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The minimum lap time optimal control problem has been solved Received 20 February 2015
for a go-kart model. The symbolic algebra software Maple has been ~ Revised 16 November 2015
used to derive equations of motion and an indirect method hasbeen ~ Accepted 23 November 2015
adopted to solve the optimal control problem. Simulation has been  yevworps
successfully performed on a full track lap with a multibody model Go-kart; optimal control;
endowed with seven degrees of freedom. Geometrical and mechan-  optimal manoeuvre; lap
ical characteristics of a real kart have been measured by a lab test to time; simulation

feed the mathematical model. Telemetry recorded in an entire lap

by a professional driver has been compared to simulation results in

order to validate the model. After the reliability of the optimal control

model was proved, the simulation has been used to study the pecu-

liar dynamics of go-karts and focus to tyre slippage dynamics, which

is highly affected by the lack of differential.

1. Introduction

Optimal control problems applied to racing vehicle are nowadays widely used to simulate
and predict the performance on racing tracks. Examples can be found for rally cars,[1] For-
mula 1 cars [2] and motorcycles.[3,4] However, in the literature there is a lack of optimal
control analysis regarding go-karts. Go-karts are four-wheeled vehicle which, unlike cars,
do not have suspensions nor differential. Therefore, the dynamics of karts is significantly
different from that of other four-wheeled vehicles. The absence of rear axle differential
makes the rear wheels to have a strictly correlated longitudinal slip and this characteris-
tic makes it more difficult for a kart to turn than cars. Indeed, when turning at a constant
speed, the rear inner tyre has a positive slip, while the rear outer tyre has a negative one;
thus, longitudinal forces that tend to oppose to cornering are generated. In order to reduce
this effect, the inner rear wheel should be unloaded as much as possible: it is quite usual to
see expert drivers lifting up such a wheel while cornering. The frame stiffness and steer-
ing geometry are the most important parameters affecting this phenomenon; moreover,
the absence of suspensions makes the tyres and frame absorb all shocks induced by road
unevenness. Thus, kart frame stiffness becomes a key feature that profoundly affects kart
performance, as highlighted in [5] through a multibody simulated analysis and a compar-
ison with experimental data; this study was focused on circular trajectories at a constant
speed only.
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In this work, kart dynamics have been studied with the use of optimal control simula-
tions of an entire circuit lap. The mathematical model of the go-kart has been developed
with the use of a symbolic algebra software (MBSymba [6]), and then translated into
an optimal control problem with third-part libraries (XOptima and Mechatronix). Such
libraries use an indirect formulation to solve the optimal control problem, which has been
demonstrated to be effective for such purposes.[7,8]

Simulations have been carried out on the track ‘Pista Azzurra’, in Jesolo (near Venice),
and the results have been validated by comparison with experimental data acquired on the
same track. Once the reliability of the model was confirmed, we analysed the dynamics of
the kart when treading a turn with particular attention to tyre slippage and how the lack
of differential requires high lateral load transfer in order to minimise manoeuvre time.

In the following section, the mathematical model of the kart is described. Then, in
Section 3, the optimal control formulation is presented. In Section 4, one model valida-
tion is illustrated, including the kart analysis in the laboratory, the data acquiring and the
telemetry-simulation comparison. Finally, in Section 5 the analysis of kart dynamics on a
turn is presented.

2. Mathematical model of the go-kart

A go-kart is a four-wheeled, rear axle traction vehicle whose distinguishing features are the
absence of the suspensions system and differential. Since the vehicle has four contact points
with the road, it is hyperstatic. Therefore, the load distribution on each tyre depends on the
tyre radial compliance as well as the compliance of the chassis, which is quite deformable.
The absence of the differential on the traction axle makes any cornering manoeuvre prob-
lematic. Indeed, while cornering, the inner rear wheel has a smaller forward velocity, but
the same spin velocity than the outer one. Thus, the inner longitudinal slip is bigger than
the outer one, which leads to a yaw torque opposite to the yaw rate. Since the longitudinal
force is approximately proportional both to the longitudinal slip and to the tyre load, to
reduce such an undesired effect, the vertical load of the inner wheel should be as low as
possible and ideally null. This condition may be obtained by designing a proper combina-
tion of tyres and chassis stiffness, as well as steering system geometry. Steering geometry
indeed plays an important role in load transfers: due to the particular linkages between
front wheels and chassis, when steering the inner front tyre gets pulled down by a quantity
proportional to the steering angle, while the outer front tyre is lifted up by the same amount.
Thus, part of the vertical load is transferred to the front inner wheel and the rear inner one
gets more — if not completely — unloaded. Such essential features are fully embraced in the
mathematical model of the vehicle, as depicted in Figure 1. The inertia of the vehicle (chas-
sis, engine, tanks, steering, wheels, etc.) is modelled with a single rigid body. Indeed, we
are not interested in vehicle vibration nor in any high-frequency dynamics. The mass and
inertia of the rider are also incorporated in such a rigid body, since the seat is very stiff and
the rider body is constricted. Some racing riders are still able to partially move their torso
while cornering, however, this effect is not so relevant and it is completely neglected here.
To capture the actual distribution of vertical tyres load, the chassis compliance is modelled
by using four vertical translation springs that ideally connect any wheel centre to the chas-
sis, while other four vertical translation springs connect wheel centres to the ground and
represent tyres radial stiffness. Two additional springs connecting the right and the left
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VEHICLE SYSTEM DYNAMICS (&) 3

Figure 1. Go-kart model: the six degrees of freedom of the chassis are highlighted. The go-kart coordi-
nate system is represented by the green axes. Black arrows and Greek letters indicate the rotational dof
around the main axes. Red springs represent the reduced vertical stiffness of the chassis, while blue ones
the tyre radial stiffness. Anti-roll bars (not represented) connect the left and right joint points between
chassis and tyre springs.

wheel of each axle take into account for the anti-roll bars. The 125cc go-kart studied in this
article was equipped with rear brake only, so the spin dynamics of the rear axle is included
into the model, while the front axle is neglected. According to this description, the vehicle
model has a total of seven degrees of freedom (dof), six of them associated with the vehicle
gross motion and the latter associated with the rear axle spin rotation.

2.1. Newton’s equations

The equations of motion have been derived by using MBSymba, which is an object-
oriented language for the modelling of multibody systems and the automatic generation
of the equations of motion.[6] The modelling procedure consists in the description of
the multibody system by defining objects such as points, vectors, rigid bodies, forces and
torques, and the relationships among them. In particular, it is possible to define which vari-
ables are small (infinitesimal) and which are not. Once the system has been modelled, the
equations of motion are automatically derived, avoiding any human error. The Newton and
Euler equations have been derived with respect to a coordinate system that is fixed to the
go-kart body, except for having zero roll and pitch angles.

For a vehicle running on an horizontal, planar road surface, Newton’s equations which
describe the vehicle translation, respectively, along the longitudinal, lateral and vertical
directions are

. . 1 2
m(i — Qv) = Sy + S — (Fp + Fp) sind — EpCdAu , (1a)
m (0 + Qu) = Fy + Fyr + (Fg + Fz) cos 6, (1b)
mz = mg — (Ng + Np + N+ Nyr) » (1c)

where u and v are, respectively, the longitudinal and lateral speed of the vehicle centre of
gravity (CoG), while z is the CoG vertical displacement with respect to the static equilib-
rium position, § is the front wheel steering angle (assumed to be equal for both wheels), Q
is the yaw velocity, Ny, Fys, Sqs are, respectively, the vertical, lateral and longitudinal force
of each tyre, where a € {r, f} indicates either the rear axle, 7, or the front one, f, and s € {I, 7}

Q1
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Table 1. Vehicle parameters.

Symbol Value Units Description

h 0.250 m MCentre of gravity (CoG) height

a 0.645 m MDistance between the front axle and the vehicle CoG
b 0.400 m MDistance between the rear axle and the vehicle CoG
p 1.045 MWheelbase

2t¢ 1.055 m MFront track

2t, 1.200 m MRear track

B 0.058 m/rad MFront wheel hub displacement to steering angle ratio
m 165 kg MVehicle mass (rider included)

[ 20 kg m? €Roll moment of inertia

Iy 15 kg m? €Pitch moment of inertia

Iz 25 kg m? €Yaw moment of inertia

Iyz 5 kg m? €Mixed moment of inertia

Ir 0.2 kg m? €Spin inertia of the rear axle

0 12 kg/m? Air density

C4A 0.7 m? €Drag surface coefficient

ksy 60e3 N/m MRear chassis stiffness (vertical displacements)

ks¢ 17.7e3 N/m MFront chassis stiffness (vertical displacements)

kjr 0 N/m Rear anti-roll bar stiffness

ki 0 N/m Front anti-roll stiffness

kt; 61.3e3 N/m MRear tyres radial stiffness

ktf 64.5e3 N/m MFront tyres radial stiffness

cty 1.0e3 N's/m €Rear tyres radial damping

ctr 1.0e3 N's/m €Front tyres radial damping

I 0.139 m MRear tyres rolling radius

Tmax 17.6 Nm MMaximum engine torque (@10,250 rpm)

Prax 20.1 kW MMaximum engine power (@11,500 rpm)

Notes: M: Measured value, © :Estimated value, f: Fitted value.

indicates either the left side, /, or the right one, r. Finally, model parameters are described
in Table 1.

Since tyres and chassis are stiff, it is reasonable to assume that the chassis pitch u, roll
¢ and vertical displacement z are infinitesimal, as well as their time derivatives. Therefore,
the equations of motion with respect to the roll, pitch and yaw rotation axis are

m[vh + (h — 2)Qu] + Lad — Iy — Lz + L) Qg — (L — I;)Q%¢

) . (2a)
—(Lx — L) — L2 = tr (N — Ngy) + £ (Nyp — Nir),
m[(z — Wi + hQu] + Iyyll + (Iyy — I+ Ixx)Q¢ = (Lex — zz)QZM
. 1 (2b)
+(@yy — 1) Q29 — IszZ = a(Nf, + Nﬂ) — b(Nyy + Nyp) — EpCdAuz(z —h),
IzzQ - Ixz(ég + ZMQ +2u82) = a(Fﬂ + Ffr) cos8 — b(Fry + Fyy) (20)
C

+tf(Ffr — Fﬂ) sind + t,(S;7 — Sir).

It is worth pointing out that angular momenta have been evaluated with respect to the
vertical projection of the CoG onto the road plane. This choice simplifies the roll (2a) and
pitch (2b) equations by avoiding the presence of any term related to longitudinal or lateral
tyre forces.

Finally, the model is completed by the following rear axle spin equation of motion:

Lo, = Ty — Spp(rr — Wrr) — Sp(ry — wy), (3)
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VEHICLE SYSTEM DYNAMICS (&) 5

where w, is the axle spin velocity, r, is the rear tyre radius, w,, and w,, are rear right and
rear left tyre deformations, respectively, and T is the axle torque due to either the engine
(T, > 0) or the brake (T, < 0). The inertia I, includes all parts connected to the shaft
(wheels, disk brake, etc.) as well as the equivalent inertia of the engine, which is connected
to the rear axle by a fixed ratio chain transmission.

2.2. Tyres model

Since the vehicle has four contact points with the road, it is not possible to determine the
tyre vertical load unless the compliances of tyres and chassis are considered. In a kart, tyre
stiffness is generally 3-5 times greater than chassis stiffness; however, in this model only
their combined stiffness is considered. Indeed, free vibration frequencies of the chassis with
attached wheels are far faster than the eigenfrequencies of vehicle gross motion, so chassis
and wheels may be considered as a unique rigid body which is attached to the road by
means of massless springs and dampers. According to these assumptions, for each wheel
the load force due to tyre deformation has been made equal to the vertical force due to
chassis deformation, as shown in the following formulas. Tyre deformations are given by

Wi =2+ —au+tdp + B4,
wp=2z+sp—au—tr¢ — B4,
Wy = 2+ Spr + b + 9,
Wy =2z + s+ bu — tr9,

(4)

where s are frame vertical deformations and £ /4 is the linear approximation of the kine-
matic relationship that links the vertical motion of the wheel centre to the steering angle (in
other words S is the ratio between wheel vertical displacement and steering angle). Then,
by making tyre loads equal to chassis deformation forces on each wheel:

Srrksr + ($rr — Srl)kjr + Wrrky = 0,

Spiksr + (s — Srr)kjr + wpkey = 0,
(5
kst + (sfr — spkir + wrkyy = 0,

sakst + (sp — sp)kir + waksy = 0,

where ki, ks are the chassis stiffness at the front and rear axles, and k;r and ks are the rear
and front anti-roll bar stiffness. In Equations (5), the first terms represent the force due
to chassis deformations, the second terms are the force of the anti-roll bars and the last
terms stand for tyres deformation loads. Once the expressions for s are obtained, they can
be substituted into the tyre deformation expressions that become

_ ksr(l.l«b + ¢tr + Z) 2¢ktrtrk]r
i ksr + ktr (ksr + ktr) (ijr + ksr + ktr)>
kor(ub — ¢ty +2) 20kt ki

"= ksr + kir (ksr + ktr) (ijr + ks + ktr) ’
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kyf(pa— B8 — oty — 2) 2kirky (B3 + dty)

Wg = s 6
fr ks + ke (ksf + kep) Rkjs + ksf + kif) (©)
_ ksf(ﬂ3 + pa+ ¢ty —z) _ ijfktf(ﬂ3 + ¢tf)

From these expressions, it can be noticed that tyre deformations are given by two terms:
the first is that of a totally rigid chassis with tyre radial stiffness given by the series of chassis
and tyre springs, and the second term is due to the anti-roll bar and proportional to the
stiffness of the bars. Such expressions for tyre deformations have been substituted into tyre
loads in order to algebraically remove the degrees of freedom of chassis deformations. As
shown in Equation (7), a damping term proportional to the tyre deformation rate has been
added in the calculus of tyre loads. Such a term, even if it is negligible for the dynamics of
the vehicle, has been inserted to eliminate undesired oscillations in the simulation results.
Finally, since while cornering the rear inner wheel may lift up and loose the contact with
the ground, the rear tyre load expressions have been saturated accordingly. Thus:

Ny = max(0, kyyWrr + ctrWrr),

er = max(O, ktrer + Ctrwrl)a (7)
Nfr = ktfwfr + thWfr,

Np = kthﬂ + thWﬂ,

where ct;, cty are rear and front tyre radial damping and max(x, y) is a function that returns
the maximum between x and y. For the sake of legibility, the tyre deformation expressions
(Equation (6)) have not been substituted into previous equations. Lateral tyres forces and
longitudinal tyres forces are calculated according to the Magic formula [9] as a function of
tyre vertical load N, sideslip angle A and longitudinal slip . In particular, sideslips may be

calculated as follows:
N ‘ v— Qb
= —arctan ,
” u—Qt,
N tan [ 2= Qb
= —arc ,
rl u+Qt,
8
) 5 ot v+ Qa ®
= § —arctan
fr u— Qtf
Q
Aﬂ=6—arctan<v+ a)
u+ Qtf
Longitudinal slips are calculated for the rear axle only:
Wrty
Ker = -1,
TTu—-Q t,
Kyl = — L.
u+ Qt,

Since the time lag which is present in the generation of lateral forces due to lateral compli-
ance of tyre carcass is known to have a remarkable influence on the vehicle stability, such
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a phenomenon is modelled as a first-order relaxation equation [9] for each tyre:

(of .
u_ err F,, +F, = Fmagic,r(Nrr’ Arrs Krr)s
"+t er, Frl + Frl = Fmagic,r(Nr s A’rl’ Krl)’
of B+ Fr = F o ) (10)
= . , KA,
(u - Qt:f) cosd + (‘U + Qa) sin d fr fr maglcf ﬁ. ﬁ ﬁ_
of

Fﬂ + Fg = Fiagicf (Nf» Afi> kf1).

(u+ Q) cos§ + (v + Q2a) sin é

On the real axle, small spin inertia leads to fast dynamics and hence longitudinal forces are
calculated without any time lag:

Srr = Smagic(Nrra ArrsKrr)s

(11)
S = Smagic(Nrra Arls Krl)s

where Smagic,r> Fmagic,r and Fragic,f are the functions returning, respectively, the rear lon-
gitudinal, rear lateral and front lateral tyre forces (front and rear tyres have different
parameters). The Pacejka Magic Formula Tyre Model ([9], chapter 4) has been used in
Smagic,r» Fmagic,r and Fnagic f, but the dependence on the tyre roll angle has been neglected.
All the coeflicients used in these formulas are listed in the appendix; the parameters that
do not appear in the table in the appendix have been set to zero (or to one, in the case of
scaling coefficients). This is because, as described in Section 4.1, only the tyres lateral stiff-
ness have been measured in lab tests; thus, we used only the smallest number of parameters
in Pacejka’s magic formulas.

2.3. Road and vehicle tracking

Real roads are similar to strips: they are long and narrow. According to this idea, Figure 2
illustrates a string-shaped road, which may be described by specifying the (x, y) coordi-
nates of the middle line C and the lateral width. As explained in [10], the most effective
way to describe the road centre is the curvilinear abscissa approach, which makes it pos-
sible to define C by only giving the expression of the line curvature « as a function of the
line length s. Then, the road heading angle ® as well as x, y coordinates may be calculated
by integrating the curvature as follows:

d
3(9 =k (s),
d
X = cos 0, (12)
W= sin ®.

The advantage of this approach becomes evident while reminding that real roads and tracks
are commonly designed in terms of straight segments (null curvature) which are connected
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Figure 2. Road tracking.

to circular arcs (constant curvature) by means of clothoids (which curvature varies lin-
early). Indeed, while driving the steering angle is approximately proportional to the road
and hence it is essential to avoid any discontinuity in the curvature.

The advantage of the curvilinear coordinates approach becomes even more significant
when it is applied to track the position and orientation of the vehicle as shown in Figure 2,
where s and 7 are, respectively, the longitudinal and lateral position on the road strip, while
« is the vehicle heading relative to the road (in other words, « is the angle between the road
mid-line direction and the x-axis fixed on the vehicle). The calculus of the vehicle forward
and lateral speed, as well as yaw velocity, yields

. ucosoe —vsina

13
1—nk(s) (132)
n=usina 4+ v cosa, (13b)
b= ucosa—vsmax(s). (130)

1—nk(s)

Equations (13) track vehicle position and orientation relative to the road by simply integrat-
ing vehicle speeds together with road curvature, so vehicle lateral position n and relative
heading « are immediately available as state variables. This is a remarkable advantage in
comparison to the Cartesian coordinate approach, which requires separate algorithms to
estimate such information.

2.4. First-order formulation

Newton’s equations (1) and (2) may be immediately reduced to the first order by introduc-
ing auxiliary variables for the relevant chassis speeds:

¢ = wy, (14)
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At this point, Equations (1)-(3), (10), (13) and (14) and their subordinate expressions
completely describe the go-kart dynamics as a system of 17 first-order differential equa-
tions with as many state variables and 2 inputs, respectively, the rear axle torque T, which
(mainly) control the longitudinal dynamics, and the steering angle §, which (mainly) con-
trol the lateral dynamics. However, to avoid unrealistic jerky manoeuvers, it is necessary
to consider that human drivers have a limited rate of change of control variables and
experimental results show that humans optimise their driving actions minimising the lon-
gitudinal and lateral jerks.[11] For this reason, it is assumed that the steering angle is not
controlled directly, but via its time derivative, as follows:

8 = ws,
. , (15)
T, = mreju,
where w; is the steering speed, which is approximately related to the lateral jerk and j,

(approximately) corresponds to the longitudinal jerk.
In conclusion, the vehicle dynamics is described by means of a set of two inputs:

u={w5ju)’ (16)
plus 19 state variables:
x = {s,n,0,2, P, L, U, V, Zdot, $2, Wg, Wy, Or, Frr, Fy1, Fry, Fpy, 8, T} T (17)
and as many implicit first-order differential equations, which may be abbreviated to:
A3 =f(x,u), (18)

where matrix A is invertible provided that u > 0, i.e. the vehicle never stops, and
n < 1/k(s), i.e. the vehicle never passes over the local curvature centre of the road.

3. Optimal control problem
3.1. Vehicle dynamics in curvilinear abscissa domain

The minimum lap time problem consists, as previously said, in finding the vehicle control
inputs that minimise the time T necessary to move the vehicle along the track from the
starting line to the finish one. Therefore, the curvilinear abscissa s varies between fixed
initial point s = 0 and end point s = L, while the final value T of the independent variable
t is unknown. For this reason, it is convenient to change the independent variable from
t to s in the equations of motion (18). Such a variable change is based on the following
derivation rule:

i —dx—d—x§=x'é=x'v. (19)

X= — =
dt  dsdt
The time domain equations (18) are then transformed into the space domain as follows:

VAX = f(x, u). (20)

However, the variable change (19) transforms the differential equation (13a) into an alge-
braic one, that should be eliminated from state equations (20) together with the variable s
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which can no more belongs to the state vector x. At this point, the variable ¢ is no longer
present in the model; however, it can be easily re-introduced by writing Equation (13a) as
follows:

dt 1 1-—
—=t/=—=—nK(S)‘ . (21)
ds vV  ucoso —vsina
Summarising, the s-domain state space model has n = 19 state variables:
}’ = {t’ n,o, Z» ¢’ M’ u, U’ Wa Q’ Cl)¢, Cl)u, wr; FTTa Fr > th Fﬂ’ 8’ Tf}T (22)

and p = 2 inputs already defined in Equation (16) but now depend on s, while model
equations may be summarised as a set of implicit differential equations:

vAY = f(y,u,s). (23)

Equations (23) are not singular only and if only v > 0, ie. the s-domain formulation
requires that the vehicle never stops (a condition already required in the t-domain
formulation) nor can it revert its direction of travel on the track.

3.2. The minimum lap time problem

The Optimal control problem (OCP) consists in finding the vehicle control inputs that
move the vehicle from the starting line s = 0 and #(0) = 0 to the finish one s = L in the
minimum time T = t(L), while satisfying the mechanical equations of motion as well as
other inequality constraints (tyres adherence, max power, track width, etc.) and may be
formulated as follows:

find : Eélllfl t(L) (24a)
subjectto: vAy =f(y,u,s), yeR", uecRP (24b)
Y(O,us) <0, ¢YeR” (24¢)
b(y(0),y(L)) =0, beR™=>, (24d)

where Equation (24b) is the state space model already discussed, Equation (24c) are
algebraic inequalities that may bound both the state variables and control inputs and
Equation (24d) is the set of boundary conditions used to (partially) specify the vehicle
state at the beginning and at the end of the manoeuvre.

Inequalities (24c) are used to keep the vehicle inside the admissible range of operat-
ing conditions. First of all, all wheels must remain inside the track (see Figure 2). Such a
condition for the front right, front left, rear right and rear left wheel can be expressed as

n+ asin(@) + #f cos(@) < wy,
n+ asin(a) — ff cos(a) = —wy,
(25)
n — bsin(a) + t, cos(a) < wy,
n — bsin(a) — t, cos(ar) > —wy,
where w; and w, are the distance of the left and right border from the track reference line
(that might vary along the track), respectively. The propulsive torque on the rear axle T, is
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limited by the maximum engine torque, which is a function of the engine speed w, = t.®y,
as follows:

Ty < teTe(Tewr). (26)

It is not necessary to explicitly restrict tyre longitudinal and lateral forces within their
adherence limits; indeed, such constraints are implicitly contained in the saturated Magic
formula used in Equations (11) and (10). On the contrary, it is necessary to explicitly
prevent vehicle roll-over by imposing the following constraints on the front vertical loads:

Ng >0,
iy @7)
Nﬂ > 0.
Finally, the control inputs are limited in magnitude as follows:
—0p < w5 < oL, (28a)
—jL < ju = - (28b)

Equations (25)-(28) form a set of m = 11 unilateral constraints of type (24c). The pres-
ence of such inequality constraints makes the OCP problem (24) particularly hard to solve.
However, it is possible to convert such inequality constraints into penalty terms [7] to be
included in the optimality criterion (24a). Each penalty term should be very small (ide-
ally null) when a constraint is satisfied and suddenly should become large as the constraint
limit is approached and possibly reached. In conclusion, the OCP problem (24) is replaced
with the (almost) equivalent one which does not contain inequality constraints:

m L
find:  min (L) + ; fo Wi (Wi (v, u,5)) ds (29)
subjectto: vAy =f(y,u,s) (29b)
b(y(0), y(L)) = 0. (29¢)

To complete the problem definition, it is necessary to specify boundary conditions (24d).
As the optimisation is made on a closed loop track, it is natural to impose cyclic boundary
conditions for all state variables y(s), except for #(L) which is of course free and under opti-
misation. The OCP formulation (29) is general and the problem may be solved by using
different approaches [12] such as non-linear programming, dynamic programming, and
Pontryagin’s indirect method, which is the one that has been used in the present paper.
Such a method,[13] using Lagrange’s multipliers technique, eliminates differential con-
straints (29b) and transforms the OCP formulation (29) into a functional unconstrained
minimisation problem. Then, according to the variational first principle, the stationarity
condition of the functional to be minimised leads to a two-point boundary value prob-
lem (BVP). Despite the elegance of this well-known technique, it is not straightforward to
apply this to complex models as the one presented here. However, the utilisation of com-
puter algebra tools (we used Maple) makes it possible to symbolically derive BVP equations
and automatically convert them into a C++ code ready to be compiled, avoiding human
errors. Finally, the BVP problem is discretised and numerically integrated using XOPt ima,
a specialised solver.[8]
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4. Experimental test and model validation

In order to provide a validation of the mathematical model by comparison between
simulation results with experimental telemetry, a precise measurement of the go-kart char-
acteristic is first necessary. Indeed, the reliability of the simulation is highly affected by the
agreement of the data used with real kart properties.

In the following section, the description of the procedure used to measure go-kart
characteristics is reported, while in Section 4.2 simulation results are compared to track
data.

4.1. Lab tests

The geometry, inertia and compliance of the go-kart, as well as tyre properties, have been
measured to feed the simulation model. The geometry of the chassis has been carefully
measured by using a 3D coordinate-measuring machine. Weighing balances have been
used to measure the go-kart mass and its longitudinal position, the CoG vertical position
was estimated by tilting the vehicle until it reached its (unstable) equilibrium position on
the two lateral wheels. Such geometric and inertial data was used to build a virtual pro-
totype of the go-kart, which has been used to estimate the moment of inertia as well as
to estimate the frame stiffness by means of a FEM analysis. The frame is complex and
its representation in terms of few lumped springs used in the vehicle dynamic illustrated
Section 2 disregards many degrees of freedom and the correlation of such lumped stiffness
to FEM analysis is not trivial. In this case, the focus is on the correct estimation of tyres
vertical loads, so the hub points stiffness have been estimated by simultaneously locking
three wheels hub and by applying a vertical force on the last one. Vehicle parameters are
collected in Table 1. Tyres properties have been measured on the rotating tyre test rig which
is available at the department.[14] The identification of the vertical structural stiffness k.,
ki has been carried out by applying different vertical loads in the range of 0-1500 N both
front and rear tyres showed a good linear behaviour. Tyre adherence was measured with a
vertical load of 560 N, which is approximately the load of a rear tyre in static conditions.
Figure 3 shows the ratio between the lateral force and the vertical load as a function of the
sideslip angle, for both the front and the rear tyre. The tyre behaviour in the range of 0-6°
of sideslip has been accurately identified, but unfortunately the adherence peak was not
reached during measurements; indeed, the friction between the tyre and the test rig were
exaggeratedly high (as the tyre test rig was not specifically designed to measure kart tyres).
It is worth pointing out that in actual driving conditions the adherence limit remarkably
depends on many parameters and in particular on the asphalt characteristics. Hence, the
correlation with lab measurement would not be very easy in any case. On the contrary,
the cornering stiffness, i.e. the tyre behaviour at low sideslip angles, mainly depends on
the tyre carcass characteristics and it is not so much influenced by the tyre-road friction
properties.[9,15] For this reason, tyres adherence peak have been adjusted to fit the exper-
imental maximum accelerations (that can be read in Figure 6). Tyre forces that were used
for the simulation are reported in Figure 4. Rear tyre normalised lateral force is shown for
different values of longitudinal slip to highlight the coupling between lateral and longitu-
dinal forces. For the front tyre, the force is shown only for ¥ = 0 because the front tyre’s
longitudinal slip is not modelled. Tyres adherence values, together with all coefficients of



553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

VEHICLE SYSTEMDYNAMICS (&) 13

Rear tyre lateral force Front tyre lateral force
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Figure 3. Lateral force of front and rear tyres measured on the test rig. Continuous red lines represent
data fit.
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Figure 4. Tyre forces: normalised lateral forces are shown for rear and front tyres at a vertical load of
560 N. For rear tyre the force is shown at different values of longitudinal slip.

Pacejka’s magic formula, are summarised in Table Al. The lateral friction peak coefficient
(1.50) is significantly higher than longitudinal one (0.90) because in kart tracks thin lay-
ers of rubber get often deposited on the asphalt in curves due to high tyre slippage. Thus,
turns are characterised by a higher friction coefficient than straights, and this effect can be
modelled by considering tyres with greater lateral adherence. Such adherence conditions
are confirmed in Section 4.3 by the validation of the model with experimental data. The
engine torque curve used in this simulation is the one provide by lame (www.iame.it).

4.2. Track tests

The go-kart has been equipped with an inertial measurement platform (IMU) composed of
three accelerometers and three gyrometers. Moreover, a Hall sensor has been installed on
the rear axle to measure the spin velocity and a rotational potentiometer has been installed
on the steering system to measure the steering angle. All sensors have been connected
to the data logger by means of a dedicated CAN bus. Tests have been carried out at Pista
Azzurra (Jesolo), which is a national category race-track 1051 m long with an average width
of 8 m. Tests were carried out on a cold day in November, with adherence conditions far
from being optimal, by an expert driver who participates in go-kart races at the Italian
level. Figures 6(b) and 6(c) highlighted the bounds of both the lateral accelerations |a,| <
15m/s? and longitudinal one —7 m/s?* < a, < 5m/s?. While the traction acceleration is
limited by the engine power, lateral and braking accelerations are limited by tyre adherence,
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Figure 5. Satellite view of Pista Azzurra with simulation trajectory overlying (yellow line). Numbers
inside boxes show the value of the curvilinear abscissa s along the track every 100 m. The turn inside
the black rectangle is the one analysed in the next chapter.

where lateral adherence is much bigger than the longitudinal one, thanks to the rubber
deposits that tyres leave in curve. It is worth pointing out that, most likely, the driver was not
able to drive very close to the tyre adherence limit and hence the acceleration bounds are
a measure of driver’s capability rather than tyre adherence. However, this is not a big issue
for the validation of the simulation software, as the focus will be posed on the comparison
between speed profile of real and virtual driver, constrained within the same acceleration
bounds.

4.3. Validation

The simulation took approximately 230s on a common laptop equipped with an Intel
Core-i7 640M processor. Figure 5 shows a satellite view of the track with the overlying
trajectory resulting from the optimal manoeuvring method. The trajectory confirms that
the kart remains always within borders of the real track, suggesting that the road has
been accurately reproduced. Simulated and experimental time lap are, respectively, 53.575
and 53.580 s. However, this is not an indication of the quality of the simulation since the
information on the time lap has been used to fine tune tyre adherence, which has been
estimated from measured lateral and longitudinal accelerations. The accuracy of the sim-
ulation should be instead evaluated by comparing measured data with simulated ones as
they both vary along the track, as reported in Figure 6: dash-dot red lines refer to telemetry
data, continuous blue ones to simulation. The simulated speed profile reproduces faithfully
the experimental one; there are some slightly discrepancies in the speed at the middle of
some turns, where the simulation is sometime faster, other slower. In addition to the sim-
ulation errors that are certainly present because of model approximation and parameter
inaccuracy, it should be kept into consideration that asphalt was not perfectly dry so some
parts of the circuit had a different adherence compared to others. Moreover, the driver
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(a) Vehicle speed
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Figure 6. Vehicle gross motion for the full lap: dash-dot red lines refer to telemetry data, continuous
blue ones to simulation results.

was very skilled but not professional. So, we think that the accordance between simulation
and experiments is excellent. Longitudinal and lateral accelerations also reproduce faith-
fully the measured trend. Simulated signals are obviously smoother than the experimental
ones, due to the absence of every source of unwanted vibrations. For this reason, the peak
value of experimental accelerations are higher than the simulated one. The experimental
lateral acceleration and yaw rate signal are less affected by external noise with respect to
longitudinal acceleration and they have a better correspondence with the corresponding
simulated quantities.

Figure 7 shows additional variables that are available for the simulation only and which
are quite useful to analyse the go-kart behaviour. Rear tyre longitudinal and lateral slips
are reported, respectively, on the first and the second line. As shown in the figure, sideslip
angles of rear tyres are quite identical for left and right sides, while for the longitudinal slips
there are significant differences. Due to the absence of a differential, such slippage differ-
ences are consequences of the yaw motion only. Thus, at a given time only one tyre can
have the combination of x and A that produces the maximum force: this means that it is
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(a) Rear tyres longitudinal slip
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Figure 7. Simulation details: in tyre slip charts, continuous blue lines refer to right tyre, dash-dot green
lines to left one. Horizontal red lines represent the value at which the maximum of tyre adherence is
reached for a non-combined tyre force. In the chart d, the continuous blue line represents the used
torque, the dash-dot green one the maximum available torque.

not possible to bring both tyres at adherence limits in the same manoeuvre, and the opti-
mal control obviously tends to engage to the limit (at a longitudinal slip « of & 0.105) the
tyre that has more load, i.e. the outer one. When it reaches such conditions, the inner one
consequently is forced to have a greater slippage and reaches the high slip values (= 0.17)
that are beyond the maximum of Pacejka’s magic formula. Regarding sideslip angles, tyres
are never pushed beyond the maximum of the magic formula thanks to the optimality con-
dition. Moreover, only the front tyres go slightly beyond the maximum of lateral adherence
(at A & 0.17 rad ). This is not in contradiction with the optimality condition because lat-
eral force does not decrease suddenly after the peak (see Figure 4); moreover, keeping the
front tyres at a higher steering angle helps the vehicle to brake. The rear tyres instead are
limited to lower sideslip angles because their lateral slippage is due only to kart drift angle.
However, thanks to the higher sideslip stiffness, the rear tyres get extremely close to their
maximum lateral adherence (at A & 0.15rad ). Finally, the last graph reported in Figure 7
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shows that engine torque represents the limiting factor when traction is required and never
exceeds the maximum available power.

5. Turn analysis

In order to better understand kart dynamics, this section focuses on in-depth analysis of
the vehicle behaviour while running along a particular curve of the entire track, the clock-
wise one comprised between 120 and 215 m of the curvilinear abscissa s. This is the turn
within black box in Figure 5; the details of the track and the optimal trajectory are shown
in Figure 8: the kart reaches the external track borders at the entrance of the curve, then it
passes at the apex in the middle of the turn, finally, after exiting the curve, it remains in a
central position before approaching the next, counterclockwise turn.

The speed profile in Figure 9 shows that the kart starts from a speed of ~ 85km/h
and brakes to &~ 45km/h with a maximum longitudinal deceleration a, ~ —5.5m/s?:
even if the estimated longitudinal tyre friction is equal to 0.91, the maximum decelera-
tion is significantly lower than 0.91 g because the kart has brakes on the rear axle only.
Braking deceleration remains nearly constant to its maximum until s & 165 m, then for
165 < s < 185, a, grows up to its maximum value of 4m/s?. Such acceleration is kept
nearly constant while exiting the turn. Lateral acceleration also is kept almost constant
at ~ 13 m/s® while turning (150 < s < 200). Steering angle, drift angle and yaw rate
trends highlight that a small pendulum manoeuvre is exploited before the beginning of
the turn. Summarising, the manoeuvre can be dividend into three phases that can be

110 -
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80 -

75+

L Il L L 1

35 40 45 50 55 60 65 70 75 80 85
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Figure 8. Turn analysis: optimal trajectory. Red lines represent kart edge trajectories, numbers in rect-
angular box show the value of the curvilinear abscissa s. The location of the turn in the circuit is shown
in Figure 5.
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Figure 9. Turn analysis: gross-motion. Steering ratio shown in the chart d is the ratio between the real
curvature radius and the kinematic one (that is the radius of curvature at zero slip). Values higher than 1
indicate that the vehicle is under-steering, lower than 1 over-steering. Rear (front) sideslip angle in figure
(e) is the average of the rear (front) left and right tyres.

roughly associated with braking (125 < s < 165), cornering (165 < s < 185) and accel-
erating (185 < s < 210). The ratio between the real curvature radius and the kinematic
one (steering ratio) is lower than one after the second half of the manoeuvre, when the
vehicle is accelerating, and it is greater than one during all the rest of the time except for a
short transient at turn entrance in correspondence with the pendulum manoeuvre. When
the yaw rate passes through zero the steering ratio diverges to infinity since the kinematic
curvature radius is zero. The under-steering behaviour of the kart at the entrance of the
turn is confirmed also by Figure 9(e), which shows that the front tyres sideslip angle is
almost the double of that of rear ones. The tyre slip and forces that are generated in this
manoeuvre are shown in Figure 10. In the braking phase, longitudinal slips are obviously
negative for both tyres and they are near the value at which the maximum of the (uncou-
pled) longitudinal force is exerted. The reason they do not reach such a value is because
the longitudinal force is coupled with the lateral one that is also exerted at the same time.
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Figure 10. Turn analysis: tyres kinematic. Continuous blue lines refer to right tyres, dash-dot green ones
to left tyres. Dotted orange lines, when present, show the sum of left and right tyres. Horizontal red lines
in figure (), (d) and (g) represent the value at which the maximum of tyre adherence is reached for a
non-combined tyre force at nominal load. In plot (d), the dotted cyan line represents the steering angle.
In figure (h), asterisks refer to right tyre, circles to left one; numbers within a rectangular box show the
value of the curvilinear abscissa s of the point. Turn manoeuvre begins from the top of the picture and
then continues counterclockwise. Tyre vertical loads in (a) and (b) clearly highlight how the right rear
tyre (inner tyre) gets completely unload during the manoeuvre.

Then, while turning, the longitudinal slip of the two tyres shows significant differences due
to the yaw motion (the absence of differential forces the wheels to have the same spin) and,
since the yaw is positive, the right tyre has always a higher slip. When the kart has exited
from the turn and the yaw rate is nearly zero, the longitudinal slip of the two tyres becomes
equal again. Regarding the lateral slippage, the sideslip angles of rear tyres start increasing
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from zero when the kart enters the curve, then they reach the maximum at the middle
of the turn and then decrease and become zero again when the kart has exited the turn.
The rear tyres never reach the maximum of pure lateral adherence. Concerning front tyres,
it can be noticed that the difference between right and left load is significant but as huge
as for rear tyres. This is a clear evidence that the steering effect transfers a considerable
load to the front inner wheel. The sideslip angles of front tyres have a trend that is almost
proportional to that of the steering angle (Figure 10(d), cyan line).

Adherence ellipses shown in the bottom-right corner of Figure 10 confirm what has
been said in the previous chapter: in every cornering only the outer tyre has the combina-
tion of longitudinal slip and sideslip angle engaging it to the limits of adherence ellipses.
Indeed, red points are arranged over a bigger ellipsoidal shape.

Finally, from the comparison of rear tyres longitudinal forces in Figure 10 with the steer-
ing ratio shown in Figure 9, it can be noticed that, at least as rough approximation, the
vehicle is under-steering when braking, and over-steering when accelerating. Keeping in
mind the longitudinal tyre force trend, this behaviour is reasonable: since most of the lon-
gitudinal force is exerted by the outer tyres (inner is less loaded), when braking such force
generates an aligning yaw torque, and a turning torque when accelerating.

6. Conclusions

In this work, we demonstrated the development of a multibody model for go-karts. First,
we presented the mathematical formulation of the multibody system together with optimal
control formulation. An indirect method was used to solve the optimal control problem
which allowed us to perform simulations. The model, fed with kart characteristics mea-
sured by lab tests, has been demonstrated to reproduce enough accurately the telemetry
recorded during the experimental track test with an expert driver. Speed and accelerations
measured resulted in very good agreement with simulated signals. Simulation results have
been exploited to study the dynamics of karts with particular attention to tyres dynamics.
We have been able to reproduce racing manoeuvres that bring to the lifting of the rear inner
wheel when turning. The importance of such manoeuvres due to the lack of differential has
been highlighted too.

With this work we developed a powerful tool that can be used to optimise kart charac-
teristic (such as frame and anti-roll bar stiffness) when designing such vehicles ; it allows
us to investigate how they affect vehicle manoeuvrability before to execute any track test.
Moreover, this model can be modified and used as a starting point for other four-wheeled
vehicles for optimal control problem. Even if in the literature other authors have presented
OCP simulations for cars [1] and Formulal cars,[2] this work is among the first to calculate
the tyre loads from the vehicle dynamics and tyre deformations.

Further perspective can be the parametric analysis and optimisation of structural
characteristic.
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Appendix. Tyre parameters

Table A1. Pacejka’s tyre magicformula coefficients.

Coefficient Rear tyre Front tyre
P 23

Ppx1 0.9

PEx1 0.95

Pkx1 20

PKx2 1

Pk —0.5

Pyt 2.3 213
Poy1 1.5 1.5
PEy1 0.9 0.8
Pky1 —37.6 —34.1
Pky2 1.6 1.6
Prex1 14

Prey1 12

Proyt 0.6

AFz0 1.6 1.6

All Pacejka’s coefficients ([9], chapter 4) that are not listed here
have been set to their neutral value (either 0 or 1).
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