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There have been numerous studies concerning the possibility of self-similar scaling laws
in fully developed turbulent shear flows, driven over the past half-century or so by the
early seminal work of Townsend (1956, The Structure of Turbulent Shear Flow, Cam-
bridge University Press). His and nearly all subsequent analyses depend crucially on a
hypothesis about the nature of the dissipation, ǫ, of turbulence kinetic energy, k. It has
usually been assumed (sometimes implicitly) that this is governed by the famous Kol-
mogorov relation ǫ = Cǫk

3/2/L, where L is a length scale of the energy-containing eddies
and Cǫ is a constant. The paper by Dairay et al. (J. Fluid Mech. vol. 781, 2015, pp.
166-195) demonstrates, however, that in the specific context of an axisymmetric wake
there can be regions where ǫ has a different behaviour, characterised by a Cǫ that is
not constant but depends on a varying local Reynolds number (despite the existence of a
− 5

3 region in the spectra). This leads to fundamentally different scaling laws for the wake.
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1. Introduction

Townsend’s classical self-preserving approach to characterising the behaviour of tur-
bulent shear flows rests on the hypothesis that at sufficiently large Reynolds numbers
the flow will eventually (i.e. sufficiently far downstream) ‘forget’ anything about how it
was created and thus have a universal form determined solely by the necessary integral
constraints. Analysis then leads to the well-known scaling laws for the mean velocity
and turbulence stress fields, whose details depend only on the type of flow. For an ax-
isymmetric wake the analysis leads to a wake width governed by δ ∼ (x − xo)

λ and a
decay in centreline velocity deficit governed by uo ∼ (x− xo)

−2λ (with λ = 1
3 ), where x

is the distance downstream from the wake-generating object and xo is a virtual origin.
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The turbulence statistics follow corresponding self-similar behaviour. Over the 60 years
or so since Townsend’s early work there have been many, largely experimental, studies
of all the possible flow types, which have assessed the adequacy of the classical scaling
laws. Such studies are never very straightforward and this is particularly true for the ax-
isymmetric wake. To be confident about both λ and xo it is necessary that the Reynolds
numbers (both initial - set by the body geometry and upstream velocity - and local -
set by

√
k and δ, say) are large enough to ensure that Townsend’s ‘memory’ hypothesis

and the Kolmogorov dissipation hypothesis are reasonable. In addition, there should be
a sufficiently large range in x downstream of the initial development region (a priori of
unknown length). It is not easy to satisfy both requirements simultaneously.
There has been some controversy over whether the Townsend scalings hold. In fact,

starting with the work of Bevilaqua & Lykoudis (1978), there is mounting evidence that
the geometry of the wake-generating body has a marked influence on the far-wake growth
rate and turbulence even in regions where self-similarity is present, which leads to ques-
tions about whether the initial conditions really are ever forgotten. Much later a similar
result was found for plane wakes by Zhou & Antonia (1995). Johansson et al. (2003)
undertook an analysis that showed that for small Reynolds number an additional scaling
was possible (for which λ = 1

2 ) and that both this and the λ = 1
3 solution can indeed be

dependent on initial conditions. A numerical study was first done for a high-Reynolds-
number case by Gourlay et al. (2001). Both they and Redford et al. (2012) studied the
spatially homogeneous but time-developing equivalent of axisymmetric wakes using di-
rect numerical simulation (DNS). The latter showed apparently unequivocally that for
late enough times (corresponding to very far downstream in the spatially developing
case) the classical λ = 1

3 universal behaviour occurs, in which the multiplying constants
(e.g. in the growth rate relation for δ) are truly independent of the initial conditions and
Cǫ is essentially constant.
It is especially crucial to recognise that all the extant work has assumed the adequacy

of Kolmogorov’s hypothesis (that the small-scale motions evolve much more rapidly than
the time scale of the evolution of the whole flow) which led, with additional assumptions,
to the famous equilibrium dissipation law, ǫ = Cǫk

3/2/L (with Cǫ=const.). The major
objective of Dairay, Obligado & Vassilicos (2015) is to ‘establish the existence of a new
non-equilibrium dissipation law’ which assumes that given a global Reynolds number set
by the initial conditions, Cǫ ∼ Re−n

l , where Rel is a local Reynolds number. They do this
for an axisymmetric wake, comparing their data with the scaling-law exponents which
arise on the basis of this new dissipation law.

2. Overview

After a brief introduction to the arguments leading to the classical axisymmetric wake
scalings in which λ = 1

3 , not least their reliance on the assumption that Cǫ=const.,
Dairay et al. (2015) introduce their alternative non-equilibrium dissipation law (discussed
more fully by Vassilicos 2015), which states that Cǫ ∼ RemG/Renl , where ReG is a global
Reynolds number set by the initial conditions and Rel is a local one which for an axisym-
metric wake (as for grid turbulence) falls with distance downstream. From the equations
of motion and on the basis of the similarity arguments by George (1989) (and see also
Johansson et al. 2003) this leads to the wake scaling laws derived by Nedić, Vassilicos &
Ganapathisubramani (2013), which can essentially be expressed as δ ∼ (x − xo)

1/(3−n)

and uo ∼ (x − xo)
−2/(3−n), with n = m = 1 (cf. n = m = 0 for λ = 1

3 ). Note that
this value of n and m is the same as for a laminar wake (λ = 1

2 ), although it arises for
different reasons. However, it can also arise (and does) when the classical Kolmogorov
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law is assumed for a fully turbulent, high-Reynolds-number wake characterised by large
ratios of turbulence-to-viscous stress, provided only that the eddy viscosity is constant
(Redford et al. 2012). The presence of n = 1 scaling is thus not necessarily associated
with low Reynolds number.
Dairay et al. (2015) examine their scalings by exploring the wake of an irregular

(fractal-type) bluff plate with sharp edges, using both a wind tunnel experiment and
a matching DNS. This is unusual, not only in that both approaches are used in the
same work but because the DNS is of a spatially developing wake (as in the exper-
iment), rather than a time-developing one, with the generating body included in the
computational domain. Whilst this allows capture of the near wake it has the inevitable
consequence that the available downstream extent of the wake is somewhat limited. It is
also unusual because of the use of a wake-generating plate which leads, in the very near
field, to a (‘multi-scale’) flow having a mixture of wake-like and jet-like character. For
the DNS great care is taken to ensure that there is sufficient domain size, grid resolution
and statistical convergence. For the experiments, the plate is placed in a low-turbulence
wind tunnel at ReG = U∞Lb/ν = 40000 where Lb =

√
A with A the plate area. The

measurements are made using hot-wire anemometry and extend to x ≈ 50Lb, whereas
the DNS has ReG = 5000 and reaches x ≈ 100Lb.
The results suggest that over most of the extent of the wind tunnel wake (15 ≤ x/Lb ≤

50) CǫRenl with n = 1 is more closely constant than is Cǫ. Actually, they show that a
better fit requires n ≈ 0.77. Further downstream (55 ≤ x/Lb ≤ 100) the DNS data
suggest a change to n ≈ 0.5. To derive theoretical scalings for wake width and velocity
deficit which have n 6= 1 the authors make a ‘constant anisotropy’ assumption – that
the Reynolds shear stress and the turbulent kinetic energy profiles scale in the same
way (but not with u2

o). This is essentially a revised Townsend-George theory (Townsend
1976; George 1989), but includes the new ‘non-equilibrium dissipation’ law. (Note that
only the latter is necessary for n = 1.) The variations of uo and δ along the wake are
shown to conform quite well to the new scalings, uo ∼ (x − xo)

α and δ ∼ (x − xo)
β

with α = −2β = −2(1 + n)/(3 + n), albeit with the different n (< 1) for the upstream
and downstream halves of the x−region studied. Given that the local Reynolds number
(
√
kδ/ν) only falls to around 230 by x = 100Lb in the DNS and is very much higher in

the wind tunnel, it is arguably difficult to claim that it is too small to expect the classical
scaling to hold.
In addition to the increasing body of evidence that the value of Cǫ can depend on

initial conditions, Dairay et al. (2015) (following Nedić et al. 2013, along with the same
group’s work on grid turbulence) thus go much further and question the universality of
Reynolds-number independence of Cǫ. No physical explanation is offered for why the
CǫRenl =const. dissipation law might apply but it does provide revised scaling laws for
axisymmetric wakes that fit the present data.

3. Future

Although there is considerable evidence for the adequacy of the classical dissipation re-
lation it is apparent that it may be too simplistic, at more than one level. (Actually, it has
long been recognised that Cǫ is unlikely to be universal, Taylor 1935). It is already clear
that whilst at sufficiently large Reynolds number Cǫ may become constant, its precise
value can depend on initial conditions (e.g. Sreenivasan 1998; Antonia & Pearson 2000).
Dairay et al.’s data seem even more revealing in that, using only one wake-generating
body, they show that Cǫ is not even constant, but rather varies with local Reynolds num-
ber. The Kolmogorov law ǫ = Cǫk

3/2/L with Cǫ=const. law is often seen as a cornerstone
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of turbulence theory but Lumley (1992) remarked that the ‘mechanism that sets the level
of dissipation in a turbulent flow, particularly in changing circumstances’, is worthy of
further study. If the results of the Dairay et al. (2015) study can be shown to be typical of
other high Reynolds number turbulent shear flows ‘in changing circumstances’, or indeed
in axisymmetric wakes at significantly higher Rel than they could reach, the premonition
implied by Lumley’s remark will prove to have been prophetic. The matter is certainly
worthy of more extensive study, not least because the non-equilibrium dissipation law
seems to break the link between the presence of − 5

3 spectra and classical cascade ar-
guments. This new law seems to hold over much of any wake region that is likely to
exist in real applications, so even without any physical explanation, it would seem to
be important. One can expect further experiments exploring the issue, aimed not least
at finding whether (and if so, why) there is a final transition to a more classical scaling
at some greater distance downstream, as Dairay et al. (2015) suggest, even though Rel
must continue to fall.
Finally, note that little is known about how the very-near-wake flow transitions to the

region explored by Dairay et al. (2015). This process must surely be very dependent on
the geometry of the generating body. The near-wake usually contains interesting and
complex dynamics (e.g. the recent work of Rigas et al. 2015, and references therein).
There would seem to be much scope for exploration of the various transition regions.
And, most importantly, there remains the need for a physical explanation for the new
non-equilibrium dissipation relation.
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