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Performance Analysis of OFDM Systems in

Dispersive Indoor Power Line Channels Inflicting

Asynchronous Impulsive Noise
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Abstract—Hidden semi-Markov modelling (HSMM) of the
asynchronous impulsive noise encountered in indoor broadband
power line communications (PLCs) is investigated by considering
the statistical distributions of both the inter-arrival time and
the duration of asynchronous impulsive noise components. Then,
the bit error ratio (BER) of orthogonal frequency division
multiplexing (OFDM) systems using Q-ary quadrature amplitude
modulation (QAM) is analyzed with the aid of the proposed
noise model, when communicating over dispersive indoor power
line channels inflicting asynchronous impulsive noise in addition
to the background noise. Our simulation results confirm the
accuracy of the analysis and quantify the impact of various
factors on the achievable BER performance. The grave impact of
asynchronous impulsive noise on indoor broadband PLCs sug-
gests that efficient techniques have to be designed for mitigating
its effects.

Index Terms—Power line communications, orthogonal fre-
quency division multiplxing, impulsive noise, Q-ary quadrature
amplitude modulation

I. INTRODUCTION

Power line communication (PLC) is one of attractive can-

didates for the so-called “last mile” communications due to

its cost-efficiency, since it exploits the existing grid structure

[1]. However, since the electrical supply networks have not

been designed for data transmissions, they constitute a hostile

propagation environment [2], where the multipath-induced

dispersion and the impulsive noise are the two fundamental

impediments in the way of high-integrity communications.

Nonetheless, multicarrier communication techniques are capa-

ble of mitigating the multipath effects in PLC, whilst spreading

H. Zhang, L.-L. Yang and Lajos Hanzo are with the School of Electronics
and Computer Science, University of Southampton, SO17 1BJ, UK. (E-mail:
zh1g11 lly lh@ecs.soton.ac.uk).

The financial support of the European Research Council’s (ERC) Advanced
Fellow Grant is gratefully acknowledged.

the effects of impulsive noise over all subcarriers [3]. A range

of advanced techniques were also reported in [4–6].

As a further impairment, the attenuation encountered in

PLC is the result of the skin effect and dielectric losses

[7]. By contrast, dispersive multipath signal propagation in

PLC is caused by the mismatch of the impedance between a

transmitter and its corresponding receiver [8]. As a result, a

transmitted symbol may be spread over several adjacent sym-

bols at the receiver, imposing inter-symbol interference (ISI),

which was investigated in [8–10]. Furthermore, the statistical

characteristics of ISI-contaminated power line channels were

studied in [11–15].

In PLC, the noise can usually be classified into two cate-

gories: background noise and impulsive noise [16, 17]. The im-

pulsive noise is typically characterized by the duration, inter-

arrival time and power of its components [16]. According
to its behaviour with respect to the mains cycle, impulsive
noise can be classified into three types, namely the periodic
mains-synchronous impulsive noise, the periodic impulsive
noise that is asynchronous with the mains, as well as
the asynchronous impulsive noise [16], which is mainly
caused by the connection and disconnection of electrical
devices. Typically, the asynchronous impulsive noise is
the most dominant impairment of broadband PLCs due
to its high power and unpredictable nature. Therefore,
we focus our attention on the asynchronous impulsive
noise in this treatise. Several studies demonstrated [16, 18,

19] that the average duration of impulsive noise bursts in

PLC is relatively long in comparison to the impulsive noise

bursts of wireless communications. More specifically, the
measurement results of [16] showed that the average
duration of the asynchronous impulsive noise bursts in
PLC varies between tens of microseconds and tens of
milliseconds. By contrast, in wireless communications, the
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duration of impulsive noise bursts is usually less than 0.1 µs

[20]. These observations in turn imply that if signal samples

with a symbol-duration of say 10 ns are transmitted at a

Nyquist-rate of 100 MBaud, then more than 103 successive

symbols may be corrupted by an impulsive noise burst, once

it occurs. By contrast, in wireless communications, no more

than 10 successive samples are impaired by an impulsive

noise burst. Naturally, these long impulsive bursts may inflict

bursts of errors. As a result, the system’s performance may be

severely degraded, especially in high data-rate transmissions

relying on short symbol durations. In the literature, two special

cases of the multi-component Gaussian mixture model [21]

have been used for modelling the impulsive noise, which are

respectively referred to as the Bernoulli-Gaussian model [22]

and the Middleton Class A model [23]. Specifically, in [3], the

classic Poisson process was employed for evaluating the prob-

ability of impulsive noise occurrences, where the Bernoulli-

Gaussian model was assumed. In [24], Markov chains were

introduced for calculating the so-called impulsive index of the

Middleton Class A model. However, in the above-mentioned

pair of models the impulsive noise samples were independently

generated, which fails to reflect the typical bursty behaviour

of impulsive noise in PLC.

In order to mimic the bursty behaviour of impulsive noise,

Markov chains were employed in [16, 25, 26]. In [16], a so-

called partitioned Markov chain, which considered a set of

impulsive noise-free states and a set of impulsive states was

employed for modelling the bursty behaviour of impulsive

noise. Later in [25], a two-state Markov chain model was

adopted for mimicking the bursty nature of impulsive noise.

In this model, the noise samples were generated as white

Gaussian noise, where noise samples having an increased vari-

ance were generated to represent impulsive noise. Recently,

a more accurate 4-state Markov chain model was proposed

[26], where the impulsive noise samples were assumed to

obey the Middleton Class A model of [23]. Although these

Markov chain based noise models succeeded in generating

bursty impulsive noise, the statistical accuracy of the state

durations was not carefully considered.

Against this background, our new contribution is that the
hidden semi-Markov model (HSMM) [27], which was shown
to accurately model the duration of burst events in [28], is
applied for modelling the bursty behaviour of asynchronous
impulsive noise, when analytically characterizing the BER

performance of OFDM-based PLC systems using Q-ary
QAM. Our simulation results verify the accuracy of our

analytical results.

The rest of the paper is organised as follows. In Section II,

we describe the system and introduce our noise model. Sec-

tion III details our analysis of the OFDM system considered.

In Section IV, our closed-form BER expression is derived,

while in Section V our analytical and simulation results are

compared. Finally, we offer our conclusions in Section VI.

II. SYSTEM AND NOISE MODELLING

A. OFDM Signalling

We consider a discrete-time baseband equivalent model of

the OFDM system, which is illustrated in Fig. 1. In the

OFDM system, a block of Q-ary QAM symbols is serial-

to-parallel converted and then the parallel symbols XXX =

[X0, X1, . . . , XM−1]T are modulated with the aid of inverse

fast Fourier transform (IFFT), yielding the time-domain sig-

nals xxx = [x0, x1, . . . , xM−1]T , which can be expressed as

xxx = FFFHXXX, (1)

where FFF is the normalized discrete Fourier transform (DFT)

matrix [30] satisfying FFFFFFH = FFFHFFF = IIIM . Hence, FFF is

an orthonormal matrix. After concatenating the cyclic prefix

(CP), the time-domain transmitted symbols are arranged in the

form of

x̃̃x̃x = [xM−L′ , xM−L′+1, . . . , xM−1, x0, x1, . . . , xM−1]T , (2)

where L′ is the length of the CP.

In OFDM systems, the bandwidth of each sub-channel is

usually significantly smaller than the coherence bandwidth of

the communication channel. Hence, each of the subcarriers

experiences flat fading. Therefore, after removing the CP at the

receiver, the received baseband equivalent observations yyy =

[y0, y1, . . . , yM−1]T can be formulated as

yyy = H̃HHxxx+nnn, (3)

where H̃HH is a (M ×M)-element circulant matrix, which can

be diagonalized by the DFT matrix, giving H̃HH = FFFHHHHFFF ,

where HHH is a diagonal matrix. In (3), nnn is the noise vector,

which includes both the Gaussian background noise and the

impulsive noise, as it will be detailed in Section II-C.

Assuming that perfect synchronization has been achieved at

the receiver, the decision variables can be obtained with the
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Fig. 1. System and noise model. s0: state without impulsive noise; s1: state with impulsive noise. td: duration time of state si (i = 0, 1).

aid of the FFT operation as

X̃XX =FFFyyy = FFF(H̃HHxxx+nnn) = FFF(H̃HHFFFHXXX +nnn)

=FFFFFFHHHHFFFFFFHXXX +FFFnnn = HHHXXX +NNN, (4)

where we have NNN = FFFnnn. Furthermore, we assume that the

phase rotations in HHH have been perfectly compensated by the

coherent detection scheme. Then, based on (4), the transmitted

symbols in XXX can be detected according to the decision

rules of Q-ary QAM [29], where the detection performance is

affected by both the channel attenuations in HHH and the noise

samples in NNN .

B. Modelling of Indoor Power Line Channels

Due to the frequent connection and disconnection of various

types of loads, as well as the presence of cable branches,

indoor PLC channels exhibit a time-variant frequency-selective

channel transfer function (CTF). However, we can usually

assume that the channel remains constant during a single

OFDM symbol. This assumption is reasonable, since in high-

speed data transmissions the PLC channels vary rather slowly.

Furthermore, in contrast to wireless multipath channels, the

multipath effect of PLC channels can be analytically calcu-

lated [9] with the aid of the CTF between any two outlets.

According to [8], the CTF of the PLC channels can be
expressed as

H(f) =

Le−1∑
i=0

gie
−α(f)vpτie−j2πfτi , (5)

where Le denotes the number of non-negligible paths;
|gi| < 1 is the reflection factor, which is determined

both by the number of discontinuities included in the i-
th path, as well as by the reflection coefficient and the
transmission coefficient of the i-th path [9]; α(f) is a
frequency-dependent attenuation factor, which is related
both to the dielectric losses and Ohmic losses [18]; and
finally, τi is the delay of the i-th reflected path, while vp is
the phase velocity. Correspondingly, the channel impulse
response (CIR) can be formulated as h(t) = F−1{H(f)},
where F−1{x} denotes the inverse Fourier transform of x.
Note that the channel model expressed in (5) uses a top-
down approach for modelling the PLC channels, where
the associated values of the parameters can be obtained
from measurements [8].

Specifically, when the OFDM signals of (2) are transmitted

over the PLC channel characterized by (5), and the received

signals are sampled at intervals of ∆t = Ts/M representing

the chip duration, with Ts being the OFDM symbol duration,

the chip-sampled baseband equivalent CIR after filter-
ing can be expressed as hhh = [h0, h1, . . . , hL−1]T , where
L ≈ τLe−1/∆t is the discretized length of the delay spread,
which is an integer multiple of the chip-duration. Upon
carrying out the FFT, the fading gains of the M subcarri-
ers, which are denoted by hhhf = [H0, H1, . . . ,HM−1]T , can
be expressed as

hhhf =
√
MFFFhhhM , (6)

where we have hhhM = [hhhT ,0001×(M−L)]
T . Consequently,

the diagonal matrix HHH seen in (4) is given by HHH =

diag{H0, H1, . . . ,HM−1}.
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C. Noise Modelling

The HSMM [27] is an extension of the classic hidden

Markov model (HMM) [31], where the underlying stochastic

process obeys a semi-Markov chain, while the different states

may have different durations [28]. Based on the HSMM, below

we show a noise model for PLC.

As shown in Fig. 1, the noise contaminating the time-

domain OFDM signals has two states, where s0 represents

the sole presence of the Gaussian background noise, while

s1 represents the presence of both the Gaussian background

noise and impulsive noise. Explicitly, as shown in Fig. 1, the
duration of state s0 corresponds to that of the unperturbed
interval between two adjacent impulsive noise bursts,
which we hence refer to as “inter-burst time”. By contrast,
the duration of state s1 corresponds to that of an impulsive
noise burst. Again, the impulsive noise considered in this
paper is assumed to be asynchronous impulsive noise.
As the measurement results of [16] demonstrated, both
the burst-duration and the unperturbed inter-burst time
obey negative exponential distributions. Furthermore, the
burst-duration of asynchronous impulsive noise is much
lower than the inter-burst time. Since the exponential
distributions are memoryless [?], the probability density
functions (PDFs) of the state-durations td conditioned on
s0 and s1, respectively, can be expressed as

f(td|si) =
1

Ωsi,td
exp

(
− td

Ωsi,td

)
, i = 0, 1, (7)

where Ωsi,td = E[td|si] denotes the conditional expecta-
tions of td, given si for i = 0, 1. Additionally, we define

the ratio of the average burst-duration to the average inter-
burst duration, which is termed by the acronym ADIR as

Λ = Ωs1,td/Ωs0,td .

Let us assume perfect receiver synchronization and

that the received samples arrive at the time instants of

0,∆t, 2∆t, . . . , (M − 1)∆t. Let us define the normalized

HSMM state-duration as d = [td/∆t], where [x] represents

the rounded integer closest to the real value x. Then, the

mean of the normalized HSMM state-duration d conditioned

on s0 and s1 can be calculated as Ωs0,d = Ωs0,td/∆t and

Ωs1,d = Ωs1,td/∆t, respectively. According to Appendix A,
the probability mass functions (PMFs) of d conditioned on
s0 and s1 are given by

p(d|si) =G(d,Ωsi,d), i = 0, 1, (8)

for d = 0, 1, . . ., where the function G(x,Ω) is defined in
(A.14).

Let us assume that the initial state of the noise process

is chosen from {s0, s1} with equal probability of 0.5. Then,

according to the characteristics of the noise process, as shown

in Fig. 1, the states s0 and s1 occur alternatively. Hence,

the self-transition probabilities of state s0 and state s1 are

0, i.e. we have P00 = P11 = 0, where Pij denotes the

transition probability from state si to state sj . Therefore,

we have the transition probabilities of P01 = P10 = 1.

Moreover, when assuming that the noise samples during both

states obey the complex-valued Gaussian distributions with a

mean of zero and with their individual variances depending

on the corresponding state, the PDFs of a noise sample n

conditioned on s0 and s1 can be expressed as

f(n|si) =
1

2πσ2
si,n

exp

(
− |n|

2

2σ2
si,n

)
, i = 0, 1, (9)

where σ2
si,n denotes the noise variances in state si for

i = 0, 1. Additionally, for convenience, we define the ratio of

these variances as µ = σ2
s1,n/σ

2
s0,n.

Above, the proposed noise model has been described in the

time-domain (TD). However, as shown in (4), the detection

performance of the OFDM system is affected by the noise

samples in the frequency-domain (FD), which are given by

NNN = FFFnnn. Therefore, in the next section, we analyze the

statistics of the noise in the FD.

III. STATISTICS OF FREQUENCY-DOMAIN NOISE SAMPLES

Recall from our previous discussions that the OFDM sym-

bols are impaired by the noise samples of the state sequence

ŝ̂ŝs = {ŝ1, ŝ2, . . . , ŝT }, where ŝj ∈ {s0, s1}, T denotes the

number of noise states encountered during a transmission

block and any two consecutive states of ŝ̂ŝs satisfy ŝj 6= ŝj+1.

Then, as shown in Fig. 2, a time-domain OFDM symbol may

be corrupted by one of three different types of noise. As shown

in Fig. 2(a), the first one is when the M noise samples are

all from the same state, either s0 or s1. During the second

type the noise samples are from a pair of different states ŝj
and ŝj+1, namely from s0 and s1, as shown in Fig. 2(b).

Finally, during the third type the noise samples are from more

than two successive states ŝj , ŝj+1, . . . , ŝj+k, where k ≥ 2,

as exemplified in Fig. 2(c). However, in practice, the average

inter-arrival time of impulsive bursts is usually much higher

than the OFDM symbol duration, i.e. we have Ωs0,td � Ts.
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Fig. 2. Stylized illustration of noise types in the time-domain.

Hence, for the third type we may only consider the case of

k = 2 and the scenario of having three successive states

s0, s1, s0.

It can be readily shown that in the FD there are also two

states, namely S0 without impulsive noise and S1 representing

the presence of impulsive noise. Let us define the duration of

state S0 in terms of the number of successive OFDM symbols

that are not corrupted by impulsive noise, while the duration of

state S1 as the number of successive OFDM symbols impaired

by impulsive noise. For convenience of analysis, we let η be

the number of TD chips spanning from the start of an OFDM

symbol to the time instant of a state transition, as shown in

Fig. 3. Since η is the offset relative to the start of an OFDM

symbol, we can assume that η obeys the discrete uniform

distribution having a PMF given by

p(η) =
1

M
, η = 0, 1, . . . ,M − 1. (10)

Based on the above assumptions, for a given FFT size of M ,

we can show that when the noise samples in nnn are generated

during state si, where i ∈ {0, 1}, with a normalized HSMM

state duration of d, the corresponding observations in the FD

belong to state Si with a duration of δ, where for i ∈ {0, 1},
δ is given by

δ =


q − 2 + 2i, if 1− i ≤ η ≤ r − 1 + i

q − 1 + 2i, if r + i ≤ η ≤M − 1,

or η = 0 for i = 0

(11)

with q = dd/Me as well as r = dd/MeM − d being positive

integers, and dxe denotes the smallest integer larger than x.

It should be noted that our assumption for the third type of

noise in the TD guarantees that δ is always a positive integer.

Furthermore, as shown in Appendix A, the PMFs of δ
conditioned on Si, where i = 0, 1, are given by

p(δ|Si) =ΩSi,δ

[
G

(
δ + (−1)i

2
,ΩSi,δ

)]2

− ζ(ΩSi,δ), δ = 1, 2, . . . , (12)

where ζ(ΩSi,δ) is defined in (A.17), ΩS0,δ = E(δ|S0) and
ΩS1,δ = E(δ|S1) denote the expectations of δ, given S0 and
S1, respectively.

Let the noise samples generated in state Si with a duration

of δ be expressed as NNN = {NNN(1),NNN(2), . . . ,NNN(δ)}, where

NNN(j) = FFF [nnn(j)], and let the number of the samples in nnn(j)

that are from the state s1 be κ, where κ ∈ {0, 1, . . . ,M}. As

a result, there are (M−κ) samples in nnn(j) generated from the

state s0. Then, we can show that the noise samples in NNN(j)

are complex-valued Gaussian random variables with a mean

of zero and a variance given by

σ2
Si,N (j) =

(M − κ)σ2
s0,n + κσ2

s1,n

M

=

[
1 +

κ(µ− 1)

M

]
σ2
s0,n, (13)

where κ is dependent not only on the state Si but also on the

duration δ, which are detailed below.

In the following analysis, we assume that each transmission

is sufficiently long for ensuring that the statistical distributions

of the durations of the FD states S0 and S1 can be described by

the PMFs of (12). Furthermore, we can show that during each

transmission, we have |K0−K1| = 1, where the number of FD

states Si is denoted by Ki. Based on our assumptions, K0 and

K1 are sufficiently large so that K0/K1 ≈ 1. Let us denote
the kth duration conditioned on state Si as δSi,k, where we

have
Ki∑
k=1

δSi,k = ΩSi,δKi for i = 0, 1. Hence, for a given FD

observation X̃XX , which represents the OFDM symbol of (4),

the a posteriori probability of the OFDM symbol becoming

impaired by noise samples generated by the state Si can be

expressed as

P (Si|X̃XX) =

Ki∑
k=1

δSi,k

K0∑
k=1

δS0,k +
K1∑
k=1

δS1,k

=
ΩSi,δKi

ΩS0,δK0 + ΩS1,δK1

≈ ΩSi,δ
ΩS0,δ + ΩS1,δ

. (14)
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Substituting (A.12) into (14) gives

P (Si|X̃XX) ≈ Λi

1 + Λ
, (15)

where Λ was defined in Section II-C. Then, according to

Bayes’ rule, we can show that

P (δ, Si|X̃XX) =
P (δ, Si, X̃XX)

P (X̃XX)

=
P (δ|Si, X̃XX)P (Si, X̃XX)

P (X̃XX)

= P (δ|Si, X̃XX)P (Si|X̃XX), (16)

where P (δ|Si, X̃XX) is the probability that for a given OFDM

symbol impaired by the noise samples generated by the state

Si, this OFDM symbol belongs to that specific set of δ

successive OFDM symbols, all of which are impaired by

the noise samples generated by the state Si, as shown in

Fig. 3. Let the number of states Si having a duration of δ

successive OFDM symbols in the FD be denoted as kδ , where

we have
∞∑
δ=1

kδ = Ki. Furthermore, we have p(δ|Si) = kδ/

Ki. Consequently, it can be shown that

P (δ|Si, X̃XX) =
δkδ
Ki∑
k=1

δk

=
δkδ

ΩSi,δKi

=
δp(δ|Si)

ΩSi,δ
. (17)

Upon substituting (15) and (17) into (16), we arrive at

P (δ, Si|X̃XX) =
Λi

1 + Λ

δp(δ|Si)
ΩSi,δ

. (18)

Below, we derive the PMF p(κ), where κ assumes different

values.

A. κ = 0

Firstly, when only the FD state S0 is encountered during the

transmission of δ OFDM symbols, we have κ = 0. Thus, the

probability of κ = 0 is equal to the probability of an OFDM

symbol being impaired by the noise samples generated by S0,

which is given by

P (κ) = P (S0|X̃XX) ≈ 1

1 + Λ
, κ = 0. (19)

B. κ = 1, 2 . . . ,M − 1

Secondly, as shown in Fig. 3, if the FD state S1 having a

duration of δ ≥ 2 occurs, we may have 1 ≤ κ ≤M−11, when

1Here, κ maybe equal to M . However, recalling our assumptions that the
transmission time is long enough and M is sufficient large, the case where
state S1 with a duration of δ ≥ 2 and κ = M for j = 1 occurs rarely. Thus,
in our analysis, the probability of this special case is negligible.

the first and the last (δ-th) OFDM symbols are considered.

Therefore, we have

Pr1(1 ≤ κ ≤M − 1) =

∞∑
δ=2

2

δ
P (δ, S1|X̃XX), (20)

where 2/δ is the probability of the first and the last (δ-th)

OFDM symbols being picked from the δ consecutive OFDM

symbols. Furthermore, with the aid of (18) and (A.13A), we

arrive at

Pr1(1 ≤ κ ≤M − 1) =
Λ

1 + Λ

2
∞∑
δ=2

p(δ|S1)

ΩS1,δ

=
2Λ

1 + Λ

[
1

ΩS1,δ
− 1 +G(0.5,ΩS1,δ)

]
,

(21)

where G(x,Ω) is defined in (A.14).

As shown in Fig. 2(b), we have κ = (M − η) and η obeys

the uniform distribution. Therefore, we have

P1(κ) =
1

M − 1
Pr1(1 ≤ κ ≤M − 1)

=
Λ

1 + Λ

2

M − 1

[
1

ΩS1,δ
− 1 +G(0.5,ΩS1,δ)

]
=

Λ

1 + Λ

[ 2
ΩS1,δ

+ 2G(0.5,ΩS1,δ)− 2

(M − 1)

]
(22)

for κ = 1, 2, . . . ,M − 1. Eq. (22) shows that P1(κ) is

independent of κ.

On the other hand, when the FD state S1 with a duration of

δ = 1 occurs, we may also have 1 ≤ κ ≤M −1. In this case,

as shown in Fig. 2(c), we have κ = d. Thus, by substituting

(A.10A) into (18), we can show that

Pr2(1 ≤ κ ≤M − 1)

=

M−1∑
κ=1

Λ

1 + Λ

(M − κ+ 1)G(κ,Ωs1,d)

Ωs1,d
. (23)

In this case, we find that the distribution of κ obeys the PMF

G(κ,Ωs1,d). Thus, we can write

P2(κ) =
Λ

1 + Λ

(M − κ+ 1)G(κ,Ωs1,d)

Ωs1,d
, (24)

for κ = 1, 2, . . . ,M − 1.

Consequently, the probability of κ = 1, 2, . . . ,M − 1 can

be obtained by considering both of the above cases, yielding

P (κ) =P1(κ) + P2(κ)

=
Λ

1 + Λ

[ 2
ΩS1,δ

+ 2G(0.5,ΩS1,δ)− 2

(M − 1)

+
(M − κ+ 1)G(κ,Ωs1,d)

Ωs1,d

]
, (25)

for κ = 1, 2, . . . ,M − 1.
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Fig. 3. Illustration of δ successive OFDM symbols, which are corrupted by noise samples in both the TD and in the corresponding FD.

C. κ = M

As shown in Fig. 3, when the FD state S1 with a duration of

δ ≥ 2 occurs, we have κ = M for the j-th, j ∈ {2, . . . , δ−1},
OFDM symbols. Therefore, we arrive at

P (κ) =

∞∑
δ=2

δ − 2

δ
P (δ, S1|X̃XX), κ = M. (26)

Upon substituting (18) into the above equation, we obtain

P (κ) =
Λ

1 + Λ

∞∑
δ=2

δp(δ|S1)− 2
∞∑
δ=2

p(δ|S1)

ΩS1,δ

=
Λ

1 + Λ

[
2− 2

ΩS1,δ
−G(0.5,ΩS1,δ)

]
, (27)

for κ = M .

In summary, the PMF of κ is given in (28).

IV. ANALYSIS OF THE AVERAGE BIT ERROR RATIO

In this section, we first analyse the signal-to-noise ratio

(SNR) based on our noise model. Then, a closed-form formula

is derived for the average BER of the OFDM-modulated PLC

system.

A. SNR Analysis

According to (4) and (13), the instantaneous SNR per

symbol for the ith subchannel is given by

γi,κ =
|Hi|2Es[

1 + (µ− 1) κM
]
σ2
s0,n

=
|Hi|2

1 + (µ− 1) κM
× γs0,n, (29)

where Hi is the fading gain of the ith subchannel, Es is the

signal energy per symbol and, by definition, γs0,n = Es/σ
2
s0,n

denotes the SNR encountered in state s0. Eq. (29) shows that

γi,κ depends on both the channel fading and on the time-

variant noise power. As mentioned in Section II-B, the PLC

channel can be assumed to be time-invariant during an OFDM

symbol. Thus, the fading gain of all the subchannels is the

same during the transmission of an OFDM. However, κ is a

random variable with the PMF given by (28).

TABLE I
PARAMETERS [ρl, θl] FOR DIFFERENT MODEMS

BPSK QPSK 16QAM 64QAM

[ρ1, θ1] [1,
√

2] [1,1]
[
3
4
,
√

1
5

] [
7
12
,
√

1
21

]
[ρ2, θ2] — —

[
1
2
, 3

√
1
5

] [
1
2
, 3

√
1
21

]
[ρ3, θ3] — —

[
− 1

4
, 5

√
1
5

] [
− 1

12
, 5

√
1
21

]
[ρ4, θ4] — — —

[
1
12
, 9

√
1
21

]
[ρ5, θ5] — — —

[
− 1

12
, 13

√
1
21

]

B. Average BER

Given the SNR, the average BER of the OFDM-assisted

PLC system can be obtained by averaging the conditional

BER Pe(γi,κ) over the distribution of the SNR γi,κ, which

is expressed as

Pb =
1

M

M−1∑
i=0

M∑
κ=0

Pe(γi,κ)p(κ), (30)

where p(κ) is given in (28). In (30), Pe(γi,k) is the BER of

Q-ary QAM employing Gray coding for a given SNR γi,κ,

which can be expressed in a generalized form as [32, 33]

Pe(γi,κ) =
∑
l

ρlQ(θl
√
γi,κ), (31)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt is the Gaussian Q-function,

while the values of ρl and θl for the different modulation

schemes are given in Table I. Finally, upon substituting (28)

and (31) into (30), the average BER of the OFDM-assisted

PLC system under our noise model can be shown in (32).

V. PERFORMANCE RESULTS

In this section, the BER performance of OFDM-assisted

PLC systems is evaluated by comparing the analytical and

simulation results for a bandwidth of 25 MHz. A sampling
frequency of 50 MHz is used for meeting the Nyquist

criterion, which leads to the chip duration of 20 ns. For the

indoor PLC channels, the 4-path model of [8] is employed
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p(κ) =


1

1+Λ , κ = 0

Λ
1+Λ

[
2

ΩS1,δ
+2G(0.5,ΩS1,δ

)−2

(M−1) +
(M−κ+1)G(κ,Ωs1,d)

Ωs1,d

]
, κ = 1, 2, . . . ,M − 1

Λ
Λ+1

[
2− 2

ΩS1,δ
−G(0.5,ΩS1,δ)

]
, κ = M.

(28)

Pb =
1

M(1 + Λ)

M−1∑
i=0

{
Pe
(
|Hi|2γs0,n

)
+

Λ

Ωs1,d

M−1∑
κ=1

(M − κ+ 1)G(κ,Ωs1,d)Pe

( |Hi|2
1 + (µ− 1) κM

γs0,n

)

+ Λ

[ 2
ΩS1,δ

+ 2G(0.5,ΩS1,δ)− 2

(M − 1)

]
M−1∑
κ=1

Pe

( |Hi|2
1 + (µ− 1) κM

γs0,n

)

+ Λ

[
2− 2

ΩS1,δ
−G(0.5,ΩS1,δ)

]
Pe

( |Hi|2
µ

γs0,n

)}
. (32)

.

TABLE II
4-PATH CHANNEL MODEL [8].

α(f) = 0.78f (ns · Hz/m), vp = 2× 108 (m/s)

i 1 2 3 4

gi 0.6400 0.3800 -0.1500 0.0500

τi (µs) 1.0000 1.1120 1.2240 1.3375

and the corresponding parameters are given in Table II,
while the corresponding CTF is shown in Fig. 4. In the FD,

the correlation coefficient of the CTF can be expressed as

R∆f =
E[H(f)H∗(f + ∆f)]

E[|H(f)|2]
, (33)

where H(f) is given in (5) and H∗(f) denotes the conjugate

of H(f). Upon substituting the parameters of Table II into (5),

the 90% coherence bandwidth of the channel can be obtained

with the aid of (33), which is equal to 588.24 kHz. In order
to guarantee that each OFDM subchannel exhibits flat
fading, the number of subcarriers of the OFDM system
should satisfy M � 25 MHz

0.58824 MHz ≈ 42.5. Hence, in our

studies, we opted for M = 256. Additionally, in order to

avoid the ISI, the length of the CP is chosen to be L′ = 50,

which leads to L′∆t > τmax.

The measurement results of [16] show that the average
duration of the impulsive noise in PLCs is about Ωs1,td =

60 µs for typical and weak impairments, which are used
in our simulations, while the average inter-arrival time varies

from a few seconds to a few milliseconds in practical scenar-

ios. In order to increase the associated flexibility, the ADIR Λ

defined in Section II-C is varied in order to obtain different

-50

-40

-30

-20

-10

0

|H
(f

)|
2

[d
B

]

2 5 10 15 20 25 27

Frequency [MHz]

Fig. 4. The 4-path model of the indoor PLC channel of [8]. The correspond-
ing channel parameters are given in Table II.

average inter-arrival times. For a non-dispersive channel we

let L′ = 0 and Hi = 1 for i = 0, 1, . . . ,M −1. We infer from

the above discussions that in order to mitigate the ISI, the

length of CP is chosen to be 50 samples in our simulations,

hence the system’s normalized transmission rate is reduced to

M/(M +L′) ≈ 0.837, which results in about 0.77 dB loss of

SNR. Observe from (29) that the SNR is jointly determined by

both the CTF and the impulsive noise, which is characterized

by the parameter µ. Since the CTF is independent of the noise,

we may analyze their effects on the system’s performance

separately.

In Fig. 5, we study the BER performance of the OFDM

system considered, when communicating over either non-

dispersive AWGN channels or over dispersive PLC channels

subjected to both impulsive noise and AWGN. In this fig-
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10
-4

10
-3

10
-2
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-1

1
B

E
R

0 10 20 30 40 50 60 70 80 90

SNR Per Bit, s0,n
[dB]

Simulation-OFDM-BPSK

Simulation-OFDM-QPSK

Simulation-OFDM-16QAM

Simulation-OFDM-64QAM

Theory-IN

Theory-AWGN

Dispersive

Non-dispersive

Fig. 5. BER performance of OFDM systems associated with M = 256 and
L′ = 50 using BPSK, QPSK, 16QAM or 64QAM when communicating
over either non-dispersive AWGN channels or dispersive PLC channels
contaminated both by impulsive noise (IN) and AWGN. The average inter-
arrival time of the impulsive noise bursts is Ωs0,td = 6 ms, the average
duration of the impulsive noise bursts is Ωs1,td = 60 µs, and the ratio
between the impulsive noise power and the background noise power is µ = 30

dB.

ure, four different modulation schemes are considered, which

are BPSK, QPSK, 16QAM and 64QAM. In addition to the

well-understood classic features of the different modulation

schemes, from the results of Fig. 5 we infer the following

observations. Firstly, when the PLC channels become disper-

sive, the BER performance significantly degrades. As seen

in Fig. 5, for a given BER of 10−4, communicating over
dispersive PLC channels requires as much as 40 dB higher
SNR γs0,n than communicating over non-dispersive AWGN
channels. This performance loss may be explained with
the aid of Fig. 4, where the deep fades of the channel
may reach 40 dB attenuation, hence the BER is severely

degraded. Secondly, the impulse noise also severely affects the

achievable BER performance. As shown in Fig. 5, when the

PLC channels experience both impulsive noise and AWGN,

marked as ‘Theory-IN’, about 25 dB of SNR loss is observed

in comparison to the PLC channels experiencing only AWGN.

In Fig. 6, we investigate the effect of ADIR on the BER

performance of OFDM-based PLC systems having M = 256

subcarriers and a CP length of L′ = 0, when communicating

over non-dispersive channels subjected to both impulsive noise

and AWGN. In this figure, only BPSK is considered, but the

BER curves of the higher-order Q-ary QAM obey similar

tendencies. In comparison to the channels experiencing only

AWGN, when the channels experience both impulsive noise

and AWGN, there is a gradual slope change for the BER curve

10
-4

10
-3

10
-2

10
-1

1

B
E

R

0 5 10 15 20 25 30 35 40 45

SNR Per Bit, s0,n
[dB]

Simulation- =10
-4

Simulation- =10
-3

Simulation- =10
-2

Simulation- =10
-1

Theory

AWGN

Fig. 6. BER performance of the OFDM system for M = 256 and L′ = 0

using BPSK, when communicating over a non-dispersive channel subjected to
both impulsive noise and AWGN. The average duration of bursts is Ωs1,td =

60 µs, while the average inter-arrival time varies with the value of the ADIR
Λ. The ratio between the impulsive noise power and the background noise
power is µ = 30 dB.

0
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40
P
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rm
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,n
[d
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]

10
-4

10
-3

10
-2

10
-1

ADIR

♣

♣

♣

♣
♣

♣

♣

♣

s1,td
=60 s, =30 dB

s0,td
=6 ms, =30 dB

s1,td
=60 s, =33 dB

s0,td
=6 ms, =33 dB

s1,td
=60 s, =37 dB

♣ s0,td
=6 ms, =37 dB

s1,td
=60 s, =40 dB

s0,td
=6 ms, =40 dB

Fig. 7. The performance gap ∆γs0,n per bit versus the ADIR Λ at a
BER of 10−4. The OFDM system relies on M = 256 and L′ = 0 using
BPSK, when communicating over a non-dispersive channel subjected to both
impulsive noise and AWGN.

at a certain value of SNR, as shown in Fig. 6. This implies

that before this point the system performance is dominated

by the AWGN, and then more and more by the impulsive

noise. As a result of impulsive noise, the system’s performance

is degraded predominantly depending on the value of ADIR.

When the ADIR is increased, the system performance degra-

dation becomes more severe, because according to (32), the

probability of an OFDM symbol becoming impaired by high-

power impulsive noise bursts increases.

In Fig. 7, we show the effect of ADIR on the performance

gap ∆γs0,n between the channels experiencing AWGN alone
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and the channels experiencing both impulsive noise as well as

AWGN at a BER of 10−4. Firstly, according to the definition

of the ADIR in Section II-C, we can change the value of

Λ either by keeping Ωs1,td constant and changing Ωs0,td , or

by keeping Ωs0,td constant but varying Ωs1,td . As shown in

Fig. 7, when Λ varies from 10−4 to 10−1, the performance

results associated with keeping Ωs1,td constant are the same as

those of keeping Ωs0,td constant. Secondly, observe in Fig. 7

that when the ADIR increases, the performance gap gradually

increases, but asymptotically tending to a certain value. This

observation can be explained with the aid of (32), which

shows that as the value of Λ becomes larger, the performance

becomes similar to that of the system, where the channels

experience only AWGN with a variance of µσ2
s0,n.

VI. CONCLUSIONS

In this paper, a HSMM was invoked for representing
the statistical properties of the asynchronous impulsive
noise encountered in PLC channels. A closed-form BER

expression has been derived for the OFDM system commu-

nicating over dispersive indoor PLC channels experiencing

both background and asynchronous impulsive noise. The

accuracy of our analytical results has been verified by our

simulation results. Furthermore, the BER performance has

been investigated for different scenarios both numerically and

by simulations. We have shown that the system performance

is severely degraded by the CTF of PLC channels, which is

aggravated by the asynchronous impulsive noise. Therefore,

the effect of asynchronous impulsive noise has to be mitigated

by efficient techniques, which will be the subject of our future

research.

APPENDIX A

DERIVATION OF p(d|si) AND p(δ|Si)
This Appendix derives the PMFs of d conditioned on s0

and s1, as well as the PMFs of δ conditioned on S0 and S1.

First, it can be shown that for a given state si, where i =

0, 1, we have

p(d|si) =

(d+0.5)∆t∫
(d−0.5)∆t

1

Ωsi,td
exp

(
− td

Ωsi,td

)
dtd

= exp

(
− (d− 0.5)∆t

Ωsi,td

)
− exp

(
− (d+ 0.5)∆t

Ωsi,td

)
= exp

(
−d− 0.5

Ωsi,d

)
− exp

(
−d+ 0.5

Ωsi,d

)
. (A.1)

Then, according to (8), we can show that
x2∑
d=x1

p(d|si) = exp

(
−x1 − 0.5

Ωsi,d

)
− exp

(
−x2 + 0.5

Ωsi,d

)
; (A.2)

x2∑
d=x1

dp(d|si) =Ωsi,d exp

(
−x1 + 0.5

Ωsi,d

)
− Ωsi,d exp

(
−x2 − 0.5

Ωsi,d

)
+ x1 exp

(
−x1 − 0.5

Ωsi,d

)
− x2 exp

(
−x2 + 0.5

Ωsi,d

)
; (A.3)

For the state S0, we can rewrite (11) as

δ =

{
q − 2, if 1 ≤ η ≤ r − 1

q − 1, if r ≤ η ≤M − 1 & η = 0
, (A.4)

where we have q = dd/Me and r = dd/MeM − d, while

dxe denotes the smallest integer not smaller than x. Since d

and η are independent, with the aid of (8) and (10), we have

p(δ|S0) =

(δ+2)M∑
d=(δ+1)M

(δ + 2)M − d− 1

M
p(d|s0)

+

(δ+1)M∑
d=δM

d− δM + 1

M
p(d|s0)

≈Ωs0,d + 1

M

[
exp

(
− δM

Ωs0,d

)
− 2 exp

(
− (δ + 1)M

Ωs0,d

)
+ exp

(
− (δ + 2)M

Ωs0,d

)]
, (A.5)

where the mean of δ conditioned on S0 can be calculated as

ΩS0,δ =

∞∑
δ=1

δp(δ|S0) =
Ωs0,d + 1

M
exp

(
− M

Ωs0,d

)
. (A.6)

In practice, we usually have Ωs0,td � Ts. As a result,

we have Ωs0,d � M . Thus, we may exploit the following

approximation

ΩS0,δ ≈
Ωs0,d + 1

M
≈ Ωs0,d

M
. (A.7)

Consequently, when substituting (A.7) into (A.5), we obtain

p(δ|S0) ≈ΩS0,δ

[
exp

(
− δ

ΩS0,δ

)
− 2 exp

(
− δ + 1

ΩS0,δ

)
+ exp

(
− δ + 2

ΩS0,δ

)]
. (A.8)

For the state S1, we can rewrite (11) as

δ =

{
q, if 0 ≤ η ≤ r
q + 1, if r + 1 ≤ η ≤M − 1

, (A.9)



11

where the variables have the same meaning as those in (A.4).

Similarly to (A.5), with the aid of (8) and (10), we have

p(δ|S1) =

M∑
d=0

M − d+ 1

M
p(d|s1)

≈Ωs1,d − 1

M
exp

(
− M

Ωs1,d

)
, δ = 1, (A.10A)

and

p(δ|S1) =

δM∑
d=(δ−1)M

δM − d+ 1

M
p(d|s1)

+

(δ−1)M∑
d=(δ−2)M

d− (δ − 2)M − 1

M
p(d|s1)

≈Ωs1,d − 1

M

[
exp

(
− (δ − 2)M

Ωs1,d

)
−2 exp

(
− (δ − 1)M

Ωs1,d

)
+ exp

(
− δM

Ωs1,d

)]
, δ = 2, 3, . . . . (A.10B)

Similar to (A.6) and (A.7), the mean of δ conditioned on S1

can be calculated as

ΩS1,δ =

∞∑
δ=1

δp(δ|S1) ≈ Ωs1,d
M

. (A.11)

Additionally, the relationship between ΩS1,δ and ΩS0,δ can be

expressed as
ΩS1,δ

ΩS0,δ
=

Ωs1,d
Ωs0,d

= Λ (A.12)

Then, upon substituting (A.11) into (A.10), gives

p(δ|S1) ≈ΩS1,δ exp

(
− 1

ΩS1,δ

)
, δ = 1, (A.13A)

and

p(δ|S1) ≈ΩS1,δ

[
exp

(
− δ − 2

ΩS1,δ

)
−2 exp

(
− δ − 1

ΩS1,δ

)
+ exp

(
− δ

ΩS1,δ

)]
, δ = 2, 3, . . . . (A.13B)

Furthermore, let us define

G(x,Ω) = exp

(
−x− 0.5

Ω

)
− exp

(
−x+ 0.5

Ω

)
(A.14)

Then, (B.13) can be rewritten as

p(d|si) = G(d,Ωsi,d) (A.15)

p(δ|Si) = ΩSi,δ

[
G

(
δ + (−1)i

2
,ΩSi,δ

)]2

− ζ(ΩSi,δ),

(A.16)

where

ζ(ΩSi,δ) =

 ΩSi,δ

[
e

1
ΩSi,δ − 2

]
if δ = 1 & i = 1

0 Otherwise
(A.17)
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