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a b s t r a c t

In this paper, a coupled MPS-modal superposition method is developed for 2D nonlinear
fluid-structure interaction problems. In this method, the rigid-body and relatively small
elastic deformation are coupled together, which considers the mutual effect between them.
The elastic deformation of the structure is represented by a mode superposition formulation,
which is more efficient compared with FEM, regardless of the size of the structure. For 2D
cases, if the first three modes are chosen to represent the flexible deformation of the
structure, it only results in a 6�6 matrix equation to be solved. For the fluid motion, the
modified Moving Particle Semi-implicit (MPS) method, which significantly reduces the
fluctuation of pressure calculation of the original MPS method, is used.

Two nonlinear problems, i.e. breaking-water-dam impacting a floating beam and flexible
wedge slamming into the water are simulated to demonstrate the performance of the
developed method. The numerical simulations show that this coupling model is capable of
providing stable results that are generally in good agreement with the available experimental
data. For the highly nonlinear case with very large rigid motions, the mutual effect between
elastic deformation and rigid motions could accumulate to a relatively remarkable level
shown by the curves of trajectories or acceleration history of the body mass centre. This also
indicates the importance of mutual effect to analyse highly nonlinear FSI problems with large
rigid-body motions and relatively small flexible deformation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Meshless method, in contrast to its mesh-based counterpart, means the computational field is discretized with a set of
independent particles without the topological constraints (meshes). This feature makes it very suitable for the simulation of
problems with highly deformable boundaries such as free surface flow in marine engineering. A Lagrangian type meshless
method, which is also referred to as a particle method, means the motion of each particle is totally determined by its
physical velocity; makes this kind of meshless method much easier and straightforward to track the free surface location.
Smoothed Particle Hydrodynamics (SPH) (Monaghan, 1994) and Moving Particle Semi-implicit (MPS) (Koshizuka and Oka,
1996) methods are both representative examples of the Lagrangian meshless method.
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The MPS method, since its development by Koshizuka (Koshizuka and Oka, 1996), has been successfully applied to
various incompressible free surface flow problems (Khayyer and Gotoh, 2009, 2013). However, problems such as non-
physical pressure fluctuation also hinder further its application to Fluid Structure Interaction (FSI) problems. Many
researchers have developed different techniques (Khayyer and Gotoh, 2009, 2013; Tsuruta et al., 2013; Lee et al., 2011) to
improve its performance. The authors of this study have also proposed some modifications in (Sun et al., 2014, 2015). With
all these improvements, the MPS method has been successfully applied to rigid-body FSI problems, for example, the wedge
dropping (Sun et al., 2014, 2015; Akimoto, 2013), sloshing (Sun et al., 2014, 2015; Khayyer and Gotoh, 2011), and ship-wave
interaction (Shibata et al., 2009, 2012) problems.

For FSI problems with flexible structures, Finite Element (FE) method has been used to calculate the structure dynamics,
in combination with MPS method for the calculation of fluid motions (Sun et al., 2015; Lee et al., 2007).

For a typical ship structure, the overall motion could be described as a large rigid-body motion, such as, a combination of
large forward motion, pitch, heave, and plus a relatively small flexible bending deformation. This feature makes that the
modal superposition theorem adequate and quite suitable for representing this flexible deformation part. Moreover, it is also
more efficient than its FE counterpart in terms of computational burden. In practice, considering the geometrically slimness
of a ship structure, the beam model is normally adopted to describe its dynamics response to external excitations. Even for a
non-beam like structure, for example a floating oil drilling platform, as long as the flexible motion part is relatively small,
the modal superposition theorem is also applicable. What is worth mentioning here is that the mode function for a general
shape structure is normally obtained from FE method rather than from analytical solution of beam theory, however this only
requires one time prior calculation instead of solving FE model at each time step during the FSI computation.

Actually, this modal superposition technique has been successfully used to calculate interaction problems betweenwater and
large floating flexible structures (Jin and Xing, 2007; Kashiwagi, 2000; Newman, 1994). In these simulations, the fluid domain is
computed by potential flow with linearized boundary conditions, and as such it could not handle the highly deformable free
surface situations. For the structure part, either no rigid-body modes (Jin and Xing, 2007) or only some of them such as heave
and pitch (Kashiwagi, 2000; Newman, 1994) are included in the computation, since the rigid-body motion part is very small and
the elastic deformation is the main concern for these particular problems. In (Sun, 2007), the rigid-body motion and modal
superposition are also coupled in the problem of elastic cylindrical shell entering water. This coupling is only in terms of force
computation, which means that the force for rigid-body motion takes into account the effect of flexible deformation. It is not a
“genuinely” coupling because the rigid-body force (i.e. total force and torque applied on the structure) will also affect the flexible
kinetic parameters (i.e. generalized coordinates of each mode), as shown in Section 2.

Similarly, in ship Hydroelasticity (Bishop et al., 1986; Chen et al., 2006; Temarel and Hirdaris, 2009), this idea has also
been extensively applied to compute the structure dynamics in regular and irregular waves (irregular wave calculation is
also based on the regular case using spectral method). However, this computation is usually based on the small wave
amplitude assumption (linear wave), and consequently the fluid domain is calculated using potential flow theory, subject to
the boundary conditions at the mean free surface and structure positions (Temarel and Hirdaris, 2009). This means that both
the rigid-body and flexible motion parts can only be relatively small in this method. Moreover, in the governing equations
(Temarel and Hirdaris, 2009), there are no terms representing the mutual effect between rigid-body motion and flexible
deformation, although the rigid and flexible variables are solved simultaneously. This way of handling FSI computations may
be accurate enough for small motions, but in the case of violent water structure interaction, in which the rigid-body motion
part is very large, the effect from structure flexibility to rigid-body motion should be considered and vice versa (which can
be seen from the new structure governing equations in Section 2).

As a consequence, in this study a model which fully couples the rigid-body motion and small flexible deformation (by
mode function) is developed to calculate the violent water and flexible structure interaction problems.

This model can be integrated with various fluid solvers, e.g. mesh-based or meshless ones. In this work, the modified MPS
method (Sun et al., 2015) is employed to compute the fluidmotion and the pressure imposed on structure. The interaction between
fluid and structure solvers is conducted in a strong coupling manner, i.e. iterative until the convergence condition is satisfied.

The rest of this paper is organized as follows. First, the detailed derivation of the structural model for a general rigid body
with flexible beams attached on it is given in Section 2. Based on this, the governing equations for three special cases, i.e.
pure rigid body, floating flexible beam and symmetric wedge with flexible bottom are also derived. Then, the modified MPS
method is briefly illustrated in Section 3. In Section 4, the water structure interaction strategy is presented. Finally, the
results of the validation test cases, which include the break-dam hitting a free floating beam and the dropping of a wedge
with flexible bottom, are discussed in Section 5.
2. Structure solver—Dynamics of coupled rigid-body and flexible beams

The coupled rigid-body and modal superposition (CRMS) model are developed in details in this section. In 2D model, the
slim beam-like structure is quite common in ship industry, such as, the wall of the LNG container, the deck or even the
whole ship structure. Consequently, the dynamics of the general equations for a rigid body with flexible beams attached to it
is first derived. Based on this general assumption, the governing equations for three special cases are derived, i.e. pure rigid
body, floating flexible beam (a reasonable approximation of ship structure) and wedge with flexible bottoms.
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2.1. Kinetic description

In Fig. 2.1, one rigid body with two flexible beam-like structures attached to it are investigated here. However, the
proposed formulation is generally applicable for the cases with more beams. The beam-like structures are either firmly
connected with the rigid-body if only one end is attached, or at least simply supported at both ends if they are all connected
to the rigid-body. This kind of configuration could enforce that the beam-like structure will not freely rotate with respect to
the rigid-body, which is a reasonable assumption for most of the physical situations in marine engineering. This means the
relative position between these local systems (as will be defined below) will not change during the movement.

a) Coordinate systems
Two types of coordinate systems are used in this study, which include a global X�Y system and body-attached (local)
xR�yR and si�wi systems (i¼ A;B, represents the index of Beams A and B, respectively).
The global X�Y system is fixed in the space, whereas the body-attached (local) coordinate systems follow the
translational and rotational motions of the corresponding components, but do not deform with the body if it is attached
to the beam-like structure. The origins of these local coordinate systems are always chosen to be the mass centre of
corresponding undeformed substructures.

b) Definition of the motion variables
The motion of the rigid-body part could be described by position of its mass centreXcR ¼ XcRðtÞ;YcRðtÞ½ �T , which is the
coordinate of the xR�yR system origin (i.e., OR) in global system, and the angle θRðtÞ from O�X axis (anti-clockwise) to
OR�xR axis. For the flexible beam-like part, except for the mass centre (OfA and OfB) positions Xcfi ¼ XcfiðtÞ;YcfiðtÞ

� �Tand
rotational angles θfiðtÞ; additional variables ηi si; tð Þ which describe the deflection of beam i with respect to the
corresponding beam central lines are required.
For describing the relation between rigid and flexible parts, the variables xofi ¼ ½xofi; yofi�T are defined as the vectors from OR to Ofi,
respectively. Compared with the aforementioned position vectors e.g. Xcfi, this xofi is represented in the xR�yR system instead of
the global X�Y system. Because the relative positions between different local systems are unchanged during the motion, these
vectors would be constants. Moreover, the angular differences between different systems βi are constants as well, i.e.

βi ¼ θR tð Þ�θfi tð Þ � const:
xofi � const: ð2:1Þ

Thus, their time derivatives of the angular variables are equal to each other, i.e.

_θR ¼ _θ fi ð2:2Þ

€θR ¼ €θ fi ð2:3Þ

Similarly, xR ¼ xR; yR
� �T is defined as the vector from the mass centre of the rigid body OR to each point on the rigid body. And it

is also represented in the local xR�yR system. Hence, for each point, the corresponding representation of the vector would
remain unchanged.

c) Kinetics of each point on structure

With the above definitions, the global coordinates of each point on rigid-body part, i.e. XR ¼ XRðtÞ;YRðtÞ½ �T could be
represented as:

XR ¼ XcRþRRxR ð2:4Þ
where RR is the rotation matrix which relates the local xR�yR system with the global X�Y system. Its definition is given in
Eq. (2.11). For the flexible beam-like structure, its motion could be described by the coordinates of the points on the central
line X fi ¼ XfiðtÞ;YfiðtÞ

� �Tas:
X fi ¼ XcfiþRfiξi ð2:5Þ

where ξiis the coordinate of the points on ith beam’s central line represented in the local si�wi system as:

ξi ¼ si; ηi
� �T ð2:6Þ

According to the beam assumption, the deformation only occurs in the direction perpendicular to the beam central line,
which means si would not change for each point during the movement, i.e.

_ξ i ¼ 0; _ηi
� �T ð2:7Þ

€ξ i ¼ 0; €ηi
� �T ð2:8Þ



X

Y
sA

xR

yR

wA

sB
wB

OfB

OfA

OR

O

θfA

θfB
θR

ηA

ηB

Rigid body
Beam B

Beam A

Fig. 2.1. Sketch of general rigid body with flexible beams system.
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Xcfi could be related to XcR as:

Xcfi ¼ XcRþRRxofi ð2:9Þ
By submitting Eq. (2.9) into Eq. (2.5), Xfi could be expressed as:

X fi ¼ XcRþRRxofiþRfiξi ð2:10Þ
Here, Rfi is similar to RR, and is also the rotation matrix which converts the coordinate in local si�wi system into the

global X�Y system. The definitions ofRR and Rfi are of the form:

Rj ¼
cos θj � sin θj
sin θj cos θj

" #
ð2:11Þ

where j indicates different local systems, i.e. rigid body,R; beam A,fA or beam B,fB. Their first and second order time deri-
vatives, which will be used in the following derivation, are given as

_Rj ¼ RjU _θj ð2:12Þ

€Rj ¼ _R jU _θj þRjU €θ j ¼ �Rj
_θ
2
j þRjU €θ j ð2:13Þ

where U is introduced to simplify the derivation, and it is given by

U ¼ 0 �1
1 0

� �
ð2:14Þ

The following relationships of matrices Rj and U would be used in the following derivations:

RjR
T
j ¼ RT

j Rj ¼UUT ¼UTU ¼ I2 ð2:15Þ

UU ¼UTUT ¼ �I2 ð2:16Þ
where I2 is a 2�2 identity matrix. With these formulations, the velocity and acceleration of each point on the rigid body or
beam-like structure could be derived as:
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_XR ¼ _X cRþ _RRxR ¼ _X cRþRRU _θRxR ð2:17Þ

_X fi ¼ _X cRþ _RRxofiþ _R fiξiþRfi
_ξ i ¼ _X cRþRRU _θRxofiþRfiU _θ fiξiþRfi

_ξ i ð2:18Þ

€XR ¼ €X cRþ €RRxR ¼ €X cRþðRRU €θR�RR _θ
2
RÞxR ð2:19Þ

€X fi ¼ €X cRþ €RRxofiþ €R fiξiþ2 _Rfi
_ξ iþRfi

€ξ i ¼ €X cRþ RRU €θR�RR _θ
2
R

� �
xofi

þ RfiU €θ fi�Rfi
_θ
2
fi

� �
ξiþ2RfiU _θ fi _ξ iþRfi

€ξ i ð2:20Þ

In the computation, the perimeter of the whole structure is represented by a set of discrete points. Each point on the
rigid-body part could be defined by Eq. (2.4), after the related variables are obtained. For the beam-like structure part, Eq.
(2.10) only gives the position of the points on its central line. The points on its perimeter are determined in the
following way:

The coordinates of each point is updated by linearly combining the rigid and flexible parts. For the rigid part, the position
is simply determined as a normal rigid-body. The flexible deformation is updated based on the assumption that the beam is
made up by multiple layers of materials and each layer will undergo the same deformation around its own central line. More
specifically, for the points that are not on the beam central line, the flexible deformation is obtained by shifting the cor-
responding value from the layer that is on the beam central line.

2.2. Modal superposition approach

By using the modal superposition method, the small elastic deflection part ηiðsi; tÞ could be represented as:

ηiðsi; tÞ ¼ΦT
i qi ð2:21Þ

whereΦi andqi are the vectors of mode functions and the corresponding generalised coordinates. They are defined as fol-
lows:

Φi ¼ ϕi1ðsÞ;ϕi2ðsÞ;…;ϕinðsÞ
� �T ð2:22Þ

qi ¼ qi1ðtÞ; qi2ðtÞ;…; qinðtÞ
� �T ð2:23Þ

Separating the spatial and time variables in Eq. (2.21), the time derivatives of ηiðsi; tÞ could be further expressed as:

_ηi ¼ΦT
i _q i ð2:24Þ

€ηi ¼ΦT
i €q i ð2:25Þ

The mode functions are obtained based on the Euler beam equation with particular boundary conditions, as required in
different problems. Furthermore, the orthogonal relationships should also be satisfied, that is,Z

fi
ΦiΦT

i ρl ids¼ In ð2:26Þ

Z
d2Φi

ds2i

 !
EiJi

d2Φi

ds2i

 !T

ds¼ Λi;Λi ¼ diagðωik
2Þ ð2:27Þ

where ωik represents the kth natural circular frequency of the ith beam, and Ei, ρliand Ji are Young’s module, the line density
and the 2nd moment of the ith beam’s cross section, respectively. In is the n�n identity matrix, where n is the number of
modes that is used. The line integration is conducted along the neutral line of the beam.

Introducing the modal superposition model makes it possible to use the generalized coordinates qi to represent the
flexible deformation of the beam. This would enable us to use the desirable orthogonal properties of Eqs. (2.26) and (2.27) to
further simplify the form of these equations in the following content.

In this work, two different set of mode functions are employed for the two problems, i.e. free floating beam on free
surface and wedge with flexible bottoms.

For the free floating beam case, the corresponding boundary condition at both ends is free. The mode functions used in
(Jin and Xing, 2007) is employed here. The first two rigid modes (heave and pitch modes) are eliminated since these parts
will be taken into account by the rigid-body motion. In the following equation for mode function, the index number i is
omitted since they are used for a general formulation instead of a special case for a particular beam:

ϕk sð Þ ¼
1ffiffiffiffiffi
Mf

p cosh ðμks=aÞ
cosh ðμkÞ þ cos ðμks=aÞ

cos ðμkÞ

h i
; k¼ 1;3;5;…

1ffiffiffiffiffi
Mf

p sinh ðμks=aÞ
sinh ðμkÞ þ sin ðμks=aÞ

sin ðμkÞ

h i
; k¼ 2;4;6;…

8>><
>>: ð2:28Þ
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where Mf is the total mass of the beam, a¼ L=2 is half-length of the beam, and μk are the positive real roots of the
eigenvalue equations:

tan μk
	 
þtanh μk

	 
¼ 0; k¼ 1;3;5;…
tan μk

	 
�tanh μk
	 
¼ 0; k¼ 2;4;6;…

(
ð2:29Þ

The first three roots of these equations are:μ1 ¼ 2:3650; μ2 ¼ 3:9266; μ3 ¼ 5:4978.
In the case of wedge with flexible bottoms, each of the symmetrically installed bottoms is modelled as a cantilever beam,

which means the boundary condition at the ends is fixed-free. The corresponding mode function is:

ϕk sð Þ ¼ 1ffiffiffiffiffiffiffi
Mf

p cosh
μks
a

� �
� cos

μks
a

� �
�σk sinh

μks
a

� �
� sin

μks
a

� �� �h i
; k¼ 1;2;3; ð2:30Þ

where σk is defined as σk ¼ sin 2μkð Þ� sinh 2μkð Þ
cos 2μkð Þ�cosh ð2μkÞ

; μk are the positive real roots of the following equations:

cos 2μk
	 
þcosh 2μk

	 
þ1¼ 0; k¼ 1;2;3;… ð2:31Þ
The first three roots are:μ1 ¼ 0:9375; μ2 ¼ 2:3470; μ3 ¼ 3:9274.
To simplify the form of the equations derived in Section 2.3, the following definitions are introduced

ψ0 ¼ ψ01;ψ02;ψ03;…
� �T ¼ Z

Φρlds; ð2:32Þ

ψ1 ¼ ψ11;ψ12;ψ13;…
� �T ¼ Z

sΦρlds; ð2:33Þ

2.3. General governing equations

Using Sections 2.1 and 2.2, the motion of the structure could be fully described by the generalised position variablesD and
the corresponding generalised forceQ variables as follows:

D¼ XT
cR; θ;q

T
A;q

T
B ;…

h iT
ð2:34Þ

Q ¼ Q T
XcR

;Q θ;Q
T
qA
;Q T

qB
;…

h iT
ð2:35Þ

As shown in Eq. (2.1); θR and θfiare not independent to each other, therefore for simplicity, the angle variable θ in D is
selected to be the rigid rotational angle θR without affecting the structure of the formulations. Moreover, although the time
derivatives of θRand θfi are the same (i.e. Eqs. (2.2) and (2.3)), they are still annotated differently in the following derivations
in order to show clearly the origin of each term. The variables qi are the generalised coordinates for Beam A or Beam B,
respectively, which are defined by Eq. (2.23).

The force variables QXcR
;Q θ and Q qi are non-conservative forces corresponding to the rigid-body motion part (i.e. XcR and

θ) and the elastic parts (i.e. qi), respectively. The vector type forces are defined as:

QXcR
¼ QXcR

;QYcR

� �T ð2:36Þ

Q qi ¼ Qqi1;Qqi2;…;Qqin
� �T ð2:37Þ

According to the principle of Lagrange Mechanics, the motion of the structure could be described as:

QXcR
¼ d
dt

∂T
∂ _X cR

� �
þ ∂V
∂XcR

� ∂T
∂XcR

ð2:38Þ

Q θ ¼
d
dt

∂T
∂ _θ

� �
þ∂V
∂θ

�∂T
∂θ

ð2:39Þ

Q qi ¼
d
dt

∂T
∂ _qi

� �
þ ∂V
∂qi

� ∂T
∂qi

ð2:40Þ

where T andV are kinetic and potential energies of the whole structure, respectively. The kinetic energies for the rigid body
ðTRÞand flexible (TfiÞbeams; and the whole structure are given by:

Tfi ¼
1
2

Z
fi

_X
T
fiρl

_X fids ð2:41Þ

TR ¼
1
2
∬R

_X
T
Rρ

_X Rdxdy ð2:42Þ
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T ¼ TRþ
X

i
Tfi ð2:43Þ

For the potential energies, they are given by:

VR ¼MRgYcR ð2:44Þ

Vfi ¼
1
2

Z
fi

d2ηfi
ds2

EiJi
d2ηfi
ds2

dsþMfigYcfi ¼
1
2
qT
i

Z
d2Φi

ds2

 !
EiJi

d2Φi

ds2

 !T

ds

0
@

1
AqiþMfigYcfi

¼ 1
2
qT
i ΛiqiþMfigðYcRþ sin θRxofiþ cos θRyofiÞ ð2:45Þ

V ¼ VRþ
X

i
V fi ð2:46Þ

where VR and Vfi are the rigid body and flexible beams potential energies, respectively, and MR and Mfi are the masses for
the corresponding parts.

The generalised forces corresponding to the rigid-body motion (i.e. XcR and θ) and the elastic ones (i.e. qi) could be
determined using the virtual work principle. This is achieved by establishing an equation that the virtual work done by the
generalised forces should be equal to the one done by active external non-conservative forces through generalised virtual
displacements. In this work, we assume that the whole structure is subject to distributed pressure p only (e.g. water
pressure). No concentrated force or moment is applied on it. Hence, the following equations are obtained:

δXcR
TQXcR

¼ δXcR
T
I
all

pnð Þdl ð2:47Þ

δθQ θ ¼ δθ

I
all
p Xpny�Ypnx
	 


dl ð2:48Þ

δqT
i Q qi ¼

I
fi

pnð Þ∙eiw½ �δηfidl¼ δqT
i

I
fi

pnð Þ∙eiw½ �Φidl ð2:49Þ

where n¼ nx;ny
� �T is the unit normal vector of points on the perimeter of the whole surface, which points towards the

interior structural domain (i.e., outside the fluid domain if fluid is in the vicinity). Xp ¼ Xp;Yp
� �T are the vectors pointing

from OR to the points on the perimeter of the whole structure. eiw ¼ eiw1; eiw2½ �T is the unit vector of the wi direction. All these
vectors are represented in the global X�Y system. The integrations with subscripts all or fi mean that the calculations are
conducted on the perimeter of the whole structure or just on the corresponding beams.

Thus, the generalised forces are:

QXcR
¼
I
all
pndl ð2:50Þ

Q θ ¼
I
all
p Xpny�Ypnx
	 


dl ð2:51Þ

Q qi ¼
I
fi

pnð Þ∙eiw½ �Φidl ð2:52Þ

After substitutingT , V , QXcR
,Q θ and Q qi into the Lagrange equation, and with some tedious derivations using the chain

rule, the governing equations for the coupled rigid-body and flexible beams system become:X
i

Z
fi

€X cR�RR _θ
2
RxofiþRRU €θRxofi�Rfi

_θ
2
fiξiþRfiU €θ fiξiþ2RfiU _θ fi _ξ iþRfi

€ξ i
� �

ρlds

þ∬R
€X cR�RR _θ

2
RxRþRRU €θRxR

� �
ρdxdyþ MRþ

X
i
Mfi

� �
g

0
1

� �
¼QXcR

ð2:53Þ

X
i

Z
fi

€X
T
cRþ €θRxofiTU

TRT
R� _θ

2
Rxofi

TRT
Rþ €θ fiξi

TUTRT
fiþ2 _θ fi _ξ i

T
UTRT

fi� _θ
2
fiξi

TRT
fiþ €ξ i

T
RT
fi

� �
RRUxofiþRfiUξi
	 


ρlds

þ∬R
€X
T
cR� _θ

2
RxR

TRT
Rþ €θRxRTU

TRT
R

� �
RRUxRð Þρdxdyþ

X
i
Mfi cos θRxofi1� sin θRxofi2
	 
¼Q θ ð2:54Þ

Z
fi

€X
T
cRþ €θRxofiTU

TRT
R� _θ

2
Rxofi

TRT
Rþ €θ fiξi

TUTRT
fiþ2 _θ fi _ξ i

T
UTRT

fi� _θ
2
fiξi

TRT
fiþ €ξ i

T
RT
fi

� �
Rfi

0
1

� �
Φi

� �
ρldsþΛiqi ¼Q qi ð2:55Þ

For the rigid body part, the following integrations hold:

∬Rρdxdy¼MR ð2:56Þ

∬RρRRxRdxdy¼ 0 ð2:57Þ
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∬RxRTxRρdxdy¼ IR ð2:58Þ
which also means:

∬RρRRUxRdxdy¼ 0 ð2:59Þ
where IR is the rotational inertia of the rigid body. The integration for the rigid-body part could be simplified as:

∬R
€X cR�RR _θ

2
RxRþRRU €θRxR

� �
ρdxdy¼ €X cR∬Rρdxdy� _θ

2
R∬RρRRxRdxdyþ €θR∬RρRRUxRdxdy¼MR

€X cR ð2:60Þ

∬R
€X
T
cR� _θ

2
RxR

TRT
Rþ €θRxRTU

TRT
R

� �
RRUxRð Þρdxdy¼ €X

T
cR∬RρRRUxRdxdyþ €θR∬RxRTU

TRT
RRRUxRρdxdy

� _θ
2
R∬RxRTR

T
RRRUxRρdxdy¼ IR €θR ð2:61Þ

Finally, by substituting Eqs. (2.60) and (2.61) into Eqs. (2.53)–(2.55), the governing equations for the whole structure
become:

X
i

Z
fi

€X cR�RR _θ
2
RxofiþRRU €θRxofi�Rfi

_θ
2
fiξiþRfiU €θ fiξiþ2RfiU _θ fi _ξ iþRfi

€ξ i
� �

ρldsþMR
€X cRþ MRþ

X
i
Mfi

� �
g

0
1

� �
¼QXcR

ð2:62Þ

X
i

Z
fi

€X
T
cRþ €θRxofiTU

TRT
R� _θ

2
Rxofi

TRT
Rþ €θ fiξi

TUTRT
fiþ2 _θ fi _ξ i

T
UTRT

fi� _θ
2
fiξi

TRT
fiþ €ξ i

T
RT
fi

� �
RRUxRofiþRfiUξi
� �

ρldsþ IR €θR

þ
X

i
Mfi cos θRxofi� sin θRyofi
� �

¼ Q θ ð2:63Þ

Z
fi

€X
T
cRþ €θRxofi

TUTRT
R� _θ

2
Rxofi

TRT
Rþ €θ fiξi

TUTRT
fiþ2 _θ fi _ξ i

T
UTRT

fi� _θ
2
fiξi

TRT
fiþ €ξ i

T
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fi

� �
Rfi

0
1

� �
Φi

� �
ρldsþΛiqi ¼Q qi

ð2:64Þ

2.3.1. Special cases
2.3.1.1. Rigid-body. If the object under consideration is just a rigid body, all the integrations corresponding to flexible beams
in the above general governing equations would vanish. This means the final equations would simply reduce to the fol-
lowing form:

MR
€X cRþMRg

0
1

� �
¼QXcR

ð2:65Þ

IR €θR ¼Q θ ð2:66Þ

These equations are obviously identical to the classical rigid-body dynamics results, as expected.

2.3.1.2. Floating flexible beam. The case of a homogeneous floating flexible beam is studied in this section. The beam
assumption is a common practice in marine engineering when describing the overall Hydroelasticity property of a ship
structure. However, as mentioned before, the traditional Hydroelasticity theory actually performs the calculation in the way
that rigid-body motion and flexible deformation are calculated separately without considering the mutual interaction effect,
i.e. first computing the overall motion with rigid-body assumption and then calculating the flexible deformation with modal
superposition technique based on the fluid force from rigid-body computation. The model proposed here provides the
possibility to compute the coupled effect of rigid-body and flexible motions.

As shown in Fig. 2.2, there is only one flexible beam in this case. The subscript i (i¼ A;B), which indicates different beams,
could be omitted in the above equations. Furthermore, since the purely rigid body part does not exist in this case, the rigid-
body systemxR�yR and flexible beam system xf �yf coincide with each other, which lead to the following relations:

xof � 0ðaÞ
θR � θf ðbÞ
RR � Rf ðcÞ
XcR � Xcf ðdÞ

8>>>><
>>>>:

ð2:67Þ

Substituting the above relations into the general governing equations Eqs. (2.62)–(2.64), lead to the following simplified
expression for this case:Z

f

€X cf �Rf
_θ
2
f ξþRfU €θ f ξþ2RfU _θ f _ξþRf

€ξ
� �

ρldsþMf g
0
1

� �
¼QXcf

ð2:68Þ
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Fig. 2.2. Sketch of the flexible floating beam system.
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Z
f

€X
T
cf þ €θ f ξ

TUTRT
f þ2 _θ f _ξ

T
UTRT

f � _θ
2
f ξ

TRT
f þ €ξ

T
RT
f

� �
Rf Uξ
	 


ρlds¼ Q θ ð2:69Þ

Z
f

€X
T
cf þ €θ f ξ

TUTRT
f þ2 _θ f _ξ

T
UTRT

f � _θ
2
f ξ

TRT
f þ €ξ

T
RT
f

� �
Rf

0
1

� �
Φ

� �
ρldsþΛq¼Q q ð2:70Þ

Considering that the local coordinate centre is also the mass centre and its symmetry property about w and s axis, the
following relationships hold:Z

ρlds¼Mf ð2:71Þ

Z
sρlds¼ 0 ð2:72Þ

Z
s2ρlds¼ If ð2:73Þ

Z
η2ρlds¼∬ ΦTq

	 

ΦTq
	 


ρlds¼ qT
Z

ΦρlΦTds
� �

q¼ qT Iq¼ qTq ð2:74Þ

Z
η_ηρlds¼

Z
ΦTq
	 


ΦT _q
	 


ρlds¼ qT _q ð2:75Þ

where If ¼Mf ðL2þH2Þ=12 is the rotation inertia of the beam about mass centre.
If the mode function is chosen up to third-order, and by substituting the above relationships into Eqs. (2.68)–(2.70), the

governing equations finally become:

M €XcRþ _θ
2
f sin θf ψ01q1þψ02q2þψ03q3

	 
�2 _θ f cos θf ψ01 _q1þψ02 _q2þψ03 _q3
	 


� €θ f cos θf ψ01q1þψ02q2þψ03q3
	 
� sin θf ðψ01 €q1þψ02 €q2þψ03 €q3Þ ¼QXcR

ð2:76Þ

M €Y cR� _θ
2
f cos θf ψ01q1þψ02q2þψ03q3

	 
�2 _θ f sin θf ψ01 _q1þψ02 _q2þψ03 _q3
	 


� €θ f sin θf ψ01q1þψ02q2þψ03q3
	 
þ cos θf ψ01 €q1þψ02 €q2þψ03 €q3

	 
þMg¼QYcR
ð2:77Þ

� €XcR cos θf þ €Y cR sin θf
� �

ψ01q1þψ02q2þψ03q3
	 
þ If €θ f þ €θ f q1

2þq2
2þq3

2	 
þ2 _θ f _q1q1þ _q2q2þ _q3q3
	 


þ ψ11 €q1þψ12 €q2þψ13 €q3
	 
¼Q θ ð2:78Þ

� €XcR sin θf þ €Y cR cos θf
h i

ψ01þψ11
€θ f � _θ

2
f q1þ €q1þω2

1q1 ¼Qq1 ð2:79Þ

� €XcR sin θf þ €Y cR cos θf
h i

ψ02þψ12
€θ f � _θ

2
f q2þ €q2þω2

2q2 ¼Qq2 ð2:80Þ

� €XcR sin θf þ €Y cR cos θf
h i

ψ03þψ13
€θ f � _θ

2
f q3þ €q3þω2

3q3 ¼Qq3 ð2:81Þ

where Qq1 , Qq2 and Qq3 are the three components in Eq. (2.52), corresponding to the three modes. As can be seen, there are
several non-linear terms in each of these equations, which represent the interaction effect between rigid-body motion and
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flexible deformation. This set of equations is then solved at each FSI iterations using Newmark method (Newmark, 1959) and
Newton-Raphson methods. The detailed procedure of the solution process is given in the Appendix.

2.3.1.3. Symmetric flexible wedge. In this part, the case of a 2D wedge with flexible bottom vertically and freely dropping into
water is investigated. The wedge model is shown in Fig. 2.3. Both of the bottoms are fixed at the junction point on the wedge
top and free at the other ends. The bottoms are flexible whereas the other parts are treated as rigid body. Both of the two
bottom beams have the same mass, which is defined as Mf , i.e.:

MfA ¼MfB ¼Mf ð2:82Þ

The symmetric property will make the dropping motion only occurs in the vertical direction and always perpendicular to
the calm water surface, which means there would be no rotational motion during the dropping. Therefore, all the time
derivatives of the angular variables are all zeros, i.e.:

_θR ¼ €θR ¼ _θ fA ¼ €θ fA ¼ _θ fB ¼ €θ fB ¼ 0 ð2:83Þ

These angular conditions make all the angle-related terms in the general governing equations to be zeros. Moreover, the
equation corresponding to angular motion (Eq. (2.63)) is not included since the angular variables are constants. As a result,
the simplified governing equations for this case become:

X
i

Z
fi

€X cRþRfi
€ξ i

� �
ρldsþMR

€X cRþ MRþ
X

i
Mfi

� �
g

0
1

� �
¼QXcR

ð2:84Þ

Z
fi

€X
T
cRþ €ξ i

T
RT
fi

� �
Rfi

0
1

� �
Φi

� �
ρlidsþΛiqi ¼Q qi ð2:85Þ

To simplify further the forms of these equations, the following relations between θfA and θfB, which are derived from the
symmetric configuration of the wedge, are used to expand the vectors and matrices in the above equations, i.e.

sin ðθfAÞ ¼ sin ðπ�θfBÞ ¼ sin ðθfBÞ ð2:86Þ

cos ðθfAÞ ¼ cos ðπ�θfBÞ ¼ � cos ðθfBÞ ð2:87Þ

Moreover, the vertical motion constraint also means the wedge should be motionless in the horizontal direction, i.e.:

XcR ¼ _XcR ¼ €XcR ¼ 0 ð2:88Þ

As the wedge is symmetric about the yR axis and the entry speed is perpendicular to the free surface, the flexible
deformation of the two bottom beams will have the same absolute amount but opposite direction when measured in their
corresponding local xfi�yfi coordinate system. Therefore, if the mode functions for the left beam ΦA are chosen to be the
opposite ones of the right beam ΦB;, i.e.:

ΦB ¼ �ΦA ¼Φ ð2:89Þ
where Φ is the is the vector of the mode function defined by Eq. (2.30), then the generalised coordinates qi would be
Fig. 2.3. sketch of the wedge with flexible bottom.
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identical for both sides, that is,

qA ¼ qB ð2:90Þ

Substituting Eqs. (2.89) and (2.90) into Eq. (2.52) (for the calculation of Q qi ), and considering the water pressure (�pn)
pointing in the same and opposite direction of wi for Beam A (eAw) and Beam B (eBw), respectively (which means pnð Þ∙eAw
and pnð Þ∙eBwwould be of the opposite sign), then the value of the generalized force Q qi for both of the two beams would be
the same, i.e.:

Q qA ¼Q qB ð2:91Þ

After substituting the above relations, the final governing equations for the flexible wedge dropping problem are:

2Mf þMR
	 
 €Y cRþ2 cos θ ψ01 €q1þψ02 €q2þψ03 €q3

	 
þ 2Mf þMR
	 


g ¼QYcR
ð2:92Þ

2 €Y cR cos θψ01þ2 €q1þ2ω2
1q1 ¼ 2Qq1 ð2:93Þ

2 €Y cR cos θψ02þ2 €q2þ2ω2
2q2 ¼ 2Qq2 ð2:94Þ

2 €Y cR cos θψ03þ2 €q3þ2ω2
3q3 ¼ 2Qq3 ð2:95Þ

where the subscript i (i¼ A;B), which is used for indicating different beams in qi, ψ i0, ψ i1 and Q qi , is omitted based on the
equivalent conditions aforementioned. What is worth mentioning is that the angle θ and mode function vector ψ0 are
chosen to be the value of beam B, although the structure of these equations would be the same if they are chosen from beam
A..As before, this set of equations is also solved by coupled Newmark and Newton-Raphson methods. The detailed for-
mulation is given in Appendix.
3. Fluid solver—Modified MPS method

In this section, a brief illustration about the modified MPS methodology would be given. More details could be found in
(Sun et al., 2014, 2015).

3.1. Governing equations

The problems investigated in this paper are all marine related violent and rapid changing physical processes, which
mean the viscosity effect is quite small. In the Lagrangian frame, the incompressible and inviscid Navier-Stokes equations
are given by

Du
Dt ¼ g�∇p

ρ

∇Uu¼ 0
ð3:1Þ

where u, p and ρ are the fluid velocity, pressure and density respectively, and g is the vector pointing to the gravity direction,
i.e. g ¼ ½0; �g�. In the Lagrangian frame, there is no convection term in the acceleration of the momentum equation (i.e., the
left hand side of the first equation in Eq. (3.1)). The position of each particle is advanced based on its own physical velocity
i.e. Dr

Dt ¼ u (r is the position vector of a particle). This process is illustrated in Section 3.2 below.

3.2. Enforcing incompressibility—Projection method

As a typical approach for the incompressible fluid computation, the two-step projection method, which is introduced by
Chorin (Chorin, 1967), is adopted here to decouple the velocity and pressure calculation.

The first step is to calculate the intermediate velocity without considering pressure, and then move the particles to the
intermediate location according to this velocity:

u� ¼ unþΔtg
r� ¼ rnþΔtu�

(
ð3:2Þ

A pressure Poisson equation is then derived as follows to solve the pressure field:

∇2pnþ1 ¼
ρ∇∙u�
Δt

þαρ
n0�nn

n0Δt2
ð3:3Þ

Here, the term n0 and nn are called “particle density”. The subscripts 0 and n indicate the initial and the last time step
states, respectively. They are proportional to the physical density. Their definitions will be given in Section 3.3.
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The coefficient α in Poisson equation (Eq. (3.3)) is chosen in the following way (Sun et al., 2014):

α¼

n0 �nn
n0

þΔtj∇∙unj if ðn0�nnÞ∇∙unZ0n0 �nn
n0

 if ðn0�nnÞ∇∙unr0

8><
>: ð3:4Þ

which means no artificial term appears in the process of the determination of α.
The condition n0�nnð Þ∇∙unZ0 means the fluid is compressed i.e. ðn0�nnÞr0(or expanded i.e. (n0�nnÞZ0) in the last

time step (t ¼ nΔt) and will be further compressed according to the motion trend of particles i.e. ∇∙unr0 (or expanded i.e.
∇∙unZ0). Under this situation, an additional term (Δt ∇∙unjj ) is added into the coefficient to help to control this further
compression (or expanding).

After obtaining the pressure, the velocity and location are then updated as:

unþ1 ¼ u��Δt∙∇pnþ 1
ρ0

ðaÞ
rnþ1 ¼ rnþΔt∙unþ1ðbÞ

(
ð3:5Þ

3.3. Particle interaction model

The gradient and Laplacian operators are discretized by a weighted average approach:

∇u xið Þ ¼ d
n0

XM

ja i

uðxjÞ�uðxiÞ
rij2

ðxj�xiÞw rij
	 
 ð3:6Þ

∇2u xið Þ ¼ 2d
n0λ

XM

ja i
½u xj
	 
�u xið Þ�w rij

	 
 ð3:7Þ

where d is the number of space dimension, M is particles number in the support domain, w rij
	 


is the weight function and λ
is a parameter related to w rij

	 

by:

w rij
	 
¼ re

rij
�1 0rrijrre

0 rijZre

(
ð3:8Þ

λ¼
PM

ja i w rij
	 


rij2PM
ja i w rij

	 
 ð3:9Þ

where re is the radius of local support domain.
The particle density is also defined based on the weight function as follows:

n¼
XM

ja i
w rij
	 
 ð3:10Þ

After applying these discretizing models to the pressure Poisson equation, a linear system is then obtained as:

A∙P ¼ B ð3:11Þ
whereA andB are the coefficient matrix and the right hand side vector, respectively. P ¼ p1; p2;…; pn;

� �T is the unknown
discretized node pressure vector. The system is then solved by Generalized Minimum Residual (GMRES) method.

3.4. Boundary conditions for Poisson equation
a) Pressure Neumann condition on solid boundary
In the proposed scheme, the following Neumann condition (Eq. (3.12)) is applied on the inner most layer of solid
boundary, instead of Poisson equation (Eq. (3.3)) as in standard MPS. The gradient of pressure is calculated between the
current boundary particle and the nearest fluid particle.

n∙∇pnþ1 ¼ ρðn∙g�n∙ _U nþ1Þffiρðn∙g�n∙ _U nÞ ð3:12Þ

where _U is the acceleration of the boundary. In the case that the motion of the boundary is determined by the pressure
of the surrounding fluid, the acceleration of next time step _U nþ1 is unknown since the pressure has not been solved yet.
As an approximation, the value of the last time step (or the last iteration when iterative process is involved in the fluid
structure interaction) for _U n is adopted instead.

b) Laplacian operator compensation near solid boundary
For the fluid particles which are close to the solid boundary, the Laplacian operator is modified to be consistent with the
Newman condition. As shown in Fig. 3.1, if the virtual particle, which is along the local normal direction and away from



Fig. 3.1. Demonstration of new pressure boundary condition.
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solid boundary with the initial distancedr0, is within the support domain of the fluid particle, this virtual particle is also
included in the discretization of Laplacian operator. The pressure (which is unknown) of this virtual particle is then
represented by the corresponding solid particle based on Eq. (3.12), i.e.

pV ¼ pSþρ n∙g�n∙ _U
� �

dr0 ð3:13Þ

where, pV is the pressure of virtual particle, and pS is the pressure of the corresponding solid particle.
c) Intermediate velocity of solid boundary particles

The choice of intermediate velocity u� on solid boundary will affect the accuracy of pressure, since the divergence of
intermediate velocity is the source term of the pressure Poisson equation. As suggested by (Brown et al., 2001), the choice of
u� should guarantee that, at (nþ1)th time step, the fluid velocity on boundary (unþ1 ∂Ωj ) should be equal to the solid body
velocity on the fluid-solid interface (ubnþ1).

Finally, by using Eqs. (3.5a) and (3.12), the intermediate velocities of the boundary particles are chosen as:

∂ub�
∂n

¼ n∙ubnþ1þΔt n∙g�n∙ _U n

� �
∂ub�
∂τ

¼ τ∙ubnþ1þ
Δt
ρ0

∂pn
∂τ

ð3:14Þ

The derivative terms are calculated by simple finite difference approach between its neighbor solid particles.
As pointed out in (Brown et al., 2001), using the above intermediate velocity boundary condition Eq. (3.14), the time

accuracy for both the velocity and the pressure (Eqs. (3.2)–(3.5)) are of second-order.

a) Free surface particle identification

A simplified version of the method used by Koh et al (Koh et al., 2012) is adopted. If the “circle” is completely covered by
its neighbors, then it is recognized as an inner fluid particle, otherwise it is a free surface particle. The circle is discretized by
360 points which locate evenly along the circle. If all these points are covered, the circle is then regarded as being covered.
For example, in Fig. 3.2, particle A is recognized as free surface, because the yellow points on its “circle” are not covered by
its neighbors. In contract, particle B is identified as inner fluid particle.



A

B

Fig. 3.2. Demonstration of free surface particle recognition method.
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3.5. Particle shifting and collision handling

In order to alleviate the disorder of particle distribution, after each time step, the positions of particles are slightly
shifted. Actually, this technique could be regarded as a re-meshing procedure. Moreover, because the amount of shifting is
very small, not mapping the value onto the new positions will not corrupt the results.

The amount of shifting is chosen as:

δri ¼
X

ja i

r0� jrijj
2

� ri� rjjrijj
; when rij rr0j

 ð3:15Þ

where r0 is normally set to be 99% of the initial particle distance, i.e.r0 ¼ 0:99� dr0. Furthermore, before the calculation at
each time step, we apply the following velocity manipulation for each fluid particle to avoid potential collisions:

δvi ¼
X

ja i
�ϵðrijÞvt ij; when rij�vτ ijΔt rrminj

 ð3:16Þ

wherevτ ij is the tangential relative velocity between particles i and j, and rmin is the threshold to activate the scheme. It is
selected as roughly 30% of the initial particle distance in this study. Parameter ϵ depends on the property of particlej. If
particlej is a fluid particle, ϵ is equal to 0.5, otherwise, if it is a solid boundary particle, ϵ is equal to 1.0. This setting is to make
sure that the solid particles velocity involved will not be affected, while the relative velocity between its neighbour fluid
particles will still be set to zero.

3.6. Neighbour particle searching strategy

As shown in Fig. 3.3, in order to discretizing the Laplacian and gradient operators, the particles which are located within
the local support domain need to be found and kept updated when the particle relative locations change. The most com-
monly used method, the “cell-link” method, is as follows: The whole computation domain is first divided into regular grids
(cells) of the size of at least the radius of support domain for Laplacian (4.0 times of initial particle distance 4:0� dr0, which
is larger than the supporting domain for gradient, i.e. 2.1 times of the initial particle distance). Then, the searching for each
particle is conducted within its nearest “cells” (9 cells in 2D, 27 cells in 3D).

In this study, the size of the cell is reduced to the initial particle distance (i.e.dr0). This modification makes the new
searching area (area covered by red line in Fig. 3.3) becomes about 4/9 of the original one (area covered by green line in
Fig. 3.3), which greatly improves the efficiency. Moreover, the non-redundant particle searching strategy (Crespo, 2008) is
also employed here. By using this technique, only the cells with higher indexes are required to be searched, which means
the searching area is further reduced into the one covered by blue color if the cells are indexed vertically from bottom to top.
Finally, only about 2.5/9 of the traditional searching area is required by using the proposed approach. More details could be
found in (Sun et al., 2015).
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Fig. 3.3. Demonstration of the new neighbour particle searching strategy.

Fig. 4.1. Flow chart of the iterative process of fluid structure interaction.
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4. Fluid structure interaction strategy

The interaction between the structure and water is computed in an iterative way. The Gauss-Seidel method with Aitken
relaxation approach is adopted in this study.

We suppose that all the fluid and structure variables are known at t ¼ tn�1. Then, the detailed process of interaction is
illustrated as follows:

1) Predict the position, velocity and acceleration of the points on fluid structure interface Γn
Σ;0, _Γ

n
Σ;0and €Γ

n
Σ;0 at t ¼ tn using

the structure kinetic values at t ¼ tn�1. i.e., D
n�1, _D

n�1
and €D

n�1
(Eqs. (2.4) and (2.10) in Section 2.1)

2) Based on the updated kinetic information of interface, calculate the fluid motion at t ¼ tn, by the modified MPS method.
Then, obtain the new pressure pnΣ;i applied on the interface for ith iteration at t ¼ tn.

3) Use the new fluid pressure pnΣ;ito update the structure position, velocity and acceleration by the structural model for
t ¼ tn; i.e. ; ~D

n
iþ1,

_~D
n
iþ1and

€~D
n
iþ1. Then, find the corresponding kinetic values ~Γ

n
Σ;iþ1,

_~Γ
n
Σ;iþ1 and €~Γ

n
Σ;iþ1 of the points on the

interface (by Eqs. (2.4) and (2.10) in Section 2.1).
4) Check the difference between ~Γ

n
Σ;iþ1and Γn

Σ;i. If the convergence condition

 ~Γ n
Σ;iþ1�Γn

Σ;i

rϵ; ð4:1Þ

is satisfied, then go to step (1) to continue the computation for the next time step (t¼tnþ1).
Otherwise, correct the structure position Dn

iþ1 for ðiþ1Þth iteration using Eq. (4.2):

Dn
iþ1 ¼ χi ~D

n
iþ1þð1�χiÞDn

i ð4:2Þ

and update the velocity _D
n
iþ1and acceleration €D

n
iþ1 by Newmark method (see Appendix). The corresponding interface

variables Γn
Σ;iþ1 , _Γ

n
Σ;iþ1and €Γ

n
Σ;iþ1 are then calculated according to Dn

iþ1, _D
n
iþ1 and €D

n
iþ1.

Using these corrected interface information, conduct ðiþ1Þth iteration by going back to step (2).
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Fig. 5.1. Initial configuration of free floating beam case.
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Here χi is the Aitken relaxation factor, and its value is calculated by the following equation:

χi ¼ �χi�1
ΔΓn

Σ;iþ1
T ðΔΓn

Σ;iþ1�ΔΓn
Σ;iÞ

ðΔΓn
Σ;iþ1�ΔΓn

Σ;iÞT ðΔΓn
Σ;iþ1�ΔΓn

Σ;iÞ
; ð4:3Þ

in which ΔΓn
Σ;j ¼ ~Γ

n
Σ;j�Γn

Σ;j�1.
This procedure is summarized in Fig. 4.1:
5. Results and discussion

5.1. Free floating beam

The testing case of a break-dam hitting floating flexible beam is calculated. The initial configuration is given in Fig. 5.1.
The simulation starts from the equilibrium state in which the beam gravity is balanced out by the water buoyancy.

Two cases with different flexibility have been simulated. The conditions are as follows:

Case 1 (High flexibility):
Bending stiffness E J ¼ 4:5 Nm2 density ρ¼ 400kg=m3 and the first three nature circular frequencies are:
ω1 ¼ 4:3325;ω2 ¼ 11:9429;ω1 ¼ 23:4128
Case 2 (Low flexibility):

Bending stiffness EJ ¼ 4:5� 102Nm2; density ρ¼ 400kg=m3; and the first three nature circular frequencies are:
ω1 ¼ 43:3249;ω2 ¼ 119:4288;ω3 ¼ 234:1281

The fluid domain is discretised by particles with an initial distance of 0.02 m. As a consequence, the total fluid particles
number is 2643. The time interval is determined by the CFL condition with an upper limit of 0.001 s.

The simulations are conducted on a computer with Intel(R) Core(TM) i5-2400 (duo 3.1 GHz) CPU, RAM 4.0 GB. The
physical duration is 5 seconds (about 5000 time steps). Each of the two cases requires approximately 2 CPU hours’ time with
the above computer.

The comparison of high and low flexibility cases are given in Figs. 5.2 and 5.3. For the rigid-body motion part, the effect of
flexibility is accumulated to a remarkable level during the simulation period, especially for the translational variables
(Fig. 5.2(a) and (b)). This shows that for violent water flexible structure interaction problem, the coupling term should be
taken into account to get accurate overall trajectory. For the elastic motion part, as is shown in Fig. 5.3, the values for low
flexibility are much smaller than that of high flexibility, as expected. Moreover, the periods of these curves are basically
consistent with the corresponding dominant nature frequency.

The pressure contour of the fluid field and the deformation of the beam for the two cases are depicted in Fig. 5.4. As is
shown, for both cases there is no singular point in the fluid field and the pressure field is quite smooth. The beam motion is
physically reasonable as well.

The structure solver turns out to be quite efficient. For most of the time, only one time iteration is required for the
Newton-Raphson method to reach the convergence criteria of 10�5, and the computation time for structure is negligible.

The average iteration times required for the FSI coupling is 2.8 for an accuracy of 10�5.

5.2. Wedge with flexible bottom

The results of the flexible wedge dropping case are discussed in this section. Fig. 5.5 shows the initial configuration of the
problem. The numerical results are also compared with the experimental data provided in (Panciroli, 2013). Considering
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Fig. 5.2. The comparison of the rigid-body motion time history for different flexibilities: (a) X coordinate of mass centre; (b) Y coordinate of mass centre;
(c) Rotation angle round mass centre.
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Fig. 5.3. The comparison of deflection time history for different flexibilities at different positions: (a1) & (a2) middle of the beam; (b1) & (b2) far-end
quarter of the beam; (c1) & (c2) far-end of the beam.
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Fig. 5.4. Pressure contour comparison of different flexibility.
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Fig. 5.5. Initial configuration of the wedge dropping problem.

Table 5.1

Case 1 Case 2 Case 3

Material E-Glass (woven)/epoxy Aluminium
Young' modulus E (GPa) 30.3 68
Density ρ (kg/m3) 2015 2700
Mass of the rig (kg/m) 22
Length of each bottom L (m) 0.3
Thickness (mm) 2.2 2
Deadrise angle β (◦) 30
Entry speed(m/s) 4.29 5.57 4
Equivalent Height H*(m) 0.938 1.5813 0.8155
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that during the period after releasing from height H� and before touching the free surface, the flexible bottom will also
develop a small amount of deformation. Therefore, in order to make the simulation more consistent with the real
experimental condition, the simulation is started from the releasing instant, as shown in Fig. 5.5.

In this study, three different flexible cases are simulated. The related parameters of the flexible wedge are listed in
Table 5.1.

The first three modes are taken into account and the corresponding first three circular frequencies
are:ω1 ¼ 96:2104;ω2 ¼ 602:9434;ω3 ¼ 1688:2579.

The fluid field is discretised by particles with the initial space of 0.005 m, which results in 38400 fluid particles (40122
particles in total). The time interval is determined by the CFL condition with a maximum limit of 0.0002 s. With an average
iteration number of 6.5 times for each FSI coupling time step, about 22 CPU hours’ time are required for the simulation of
0.06 s physical duration using the same computer hardware, as described in Section 5.1 It is worth mentioning that the
majority of the computational time is used for the fluid solver, i.e. MPS part. The time used for structure solver is neglectable
considering the scale of the linear system is only 4�4. And only one time iteration is required for an order of 10�5

computational accuracy.
The accelerations of the flexible wedges that are calculated by the coupled Modified MPS and CRMS model are compared

with the results from experiment (Panciroli, 2013), rigid-body simulation and Wagner’s theory in Fig. 5.6, respectively. The
rigid-body computation is conducted by the normal routine for 2D situation, as derived in Section 2.3.1.1. Since the motion
in X direction is also constrained due to the symmetry property as in flexible cases, only the equation corresponding to Y
part in Eq. (2.65) is required to be solved.



Fig. 5.6. The acceleration of the flexible/rigid wedge: (a) comparison for Case 1 between Modified MPSþCRMS and Experiment (Panciroli, 2013);
(b) comparison for Case 2 between Modified MPSþCRMS and Experiment (Panciroli, 2013); (c) comparison for rigid wedge between Modified MPSþRigid-
body dynamics and Wagner’s theory with the same entry speed as in Case 1 (4.29 m/s);(d) comparison for rigid wedge between Modified MPSþRigid-body
dynamics and Wagner’s theory with the same entry speed as in Case 2 (5.57 m/s).
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Fig. 5.7. The pressure contour at different time instants for Case 2.
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Fig. 5.8. The velocity contour at different time instants for Case 2.
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Fig. 5.9. Deformation of the flexible bottom at different time instants for Case 2.
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Fig. 5.10. The comparison of strain results for case 3 between experiment (Panciroli, 2013), Modified MPSþCRMS and SPH (Panciroli, 2013) at different
positions ((a) and (b) corresponds to 30 mm and 120 mm from the wedge tip respectively).
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As shown in Fig. 5.6(a) and (b), the numerical results coincide with the experimental data in terms of both the main
trend and the first impact pressure peak time. In contrast to the rigid case in Fig. 5.6(c) and (d), there is a trough in both the
experimental and numerical results for flexible cases in Fig. 5.6(a) and (b) (at about 0.025 s). Another distinguished feature
in flexible cases is that after the trough of the curve, the acceleration tends to oscillate around a constant value until the end
of the simulation. The numerical model gives an overshot for the second peak acceleration value. And the peak time is also
earlier than the experimental data. This is probably caused by the 2D limitation, since the water cannot be pushed aside
along the tip direction like in real 3D environment and consequently the improper gathering water could generate a higher
pressure. The difference of the dynamic characteristics between 2D beam assumption and the real 3D plate used in the
experiment (e.g. the natural frequencies for the 3D plate is ω1 ¼ 123:72;ω2 ¼ 775:35;ω3 ¼ 217:11 ) might be another reason
of the deviation shown in Fig. 5.6(a) and (b).

The pressure and velocity contours are shown in Figs. 5.7 and 5.8, respectively. Due to the flexibility of the wedge bottom,
the cavitation starts to develop from roughly t¼0.02 s and vanishes until about t¼0.04 s. Because the current model only
involves the water phase, the dynamics which is caused by the entrapped air between the wedge bottom and water could
not be captured correctly. This is probably the reason that the numerical accelerations in Fig. 5.6(a) and (b) show a larger
fluctuation during the cavitation period.

Fig. 5.9 shows the deformation of the flexible bottoms at some typical time instants. During the initial stage of the
impact, the bottoms are bended by the coupling effect of the inertia and the concentrated impact force near the wedge tip.
After about t¼0.02 s, the deformation of the beam starts to bounce back towards the symmetry line of the wedge. This
process is also reflected in the time history of strain that is monitored at two different locations on upper surface of each
bottom, i.e. 30 mm and 120 mm away from the wedge tip respectively, as is shown in Fig. 5.10. The positive part of the strain
in Fig. 5.10(b) (monitored at 120 mm, which is about the middle of the bottom) represents the initial bending stage, as is
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shown in Fig. 5.9. After that, the strain remains negative because of the pressure of the surrounding water. The numerical
strain record matches well with the experimental data.
6. Conclusion

The coupled MPS-modal superposition method proposed in this research has been successfully applied to simulate 2-D
nonlinear water-structure interaction problems involving large rigid motions with small elastic structure deformation. For
the structure model it is shown that it reduces to a small scale equations system (i.e., 6�6 or 4�4, as shown in the floating
beam and flexible beam cases, respectively) regardless of the size of structure.

The numerical examples show that the developed numerical method is capable of providing stable
and reasonable accurate results for simulating nonlinear FSI problems. For the violent FSI cases, the mutual
effect between rigid-body motion and flexible deformation will affect the overall rigid-body motion pattern, e.g. the tra-
jectory of the mass centre of the structure, to a non neglectable level. This feature suggests that the normal modal
superposition approach, in which the flexible part is considered separately with rigid-body motion, is not enough
for this kind of simulation. Moreover, if we take the efficiency of this model (compared with e.g. FE analysis) into account ,
the proposed method is quite suitable for the nonlinear FSI simulation of marine structures, which typically can be
described as a large rigid attached with elastic beam-like, performing large overall rigid-body motion and small elastic
deformation.
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Appendix A

For a variable ζ (i.e. each element in Eqs. (2.76)–(2.81)), its first and second order time derivatives _ζnþ1, €ζnþ1 at next time
stept ¼ tnþ1; can be expressed using Newmark method as:

€ζnþ1 ¼ 1
βΔt2

ζnþ1� ζn
βΔt2

þ _ζn
βΔtþ 1

2β�1
� �

€ζn
h i

_ζnþ1 ¼ γ
βΔtζnþ1þ 1� γ

β

� �
_ζnþΔt 1�γð Þ�γ 1

2β�1
� �h i

€ζn� γ
βΔtζn

where γ ¼ 1�2α
2 , β¼ 1�αð Þ2

4 , andα is chosen to be α¼ �0:05 in this study.
To simplify the above equations, the following definitions are introduced:
C1 ¼ 1

βΔt2
;C3 ¼ γ

βΔt

C2ζ ¼ � ζn
βΔt2

þ _ζn
βΔtþ 1

2β�1
� �

€ζn
h i

;

C3ζ ¼ 1� γ
β

� �
_ζnþΔt 1�γð Þ�γ 1

2β�1
� �h i

€ζn� γ
βΔtζn

in which C2ζ and C3ζ correspond to the particular variable ζ

Using Newmark method to replace the velocity and acceleration terms with position values, the governing equations of
floating beams (i.e. Eqs. (2.74)–(2.81)) then become

f 1 ¼M C1XcRþC2XcR

	 
þ C3θþC4θð Þ2 sin θ ψ01q1þψ02q2þψ03q3
	 


�2 C3θþC4θð Þ cos θ ψ01ðC3q1þC4q1 Þþψ02ðC3q2þC4q2 Þþψ03ðC3q3þC4q3 Þ
� �

� C1θþC2θð Þ cos θ ψ01q1þψ02q2þψ03q3
	 
� sin θ ψ01ðC1q1þC2q1 Þ

�
þψ02ðC1q2þC2q2 Þþψ03ðC1q3þC2q3 Þ

��QXc1
¼ 0;

f 2 ¼M C1YcRþC2YcR

	 
� C3θþC4θð Þ2 cos θ ψ01q1þψ02q2þψ03q3
	 


�2 C3θþC4θð Þ sin θ ψ01ðC3q1þC4q1 Þþψ02ðC3q2þC4q2 Þþψ03ðC3q3þC4q3 Þ
� �

� C1θþC2θð Þ sin θ ψ01q1þψ02q2þψ03q3
	 


þ cos θ ψ01ðC1q1þC2q1 Þþψ02ðC1q2þC2q2 Þþψ03ðC1q3þC2q3 Þ
� �þMg�QXc2

¼ 0;

f 3 ¼ � C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �
ψ01q1þψ02q2þψ03q3
	 


þ C1θþC2θð Þ If þq1
2þq2

2þq3
2	 
þ2 C3θþC4θð Þ ðC3q1þC4q1 Þq1þðC3q2þC4q2 Þq2þðC3q3þC4q3 Þq3

� �
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þ ψ11ðC1q1þC2q1 Þþψ12ðC1q2þC2q2 Þþψ13ðC1q3þC2q3 Þ
� ��Q θ ¼ 0;

f 4 ¼ � C1XcRþC2XcR

	 

sin θþ C1YcRþC2YcR

	 

cos θ

� �
ψ01þ C1θþC2θð Þψ11� C3θþC4θð Þ2q1þC1q1þC2q1 þω2

1q1�Qq1 ¼ 0;
f 5 ¼ � C1XcRþC2XcR

	 

sin θþ C1YcRþC2YcR

	 

cos θ

� �
ψ02þ C1θþC2θð Þψ12� C3θþC4θð Þ2q2þC1q2þC2q2 þω2

2q2�Qq2 ¼ 0;
f 6 ¼ � C1XcRþC2XcR

	 

sin θþ C1YcRþC2YcR

	 

cos θ

� �
ψ03þ C1θþC2θð Þψ13� C3θþC4θð Þ2q3þC1q3þC2q3 þω2

3q3�Qq3 ¼ 0;

These set of equations are solved by Newton-Raphson method. The elements of the Jacobi matrix are:
∂f 1
∂XcR

¼MC1;
∂f 1
∂YcR

¼ 0;

∂f 1
∂θ

¼ ψ01q1þψ02q2þψ03q3
	 


C3θþC4θð Þ2 cos θþ2C3 C3θþC4θð Þ sin θ
h i

�2 ψ01ðC3q1þC4q1 Þþψ02ðC3q2þC4q2 Þþψ03ðC3q3þC4q3 Þ
� �

C3 cos θ� C3θþC4θð Þ sin θ½ �
� ψ01q1þψ02q2þψ03q3
	 


C1 cos θ�ðC1θþC2θÞ sin θ½ �
� cos θ ψ01ðC1q1þC2q1 Þþψ02ðC1q2þC2q2 Þþψ03ðC1q3þC2q3 Þ

� �
;

∂f 1
∂q1

¼ ψ01 C3θþC4θð Þ2 sin θ�2ψ01C3 C3θþC4θð Þ cos θ�ψ01 C1θþC2θð Þ cos θ�C1ψ01 sin θ;

∂f 1
∂q2

¼ ψ02 C3θþC4θð Þ2 sin θ�2ψ02C3 C3θþC4θð Þ cos θ�ψ02 C1θþC2θð Þ cos θ�C1ψ02 sin θ;

∂f 1
∂q3

¼ ψ03 C3θþC4θð Þ2 sin θ�2ψ03C3 C3θþC4θð Þ cos θ�ψ03 C1θþC2θð Þ cos θ�C1ψ03 sin θ;

∂f 2
∂XcR

¼ 0;
∂f 2
∂YcR

¼MC1;

∂f 2
∂θ

¼ ψ01q1þψ02q2þψ03q3
	 


C3θþC4θð Þ2 sin θ�2C3 C3θþC4θð Þ cos θ
h i

�2 ψ01ðC3q1þC4q1 Þþψ02ðC3q2þC4q2 Þþψ03ðC3q3þC4q3 Þ
� �

C3 sin θþ C3θþC4θð Þ cos θ½ �
� ψ01q1þψ02q2þψ03q3
	 


C1 sin θþðC1θþC2θÞ cos θ½ �
� sin θ ψ01ðC1q1þC2q1 Þþψ02ðC1q2þC2q2 Þþψ03ðC1q3þC2q3 Þ

� �
;

∂f 2
∂q1

¼ �ψ01 C3θþC4θð Þ2 cos θ�2ψ01C3 C3θþC4θð Þ sin θ�ψ01 C1θþC2θð Þ sin θþC1ψ01 cos θ;

∂f 2
∂q2

¼ �ψ02 C3θþC4θð Þ2 cos θ�2ψ02C3 C3θþC4θð Þ sin θ�ψ02 C1θþC2θð Þ sin θþC1ψ02 cos θ;

∂f 2
∂q3

¼ �ψ03 C3θþC4θð Þ2 cos θ�2ψ03C3 C3θþC4θð Þ sin θ�ψ03 C1θþC2θð Þ sin θþC1ψ03 cos θ;

∂f 3
∂XcR

¼ �C1 cos θ ψ01q1þψ02q2þψ03q3
	 


;
∂f 3
∂YcR

¼ �C1 sin θ ψ01q1þψ02q2þψ03q3
	 


;

∂f 3
∂θ

¼ � � C1XcRþC2XcR

	 

sin θþ C1YcRþC2YcR

	 

cos θ

� �
ψ01q1þψ02q2þψ03q3
	 


þC1 If þq1
2þq2

2þq3
2	 
þ2C3 ðC3q1þC4q1 Þq1þðC3q2þC4q2 Þq2þðC3q3þC4q3 Þq3

� �
;

∂f 3
∂q1

¼ �ψ01 C1XcRþC2XcR

	 

cos θþ C1YcRð� þC2YcR Þ sin θ�þ2q1 C1θþC2θð Þþ2 C3θþC4θð Þð2C3q1þC4q1 Þþψ11C1;

∂f 3
∂q2

¼ �ψ02 C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �þ2q2 C1θþC2θð Þþ2 C3θþC4θð Þð2C3q2þC4q2 Þþψ12C1;

∂f 3
∂q3

¼ �ψ03 C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �þ2q3 C1θþC2θð Þþ2 C3θþC4θð Þð2C3q3þC4q3 Þþψ13C1;

∂f 4
∂XcR

¼ �C1ψ01 sin θ;
∂f 4
∂YcR

¼ C1ψ01 cos θ;

∂f 4
∂θ

¼ � C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �
ψ01þC1ψ11�2C3q1 C3θþC4θð Þ

∂f 4
∂q1

¼ C1þω2
1� C3θþC4θð Þ2; ∂f 4

∂q2
¼ ∂f 4
∂q3

¼ 0;

∂f 5
∂XcR

¼ �C1ψ02 sin θ;
∂f 5
∂YcR

¼ C1ψ02 cos θ;

∂f 5
∂θ

¼ � C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �
ψ02þC1ψ12�2C3q2 C3θþC4θð Þ

∂f 5
∂q2

¼ C1þω2
2� C3θþC4θð Þ2; ∂f 5

∂q1
¼ ∂f 5
∂q3

¼ 0;

∂f 6
∂XcR

¼ �C1ψ03 sin θ;
∂f 6
∂YcR

¼ C1ψ03 cos θ;
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∂f 6
∂θ

¼ � C1XcRþC2XcR

	 

cos θþ C1YcRþC2YcR

	 

sin θ

� �
ψ03þC1ψ13�2C3q3 C3θþC4θð Þ

∂f 6
∂q3

¼ C1þω2
3� C3θþC4θð Þ2; ∂f 6

∂q1
¼ ∂f 6
∂q2

¼ 0

Similarly, the governing equations for the wedge with flexible bottom (Eqs. (2.92)–(2.95)) and its Jacobi matrix are:
f 1 ¼ 2Mf þMR

	 

C1YcRþC2YcR

	 
þ2 cos θ ψ01ðC1q1þC2q1 Þþψ02ðC1q2þC2q2 Þþψ03ðC1q3þC2q3 Þ
	 
þ 2Mf þMR

	 

g�QXc2

¼ 0
f 2 ¼ 2 C1YcRþC2YcR

	 

cos θψ01þ2ðC1q1þC2q1 Þþ2ω2

1q1�Qq1 ¼ 0
f 3 ¼ 2 C1YcRþC2YcR

	 

cos θψ02þ2ðC1q2þC2q2 Þþ2ω2

2q2�Qq2 ¼ 0
f 4 ¼ 2 C1YcRþC2YcR

	 

cos θψ03þ2ðC1q3þC2q3 Þþ2ω2

3q3�Qq3 ¼ 0
∂f 1
∂YcR

¼ 2Mf þMR
	 


C1;

∂f 1
∂q1

¼ 2C1ψ01 cos θ;

∂f 1
∂q2

¼ 2C1ψ02 cos θ;

∂f 1
∂q3

¼ 2C1ψ03 cos θ;

∂f 2
∂YcR

¼ 2C1ψ01 cos θ;

∂f 2
∂q1

¼ 2C1þ2ω2
1;
∂f 2
∂q2

¼ ∂f 2
∂q3

¼ 0;

∂f 3
∂YcR

¼ 2C1ψ02 cos θ;

∂f 3
∂q2

¼ 2C1þ2ω2
2;
∂f 3
∂q1

¼ ∂f 3
∂q3

¼ 0;

∂f 4
∂YcR

¼ 2C1ψ03 cos θ;

∂f 4
∂q3

¼ 2C1þ2ω2
3;
∂f 4
∂q1

¼ ∂f 4
∂q2

¼ 0;
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