
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and the Environment

Data Management in

Engineering Design

Jonathan D. Owen

Thesis for the degree of Doctor of Engineering

June 2015

http://www.southampton.ac.uk
http://www.southampton.ac.uk/engineering
mailto:J.Owen@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

School of Engineering

Doctor of Engineering

DATA MANAGEMENT IN ENGINEERING DESIGN

by Jonathan D. Owen

Engineering design involves the production of large volumes of data. These data are

a sophisticated mix of high performance computational and experimental results, and

must be managed, shared and distributed across worldwide networks. Given limited

storage and networking bandwidth, but rapidly growing rates of data production, effec-

tive data management is becoming increasingly critical. Within the context of Airbus,

a leading aerospace engineering company, this thesis bridges the gap between academia

and industry in the management of engineering data. It explores the high performance

computing (HPC) environment used in aerospace engineering design, about which little

was previously known, and applies the findings to the specific problem of file system

cleaning.

The properties of Airbus HPC file systems show many similarities with other environ-

ments, such as workstations and academic or public HPC file systems, but there are also

some notably unique characteristics. In this research study it was found that Airbus

file system volumes exhibit a greater disk usage by a smaller proportion of files than

any other case, and a single file type accounts for 65% of the disk space but less than

1% of the files. The characteristics and retention requirements of this file type formed

the basis of a new cleaning tool we have researched and deployed within Airbus that is

cognizant of these properties, and yielded disk space savings of 21.1 TB (15.2%) and 37.5

TB (28.2%) over two cleaning studies, and may be able to extend the life of existing

storage systems by up to 5.5 years. It was also noted that the financial value of the

savings already made exceed the cost of this entire research programme.

Furthermore, log files contain information about these key files, and further analysis

reveals that direct associations can be made to infer valuable additional metadata about

such files. These additional metadata were shown to be available for a significant pro-

portion of the data, and could be used to improve the effectiveness and efficiency of

future data management methods even further.

http://www.southampton.ac.uk
http://www.southampton.ac.uk/engineering
http://www.southampton.ac.uk/engineering
mailto:J.Owen@soton.ac.uk




Contents

Abstract iii

List of Figures ix

List of Tables xi

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1

1.1 Focus of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Results, Novelty and Sponsor Value . . . . . . . . . . . . . . . . 3

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Data Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Users and Administrators . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 File Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Search Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.6 Tiered Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.7 Object-Based Storage . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 High Performance Computing . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Clusters, Commoditisation and Services . . . . . . . . . . . . . . . 15

2.2.2 The Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Industrial Engineering Design . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Engineering Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Resources and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Networking and Infrastructure . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Usage and Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.6 Transnational Proof-of-Concept . . . . . . . . . . . . . . . . . . . . 22

2.3.7 Key Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



vi CONTENTS

3 File System Metadata 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 External Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Data Analysis and Presentation . . . . . . . . . . . . . . . . . . . . 31

3.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2 Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.3 File Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.4 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.5 Namespace Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.6 Implications for Data Cleaning and Distribution Modelling . . . . 54

3.6 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Practical Data Cleaning 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Data Extraction and Analysis . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 File Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.4 File Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.5 3D Solution Files by Modification Time . . . . . . . . . . . . . . . 64

4.4.6 Exclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.7 Cleaning Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.8 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Volume Fullness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3 File Modification Time . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.4 3D Solution Files by Modification Time . . . . . . . . . . . . . . . 73

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 Impact on Storage Systems . . . . . . . . . . . . . . . . . . . . . . 75

4.6.2 Cost Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.3 Methodology Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS vii

5 Additional Metadata 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Log File Identification and Filtering . . . . . . . . . . . . . . . . . 82

5.3.2 Flow Solution Identification . . . . . . . . . . . . . . . . . . . . . . 82

5.3.3 Log-Solution Association . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.4 Log File Metadata Extraction . . . . . . . . . . . . . . . . . . . . . 84

5.3.5 File Name Metadata Extraction . . . . . . . . . . . . . . . . . . . 85

5.3.6 Data Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Metadata Availability . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Computational Attributes . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.3 Aerodynamic Attributes . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.2 Other Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.3 Limitations and Improvements . . . . . . . . . . . . . . . . . . . . 97

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Discussion 101

6.1 Data Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.1 Numerical Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . 103

6.1.3 Hardware and Software Evolution . . . . . . . . . . . . . . . . . . 104

6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Future Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 Tiered Storage and Collection Management . . . . . . . . . . . . . 106

6.2.3 Hierarchical and Search-Based Systems . . . . . . . . . . . . . . . 107

6.3 Applicability to Other Environments . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions 109

7.1 Fulfilment of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.1 Airbus HPC Data Comparison & Contrast . . . . . . . . . . . . . 110

7.1.2 Useful Characteristics for Data Management . . . . . . . . . . . . 111

7.1.3 Practical Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.4 Additional Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 117





List of Figures

2.1 Generic Data Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Network and Storage Architecture . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Proof of Concept Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Proof of Concept Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 File Count by File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Total Byte by File Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 File Count by Access Time . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Total Bytes by Access Time . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 File Count by Modification Time . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Total Bytes by Modification Time . . . . . . . . . . . . . . . . . . . . . . 40

3.7 File Count by Change Time . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Total Bytes by Change Time . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 File Count and Total Bytes by File Type . . . . . . . . . . . . . . . . . . 44

3.10 Directory Count by Contained Files . . . . . . . . . . . . . . . . . . . . . 46

3.11 Directory Count by Contained Bytes . . . . . . . . . . . . . . . . . . . . . 47

3.12 Directory Count by Contained Subdirectories . . . . . . . . . . . . . . . . 48

3.13 File Count by Namespace Depth . . . . . . . . . . . . . . . . . . . . . . . 50

3.14 Total Bytes by Namespace Depth . . . . . . . . . . . . . . . . . . . . . . . 51

3.15 Directory Count by Namespace Depth . . . . . . . . . . . . . . . . . . . . 52

4.1 File Count and Disk Usage by File Size . . . . . . . . . . . . . . . . . . . 61

4.2 File Count and Disk Usage by File Age . . . . . . . . . . . . . . . . . . . 62

4.3 File Count and Disk Usage by File Type . . . . . . . . . . . . . . . . . . . 63

4.4 Disk Usage by Modification Time . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Volume Fullness (First Study) . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Volume Fullness (Second Study) . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 File Size Profile (First Study) . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 File Size Profile (Second Study) . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Modification Time Profile (First Study) . . . . . . . . . . . . . . . . . . . 72

4.10 Modification Time Profile (Second Study) . . . . . . . . . . . . . . . . . . 72

4.11 Solution Files Modification Time Profile (First Study) . . . . . . . . . . . 74

4.12 Solution Files Modification Time Profile (Second Study) . . . . . . . . . . 74

ix



x LIST OF FIGURES

5.1 File Count and Total Bytes by Number of CPU Cores . . . . . . . . . . . 89

5.2 File Count and Total Bytes by Wall Time . . . . . . . . . . . . . . . . . . 89

5.3 File Count and Total Bytes by Recorded CPU Time . . . . . . . . . . . . 90

5.4 File Count and Total Bytes by Calculated CPU Time . . . . . . . . . . . 92

5.5 File Count and Total Bytes by Number of Iterations . . . . . . . . . . . . 92

5.6 File Count and Total Bytes by Angle of Attack . . . . . . . . . . . . . . . 94

5.7 File Count and Total Bytes by Mach Number . . . . . . . . . . . . . . . . 94

5.8 File Count and Total Bytes by Lift Coefficient . . . . . . . . . . . . . . . 95



List of Tables

3.1 Summary of Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Availability of Additional Metadata Attributes . . . . . . . . . . . . . . . 86

xi





Declaration of Authorship

I, Jonathan Owen, declare that the thesis entitled “Data Management in Engineering

Design”, and the work presented in the thesis are both my own, and have been generated

by me as the result of my own original research. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree

at this University;

• Where any part of this thesis has been previously submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• Where I have consulted the published work of others, this is always clearly at-

tributed;

• Where I have quoted the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have made

clear what was done by others and what I have contributed myself;

• Parts of this work have been published by the author, as listed in Section 1.5.

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiii





Acknowledgements

I would like to thank Airbus for their help in making this research possible, for their

funding, and for their many insights into the realities of industrial high performance

computing and aerospace engineering design. Particular thanks to the team with which

I had the pleasure of spending my placement years, for their strong support and excellent

humour throughout my time at Airbus.

Many thanks also to my friends and family, for supporting my throughout my studies

and for helping me to keep things in perspective during the many challenges. I count

myself very fortunate to have such a wonderful family and such amazing friends.

Finally, special thanks to my supervisor, Prof. Simon J. Cox, without whom I never

would have finished. Thank you for your endless support, enduring wisdom, and for

inexplicably managing to always have the best answer to every question, and the most

helpful solution to every problem. Most of all, thank you for continuing to motivate me

through the difficult times, and especially during the final push towards completion.

xv





Chapter 1

Introduction

The engineering design process involves the production of large volumes of data, for

example through computational fluid dynamics, stress analysis and laboratory exper-

iments. These data must be stored and managed across multinational infrastructures

and organisations. Little is known about the meaning, purpose or value of much of

this data, yet intuitively these are precisely the factors that should be considered when

making data management decisions. With ever more rapid growth in data production,

there is a real and pressing need for new data management techniques.

The research in this thesis is focused on the valuable metadata that exists within engi-

neering file systems, and how it can be used. Emphasis is placed on the development of

effective data management methods and tools; on delivering practical benefits to Airbus

(the sponsor), especially in purging unwanted data from existing file systems; and on

the consideration of engineering design in the wider context of high performance com-

puting (HPC). This chapter states the specific objectives for this research programme,

and explains the structure of the remainder of the thesis.

1



2 Chapter 1 Introduction

1.1 Focus of Thesis

“The research in this thesis is focused on the valuable metadata that exists within engi-

neering file systems, and how it can be used.”

1.2 Objectives

The specific objectives of this thesis may be stated as follows:

1. Examine large scale HPC data from industrial engineering design and compare

and contrast with other data from HPC environments.

2. Identify metadata trends and characteristics that may be used to improve data

management practices, particularly data cleaning.

3. Research practical data cleaning methodologies on real engineering file systems at

Airbus, maximising savings in disk space whilst retaining all required data.

4. Identify and extract additional metadata from engineering file systems, using novel

sources to learn more about the file content, purpose and value.

5. Make recommendations regarding future data storage and management practices

to Airbus (the sponsor) and to other practitioners in the field.

1.3 Structure of Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Background - This chapter describes the industrial engineering context

in which the research in this thesis was completed, and reviews related work from

the field of data management.

Chapter 3: File System Metadata - A study into file system metadata from HPC

systems at Airbus, which compares and contrasts with several other environments

and identifies trends and characteristics to support improved data management

practices.

Chapter 4: Practical Data Cleaning - A report on two highly successful data clean-

ing exercises carried out at Airbus, detailing the development of the methodology,

the substantial disk space savings achieved, and the sustainability of the method.



Chapter 1 Introduction 3

Chapter 5: Additional Metadata - A study into the extraction of additional meta-

data from secondary sources such as file names and log files, the availability of

such metadata and the usefulness of this information for data management.

Chapter 6: Discussion - A discussion of some of the topics covered thus far, the

applicability of the work to other fields, and the ways in which data management

methods could be improved.

Chapter 7: Conclusions - A summary of the overall conclusions, and an explanation

of how the work conducted in this thesis meets the stated objectives.

1.4 Research Results, Novelty and Sponsor Value

As an engineering doctorate (EngD) research programme, the work was undertaken

whilst working closely with Airbus, the sponsoring organisation. From an academic

perspective, the novel aspects were the exploration and comparison of a real industrial

engineering, considering the characteristics of data and metadata and comparing these

with other environments (chapter 3); and the extraction of aerodynamic and other tech-

nical metadata from log files, coupled with the association of these metadata with larger

solution files. This approach provides an effective way to better describe significant

volumes of data (chapter 5).

In addition, it was very important that the research delivered practical results and

benefits to Airbus. Significant improvements were implemented in the management

of computational fluid dynamics (CFD) data, particularly in the targeted cleaning of

unwanted intermediate results, which led to substantial cost and space savings (chapter

4). Recommendations were also made regarding the capture of additional metadata,

which may further improve data management in the future (chapter 5).

Perhaps the most valuable output of this research for Airbus is the internal Python

program (pDisk) that was written to extract and analyse file system metadata, and to

indicate which files could potentially be deleted to save disk space. This tool may be

used as often as necessary to purge unwanted files without affecting ongoing project

work, and may be able to extend the life of existing storage systems by up to five years.

Furthermore, it has been realised that the financial value of the disk space savings made

have already exceeded the total cost of this entire research programme!



4 Chapter 1 Introduction

1.5 Publications

The following work in this thesis has been published:

• Jonathan D. Owen and Simon J. Cox. File System Metadata in Engineering

Design. Technical Report D15017455, Airbus and University of Southampton,

2015 [62]. (Chapter 3: File System Metadata).

• Jonathan D. Owen. Data Cleaning in Engineering Design. Presentation to peers

and stakeholders at the July 2013 Airbus UK EngD Workshop. Awarded Best

Presentation. (Chapter 4: Practical Data Cleaning).

• Jonathan D. Owen and Simon J. Cox. Practical Data Cleaning. Technical Re-

port ME1448107, Airbus and University of Southampton, 2014 [61]. (Chapter 4:

Practical Data Cleaning).

• Jonathan D. Owen and Simon J. Cox. Additional Metadata. Technical Report

ME1448106, Airbus and University of Southampton, 2014 [60]. (Chapter 5: Addi-

tional Metadata).



Chapter 2

Background

This thesis considers a number of aspects of data management, primarily within the

context of high performance computing (HPC) for aerodynamic engineering design at

Airbus. Data management, HPC, and engineering design are all broad fields, encom-

passing many disciplines. This chapter provides a brief summary of the aspects of each

of these fields that relate to the studies, findings and discussions of the remainder of the

thesis. It also describes some of the background context and some of the prior work that

led to the commencement of this research programme.

5



6 Chapter 2 Background

2.1 Data Management

The management of data is a broad field, encompassing many disciplines across many

vastly different environments. Broadly speaking, data management is an administra-

tive process through which data are gathered, stored, protected, catalogued and shared,

throughout a natural data lifecycle after which the data are archived or deleted. The

details of the many data management processes vary in order to meet the needs of

end-users and data requirements. These data requirements may include important spec-

ifications such as those detailing the security, accessibility, and retention of the data.

This section provides a brief overview of the aspects of data management that are most

relevant to the discussions in this thesis.

2.1.1 Data Lifecycle

There are many ways to describe the various stages through which data moves through-

out its lifetime. Data lifecycles provide a “structure for considering the many operations

that will need to be performed on a data record throughout its life” [13]. Figure 2.1 shows

a simple and generic example of a data lifecycle. For a given context, it is possible to

map specific activities to the various stages in this lifecycle. For example, in the context

of the engineering design process (explained in detail in section 2.3), creating a new

computer aided design (CAD) model would be a data creation step. The aerodynamic

properties of this model are then analysed, thereby creating new results files, and the

model and the output results are then stored. After repeating these steps for a variety

of designs, a user will retrieve the results for many models and make a design decision.

Once results are no longer the subject of ongoing analysis, they can be archived. Finally,

if and when files are no longer required at all, they can be deleted.

The model in figure 2.1 decsribes the basic common characteristics. Ultimately, files will

always be created, analysed and stored; will generally need to be searched and retrieved;

must be preserved for some length of time; and will then be archived and potentially

disposed of if and when they cease to be relevant or required. However, the particular

choice of data lifecycle model and the resulting processes by which data are managed will

greatly depend on the needs of the users interacting with the data. For example, in the

academic community, there is a strong need to share data between many organisations

using different software packages. This presents “unique challenges for preservation,

including variety and complexity of file formats, as well as sheer volume, which con-

tinues to increase rapidly” [19]. This means that it is also necessary to preserve the

software responsible for data analysis, as well as the more commonly expected informa-

tion regarding provenance, structure and description. This results in correspondingly

increased complexity in the storage of data sets, which must now reference the tools,

software versions, algorithms, etc., that are necessary to make effective use of the data.



Chapter 2 Background 7

	  

Create

Analyse

Store

Retrieve

Archive

Delete

Data Lifecycle 

Figure 2.1: A generic data lifecycle. Not all data will be handled the same way, but
they will broadly be subjected to this type of lifecycle. One notable exception would be
particularly critical files that may be archived indefinitely rather than being deleted.

In a given industrial organisation, there is likely to be much less variety in the software

tools tools associated with the production and analysis of a data set. However, it is still

important to take note of the data provenance, particularly in terms of software versions,

which may lead to substantially different data analysis as algorithms are improved or

replaced within a software package over time. Some similar considerations to those in

academia are thus necessary, despite the differences in context, environment and purpose.

Amidst a huge volume of seemingly similar data it can be very difficult to identify the

correct data needed to inform decision-making operations. In industry, where an organ-

isation may perform a similar type of analysis on the same product under a wide variety

of conditions, data search and retrieval can thus be a key issue. As a result of the rapid

growth of data generation in recent years, engineers reportedly spend “50 percent or more

of their time looking for the information they need to do their jobs” [71]. With this in

mind, it is hardly surprising that effective data management can lead to significantly

increased productivity and corresponding cost savings. Enterprise data management

aims address such issues by linking data management, process management and context

management, and by working collaboratively across various disciplines throughout the

lifecycle of the products with which data are related [71].



8 Chapter 2 Background

Also related to data search and retrieval are Electronic Document Management Systems

(EDMS/EDS) and Product Data Management (PDM) systems. EDMS typically use

a database to store all information about users, rights, accessibility, as well as infor-

mation about the data. The data are stored separately, with users performing search

and retrieval through the database, which can perform rights and access management

before linking users to the appropriate data. PDM systems may take this concept fur-

ther by integrating with applications, providing previews, and allowing finer-granularity

version tracking. For example, in CAD environments this may mean linking changes to

the specific parts that were modified [15]. Such systems are helpful in large organisa-

tions, although complexity is increased rapidly when multi-disciplinary collaboration is

required, as the needs to different user groups may vary considerably.

For large-scale scientific data management in general, a capability maturity model has

also been proposed, with a view to aiding “organisations in evaluating and planning

improvements to their [scientific data management] practices” [20]. The proposed model

considers five levels of maturity, from a reliance on individual performance and intuition

through to an optimized, managed and measured data management system. It also

identifies many key processes for effective data management, and breaks down high level

areas such as “data description and representation” into more specific practices that

should be considered. This is particularly helpful for industrial organisations, where

data can easily be viewed as a by-product of the main activities, rather than as a

valuable asset with serious needs for sharing and preservation.

2.1.2 Users and Administrators

Depending on the parent organisation, the type of user responsible for particular data

management processes may change throughout the data lifecycle. Expanding on the pre-

vious example, the creation, analysis and storage steps may be undertaken by application

users working on CAD designs or computational fluid dynamics (CFD) solvers. Data

search and retrieval may be executed by the same type of application user, or possibly

by a data auditor looking to understand the justification behind certain design decisions.

Lastly, data may be archived or deleted by administrators or management personnel,

or this responsibility may be devolved to the original application users. In addition,

the actual storage systems will be managed by a group of IT technicians, although IT

systems and their management are often outsourced and provided as a service.

In this thesis, we consider a context where a typical application user has an engineering

role and an assumed responsibility for managing their own data. An administrator will

provide some guidance and information regarding best practice, but the user must act

on this information in managing their data. The administrator also has a view of the

system as a whole, and is responsible for capacity planning and ensuring that sufficient

space is available on existing storage systems for users to carry out their work. This is



Chapter 2 Background 9

usually done by either ensuring that users carry out their own data management, and

reminding particular users when quotas or limits are reached; or by organising larger

and more systematic cleaning exercises. The interactions between these application users

and administrators, while generally beyond the scope of this thesis, are very interesting,

as there can be a delicate balance between collaboration and confrontation.

Users often have a good view of what data is worth preserving, and what could be

removed. For example, data generated as part of staff training may be of no long-

term value whatsoever, but to a third party may appear identical to highly valuable

data. Another user behaviour worth considering is the copying of data to ensure that

a “clean” original is always available, which can quickly become very wasteful when

applied to large data sets. Copied data could potentially be tagged as such, in order to

simplify redundant data disposal and to assess the usage of storage resources.

2.1.3 Metadata

Metadata can be simply described as “data about data” or “information about infor-

mation”. It can be described in more detail as “structured information that describes,

explains, locates, or otherwise makes it easier to retrieve, use, or manage an information

resource” [57]. This is a very broad definition, and there are many ways to describe data.

In addition to general descriptive terms, there may also be many context-dependent fields

that could be used for particular environments. As such, metadata plays a vital role in

many computing applications, including databases and Internet search engines [87].

A simple example of metadata is that of songs in a music collection. Each track can

be tagged with various fields to help classify and describe the song, such as the artist,

album and year. These fields can be left blank if not applicable, and are not required in

order to play the track. However, they may be very helpful to a user in trying to find

a specific song in a large collection. Media library applications such as iTunes [11] and

Windows Media Player [52] make extensive use of the available metadata in music files

to provide search and sorting functionality for end-users.

Another example is the metadata used in digital photography. Digital cameras store

extensive information about the settings used to create an image, such as the shutter

speed, aperture size and ISO. This is commonly achieved using the exchangeable image

file format (Exif), which combines existing file formats with specific metadata tags [75].

They may also apply information about the make and model of the camera and lens

used, as well as information about the owner of the camera. Using GPS, it is also

possible to store the location from which the image was taken. None of these metadata

fields are required to view the image, but the additional information may be used to

enhance search and retrieval from a larger collection, as implemented in photography

software such as Aperture [9] and Lightroom [1].



10 Chapter 2 Background

There are several ways in which metadata can be categorised. A simple view is that

metadata can be either “technical metadata” or “business metadata” [37], which essen-

tially divides the information into that which is useful to technicians and that which is

useful to a typical end user. An alternative view illustrates “descriptive metadata” for

discovery and identification, “structural metadata” for creating compound objects, and

“administrative metadata” for managing a particular resource [57].

Metadata is also used in commercial and industrial environments. In some cases there is a

substantial gap between technical metadata and business metadata. Technical metadata

is important for design, development and maintenance of data resources, while business

metadata is useful to the end-users in understanding the business context of data [37].

In contexts that are intrinsically very technical, such as engineering, it may be somewhat

more difficult to distinguish between technical and business metadata. However, it is

worth noting that different perspectives call for different information, as this has a strong

impact on the metadata requirements.

As mentioned previously, it is very important to record the provenance of data. This

could include metadata such as the author, the project for which the data was generated,

and details of the context or circumstances for which the data set is valid. It could

also include details such as the software and version used for creation, the particular

configuration or settings applied in this process, and in the case of HPC data, details

of the hardware on which the parent HPC job was run. Fields describing this type of

provenance metadata are very useful for identifying data, thereby enhancing search and

retrieval, but can also aid any future analysis by ensuring conditions are suitably similar

for data sets to be comparable.

Technical metadata may also specify requirements for security, storage, and backup

procedures. In the simplest sense, the size of a file indicates how much storage space is

required if this file is to be moved; and in the case of particularly large single files, whether

the destination file system is able to support files of this size. However, more detailed

administrative metadata may support more complex requirements. For example, some

data may be particularly sensitive and restricted to access by a particular set of users. In

the aerospace industry, any certification data must be preserved for the entire service life

of the aircraft, thus storage requirements and backup procedures are often much stricter

for this type of data than for design data. This again relates to data provenance, and

shows how data management can be significantly affected by purpose and context.

Overall, there are many types of metadata, and different information can be useful for

different purposes. Some fields may be specific to one particular application, while others

may be useful for many purposes. One of the key challenges in metadata management

is the identification of useful metadata, as it can be difficult to anticipate the needs of

future processes and applications, and therefore to supply the required information.



Chapter 2 Background 11

2.1.4 File Systems

File systems are responsible for the persistent storage of data, and enable basic func-

tions such as search, create, read, update and delete (sometimes referred to as SCRUD)

[48]. These functions cover the most basic needs of the end-users, and more complex

operations can be built on top, either directly in the operating system or as part of

applications or separate utilities. Files are often stored in a hierarchical structure, using

directories or folders to organise files and subdirectories. Many file systems also imple-

ment journaling, where changes are recorded before being committed, enabling “fast file

system recovery after a crash” [66], thereby avoiding data loss in the event of a failure.

Although not necessarily the best option for every circumstance, general purpose file sys-

tems are applicable to a wide variety of environments, from desktops to mobile devices,

and removable media to web servers. Storage can also be accessed over a network using

a distributed file system protocol such as Network File System (NFS). However, more

specialised file systems are often more appropriate in high-performance environments,

where they must be able to deal with vastly increased throughput, concurrency and

scalability. In HPC systems, these requirements are often met through the utilisation of

parallel and distributed cluster file systems such as Lustre [43], Ceph [85] and GFS [31].

File systems typically store some basic metadata for each file, including the file size,

last access time, last modification time, owner ID, and so on. These metadata are

stored in the inode, but notably the name of a file is instead stored in the directory that

contains it [14]. Many file systems, including NTFS (Microsoft Windows), HFS+ (OSX)

and ext2, ext3, ext4 (Linux), also provide some support for the storage of additional or

extended attributes, although these are not supported by the NFS protocol [7]. Extended

attributes are user or application defined, and can be used to store information such as

the name of an author, or the size or resolution of an image. This type of metadata can

either be stored in file forks, which provide storage for “additional content in separate

data areas alongside the file content” [69], or as additional file attributes in the inode,

depending on the file system.

It has been argued that “users needs more effective ways of organising and searching

their data” [74]; that the hierarchical namespace was invented decades ago and is no

longer adequate in managing files today” [45]; and that the “simple hierarchical model

has outlasted its usefulness” [70]. To this effect, there has been a great deal of work

in alternative ways to organise files, and to improve data access, search and retrieval.

Semantic file systems were proposed to provide flexible associative access to the system’s

contents by automatically extracting attributes from files with file type specific trans-

ducers” [32], and organise files by properties such as author, date, subject, etc. [56].

However, this approach still relies on extracting useful information from files, and users

can be understandably reluctant to relinquish control of the organisation of their data.



12 Chapter 2 Background

2.1.5 Search Applications

As already discussed, one of the key challenges in data management is the search for de-

sired data. Most operatings systems, provide a search feature to help locate specific files

based on given criteria, including Windows (Windows Search) [54] and OSX (Spotlight)

[8]. These search tools index files based on their names; by their content, for certain file

types where this is possible, sometimes supporting custom metadata import plugins for

extending functionality to proprietary formats [8]; and by any other recognised forms of

metadata, such as Exif metadata for photographs, and tags for audio files.

Search tools such as Windows Search and Spotlight can be greatly beneficial to users

searching for data. Indexing files allows for significant performance improvements com-

pared to non-indexed, brute-force searches for data. Building additional features on

top of a hierarchical file system provides familiarity to users, who may chose to access

their data in whatever way best suits their needs. The extended use of a hierarchical

system also means that there are no issues with backwards compatibility, and legacy

applications can continue to function as normal.

In addition to the content and attribute based functionality implemented by many search

applications, data search can be improved by considering the context in which a file

was created, including “other concurrently accessed files, the user’s current task, ...

any actions or data that the user associates with the file’s use.” [74]. In a world of

increasingly mobile computation, this can also correspond to physical location in the

real world [34]. Context-enhanced search has been shown to notably improve search

effectiveness for only modest increases in query and indexing times [74].

It has been recognised that “the efficiency of content-based search heavily depends on files

that contain explicitly understandable contents” [35]. In desktop environments, where

documents and other files often adhere to key file types that can be easily analysed,

this causes no major problems. On the other hand, this is a major limitation for the

organisation of proprietary data formats and large binary objects that cannot be easily

analysed or understood. In the industrial engineering context considered in this thesis,

such files are commonplace, thus data search is a particular challenge and any sources of

descriptive metadata are particularly valuable. To this effect, consideration of metadata

produced by applications has been strongly recommended [29].

Furthermore, it has also been observed that understandably, most users are unwilling to

perform the difficult and time-consuming task of manually assigning attributes to their

files” [74]. It follows that there are issues with the effective application of semantic file

systems or advanced content-based and attribute-based search systems to large volumes

of existing data. This thesis considers content and context analysis in a specific industrial

engineering environment in chapter 5, with a view to improving search effectiveness

through improved data description.



Chapter 2 Background 13

Many engineering environments make use of product data management (PDM) systems.

However, these existing systems are often specific to individual departments or contexts,

and greatly limit multi-disciplinary collaboration due to the lack of data sharing. With

this in mind, it has been argued that “fields such as computer-aided engineering and

design... are predestined for applying the semantic file system” [26]. Such environments

are also well-suited to the capture of additional metadata upon data creation, and it has

been noted that “it is useful to know how... [data] is generated” in order to properly

interpret scientific results [40]. The integration of such systems in a collaborative and

multi-discplinary manner may lead to substantially improved productivity in the future,

but is unlikely to deal with any of the challenges associated with managing large volumes

of existing data, hence the focus of this thesis on the latter.

2.1.6 Tiered Storage

There are many different types of persistent storage, including tape drives, disk drives,

and solid state drives, each with their own cost, performance and security characteristics.

In addition, the inclusion of RAID provides many possible configurations for trading off

redundancy and performance in arrays of these drives. Furthermore, there are many

options for the external backup of data. It follows that there are many possible ways

to store data physically, and that each has a corresponding cost and performance. The

best choice of storage depends very much on the environment and on the particular data

in question, and may change throughout the lifecycle of the data.

Tiered storage allows multiple types of storage to be transparently amalgamated into a

larger storage system. This combines the benefits of each storage type while minimising

the cost. For example, frequently accessed data may be stored on a fast but expen-

sive solid-state drive, while less frequently accessed data could be moved to a slower

but cheaper disk drive. This concept has been recently implemented by Apple in the

Fusion Drive [10], but also has commercial and industrial applications. The automated

management of data between multiple storage ideas typically relies on data access pat-

terns and requirements [44]. However, it could potentially be based on other aspects

of the data lifecycle and made more cognizant of the nature and characteristics of the

data being managed. This would enable the implementation of more sophisticated data

management policies.



14 Chapter 2 Background

2.1.7 Object-Based Storage

Permanent storage devices used similar block-based interfaces for many years, but more

recently started to become something of a performance bottleneck. Object-based storage

combines the benefits of file access and block-access. Like blocks, storage objects can be

accessed directly on a storage device, thereby offering the excellent performance of block-

based access. However, they can also be accessed through a more file-like interface, for

easy accessibility from multiple platforms [49]. This combination of high performance

and easy accessibility is extremely valuable, particularly in HPC environments. As such,

object storage devices (OSD) are used in many high performance environments, and are

implemented in the Lustre [43] and Panasas [63] parallel file systems, both of which are

very common in HPC environments [79].

Object-based storage systems offload storage management operations from the file sys-

tem to object storage devices, allowing the storage device to take care of internal space

management. This separates user components such as presenting logical data structures

from the storage components that map the data to physical storage. Moreover, the

physical storage does matter to the OSD, which simply defines an alternative interface

between the file system and storage [49]. With this in mind, object-based storage could

be linked with tiered storage to combine high-performance and very large scale longer-

term storage, with automated movement of data between storage media as necessary.

An alterative solution is the automated management of data replication [84], which can

improve performance and help to protect against the inevitable failures experienced by

large storage systems.

The architecture of object-based storage systems provides significantly improved scala-

bility. Data stored on OSDs, and can be accessed directly by clients, providing excellent

performance. Metadata, attributes, and queries are handled separately by object man-

agers, which grant capabilities to clients, ensuring vastly improved security when com-

pared with storage area networks (SAN) [49]. Decoupling the metadata and data paths,

and allowing direct access to storage devices eliminates the performance bottlenecks

and provides the scalability required for high performance environments. Moreover, this

performance can be combined with a scalable, semantic namespace to provide the type

of semantic navigation, virtual directories, and search capabilities offered by semantic

file systems [40].



Chapter 2 Background 15

2.2 High Performance Computing

Parallel and distributed computing has been the source of many breakthroughs, es-

pecially in scientific and engineering computing where compute power is a common

limitation for research and development. Advances in parallel in distributed algorithms,

coupled with the increased availability and affordability of HPC solutions, have greatly

increased HPC usage in many environments.

2.2.1 Clusters, Commoditisation and Services

A common way to implement high performance computing is through compute clusters,

where many individual compute nodes are linked together. Each node may contain

several compute cores, and the system is interconnected using a high speed interconnect

such as InfiniBand. Compute power can be increased by adding compute nodes, or larger

facilities can be developed by linking multiple clusters. Work is shared across many-core

compute clusters using parallel and distributed algorithms, often based on technologies

such as Message Passing Interface (MPI).

Supercomputers have traditionally been highly specialised, often relying on many be-

spoke components. However, in recent years there has been a shift towards using com-

modity components where possible, such as CPUs, RAM and other key parts. Careful

design is still needed to balance the huge power and thermal requirements, but off-the-

shelf components have greatly improved the affordability of HPC systems. The mod-

ularisation of clusters has also enabled much easier expansion of HPC systems, again

increasing the usage of HPC systems.

Another key factor that has increased the availability of HPC systems is the service-

based model. Instead of purchasing the HPC hardware, companies can now lease com-

plete systems, essentially outsourcing the configuration and management. There are

many business cases where this is a very appealing proposition, due to the fixed costs,

reduced maintenance, and increased business flexibility. The service model also helps

organisations to focus on their value-added activities and get on with work, rather than

requiring significant expertise in HPC systems and maintenance.

2.2.2 The Cloud

Cloud-based computing is an HPC model where compute power can be acquired as

needed from large cloud computing providers such as Windows Azure [51] and Amazon

Elastic Compute Cloud (Amazon EC2) [4]. A particular advantage of this approach

is that it eliminates the need for companies to purchase and maintain expensive high

performance compute clusters. Although many high performance computing systems



16 Chapter 2 Background

can be rented as long-term solutions, cloud-based computing enables instant scaling

based on the workload and the number of cores required. This responsiveness to change

can be extremely beneficial where the workload is highly variable.

In terms of data storage, cloud storage can be purchased on a similar pro rata basis

to cloud computing. This model is greatly appealing to many industries, including en-

gineering design. A cloud computing and storage provider will be able to focus their

attention on delivering maximum performance for end-users, and to balance the huge

investments in resources and infrastructure between many customers. Outsourcing stor-

age and high performance computing to the cloud can thus provide clear benefits simply

through economies of scale, and consumers need only pay for the services that they

actually need.

However, there are a number of challenges that inhibit the adoption of cloud computing

over alternative high performance computing methods. One of the key issues relates

to network performance and accessibility. In the context of continuous globalisation

in many industries, the centralisation of storage and computing through a cloud-based

provider requires a significant networking infrastructure to allow data to flow to and from

the cloud. Many organisations have a substantial internal networking infrastructure, but

relatively small external networking capabilities, since the majority of network traffic is

internal. Moving resources to the cloud would alter this underlying assumption and thus

require the enhancement of existing external networking capabilities.

The relocation of computing and storage to the cloud presents further issues in transna-

tional and global organisations due to the often highly distributed nature of existing

resources. Consolidating high performance computing in the cloud inherently requires

centralisation, which will induce varying networking latencies and bandwidth limitations

for different sites simply due to the geographic separation. The possible locations for

centralisation will be limited by the availability of cloud vendors, and the performance

costs of data transfer under these conditions may be prohibitive.

Perhaps more significant are the security and legal implications of cloud computing for

the engineering industry. The transfer of data across external networks and the sharing

of confidential and potentially sensitive data with external parties are serious concerns.

While the economies of scale from cloud vendors are greatly appealing, the security and

privacy of company data is paramount. Unless significant efforts are made to maintain

confidentiality and security at every stage of data computation and transfer, cloud-based

solutions will not be viable for many organisations.

The challenges facing cloud-based solutions for the engineering industry may be over-

come in time. However, it is clear that the current technical, security and legal implica-

tions are critical factors that inhibit the cloud as a viable high performance computing

and storage solution for engineering.



Chapter 2 Background 17

2.3 Industrial Engineering Design

Industrial engineering design is a very broad field, incorporating a large number of

companies and organisations, each of which may possess certain unique qualities and

present different challenges. The work described throughout this thesis was undertaken

within one specific department in one particular leading aerospace engineering company:

Airbus. It follows that some of the challenges faced in this environment may not be

applicable elsewhere. However, the work was carried out in recognition of the wider

context and in an abstract manner wherever possible.

2.3.1 Engineering Design

The nature of the work undertaken on any system will determine the nature of the data

that are created. Engineering design is a very methodical process, with much of the

work focusing on refining a particular product or design. This will involve incremental

changes to a base design, followed by some analysis of the outcome, which will guide

further changes to the base design, and so on. A company will be working on a number

of active products, each of which will be made up of many smaller components. The

design process will be applied to both components and assemblies, and subjected to a

variety of constraints relating to financial limitations, marketing, and the existence and

availability of suitable manufacturing techniques.

Multidisciplinary optimisation techniques are required in order to reach the best overall

designs. There are typically multiple objectives, for example to minimise drag, maximise

lift and minimise weight, so the design process requires multiple types of analysis, such

as aerodynamic analysis, mass estimation and structural analysis. Each of these types

of analysis will affect not only the relative merit of each design, but also feed back into

the constraints. For example, an excellent design from an aerodynamic perspective may

be structurally weak, or a structurally strong design may be too heavy for purpose.

The multidisciplinary nature of engineering design thus significantly adds to the overall

complexity, and design optimisation is thus a very active field of research [30, 38].

In addition, there may be many dependencies between the analyses of different compo-

nents, for example where the same designs are used in multiple assemblies. This is a

very likely scenario for a large scale organisation working on multiple products, as parts

will be reused where possible in order to improve the manufacturing efficiency. However,

using the same parts in different assemblies will still require some analysis in order to

determine the applicability of the design to a new set of constraints, and computation

will certainly be required on final configurations for legal and certification reasons.



18 Chapter 2 Background

2.3.2 Computational Fluid Dynamics

The research presented in this thesis was undertaken within the context of aerodynam-

ics. Computational analysis in aerodynamics mostly comprises the computational fluid

dynamics (CFD) analysis of engineering components. This means examining how fluid

flows over a particular object. In the aerospace industry this fluid is most commonly air

[6], but the same basic process applies to water in the maritime industry, and indeed to

any situation where the flow of fluid over a solid body is of importance [18]. As such, the

research described in this thesis has implications for a number of environments across a

very broad industry.

After creating a new geometry file, commonly by making some changes to an existing file

in response to previous analysis, a mesh file is created to represent the geometry of the

object in the flow field. Meshes can vary greatly in fidelity, depending on the purpose

and requirements of the analysis, and in some cases multiple meshes may be generated

to meet multiple requirements or to check for any variation in the results. The mesh file

will then be used to generate a 3D flow solution for the given flow conditions, such as

Mach number (M), Reynolds number (Re), and the angle of incidence to the direction

of fluid flow (α). The flow solution can then be post-processed to extract the key forces,

such as lift and drag, or to produce a visualisation of the flow field. It is also common

to execute jobs for a wide range of flow conditions on a single geometry, in order to plot

a polar curve of the final results.

In addition to being executed for each new geometry, it may be desirable to perform the

analysis for different mesh fidelities. The different levels of detail correspond to different

stages in the design process, and result in the production of different volumes of data.

For example, at earlier stages in the design process, a low fidelity mesh may be adequate

to assess the approximate relative merit of a large number of designs, and the analysis

can be run again later at a higher fidelity when only a few designs remain. The final

designs can then be run at a very high fidelity in order to ensure safety, eliminate any

potential manufacturing issues, and to satisfy the many rigorous certification regulations

for the industry.

The files generated vary greatly in size throughout the different stages of the workflow.

For example, a 30 MB geometry file may lead to a 200 MB mesh file, each resulting flow

solution might be around 2 GB, a visualisation file could be about 100 MB, but the lift

and drag forces can be reduced to individual numbers. In addition, it is common for a

large number of very small log files to be created at each stage of the process. These log

files record important configuration information regarding computational parameters,

progress and status information for key stages in the job, and file paths to the relevant

input and output files. Files relating to a particular job are typically stored in the same

directory structure, but this is not guaranteed.



Chapter 2 Background 19

The overall job completion time can also vary greatly, from a matter of hours for simple

cases, to several weeks for more complex jobs. There is often an end-user desire for jobs

to be completed overnight, as this allows engineering analysis and decision to be made

during working hours while computational work is executed at night. The ability of

an HPC system to meet this desire depends on the size of the job, but is also heavily

impacted by scheduling. Engineering HPC systems often operate at more than 100%

capacity, meaning that there are more jobs that can be executed at any one time.

Scheduling these jobs in a fair and timely fashion is a complex problem beyond the

scope of this thesis, but it is clear that scheduling has a strong impact on the total time

to job completion.

2.3.3 Resources and Data

The key resources used in the engineering design process are people and HPC facilities.

Ultimately, people are responsible for making design decisions, implementing changes to

designs, and orchestrating the computational analysis of the designs. In contrast, HPC

is simply a tool to speed up the otherwise prohibitively complex calculations involved in

aerodynamic analysis. However, the use of HPC in engineering allows these calculations

to be carried out relatively quickly, thus greatly improving the ability of engineers to

analyse and visualise complex problems.

Any data created by an employee is especially valuable, since it should reflect the result

of careful deliberation and prudent decision making. Accurately recreating such data

can be very difficult, due to the human element to the decision making, and also very

costly in terms of the human time involved in deliberating and reproducing the data. In a

transient environment where users may change roles or leave the company entirely, these

issues become drastically more complex. It is thus desirable to retain all user-created

data indefinitely, wherever possible.

Data created by HPC systems is valuable because of the cost of providing HPC ser-

vices, and the computational resources that are required for data creation. However,

if the original inputs are still available, then intermediate HPC results can potentially

be regenerated from the original input files. Moreover, if the original output files are

also available, then the regenerated results can be validated against the original out-

puts. However, there are a number of important considerations regarding HPC data

regeneration, including the numerical accuracy; the impact of distributed algorithms

and the computing architecture; and the versioning of the relevant software packages.

Despite these difficulties, the retention and potential regeneration of intermediate HPC

data may be useful topics to examine in more depth.



20 Chapter 2 Background

2.3.4 Networking and Infrastructure

A large engineering organisation may have several compute clusters, internally connected

using a high speed interconnect such as InfiniBand, and externally connected using a

site backbone network such as 10 Gigabit Ethernet (10GigE). This backbone may also

support many departmental offices, each connecting tens or hundreds of workstations

over a more local network such as Gigabit Ethernet.

HPC nodes have some disk space for the temporary storage of input, intermediate and

output data, usually based on a high performance parallel file system architecture such

as Lustre, GPFS, or a similarly parallel or distributed file system. However, these storage

systems are very expensive, thus simpler Network File System (NFS) volumes may be

connected to the HPC systems via the site backbone network. This allows data to be

offloaded from the high performance storage systems upon completion, since performance

is less relevant for longer-term storage, resulting in a much more cost-effective solution.

Although some companies may have a single site architecture, many are geographically

distributed across multiple sites nationally, or even transnationally. In these cases,

the HPC systems may also be distributed amongst the discrete sites. Companies will

typically employ dedicated links between sites in order to share data, often using high

speed fibre optic networks in order to provide the maximum possible bandwidth, with

the internal architecture of each site otherwise similar to that already described.

Figure 2.2: An architecture diagram of the storage systems considered in this thesis.



Chapter 2 Background 21

Figure 2.2 shows an architecture diagram of the storage systems considered in this thesis,

and the way in which data is made accessible. Users connect to a Linux-based server

from their Windows-based desktop computers using SSH. The Linux server acts as an

NFS client, mounting all of the many NFS volumes into a logical hierarchy. The NFS

volumes contain many large disk drives, and use RAID to protect against hardware

failures. In addition, there is a tape-based backup service for all volumes except those

marked as “no-backup”.

2.3.5 Usage and Data Cleaning

In principle, the no-backup volumes exist as a temporary storage area for data to be

automatically copied into after generation by HPC jobs. Important data should then be

moved onto a volume that is backed up as soon as possible. However, when sufficient

storage space is not available on backed-up volumes, the tendency is for users to start

working purely on the no-backup volumes. This is an interesting human behaviour that

occurs in response to a lack of appropriate storage space, and an example of how users

tend to adapt to make use of whatever resources are available. Unfortunately this makes

it difficult to determine which files have been properly moved to backed-up volumes and

which have not. The management of this data thus becomes much more complicated,

as there is no way to explicitly determine which files can be removed. As mentioned

previously, this problem is greatly exacerbated when data owners change roles or leave

the company.

In desktop computing, the operating system often provides a utility for cleaning tem-

porary or commonly unwanted files. For example, the Windows Disk Cleanup Utility

[53] helps a user to clear disk space by deleting all files in the %temp% area, removing

all temporary internet files, emptying the recycle bin, and so on. This approach relies

on cleaning standard locations where temporary or unwanted files are commonly stored.

However, in the industrial HPC context considered in this thesis, it cannot be assumed

that all removable files will be stored in this way.

One way to manage this type of scratch storage in HPC environments is to simply purge

all old files older than a predefined threshold [58, 81]. However, this approach risks losing

valuable data if it has not yet been safely moved to longer-term storage. This is greatly

exacerbated when there is no space available on suitable longer-term storage systems. A

common alternative is to rely on a quota-based system, but this simply leaves any data

retention issues with the application users, and does not address problems with a lack

of available storage space on suitable systems. The management of scratch volumes in

an industrial context, and the timely deletion or retention of data to ensure sufficient

storage availability are thus key issues.



22 Chapter 2 Background

2.3.6 Transnational Proof-of-Concept

Previous work in transnational data management showed how commodity technologies

can be used to enable data search and retrieval, and how existing business applications

can be seamlessly integrated across a heterogeneous infrastructure [46]. This proof of

concept was developed to support a scenario requiring the collaboration of engineers

between two geographically separated sites, and continuing service in the event of a

failure at one of these locations.

A diagram of the architecture tiers conceived for the proof of concept is shown in figure

2.3. The isolation of the user interface, the services and the actual data allow for

modularity and flexibility in the deployment environment and the available resources.

For example, the illustrated services could be used from a variety of user interfaces,

which could be standalone, web-based, or integrated with other business applications.

Figure 2.3: Proof of Concept Architecture Tiers (Adapted from [46])



Chapter 2 Background 23

The physical infrastructure envisaged during the proof of concept is shown in figure 2.4.

This highlights the back-end communication between file servers, as well as the interface

integration with an existing business application, and the implementation of a common

web-based user interface.

The research described in this thesis began in response to this proof of concept. At

the time, the network performance and data management were proving to be significant

bottlenecks to the performance of the system as a whole. The initial objective was to

improve the overall performance of the system through improved data transfer and in-

telligent data caching. However, the network problems were soon eliminated through

minor upgrades to the infrastructure and small improvements to the way in which files

were transferred at the start of a new HPC job. The research thus shifted accordingly to

consider the improvements that could be made through better data management. This

also made it possible to focus on a single site, rather than the entire global supercom-

puting infrastructure, thereby eliminating any security or data access concerns that may

otherwise have been posed.

Figure 2.4: Proof of Concept Physical Infrastructure (Adapted from [46])



24 Chapter 2 Background

2.3.7 Key Challenges

As discussed throughout this chapter, there are many key challenges currently facing the

management of data in the context of industrial engineering design. These challenges

span several of the data management lifecycle steps described in section 2.1.1. The rate

at which data is produced in by HPC facilities running CFD applications means that it

can be difficult to ensure that there sufficient space to store new data in the longer-term

once it has been created and analysed. Mitigating this problem without adding excessive

storage capacity means facing the challenge of deleting data that is no longer required,

in order to make way for new data. It is thus necessary to balance the long-term need

to retain some data for certification purposes against the short-term storage capacity

needs.

A related issue pertains to the search and retrieval of specific data, for example when

revisiting earlier analysis or performing an audit to understand the justification behind

design decisions. Given the volume of data already stored, it can be difficult to dif-

ferentiate between data sets and identify the purpose and provenance of specific files.

Much of this desired information is known by application users, but is not capture and

stored with the actual data. This greatly complicates data search and retrieval when

the data creators are not available, or when they move on to new roles within or outside

the organisation. There is thus a challenge in capturing sufficient metadata to enable

meaningful data search within engineering data, whilst minimising the required human

effort in describing each file and collection. Again, this is a particularly prevalent issue

for existing data, where the original data owners may already be unavailable.

2.3.8 Limitations

One of the conditions placed on this research programme was that any additional load

placed on the Airbus file systems should be kept to a minimum, in order to avoid any

disruption to the on-going engineering activities. The suggested approach was to record

snapshots of the file system properties so that the majority of research and analysis

could be conduced off-line. It was also requested that the research utility developed

to explore and analyse these file systems be written in Python, and snapshot data be

stored using PyTables, so that all code could be easily reviewed before execution.

These measures were justifiably established in order to protect critical corporate systems.

However, they did mean precluding the use of live metadata registries and alternative

database systems like NoSQL. Although such technologies may have opened up some

interesting avenues for the research, there were no issues in meeting the research objec-

tives with those that were available. It is also important to note that the tools developed

were only research prototypes focused on data exploration, and that production imple-

mentations may still be able to use more advanced technologies to improve performance.



Chapter 3

File System Metadata

Significant metadata is stored within the index nodes of file systems, recording key file

attributes such as file size; last accessed, modified and changed times; and ownership

and permission information. This metadata provides valuable insight into the nature

of the data that is stored on such file systems, and is fundamental in maximising the

performance of file systems and data management tools.

Previous studies have examined file system metadata from a variety of environments,

such as desktops computers [2, 24, 50], national and academic high performance comput-

ing [21, 83], and file and web servers [68, 72, 77]. There are some differences in metadata

from different contexts, particularly regarding file types and access patterns, but there is

significant commonality in many aspects. Most notably it has been observed that most

files are very small, and disks are generally filled by a small number of very large files.

This chapter presents the findings of a study into the file system metadata of file sys-

tems supporting high performance computing facilities at Airbus, a leading aerospace

engineering company. The objectives for this study were to compare and contrast the

engineering industry with other HPC environments, and to identify any trends and char-

acteristics that may be used to improve data management practices. The methodology

used was very similar to that of prior studies, but no snapshot-based research into the

engineering design environment had previously been published.

It was found that there are many similarities between the Airbus data and the other

environments analysed, but there were also some notably unique characteristics. In

particular, the Airbus data exhibited substantially more pronounced clustering in the

file size distribution; a key file type was identified that accounted for 64.2% of the bytes

in just 0.99% of the files; and it was observed that data retention policies require files

to be kept for much longer than many other disciplines.

25



26 Chapter 3 File System Metadata

3.1 Introduction

The engineering design process involves the production of large volumes of data, for

example through computational fluid dynamics, stress analysis and laboratory experi-

ments. These data must be stored, shared and distributed across multinational infras-

tructures and organisations. Advances in parallel and distributed algorithms, improved

processing performance, and the growing commoditisation and increased accessibility

of high performance computing (HPC) have contributed to a steady rise in data pro-

duction. In contrast, the storage systems and networking infrastructure on which the

data must be stored and shared may often benefit from only relatively modest advance-

ments. As a result, storage and networking may often become bottlenecks in the overall

efficiency of high performance computing systems.

In corporate engineering environments, it is clear that efficient data management is

becoming increasingly critical. The effectiveness of any data management techniques

depends greatly on the requirements of the parent organisation and workflow, and on

the nature of the stored data. In this chapter we present the results of a study into

the characteristics of file system metadata at Airbus [3], a leading aerospace engineering

company. The Airbus environment examined here shares many similarities with the

aerospace industry in particular, but also the wider engineering sector, including the

maritime and motorsport industries where computational fluid dynamics (CFD) analysis

is used extensively. Previous work has already recognised that significant variation exists

in file system metadata from different environments [67], so we compare and contrast

results with external data from a desktop environment [2] and a variety of other HPC

systems [21].

This research was motivated by a need to make better use of existing storage resources.

The key goals were to explore how the context and environment are reflected in the file

system metadata, and to highlight any characteristics that could be used to improve data

management practices, especially in the cleaning of unwanted or redundant data. We

also aimed to find traits and features that could be used to describe the content, using

only the basic file system attributes. This additional goal is the subject of a separate

study into additional sources of metadata (see chapter 5), but some key observations

can be made from the characteristics analysed in this chapter .



Chapter 3 File System Metadata 27

3.2 Related Work

Previous work has examined file systems from a number of different environments, using

two key methodologies. Snapshot based studies record file properties at a particular

point in time, allowing the analysis of index node (inode) metadata characteristics, file

organisation and historic access patterns from a fixed perspective. This approach has

been used in the past to study desktop computers [2, 24, 33, 50] and high performance

computing (HPC) file systems [21, 83]. In contrast, trace-based studies consider requests

for data access, typically providing more insights into the file system workload and

performance. This methodology has also been used to study a variety of environments,

including desktops and servers [12, 67, 68, 72, 77], and commercial and engineering

sources [5, 41]. It has been noted that although there has been much research into

the characteristics of research and desktop environments, there has been much less into

large-scale corporate and industrial systems [41]. The latter has been the focus of this

study, but we draw comparisons with other environments as appropriate.

The actual methodology used in file system benchmarking has also been studied, noting

that the tremendous diversity in systems, optimisations and workloads necessitate mul-

tiple benchmarks [80], which can be hard to compare between different studies. There

has also been work into modelling file characteristics, particularly the file size distribu-

tion [25, 28, 55], although it seems clear that each file type will have a distinct file size

profile [55]. The organisation of files is also of interest [33], and despite the prevalence of

hierarchical file systems, it has been noted that this may not be the best solution [70].



28 Chapter 3 File System Metadata

3.3 Industrial Context

In contrast with many of the past studies into academic and desktop computers, we

examine industrial engineering data at a major aerospace engineering company. The

new results presented here were extracted from a single site at Airbus, a leading aircraft

manufacturer, specifically from a group of file systems supporting high performance

computing (HPC) for aerodynamics. The HPC system itself has ranked highly on the

TOP500 list for the past several years [79]. In addition to the aerodynamic work con-

sidered for this particular study, it is also used extensively for many other aspects of

the engineering design process. The file system volumes scanned are all UNIX NFS

volumes with fast network access to the main HPC systems, operating independently of

the internal HPC file system from which data is copied back upon job completion. As a

result of constant data production by the HPC systems, these volumes rapidly become

full, whereupon data must be archived or deleted, as appropriate. The snapshot analysis

was initially carried out specifically to support the development of new methods for this

type of data management.

Two main groups of volumes were scanned. In both cases, additional capacity has

been added continuously over the past decade in order to meet the ever-growing storage

requirements. The project volumes exist to store valuable project-specific data, and are

subjected to rigorous backup procedures. The projects referred to are high-level aircraft

programs like the A320 and A380 aircraft, and the volumes examined contain large sets

of pertinent aerodynamic data. The second group of file systems comprises a number

of volumes that are not backed up, and are made available as temporary storage for

disk-intensive work until more permanent storage can be provided on a project volume.

The workflow responsible for the production of the data stored on these volumes is the

aerodynamic analysis of engineering components and assemblies using computational

fluid dynamics (CFD). Much of the data will thus have been generated computationally

by CFD applications such as elsA [59] and Tau [23]. CFD is widely used across many

sectors of the engineering industry, and file system metadata from other engineering

environments using HPC to perform CFD are likely to exhibit similar characteristics to

those shown in the results section of this chapter. Further details of the aerodynamic

analysis workflow and of the network and infrastructure of the industrial file systems

studied can be found in chapter 2.



Chapter 3 File System Metadata 29

3.4 Methodology

This section describes the methodology applied through the data collection process, the

analysis of the results data, the processing of external data sources for comparison,

and the presentation of the combined results. It also outlines the limitations of this

methodology, particularly in terms of applicability to other environments.

3.4.1 Data Extraction

We wrote a simple Python program (pDisk) to recursively travel through a given di-

rectory tree from a specified path using the Python os.walk() method. This program

records all of the metadata associated with each file and directory within the tree. Re-

strictions were added to ensure that symbol links are ignored, and that mount points

are not crossed, thereby avoiding and problems in repeating records. The absolute files

paths and the Inode metadata for each file and directory, including file sizes and times-

tamps, are saved as a PyTables snapshot of that directory tree for a fixed point in time.

There are undoubtedly many other ways to accomplish these simple tasks. However,

this program was intended to be a more comprehensive internal tool for research and

data administration, allowing the implementation of more complex functionality and

integration with existing tools and services.

Each snapshot is a PyTables database containing a table for files and a separate table

for directories, supporting basic query functionality, which is then used extensively in

analysing the data. Unencrypted file paths were saved and examined as part of the

analysis, but all sensitive information has been encrypted or excluded from the presented

results. Custom queries can be made to the database, but the program also provides

a standard set of queries for producing summary histogram data (used to produce the

results of this study), and a summary of disk usage per user across all volumes. The only

input required for this automated analysis is a list of regular expressions defining known

file types. This list was produced manually using a combination of the raw data and

detailed knowledge of the workflow and applications responsible for data production. It

could be replaced with a different set of regular expressions if the program were to be

applied to a different environment or workflow.

The program was executed on a Linux server acting as an NFS client, upon which all

of the relevant NFS volumes were mounted. It was run once per volume for a range of

volumes that serve the HPC facilities for a single UK site at Airbus, focusing on those

responsible for the storage of aerodynamic data. Querying NFS volumes remotely in

this way is not as fast as running the same program on a local file system, but direct

access to the file systems was not available. Since the purpose was to simply capture

data to be analysed off-line, this was not a problem, but performance could certainly be

improved in the future by executing the scans on directly on the NFS server side.



30 Chapter 3 File System Metadata

The scans were completed over a one-week period in April 2013 at a variety of times

throughout the day, typically taking about two hours to finish, although some of the

larger volumes required much longer. The scan completion time was also recorded in

order to compensate for any short-term time-related effects that may have been incurred.

All time-related observations refer to the difference between the recorded timestamps

and the scan completion time.

Aerodynamic analysis is crucial to the engineering design process, and although there

are other fields that also make use of the HPC facilities, these non-aerodynamic systems

were not made accessible for data research. As such, the data presented here is a

representative sample of the aerodynamics systems, but only a proportion of the bigger

picture.

3.4.2 External Data Sources

In addition to the newly presented Airbus file system metadata, we draw direct compar-

isons to two existing snapshot studies. A previous study into the file system metadata

of Microsoft desktop computers [2] published a full set of raw data. This set was filtered

to exclude all but the most recent year of snapshots (2004), which were analysed in the

same way as the Airbus data. Furthermore, a study into HPC file system metadata

characteristics at a variety of HPC sites released summary histogram data [21], which

we have included where possible alongside the Airbus and Microsoft results. The file

systems examined were from the Arctic Region Supercomputing Center (ARSC) [81];

the Los Alamos National Laboratory (LANL) [42]; the National Energy Research Scien-

tific Computing Center (NERSC) [58]; the Parallel Data Laboratory (PDL) at Carnegie

Mellon University [16]; the Pacific Northwest National Laboratory (PNNL) [82]; and

the Pittsburgh Supercomputing Center (PSC) [17]. These HPC centres provide super-

computing facilities for a variety of scientific applications, unlike the Airbus systems

examined, which focus purely on aerodynamic analysis. The external data sets have

been included for comparison and contrast, and to help clarify the applicability of any

conclusions drawn to environments besides industrial engineering design. All exter-

nal data sets were obtained from the Storage Networking Industry Association (SNIA)

IOTTA repository [76].

A summary of the file systems analysed is shown in Table 3.1, including the Airbus,

Microsoft and the other HPC sites outlined previously. The columns indicate the stated

usage, total number of files, and total number of bytes considered in each sample. The

external data sets were grouped together by usage category (i.e. scratch, projects) for

each discrete site where multiple snapshots were available. Although the Airbus data

are generally subjected to unusually long retention requirements, the volumes scanned

are active volumes rather than archive storage, hence the comparisons have been made

with scratch and project data sets rather than with archival systems.



Chapter 3 File System Metadata 31

Table 3.1: Summary of analysed data sets, including Airbus, Microsoft, and a variety
of HPC file system snapshots from the SNIA IOTTA repository [76].

Sample Name Usage Files (M) Bytes (TB)

Airbus-Projects Projects 9.3 47.8

Airbus-NoBackup Scratch 17.0 84.7

Microsoft Desktops 1145.0 211.8

ARSC-Projects Projects 6.2 32.2

LANL-Scratch Scratch 7.4 64.3

NERSC-Projects Projects 20.5 107.5

PDL-Scratch Scratch 19.4 5.6

PNNL-Scratch Scratch 2.2 22.5

PSC-Scratch Scratch 2.5 36.0

3.4.3 Data Analysis and Presentation

The analysis of file systems supporting this type of industrial high performance comput-

ing may be of interest to a variety of audiences, including but not limited to:

• Developers of file systems, especially those targeting industry and high perfor-

mance computing.

• Software developers of system utilities, such as backup and cleaning tools.

• Managers responsible for storage capacity planning.

One of the key goals of this work was to compare and contrast the new results with

those from existing studies. Efforts were made to carry out the extraction and analysis

in a similar manner to the previous work in order to best highlight the similarities and

differences between the data sets.

The data are generally represented by a mixture of histograms and cumulative distri-

bution functions (CDFs), plotted as line graphs to maximise comparability and allow

the concurrent visualisation of multiple data sets. Histograms are plotted with each

bin represented as a single point (x, y), where x is the midpoint of the bin and y is

the size of the bin. Since much of the data spans a large range of non-negative values,

many of the graphs were plotted with a logarithmic horizontal axis, using an additional

zero abscissa where necessary. Furthermore, in order to improve comprehension of the

time-based graphs, the ticks on the x-axis correspond to powers-of-two (2 days, 4 days,

8 days, etc.) but the grid lines and axis labels correspond to more human-meaningful

time values (1 week, 1 month, 1 year, etc.).



32 Chapter 3 File System Metadata

The Airbus data sets are boldly shown in black, since these sets and their absolute and

relative characteristics are the primary focus of this thesis. The Microsoft trends are

similarly bold, but the remaining HPC results are much lighter, individually distinguish-

able by markers. This approach emphasises the similarities and differences between the

Airbus distributions and the others in general, for which detailed individual analysis has

already been completed.

3.4.4 Limitations

The Airbus data presented in this study are from storage volumes serving HPC facilities

in a large engineering organisation. The workloads responsible for data generation in

this context are highly repetitive, and the data characteristics are somewhat domain

specific. As previously explained (see section 3.3 for the industrial context), computa-

tional fluid dynamics (CFD) analysis (the dominant workload examined here) is widely

used in many engineering sectors. Although general observations may be applicable to

other environments, the specific conclusions drawn about these data sets may only be

applicable to similar engineering environments.

Another key limitation is the elapsed time between studies. Metadata characteristics

are constantly changing [2], and it has been observed that static workloads can be

considered unrealistic after only a few years [80]. It follows that direct comparisons

between different studies must be treated with caution. However, although several years

have elapsed between this study and those used for comparison, there are still some

meaningful observations that can be made.



Chapter 3 File System Metadata 33

3.5 Results and Discussion

This section considers the results obtained from the scans of Airbus file systems, and

where possible explains the underlying reasons behind the trends and distributions

shown. It also provides comparisons to other data sources, in order to consider the

new data in the wider context of existing file system data studies.

3.5.1 File Size

Figure 3.1 shows the histograms and CDFs for the distribution of file count by file size.

As observed by many other file system studies, it is very clear that most files are small.

All of the samples except for LANL-Scratch and PSC-Scratch show at least 95% of files

to be smaller than 8 MB, and all cases show at least 99% to be smaller than 128 MB.

The Microsoft and PDL-Scratch samples generally exhibit the highest proportion of very

small files, with 90% being smaller than 128 KB, while the Airbus samples appear to be

fairly typical of HPC data.

The histogram in particular shows that the Microsoft sample is very smooth, but all of

the HPC results demonstrate significant clustering around certain file sizes. Although

the peaks vary in location between samples, this is evidence of how the workload for

each HPC environment affects the file system metadata distributions. In cases where

the same workflow is run repeatedly over an extended period of time, the characteristics

of the files generated by this workflow will become progressively more pronounced, as

the same sorts of files will typically be produced for each run.

For example, in the Airbus case we know that the data was generated computationally

by CFD applications running an aerodynamic analysis workflow. It follows that the

peaks correspond to different types of files associated with the CFD workflow. These

include the input geometry; the mesh representing the geometry in the flow field; the

3D flow solution; the output summary files from post-processing, as well as any chosen

visualisations; any scripts used to execute the various stages of the workflow; and large

numbers of log files that are left behind after each stage. The peaks for other HPC

samples presumably correspond to similar characteristics of their respective workflows

and environments.

In contrast, the Microsoft sample does not exhibit these peaks. This is partly due to

the variety of potential uses and workloads for desktop computers, but also due to the

sheer size of the sample. These factors mask any such variation that might be present

in smaller subsets, thus hiding any peaks and yielding the smooth distribution shown.



34 Chapter 3 File System Metadata

0	   2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	  
0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

	  
	  

File	  size	  (bytes)	  

File	  count	  by	  file	  size	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoG	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

File	  size	  (bytes)	  

Cumula?ve	  file	  count	  by	  file	  size	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoN	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.1: Histograms (top) and CDFs (bottom) of file count by file size.



Chapter 3 File System Metadata 35

0	  2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	   128G	   1T	  
0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

	  
	  

File	  size	  (bytes)	  

Total	  bytes	  by	  file	  size	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoG	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	   128G	   1T	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

File	  size	  (bytes)	  

Cumula@ve	  total	  bytes	  by	  file	  size	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoN	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.2: Histograms (top) and CDFs (bottom) of total bytes by file size.



36 Chapter 3 File System Metadata

The clustering of files around certain file sizes is also very clear in figure 3.2, which shows

the distribution of total bytes by file size. However, the prominent peaks are different

to those in figure 3.1, and correspond to file sizes responsible for the greatest usage of

disk space, rather than just commonly occurring file sizes. The Airbus samples exhibit

the greatest proportion of total bytes appearing in the narrowest range of file sizes, with

the Airbus-NoBackup sample showing nearly 75% of all bytes contained in files between

1 GB and 8 GB. Although the range of Airbus file sizes falls within the bounds of the

other HPC results, this is a particularly strong cluster around a very small range of files

sizes. This indicates that the CFD workload responsible for data generation typically

produces output files of similar sizes. The actual files in this case correspond to the 3D

solution files generated through CFD analysis, as explained in chapter 2.

Compared with some of the other HPC results, the large files in the Airbus samples are

relatively small. In terms of the occupied disk space, the PNNL-Scratch in particular

shows a significant proportion of exceptionally large files, with 35% of the space occupied

by files larger than 32 GB. In contrast, the disk space in the Microsoft sample is mostly

occupied by relatively small files, with over 70% of the space accounted for by files

smaller than 128 MB. The latter will be most affected by the elapsed time between

studies, but even accounting for evolution with time, it is clear that there is a wide

range of trends corresponding to different environments and workloads. This is clearly

evident in figure 3.2, as the disk space is strongly affected by very large files.

3.5.2 Timestamps

The extracted metadata also included three timestamps: “atime”, “mtime” and “ctime”.

Unfortunately, the handling of these timestamps is dependent on the operating system,

thus the results must be treated with caution. It is also possible for attributes to be

overridden manually, typically for application-specific purposes. The results presented

here are given relative to the data snapshot scan time. Since files can still be accessed

after the scan execution, small negative values are included in the first bin (0 - 2 days).

For easier comprehension over a wide range of values, the tick marks on the x-axis

correspond to powers-of-two, while the grid lines and axis labels are placed at more

human-meaningful locations.

The “atime” attribute refers to the time a file was last accessed, so this is typically the

most recent of the three timestamps. However, it is common practice, and certainly the

case for the Airbus volumes, to use the “relatime” mount option in order to improve

performance. This option means that “atime” is only updated if more than a set time,

usually one day, has elapsed since the last recorded access time, and avoids each read

operations having to be accompanied by a write operation to update the “atime” value.

As such, the resolution of all of the time-based results is limited to two days, continuing

in powers-of-two thereafter.



Chapter 3 File System Metadata 37

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

	  
	  

Last	  access	  5me	  

File	  count	  by	  last	  access	  5me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoG	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  access	  7me	  

Cumula7ve	  file	  count	  by	  last	  access	  7me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoK	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.3: Histograms (top) and CDFs (bottom) of file count by access time. Note
that in order to improve comprehension over the large range of time values, the x-ticks
correspond to powers-of-two (2 days, 4 days, 8 days, etc.) but the grid lines and axis

labels correspond to more human-meaningful times (1 week, 1 month, 1 year, etc.).



38 Chapter 3 File System Metadata

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

	  
	  

Last	  access	  6me	  

Total	  bytes	  by	  last	  access	  6me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoG	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  access	  7me	  

Cumula7ve	  total	  bytes	  by	  last	  access	  7me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoI	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.4: Histograms (top) and CDFs (bottom) of total bytes by access time. See
the caption of figure 3.3 for an explanation of the x-axis ticks and grid lines.



Chapter 3 File System Metadata 39

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

	  
	  

Last	  modifica7on	  7me	  

File	  count	  by	  last	  modifica7on	  7me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoH	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  modifica9on	  9me	  

Cumula9ve	  file	  count	  by	  last	  modifica9on	  9me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoK	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.5: Histograms (top) and CDFs (bottom) of file count by modification time.
See the caption of figure 3.3 for an explanation of the x-axis ticks and grid lines



40 Chapter 3 File System Metadata

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

	  
	  

Last	  modifica7on	  7me	  

Total	  bytes	  by	  last	  modifica7on	  7me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoH	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  modifica9on	  9me	  

Cumula9ve	  total	  bytes	  by	  last	  modifica9on	  9me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoK	  

ARSC-‐Projects	  

LANL-‐Scratch	  

NERSC-‐Projects	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.6: Histograms (top) and CDFs (bottom) of total bytes by modification time
See the caption of figure 3.3 for an explanation of the x-axis ticks and grid lines.



Chapter 3 File System Metadata 41

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

	  
	  

Last	  change	  7me	  

File	  count	  by	  last	  change	  7me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoH	  

ARSC-‐Projects	  

LANL-‐Scratch	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  change	  :me	  

Cumula:ve	  file	  count	  by	  last	  change	  :me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoM	  

ARSC-‐Projects	  

LANL-‐Scratch	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.7: Histograms (top) and CDFs (bottom) of file count by change time See
the caption of figure 3.3 for an explanation of the x-axis ticks and grid lines.



42 Chapter 3 File System Metadata

0d	   2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

	  
	  

Last	  change	  9me	  

Total	  bytes	  by	  last	  change	  9me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoJ	  

ARSC-‐Projects	  

LANL-‐Scratch	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

2d	   1w	   2w	   1m	   3m	   6m	   1y	   2y	   5y	   10y	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Last	  change	  :me	  

Cumula:ve	  total	  bytes	  by	  last	  change	  :me	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoL	  

ARSC-‐Projects	  

LANL-‐Scratch	  

PDL-‐Scratch	  

PNNL-‐Scratch	  

PSC-‐Scratch	  

Figure 3.8: Histograms (top) and CDFs (bottom) of total bytes by change time See
the caption of figure 3.3 for an explanation of the x-axis ticks and grid lines.



Chapter 3 File System Metadata 43

Figures 3.3 and 3.4 show the distributions of file count and total bytes by access time.

Perhaps most striking is the exceptionally long time for which Airbus files remain unac-

cessed, far greater than most of the other data sets. Aircraft design data are subject to

particularly long retention needs, and the complexity of aviation certification can make

it difficult to separate data that must be archived indefinitely and data that could be

deleted. For these reasons, the lack of long-term access is not particularly surprising,

but it is interesting to note the difference between these results and those from other

HPC environments.

Another observation that can be made of the results is that the Airbus No-Backup data

generally appears to have been accessed more recently than the Airbus-Projects data.

Since the Airbus-NoBackup volumes exist only as short-term storage, this is again an

expected result. Interestingly, this is less evident in the distribution total bytes by access

time (right), but in both cases it is clear that even short-term storage appears to contain

quite old data. This indicates that it may be appropriate to provide users with updated

practical guidance for the use of these file systems.

Similarly, figures 3.5 and 3.6 show the distributions of file count and total bytes by last

modification time, “mtime”. The Airbus results here are more similar to the Microsoft

and other HPC trends, although the Airbus-Projects trend in particular remains at the

edge of the range. This would indicate that although read access at Airbus differs fairly

substantially from the other environments, write access is rather more similar.

This view is further reinforced by figures 3.7 and 3.8, which show the distributions of

file count and total bytes by “ctime”. In UNIX systems, this corresponds to the last

time the metadata for a file was changed, but in Microsoft Windows systems, this field

is instead used to store the creation time. As such, these figures must be treated with

particular caution, especially when comparing with the Microsoft set.

The Airbus results are more similar to other data sets here than in the “atime” or

the “mtime” distributions. Again, this suggests that although the access trend is quite

different at Airbus, data generation and modification are much more similar to other

contexts. However, the trends appear to fall into two different groups, particularly if the

Microsoft set is excluded: short-term usage where many of the files and bytes are less

than a month old; and long term usage where relatively few files and bytes are younger

than six months. Interestingly, the former consists only of scratch systems, although

the PDL-Scratch and Airbus-NoBackup sets fall into the latter category. This shows

that although scratch systems often contain primarily newer data, the true usage varies

greatly with the context.



44 Chapter 3 File System Metadata

0%!

20%!

40%!

60%!

80%!

100%!

File Count!

Post Processing Plot!

Post Processing Log!

Post Processing!

Model!

Log!
0%!

20%!

40%!

60%!

80%!

100%!

Disk Usage!

Grid!

Log!

Grid Dual!

Model!

3D Solution!

Figure 3.9: Stacked bar graphs of file count (left) and total bytes (right) of commonly
occurring file types.

3.5.3 File Type

In many file systems, such as the desktop file systems considered in the Microsoft data

set [2], file types can be easily identified by a simple extension to the file name, such

as “.docx”, “.xlsx” and “.jpg”. Although the use of such suffixes is very widely used,

it is not typically enforced by the file system. Analysis of full file names in the Airbus

sample revealed that the suffix convention was not particularly prevalent, but it was

possible to identify many key file types using more sophisticated regular expressions.

The complexity of the regular expressions used, and the sensitivity of the information

included, has been masked with descriptive type names, but figure 3.9 shows some of

the most commonly occurring file types by file count and total bytes.

Compared with the Microsoft data (not shown), the figure shows that a substantially

higher proportion of the files can be accounted for in the top few file types. In total, the

top five file types account for 63% of the files, compared with just 37% in the Microsoft

sample [2]. These file types are mostly very small files with clear reasons for long-term

retention: log files are required for traceability and audit; model files are kept for the

human labour involved in their creation; and post-processing files are high in value and

typically required significant compute time for creation.

Figure 3.9 also shows that the top five file types by disk usage (total bytes), account

for 87.9% of the overall disk space, and that a single type (namely the 3D flow solution

files) account for 64.2%. These 3D solution files only account for 0.99% of the actual

files, which again demonstrates the overwhelming dominance of these files in terms of

the total bytes. Interestingly, these results are similar to those demonstrated previously,

where simulation files accounted for an average of 1.22% of the files and 59.9% of the



Chapter 3 File System Metadata 45

bytes [33]. Moreover, many of these files are also quite old (not shown), and could

perhaps be considered for compression, archival or even deletion.

The characteristics of the 3D solution files can also be observed in the file size distri-

butions shown previously. These solution files are actually the cause of the peak in the

distribution of total bytes by file size (figure 3.2). In the same way, the distribution of

file count distribution in figure 3.1 highlights how files of this size account for only a

tiny proportion of all files.

Perhaps most significantly, the 3D solution files are only an intermediate result in the

CFD workflow. As the precise results describing the flow of fluid over a given geometry

in 3D space, they are understandable large, but these files are created either to visualise

the flow or to resolve the lift, drag and moment coefficients for the forces acting on the

object. In either case, the solution file will be subjected to some type of post-processing

in order to obtain the desired final output, thereby generating many of the other file

types identified in figure 3.9. Once the necessary post-processing has been completed, the

retention policy for the parent solution file can be reconsidered. There will undoubtedly

be cases where permanent retention for certification and accountability will be required.

However, there will also be many cases where the design moves in a different direction,

and the solution file could be archived, compressed or deleted.

3.5.4 Directories

Figures 3.10 and 3.11 show the distributions of directory count by the number of imme-

diately contained files (i.e. excluding those in subdirectories), and the total immediately

contained bytes. Unfortunately, directory data was not available for the other HPC sites,

which included subdirectories in the equivalent results, and are thus incomparable. The

exclusion of subdirectories in this way allows the examination of the storage of groupings

of files at a finer granularity than would be possible. This study also considers the distri-

butions of files, total bytes, and directories by namespace depth (see subsection 3.5.5),

providing a further way to view the characteristics of directories. Another important

characteristic that must be understood before interpreting these results is the impact of

excluding subdirectories from the results. In particular, the zero bin means that there

were no files directly contained, and although such a directory may indeed be empty of

files and bytes, it could still contain any number of subdirectories.

The Microsoft data set shows a smooth trend of decay, and a higher proportion of

directories containing no files. In contrast, the Airbus set shows a distinct peak at about

32 files, before decaying similarly. As discussed previously, the size of the Microsoft data

set and the general-purpose nature of desktop computers masks any specific workload

or usage characteristics. However, the clear peak in the Airbus set corresponds to the

typical grouping of CFD results, again showing an effect of the workload on the data.



46 Chapter 3 File System Metadata

0	   2	   4	   8	   16	   32	   64	   128	   256	   512	   1K	   2K	   4K	   8K	   16K	  
0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

45%	  

50%	  

	  
	  

Contained	  file	  count	  

Directory	  count	  by	  contained	  file	  count	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoF	  

0	   2	   4	   8	   16	   32	   64	   128	   256	   512	   1K	   2K	   4K	   8K	   16K	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Contained	  file	  count	  

Cumula;ve	  directory	  count	  by	  contained	  file	  count	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoJ	  

Figure 3.10: Histograms (top) and CDFs (bottom) of directory count by contained
files.



Chapter 3 File System Metadata 47

0	  2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	   128G	   1T	   8T	  
0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

45%	  

50%	  

	  
	  

Total	  contained	  bytes	  

Directory	  count	  by	  total	  contained	  bytes	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoE	  

2K	   8K	   128K	   1M	   8M	   128M	   1G	   8G	   128G	   1T	   8T	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Total	  contained	  bytes	  

Cumula@ve	  directory	  count	  by	  total	  contained	  bytes	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoK	  

Figure 3.11: Histograms (top) and CDFs (bottom) of directory count by contained
bytes.



48 Chapter 3 File System Metadata

0	   2	   4	   8	   16	   32	   64	   128	   256	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Contained	  subdirectories	  

Directory	  count	  by	  contained	  subdirectories	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoE	  

0	   2	   4	   8	   16	   32	   64	   128	   256	  
0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

	  
	  

Contained	  subdirectories	  

Cumula<ve	  directory	  count	  by	  contained	  subdirectories	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoH	  

Figure 3.12: Histograms (top) and CDFs (bottom) of directory count by contained
subdirectories.



Chapter 3 File System Metadata 49

The distribution of directory count by total contained bytes (excluding subdirectories)

shows that the Airbus results are heavily influenced by the file size distribution shown

in figure 3.2. The Airbus results show some directories containing very few bytes, but

a peak occurring between 1 GB and 8 GB, corresponding to the asserted range of CFD

flow solution sizes in subsection 3.5.1. The implication here is that most bytes are stored

in directories containing one or more 3D flow solutions, which makes sense given the high

proportion of total bytes in these files.

The final aspect of directory content that can be examined is the number of subdirec-

tories per directory. Figure 3.12 shows the directory count by the number of contained

subdirectories. Most interesting here is the similarity between the Microsoft and Airbus

results, which demonstrates the way in which humans tend to organise data into sub-

directories. In the Microsoft case this will have been in a manual fashion, whereas the

Airbus directories will have been created and populated computationally. However, the

process of computational directory creation will still have been set up by a human. It

follows that there may be an underlying human behaviour in the way that hierarchical

structures are designed. The actual psychology of this human behaviour is beyond the

scope of this work, but it would certainly be interesting to investigate this trait further.

The similarity in data organisation with the Microsoft sample also indicates that general-

purpose file systems are still adequate for this type of usage. In contrast, file systems

such as GIGA+ support millions of file creation requests per directory, per second [65].

This study does not consider real time requests, but such a level of performance is much

more applicable to direct HPC usage, rather than the supporting role played by the

Airbus file systems examined in this study.

3.5.5 Namespace Depth

Another way to view the organisation of data is to consider the depth of files, bytes and

directories in the namespace or hierarchy. Figures 3.13 and 3.14 show the distributions of

files and bytes through the namespace hierarchy, zero being the root level. Considering

the file distributions first, both of the Airbus samples show most of the files stored at

a much greater depth than the Microsoft sample. This is because the Microsoft sample

comprises a large number of individual desktop computers, each with their own hierarchy,

but the Airbus samples all exist concurrently in the same network namespace. It follows

that the smaller individual volumes in the Microsoft sample are relatively shallow in

depth, but the larger individual volumes in the Airbus samples are deeper. As a result

of the similar way in which humans tend to organise data, as already demonstrated in

subsection 3.5.4, this shows that more layers are required to handle more data.



50 Chapter 3 File System Metadata

0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

File	  count	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoE	  

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

Cumula:ve	  file	  count	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoJ	  

Figure 3.13: Histograms (top) and CDFs (bottom) of file count by namespace depth.



Chapter 3 File System Metadata 51

0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

35%	  

40%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

Total	  bytes	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoE	  

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

Cumula:ve	  total	  bytes	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoI	  

Figure 3.14: Histograms (top) and CDFs (bottom) of total bytes by namespace depth.



52 Chapter 3 File System Metadata

0%	  

5%	  

10%	  

15%	  

20%	  

25%	  

30%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

Directory	  count	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoD	  

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	   22	   24	  

Namespace	  depth	  

Cumula:ve	  directory	  count	  by	  namespace	  depth	  

Airbus-‐Projects	  

Airbus-‐NoBackup	  

MicrosoI	  

Figure 3.15: Histograms (top) and CDFs (bottom) of directory count by namespace
depth.



Chapter 3 File System Metadata 53

Another observation that can be made is that while the Microsoft data forms a single

peak, the Airbus samples each form two distinct peaks. In the Airbus-Projects case these

are similar in size, although the Airbus-NoBackup case is skewed, showing more files in

the deeper peak. This characteristic can be explained by considering the distribution of

bytes, which shows the distribution of total bytes by namespace depth. Here, the Airbus

samples both form single peaks, each in the same location as the respective shallower

peaks in the file count distributions. This would suggest that larger files, namely the

CFD solution files, are typically stored in the higher peak. Conversely, the smaller files,

such as configuration files, documents, and other project files, are generally stored in

the lower peak. A similar observation can also be made of the Microsoft sample, which

shows the same characteristic, with more bytes stored higher in the namespace.

Similarly, figure 3.15 shows the distribution of directories by namespace depth. Again,

the Microsoft sample shows a single peak, in line with the file count distribution, as

do the Airbus distributions. However, the Airbus-NoBackup shows a much greater bias

towards the deeper peak, more akin to the distribution of bytes. This an unexpected

characteristic, possibly the result of computationally pre-creating all potentially required

directories, rather than repeatedly checking for their individual existence throughout the

workflow.

There is often a distinct corporate structure in the way that departments, teams and

projects are organised, especially in larger organisations like Airbus. It makes sense

that data should be organised and stored in a way that reflects the organisation of

these departments, teams and projects. This can be observed in the namespace depth

analysis, with the peaks in figures 3.13 and 3.15 representing the key areas in which

different types of data are stored, and the levels above reflecting the corporate structure

in which the data is organised. To a certain extent, the automation of data production

contributes to this organisation pattern, although it has a greater impact on the lower

levels in data for the same type of job is always stored in the same way.

The namespace depth results in general show that large hierarchical systems are still very

much a reality, but it is becoming clearer that data can be hard to find in such systems,

particularly where there are multiple criteria on which a logical hierarchy could be

applied. The day-to-day search for data by original owners is still fairly straightforward,

but any identification and location problems are greatly exacerbated when data is shared,

exchanged or inherited, especially when users change roles or leave organisations entirely.

This is one of the key challenges for data management in the engineering industry, as

these cases are very common in large engineering organisations like Airbus, as mentioned

previously in chapter 2



54 Chapter 3 File System Metadata

Such issues could be addressed by better understanding the meaning, purpose and rela-

tionships between data. For example, in the case of users changing roles files could be

tagged with the role under which a user created them as well as their user ID, allowing

the next user to take the role to inherit data more easily. Although it may be possible to

infer such information from the hierarchy, depending on how the user chose to organise

their files, it would be much simpler to identify files if this type of semantic metadata

were available. A simple search based on this type of data may then be sufficient to

overcome the challenge of users changing roles. However, given that this is a common

occurrence it is certainly worth considering alternative ways to organise data that do

not rely solely upon hierarchy to provide structure to file system content [70].

3.5.6 Implications for Data Cleaning and Distribution Modelling

We have demonstrated that the 3D solution file type alone accounts for 64.2% of the

bytes in just 0.99% of the files, and related this to the file size distribution. Furthermore,

we have identified that these files are only an intermediate stage in the CFD analysis

workflow, and suggested that once any required post-processing has been completed, the

retention policy could be reconsidered.

In addition, the timestamp analysis has shown that much of the data is quite old, with

less than 40% of files or bytes having been accessed in the past year. When combined,

these observations would suggest that substantial savings in disk space could be achieved

through the archival or removal of old solution files. For example, removing 3D solution

files older than 2 years from the no-backup volumes could save an estimated 16% of total

disk space. This certainly merits further analysis, and is considered in greater detail in

a separate study into data cleaning (see chapter 4.

Previous research has found that modelling file size distributions using different file

size profiles for different file types yields substantially more accurate results [55]. The

Airbus trends that we have presented here demonstrate significant clustering around

key file sizes in the distributions of both the file count and total bytes with file size.

Moreover, we have shown that the 3D solution file type directly corresponds to a key

peak in the file size distribution, and assert that geometry models and specific log file

types correspond to the other key types. Although we have not attempted to model the

file size distribution, our results certainly support the view that file type profiles could

yield more accurate file size models. These results will be of particular interest to those

modelling distributions, generating synthetic data for benchmarking, or optimising file

system designs for specific purposes.



Chapter 3 File System Metadata 55

3.6 Conclusions and Further Work

The Airbus results, although showing some similarity to previous work, demonstrate

some notably unique characteristics. In particular, the file size distribution shows ex-

ceptionally strong clustering of disk usage by files at the environment-specific file size

of 1 GB and 8 GB. This links to the file type analysis (figure 3.9), which showed that

a key file type (namely the 3D solution files for CFD simulations) accounted for 0.99%

of the files but 64.2% of the total bytes. Although numerically similar to previous work

[33], it is interesting to see that this trait extends to much larger file systems, in an

HPC rather than desktop environment, and when based on a much larger sample size.

It was also noted that much of the data examined was quite old, with many files not

having been accessed at all in the past few years. Since the 3D solution files are only

intermediate files in the larger workflow, these observations lead to the conclusion that

solution files could be considered for archival or deletion in order to make way for new

data. Reviewing the retention policy for this particular file type could potentially yield

great savings in disk space for relatively minimal human time and effort. These results

will be of interest to file system designers and bench-markers, developers of system util-

ities such as backup and cleaning tools, and managers responsible for capacity planning,

particularly those in industrial HPC environments.

In the future, these findings will be used to intelligently provide recommendations for

data deletion and archival. It is also likely that a variety of important and useful infor-

mation exists within the many log files already identified in this chapter, and extraction

and analysis of metadata from log files may be able to further improve understanding

of the data characteristics and better support the data cleaning process.





Chapter 4

Practical Data Cleaning

Due to the rapid production of data by high performance computing systems supporting

the engineering design process, file system volumes rapidly become full. These volumes

must then be either cleaned or extended. Although the cost of storage continues to fall,

this is no reason to be overtly profligate or wasteful with the existing storage resources.

Careful consideration of the longer-term retention of data on existing storage systems

may provide substantial savings in disk space, increasing the service life of these storage

systems and providing direct and indirect economic benefits.

The previous chapter revealed that the Airbus volumes examined contained one partic-

ular file type that accounted for 64.2% of the bytes in just 0.99% of the files. It also

observed that this key file type, namely 3D solutions generated for computational fluid

dynamics analysis, is only an intermediate result in the overall engineering design work-

flow. Although some circumstances require permanent retention of these files, there may

also be many cases where files could be deleted.

This chapter follows on from the earlier snapshot work with a study of practical data

cleaning at Airbus. The objectives were to develop a reusable methodology for identi-

fying unwanted files that required minimal human input and intervention, and to apply

this methodology to the Airbus-NoBackup volumes examined previously to save disk

space. The methodology was based on the key observations made by the previous work.

It led to the completion of two cleaning exercises, which yielded significant savings in

disk space of 15.2% and 27.5%, respectively. Further analysis demonstrated a potential

increase in service life of up to five years for the existing storage resources, based on the

net rate of data production. It was also noted that the financial value of the savings

made have already exceeded the total cost of this entire research programme.

57



58 Chapter 4 Practical Data Cleaning

4.1 Introduction

With ever increasing rates of data production, it is inevitable that file system volumes

will become full over time. In high performance computing (HPC) environments, where

data production is already very rapid, file system volumes can fill up very quickly. Full

volumes present various problems, particularly disk full errors preventing data being

written to disk. In HPC environments where lengthy computational tasks are common-

place, this can lead to significant resources being wasted in computing data that cannot

be written to disk upon completion. Manually searching for free disk space in a large

scale environment can also become a significant source of wasted time for end users.

This report details the methodology and results of two data cleaning exercises on a

group of no-backup volumes within Airbus, specifically those used by the aerodynamics

group in Filton, UK. These volumes are used extensively by the HPC systems, and are

known to fill up very quickly. Prior to the cleaning, many of the volumes had become

completely full. The purpose of the cleaning exercises was not only to create free space

on the volumes, but also to develop a method for doing so which required only minimal

human input and interaction. This method may be used in the future as necessary

without requiring the same efforts in research and analysis, and could potentially be

integrated and automated as part of a larger data management system.

4.2 Related Work

There are a number of existing tools for examining file system metadata in a manner

conducive to the identification and removal of large files. Tools such as KDirStat [36]

for Linux; SequoiaView [78] and WinDirStat [86] for Windows; and GrandPerspective

[27], Disk Inventory X [22], and DaisyDisk [73] for Mac OS all provide a means to view

disk usage statistics and clean unwanted files. However, they still require a somewhat

labour-intensive approach in the selection process, which remains non-cognizant of the

environment, context, and workflows responsible for the creation of the data. These

tools can be highly effective in a desktop context, but are not necessarily appropriate

for usage in large-scale HPC storage systems.

Previous work examined some of the characteristics of file system metadata in engineer-

ing design. In particular, it was noted that a single file type (the 3D solution files)

accounted for most of the disk space but very few of the files; that this file type was only

an intermediate file type in the CFD workflow; and that many of these files were quite

old. It was suggested that the retention policies for this file type could be reconsidered

[62]. This work extends that observation with a practical approach to data cleaning,

and the results from two data cleaning exercises.



Chapter 4 Practical Data Cleaning 59

4.3 Industrial Context

The cleaning work discussed in this chapter was undertaken at a single site at Airbus,

a leading aircraft manufacturer, specifically from a group of file systems supporting

high performance computing (HPC) for aerodynamics. The volumes scanned are all

UNIX NFS volumes with fast network access to the main HPC systems, operating

independently of the internal HPC file system, from which data is copied back upon job

completion. Specifically, the volumes are all part of the “no-backup” group, which exists

for disk intensive work and as temporary storage until more permanent storage can be

found elsewhere. Due to the constant data production these volumes rapidly become

full, whereupon data must be archived or deleted as appropriate.

The workflow responsible for data generation mostly comprises the computational fluid

dynamics (CFD) analysis of engineering components and assemblies under varying flow

conditions. Given either an entirely new or modified geometry file, a mesh is generated

to represent the geometry during the CFD analysis, which is used to create 3D solutions

for the flow conditions of interest. These solution files are then post-processed to resolve

the lift and drag forces acting on the object and sometimes to visualise the fluid flow,

in order to inform future design decisions.

Further details of the engineering design process and the CFD workflow can be found in

chapter 2. As mentioned previously, CFD in particular is widely used in many areas of

the engineering industry, including the aerospace, motorsport and maritime sectors. As

such, these environments may exhibit similar file system metadata characteristics and

data cleaning potential to the results shown here.

In the context of industrial engineering design, it is important for a data cleaning utility

to be aware of the workflow responsible for data generation. This is because the sorts of

files that can be removed depend on the sorts of files that are created by the workflow,

and the corresponding need to retain each of these types. It is also important to recog-

nise that the outputs of one job may become the inputs for another. For example, CFD

analysis outputs flow solutions which are the input for various optional post-processing

stages. It is thus important to allow sufficient time for decisions to be made regarding

any optional aspects of the workflow, rather than just removing intermediate files imme-

diately once a the basic workflow has been completed. In addition, a cleaning tool must

be sympathetic to future processes such as data audit, which may require collection and

presentation of all data directly associated with a final design or configuration. It fol-

lows that simply purging all data older than a given age threshold is not an appropriate

strategy for the type of data considered here.



60 Chapter 4 Practical Data Cleaning

4.4 Methodology

This section describes the development of the data cleaning method; the nature and

reasoning behind the exceptions made to the rules used; and the details of the actual

execution. Some of the file system metadata distributions used here have been shown

previously, but the focus here is on their utilisation in the development of a file system

cleaning methodology. Previ14ous work on file system metadata revealed some inter-

esting trends and patterns in the distributions of basic file properties. In particular,

the file size, file age, and file type distributions all showed characteristics with useful

implications for the development of a rule-based data cleaning system [62]. This section

revisits these earlier observations in order to develop a file system cleaning methodology.

The process has been derived and applied with a view to cleaning file systems by deleted

files, but could equally be used as a selection method for compression or archival in cases

where deletion would be inappropriate.

4.4.1 Data Extraction and Analysis

The data analysis behind this work into data cleaning made use of the same internal

Airbus Python program used to conduct the previous work into file system metadata

analysis (pDisk) [62]. This program provides a snapshot of a file system for a fixed

point in time, allowing detailed analysis to be conducted off-line, thereby minimising

any disruption to the actual file system caused by the scans. New snapshots were taken

for all of the no-backup volumes, using the same data extraction method as the file

system metadata study. The data analysis presented in this chapter was conducted

using a new set of queries that were made to the resulting PyTables database.

4.4.2 File Size

Figure 4.1 shows the histograms of file count and disk usage by file size, using power-

of-two bins and plotted as line graphs on a logarithmic scale. Each x value represents

the midpoint of the bin, and each y value is the number of files or bytes contained

within that bin. It is clear that the majority of files are very small, but much larger

files consume the majority of the disk space. When considered together, these trends

demonstrate that over 90% of the disk space is occupied by less than 1% of the files.

These distributions are very helpful in targeting large volume of disk space with only a

small number of files. It is very easy to use the two graphs to assess how many files and

how much disk space would be targeted by a simple size-based selection filter such as

“files larger than x”, and such a filter may be very useful in selecting a small number of

files for large potential savings in disk space.



Chapter 4 Practical Data Cleaning 61

0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

0! 8! 128! 2K! 32K! 512K! 8M! 128M! 2G! 32G!

File Count and Disk Usage by File Size (Bytes)!

File Count! Disk Usage!

Figure 4.1: Histograms of file count and disk usage by file size.

Although the file size distribution helps to identify a small number of files that account

for a large proportion of the disk space, it provides no insight into the content or nature

of those files. Previous work asserted that the key peak was primarily composed of 3D

solution files, but this is no guarantee that all large files are solution files. It follows that

a solely size-based filter would still require significant human input to pass a decision on

each individual file before any action could be taken. As such, the file size rule may be

a useful secondary filter if the profile of otherwise selected files contains a large number

of small files, but it is of little use as a primary condition.

4.4.3 File Age

Figure 4.2 shows the histograms of file count and disk usage by file age, as defined by

the most recent of the last access timestamp (atime) and the last modified timestamp

(mtime). Again, these histograms use power-of-two bins and are plotted as line graphs

on a logarithmic scale. It is clear that most of the data are older than one month,

and that there is a peak at approximately one year. As stated previously, this is quite

old, certainly compared with many other HPC file systems [62]. Moreover, these are all

no-backup volumes, and are thus supposedly used as a scratch area for disk intensive

work, or as temporary storage until permanent space can be found elsewhere. In either

case, valuable data should not be stored on these volumes for extended periods of time.



62 Chapter 4 Practical Data Cleaning

0%!

10%!

20%!

30%!

40%!

50%!

<1d! 1d! 4d! 16d! 64d! 256d! 2.8y! 11.2y!

File Count and Disk Usage by File Age!

File Count! Disk Usage!

Figure 4.2: Histograms of file count and disk usage by file age.

Despite the logic behind the potential removal of all data beyond a certain age, there

is an understandable reluctance to perform this action without knowing exactly which

files and what content will be lost. Combining the file size and file age filters could

provide a relatively short list of large files, which could then be approved or rejected

manually. However, this is still quite a laborious approach since nothing is known about

the content of the files selected. Again, more information about the type and content of

files is needed in order to provide a suitable list of targets, especially if automation of

the complete process is desirable.

4.4.4 File Type

More information about the nature of a file is needed in order to improve on the combina-

tion of simple attributes like file size and file age. Previous work in file type recognition

used regular expressions to identify many key file types on the Airbus file systems, and it

was found that 3D solution files accounted for most of the bytes, but only a tiny fraction

of the files. Figure 4.3 shows stacked bar graphs of the file count and total bytes for

some of the most common file types for Airbus data, derived from the no-backup vol-

umes. The no-backup case slightly extends the previous observation, with 3D solution

files accounting for 69.2% of the bytes in only 0.6% of the files.

This observation is the most ideal case for the basis of a file type filter, in that it provides

a specific indication of the type of content, accounts for a large proportion of the overall



Chapter 4 Practical Data Cleaning 63

0%!

20%!

40%!

60%!

80%!

100%!

File Count!

Post Processing Plot!

Post Processing Log!

Post Processing!

Model!

Log!
0%!

20%!

40%!

60%!

80%!

100%!

Disk Usage!

Post Processing Plot!

Surface Solution!

Log!

Model!

3D Solution!

Figure 4.3: File count and disk usage for common file types, specifically on the group
of no-backup volumes targeted for data cleaning.

disk space, and returns a relatively small number of files. To elaborate, the 3D solution

file type is much more specific than .log files, in that log files may be generated by

any number of applications for any number of reasons, but 3D solution files only ever

describe the flow of fluid over an object.

The 3D solution files can be identified because they are generally created computa-

tionally and are named by convention. These files can thus be selected using regular

expressions. For example, the regular expression .*\.pval\.d+$ can be used to find all

files that end with .pval. followed by an integer. This would select files with names like

A123V3_A0_M83.pval.1337 but would ignore those with additional file type extensions

such as .tar or .dat. This is particular important because any deviation from the

standard naming convention suggests that the content of such files may be different.

Moreover, first part of the file name is also constructed by convention, and includes

more information regarding the flow parameters (Mach number M , Reynolds number

Re and angle of incidence α). The path hierarchy also provides an indication of the

parent project or study. These extra fields are the subjects of a separate study into

additional metadata (see chapter 5), but their existence could be highly valuable to a

file-type based rule, and for human assessors in any manual verification stage.

Furthermore, it has already been recognised that 3D solution files are an intermediate

result in the larger workflow, and that in many cases there is no need for these files to

be kept once the necessary post-processing stages have been completed. In principle,

and setting aside the cost of computation, these files can also be regenerated from their

original inputs. However, there are a number of issues regarding verification of the

consistency of regenerated results, largely due to the iterative process followed and the

secondary effects of parallel processing.



64 Chapter 4 Practical Data Cleaning

0%!

20%!

40%!

60%!

80%!

100%!

0!6!12!18!24!30!36!

Cumulative Disk Usage by Modification Time (Months)!

Total! 3D Solutions!

Figure 4.4: Cumulative disk usage by time since last modification, for all data and
3D solution files.

4.4.5 3D Solution Files by Modification Time

Based on the results examined thus far, a combination of file type recognition to select

only 3D solution files, coupled with a file age filter to include only those older than an

agreeable threshold, would seem to be the simplest and most effective cleaning method.

An additional file size filter could also be considered, but due to the similarity in re-

sults between file size and file type for just flow solution files, this is likely unnecessary.

However, since file age is a construct of the most recent of the “last accessed” and “last

modified” timestamps, it is easier to simplify this and just use the last modification

timestamp, mtime. This type of data is rarely accessed after creation, and the modifica-

tion timestamp is unaffected by actions such as touch, or by utilities such as this disk

cleaning program.

Figure 4.4 shows the total disk usage and the proportion occupied by 3D solution files,

as a percentage of the total capacity of the volumes examined, against the elapsed time

since last modification. Both distributions appear to be fairly linear, indicating that the

total proportion of bytes in solution files is essentially constant over time. This illustrates

the steadiness of the workflow, and suggests that it has not changed signficantly in the

time period considered in the figure. The linearity also implies that the rate of data

production remains constant for a given hardware configuration, assuming all systems

are always in use, and indeed the change in gradient at 18 months corresponds to an



Chapter 4 Practical Data Cleaning 65

upgrade in HPC hardware. The linearity also means that there is no optimum choice

for a time threshold, and that the decision could instead be made with respect to the

business context.

The gradient of the total disk usage against time equals the net rate of data production.

Since this study only considers a subset of the available storage systems, it is only

possible to calculate the average rate at which these particular volumes are filling up,

which figure 4.4 shows to be approximately 3.3% per month. Assuming no changes in the

hardware capabilities and no changes in the workflow or data generating applications,

knowledge of this rate of data production and the current state of the storage volumes

allows the prediction of the remaining time until maximum capacity is reached, which

is useful for both administration and capacity planning purposes.

4.4.6 Exclusions

Combining time-based trends with type information allows a selection of a small number

of files which are good candidates for deletion. However, there may always be some

exceptions that must be made for files that are particularly important, valuable or

sensitive. Two key approaches to exclusions are possible: either exclusion by file or

exclusion by user. Excluding individual files allows for very tight control over which files

are excluded, whilst maximising the potential savings in disk space. However, due to

the user effort required to select files in this way, the alternative user-based exclusion

approach was adopted. Any users with any objections to the cleaning exercise were

added to an exclusion list, which was used as an additional filter to ignore all files owned

by any of these users when selecting candidates for cleaning.

4.4.7 Cleaning Rules

The first cleaning exercise was based on the selection of all 3D solution files that had

not been modified in the last two years, excluding those owned by one user who opted

out of the exercise. Due to the success of the first exercise, the second cleaning effort

was made based on the selection of all 3D solution files that had not been accessed in

the last eighteen months, again excluding the single user who chose to opt out. There

appears to be no obvious optimum value for this time threshold, thus it can be reduced

as far as deemed appropriate for the business and technical contexts of the data.



66 Chapter 4 Practical Data Cleaning

4.4.8 Execution

Prior to cleaning the no-backup volumes, a snapshot of each volume was made using

the Python program developed for the previous study into file system metadata. These

snapshots were then used to test the potential outcomes of different cleaning rules,

particularly varying the time threshold. After settling on a rule (3D solution files older

that two years, excluding those owned by users who opted out), a final search for files to

be deleted was made directly on the file system using a Linux terminal. The resulting

list was manually verified before the files were actually deleted, again directly from the

command line. The volumes were then scanned again to support post-cleaning analysis.

Due to some early run-time problems, a few of the snapshot scans for the first study failed

to complete. The vast majority of scans were successful, and the problem was eliminated

for the second study. The snapshots were used to test potential cleaning rules, so the

failures will have had a small impact on the assessment of these rules (although the

proportion of failures was very small). The actual cleaning was conducted purely from

a Linux terminal (i.e. using ls | grep), so the cleaning itself was unaffected by the

snapshot failures. The results presented here are complete for volume fullness, where

basic summary data was still available, but the rest of the analysis excludes the small

number of failed volumes.

The first cleaning exercise was undertaken over May and June 2013. The actual cleaning

operation was executed on June 7th; the remainder of this time was required in order to

conduct the necessary pre-cleaning and post-cleaning scanning and analysis. The second

cleaning exercise was initiated in November 2013, by which time most of the volumes

were completely full again.



Chapter 4 Practical Data Cleaning 67

4.5 Results

This section presents the actual results of the two cleaning exercises. The most direct

results are the changes to volume fullness, which describe the effectiveness of the cleaning

process. The secondary effects of the cleaning process on the underlying metadata

distributions are also presented, as these have implications for the sustainability of the

method, and thus the effectiveness of any future data cleaning.

4.5.1 Volume Fullness

Prior to the cleaning exercises, the majority of the no-backup volumes were completely

full. The cleaning process was instigated in order to clear space on these volumes to

allow the continuation of on-going HPC work. As such, the selection of volumes by

fullness presents an obvious source of bias, and the same level of savings may not be

obtainable in other circumstances. The nature and usage of the volumes is another

source of potential difference to other types of storage, such as project data volumes,

which are backed up and as such are treated differently by the end users.

Figure 4.5 shows the impact of the first cleaning exercise on volume fullness. Each

bar represents a single volume, and shows the total capacity; the remaining free space;

the space cleaned as a result of the exercise; and the space that was used prior to the

cleaning. The total disk space saved through data cleaning was 21.1 TB, which equates

to a reduction in volume fullness of 15.2%. These are substantial savings in disk space,

and no subsequent complaints of missing data have been made, indicating that the

exercise was highly successful.

An interesting observation is that the volumes do not all have the same storage ca-

pacity. Rather than a uniform distribution, or even increasing volume capacities with

time, figure 4.5 shows the older volumes with higher capacity than the newer volumes.

This difference can be best explained as a result of managerial and purchasing decision

making. However, the use of smaller individual devices does help to minimise the risk

of data loss in the event of a catastrophic failure, and it is interesting to note the shift

towards larger numbers of smaller devices.

Given the fill rate of 3.3% per month, as calculated previously from figure 4.4, it is

possible to estimate the time to volume fullness to be 4.6 months. This is the estimated

time from completion of the cleaning until all of the volumes are completely full again,

and corresponds almost exactly to the true elapsed time between the end of the first

exercise and the beginning of the second, although organisation and coordination held

back the execution of the second exercise for a short time. However, this success again

highlights the constant rate of data production in the Airbus engineering environment.



68 Chapter 4 Practical Data Cleaning

0 TB!

2 TB!

4 TB!

6 TB!

8 TB!

10 TB!

12 TB!

Free!

Cleaned!

Used!

Figure 4.5: Volume fullness before and after the first cleaning exercise. Each bar on
the x-axis represents a single (anonymous) volume that was cleaned.

It is also possible to estimate the potential disk space savings for the second exercise

from the gradient of figure 4.4, using the revised time filter. Based on the six months

between the two studies, and the change in time threshold from two years to 18 months,

the second study effectively targets 12 months of data production. Multiplied by the

mean data production rate (3.3% per month) and again by the proportion of disk space

occupied by 3D solution files (69.2%), it is possible to estimate disk space savings of

27.4% for the second study.

Figure 4.6 shows the actual impact of the second cleaning exercise on volume fullness.

Due to steady data production and the elapsed time between studies, the volumes were

mostly full again prior to this study. As with the first exercise, the volumes are shown

chronologically by installation date. Since the first study removed all of the very old data,

it would be reasonable to expect somewhat more uniform savings across the volumes

compared to figure 4.5, and this can be observed in the figure.

The second study identified and removed a total of 37.5 TB of unwanted data, which is

again a substantial saving in disk space. The graph shows a total reduction in volume

fullness of 27.5%, very close to the estimate of 27.4%. This indicates that the data

production between the two studies closely followed the trend shown in figure 4.4. As

previously, it is possible to translate these savings into a new estimate for the time until

the volumes become full. Using the mean volume fill rate (3.3%) and the percentage of



Chapter 4 Practical Data Cleaning 69

0 TB!

2 TB!

4 TB!

6 TB!

8 TB!

10 TB!

12 TB!

Free!

Cleaned!

Used!

Figure 4.6: Volume fullness before and after the second cleaning exercise. Each bar
on the x-axis represents a single (anonymous) volume that was cleaned.

volume savings achieved through the second exercise (27.5%), the new estimate for time

to volume fullness is 8.3 months. Again, these results represent substantial savings in

disk space, improve utilisation of the available resources, and an extended lifetime for

the storage systems.

Considered together, figures 4.5 and 4.6 show evidence of some cleaning outside of this

study. The free space before cleaning shown on some volumes in figure 4.6 exceeds the

free space after cleaning shown in figure 4.5. These differences are either the result of

end-users either removing files that are no longer required, or instead moving important

data away from the no-backup volumes and onto a backed up storage system. However,

the impact of this self-motivated movement or deletion of data is very small compared

to the savings made through the cleaning studies.



70 Chapter 4 Practical Data Cleaning

4.5.2 File Size

Figures 4.7 and 4.8 show histograms of the file count and total bytes by file size, before

and after the first and second cleaning exercises, respectively. Since only a very small

proportion of the files were affected by the cleaning, the file count trends were the

same before and after cleaning, thus only one of these is shown in each of the figures.

In addition, both the pre-cleaning and post-cleaning distributions are normalised with

respect to the pre-cleaning total disk usage, in order to better highlight the profile of

the files that were removed during the cleaning.

In both cases, it is clear that only large files have been affected by the cleaning, primarily

those in the main peak between approximately 256 MB and 8 GB. This is an expected

result, since the 3D solution files were identified as a being typically large files within

that range of sizes, and the file size filter formed the basis of the cleaning method. It is

also clear that many 3D solution files remain on the volumes, and could potentially be

cleaned in the future once suitable time since their last modification has been allowed

to pass.

In addition, figure 4.7 shows some evidence of a small change in the mean file size of

3D solution files. The pre-cleaning distribution peaks at a slightly smaller file size than

the post-cleaning distribution, indicating that the smaller files were targeted while the

larger ones were not. This implies that there has been an increase in mean file size over

time. Similar results have also been observed in environments where data sets have been

examined over extended periods of time [2]. The effect is less noticeable in Figure 4.8,

since the majority of the smaller files had already been deleted as part of the first study,

and only a relatively short time had elapsed between the two.

4.5.3 File Modification Time

Figures 4.9 and 4.10 show histograms of the file count and total bytes by time since

last modification, before and after the first and second cleaning exercises, respectively.

Again, since the cleaning targeted only a small proportion of the files, the file count

trends were the same before and after the execution, thus only one is shown in the

figures. Likewise, the post-cleaning disk usage distribution is normalised with respect

to the pre-cleaning total disk usage, again to highlight the profile of the files that were

removed.



Chapter 4 Practical Data Cleaning 71

0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

0! 8! 128! 2K! 32K! 512K! 8M! 128M! 2G! 32G!

File Count and Disk Usage by File Size (Bytes)!

File Count! Disk Usage! Disk Usage (Clean)!

Figure 4.7: File count and disk usage by file size (first cleaning exercise).

0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

0! 8! 128! 2K! 32K! 512K! 8M! 128M! 2G! 32G!

File Count and Disk Usage by File Size (Bytes)!

File Count! Disk Usage! Disk Usage (Clean)!

Figure 4.8: File count and disk usage by file size (second cleaning exercise).



72 Chapter 4 Practical Data Cleaning

0%!

10%!

20%!

30%!

40%!

50%!

<1d! 1d! 4d! 16d! 64d! 256d! 2.8y! 11.2y!

File Count and Disk Usage by Last Modification Time!

File Count! Disk Usage! Disk Usage (Clean)!

Figure 4.9: File count and disk usage by time since last modification, before and after
the first cleaning exercise.

0%!

10%!

20%!

30%!

40%!

50%!

<1d! 1d! 4d! 16d! 64d! 256d! 2.8y! 11.2y!

File Count and Disk Usage by Last Modification Time!

File Count! Disk Usage! Disk Usage (Clean)!

Figure 4.10: File count and disk usage by time since last modification, before and
after the second cleaning exercise.



Chapter 4 Practical Data Cleaning 73

The graphs show that only the older files were targeted by the cleaning. Obviously this

is another expected result, since the time filter was included in the cleaning method

specifically to select only the older files. However, both graphs show some very old files

still present after cleaning, since only the 3D solution files were selected for cleaning.

Figure 4.10 shows a greater proportion of newer files targeted, partly since the older files

were mostly removed during the first exercise, but also partly because of the difference

in threshold in the time filter. It is also notable that the shapes of the distributions are

quite different for the second study. This discrepancy relates to the missing snapshot

files for the first study, as mentioned previously. As such, direct comparisons between

the two graphs should be treated with caution, although the data is correct for each

figure individually.

4.5.4 3D Solution Files by Modification Time

Figures 4.11 and 4.12 show the cumulative total disk usage, and the component of

disk usage occupied by 3D solution files, before and after the first and second cleaning

exercises, respectively. In both cases, it is clear that only files older than 24 and 18

months, respectively, were deleted as part of the cleaning process. It is also clear that

significant savings were made in both cases, although a large proportion of the disk

usage across the volumes is still occupied by 3D solution files. This means that there

is still scope for savings to be made in the future, but in order to encompass more files

either more time would need to pass, or the time threshold would need to be reduced.



74 Chapter 4 Practical Data Cleaning

0%!

20%!

40%!

60%!

80%!

100%!

0!6!12!18!24!30!36!

Cumulative Disk Usage by Modification Time (Months)!

Total! 3D Solutions! Total (Clean)! 3D Solutions (Clean)!

Figure 4.11: Cumulative disk usage by time since last modification, before and after
the first cleaning exercise.

0%!

20%!

40%!

60%!

80%!

100%!

0!6!12!18!24!30!36!

Cumulative Disk Usage by Modification Time (Months)!

Total! 3D Solutions! Total (Clean)! 3D Solutions (Clean)!

Figure 4.12: Cumulative disk usage by time since last modification before and after
the second cleaning exercise.



Chapter 4 Practical Data Cleaning 75

4.6 Discussion

The results presented thus far show that the methodology was greatly successful in

cleaning Airbus file systems. This section discusses the implications of the methodology

and results, both for Airbus and for the wider engineering context.

4.6.1 Impact on Storage Systems

Both of the cleaning exercises proved to be highly successful, in that they each resulted

in substantial savings in disk space. Figures 4.6 and 4.12, in particular, show that

significant disk space was freed on many of the volumes, and that these savings were

achieved without affecting the majority of files, by only targeting old 3D solution files.

Since these files are only an intermediate stage in the workflow, it is highly unlikely that

they will ever be needed in the future.

In addition to the savings provided through the data cleaning, the analysis used in

preparation and execution of the methodology allow for the prediction of the time re-

maining until volume fullness. Such a prediction assumes that there are no changes

to the HPC system, workflow, or applications responsible for data creation. Maintain-

ing an accurate value for volume fill rate allows administrators and managers to plan

cleaning work and/or the installation of further storage resources as necessary. Given

the on-going nature of data production in engineering environments, it is crucial that

sufficient capacity is always made available for new results.

Although the cleaning method has proven itself very effective in removing unwanted

files and clearing disk space for new results, there is a limit to the sustainability of this

approach. Only a portion of the overall data generated, namely the 3D solution files, are

removed through cleaning. As time passes, and more cleaning exercises are undertaken,

the proportion of disk space occupied by other file types, such as input files, log files, and

post-processed outputs, will become progressively greater. This will lead to a reduction

in the effectiveness of the cleaning methodology, yielding diminished savings in disk

space as the 3D solution files occupy a shrinking proportion of the total disk space.

In the same way that it was possible to predict the time to volume fullness, it is possible

to estimate the time until the volumes are filled with files that cannot be cleaned by the

methodology outlined in this study. Solution files currently account for 69.2% of all new

data, and storage is currently filled a mean rate of 3.3% per month. Combining these

figures, the net fill rate accounting for the cleaning of solution files is (1 - 0.692) * 0.033

= 1.02% per month. After the second cleaning exercise the no-backup volumes already

contained 33.1% non-solution files, so at a net fill rate of 1.02% per month, the volumes

will be completely full of non-solution files in 65.6 months (approximately 5.5 years).



76 Chapter 4 Practical Data Cleaning

This represents a significant potential extension to the service lifetime of the no-backup

storage systems. However, in order to achieve the maximum service lifetime on the

no-backup volumes, cleaning will need to be performed progressively more often, and

the retention time for 3D solution files will need to be steadily reduced. There will

come a point where the retention time cannot be reduced any further, as good practice

requires that all necessary post-processing tasks must be completed before any solution

files are removed. Since the effectiveness of the cleaning method will diminish with

time, the available space for new data will also diminish over time, even with regular

cleaning. It follows that although the theoretical remaining service life for the no-backup

systems is 5.5 years, practical considerations will reduce this value. The magnitude of

this reduction will depend on the minimum retention time limit, and on the minimum

storage volume that could support on-going data production.

It is also important to note that the estimates made throughout this report assume a

constant rate of data production, which would be affected by any changes in HPC usage

policy or HPC capabilities. Any changes in HPC usage, capabilities or workflow will

thus require a re-evaluation of data production rates and the proportion of 3D solution

files, in order to revise the time-to-fullness and service life estimates.

4.6.2 Cost Implications

Although the cost of disk-based storage devices has fallen greatly in recent years, storage

on an industrial scale remains a non-trivial expense. Overheads such as management and

maintenance costs, supplier costs, and running costs all add together to make storage

costs much greater than the cost of disks alone. Tangentially, there are also environmen-

tal consequences to adding more storage systems, in that such an action requires more

energy, thereby increasing the carbon footprint. It follows that although disk drives are

relatively cheap, this is no reason to be wasteful or profligate. The data cleaning work

demonstrated in this report represents significant cost savings through the improved

efficiency and prolonged service life of existing storage systems.

Anecdotally, it was commented during discussion with Airbus managers and end-users

that saving disk space also implies cost savings through the time spent by engineers

trying to find sufficient space for their results. It emerged that although the suggestion

may sound somewhat trivial, if an engineer must spend one minute per job to find

a suitable storage location, then the cleaning already completed will have more than

justified the funding for this research. Considering the future usage of the cleaning

method too, it is clear that this research project has been highly successful.



Chapter 4 Practical Data Cleaning 77

4.6.3 Methodology Evaluation

Perhaps the key success of the cleaning approach demonstrated is the ease with which

it can be applied. Although more sophisticated analysis was used in the development of

the rules, the resulting selection and deletion can be achieved using only basic command

line instructions, and there is no need to repeat any of the analysis work prior to execu-

tion. As explained in the introduction, the development of a cleaning methodology that

required only “minimal human input and interaction” was one of the key goals for this

work, and this goal has certainly been achieved.

One limitation of the methodology is that it relies heavily on the proportion of total

bytes occupied by 3D solution files, and their identification through file naming conven-

tions. A similar proportion of bytes occupied by solution files has been found in other

environments where CFD analysis is prevalent [33]. There is no guarantee that naming

conventions will be utilised elsewhere, but it is certainly likely that larger-scale envi-

ronments will launch jobs through similar submission tools. As such, the methodology

is likely to be of relevance to other environments using extensive CFD. However, some

re-evaluation of the specific parameters and identification methods will be necessary,

and a full analysis of the data would certainly be prudent.

Since the methodology is so heavily based on the 3D solution files, the applicability of the

method to other environments also depends on the retention policies for this file type.

The methodology was built around the assumption that these files are typically only

an intermediate file in the larger workflow, and that the key results are those obtained

through the post-processing stage. There are some cases where long-term retention of

solutions is essential, such as aviation certification, where all data must be kept for the

lifetime of the aircraft programme. Since the cleaning method removes these files, care

must be taken to separately identify and handle any data that may require longer term

retention. This process may be aided by the inclusion of additional metadata fields, the

extraction and analysis of which are the subject of further work.

However, even if any of the deleted files were to be required in the future, the file sys-

tem still holds all of the input, output and log files used and created as part of the

same workflow. Given the original input files to the job, it should in theory be possi-

ble to regenerate the deleted data as necessary. It should be noted that the nature of

numerical methods in high performance computing may result in some numerical dif-

ferences between results, even if the engineering implications for the data are the same.

In addition, any differences in the architecture of the HPC systems may lead to differ-

ences in the speed of computation and the number of iterations required for numerical

convergence. These issues, and their implications for data regeneration, present some

interesting challenges for further research, but are beyond the scope of this study.



78 Chapter 4 Practical Data Cleaning

4.7 Conclusions

In conclusion, this chapter has demonstrated the development and execution of a clean-

ing methodology that provides significant savings in disk space on a particular group of

file system volumes. Two separate cleaning studies yielded savings of 21.1 TB (15.2%)

and 37.5 TB (27.5%), showing that substantial disk space can be cleared by remov-

ing only files that are no longer required, thus making more effective use of existing

resources. In addition, it was demonstrated that it is possible to make accurate predic-

tions of the savings that could be made at any given time and the time remaining before

the volumes become completely full. It was estimated that based on the current rate

of data production, the cleaning method could effecively extend the life of the existing

storage systems by up to 5.5 years. Ultimately, the volumes will still become full, and

more capacity will need to be added, as the method targets only a particular subset of

the stored data. However, it is still clear that the cleaning method provides a signifi-

cant practical benefit, and will lead to a substantial extension in the service life of the

examined volumes.



Chapter 5

Additional Metadata

Chapters 3 and 4 demonstrated that valuable metadata exists within file systems, and

can be used to make significant improvements in data management, particularly in data

cleaning. These studies were based on file system index-node metadata, which is readily

available and easily accessible. However, in a highly computational environment such

as engineering design, there are other sources of metadata, such as log files and naming

conventions, which may be able to provide more information.

This chapter presents research into the identification and extraction of metadata from

computational log files and naming conventions, again within the context of file systems

supporting aerodynamics at Airbus. The focus was on obtaining useful information

from these sources and associating it with the 3D solution files identified in chapter

3 and targeted for cleaning in chapter 4. The subsequent analysis then considered the

availability of metadata, particularly in terms of the proportion of data for which it could

be found and associated. It also considered the nature of trends and distributions in the

metadata values, and linked these findings to relevant characteristics in aerodynamics

and engineering design.

It was found that metadata availability varies depending on the specific details, but

metadata could be identified, extracted, and associated with a significant proportion of

the data. Log file metadata was found for 55.3% of the solution files, and 80.3% by bytes,

corresponding to 53.7% of the overall bytes stored on the file system volumes examined.

The availability of metadata from naming conventions was much more variable, but was

still present for much of the overall data in many cases.

These findings are particularly useful in better describing existing data, and may be

applicable anywhere that exhibits highly automated data production. The extracted

metadata may be used to help improve data management practices by better under-

standing the data purposes and contexts.

79



80 Chapter 5 Additional Metadata

5.1 Introduction

The engineering design process makes extensive use of high performance computing

(HPC), and is responsible for the production of large volumes of data. These data must

be stored, managed, and shared across worldwide networks, and demonstrate some no-

tably unique characteristics, particularly in terms of file size and retention requirements.

Previous work in file system metadata [62] and practical data cleaning in engineering

design [61] demonstrated that generic and readily accessible file system metadata at-

tributes can be used to develop effective data management methods, yielding significant

time and cost savings, and extending the life of existing storage.

Beyond the basic hierarchy and index node attributes (e.g. file size, access time stamps,

permissions, etc.), the engineering data examined in this thesis are essentially unstruc-

tured. There are no detailed schemas, formal rules for data identification and tagging,

or well-defined groupings or collections of related files. At best, there are some recom-

mended conventions for the naming of files, some commonly used ways of organising

closely related data, and some fairly regularly produced log files that may contain use-

ful information if suitably processed. The data are thus semi-structured, meaning that

although fundamentally unstructured, there are some structural elements that may be

present in a meaningful proportion of cases.

File systems supporting HPC systems, particularly in industrial-scale engineering en-

vironments like Airbus, contain data that is largely produced computationally as part

of larger workflows. The processes responsible for data creation are largely automated,

thus semi-structural characteristics may be present in a significant enough proportion

of the data to be useful to data management methods. This chapter examines file nam-

ing conventions and log files in order to extract metadata describing both content and

computational characteristics, and discusses the use of these attributes to develop more

complex data management methods. Any additional metadata may be particularly use-

ful in enhancing data search and retrieval, and also data cleaning. These were two of

the key challenges outlined in chapter 2.



Chapter 5 Additional Metadata 81

5.2 Industrial Context

This research into additional sources of metadata was undertaken at a single site at

Airbus, a leading aircraft manufacturer, specifically on a group of file systems support-

ing HPC for aerodynamics. The files examined were predominantly aerodynamic files

pertaining to the computational fluid dynamics (CFD) analysis undertaken as part of

the aerodynamic design process. The file systems examined are the same no-backup

UNIX NFS volumes studied previously in chapter 4, which serve as temporary storage

between data generation and more permanent storage on a backed-up system.

Due to the constant data production these volumes rapidly become full, whereupon data

must be archived or deleted as appropriate. The previous chapter showed how simple

file system metadata can be combined with knowledge of the working environment and

data lifecycle to develop a cleaning methodology to target unwanted data for archival

or deletion. It went on to deploy this methodology within Airbus and demonstrated

that significant savings in disk space can be made using only very basic information.

However, more sophisticated cleaning tools might be made possible through access to a

greater variety of context-specific metadata, such as the aerodynamic and computational

metadata examined in this chapter.

The CFD process responsible for the production of most of the data examined comprises

the analysis of the fluid flow over engineering components and assemblies under varying

flow conditions. This chapter considers the metadata that can be identified and associ-

ated with the 3D solution files, which are intermediate files containing full details of the

fluid flow for the given conditions. These files will have been computationally generated

by CFD applications such as elsA [59] and Tau [23], and are usually subjected to further

post-processing in order to extract key values such as the overall forces acting upon the

designed object.

Each file type in this workflow may be tagged with a variety of metadata fields, including

project information, aerodynamic parameters and computational values. This chapter

primarily considers aerodynamic and computational metadata, and focuses on the 3D

solution files, since these account for the greatest proportion of the overall disk space.

It would be interesting to consider more file types and metadata fields; to track the

parent-child relationships between files; and to consider the shared or total metadata

for larger collections of related files. However, these goals are beyond the scope of the

research described in this thesis.



82 Chapter 5 Additional Metadata

5.3 Methodology

This section describes the methodology for associating log files with 3D solution files,

extracting metadata from these log files for mapping to the solution files, and then

extracting further metadata from file names based on known naming conventions. The

work is based on file system snapshot data acquired for previous work in file system

cleaning [61], although an additional scan was required to parse specific log files.

5.3.1 Log File Identification and Filtering

A common convention across many environments is the use of file type suffixes to indicate

the type of data contained in a suffix. Although not typically enforced by the file system,

the presence of well-known file type extensions is often sufficient to identify the likely

type of content. For the purposes of this chapter, files using the common file name suffix

.log were deemed to be log files and were treated accordingly.

However, since the .log suffix is a rather broad file type, the selection of all .log files

yielded a large number of files that did not pertain to the production of 3D flow solution

files. Since only the log files relating to solution files were of interest for this research,

two types of filter were applied to the initial selection. The first ensured that only log

files with a given proximity to a solution file were included in the analysis. Preliminary

analysis revealed that solution files are nearly always stored in a subdirectory (often

named /sol/ or /solutions/) below the parent directory to the log files of interest, so

this observation was used as the basis for the proximity filter.

The second filter excluded log files with common names that are known to pertain to

other types of work, most often the post-processing of solution files into final results. In

order to implement this filter, a list of substrings and regular expressions corresponding

to large groups of log file names was gradually built up, until nearly all of the log files

could be identified as more specific subtypes. The substrings and regular expressions

were manually filtered to include only those corresponding to the creation of flow solution

files, as these were the only types of interest.

5.3.2 Flow Solution Identification

Flow solution files do not use a simple suffix to denote their type. Instead, these files

follow a naming convention that allows the file name to contain a name, a component

that indicates that the file is a flow solution, and the number of iterations used to

compute the data. The name component may contain information about the particular

geometry, mesh and flow conditions used to create the solution, as this allows quick

visual identification of particular solutions in larger collections.



Chapter 5 Additional Metadata 83

For example, for a solution file named A123V3_A0_M83.pval.1337, it would be reason-

able to expect that the corresponding model would be named A123V3 and the CFD

solver would have run for 1337 iterations before reaching the desired convergence. It is

also possible to extract the aerodynamic flow conditions. The component A0 provides

α, the angle of incidence of the model to the direction of the fluid flow. In this case,

the model was aligned with the direction of fluid flow. The component M83 refers to

the Mach number, the free-stream velocity of the fluid flow with respect to the speed

of sound; in this case M = 0.83. Although this is just one example of extracting aero-

dynamic data from the file name, the actual methodology used was very similar, and is

considered in more detail in subsection 5.3.5.

This naming convention allowed solution files to be identified using the regular expression

“\.pval\.d+$”. The end of the file name was explicitly specified in the expression, as

this ensured that similarly named files, such as .dat, .tar and .tar.gz files were

excluded from the selection. Although the type content for such files may actually be

the same, it was much simpler to simply exclude this very small proportion of files than

to try to perform more detailed analysis on the internal content of such container types.

5.3.3 Log-Solution Association

Solution files can be directly referenced by log files, in which case an explicit association

can be made between the log file and the solution file. An explicit association is a strong

basis for a relationship between a log file and a solution file. For example, a log file may

contain a line such as the following:

Copying back final output /sol/A123V3_A0_M83.pval.1337

This indicates that the log file in question is the parent to the mentioned solution file,

and could form the basis for an explicit association between the two files.

Alternatively, if explicit associations cannot be made between solution files and log files,

implicit associations can be made if one or more solution files are present in a subdirec-

tory to the parent directory of one or more log files. This is a much weaker association

than the explicit referencing of solution files in log files, but the computational data gen-

eration means that files are typically grouped in the same manner. Care must be taken,

particularly where there are multiple log files and multiple solution files, but implicit

association provides an alternative to explicit association where the latter is impossible.

Early testing revealed that the explicit association method provided only very limited

coverage of the data, providing the additional metadata for only 5.24% of the solution

files, or 7.54% when weighted by file size. The implicit approach demonstrated much

better coverage, providing additional metadata for 57.39% of the solution files, and

80.28% when weighted by file size. Although the more accurate explicit association



84 Chapter 5 Additional Metadata

method would be the desirable implementation, the coverage of the data was clearly

insufficient to provide a meaningful representation of the extra metadata. As such, the

implicit approach was selected as the method of association for the remainder of the

research.

5.3.4 Log File Metadata Extraction

Each log file was parsed line by line, using regular expressions to check for the presence

of predetermined fields of interest, and extracting the values accordingly. The fields

targeted for extraction were as follows:

CPU Cores: The number of CPU cores requested for the job upon submission. Not

all of these cores are necessarily used, which will have an impact on the reported CPU

time. Knowledge of the number of CPU cores is useful for capacity planning and research

into scheduling algorithms, but also gives a one-dimensional view of the size of the job

responsible for data creation.

Execution Time: Also known as the wall time, this is the literal time elapsed between

the start and end of the job, excluding any time spent queueing. The wall time has a

strong impact on the user, more so than the CPU time, since this is the actual time

taken for their job to return the results.

CPU Time: The CPU time is the total amount of time used by all of the CPU cores,

and is a measure of the computational cost of the job. Due to the potential discrepancy

between the requested and actual number of CPU cores used, the compute time does

not necessarily equal the number of cores multiplied by the wall time. In order to study

this effect, the latter value was also calculated, and a direct comparison made.

It is common practice for multiple solution files to be created by the same computa-

tional job, for example when examining the effect of varying a particular parameter on

the flow solution. The log files created by such jobs thus contain metadata that applies

to the set of resulting solution files, rather than to any one in particular. It is not pos-

sible to calculate the exact distribution of a metadata field value over multiple solution

files, but it is possible to make an approximation by assuming that the solutions were

created sequentially. In this case, the number of CPU cores is unaffected, and the CPU

time, wall time, and block time can be divided by the number of solution files to give

the assumed mean values for the batch job.



Chapter 5 Additional Metadata 85

5.3.5 File Name Metadata Extraction

The file names for 3D solution files often contain valuable information, particularly

regarding the aerodynamic flow parameters used in the simulation, but also the number

of computational iterations required to achieve the desired level of convergence. The

following parameters were examined:

Mach Number (M): This is the “non-dimensional ratio of the characteristic speed

of the flow to the speed of sound” [18], and represents the degree of aerodynamic com-

pressibility. A typical airliner will not usually exceed the critical Mach number, which

is the “free-stream Mach number at which sonic flow is first achieved on the airfoil sur-

face” [6], as the effects of sonic flow “may be such as to cause the aircraft to become

uncontrollable” [39]. As such, typical values for the primarily civil aviation context at

Airbus will fall within the range 0.7− 0.9, although some experiments will undoubtedly

have taken place outside this range.

Angle of Attack, Angle of Incidence, Alpha (α): This is the “angle between an

airfoil or wing and the free-stream flow velocity vector” [18]. The lift produced by an

airfoil or wing usually increases quite linearly up to a given maximum lift, which occurs

at the stalling angle, typically in the range 10◦ − 15◦, beyond which the lift decreases

rapidly due to aerodynamic stall [39].

Lift Coefficient (CL): This is a non-dimensional quantity representing the lift force

generated by an object, and is often used in aerodynamics in place of the actual lift force

due to the variation of the latter with other parameters, such as velocity and air density

[39]. Lift coefficients for typical wings and airfoils rarely exceed about 2, and are often

rather smaller.

Number of Iterations: The nature of the numerical methods used in CFD analysis

requires the process to be repeated over a number of iterations until the desired level

of convergence is achieved, assuming that such a solution can be found. The number of

iterations is notable as a key component in the regular expression used to identify 3D

solution files.

Project(s): This attribute refers to the presence of any high-level Airbus aircraft

programmes (e.g. A320, A350, A380, etc.) that are present in the complete path.

The key difference between this attribute and the others is that an unknown number

of valid project fields might be detected in the path. The most common scenario is

that an umbrella project will have a set of dedicated file system volumes, each of which



86 Chapter 5 Additional Metadata

may contain data pertinent to various spin-off projects. This attribute thus contains

n-number of fields, which are assigned numerically ascending names upon detection (i.e.

project1, project2, project3, etc.). The detection works from left to right, thus the

fields will always be sorted by their depth in the hierarchy, from top to bottom.

5.3.6 Data Presentation

Data distributions are generally shown as normalised histograms and CDFs (cumulative

density frequency), weighted by both file count and total bytes, and plotted as line

graphs. Any exceptions to this convention are explained as and when they occur. Some of

the trends use power-of-two bins, although others use linear bins, depending on the range

and nature of the particular attribute. For the aerodynamic attributes in particular,

scales have been selected to best demonstrate the natural groupings evident in the data.

Table 5.1: Availability of Additional Metadata Attributes. The table shows a sum-
mary of the proportions of files and bytes for which additional metadata was successfully
extracted and associated with 3D solution files. As explained in section 5.4.1, the “ab-
solute” column is calculated with respect to all files and bytes; the “relative” column
with respect to all 3D solution files; and the “implicit” column with respect to all 3D

solution files for which a suitable log file could be associated.

Attribute
Absolute (%) Relative (%) Implicit (%)

Files Bytes Files Bytes Files Bytes

CPU Cores 0.12 53.68 55.26 80.26 100.00 100.00

Wall Time 0.12 53.68 55.26 80.26 100.00 100.00

CPU Time 0.12 53.68 55.26 80.26 100.00 100.00

Mach Number 0.14 41.51 65.25 62.06 56.64 58.60

Angle of Attack 0.04 20.01 21.08 29.91 25.33 31.91

Lift Coefficient 0.15 42.44 70.10 63.45 71.41 62.96

Iterations 0.20 66.79 96.29 99.85 100.00 100.00

Projects 0.18 61.25 86.81 91.57 87.00 91.80



Chapter 5 Additional Metadata 87

5.4 Results

This section examines various metadata attributes, their availability in the actual data

set, and the trends that can be observed in their characteristics.

5.4.1 Metadata Availability

Although the metadata attributes are of significant value, one of the key factors to

examine is their availability. In considering large collections of files in this way, any

additional metadata must be available for a significant proportion of the actual data

in order to be particularly useful. Given the unstructured (or at best, semi-structured)

way in which the files are stored, it is unlikely that extra metadata could be extracted

for every file, or even every solution file, thus calculation of the additional metadata

availability is imperative.

Defining availability as the proportion of files for which a particular attribute could

be identified, there are three frames of reference that could be used. Dividing the

number of files with the desired attribute by the total number of files in the file system

yields an absolute value. Alternatively, dividing by the number of solution files yields

a relative value, of significance because a perfect scenario would always yield 100%

availability if calculated this way. A similar implicit relative calculation could also be

made with respect to the number of implicitly-matched solution files, i.e. those for which

appropriate log files have already been identified and associated. This final option yields

100% where log file data can be found, and enables the relative comparison of availability

between attributes from different sources, such as log files to naming conventions.

In addition, each frame of reference can be calculated in terms of the number of files

or in terms of the total number of bytes. As demonstrated previously, solution files in

the source data account for a large proportion of the total bytes, but only a very small

proportion of the files [62]. Calculating metadata availability both by file count and

total bytes provides an extra view of the results, highlighting any potential anomalies

caused by a skew in the file size distribution.

Lastly, the projects attribute, as already discussed, contains a variable number of fields

for each file, depending on the complete file path and any project names identifiable

within. In the calculation of availability for this attribute, files with at least one project

field were counted, but any superfluous project fields were ignored. Availability for

projects thus applies to the existence of at least one project field.

Table 5.1 shows the availability of each of the extracted attributes, calculated for the

absolute, relative, and implicit frames of reference, in terms of file count and total bytes,

as explained previously. The absolute availability shows that there is much variation in

availability between different attributes, from about 20% to nearly 70% by bytes. It is



88 Chapter 5 Additional Metadata

worth noting that angle of attack and lift coefficient are never both present for the same

file, since the purpose of CFD analysis is typically to determine one of these two values.

Due to this mutual exclusivity, it is perhaps better to consider these attributes together,

yielding much more favourable availability values. With this in mind, the extraction

of aerodynamic attributes (Mach number, angle of attack and lift coefficient) from file

names appears generally to have been very successful.

The attributes extracted from log files (CPU cores, wall time, CPU time) show consistent

availability, and the 100% values in the implicit relative availability indicate that the

suitable log files contain all of the desired information when they can be identified.

In relative terms this means 80% of the solution data (by bytes) can be tagged with

extra computational metadata, and in absolute terms this still corresponds to 54% of

the bytes. These results demonstrate that the methodology for extracting additional

metadata from log files is highly successful, especially considering the fundamentally

unstructured nature of the data.

The explicit association method discussed earlier in section 5.3 would be a significant

improvement to the confidence that can be placed in the extracted metadata, but only

if similar availability could be achieved. Since this research deals with existing data, in

which explicit references appeared to be only very sparsely present at best, there is little

that can be done to further this approach. This demonstrates that there is tremendous

value in storing this type of association information along with the relevant metadata.

5.4.2 Computational Attributes

Computational attributes such as CPU cores, CPU time, and wall time describe the

computational resources that were used to create a particular solution file. These at-

tributes relate to the previous work in data cleaning in that they illustrate the cost of

data creation. As such, these fields could potentially be very useful in the future devel-

opment of more sophisticated data cleaning rules. However, this chapter considers only

the availability and nature of these additional metadata.

The number of CPU cores is selected before a job is submitted, depending on best

practice policy, and on the perceived size and urgency of the work. Histograms of the

file count and total bytes by number of CPU cores are shown in figure 5.1. The number

of CPU cores appears to fall within the range of 32 to 512 cores, with the peak at around

128 to 256 cores. This is to be expected given the nature of the work and the need to

return results fairly promptly. Interestingly, the distribution for total bytes appears to

be shifted slightly towards larger numbers of CPU cores. The difference is quite small,

but this would suggest that jobs that are expected to be particularly large are allocated

more CPU cores.



Chapter 5 Additional Metadata 89

2! 4! 8! 16! 32! 64! 128! 256! 512! 1024!
0%!

10%!

20%!

30%!

40%!

50%!

60%!

!
!

Number of CPU cores!

File count and total bytes by number of CPU cores!

Count! Bytes!

Figure 5.1: Histograms of file count and total bytes by number of CPU cores. Power-
of-two bins on a logarithmic scale, based on metadata availability of 55.25% metadata

by files and 80.26% by bytes, relative to the overall collection of 3D solution files.

2s! 1m! 30m! 1h! 6h! 12h! 1d! 2d! 7d!
0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

 
 

Wall time (seconds)!

File count and total bytes by wall time!

Count! Bytes!

Figure 5.2: Histograms of file count and total bytes by wall time. Power-of-two bins
on a logarithmic scale, based on metadata availability of 55.25% metadata by files and
80.26% by bytes, relative to the overall collection of 3D solution files. In order to
improve comprehension over the large time scale, tick marks on the x-axis correspond
to powers-of-two, while the vertical grid lines are placed at more recognisable locations,

in minutes, hours, days, etc.



90 Chapter 5 Additional Metadata

512s! 30m! 1h! 6h! 12h! 1d! 2d! 1w! 2w! 1m! 3m! 6m! 1y! 2y!
0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

!
!

CPU time (core seconds)!

File count and total bytes by CPU time!

Count! Bytes!

Figure 5.3: Histograms of file count and total bytes by CPU time. Power-of-two bins
on a logarithmic scale, based on metadata availability of 55.25% metadata by files and
80.26% by bytes, relative to the overall collection of 3D solution files. See the caption

of figure 5.2 for an explanation of the x-axis ticks and grid lines.

Figure 5.2 shows the histograms for file count and total bytes by execution time (wall

time). The results show that most jobs are shorter than about one day, and many are

shorter than six hours, although these figures do not take into account the time spent

queueing. Although scheduling is beyond the scope of this chapter, the execution times

are typically sufficient to meet the demands of a one-day turnaround time for CFD

work (i.e. results to be returned within one day, in order to allow the greater workflow

to progress). This is a common objective in aerodynamics, especially if results can be

returned overnight.

As with figure 5.1, the distribution of total bytes appears to be shifted slightly towards

longer execution times when compared with the distribution of solution files. Again,

this indicates some evidence of some larger jobs taking longer to execute and produc-

ing slightly larger files. The overall difference is still quite small, but is particularly

noticeable for the jobs with an execution time of 6 to 24 hours. This implies that this

group of files corresponds to a different type of work, perhaps a larger component or

assembly of components that requires longer to compute and produces larger files by

virtue of covering a larger 3-dimensional space. Alternatively, it is possible that these

files correspond to a different fidelity, and simply consider the same type of components

and space but at a finer granularity.

It could be argued that the CPU time is a better single measure of computational cost,



Chapter 5 Additional Metadata 91

since it takes into account both the number of cores and the time for which they were

used. The distributions of file count and total bytes by CPU time are shown in figure

5.3. Again, the distribution of bytes appears to correspond to slightly higher values for

CPU time than the file count. However, the difference is again very small, and unlike

figure 5.2 there is no obvious grouping of larger and more computationally expensive

files. This would suggest that the grouping previously observed in figure 5.2 may be the

result of using fewer CPU cores.

As mentioned previously, the CPU time refers to the actual time utilisation of all CPU

cores used for a particular job. In contrast, it is possible to calculate an alternative

value by multiplying the execution time by the number of cores. This instead refers to

the time for which CPU cores were allocated to the job, and thus could not be used by

another job even if they were not being fully utilised. The distributions of file count and

total bytes by this calculated value are shown in figure 5.4. It is clear that the ranges

of values are similar to those shown for CPU time in figure 5.3.

The distribution of bytes is again noticeably shifted towards larger values in calculated

CPU time than file count. The discrepancy between file count and total bytes is also

substantially more pronounced than in the reported CPU time (figure 5.3). The dis-

tribution of file count is skewed in favour of lower calculated CPU time values, while

the distribution of total bytes is skewed in favour of larger values. This would imply, as

formerly suggested, that some larger files may have required greater CPU resources for

creation, possibly due to differences in the size of the model geometry or alternatively

due to the granularity of the mesh.

Lastly, the distributions of file count and total bytes by the number of iterations run by

the job to achieve results with convergence to a given tolerance are shown in figure 5.5.

The results show almost identical profiles for files and bytes, indicating that the number

of iterations does not affect the size of the output files. It would be reasonable to expect

that a tighter tolerance would not require the creation of larger files, since no additional

data is required. Moreover, the single peak distributions imply that no changes to the

required tolerance are present in the data, meaning that the number of iterations simply

varies log-normally.

On the one hand it would be intuitive to expect that within one particular field broadly

conducting the same type of work, jobs requiring more CPU resources should produce

more data. On the other hand, two almost identical jobs may require different CPU

resources simply due to the effects of aerodynamics on the convergence. This view is

supported by figure 5.5, which shows very similar file count and total bytes distributions

with the number of iterations. However, figures 5.1, 5.2, 5.3 and 5.4 do show some

evidence to support the former argument in the distributions with CPU cores, wall

time, and reported and calculated CPU time. Overall, there is clearly some truth in



92 Chapter 5 Additional Metadata

512s! 30m! 1h! 6h! 12h! 1d! 2d! 1w! 2w! 1m! 3m! 6m! 1y! 2y!
0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

!
!

Calculated CPU time (core seconds)!

File count and total bytes by calculated CPU time!

Count! Bytes!

Figure 5.4: Histograms of file count and total bytes by CPU cores times wall time.
This is similar to CPU time, but refers to the time CPU cores were allocated to a
job, rather than the time for which they were actually used. Power-of-two bins on
a logarithmic scale, based on metadata availability of 55.25% metadata by files and
80.26% by bytes, relative to the overall collection of 3D solution files. See the caption

of figure 5.2 for an explanation of the x-axis ticks and grid lines.

128! 256! 512! 1K! 2K! 4K! 8K! 16K! 32K! 64K! 128K! 256K! 512K! 1M! 2M!
0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

 
 

Number of iterations!

File count and total bytes by number of iterations!

Count! Bytes!

Figure 5.5: Histograms of file count and total bytes by number of iterations. Power-
of-two bins on a logarithmic scale, based on metadata availability of 96.29% by files

and 99.85% by bytes, relative to the overall collection of 3D solution files.



Chapter 5 Additional Metadata 93

both arguments, and the more subtle groupings to the former simply suggest that the

indirect effects of CPU resource usage on output file sizes are relatively minor.

5.4.3 Aerodynamic Attributes

The aerodynamic attributes (angle of attack, lift coefficient and Mach number) were

all extracted from the file names, using regular expressions to impart information from

common naming conventions. These metadata thus describe the nature of the data

more in terms of the content, in contrast with the computational metadata that instead

provide information about the cost of computation.

Figure 5.6 shows the distributions of file count and total bytes by angle of attack. It is

clear that some very detailed experiments are conducted across a range of angles and

at a very fine granularity. However, it is clearly much more common for such polar

experiments to be conducted at a granularity of one or two degrees, as the results show

noticeable peaks at these locations. This would certainly be a logical best practice, since

detailed polars may have their uses, but are unlikely to be necessary in all cases.

In addition, there is some evidence that higher angles of attack correspond to larger file

sizes, although the effect is very minor. It is certainly plausible that higher angles of

attack occur in cases where more geometrically complex high-lift devices are included,

and that the increased complexity corresponds to finer granularity, leading to increased

file sizes.

Figure 5.7 shows the distributions of file count and bytes with Mach number. It is very

clear that the majority of the solution files were computed for Mach numbers between

0.8 and 0.9, with the main peak at approximately 0.85. These values are typical for a

commercial aircraft in a cruising state, and are the expected result. Similarly to the angle

of attack, it is clear that Mach number values are often incremented by 0.1. However,

a finer level of detail can be observed from Mach 0.7 to 0.9. This is presumably to

examine the more subtle effects of different Mach numbers, but perhaps also in order to

find an optimum cruise speed. Lastly, there appears to be no relationship between Mach

number and file size, as the file count and total bytes distributions remain extremely

similar throughout the range.

Figure 5.8 shows the distributions of file count and bytes with lift coefficient. In this

case, the increments in lift coefficient appear to be less standardised. There are three

obvious groupings between 0.4 and 0.7, but there are also short gaps between these

groups. The reasons for this somewhat surprising result are unknown.



94 Chapter 5 Additional Metadata

0%!

5%!

10%!

15%!

20%!

25%!

30%!

0! 2! 4! 6! 8! 10! 12! 14! 16! 18!
Angle of attack (degrees)!

File count and total bytes by angle of attack!

Count! Bytes!

Figure 5.6: Histograms of file count and total bytes by angle of attack (degrees). Bins
of width 0.5◦ on a linear scale, based on metadata availability of 21.08% by files and

29.91% by bytes, relative to the overall collection of 3D solution files.

0%!

5%!

10%!

15%!

20%!

25%!

30%!

35%!

40%!

45%!

0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1.0!
Mach number!

File count and total bytes by Mach number!

Count! Bytes!

Figure 5.7: Histograms of file count and total bytes by Mach number. Bins of width
0.02 on a linear scale, based on metadata availability of 62.25% by file count and 62.05%

by bytes, relative to the overall collection of 3D solution files.



Chapter 5 Additional Metadata 95

0%!

1%!

2%!

3%!

4%!

5%!

6%!

7%!

8%!

9%!

10%!

0.0! 0.1! 0.2! 0.3! 0.4! 0.5! 0.6! 0.7! 0.8! 0.9! 1.0!
Lift coefficient!

File count and total bytes by lift coefficient!

Count! Bytes!

Figure 5.8: Histograms of file count and total bytes by lift coefficient. Bins of width
0.02 on a linear scale, based on metadata availability of 70.10% by file count and 63.45%

by bytes, relative to the overall collection of 3D solution files.

5.5 Discussion

This section discusses the implications of the methodology and results for industry,

some of the applications for which this research may be useful, and the limitations and

improvements which could be made to better support such tasks.

5.5.1 Applications

Perhaps the key success of this research is the fact that a substantial quantity of metadata

was successfully extracted from readily available sources. One of the key challenges

in managing large volumes of data is that it can be very difficult to determine useful

information about the content or value of different files. It is common for users to change

roles and responsibilities, or to leave companies entirely, and under these circumstances

it is particularly difficult to maintain knowledge about the purpose or content of data.

Extracting and associating the type of metadata examined in this chapter provides

exactly the type of information required to support more sophisticated data management

operations, and is not dependent on user knowledge.



96 Chapter 5 Additional Metadata

The combination of both aerodynamic and computational metadata is particularly useful

in providing multiple options for viewing, sorting and categorising the parent files. As

demonstrated previously, even basic file system metadata can be used to improve data

management practices [61]. Business-specific metadata such as the aerodynamic fields

examined in this chapter enhance the understanding of the data content. Similarly,

computational metadata help to describe the value or cost of creation. Combining these

metadata types provides greatly enhanced flexibility in drawing together these different

aspects of data description.

The availability of this metadata provides a means to compare two files that may appear

otherwise identical, particularly in terms of their inode metadata. This could be useful

in some circumstances, such as when deciding which of two seemingly identical files

should be retained and which should be deleted. Here, any additional information at

all could be invaluable, particularly the computational type of metadata extracted from

log files in this chapter , which describes the computational cost of data creation.

Additional metadata may also support data audit and exploration. On such a large scale,

it may be useful to be able to search for data relating to a particular project, or created

under certain flow conditions. The aerodynamic and project metadata extracted from

naming conventions may be very useful in identifying particular files in this way, and

could support improved data search and retrieval methods, and enhanced traceability

in auditing the provenance of particular files.

Furthermore, the additional metadata extracted from both log files and file names (along

with any other metadata sources that could also be integrated), may be used to produce

detailed data analytics. Managers responsible for high performance computing systems

and their associated storage systems may find it very useful to be able to examine,

in detail, precisely how the data on storage systems relates to the jobs. This cross-

examination of computing resources could help to develop a better understanding of

HPC usage, and support improved fair-share policies. This is particularly significant in

large scale industrial environments where the prioritisation of some tasks over others is

an especially complex interdisciplinary task, often requiring human intervention.



Chapter 5 Additional Metadata 97

5.5.2 Other Environments

Many other environments will also exhibit naming conventions and store similarly de-

tailed log files. It follows that these other environments may be able to extract similar

metadata in the same way as this chapter . The applicability of such a capability will

depend on the nature of the data. If it is similarly unstructured, stored on a file system

without a database, but exhibits similar structural characteristics, then extraction from

the sources discussed in this chapter may be very useful. In contrast, well-structured

storage systems may have no need for this type of metadata extraction, and the method-

ology would likely prove ineffective for totally unstructured data.

Overall, the usefulness of this particular methodology will depend on the nature and

structure of any naming conventions and log files. As mentioned previously, the process-

based data production in engineering design greatly improves the availability of this type

of metadata, so other environments exhibiting significant automation and repetition in

data production are likely to demonstrate the greatest success.

5.5.3 Limitations and Improvements

The metadata extracted in this chapter may be very useful for the many reasons already

discussed. It has also been shown that the methodology is quite effective in provid-

ing additional metadata for a significant proportion of the actual data. As such, the

methodology used in this paper provides a way to identify and associate metadata with

much of the data on existing file systems without troubling users for any input.

However, it would be much more logical to store such information explicitly upon data

creation. This could guarantee explicit references rather than implicit associations be-

tween data and metadata, and also provide information specific to individual files, rather

than needing to apply values retrospectively to larger groups. Eliminating the need for

these assumptions would greatly improve the accuracy and quality of the metadata.

Although storing metadata at the time of data creation is undoubtedly a fundamentally

stronger and more flexible approach, the retrospective methodology used in this chapter

still has tremendous value in that it can be used on existing systems. It may be much

more difficult to guarantee the quality or accuracy of the information retrieved, but

the ability to obtain useful metadata from existing systems provides a way to import

legacy data into newer, and potentially more intelligent and sophisticated, data storage

systems.



98 Chapter 5 Additional Metadata

5.6 Conclusions

This section outlines the key findings made by this research; makes recommendations

for the improvement of metadata storage in order to improve data management; and

outlines some potential research areas that benefit from this work in the future.

5.6.1 Summary

This research extracted a substantial quantity of useful metadata from naming conven-

tions and log files, which were then associated with a key file type (CFD 3D solution

files) accounting for the majority of bytes within the file system. It was found that

computational metadata from log files could be associated with 55% of these files, and

80% if calculated by bytes instead of by file count. The aerodynamic metadata from

naming conventions demonstrated more variable availability, ranging from 21% to 96%

by file count. The discovery, processing and tagging of files with these metadata pro-

vides greatly enhanced descriptive capabilities for these key files and their content, by

incorporating both business and computational information.

Analysis of the values extracted revealed the characteristics of the data in terms of the

computational resources used to execute the parent job, and in terms of the aerodynamic

parameters configured as CFD flow conditions. The aerodynamic fields showed patterns

corresponding to the types of sampling used in the configuration of larger parameter

sweeps or polars. The computational metadata showed the typical values used in the

setup of HPC jobs, but from the perspective of the resultant data rather than from the

jobs.

5.6.2 Recommendations

The following recommendations can be made to improve the quality and availability of

the types of additional metadata examined in this chapter :

• Data-Metadata Creation. Metadata tagging should be part of the main data cre-

ation process, since much of the desired metadata can be inherited from the parent

workflow. As with existing data creation, metadata tagging could be largely auto-

mated, but the additional knowledge capture would be invaluable for future data

management.



Chapter 5 Additional Metadata 99

• Data Collections. Relationships between input, intermediate and output files

should be detailed in a manifest, so that the collection of files may be managed

together. This would avoid the need for many of the assumptions made in this

chapter, thereby increasing the accuracy and certainty with which the information

may be interpreted.

• Metadata Storage. Although the semi-structured sources examined in this chapter

yielded useful results, the quality of the metadata would be greatly improved if

fields were stored in a more structured format. For example, an XML file could be

included for each collection of files in an unstructured storage system. This could

also contain manifest information for file-metadata linking.

5.6.3 Future Work

One of the key research areas that stands to benefit from this research and its recommen-

dations is that of graceful data degradation. Previous work demonstrated that simple

file system metadata can be used to guide data cleaning processes [61]. However, more

detailed metadata describing content and value could be used to extend this approach

into a more graceful degradation process. A more gradual cleaning process could utilise

compression techniques to reduce the size of data collections steadily over time, rather

than simply removing files after a predetermined time threshold.

Similarly, additional metadata and more structured storage techniques could be used

to help facilitate data regeneration. The solution files examined in this chapter are

only intermediate results in the larger workflow, and the input and output files remain

unaffected by the cleaning work demonstrated previously [61]. It follows that detailed

information regarding input files could be combined with knowledge of the expected

outputs to validate regenerated solution files. The regeneration of numerically identical

output files is problematic due to the uncertain nature of distributed numerical methods,

but the regeneration of suitably similar results for engineering purposes may be much

more achievable.

These areas of future research are considered in more detail in chapter 6, which draws

together the findings of all the studies conducted thus far. In particular, it delves into

more depth regarding their feasibility and provides a more holistic view of the impact

of the metadata findings discussed in each of the studies presented in this thesis.





Chapter 6

Discussion

Chapter 2 described the background, particularly the fields of data management, high

performance computing, and engineering design. Within the context of aerodynamic

engineering design at Airbus, chapter 3 then considered the characteristics and properties

of file system metadata in engineering design, and chapter 4 demonstrated how these

findings could be put to practical use in data cleaning. Following on, chapter 5 explored

the identification and extraction of additional metadata from other sources such as

computational log files and naming conventions.

The previous chapters each made their own findings and drew their own conclusions,

with some of the earlier observations forming the basis for later work. However, the

implications for some of these findings are broader than the individual studies, and

merit separate discussion in greater depth. This chapter draws together some of the

common thoughts and ideas presented in the previous chapters. It explores the feasibility

and potential usefulness of regenerating deleted data from original inputs. It discusses

the future of data management, particularly how the findings made thus far could be

integrated and implemented with existing concepts and technologies. Finally, it considers

the general applicability of the work carried out in this thesis to other environments

beyond engineering design at Airbus.

101



102 Chapter 6 Discussion

6.1 Data Regeneration

Previous chapters have stated that in high performance computing (HPC) environments,

it may be possible for deleted intermediate files to be regenerated from their original

input files, and the accuracy of the regenerated results verified against the original output

results. It is certainly possible to run the same experiment for the original input files,

but the verification of similarity or equality of the results presents many challenges. This

section discusses the latter.

6.1.1 Numerical Equality

The key issue in regenerating deleted intermediate files in this way is ensuring that

the regenerating data matches the original data. Intuitively, it would seem reasonable

to expect that identical data could be generated from the same inputs using the same

process. Although there may be circumstances where this is the case, the complexity of

many-core applications running on HPC systems means that this is much more difficult

in practice. The problem is that although regenerated results may be the same for all

practical purposes, this is not the same as being numerically identical.

For example, a simple way to compare the equality of two files may be to take a checksum

or hash sum of the file contents. If the hash matches, then it is fair to say with reasonable

certainty that the contents must also match. However, a very small difference between

the files should result in different hashes for the two files, since they are no longer exact

matches. The problem here is that the recreation of numerically identical results is very

difficult, but that even the smallest discrepancy will prevent verification in a hash-based

comparison.

Even in single-core computing, numerical inconsistencies can occur as a result of float-

ing point precision. In the many-core environment of a HPC system, numerical errors

can also be propagated from any inconsistencies in networking or synchronisation, as

processing messages in a different order may yield slightly different results. Numerical

errors such as these are unlikely to cause significant differences in the overall outputs.

However, even trivial inconsistencies will preclude the use of hash-based verification

methods.

Further numerical errors can be found in the convergence of a solution to a specified

tolerance in an iterative numerical method. Although convergence can guarantee that

a solution is no longer changing significantly with each iteration, it does not provide a

mechanism to verify that two independently executed experiments will converge on the

same value. Moreover, convergence to within a specified tolerance still only provides

equality to within that tolerance, and does not guarantee numerically identical results.

Again, this means that hash-based verification methods will be ineffective.



Chapter 6 Discussion 103

It is possible that a flow solution could be deliberately reduced in precision, considering

only the few most significant figures at any point. A hash sum of this reduced-precision

temporary data may be able to match data to within a reasonable tolerance, rather than

requiring an exact match. However, this may be computationally costly to implement

in practice, and still only mitigates mismatches caused by minor numerical errors and

discrepancies.

6.1.2 Computational Fluid Dynamics

Since the suggestion was that intermediate files could be regenerated, it may then be

possible to continue the workflow, execute any required post-processing, and compare

the regenerated final outputs with the originals. In cases such as computational fluid

dynamics (CFD), where the final outputs may only be a simple set of values, this final

value-based verification may be very straightforward. For example, if the final computed

values for the lift, drag and moment forces acting on a wing are equal, or even within a

predefined tolerance, then in practical terms the two results may be considered equal.

However, although the final outputs can be verified as equal, this still does not guarantee

any real similarity in the original and regenerated intermediate files. Verification of the

equality of some key values may be useful for some engineering purposes, but an entirely

different flow solution may be able to produce the same key values, so the visualisation

of the solution may appear to be very different for the regenerated case. It follows that

the regenerated data may be of limited usefulness if it can only be verified through these

key values.

Moreover, the type of aerodynamic problem being solved may complicate equality veri-

fication at a much more fundamental level. In predictable cases such as steady, laminar

flow, it would be reasonable to assume that regenerated results should be at least similar

to the original files. However, in unsteady or turbulent cases, the CFD is attempting

to model something inherently much less predictable, thus it is far less reasonable to

assume any similarity in the regenerated results.

The usefulness of regenerating data is thus highly dependent on the circumstance and

on the motivation. If it is possible to verify only key values in the output, then there

is no guarantee that a visualisation will demonstrate the same flow features. Neither

can it be guaranteed that any new experimentation will yield the same results from the

new data as it would from the original data. Any regenerated data is thus unlikely

to be fit for purposes such as certification, although it is perhaps equally unlikely that

any data pertaining to such a process would be intentionally deleted in the first place.

However, there are clearly some fundamental problems with the repeatability of CFD

experiments, and further work would be required to properly evaluate how these issues

could be mitigated.



104 Chapter 6 Discussion

6.1.3 Hardware and Software Evolution

Computer hardware is evolving rapidly, especially in high performance computing, which

benefits greatly from any improvements not only in compute power, but also thermal

and electrical efficiency. However this evolution comes at the price of consistency, since

changes in architecture and processing may alter the way in which numerical calcula-

tions are performed. This aspect affects the floating-point precision problems already

discussed.

Similarly, software is also changing fast, as new developments, algorithms and techniques

reveal better ways to accomplish the same tasks and many more besides. However, this

again causes problems with consistency, and two versions of the same software may

produce different results for the same problem. These effects may be subtle, but at the

cutting edge of technology may just as easily be very significant. This is particularly

true in CFD, where accurate turbulence modelling remains an on-going problem.

Hardware emulation may be able to mitigate some of the problems associated with data

regeneration on different hardware, although it may also impose a significant perfor-

mance penalty. Similarly, software virtualisation may provide a means to quickly roll

back to earlier software versions if more accurate data regeneration is required, although

again there may be some associated performance costs. As such, although hardware and

software versions pose some challenges, these may be less significant than the more fun-

damental aerodynamic and numerical issues already discussed.

6.1.4 Summary

In reality, regenerating data for intermediate files in a CFD context faces many chal-

lenges. Hardware and software versioning issues may be mitigated through emulation

and virtualisation. However, the deeper problems with floating point precision and the

more fundamental issues with unsteady and turbulent CFD cases still limit the viability

of regeneration as a useful tool. Nonetheless, regeneration may provide increased flex-

ibility, for example by enabling engineers to revisit previously deleted results, double

check final outputs, and run new experiments on the regenerated data. More work is

needed to assess the true extent of the limitations and challenges, but capturing more

metadata may be very helpful in studying and potentially solving these issues. In par-

ticular, describing the provenance of the data with metadata such as the exact model,

mesh, software version and settings, and hardware configuration used in data creation

would be critical to any detailed research in this area.



Chapter 6 Discussion 105

6.2 Future Data Management

This thesis has provided several findings that have implications for future data manage-

ment systems, particular in the chapters 4 “Practical Data Cleaning” and 5 “Additional

Metadata”. This section considers how these findings fit together, and how they may

be used to enhance current and future data management systems. Although it focuses

on the engineering design context in which most of this thesis has been based, it also

outlines the applicability of the findings to other environments.

6.2.1 Metadata

Metadata is a hugely valuable resource for data management methods, capable of de-

scribing and characterising data in many different ways. Chapter 3 “File System Meta-

data” showed the characteristics of file system metadata in engineering design; chapter

4 “Practical Data Cleaning” demonstrated how these metadata can be used to identify

and remove unwanted files; and chapter 5 “Additional Metadata” found and extracted

a variety of business and technical metadata from log files and file names. Most signifi-

cantly, this metadata extraction was all implemented using only general insight into the

environment and context, and without interacting with the end-users.

Finding meaningful and accurate ways to categorise and describe data is important to

the development of good data management methods. As mentioned previously, the most

accurate way to capture this metadata is by doing so at the time of data creation. In

highly computational data production, this metadata capture could easily be embedded

into the creation process. Many useful fields, beyond those captured for this thesis,

could be identified from the workflow. Moreover, many of these could be intercepted

or extracted from existing sources, or included in common profiles for projects and

particular job types. This minimises the required human input and ensures greater

metadata availability.

After capturing valuable metadata, it is important to store it in an easily accessible for-

mat. Chapter 5 suggested that this metadata could be stored as XML in the file system,

along with the relevant files. There are alternative ways in which metadata could be

stored, particularly in more structured or sophisticated systems: the XML recommenda-

tion simply allows the metadata to be stored on existing NFS volumes alongside current

data. However, a well-structured XML schema for this type of metadata could be later

used to port the data to a more sophisticated system.

One of the biggest strengths of this thesis is that it was carried out exclusively on real

data on current systems. This demonstrates that although a more proactive approach to

capturing and storing metadata may be ultimately a more powerful approach, substantial

metadata can still be extracted from existing data.



106 Chapter 6 Discussion

6.2.2 Tiered Storage and Collection Management

The same discussion of metadata storage also suggested that the stored metadata could

include a manifest detailing links to related files. This could allow management of files by

collection, rather than just individually. Since a job will create many closely related files

this may be a much more natural way to treat some data management tasks, particularly

data retention and degradation.

Chapter 4 “Practical Data Cleaning” considered the data retention policy for 3D so-

lution files in a CFD context, and used this policy to perform data cleaning in order

to save disk space. However, managing files in collections instead of individually could

be very powerful in designing and implementing a more sophisticated cleaning or data

management system. For example, the policy could be adapted to be cognizant of more

of the metadata, dependent on more than just file age and file type, and similar files

within a collection could be managed together. Files could also be compressed before

being deleted, in more of a graceful data degradation scheme.

The work in this thesis considered data residing on file systems with and without offsite

backup. However, data can be managed across many more tiers of storage, varying

in their provision of security, redundancy and backup capabilities. For example, more

frequently accessed data can be stored on faster, more expensive media, while less fre-

quently accessed data can be stored on slower, cheaper media [44]. Conceptually this is

very similar to the management of data between RAM and a CPU cache.

The automated management of tiered storage systems could potentially be based on more

substantial information than simply the time of last access or modification. Conceptu-

ally, multiple tiers of storage and different levels of redundancy combine very naturally

with graceful data degradation. Critical files may be stored accordingly, in order to pro-

tect against data loss, while files nearing the end of their predicted life may be moved

to less backed-up systems for cheaper storage before being finally deleted. Coupled with

collection management and a wide variety of metadata, this may be a very powerful

data management technique, as collections may be viewed together for user purposes,

treated together for data management purposes, but stored separately for cost-effective

storage.

Additional metadata may be very useful in this type of system, because it could be used

to develop more sophisticated data retention policies that consider more than just the

age or type of a file. By also considering information pertaining to the parent project,

flow conditions, and so on, it should be possible to develop policies that are much more

reflective of the true data requirements.



Chapter 6 Discussion 107

6.2.3 Hierarchical and Search-Based Systems

It has been recognised that hierarchical file systems may no longer be the most effective

way to organise files [70]. Users do not necessarily wish to place their data into virtual

filing cabinets, and the next-generation of end-users increasingly favours search-based

approaches to data retrieval. There is not necessarily an immediate need for all file

systems to be converted or indexed for search-based data retrieval, but it is worth

noting that semantic file systems support many analogous operations to hierarchical

systems [47], but with the addition of greatly enhanced content-based retrieval [40] and

potentially significant performance benefits [35].

The ability to search for data can be very powerful. However, the effectiveness of such

an approach depends on the ability of a user to articulate their desired search terms, and

on the ability of the system to identify useful information within its files [35]. It is thus

imperative that a search-based system be provided with meaningful metadata to describe

its files. Equally, these metadata must correlate with the type of search terms that a user

is likely to require. As recommended in chapter 5 “Additional Metadata”, it is worth

considering how useful metadata might be inherited from the workflow and captured at

the point of data creation, as this may provide a great deal of extra information, and

much more accurately than a post-creation approach.

There are many benefits for end-users in using semantic file systems versus traditional

hierarchical systems. Since a file can exist in many virtual directories, it is possible to

create multiple views of the same data [56], in contrast with the single organisational

structure in hierarchical systems. There is also support for file collections, where a

file class may refer to several related files [29], which could aid in the type of graceful

degradation discussed previously. In addition, there is the potential for greatly enhanced

multidisciplinary collaboration through better data sharing and improved descriptive

capabilities [26].

An important limitation in semantic file systems is that of backwards compatibility,

which may be one of the greatest challenges preventing the more widespread adoption

of such systems. Since existing applications rely on hierarchical namespaces, new file

systems must be able to support legacy applications [40]. Furthermore, tighter integra-

tion with the workflow and applications can enhance metadata capture, but this will

not benefit any legacy data. There is thus real value in tools that are capable of exam-

ining and extracting useful information about existing data, precisely as demonstrated

in chapter 5 “Additional Metadata”.



108 Chapter 6 Discussion

6.3 Applicability to Other Environments

This thesis has focused on the context of HPC for aerodynamics within Airbus. How-

ever, many other environments exhibit somewhat similar characteristics, and thus may

be able to benefit from this work. The findings and recommendations may be appli-

cable to many other engineering design environments that make extensive use of high

performance computing (HPC), particularly those using computational fluid dynamics

(CFD), including the aerospace, maritime and motorsport sectors. Some aspects may

also be useful to non-engineering cases, depending on the particular circumstances.

It was mentioned in chapter 3 “File System Metadata” that the characteristics of file

system metadata may be of interest to file system designers, software utility developers,

and HPC managers. The metadata itself is useful in that it reveals characteristics and

patterns in the nature of the data. For example, the file size and file type distributions

led to the development of the cleaning methodology in the subsequent chapter, and the

distribution of bytes with age allowed prediction of the time remaining until maximum

capacity was reached. Developing a better understanding of the characteristics of the

data being stored thus has useful implications for data management, and this applies

anywhere that data management is taken seriously.

In addition, the comparison of Airbus trends and characteristics with those from other

sources helps place Airbus HPC data in the wider context. It was demonstrated that

there were many similarities with other HPC environments, although the Airbus data

still showed some unique characteristics. Those unique characteristics may be of partic-

ular interest to file system designers, particularly those working with synthetic data, as

the metadata distributions may be used to improve the modelling of this virtual data.

The data cleaning methodology demonstrated in chapter 4 was developed very specif-

ically for Airbus. However, the approach used is only dependent on the presence of

intermediate files that do not need to be retained indefinitely. As such, it may apply to

any number of other environments that meet this simple criterion, although the signif-

icance of any savings made will depend on the context and nature of the specific files

targeted. Other CFD-based workflows may find the method particularly useful, and

would require the least modification in implementation.

Similarly, the methodology used to identify and extract additional metadata in chapter

5 was developed specifically for Airbus applications. The approach relies on log files

and naming conventions to extract information, and hierarchical structure to associate

metadata with files. These broad conditions may be well suited to highly computational

workflows in many HPC environments. Again, any CFD context may be able to ben-

efit from this type of metadata extraction, but any other environment with a suitably

automated data generation workflow may also it useful.



Chapter 7

Conclusions

Finally, this chapter draws the thesis to a close. It describes how the specific research

objectives laid out in chapter 1 have been met by the work detailed in the subsequent

chapters; summarises the key findings made by the studies; and presents a some brief

suggestions for the potential direction of future research in the field.

109



110 Chapter 7 Conclusions

7.1 Fulfilment of Objectives

This section describes how the specific objectives of the thesis have been met, discussing

the significance of each objective and outlining how it has been met by the research

detailed throughout this thesis.

7.1.1 Airbus HPC Data Comparison & Contrast

“Examine large scale HPC data from industrial engineering design and com-

pare and contrast with other data from HPC environments.”

It was important to understand the similarities and differences between Airbus file sys-

tems and those from other comparable environments in order to identify both the appli-

cability of existing data managements techniques to Airbus data, and also the potential

applicability of any newly developed methods and tools to non-Airbus systems. Many of

these similarities and differences can be observed by examining the file system metadata,

including the general characteristics of the actual data, but also some hints regarding

the differences in workload.

The research undertaken to meet this goal was a crucial precursor to the later work

in data cleaning and additional metadata, both in terms of the specific findings made

through analysis of the data examined, and also in placing the challenges faced within

Airbus into the wider context of data management in high performance computing. It

also provided the data management community with a snapshot of the data charac-

teristics from Airbus systems, which may be particularly valuable due to the limited

availability of snapshot data for similar corporate HPC file systems.

Chapter 3 “File System Metadata” examined file system metadata from Airbus, Mi-

crosoft and a number of HPC sites, comparing properties such as file sizes, modificiation

and access timestamps, directory structure and namespace depth. It was found that

many of the metadata fields within the Airbus data set show similarities with the other

environments. Analysis revealed the following specific similarities:

• As with many other data studies, most of the files are very small, but a few very

large large files occupy most of the disk space. Most cases showed over 90% of files

to be smaller than 4 MB.

• Directory and namespace organisation are fundamentally very similar, meaning

that human organisational characteristics remain present in HPC environments.

• The proportion of CFD solution files on an HPC scale is similar to that previously

observed in personal files [33], by both file count and total bytes.



Chapter 7 Conclusions 111

However, there were also some cases where the Airbus data appeared to be in contrast

with the other data sets. These notably unique characteristics are as follows:

• The file size distribution was notably more pronounced at Airbus than in other

environments, with a very narrow band of file sizes including most of the bytes,

and over 90% of the bytes in files larger than 4 MB.

• Files at Airbus are retained on active file systems for unusually long periods of

time, often exceeding one year even on the no-backup (scratch) volumes. In other

environments, files are instead either deleted or archived much sooner, often within

six months.

• A few key file types account for a significantly higher proportion of the Airbus

data than in other environments, which display much greater diversity. These few

types are key input and output file types in the CFD workflow, and the top five

types account for 64% of the files and 88% of the bytes.

7.1.2 Useful Characteristics for Data Management

“Identify metadata trends and characteristics that may be used to improve

data management practices, particularly data cleaning.”

One of the challenges that led to the start of this research programme was the need

to make better use of existing data storage devices, as the ever-increasing rates of data

production from HPC facilities cause file system systems to fill up very rapidly. Although

it is often possible to simply add more storage, this is no reason to be profligate or

wasteful, thus it was important to identify any data characteristics that could be used

to identify unwanted or redundant files.

Chapter 3 “File System Metadata” revealed several key trends and characteristics that

may be used to improve data management practices. The following observations formed

the basis for the subsequent work in practical data cleaning:

• File sizes between approximately 1 GB and 8 GB account for a very small propor-

tion of the files, but a huge proportion of the total bytes.

• These files were identified by file type as the 3D solution files from the CFD

workflow, accounting for 64.2% of the bytes in only 0.99% of the files.

• It was recognised that the 3D solution files are only temporary files in the larger

workflow, and once fully post-processed could be safely removed.



112 Chapter 7 Conclusions

7.1.3 Practical Data Cleaning

“Research practical data cleaning methodologies on real engineering file sys-

tems at Airbus, maximising savings in disk space whilst retaining all wanted

data.”

Having examined basic file system metadata, chapter 4 “Practical Data Cleaning” then

demonstrated that the observations made regarding the metadata trends and charac-

teristics could be used to develop a methodology for data cleaning. Targeting old 3D

solution files, an intermediate result in the CFD workflow, facilitated the cleaning of

significant volumes of disk space. Following the development of this methodology, two

cleaning exercises were undertaken on the Airbus-NoBackup volumes:

• The first exercise removed 3D solution files older than 24 months, and yielded

15.2% savings in disk space.

• The second exercise removed 3D solution files older than 18 months, and yielded

27.5% savings in disk space.

In addition to providing excellent savings in disk space, the methodology was developed

to require only minimal human input, allowing the end-users to focus on engineering (the

primary objective) rather than computing (a non-value-added distraction). The final ap-

proach provided a means to exclude unwilling participants, allowing users with sensitive

data to remain unaffected by the data cleaning, thereby removing only unwanted data.

Lastly, careful consideration of the effectiveness, short-term impact and long-term sus-

tainability of the cleaning method concluded the following:

• Ultimately, volumes will still become full. However, at the current rate of data pro-

duction, continued usage of the developed method may extend the life of existing

storage systems by up to 5 years before capacity expansion is required.

• Anecdotally, it was recognised that just by considering the time saved by engineers

having to locate free disk space, the disk space savings made have already paid for

the entirety of this research.

The research undertaken in data cleaning yielded substantial savings at Airbus in terms

of disk space, human time, and also financially. Although the details of the methodology

were specific to Airbus, the targeting of unwanted 3D solution files may be of benefit

to other organisations working extensively with CFD, and the principle of removing

intermediate files may be of use in any number of other environments.



Chapter 7 Conclusions 113

7.1.4 Additional Metadata

“Identify and extract additional metadata from engineering file systems, us-

ing novel sources to learn more about the file content, purpose and value.”

The earlier research was based solely upon simple file system metadata properties such

as file size and timestamps. However, there are other sources of metadata within the

file system, particularly where the content of certain files can be examined and analysed

for useful information. Chapter 5 “Additional Metadata” described the extraction of

business, technical and computational metadata from additional sources, namely the

conventions used in file naming, and the log files generated by computational jobs.

Many fields were examined, incorporating computational metadata such as CPU time,

cores, and the number of iterations; and aerodynamic metadata including Mach number,

angle of attack and lift coefficient. The key findings were as follows:

• Additional metadata was demonstrated to be available for the majority of 3D

solution files, which account for the majority of disk usage in the Airbus file systems

examined. See table 5.1 for details.

• The aerodynamic metadata revealed the types of sampling used to perform large

parameter sweeps, and conformed to the expected ranges of values for typical

engineering applications.

• The computational metadata showed the typical configurations for CFD jobs

within Airbus. In particular, it was observed that execution times often correspond

to an overnight timescale, meaning that engineering work can be done during the

day, and HPC jobs are executed in time for the next working day.

The significance of collecting additional metadata about key files is that the extra infor-

mation could be used to further improve the effectiveness of data management methods,

such as the cleaning methodology detailed in chapter 4. Using this information, it may

be possible to begin to understand the value of individual files, which may be greatly

beneficial to such tools. Access to additional metadata may also improve search-based

data retrieval, and developing a better understanding of the relationships between dif-

ferent data could significantly impact data auditing, which is particularly important in

engineering processes such as safety and certification.

Ultimately, a much more powerful approach would be to gather this type of metadata

upon data creation, where a wide variety of information could be easily added, espe-

cially in highly automated environments. However, the ability to extract metadata from

existing data means that new information can be inferred about existing files, allowing

old data to be handled by newer, more sophisticated data management applications.



114 Chapter 7 Conclusions

7.1.5 Recommendations

“Make recommendations regarding future data storage and management prac-

tices to Airbus (the sponsor) and to other practitioners in the field.”

The purpose of this reseach was to examine the valuable metadata that exists within

engineering file systems and to consider how it could be used. Particular emphasis was

placed on practically applying the findings to data cleaning, since this was one of the

key challenges faced at the time. However, it is also important to consider the future

direction of data management, within Airbus and the wider field.

The underlying principle behind the work in data cleaning was to only keep data for

as long as it is required, and this principle can certainly be applied to any number

of environments. Indeed, in the UK this is one of the guiding principles of the Data

Protection Act [64], although this applies to personal rather than corporate data. A

number of new suggestions were also made, and chapter 5 “Additional Metadata” in

particular made several recommendations for the future management of data within

Airbus. These recommendations are all suitably general rules to also apply to other

practitioners in the field:

• Data-Metadata Creation. Metadata tagging should be part of the data creation

process, since much of the desired metadata can be inherited from the parent work-

flow. As with existing data creation, metadata tagging could be largely automated,

but the information captured could be invaluable for future data management.

• Data Collections. Relationships between input, intermediate and output files

should be detailed in a manifest, so that the collection of files may be managed

together. This would avoid the need for many of the assumptions made in this

study, thereby increasing the accuracy and certainty with which the information

may be interpreted.

• Metadata Storage. Although the semi-structured sources examined in this study

yielded useful results, the quality of the metadata would be greatly improved if

fields were stored in a more structured format. For example, an XML file could be

included for each collection of files in an unstructured storage system. This could

also contain manifest information for file-metadata linking.

These recommendations focus on capturing additional metadata at the point of data

creation, and on storing this data in a more structured format in order to increase flex-

ibility in supporting future data management processes. It is very difficult to anticipate

all possible future requirements for such processes. However, it should certainly be pos-

sible to at least store some of the types of metadata that might be helpful in deducing

meaningful information about the purpose, content and value of engineering data.



Chapter 7 Conclusions 115

7.2 Future Direction

The studies and discussions presented in the thesis have made many references to po-

tential applications and the possible directions for future research. There are many

strong arguments for the tighter integration of data management with applications and

workflow, particularly in the capture of valuable and accurate metadata at the point of

data creation. These metadata could then be stored in a semantic file system on tiered

storage systems, supporting enhanced content and context-based search, improved per-

formance, and better data sharing and multidisciplinary collaboration. In addition to

the automated movement of data between storage tiers, there could be further graceful

data degradation, such as compression and deduplication, and the governing data reten-

tion methods could be made highly cognizant of the data context and purpose. It could

be possible to integrate features controlling data visibility and accessibility subject to

different user roles, identities and security clearance levels. Under some circumstances

it may also be possible regenerate deleted data from original inputs, although the relia-

bility and practical usefulness of the resulting data may be questionable. Some of these

aspects are already well understood, and some are already implemented in existing prod-

ucts and services. The key point for future direction is the integration of all of these

features into a single package. This must be suitably abstract for applicability to many

other fields, but also suitably customisable for the specific purposes and requirements of

the intended deployment environment.

In addition to directly benefiting Airbus through the work in data cleaning, this re-

search may benefit other companies working extensive with CFD, or possibly with other

highly computational workflows with similar characteristics. Highlighting the savings

that can be made through data cleaning in particular may help prompt organisations

to reconsider their own data management practices. The principles demonstrated and

recommendations made throughout this thesis may then be useful in identifying how and

where data management could be improved, especially regarding data cleaning where

much of the emphasis of this research has been placed.

Data management is not typically a value-added activity, so it makes sense to minimise

the time spent on it by most users. However, it can have a strong impact on working

practice, especially in environments where a significant proportion of time is currently

spent on on data administration. Intelligently capturing metadata from the workflow;

automating the storage, archival and eventual deletion of data; and enhancing tools

for search and retrieval may greatly reduce the time required for data management,

allowing users to instead focus on value-added activities. It follows that the impact of

better data management is increased productivity. Furthermore, as data sets become

larger, and their management correspondingly increases in complexity, the impact of

data management on productivity will become more and more significant.



116 Chapter 7 Conclusions

Following on from increased productivity, the indirect effects of good data management

are faster analysis through greater focus on value-added tasks; a cheaper computing

infrastructure through more effective utilisation of existing resources; and better data

auditing through more detailed metadata and better understanding of the relationships

between different data. Again, the significance of these effects will only become greater

as the size and complexity of data sets increases.

This thesis has focused on data management for HPC systems running CFD workflows

to support the engineering design process. However, the same techniques could easily be

applied to other workflows, such as stress analysis or multidiscplinary optimisation, and

similar results may be achieved. Moreover, these techniques not limited to engineering

design, and could be used to examine data management in non-engineering fields such as

medicine and healthcare, meterorology, or any number of other environments where large

data sets are prevalent. Although much of the emphasis here has been placed on data

cleaning, the same approach could equally be used in archival in situations where long-

term or permanent data retention is required but the data are less frequently accessed.

7.3 Summary

It is clear that data management is becoming increasingly crucial, and in this thesis we

have considered just some of the ways that improvements in this field can be enacted. As

we move forward into an era where data is recognised as being of significant importance

for advancing science, engineering and business understanding, the implications of the

research we have presented demonstrating the importance of and methods for managing

data appropriately will become ever more critical.



Bibliography

[1] Adobe Systems Incorporated. Adobe Photoshop Lightroom 5. http://www.adobe.

com/products/photoshop-lightroom.html, July 2014 (last accessed July 2014).

[2] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A five-

year study of file-system metadata. Trans. Storage, 3(3):Article 9, October 2007.

[3] Airbus. Airbus, a leading aircraft manufacturer. http://www.airbus.com, July

2014 (last accessed July 2014).

[4] Amazon. AWS — Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.

http://aws.amazon.com/ec2/, July 2014 (last accessed July 2014).

[5] Eric Anderson. Capture, conversion, and analysis of an intense NFS workload.

In Proceedings of the 7th Conference on File and Storage Technologies, FAST ’09,

pages 139–152, San Francisco, CA, USA, February 2009. USENIX Association.

[6] John D. Anderson. Fundamentals of Aerodynamics. McGraw Hill, 4th International

edition, 2007.

[7] Anonymous. Extended attributes: The good, the not so good, the bad. http:

//www.lesbonscomptes.com/pages/extattrs.html, July 2014 (last accessed June

2015).

[8] Apple Inc. Introduction to Spotlight. https://developer.apple.com/library/

mac/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html,

August 2013 (last accessed June 2015).

[9] Apple Inc. Apple - Aperture - pro performance with iPhoto simplicity. http:

//www.apple.com/aperture, July 2014 (last accessed July 2014).

[10] Apple Inc. Apple - iMac - Performance. https://www.apple.com/imac/

performance/, July 2014 (last accessed July 2014).

117

http://www.adobe.com/products/photoshop-lightroom.html
http://www.adobe.com/products/photoshop-lightroom.html
http://www.airbus.com
http://aws.amazon.com/ec2/
http://www.lesbonscomptes.com/pages/extattrs.html
http://www.lesbonscomptes.com/pages/extattrs.html
https://developer.apple.com/library/mac/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
https://developer.apple.com/library/mac/documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html
http://www.apple.com/aperture
http://www.apple.com/aperture
https://www.apple.com/imac/performance/
https://www.apple.com/imac/performance/


118 BIBLIOGRAPHY

[11] Apple Inc. Apple - iTunes - everything you need to be entertained. http://www.

apple.com/itunes, July 2014 (last accessed July 2014).

[12] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.

Ousterhout. Measurements of a distributed file system. SIGOPS Oper. Syst. Rev.,

25(5):198–212, September 1991.

[13] Alexander Ball. Review of data management lifecycle models. http://opus.bath.

ac.uk/28587/1/redm1rep120110ab10.pdf, 2012 (last accessed June 2015).

[14] Bruce Barnett. Inodes - an Introduction. http://www.grymoire.com/Unix/

Inodes.html, (last accessed June 2015).

[15] André Borrmann, Markus Schorr, Mathias Obergriesser, Yang Ji, I-Chen Wu,

Willibald Günthner, Thomas Euringer, Ernst Rank, et al. Using product data

management systems for civil engineering projects–potentials and obstacles. In

Proc. of the 2009 ASCE International Workshop on Computing in Civil Engineer-

ing. Austin, TX, USA, 2009.

[16] Carnegie Mellon University. Parallel Data Lab. http://www.pdl.cmu.edu, April

2015 (last accessed June 2015).

[17] Carnegie Mellon University and University of Pittsburgh. Pittsburgh Supercom-

puting Center. http://www.psc.edu, June 2015 (last accessed June 2015).

[18] Yunus A. Çengel and John M. Cimbala. Fluid Mechanics: Fundamentals and Ap-

plications. McGraw Hill, 2006.

[19] Cornell University Library (CUL) Data Working Group (DaWG). Digital research

data curation: Overview of issues, current activities, and opportunities for the cor-

nell university library. http://ecommons.cornell.edu/bitstream/1813/10903/

1/DaWG_WP_final.pdf, May 2008 (last accessed June 2015).

[20] Kevin Crowston and Jian Qin. A capability maturity model for scientific data

management: Evidence from the literature. Proceedings of the American Society

for Information Science and Technology, 48(1):1–9, 2011.

[21] Shobhit Dayal. Characterizing HEC storage systems at rest. Technical Report

CMU-PDL-08-109, Parallel Data Lab, Carnegie Mellon University, Pittsburgh, PA,

USA, July 2008.

http://www.apple.com/itunes
http://www.apple.com/itunes
http://opus.bath.ac.uk/28587/1/redm1rep120110ab10.pdf
http://opus.bath.ac.uk/28587/1/redm1rep120110ab10.pdf
http://www.grymoire.com/Unix/Inodes.html
http://www.grymoire.com/Unix/Inodes.html
http://www.pdl.cmu.edu
http://www.psc.edu
http://ecommons.cornell.edu/bitstream/1813/10903/1/DaWG_WP_final.pdf
http://ecommons.cornell.edu/bitstream/1813/10903/1/DaWG_WP_final.pdf


BIBLIOGRAPHY 119

[22] Tjark Derlien. Disk Inventory X. http://www.derlien.com, July 2014 (last ac-

cessed July 2014).

[23] DLR. DLR - TAU. http://tau.dlr.de, July 2014 (last accessed July 2014).

[24] John R. Douceur and William J. Bolosky. A large-scale study of file-system con-

tents. In Proceedings of the 1999 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS ’99, pages 59–70,

Atlanta, Georgia, USA, May 1999. ACM.

[25] Allen Downey. The structural cause of file size distributions. SIGMETRICS Per-

form. Eval. Rev., 29(1):328–329, June 2001.

[26] Oliver Eck and Dirk Schaefer. A semantic file system for integrated product data

management. Advanced Engineering Informatics, 25(2):177–184, 2011.

[27] Eriban. GrandPerspective. http://grandperspectiv.sourceforge.net, July

2014 (last accessed July 2014).

[28] Kylie M Evans and Geoffrey H Kuenning. A study of irregularities in file-size

distributions. In Proceedings of the 2002 International Symposium on Performance

Evaluation of Computer and Telecommunication Systems (SPECTS), SPECTS ’02,

San Diego, CA, USA, 2002. SCS.

[29] Sebastian Faubel and Christian Kuschel. Towards semantic file system interfaces.

In International Semantic Web Conference, page 60, 2008.

[30] Alexander Forrester, Andras Sobester, and Andy Keane. Engineering Design via

Surrogate Modelling: A Practical Guide. John Wiley and Sons, 1st edition, 2008.

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.

ACM SIGOPS Operating Systems Review, 37(5):29–43, 2003.

[32] David K Gifford, Pierre Jouvelot, Mark A Sheldon, et al. Semantic file systems.

ACM SIGOPS Operating Systems Review, 25(5):16–25, 1991.

[33] B. J. Hicks, A. Dong, R. Palmer, and H. C. Mcalpine. Organizing and managing

personal electronic files: A mechanical engineer’s perspective. Trans. Inf. Syst., 26

(4):Article 23, September 2008.

http://www.derlien.com
http://tau.dlr.de
http://grandperspectiv.sourceforge.net


120 BIBLIOGRAPHY

[34] Yingjie Hu and Krzysztof Janowicz. Improving personal information management

by integrating activities in the physical world with the semantic desktop. In Proceed-

ings of the 20th International Conference on Advances in Geographic Information

Systems, SIGSPATIAL ’12, pages 578–581, New York, NY, USA, 2012. ACM.

[35] Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. Semantic-aware meta-

data organization paradigm in next-generation file systems. IEEE Trans. Parallel

Distrib. Syst., 23(2):337–344, February 2012.

[36] Stefan Hundhammer. KDirStat. http://kdirstat.sourceforge.net, September

2006 (last accessed July 2014).

[37] William Inmon, Bonnie O’Neil, and Lowell Fryman. Business Metadata: Capturing

Enterprise Knowledge. Morgan Kaufmann, Burlington, MA, 2008.

[38] Andy J. Keane and Prasanth B. Nair. Computational Approaches for Aerospace

Design: The Pursuit of Excellence. John Wiley and Sons, 1st edition, 2005.

[39] A. C. Kermode. Mechanics of Flight. Pearson, 11th edition, 2006.

[40] Andrew Leung, Aleatha Parker-Wood, and Ethan L. Miller. Copernicus: A scal-

able, high-performance semantic file system. Technical Report UCSC-SSRC-09-06,

University of California, Santa Cruz, October 2009.

[41] Andrew W. Leung, Shankar Pasupathy, Garth Goodson, and Ethan L. Miller. Mea-

surement and analysis of large-scale network file system workloads. In USENIX 2008

Annual Technical Conference on Annual Technical Conference, ATC’08, pages 213–

226, Boston, Massachusetts, June 2008. USENIX Association.

[42] Los Alamos National Security, LLC. Los Alamos National Laboratory: National

Security Science. https://www.lanl.gov, June 2015 (last accessed June 2015).

[43] Lustre. Lustre. http://www.lustre.org, July 2014 (last accessed July 2014).

[44] Stuart E. Madnick. Design of a general hierarchical storage system. Technical

Report CISR-6, Massachusetts Institute of Technology, March 1975.

[45] Mallik Mahalingam, Chunqiang Tang, and Zhichen Xu. Towards a semantic, deep

archival file system. In Proceedings of the The Ninth IEEE Workshop on Future

Trends of Distributed Computing Systems, FTDCS ’03, pages 115–, Washington,

DC, USA, 2003. IEEE Computer Society.

http://kdirstat.sourceforge.net
https://www.lanl.gov
http://www.lustre.org


BIBLIOGRAPHY 121

[46] P. Marsh. High productivity computing for engineering design optimisation

(Proof of Concept II). Technical Report CFMS WP-15, Airbus and University

of Southampton, 2008.

[47] Ben Martin. Formal concept analysis and semantic file systems. In Peter Eklund,

editor, Concept Lattices, volume 2961 of Lecture Notes in Computer Science, pages

88–95. Springer Berlin Heidelberg, 2004.

[48] James Martin. Managing the data-base environment. Prentice Hall, 1st edition,

1983.

[49] Mike Mesnier, Gregory R Ganger, and Erik Riedel. Object-based storage. Com-

munications Magazine, IEEE, 41(8):84–90, 2003.

[50] Dutch T. Meyer and William J. Bolosky. A study of practical deduplication. Trans.

Storage, 7(4):Article 14, February 2012.

[51] Microsoft. Azure: Microsoft’s Cloud Platform — Cloud Hosting — Cloud Services.

https://azure.microsoft.com, July 2014 (last accessed July 2014).

[52] Microsoft. Windows Media Player. http://windows.microsoft.com/en-GB/

windows/windows-media-player, July 2014 (last accessed July 2014).

[53] Microsoft. Delete files using Disk Cleanup - Windows Help. http://

windows.microsoft.com/en-us/windows/delete-files-using-disk-cleanup#

delete-files-using-disk-cleanup=windows-8, June 2015 (Last accessed June

2015).

[54] Microsoft. Windows Search - Microsoft Windows. http://windows.microsoft.

com/en-us/windows7/products/features/windows-search, June 2015 (last ac-

cessed June 2015).

[55] Michael Mitzenmacher. Dynamic models for file sizes and double pareto distribu-

tions. Internet Mathematics, 1(3):305–333, 2003.

[56] Hung Ba Ngo, C. Bac, F. Silber-Chaussumier, and Thang Quyet Le. Towards

ontology-based semantic file systems. In Research, Innovation and Vision for the

Future, 2007 IEEE International Conference on, pages 8–13, March 2007.

[57] National Information Standards Organisations (NISO). Understanding meta-

data. http://www.niso.org/publications/press/UnderstandingMetadata.

pdf, 2004.

https://azure.microsoft.com
http://windows.microsoft.com/en-GB/windows/windows-media-player
http://windows.microsoft.com/en-GB/windows/windows-media-player
http://windows.microsoft.com/en-us/windows/delete-files-using-disk-cleanup#delete-files-using-disk-cleanup=windows-8
http://windows.microsoft.com/en-us/windows/delete-files-using-disk-cleanup#delete-files-using-disk-cleanup=windows-8
http://windows.microsoft.com/en-us/windows/delete-files-using-disk-cleanup#delete-files-using-disk-cleanup=windows-8
http://windows.microsoft.com/en-us/windows7/products/features/windows-search
http://windows.microsoft.com/en-us/windows7/products/features/windows-search
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf


122 BIBLIOGRAPHY

[58] Office of Science and U.S. Department of Energy. NERSC: National Energy Re-

search Scientific Computing Center. https://www.nersc.gov, June 2015 (last ac-

cessed June 2015).

[59] Onera. elsA. http://elsa.onera.fr, May 2014 (last accessed July 2014).

[60] Jonathan D. Owen and Simon J. Cox. Additional metadata in engineering design.

Technical Report ME1448106, Airbus and University of Southampton, December

2014.

[61] Jonathan D. Owen and Simon J. Cox. Data cleaning in engineering design. Technical

Report ME1448107, Airbus and University of Southampton, December 2014.

[62] Jonathan D. Owen and Simon J. Cox. File system metadata in engineering design.

Technical Report D15017455, Airbus and University of Southampton, June 2015.

[63] Panasas. Panasas — high performance parallel storage for big data applications.

http://www.panasas.com, July 2014 (last accessed July 2014).

[64] UK Parliament. Data Protection Act, Schedule 1, Section 1. http://www.

legislation.gov.uk/ukpga/1998/29/contents, 1998 (last accessed July 2014).

[65] Swapnil Patil and Garth Gibson. Scale and concurrency of GIGA+: file system

directories with millions of files. In Proceedings of the 9th USENIX conference on

File and storage technologies (FAST’11), FAST ’11, pages 177–190, San Joe, CA,

USA, February 2011. USENIX Association.

[66] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Analysis and evolution of journaling file systems. In USENIX Annual Technical

Conference, General Track, pages pages 105–120, 2005.

[67] Drew S Roselli, Jacob R Lorch, Thomas E Anderson, et al. A comparison of file

system workloads. In USENIX Annual Technical Conference, General Track, ATC

’00, pages 41–54, San Diego, CA, USA, June 2000. USENIX Association.

[68] Mahadev Satyanarayanan. A study of file sizes and functional lifetimes. SIGOPS

Operating Systems Review, 15(5):96–108, December 1981.

[69] Bernhard Schandl and Bernhard Haslhofer. Files are siles: Extending file systems

with semantic annotations. International Journal on Semantic Web and Informa-

tion Systems (IJSWIS), 6(3):1–21, 2010.

https://www.nersc.gov
http://elsa.onera.fr
http://www.panasas.com
http://www.legislation.gov.uk/ukpga/1998/29/contents
http://www.legislation.gov.uk/ukpga/1998/29/contents


BIBLIOGRAPHY 123

[70] Margo Seltzer and Nicholas Murphy. Hierarchical file systems are dead. In Proceed-

ings of the 12th Conference on Hot Topics in Operating Systems, HotOS’09, Monte

Verità, Switzerland, May 2009. USENIX Association.

[71] Siemens PLM Software. Enabling innovation through enterprise data

management. http://m.plm.automation.siemens.com/en_us/Images/8937_

tcm1224-38461.pdf, 2010 (last accessed June 2015).

[72] Keith Smith and Margo Seltzer. File layout and file system performance. Technical

Report TR-35-94, Harvard University, 1994.

[73] Software Ambience. DaisyDisk - analyze disk usage and free up disk space on mac.

http://www.daisydiskapp.com, July 2014 (last accessed July 2014).

[74] Craig AN Soules and Gregory R Ganger. Connections: using context to enhance

file search. In ACM SIGOPS Operating Systems Review, volume 39, pages 119–132.

ACM, 2005.

[75] Standardization Committee. Standard of the camera & imaging products associ-

ation, cipa dc-008-translation-2012, exchangeable image file format for digital still

cameras: Exif version 2.3. http://www.cipa.jp/std/documents/e/DC-008-2012_

E.pdf, December 2012 (last accessed July 2014).

[76] Storage Networking Industry Association (SNIA). Storage networking industry

association: IOTTA repository. http://iotta.snia.org, July 2014 (last accessed

July 2014).

[77] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. File size distribution on

UNIX systems: Then and now. SIGOPS Oper. Syst. Rev., 40(1):100–104, January

2006.

[78] Technische Universiteit Eindhoven. Technische Universiteit Eindhoven: Info

SequoiaView. http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/

visualization/sequoiaview/, July 2014 (last accessed July 2014).

[79] TOP500. TOP500 supercomputing sites. http://www.top500.org, May 2014 (last

accessed July 2014).

[80] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A nine year

study of file system and storage benchmarking. Trans. Storage, 4(2):Article 5, May

2008.

http://m.plm.automation.siemens.com/en_us/Images/8937_tcm1224-38461.pdf
http://m.plm.automation.siemens.com/en_us/Images/8937_tcm1224-38461.pdf
http://www.daisydiskapp.com
http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
http://iotta.snia.org
http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/visualization/sequoiaview/
http://w3.win.tue.nl/nl/onderzoek/onderzoek_informatica/visualization/sequoiaview/
http://www.top500.org


124 BIBLIOGRAPHY

[81] University of Alaska Fairbanks. Home — ARSC. http://www.arsc.edu/arsc,

May 2015 (last accessed June 2015).

[82] U.S. Department of Energy. Pacific Northwest National Laboratory. http://www.

pnnl.gov, May 2015 (last accessed June 2015).

[83] Yifan Wang. A statistical study for file system meta data on high performance

computing sites. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA, USA,

May 2012.

[84] Qingsong Wei, Bharadwaj Veeravalli, and Zhixiang Li. Dynamic replication man-

agement for object-based storage system. In Networking, Architecture and Storage

(NAS), 2010 IEEE Fifth International Conference on, pages 412–419. IEEE, 2010.

[85] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In Pro-

ceedings of the 7th symposium on Operating systems design and implementation,

pages 307–320. USENIX Association, 2006.

[86] WinDirStat. Windirstat - Windows Directory Statistics. http://windirstat.

info, July 2014 (last accessed July 2014).

[87] Marcia Lei Zeng and Jian Qin. Metadata. Facet Publishing, London, UK, first UK

edition, 2008.

http://www.arsc.edu/arsc
http://www.pnnl.gov
http://www.pnnl.gov
http://windirstat.info
http://windirstat.info

