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Four-wave mixing (FWM) based parametric 
amplification in optical microfibers (OMF) is 
demonstrated over a wavelength range of over 1000 nm 
by exploiting their tailorable dispersion characteristics 
to achieve phase matching. Simulations indicate that for 
any set of wavelengths satisfying the FWM energy 
conservation condition there are two diameters at which 
phase matching in the fundamental mode can occur. 
Experiments with a high-power pulsed source working in 
conjunction with a periodically poled silica fiber (PPSF), 
producing both fundamental and second harmonic 
signals, are undertaken to investigate the possibility of 
FWM parametric amplification in OMFs. Large increases 
of idler output power at the third harmonic wavelength 
were recorded for diameters close to the two phase 
matching diameters. A total amplification of more than 
25 dB from the initial signal was observed in a 6 mm long 
optical microfiber, after accounting for the thermal drift 
of the PPSF and other losses in the system. 

OCIS codes: (190.4370) Nonlinear optics, fibers; (190.4410) Nonlinear 
optics, parametric processes; (190.4380) Nonlinear optics, four-wave 
mixing; 
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Four-wave mixing (FWM) is a process in which four waves interact via the optical Kerr nonlinearity of a medium, where two photons from one or two ‘pump’ waves (for instance at frequencies ߱ଵ,߱ ଶ) are annihilated, and two new photons, called the signal (߱ଷ) and idler (߱ସ), are created [1]. One application of FWM is parametric amplification, where the power from one wavelength is transferred to another wavelength via the Kerr effect, which has been demonstrated in a variety of optical fibers, with the highest recorded conversion being 70 dB [1-4]. However, parametric amplification via FWM requires phase matching for efficient energy conversion in order to 

compensate for material and waveguide dispersion as well as nonlinear effects, often limiting the bandwidth of the process [5]. A number of schemes were proposed which allowed a broader bandwidth, but the largest realized bandwidth is 900 nm and 300 nm for solid core and microstructured optical fiber, respectively [6,7]. In this letter we demonstrate the possibility of using optical microfibers (OMFs) for FWM parametric amplification over a wavelength band of over 1000 nm by exploiting the tailorable dispersion characteristics of the OMF to optimize the diameter for phase matching. The technique, applicable for both parametric amplification as well as parametric conversion, theoretically allows for the amplification and generation of an almost arbitrary set of wavelengths, as well as the possibility of building fully fiberized light sources in the UV and mid-IR wavelength ranges. OMFs are typically drawn from conventional fibers, most commonly by the flame brushing technique where a section of the fiber is heated to the softening point and pulled to reduce the diameter. By doing so, the optical core of the fiber gradually disappears, and the erstwhile cladding material effectively becomes the core, with air taking the role of the optical cladding. This allows for higher mode confinement, translating into an increased nonlinearity of up to 100 times the original value, as well as relatively low losses of typically < 1 dB [8]. The relatively high nonlinearity and tailorable dispersion has been previously exploited to achieve intermodal third harmonic generation in optical microfibers where energy transfer is achieved by parametric conversion from the fundamental mode at one frequency to a higher order mode at a higher frequency [9,10], as well as an efficient means to achieve parametric conversion [11]. The phase matching and energy conservation conditions for efficient FWM, respectively, can be written as [5]:                  ߚ(߱ସ) + (ଷ߱)ߚ = (ଵ߱)ߚ + ଵ߱                                 (1)  (ଶ߱)ߚ + ߱ଶ =  ߱ଷ + ߱ସ  (2) where the subscripts 1,2,3 and 4 refer to the four interacting wavelengths in the FWM process and ߚ(߱) is the propagation constant for frequency ߱ . 
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