. The relationship between C accumulation and environmental variables (past water table depth, fire, peat forming vegetation and nitrogen content) is assessed with linear and multivariate regression analyses. Differences in long-term rates of carbon accumulation between sites support the contention that a warmer climate with longer growing seasons results in faster rates of long-term carbon accumulation. However, mid-late Holocene accumulation rates show divergent trends, decreasing in the north but rising in the south. We hypothesise that sites close to the moisture threshold for raised bog distribution increased their growth rate in response to a cooler climate with lower evapotranspiration in the late Holocene, but net primary productivity declined over the same period in northern areas causing a decrease in C accumulation. There was no clear relationship between C accumulation and hydrological change, vegetation, nitrogen content or fire, but early successional stages of peatland growth had faster rates of C accumulation even though temperatures were probably lower at the time. We conclude that climate is the most important driver of peatland accumulation rates over millennial timescales, but that successional vegetation change is a significant additional influence. Whilst the majority of northern peatlands are likely to increase C accumulation rates under future warmer climates, those at the southern limit of distribution may show reduced rates. However, early succession peatlands that develop under future warming at the northern limits of peatland distribution are likely to have high rates of C accumulation and will compensate for some of the losses elsewhere.

Key words: peatland, carbon accumulation, climate, vegetation, Holocene

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

46

47

48

49

50

1. Introduction

Peatlands play a significant role in the global carbon cycle and may become either enhanced carbon sinks or sources under future climate change. They store approximately one third of the global organic soil carbon pool (Gorham, 1991; Batjes, 1996) with 500 ± 100 Gt C stored in northern peatlands (Gorham et al., 2012; Yu, 2012). Despite this, peatland carbon accumulation is not currently represented in global climate models (Limpens et al., 2008) and there is uncertainty over the direction of any potential carbon cycle feedback under future climate scenarios (Bergeron et al., 2010; Frolking et al., 2011). Recent research suggests a small negative feedback from northern peatlands in response to enhanced net primary productivity (NPP; Charman et al., 2013), in contrast to the view that higher temperatures may enhance decay and lead to a positive feedback (Dorrepaal et al., 2009). Changes in Holocene peatland carbon accumulation also support the contention that temperature drives carbon accumulation rates at millennial timescales over northern peatlands as a whole (Yu et al., 2009; 2010, Loisel et al., 2014, Yu et al., 2014a) and at regional scales (e.g. Jones and Yu, 2010, Garneau et al., 2014, Zhao et al., 2014). On sub-millennial timescales, the Medieval Climate Anomaly and Little Ice Age also appear to have affected peatland carbon accumulation rates (e.g. Loisel and Garneau, 2010, Charman et al., 2013), although these higher frequency changes are not easily detectable due to dating resolution and the effect of incomplete decay in very recent peat deposits.

70 Higher temperatures may lead to greater NPP and enhanced peat accumulation. However, it is not 71 simply annual average temperature which controls NPP, but growing season length (Lund et al., 72 2010), photosynthetically active radiation (PAR) and cloudiness (Loisel et al., 2012; Charman et al., 73 2013). In addition, the NPP of peatland plants can be affected and limited by a range of autogenic 74 and allogenic factors including hydrological conditions, nutrient availability, fire and the mix of plant 75 species present (e.g. van Bellen et al., 2011), all of which may affect future carbon accumulation. 76 Projections of 21st century precipitation are less certain than those for temperature (Bergeron et al., 77 2010), but increased precipitation is expected over large areas of the northern peatland domain 78 (Kirtman et al., 2013). Consequent changes in hydrological conditions may lead to increased carbon 79 accumulation when moisture stresses are a limiting factor, but where moisture conditions are 80 adequate for plant growth and the suppression of decay, further increases in wetness are likely to be 81 of secondary importance to temperature and PAR over the growing season (Bubier et al., 2003; 82 Charman et al., 2013). 83 Nutrient availability can be a major limiting factor on plant NPP and decay. Nitrogen deposition rates 84 have risen sharply during the last century and are likely to remain high in the near future due to 85 industrial and agricultural activities (Bragazza et al., 2006). Sphagnum mosses are effective at 86 utilizing available nutrients and restricting mineralization, limiting the ability of vascular plants to 87 compete (Malmer and Wallen, 2004). However, high nitrogen deposition can remove nutrient 88 limitations on the growth of vascular plants allowing them to successfully compete with Sphagnum, 89 resulting in increased decay rates (Bragazza et al., 2006; Bragazza et al., 2012). Nitrogen content in 90 peat reflects a combination of dominant source plant material, nutrient status and atmospheric 91 nitrogen deposition. 92 Fire occurrence is projected to increase in boreal regions over the next century (Pitkänen et al., 93 1999; Bergeron et al., 2010). Frequent or more severe fire events could lead to a decline in carbon accumulation (Kuhry, 1994; Pitkänen et al., 1999; Wieder et al., 2009), though van Bellen et al. 94

(2012) did not find a clear correlation between Holocene peatland fire regimes and carbon accumulation in Québec. Fire events can also affect carbon accumulation by providing the circumstances for vegetation change if different species rapidly colonise a site following a fire, replacing pre-existing species (Pitkänen *et al.*, 1999).

Dominant plant types are largely determined by climate but major changes in vegetation type may produce significant changes in carbon accumulation rates (e.g. van Bellen *et al.*, 2011; Loisel and Yu, 2013). However, potential differences in rates of peatland carbon accumulation driven by changes in species composition have received relatively little attention, excepting the broad consensus that there is likely to be a contrast between *Sphagnum* and vascular plants, with lower bulk density, lower C content and higher C:N ratios in *Sphagnum* peat (e.g. Loisel *et al.*, 2014). More intensive research on the interactions between climate, local environmental change and species composition is needed (e.g. Hughes *et al.*, 2013). If factors such as enhanced nitrogen deposition or changing hydrological conditions led to a competitive advantage for other vegetation types at the expense of *Sphagnum*, then future carbon accumulation rates could be significantly affected.

The interaction of environmental factors with changing climate will determine future peatland carbon accumulation rates and the strength of any peatland carbon source or sink. Determining the roles and relative strength of each of these variables remains an important research goal. Here, we investigate the relationship between peat carbon accumulation rates and climate, water table depth (WTD), nitrogen content, fire occurrence and plant species composition at three well-dated raised bogs in eastern North America, providing an assessment of the relative roles of autogenic and allogenic factors on rates of peatland carbon accumulation.

2. Study sites and methods

Cores were taken from three undisturbed lowland ombrotrophic bogs: Burnt Village Bog, Newfoundland (BVB); Petite Bog, Nova Scotia (PTB) and Sidney Bog, Maine (SYB) (Figure 1, Table 1). These sites represent the extremes of raised bog distribution in eastern North America, from the southern limit in Maine to the northern limit in northern Newfoundland. Mean summer (JJA) temperatures range from 11.4°C at BVB to 17.9°C at SYB, whereas total summer precipitation is more consistent across sites with the highest value of 101 mm at SYB (Table 1).

Contiguous samples of known volume (4 cm³) were extracted from the cores at 2 cm resolution, freeze-dried and re-weighed to enable calculation of bulk density. Percentage carbon and nitrogen content by mass were measured on homogeneous ground and weighed sub-samples of 4–5 mg. Repeat measurements were taken for some bulk density (n=117) and C/N (n=122) samples and the difference between them used to provide an observational error interval within which 95% of samples fell. Age-depth models for all cores (Figure 2) were constructed using the R package BACON (Blaauw and Christen, 2011), with approximately 30 radiocarbon dates per site (Supplementary Table 1). Hand-picked and cleaned *Sphagnum* stems and leaves were dated wherever possible, with other samples consisting of above-ground ericaceous or monocotyledon plant remains. In addition, recent peat accumulation was modelled using short-lived radioisotopes ²¹⁰Pb and ¹³⁷Cs (Supplementary Table 2), using gamma spectrometry and a constant rate of supply (CRS) model (Appleby and Oldfield, 1978). Ages from the CRS models were also included in the BACON age-depth modelling. Carbon accumulation histories for each site were constructed using the weighted mean dates from each model based on millions of iterations, with >1000 iterations remaining in the final models in each case.

Testate amoeba-based reconstructed depth to water table profiles were produced at 4 cm resolution using the regional transfer function of Amesbury *et al.* (2013). Estimates of vegetation species composition and fire histories were produced for the same depths using standard techniques

(Barber *et al.*, 1994). Only a subset of these data was used here; plant macrofossils were grouped into major peatland vegetation types; Ericaceae, monocotyledons and bryophytes (almost entirely *Sphagnum*) to estimate percentage abundances for each vegetation component. Percentage occurrence of charred remains at SYB and charred remains and charcoal at PTB were used to estimate relative changes in fire, but no equivalent data were available for BVB.

The pollen-based record of North American July temperature anomalies of Viau *et al.* (2006) was used to provide a regional climate record. The continental scale of this record means it will not necessarily reflect local temperature changes, but it does permit comparison between major changes in temperature and carbon accumulation over millennial timescales. It is more robust than individual local records, although in practice the long terms trends are very similar (e.g. Hausmann *et al.*, 2011; Muller *et al.*, 2003). As a record of summer temperature it is likely to be correlated with growing season length but does not reflect changes in PAR, which has recently been suggested to be an important climatic driver determining peatland carbon accumulation (Loisel *et al.*, 2012; Charman *et al.*, 2013). A further assessment of climate effects on accumulation was made by comparing the differences between sites in relation to their different climatic settings (Table 1).

Linear regression analyses of the relationships between carbon accumulation and site-specific palaeoenvironmental data were carried out on individual sample intervals to test the relative importance of each variable in determining carbon accumulation. To ensure a statistically robust approach, we then used R (R Development Core Team, 2014) to build multivariate linear models using stepwise regression (using the Akaike Information Criterion to choose the most parsimonious model) for the dataset as a whole and by site, for both individual sample intervals and over 500 year averages. Two sample, two tailed t-tests were carried out using the carbon accumulation data corresponding to the extreme quartiles for each variable to further test the relationship between different environmental extremes and carbon accumulation rates.

3. Results

168

169

3.1. Carbon accumulation at individual sites

170 Bulk density and carbon content varied moderately between the sites (Figures 3 – 5 A and B). BVB 171 had the highest average bulk density (0.14 g cm⁻³, SD = 0.297) but the lowest mean carbon content 172 (45.97%, SD = 9.17). SYB had the highest mean carbon content (48.96 %, SD = 8.3) and mean bulk 173 density of 0.12 g cm⁻³ (SD = 0.146). PTB had a similar mean carbon content (48.76 %, SD = 1.92) but a 174 distinctly lower mean bulk density (0.065 g cm⁻³, SD = 0.019). Carbon accumulation rates vary down 175 core but are within the range generally observed in northern peatlands (e.g. Loisel et al., 2014; 176 Figures 3 – 4E). Average carbon accumulation rate over the entire profile was highest at SYB (45 ± 3.2 g C m⁻² yr⁻¹ (95% confidence interval)), followed by PTB (31 \pm 1.5 g C m⁻² yr⁻¹) and BVB (28.5 \pm 1.6 177 g C m⁻² yr⁻¹), generally higher than the mean for northern peatlands of 22.9 g C m⁻² yr⁻¹ (Loisel et al., 178 2014). 179 180 To summarise longer-term patterns of carbon accumulation we summed 500 year periods for each 181 site (Figure 6). At SYB, carbon accumulation peaked in the early Holocene around 9000 cal. BP then 182 declined gradually until around 5000 cal. BP. Since then, carbon accumulation has gradually 183 increased with notable peaks around 3700 cal. BP, 2500 cal. BP, 750 cal. BP and over the past 200 184 years (Figure 5E). At PTB, peat formation began over 11,000 cal. years BP. There was an early 185 Holocene peak in carbon accumulation around 10,000 - 9000 cal. BP before it declined to a 186 minimum around 8000 cal. BP. Carbon accumulation recovered to higher values after approximately 187 6000 cal. BP with a long-term peak at around 3000 cal. BP, before declining again to a new minimum 188 around 2000 cal. BP. Higher carbon accumulation over the past 1500 years included prominent 189 peaks around 1400 cal. BP and 600 cal. BP. There has been a local increase in carbon accumulation 190 over the past century (Figure 4E). At BVB, long-term carbon accumulation also peaked in the early stages of development around 8000 to 7000 cal. BP, followed by a steady decline until around 3000 191

cal. BP. Since then carbon accumulation has recovered somewhat with an increase over the last century, but this does not reach the values recorded in the first half of the Holocene (Figure 3E).

To examine long-term total carbon accumulation across the spatial climate gradient, we calculated total carbon accumulation for the past 2000, 4000, 6000 and 8000 years, the time intervals for which data were available at all the sites (Table 2). Results show that SYB is the largest carbon store over the past 8000 years with a total of 296.9 Kg C m⁻², compared to 188.6 and 192 Kg C m⁻² for PTB and BVB respectively. However, there is a much more consistent north – south gradient evident for the last 4000 years, such that SYB > PTB > BVB for this whole period and for both sub periods, with more than three times the C accumulation at SYB than BVB over the last 2000 years. The total 8000 year C accumulation at PTB is significantly reduced by the very slow accumulation in the period 8000 – 6000 cal. BP, and BVB accumulated as fast or faster than the more southern sites between 8000 and 4000 cal years BP, but more slowly in the last 4000 years.

3.2. Carbon accumulation and Holocene temperature change

There are no clear and consistent relationships between the temperature reconstruction of Viau *et al.* (2006) and C accumulation at all three sites (Table 3), though significant weak negative correlations are observed with C accumulation at BVB and SYB. However, at all sites there were significant (p < 0.05) differences between C accumulation values corresponding to the extreme quartiles of the temperature reconstruction, with lower C accumulation corresponding to the higher temperature quartile (Table 4). The highest rates of C accumulation are observed in the early Holocene at SYB and PTB, before the Holocene Thermal Maximum. The rates at both these sites decline rapidly after 9000 cal yr BP, before rising again after 6500 cal yr BP (PTB) and 5000 cal yr BP (SYB). Meanwhile, BVB shows rapid initial accumulation from 8000 cal yr BP, followed by a gradual decline over the mid Holocene. The long-term trends are divergent for the mid-late Holocene since around 5000 cal yr BP, when temperature declined steadily. There is a downward trend in

217 accumulation at BVB and an upward trend in SYB over this period, perhaps reflecting a differential 218 regional response at these sites at opposite ends of the spatial climate gradient. 219 220 3.3. Carbon accumulation and environmental variables 221 Summary proxy data are shown in Figures 3 – 5, shown as reconstructed depth to water table and 222 relative proportions of major plant macrofossil groups. The discussion below focuses on the 223 relationship between these variables and carbon accumulation (Tables 3 and 4). 224 225 3.3.1. Water table depth 226 There was a weak but significant positive correlations between WTD and C accumulation at SYB 227 (Table 3), suggesting faster C accumulation during drier than wetter periods. At all sites, there were 228 no significant differences between C accumulation values associated with the upper and lower 229 quartiles of WTD values (Table 4). 230 231 3.3.2. Nitrogen 232 There was a weak but significant positive correlation between %N and C accumulation at BVB, but 233 no statistically significant relationships at other sites (Table 3). Furthermore, at BVB and SYB, C 234 accumulation rates associated with the extreme quartiles of %N values were significantly different 235 (at BVB p <0.001; at SYB p = 0.04, Table 4). However, short-term changes often appear to suggest 236 contradictory relationships. At BVB an increase in carbon accumulation rates at ca. 3000 cal. BP 237 occurs synchronously with increasing nitrogen levels (Figure 3) whereas at PTB a period of low C 238 accumulation from ca. 8000 – 6000 cal. BP saw a rise in nitrogen levels (Figure 4). 239 240 3.3.3. Fire 241 There was a weak positive but significant correlation between charred remains and C accumulation

per year at PTB (Table 3). A two-tailed, two-sample t-test of C accumulation values corresponding to

242

the extreme quartiles for charred remains at SYB was not significant (Table 4). However, due to the nature of the charred remains and charcoal records at PTB, which were dominated by zero values with infrequent peaks of fire activity (an average of only 6% of samples had an occurrence of charred remains/charcoal, Figure 4), upper and lower quartiles both calculated as 0 and so t-tests were not carried out on these data.

3.3.4. Vegetation type

There were statistically significant correlations between C accumulation and vegetation type at BVB and PTB. At BVB, bryophyte cover was significantly negatively correlated with C accumulation (r = -0.473, p = 0.001) and at PTB, there was a weak but significant positive correlation between Ericaceae and C accumulation (r = 0.141, p = 0.041). Both of these relationships were supported by two-sample, two-tailed t-tests of C accumulation values for the upper and lower quartiles of vegetation cover (Table 4). At BVB, low bryophyte cover was associated with significantly higher accumulation rates (mean 38.6 g C m⁻² yr⁻¹) than high bryophyte cover (mean 21.6 g C m⁻² yr⁻¹, p <0.001). This effect is likely related to the switch from fen to bog vegetation that occurred around 6500 cal. BP (Figure 3), with higher C accumulation rates occurring in the first 1500 years of the BVB record (Figure 6). At PTB, low Ericaceae cover was associated with significantly lower C accumulation rates (mean 27.8 g C m⁻² yr⁻¹) than high Ericaceae cover (mean 35.4 g C m⁻² yr⁻¹, p = 0.01). In addition, there was a significant difference between C accumulation rates associated with the extreme quartiles of monocot cover at BVB (Table 4), but this was not supported by a significant correlation between the two time series (Table 3).

3.3.5. Multivariate modelling

The often weak and sometimes contradictory relationships between individual variables and C accumulation suggest that there is no single over-riding environmental factor that is driving peat accumulation at the sites throughout the Holocene. The relationships are therefore presumably

multivariate or not captured by the data collected. Multivariate modelling was therefore carried out on the carbon accumulation data for individual sites and for all site data combined. In addition, broad scale patterns of C accumulation were explored with the same approach to data binned in 500 year intervals (Table 5). The variation in carbon accumulation per year across all sites was best described by a linear model that combined the variables Ericaceae (p =0.0001), temperature (p = 0.0004), bryophytes (p = 0.007) and %N (p = 0.08), but which had an adjusted R^2 of only 0.14 (p < 0.001). When the data were subdivided by site, only %N emerged as an explanatory variable at all sites, but was often non-significant (Table 5). The variation in 500 year averaged C accumulation was best described by a linear model with an adjusted R^2 of 0.18 (p = 0.005) that combined the variables of water table depth (p < 0.001), Ericaceae (p = 0.05) and %N (p = 0.06). When the 500 year averaged data was divided by site, bryophyte cover and water table depth were explanatory variables for all sites, although inter-site differences existed for all models and the direction of the relationships with significant variables also differed between sites (Table 5).

4. Discussion

Determining the relationship between climate variability and carbon accumulation is a key problem in understanding the Holocene terrestrial carbon cycle and in predicting changes in northern peatland carbon sequestration and storage under future climate scenarios. Whilst a number of models suggest decreased accumulation rates due to increased decay rates driven by rising temperatures (Ise *et al.* 2008, Dorrepaal *et al.* 2009), empirical data on centennial-millennial scale peatland carbon accumulation now suggest that periods of warmer climate generally led to higher rates of carbon accumulation, presumably due to higher NPP more than compensating for increased decay (Yu *et al.*, 2012). This appears to be the case for northern peatlands at a broad geographical scale in response to precession-driven multi-millennial climate change during the Holocene (Yu *et al.*, 2010; Loisel *et al.*, 2014) and also over shorter sub-millennial periods such as the Medieval

Climate Anomaly to Little Ice Age transition in the last millennium (Charman *et al.*, 2013). It is also likely that the most important influence of temperature is through mean summer and maximum summer temperature and growing season length, rather than through annual average temperature, because during the months when temperatures are below zero, both productivity and decay are likely to be negligible compared to the main growing season. Furthermore, relationships with broad temperature trends probably incorporate and are modified by other climate variables, particularly PAR as a key driver of NPP (Loisel *et al.*, 2012, Charman *et al.*, 2013). The data presented here provide two tests of the temperature-peat accumulation hypotheses via; 1) spatial comparisons of total accumulated carbon, and 2) temporal trends in C accumulation associated with precession-driven multi-millennial temperature changes.

4.1. Spatial patterns of accumulated carbon

The total carbon accumulated over the last 8000 years for the sites is only partly consistent with the hypothesis that higher temperatures lead to higher carbon accumulation rates (Table 2). Climate data show that summer temperatures are around 6° C lower at BVB compared to PTB and SYB and that GDD0 and PAR0 are 30-40% lower (Table 1). This climate gradient is associated with a general increase in carbon accumulation rates from north to south (Table 2). This broad relationship is similar to spatial patterns that have been found for regions such as western Siberia (Beilman *et al.*, 2009) and for northern peatlands in their entirety (Charman *et al.*, 2013) for total carbon accumulated over the last 1000-2000 years. However, comparing 2000 year intervals (Table 2), shows that this spatial relationship holds true for only the last 4000 years, breaking down for the intervals 6000-4000 and 8000-6000 years ago. Over the whole 8000 year period, the northernmost site at Burnt Village Bog in Newfoundland accumulated only 65% of the southernmost site Sidney Bog in Maine, but a similar amount to Petite Bog (BVB = 193.2 Kg C m⁻², PTB = 188.6 Kg C m⁻²). However, total C accumulation at PTB is limited by extremely slow rates from 8000-6000 cal. BP when BVB was experiencing its highest rates. These results suggest either a different spatial

pattern in climate or other more dominant drivers of peat accumulation rates for these earlier periods, which we explore below. Accumulation rates are high for all sites during their earliest stages of development (Figures 3-6). These periods are also characterised by high %N (Figures 3 - 5C) and peat dominated by vascular plants, usually sedges, indicating these are the minerotrophic phases before the formation of the Sphagnum dominated raised bog peat (Figures 3-5). The fen phase as indicated by the vegetation composition and %N finishes at different times, apparently unrelated to climatic setting; ca. 6500 cal. BP at BVB, ca. 8500 cal. BP at SYB and ca. 9500 cal. BP at PTB. These early phases of high C accumulation occur before the main Holocene Thermal Maximum and therefore they appear to be locally controlled, probably driven by topographically and hydrologically determined rates of peat initiation and groundwater influence. The generally high rate of accumulation in vascular plant peats during the colder climate conditions of the early Holocene suggests that NPP was relatively high and decay rates were low, perhaps also related to the stronger seasonality in climate associated with the precessional difference in orbital forcing. Some later periods also show enhanced N levels but these are not associated with clear changes in C accumulation rates or vegetation composition changes. For example, the record of the last 1000 years at BVB (Figure 3) suggests that changes of up to +2 %N induced no significant change in longer-term vegetation or carbon accumulation rates. This is in contrast to short-term nutrient addition studies (e.g. Bragazza et al., 2012) where higher carbon uptake was associated with N addition, albeit at higher rates of addition. Turunen et al. (2004) also report that anthropogenically enhanced atmospheric N supply is associated with higher recent C accumulation in eastern North America but we see no clear evidence of this recent effect in our cores. Later periods with relatively high nitrogen content also occur at PTB during a period of very low carbon accumulation ca. 8000 - 6500 cal. BP and over the last 1000 years at BVB and to a lesser extent at SYB. The period of very low C accumulation at PTB is associated with a dry bog surface and

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

fire, as indicated by a major charcoal peak at this time (Figure 4). The higher %N values are probably

a result of fire and mineralisation yielding higher N availability and the dominance of vascular plants. Whilst very large fire events may have had a significant influence on peat accumulation, van Bellen *et al.* (2012) have suggested that there is rather little correspondence between long-term fire frequency and C accumulation rates in northern peatlands in Québec. However, there is considerable variability between studies; for example Pitkänen et al. (1999) found that charcoal abundance was associated with an overall decrease in carbon accumulation in Finnish mires.

The spatial patterns of total peat accumulation therefore support the hypothesis of a positive relationship between temperature and related variables, and peat growth, but also show that this only holds true for the ombrotrophic phases of peatland development. In earlier peatland development, local influences on peatland geochemistry, hydrology and vegetation modify the spatial relationships with climate, assuming the spatial climate relationships between sites remained similar over time.

4.2. Carbon accumulation trends over the Holocene

Peat accumulation is expected to be higher during the mid-Holocene Thermal Maximum than during the later Holocene as precession-forced cooling occurred, as suggested by overall patterns of northern peatlands over larger spatial scales (Yu et al., 2010; Loisel et al., 2014). However, only BVB shows this long-term trend more typical of northern hemisphere peatlands. SYB shows an increasing trend in C accumulation through the late Holocene and PTB also shows a generally increasing but more gradual trend, albeit with some short-term variability (Figure 6). We attribute this difference to different initial climate states for the sites.

SYB is at the southern limit of raised peatland development today, which is determined by moisture balance (Davis and Anderson, 2001). During the Holocene Thermal Maximum, it would have been even warmer than it is today and thus probably sub-optimal for peat growth in southern Maine. Cooler temperatures during the later Holocene may therefore have improved the potential for a

positive water balance and pushed this region further away from a limiting moisture threshold, especially if there was also increased precipitation. The moisture index (MI) for the site today is 1.68 (Table 1), only just above the threshold for peat growth found for 90 northern hemisphere sites (Charman *et al.*, 2013). PTB is further away from the geographical limit of modern peatland distribution in eastern North America, but the climate data suggest it is still very close to this moisture threshold (MI = 2.04). BVB is well within the moisture limit for peat growth (MI = 2.63) and even with higher evapotranspiration, is unlikely to have been at a growth limit in the mid-Holocene, such that a higher temperature and longer growth season had a positive effect on peat accumulation. The contrasting long-term trends in C accumulation can thus be explained by these differing initial climate states, particularly in relation to moisture status as a limiting variable.

Linear regressions and multivariate modelling of the relationships between carbon accumulation and environmental variables did not reveal any consistent, significant correlations. Early phases of peat accumulation appear to have been influenced by local environmental factors to a much greater extent, especially during fen peat development and early stage succession (Holmquist and Macdonald, 2014). There is also evidence that at particular sites, over particular time periods, such as at PTB from 8000 – 6000 cal. BP, autogenic factors may have been an important driver of carbon accumulation rates. However, the overall conclusion from spatial and temporal comparisons between peat accumulation, climatic and palaeoenvironmental data is that some of the largest differences in C accumulation can be explained by climate, especially during the mid-late Holocene.

4.3. Implications for future peatland carbon accumulation

Future climate change will lead to a shift of bioclimate zones suitable for peat formation (Gallego-Sala et al., 2010, Gallego-Sala and Prentice, 2012). Some areas that are currently suitable for peat growth will be too warm and/or dry for continued peat growth in mid northern latitudes, perhaps including peatlands in the southern part of eastern North America. However, many areas of northern peatlands will remain within a bioclimate zone suitable for continued growth, especially

given the likelihood of increased warm season precipitation alongside increased temperature that would extend the growing season (Kirtman *et al.*, 2013). The data presented here largely support the hypothesis that warmer climates with longer growing seasons support faster peat C accumulation (Yu *et al.*, 2012; Charman *et al.*, 2013). We would therefore expect that under a future warmer climate, the majority of northern peatlands will increase C accumulation rates, unless critically low moisture limits are reached. It is notable that the long-term, broad-scale spatial and temporal differences in C accumulation appear to be largely independent of differences in other environmental variables such as vegetation, hydrology and perhaps fire. This is in contrast to suggestions from modelling (Ise *et al.* 2008, Dorrepaal *et al.*, 2009) and short-term experiments (e.g. Bragazza *et al.*, 2012) that suggest significant implications for future peatland C balance from changes in decay rates, N deposition and other factors.

For areas that are currently at the southern or northern limit of peat growth, response to future climate change may be more variable. In northern areas, longer growing seasons, higher summer temperatures and increased summer precipitation may result in initiation of new peatlands. Our data suggest that the early successional stages accumulate relatively rapidly, so these peatlands may sequester significant amounts of carbon. This is supported by data from peatlands dominated by sedge communities throughout the Holocene (Yu et al., 2014b), and the shifts between ombrotrophic and minerotrophic systems also have important implications for methane emissions (Packalen and Finkelstein, 2014). For peatlands at the modern southern limit of peatland occurrence, warmer temperatures and the potential for reduced summer precipitation are likely to push peatlands below the moisture threshold where they can benefit from increased growing season length, such that peat accumulation rates will decrease or cease, with the potential for a negative C balance. The lower mid-Holocene accumulation rates of the two southernmost sites (SYB in Maine and PTB in Nova Scotia) suggest that reduced accumulation rates have occurred in the past when temperatures were only slightly higher than present north of 30° N (Marcott et al., 2013).

Past changes are only a guide to the longer term future of northern peatlands and the range of climate and environmental conditions they have been exposed to in the past may be too limited for projection by analogy. However, the growing body of palaeoenvironmental literature suggests that the peatland-climate link warrants further consideration of long-term response to climate and the interaction with successional change.

Acknowledgements

This research was primarily carried out as part of the UK Natural Environment Council funded PRECIP project to DC and PDMH, under grant codes NE/G019851/1, NE/G020272/1, NE/G019673/1 and NE/G02006X/1, supported by NERC Radiocarbon Allocation 1456.1209 and NERC grant NE/I012915/1 (to DC and AGS). Sue Rouillard (University of Exeter) drafted Figure 1. We thank two anonymous referees for their helpful comments on the paper.

References

- Amesbury, M. J., Mallon, G., Charman, D. J., Hughes, P. D. M., Booth, R. K., Daley, T. J. and Garneau,
 M. 2013. Statistical testing of a new testate amoeba based transfer function for water-table depth
 reconstruction on ombrotrophic peatlands in north-eastern Canada and Maine, United States,

 Journal of Quaternary Science 28, 27-39.
- Appleby, P. G. and Oldfield, F. 1978. The calculation of ²¹⁰Pb dates assuming a constant rate of supply
 of unsupported ²¹⁰Pb to the sediment. *Catena* 5, 1-8.
- Barber, K. E., Chambers, F. M., Maddy, D., Stoneman, R. and Brew, J. S. 1994. A sensitive highresolution record of late Holocene climatic change from a raised bog in northern England. *The Holocene* 4, 198-205.

- Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil
- 446 Science 47, 151-163.
- 447 Beilman, D. W., MacDonald, G. M., Smith, L. C. and Reimer, P. J. 2009. Carbon accumulation in
- 448 peatlands of West Siberia over the last 2000 years. Global Biogeochemical Cycles 23,
- 449 doi:10.1029/2007gb003112.
- 450 Bergeron, Y., Cyr, D., Girardin, M. P. and Carcaillet, C. 2010. Will climate change drive 21st Century
- 451 burn rates in Canadian boreal forest outside of its natural variability: collating global climate model
- experiments with sedimentary charcoal data. *International Journal of Wildland Fire* 19, 1127-1139.
- 453 Blaauw, M. and Christen, J. A. 2011. Flexible paleoclimate age-depth models using an autoregressive
- 454 gamma process. Bayesian Analysis 6, 457–474.
- Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T., Gerdol, R., Hajek, M.,
- 456 Hajek, T., Lacumin, P., Kutnar, L., Tahvanainenm, T. and Toberman, H. 2006. Atmospheric nitrogen
- deposition promotes carbon loss from peat bogs. *Proceedings of the National Academy of Sciences*
- 458 *of the United States of America* 103, 19386-19389.
- 459 Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajik, P., Laiho, R.
- 460 and Johnson, D. 2012. High nitrogen deposition alters the decomposition of bog plant litter and
- reduces carbon accumulation. *Global Change Biology* 18, 1163-1172.
- Bubier, J. L., Bhatia, G., Moore, T. R., Roulet, N. T. and Lafleur, P. M. 2003. Spatial and temporal
- variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario,
- 464 Canada. Ecosystems 6, 353-367.
- 465 Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A.,
- 466 Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A., Mauquoy, D., Mitchell, F.
- 467 J. G., Prentice, I. C., van Der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y.

- 468 M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E.,
- 469 Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Sillasoo, Ü., Swindles, G. T., Tuittila,
- 470 E. S., Ukonmaanaho, L., Väliranta, M., van Bellen, S., van Geel, B., Vitt, D. H. and Zhao, Y. 2013.
- 471 Climate-related changes in peatland carbon accumulation during the last millennium. *Biogeosciences*
- 472 10, 929-944.
- 473 Davis, R. B. and Anderson, D. S. 2001. Classification and distribution of freshwater peatlands in
- 474 Maine. Northeastern Naturalist 8, 1-50.
- 475 Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., Swart, E., van de Weg, M. J., Callaghan, T. V. and Aerts,
- 476 R. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic.
- 477 *Nature* 460, 616-619.
- 478 Frolking, S., Talbot, J., Jones, M. C., Treat, C. C., Kauffman, J. B., Tuittila, E. S. and Roulet, N. 2011.
- 479 Peatlands in the Earth's 21st Century climate system. *Environmental Reviews* 19, 371-396.
- 480 Gallego-Sala, A. V., Clark, J. M., House, J. I., Orr, H. G., Prentice, I. C., Smith, P., Farewell, T. and
- Chapman, S.J. 2010. Bioclimatic envelope model of climate change impacts on blanket peatland
- distribution in Great Britain. Climate Research 45, 151-162.
- 483 Gallego-Sala, A. V. and Prentice, C. 2012. Blanket peat biome endangered by climate change. Nature
- 484 Climate Change 3, 152-155.
- 485 Garneau, M., van Bellen, S., Magnan, G., Beaulieu-Audy, V., Lamarre, A., Asnong, H., 2014. Holocene
- carbon dynamics of boreal and subarctic peatlands from Québec, Canada. The Holocene 24, 1043-
- 487 1053.
- 488 Gorham, E. 1991. Northern peatlands role in the carbon-cycle and probable responses to climatic
- 489 warming. *Ecological Applications* 1, 182-195.

- 490 Gorham, E., Lehman, C., Dyke, A., Clymo, R. and Janssens, J. 2012. Long-term carbon sequestration in
- 491 North American peatlands. *Quaternary Science Reviews* 58, 77-82.
- 492 Hausmann, S., Larocque-Tobler, I., Richard, P. J. H., Pienitz, R., St-Onge, G. and Fye, F. 2011. Diatom-
- 493 inferred wind activity at Lac du Sommet, southern Québec, Canada: A multiproxy palaeoclimate
- reconstruction based on diatoms, chironomids and pollen for the past 9500 years. The Holocene 21,
- 495 925-938.
- 496 Holmquist, J.R., MacDonald, G.M., 2014. Peatland succession and long-term apparent carbon
- 497 accumulation in central and northern Ontario, Canada. *The Holocene* 24, 1075-1089.
- Hughes, P. D. M., Mallon, G., Brown, A., Essex, H. J., Stanford, J. D. and Hotes, S. 2013. The impact of
- 499 high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland
- 500 communities. *Quaternary Science Reviews* 67, 160-175.
- Ise, T., Dunn, A. L., Wofsy, S. C., and Moorcroft, P. R. 2008. High sensitivity of peat decomposition to
- climate change through watertable feedback. *Nature Geoscience* 1, 763–766.
- Jones, M. C. and Yu, Z. 2010. High sensitivity of Alaskan peatlands to temperature seasonality during
- the Holocene thermal maximum. *Proceedings of the National Academy of Sciences of the United*
- 505 States of America 107, 7347-7352.
- Kaplan, J. O., Bigelow, N. H., Bartlein, P. J., Christensen, T. R., Cramer, W., Harrison, S. P., Matveyeva,
- N. V., McGuire, A. D., Murray, D. F., Prentice, I. C., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson,
- P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V. 2003. Climate change and
- 509 Arctic ecosystems II: Modeling, palaeodata-model comparisons and future projections. Journal of
- 510 *Geophysical Research Atmosphere* 108, doi:10.1029/2002JD002559.
- 511 Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes, F. J.,
- 512 Fiore, A. M., Kimoto, M., Meehl, G. A., Prather, M., Sarr, A., Schär, C., Sutton, R., van Oldenborgh, G.

- J., Vecchi, G. and Wang, H. J. 2013. Near-term Climate Change: Projections and Predictability. In
- 514 Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.
- and Midgley, P. M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working
- Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- 517 Cambridge: Cambridge University Press, 953-1028.
- Kuhry, P. 1994. The role of fire in the development of *Sphagnum*-dominated peatlands in western
- boreal Canada. *Journal of Ecology* 82, 899-910.
- Limpens, J., Berendse, F., Blodau, C., Canadell, J. G., Freeman, C., Holden, J., Roulet, N., Rydin, H. and
- 521 Schaepman-Strub, G. 2008. Peatlands and the carbon cycle: from local processes to global
- implications a synthesis. *Biogeosciences* 5, 1475-1491.
- 523 Loisel, J. and Garneau, M. 2010. Late Holocene paleoecohydrology and carbon accumulation
- estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives.
- 525 Palaeogeography Palaeoclimatology Palaeoecology 291, 493-533.
- 526 Loisel, J. and Yu, Z. 2013. Recent acceleration of carbon accumulation in a boreal peatland, south
- 527 central Alaska. Journal of Geophysical Research Biogeosciences 118, 1-13.
- 528 Loisel, J., Gallego-Sala, A. V. and Yu, Z. 2012. Global-scale pattern of peatland *Sphagnum* growth
- driven by photosynthetically active radiation and growing season length. Biogeosciences 9, 2737-
- 530 2746.
- Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J., Anderson, D., Andersson, S.,
- Bochicchio, C., Barber, K. E., Belyea, L. R., Bunbury, J., Chambers, F. M., Charman, D. J., De
- 533 Vleeschouwer, F., Fiałkiewicz-Kozieł, B., Finkelstein, S. A., Gałka, M., Garneau, M., Hammarlund, D.,
- Hinchcliffe, W., Holmquist, J., Hughes, P. D. M., Jones, M. C., Klein, E. S., Kokfelt, U., Korhola, A.,
- 535 Kuhry, P., Lamarre, A., Lamentowicz, M., Large, D., Lavoie, M., MacDonald, G., Magnan, G., Makila,

- 536 M., Mallon, G., Mathijssen, P., Mauquoy, D., McCarroll, J., Moore, T. R., Nichols, J., O'Reilly, B.,
- Oksanen, P., Packalen, M., Peteet, D., Richard, P. J. H., Robinson, S., Ronkainen, T., Rundgren, M.,
- 538 Sannel, A. B. K., Tarnocai, C., Thom, T., Tuittila, E. S., Turetsky, M., Valiranta, M., van der Linden, M.,
- van Geel, B., van Bellen, S., Vitt, D., Zhao, Y. and Zhou, W. 2014. A database and synthesis of
- northern peatland soil properties and Holocene carbon and nitrogen accumulation. *The Holocene* 24,
- 541 1028-1042.
- Lund, M., Lafleur, P. M., Roulet, N. T., Lindroth, A., Christensen, T. R., Aurela, M., Chojnicki, B. H.,
- 543 Flanagan, L. B., Humphreys, E. R., Laurila, T., Oechel, W. C., Olejnik, J., Rinne, J., Schubert, P. and
- Nilsson, M. B. 2010. Variability in exchange of CO₂ across 12 northern peatland and tundra sites.
- 545 *Global Change Biology* 16, 2436-2448.
- Malmer, N. and Wallén, B. 2004. Input rates, decay losses and accumulation rates of carbon in bogs
- during the last millennium: internal processes and environmental changes. The Holocene 14, 111-
- 548 117.
- Marcott, S.A., Shakun, J.D., Clark, P.U., Mix, A.C., 2013. A reconstruction of regional and global
- temperature for the past 11,300 Years. *Science* 339, 1198-1201.
- Muller, S. D., Richard, P. J. H., Guiot, J., de Beaulieu, J-L. and Fortin, D. 2003. Postglacial climate in
- the St. Lawrence lowlands, southern Québec: pollen and lake level evidence. Palaeogeography,
- 553 Palaeoclimatology, Palaeoecology 193, 51-72.
- Packalen, M.S., Finkelstein, S.A., 2014. Quantifying Holocene variability in carbon uptake and release
- since peat initiation in the Hudson Bay Lowlands, Canada. *The Holocene* 24, 1063-1074.
- 556 Pitkänen, A., Turunen, J. and Tolonen, K. 1999. The role of fire in the carbon dynamics of a mire,
- eastern Finland. *The Holocene* 9, 453-462.

- 558 R Development Core Team. 2011. R: a language and environment for statistical computing. R
- 559 Foundation for Statistical Computing, Vienna, Austria.
- Turunen, J., Roulet, N. T. and Moore, T. R. 2004. Nitrogen deposition and increased carbon
- accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles 18, DOI:
- 562 10.1029/2003GB002154.
- Van Bellen, S., Garneau, M. and Booth, R. K. 2011. Holocene carbon accumulation rates from three
- ombrotrophic peatlands in boreal Quebec, Canada: Impact of climate-driven ecohydrological
- 565 change. *The Holocene* 21, 1217-1231.
- Van Bellen, S., Garneau, M., Ali, A. A. and Bergeron, Y. 2012. Did fires drive Holocene carbon
- sequestration in boreal ombrotrophic peatlands of eastern Canada? *Quaternary Research* 78, 50-59.
- Viau, A. E., Gajewski, K., Sawada, M. C. and Fines, P. 2006. Millennial-scale temperature variations in
- 569 North America during the Holocene. Journal of Geophysical Research Atmospheres 111,
- 570 doi: 10.1029/2005JD006031.
- Wieder, R. K., Scott, K. D., Kamminga, K., Vile, M. A., Vitt, D. H., Bone, T., Xu, B., Benscoter, B. W. and
- 572 Bhatti, J. S. 2009. Postfire carbon balance in boreal bogs of Alberta, Canada. *Global Change Biology*
- 573 15, 63-81.
- 574 Yu, Z. C. 2006. Holocene carbon accumulation of fen peatlands in boreal western Canada: A complex
- ecosystem response to climate variation and disturbance. *Ecosystems* 9, 1278-1288.
- 576 Yu, Z. C. 2012. Northern peatland carbon stocks and dynamics: A review. *Biogeosciences* 9, 4071-
- 577 4085.
- 578 Yu, Z. C., Beilman, D. W. and Jones, M. C. 2009. Sensitivity of Northern Peatland Carbon Dynamics to
- 579 Holocene Climate Change. In Baird, A. J., Belyea, L. R., Comas, X., Reeve, A. S. and Slater, L. D. (eds.).
- 580 Carbon Cycling in Northern Peatlands, Geographical Monograph Series 184, 55-69.

581 Yu, Z. C., Loisel, J., Brosseau, D. P., Beilman, D. W. and Hunt, S. J. 2010. Global peatland dynamics 582 since the Last Glacial Maximum. Geophysical Research Letters 37, doi:10.1029/2010GL043584. 583 Yu, Z., Loisel, J., Charman, D.J., Beilman, D.W., Camill, P., 2014a. Holocene peatland carbon dynamics 584 in the circum-Arctic region: An introduction. *The Holocene* 24, 1021-1027. 585 Yu, Z., Vitt, D.H., Wieder, R.K., 2014b. Continental fens in western Canada as effective carbon sinks 586 during the Holocene. The Holocene 24, 1090-1104. 587 Zhao, Y., Tang, Y., Yu, Z., Li, H., Yang, B., Zhao, W., Li, F., Li, Q., 2014. Holocene peatland initiation, 588 lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau. The

589

Holocene 24, 1137-1145.

Figure captions

Figure 1: Site location map.

Figure 2: Age-depth models for all sites, constructed using the R package, Bacon. See section 2 for further details. L – R: Burnt Village Bog, Newfoundland; Petite Bog, Nova Scotia; Sidney Bog, Maine.

Figure 3: Physical properties and proxy data for Burnt Village Bog, Newfoundland. L – R: Bulk density; %C; %N; C:N ratio; C accumulation rate per year; testate-amoeba reconstructed depth to water table; summary plant macrofossil composition (red = Ericaceae, blue = monocots, green = bryophytes). See section 2 for further details.

Figure 4: Physical properties and proxy data for Petite Bog, Nova Scotia. L – R: Bulk density; %C; %N; C:N ratio; C accumulation rate per year; testate-amoeba reconstructed depth to water table; summary plant macrofossil composition (red = Ericaceae, blue = monocots, green = bryophytes); % charcoal. See section 2 for further details.

Figure 5: Physical properties and proxy data for Sidney Bog, Maine. L – R: Bulk density; %C; %N; C:N ratio; C accumulation rate per year; testate-amoeba reconstructed depth to water table; summary plant macrofossil composition (red = Ericaceae, blue = monocots, green = bryophytes); % charred remains. See section 2 for further details.

Figure 6: Long-term carbon accumulation rates (500 year mean values) for all three sites with \pm 95% confidence intervals. Grey line = Burnt Village Bog, Newfoundland; Black line with open circles = Petite Bog, Nova Scotia; black line with closed circles = Sidney Bog, Maine.

Sidney Bog	Petite Bog	Burnt Village Bog	Site name
Maine, USA	Nova Scotia, Canada	Newfoundland, Canada	Location
44° 23.274	45° 8.659	51° 7.562	Latitude (°N)
69° 47.260 24	63° 56.219 50	55° 55.645 28	Longitude Elevation Total core (°W) (m) depth (cm
24	50	28	Elevation (m)
750	868	575)
31	32	26	Number of ¹⁴ C dates
9540 (725)	11280 (856)	8240 (545)	Peat basal age (cal. years BP)
17.9	17.2	11.4	Mean JJ <i>A</i> temp (°C
101	93	90	JJA precip. (mm)
8079	7369	5370	PARO
2956	2880	1602	GDD0
1.68	2.04	2.63	P/Eq 0 moisture index

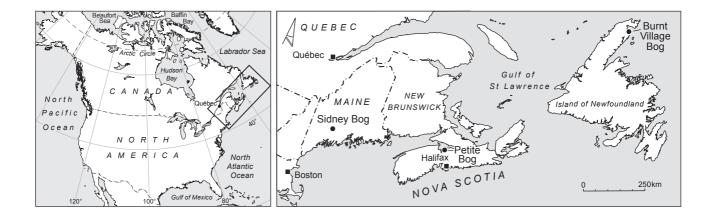
model, rounded to the nearest 10 years with depth of the dated sample in cm in parentheses. Climate data is extracted from the relevant 0.5 x 0.5° grid cell **Table 1:** Site data. Total core depth includes non-peat basal sediments. Basal age is the weighted mean age from the output of the BACON age-depth of the CLIMATE 2.2 dataset (Kaplan et al., 2003). PARO, GDD0 and the P/Eq moisture index are calculated sensu Charman et al. (2013).

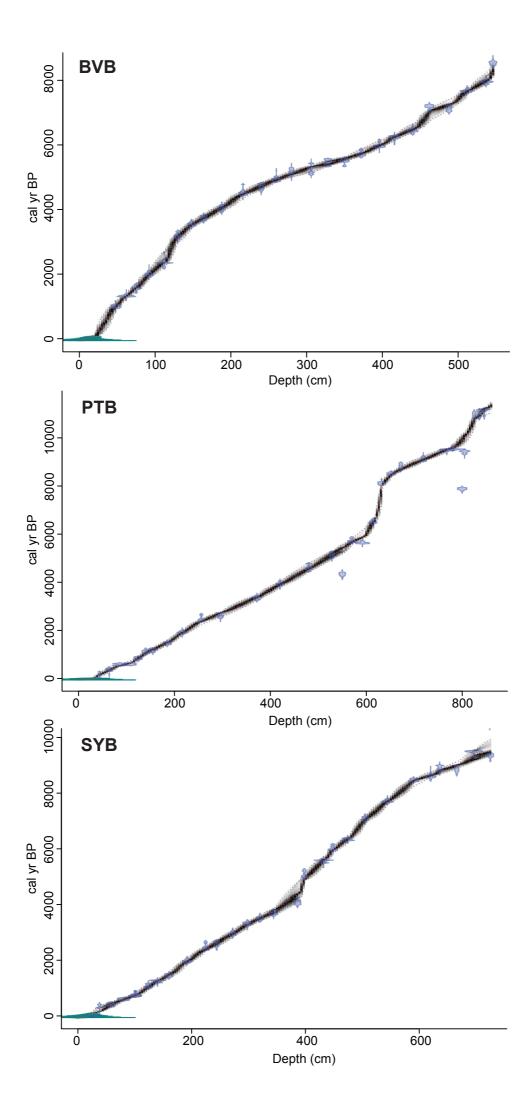
	Burnt V	Burnt Village Bog	Petit	Petite Bog	Sidne	Sidney Bog
	Cumulative	2000 yr interval	Cumulative	2000 yr interval	Cumulative	2000 yr interval
Past 2000 years	31.1	31.1	58.6	58.6	103.6	103.6
Past 4000 years	60.3	29.1	118.7	60.2	184.9	81.3
Past 6000 years	120.3	60.1	171.7	53	229.8	44.9
Past 8000 years	192	71.7	188.6	16.8	296.9	67.2

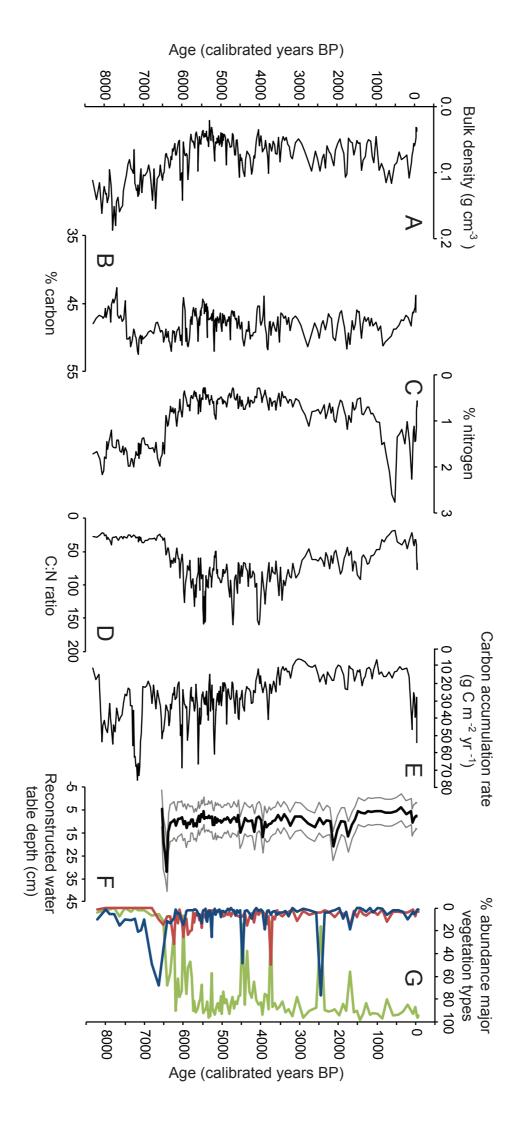
Table 2: Total carbon accumulation ($Kg C m^{-2}$) for all three sites for 2000 year intervals and cumulative C over the past 8000 years.

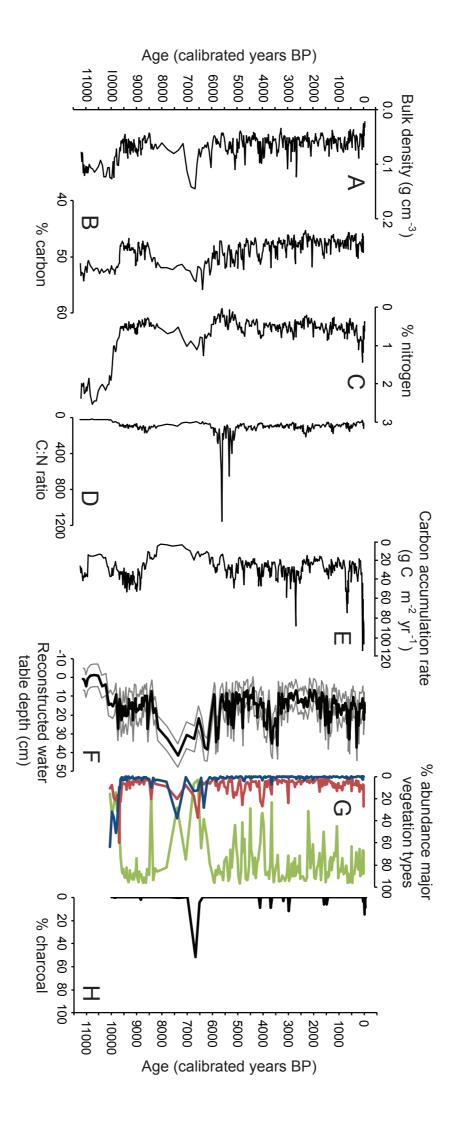
Sidney Bog	Petite Bog	Burnt Village Bog	Site name
-0.177 (0.019)	-0.056	-0.225 (0.009)	North American summer temperature
0.170 (0.032)	-0.027	0.128	Reconstructed water table
0.011	-0.021	0.276 (0.001) -0.473 (0.001)	% Z
0.098	0.100	-0.473 (0.001)	Bryophytes
0.020	0.141 (0.041)	0.007	Ericaceae
-0.083	-0.122 (0.076)	0.153 (0.075)	Monocots
-0.097	.122 (0.076) 0.178 (0.009)		Charred remains
	0.040	1	Charcoal

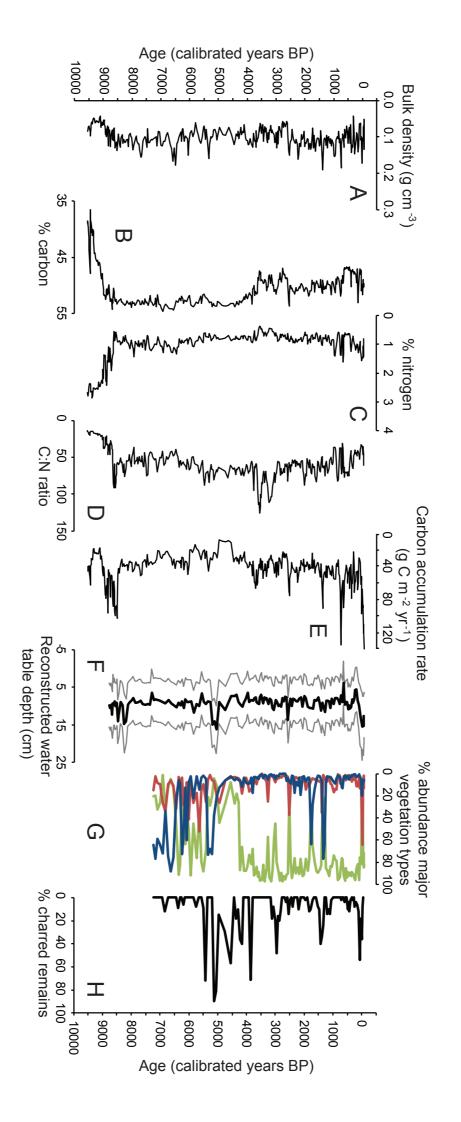
Table 3: Correlation coefficients (r values) between carbon accumulation per year and climate/environmental variables for all sites. All p values < 0.1 are shown in parentheses, with significant relationships with p values (<0.05) also shown in bold.

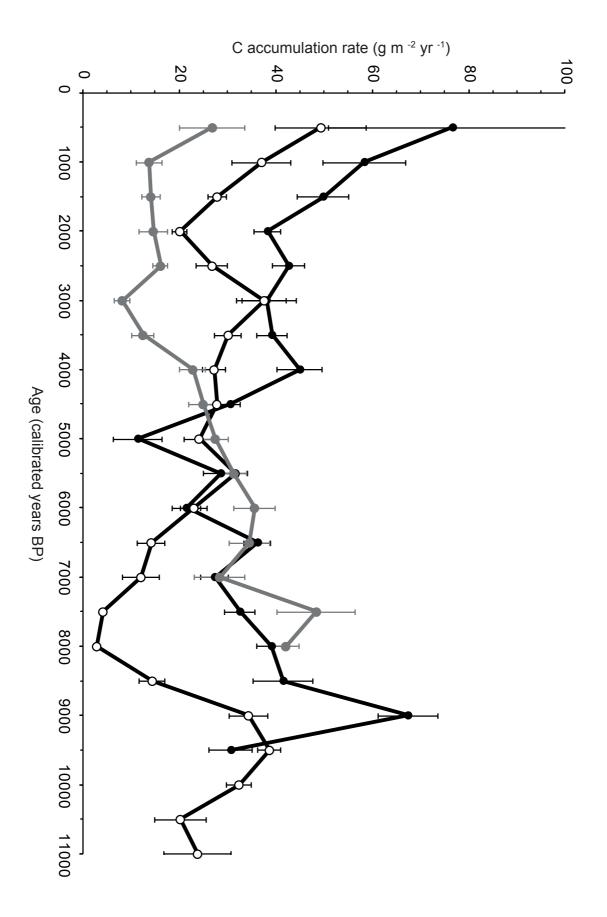

Site name	North American summer temperature	Reconstructed water table	% Z	Bryophytes	Ericaceae	Monocots	Charred remains	Charcoal
Burnt Village Bog	L 31.7, H 24.6 (0.02)	L 21.8, H 26.3	L 26.3, H 36.9 (<0.001)	L 38.6, H 21.6 (<0.001)	L35.9, H30.7	L 24.3, H 35.4 (0.001)	1	
Petite Bog	L 32.2, H 28.1 (0.04)	L 27, H 27.8	L 28.9, H 30.4	L 28.1, H 28.7	L 27.8, H 35.4 (0.01)	L 33.2, H 29.2	1	1
Sidney Bog	L 47.8, H 37 (0.007)	L 44.6, H 58.7	L 42.2, H 51.1 (0.04)	L 38.8, H 42.3	L 42.2, H 50.3	L 40, H 38.8	L 45.9, H 37.7	ı


significant p values < 0.05 from two-tailed, two-sample t-tests assuming homoscedascity are shown in parentheses are shown in bold. No test for charred Table 4: Low (L) and high (H) mean carbon accumulation rates (g C m⁻² yr⁻¹) associated with the extreme quartiles of climate/environmental variables. All remains and charcoal values was possible at PTB, due to a high proportion of zero values.


	Adj. R ²	F	þ	t		Adj. R²	F	p t	t
All sites combined	0.14	16.37	< 0.001		All sites combined	0.18	4.76	0.005	
Ericaceae			0.0001	3.88	WTD			< 0.001	-3.61
Viau temperature			0.0004	-3.51	Ericaceae			0.05	1.99
Bryophytes			0.007	2.68	%N			0.06	-1.91
%N			0.08	9.88	Burnt Village Bog	0.74	7.9	0.009	
Burnt Village Bog	0.24	6.922	< 0.001		Bryophytes			0.002	-4.85
Bryophytes			0.003	-3.01	WTD			0.006	-3.83
Monocots			0.034	-2.15	%N			0.04	-2.59
%N			0.11	-1.59	Ericaceae			0.04	-2.46
WTD			0.12	1.56	Monocots			0.05	2.39
Petite Bog	0.05	2.686	0.016		Petite Bog	0.48	7.48	0.002	
Viau temperature			0.01	-2.42	WTD			0.001	-3.77
Monocots			0.02	-2.27	Bryophytes			0.005	3.24
%N			0.16	1.381	Ericaceae			0.116	1.65
WTD			0.33	-0.97	Sidney Bog	0.45	5.44	0.01	
Sidney Bog	0.12	4.283	< 0.001		Bryophytes			0.001	3.92
Bryophytes			0.002	3.23	Monocots			0.008	3.13
%N			0.03	2.19	WTD			0.17	1.44
Ericaceae			0.09	1.71					
Viau temperature			0.12	-1.54					


Table 5: Summary of results from multivariate linear modelling of relationships between carbon accumulation and environmental variables for all sites combined and for individual sites.


Figure 1



Supplementary Data
Click here to download Supplementary Data: Supplementary Tables R2.docx