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Abstract—We develop a dissipativity theory for switched
systems whose dynamical modes are described by systems
of higher-order linear differential equations. We give
necessary and sufficient conditions for dissipativity based
on systems of LMIs, constructed from the coefficient
matrices of the differential equations describing the modes.
The relationship between dissipativity and stability is also
discussed and an application to the stabilisation of power
converters is provided.

Index Terms—Switched systems; behaviours; quadratic
differential forms; dissipativity; power converters.

I. INTRODUCTION

Usually switched systems are described using a bank
of state space- (e.g. [16], [19]) or descriptor form- (e.g.
[36], [37]) representations, together with a switching rule
that determines which of the modes is active; further-
more, state reset maps can be used to act at the switching
times. In such approaches, the dynamical modes share a
global state space. In [23], [24], we argued that in many
real-life situations the dynamical modes of switched
systems do not share the same state space. Examples
include multi-controller control systems, power convert-
ers, power sources with multiple loads, charging stations
for electric vehicles, hybrid renewable energy systems,
etc. Moreover, since switched systems can be studied in
higher-order terms (see [22], [23], [24], [30], [32], [38]),
the use of state space representations themselves is not
a fundamental requirement.

In [24], we introduced a framework for the study
of switched linear differential systems (SLDS), where
each dynamical mode is associated with a mode be-
haviour, i.e. the set of trajectories satisfying higher-
order linear differential equations. A switching signal
determines which of the modes is active. Additionally,
gluing conditions are introduced to specify the equi-
librium conditions of the trajectories at switching in-
stants, e.g. charge/flux conservation principles, kinematic
constraints, reset maps, etc. The mode behaviours do
not necessarily share the same state space and their
modelling does not require to satisfy a particular math-
ematical structure; consequently the use of a global
state space becomes a special case. Moreover, individual
modelling is permitted, i.e. new dynamical modes can
be added to the underlying bank without altering the

existing ones. This feature greatly simplifies not only
the modelling phase of switched systems (see e.g. [23]
Sec. V), but also the computations necessary for their
study, see e.g. Ex. 5, p. 2043 of [24].

In [24], we presented stability conditions for closed
systems, i.e. systems without input variables. In this
paper we study open systems and their dissipativity,
first introduced in a control and systems setting in
[44]. This concept is useful in dealing with issues such
as stability, stabilisability, control, and other important
applications (see e.g. [11], [17], [41], [43], [46]). For
this reason, dissipativity and its special case passivity
have been studied extensively in general settings such as
impulsive, discontinuous and hybrid systems (see e.g.
[12], [13], [14], [15], [27], [48]), as well as in the
switched systems setting (see e.g. [3], [8], [21], [49],
[50], [51]). In [9], the role of passivity for stability
of switched systems has been also studied considering
dynamical modes with Hamiltonian structure. In [51],
novel definitions of dissipative switched systems are
presented involving the use of cross-supply rates. This
approach also encompasses important results (e.g. stabil-
ity, passivity, Lo-gain) associated to dissipative nonlinear
systems with infinitely differentiable trajectories. In [15],
another definition of dissipativity is presented where the
use of connective supply rates characterises the energy
change of inactive modes. More recently, in [21], [20],
the notion of decomposable dissipativity is introduced
for discrete-time switched systems.

In this paper, we give definitions of dissipativity of
switched linear differential systems. In order to do so,
we use quadratic differential forms (see [45]), since they
provide suitable mathematical tools to deal with higher-
order differential systems. Furthermore, we provide suf-
ficient conditions for dissipativity based on systems of
LMIs for arbitrary switching signals and involving the
computation of multiple storage functions. Such systems
of LMIs can be set up straightforwardly from the equa-
tions of the mode dynamics and the gluing conditions.
Following the behavioural setting for linear systems (see
[28]), the mode equations and the gluing conditions are
represented by one-variable polynomial matrices, and
the functionals (e.g. supply rates and storage functions)
by two-variable ones. This feature also opens up the
possibility to solve parametric design problems by an



efficient exploration of design spaces. We also study
the relationship between dissipativity and stability of
switched systems by studying passive systems, and we
provide a detailed example to show the potential of
our approach in solving stability problems in power
converters with constant power loads, a current pressing
research issue in power electronics (see [6]).

We use the following notation. The space of n dimen-
sional real vectors is denoted by R", and that of mxn real
matrices by R™*®, R**™ denotes the space of real matri-
ces with m columns and an unspecified finite number of
rows. Given matrices A, B € R**™, col(A, B) denotes
the matrix obtained by stacking A over B. The ring of
polynomials with real coefficients in the indeterminate &
is denoted by R[¢]; the ring of two-variable polynomials
with real coefficients in the indeterminates ¢ and 7 is
denoted by R[(, n]. R**¥[¢] denotes the set of all r X w
matrices with entries in &, and R**™[(, ] that of n x m
polynomial matrices in ¢ and 7. The set of rational m x n
matrices is denoted by R™*®(¢). Given G = G| € R™*™,
0+ (G) denotes the number of positive eigenvalues of
G. The set of infinitely differentiable functions from
R to R¥ is denoted by €>*(R,R¥). D(R,R") is the
subset of €>°(R,R") consisting of compact support
functions. For a function f : [t — ¢,t) — R® we set
the notation f(¢7) := lim, ~ f(7); and similarly for
[ (tt+e — R® we set f(tT) := lim~ f(7),
provided that these limits exist.

II. SWITCHED LINEAR DIFFERENTIAL SYSTEMS

In order to provide a self-contained theoretical expo-
sition, we present some basic concepts of the switched
linear differential systems framework introduced in [24].
To illustrate the concepts in our framework from a
physical point of view, we use the example of a standard
power converter.

A. Main definitions

In the switched linear differential systems (SLDS)
framework, each dynamical mode is associated with
a mode behaviour, the set of trajectories that satisfy
the dynamical laws of that mode. A swiftching signal
determines when a transition between dynamical modes
occurs. At the switching instants the system trajectories
must satisfy certain gluing conditions, that represent
algebraic constraints enforced by physical principles.

Definition 1 ([24] p.2039, Def. 1). A switched lin-
ear differential system (SLDS) % is a quadruple ¥ =
{P,F,S,G} where

e P={1,...,N} CN, is the set of indices;

o F ={%B1,..., By}, with B; a linear differential
behaviour and j € P, is the bank of behaviours;

e S ={s:R — P}, with s piecewise constant and
right-continuous, is the set of admissible switching
signals; and

o G = {(Giyy6): G () € R¥[¢] x RV |
1 <kt <N, k#/{},is the set of gluing
conditions.

The set of switching instants associated with s € S is de-
fined by Ty :={t e R | s(t7) # s(tT)} = {t1,t2,... },
where t; < tit1-

The set of all admissible trajectories satisfying the
laws of the mode behaviours and the gluing conditions
is the switched behaviour, and is the central object of
study in our framework.

Definition 2 ([24] p.2039, Def. 2). Let ¥ =
{P,F,S,G} be a SLDS, and let s € S. The s-switched
linear differential behaviour B° is the set of trajectories
w : R — RY that satisfy the following two conditions:

1) for all tiyti—i—l c Ts, w|[ti’ti+1)€ %s(ti) ’[ti,tq‘,+1);
2) w satisfies the gluing conditions G at the switching
instants for each ¢; € T, i.e.

d
Gl os(t) <dt> w(t))
— O

d _
S(tifl)ﬁs(ti) (dt) w(tz ) .

The switched linear differential behaviour (SLDB) B>
of ¥ is defined by B> :=J,. ¢ B*.

(D

Since B; C €°(R,R"¥), i =1, ..., N (see App. [-A), it
follows that the trajectories in B> are piecewise infinitely
differentiable functions from R to R¥, i.e. smooth when
a mode is active and possibly discontinuous at switching
instants.

Example 1. Consider the high-voltage switching power
converter presented in [5] and depicted in Fig. 1 a).
For practical purposes such as voltage/current/power
regulation, we are particularly interested in the dynamics
at the input/output terminals. Consequently we define the
external variable (the set of variables of interest) as w :=
col(E, iy, ve,1,). By means of a switching signal, we can
arbitrarily induce two possible electrical configurations
that occur when the transistor is in either closed (see
Fig. 1 b)) or open (see Fig. 1 ¢)) operation. Considering a
standard modelling of input/output impedances (see [34],
p. 123) for each case, we can derive the following physi-
cal laws describing the dynamics of the power converter.
For simplicity we consider L = 1H, C; = Cy = 1F,
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Fig. 1. a) High-voltage switching power converter, b) electrical
configuration when the transistor is closed, c) electrical configuration
when the transistor is open.

Ry =1Q and R = 1.
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The mode behaviours can be defined as B, :=
ker R; (%),j = 1,2, (see kernel representation in App.
I-A) where
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At switching instants the physical laws impose con-
straints to the system trajectories. By inspecting the
circuits in Fig. 1 and using the principle of conservation
of charge (see [25], sec. 3.3.3), we find the following
conditions at switching instants.

When switching from B; to ‘B, at ;:
ip(tf) =in(ty)

. d . _
E(tf) —ir(t]) — Zin(tf) = valty)

dt
va(t) = ua(ty) -
4)

When switching from B4 to B, at ;:
i(tf) =in(ty)

Zup(t) = B ) = inlt7) — pin(t7) + ualty)

(&)
Consequently, the gluing conditions can be defined as
d [0 0 1 0
- d
GLQ(dt)'_ 10 -1-4 o0 ;
0 0 0 1
d [0 0 1 0
Gl <dt> =10 0 0 1} ;
0 0 01
at d _ (00 1 0
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_ d 0 0 1 0
(@)= o0 g ]

Hence equations in (4)-(5) can be compactly written as

G (5 ) w5 = G () (e

61 (5 ) w1 = Gy () e
O

Remark 1. From Ex. 1, we can draw some basic
conclusions regarding important features of modelling
of physical switched systems that are supported in
the SLDS framework. 1) By applying first principles,
we usually obtain sets of linear differential equations,
possibly of higher-order. 2) The mode dynamics can
be associated with different state spaces, i.e. different
minimal state space representations' can be constructed
from sets of the linear differential equations, e.g. for
(2) we can choose a state vector x1 := [z’L vz]T,
while for (3) we can select x5 := [z’L %iL vg}T
3) At switching instants the physical laws may impose
gluing conditions to the system trajectories, i.e. algebraic
constraints such as charge/flux conservation principles,
kinematic constraints, reset maps, etc. O

Remark 2. As previously pointed out, a SLDS as
in Def.s 1 and 2 admits different state spaces for its
dynamical modes. However, the external variables are
the same for every dynamical mode: they have been
chosen as the variables of interest during the modelling
stage according to each particular application, see e.g.
Ex. 1. O

'The adjective minimal refers to the standard notion of McMillan
degree, see App. I-B



B. Latent variables

Controllable mode behaviours can be described using
observable image representations w = M; (4)¢;, j =
1,...N, see App. I-A. It follows that every trajectory of
the latent variable {; corresponds to a unique trajectory
of the external variable w when the j-th mode is active.

Example 2 (Cont’d from Ex. 1). Recall that w :=
col(E,ir,va,4,). It can be verified that the mode be-
haviours ‘B;, i = 1,2, are controllable and thus can
be described by image representations w = M; (%) 45,
7 =1,2 (see App. I-A), where

rd
; o1 dO
0 22 +1
M= |:= dt ;
1<dt> 1 o |
0 1
rd? d
dt = 0
0 1

and ¢; := col(ir,v2), ¢3 := col(vy, v2). Moreover, since
M;(N), 7 = 1,2, are full column rank for all A € C
we conclude that the latent variables ¢;, j = 1,2 are
observable from w (see App. I-A). 0

According to Def.s 1 and 2, the gluing conditions
are algebraic constraints acting on the external variables
at switching instants; however, they can be rewritten in
terms of latent variables in the following manner. Define

—+
Gt 1)—s(ts) (&) = (G:(t L)—s(t )Ms(ti)> (4) » and

o~ d i — d

Gs(tifl)—m(t,-) (E) = (G (tsi1)—s(ts )Ms(m—l)) (E) )
with s € S. Consequently, if w and /; are related by
w = M; (%) ¢;, the gluing conditions in (1) can be

equivalently written as @;r(tH) L () Lo () =
Gt )t () Lsie—y (87) -

Example 3 (Cont’d from Ex. 2). Given the gluing
conditions in Ex. 1, we can reformulate them in terms of
latent variables using M; ( dt) and Mo ( dt) as follows.

o (4) = () 2

. (d d 4 1 0]"
G <dt) = (Gf—ﬂM?) <dt> = [(g 0 J )
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The gluing conditions are in general algebraic con-
straints that can be freely selected to act at switching
instants (see Def. 1), however in order for them to be
realistic, they should be well-defined and well-posed. In
order to introduce this concepts, we use the notion of
state maps recalled in App. 1-B.

Definition 3. Let X be a SLDS and let X; ¢
R2(B3)x1(¢], induce minimal state maps for B; :=
im M; (%), j = 1,..,N. The gluing conditions are
well-defined if there exist constant matrices Fj__m and

F]Hk, with j, k= 1,..., N, j # k, such that G, ,;(£) =
P (6 and TEa6) = FF o X (6). with & =
N, jF£Ek. O

Remark 3. Well-definedness implies that gluing condi-
tions are linear functions of the state of the corresponding
modes before and after the switch. Consequently, they
do not impose restrictions to the trajectories of the
input variables, since the latter must be free (see App.
I-A). O

Definition 4. Let X be a SLDS with B, := im M; (%),
j = 1,..,N. The well-defined gluing conditions
g = {(F]HkX (&), FJ:ka(f))}j,kzl,...,N,j;ék. are
well-posed it for all k,j7 = 1,..., N with k # j, there
exists a re-initialisation map L : R — Ra(Bx)
such that given a switching signal s € S such that
s(ti—1) = j and s(t;) = k; for all ¢t; € T, and all admis-
sible w € B> with associated latent variable trajectories,
it holds that X; () ¢;(t) = Li—; Xy () e (t).

Remark 4. Well-posedness implies that if a transition
occurs between ‘B; and By, at ¢;, and if an admissible tra-
jectory ends at a “final state” v; := X (%) ¢;(t;), then
there exists at most one “initial state” for B, defined
by X (%) lr(t]) =: vk, compatible with the gluing
conditions. In other words, for all 7,k = 1,..., N,
j # k, Fj:k is full column rank, and consequently
a re-initialisation map can be defined as L]_>k =

FJ.JF_’:kFJ;k, where FJr ¥, is a left inverse of F O
Example 4 (Cont’d Ex. 3). We illustrate the modelling
of gluing conditions using state maps. Consider

d
d 10 d ‘
Xl(dt) [0 1]’ Xz(dt> o (1) ’

inducing the states X3 (%) ¢y = col(ig,ve) and
X5 (%) ¢y = col(ig,v1,v2). The gluing conditions can
be written as

G ={ (G208, Gla(9)) . (G21(9). G () }
={(L152X1(8), X2(8)) s (L2—1X2(8), X1(£))}

— &,



where
1 0
1 0 O
Liyo:= |0 1| ;5 Losy:= [0 1 1]-
01 2 2

Note that the gluing conditions are thus well-defined and
well-posed according to Def. 3 and Def. 4. O

C. General assumptions

The results presented in this paper are rested on the
following standing assumptions.

1) Switching signals are well-defined: We assume
that for every s € S and for every finite interval
of R, there exists only a finite number of switching
instants. This is a conventional assumption in switched
systems literature (see e.g. [19], [33], [52]) that prevent
phenomena such as the Zeno behaviour.

2) Compact support trajectories: We often require the
integration of functionals acting on w € B>. In order
to ensure that such integrals exist, we assume that they
involve piecewise infinitely differentiable trajectories of
compact support whose set is denoted by D, (R, R"). For
this reason we introduce the notation B> N D, (R, R¥).

3) Inputs and outputs: We consider dynamical modes
sharing the same external variable and admitting the
same input-output partition w = col(u,y) (see App.
I-A). Note that this consideration includes systems with
ports and conjugate variables (see [26]) e.g. mechanical,
electrical, thermodynamical systems, etc.

4) Controllability and observability: We consider
switched linear differential systems with controllable
mode behaviours, ie. B; € £, j = 1,..N (see
App. I-A), described by observable image form repre-
sentations (see App. I-A) w = M; (%) lj, 3 =1,..N,
with M; € R"*}[¢]. Controllability ensures that compact
support trajectories exist (see assumption 2 above), while
observability ensures that every trajectory of the latent
variable ¢; corresponds to a unique trajectory of the
external variable w when the j-th mode is active.

III. DISSIPATIVE SLDS

Our concept of dissipativity is fundamentally based on
that for linear differential systems which is summarised
in App. I-D.

In the theory of dissipative linear differential systems
[40], [41], [45], [46], the reformulation of QDFs in
terms of the latent variable as in App. I-C is often used
since it simplifies certain computations such as positivity
tests. Given ® € R"*¥[(, ], if w and ¢ are related by
w= M (&) ¢, defining &'(C, ) := M(¢)T®(C, )M (n)
implies Q% (¢) = Qao(w), and consequently it follows

e.g. that Qg > 0 for all w € B (shortly Qg g 0) if
and only if Q¢ > 0 on €>°(R,R*'). Since in this work
we deal with B; € ££, , « = 1,..., N, associated to
observable image form representations w = M; (%) 4,
i = 1,...,N, we adopt the notation Qg to refer to a
QDF acting on the external variable and (', to denote
the associated QDFs acting on the latent variables.

A. Dissipativity

In order to introduce the main definition and results
about dissipative SLDS, we define the following nota-
tion.

Let s € S be a fixed but otherwise arbitrary switching
signal, whose associated set of switching instants is

Ty := {t1,t2,....tn,...}. We denote by |T,| the total
number of switching instants in T

If |T| = oo, define [ Qa(w f Qo (w) dt +
12 Qo(w)dt + .. + ft"“ w)dt + . ; and

[llwli3 =

S w3 dt + .
If 0 < |Ts] < oo, then define [Qo(w) :=

tl
f lwl3 dt + ft; Hngdt ot

i Quw)dt+ Y5 [ Qu(w)di+ [ Qalw)dr:
T, k
and [l = [ wl3de + 0% t+1||wuzdt+
Jit Nl dt.
If ITs|] = O, i.e. no switching takes place,
then [Qo(w) = [ Qos(w)dt; and [|lw[} :=

J72 wli3 dt.
[e.e]

Moreover, given a trajectory w € B>, we denote the
switching signal associated to it (see Def. 2) as s,,.

Definition 5. Let X be a SLDS and let Q3 be a QDF.
Y is ®-dissipative if [ Qqp(w) > 0 for all w € B= N
D, (R, R¥); and strictly ®-dissipative if there exists € > 0
such that [ Qe (w) > € [ ||wl|3 holds for all w € BN
D,(R,R¥).

In the previous definition, the quadratic differential
form Q¢ can be interpreted as power, consequently, its
integral over the real line measures the energy that is
being supplied to, or flows out from the SLDS. If the
net flow of energy is nonnegative then we call the SLDS
d-dissipative.

Remark 5. The definition of dissipativity is not uni-
form in the literature for switched/hybrid systems. For
instance, in [51] multiple- and cross-supply rates are
considered to characterise the energy change of inactive
modes for the case when they share the same state space.
A similar concept is used in [15], where connective



supply rates are used. These definitions permit the mod-
elling of dynamical modes with different inputs, which
is a suitable approach in cases such as multi-controller
control systems. In our definition, we consider the use
of a main supply rate acting on a fixed external variable
for modes that do not necessarily share the same state-
space. This definition is most suitable for the study of
switched systems whose variables of interest are fixed,
consequently the modes interchange energy with the
environment in the same manner for every mode e.g.
by means of ports. O

Proposition 1. Let 3 be a SLDS. If X is (strictly) ®-
dissipative according to Def. 5, then *5;, i = 1,...N, are
(strictly) ®-dissipative linear differential behaviours.

Proof: See App. 1L [ ]
In the following result we use the notion of sforage
Sfunction for linear differential behaviours (see App. I-D).

Proposition 2. Let X be a (strictly) ®-dissipative SLDS.
For all © € P there exists a QDF Qv, that is a storage
function for B;. Let a < b, then for all w € B> with
sw(t) =i for t € [a,b], it holds that [’ Qq(w) dt >
Qu,(w)(b) = Qu,(w)(a).

Proof: See App. 1II. [ ]

Remark 6. QDFs act on €*-functions, while trajec-
tories of a SLDS are non-differentiable; however, this
mismatch in differentiability is irrelevant to the results of
this paper. We use the calculus of QDFs as an algebraic
tool, considering only their value before and after a
switch. O

B. Multiple storage functions

As discussed in the literature (see e.g. [15], [51]), the
use of a global storage function for all dynamical modes
of a dissipative switched system is not only conservative
but also not supported by physical considerations. Note
for instance that physical switched systems may have
different ways to store energy depending on the mode
that is active.

Example 5 (Cont’d from Ex. 1). Consider the electrical
circuit in Fig. 1 and its associated dynamical modes
(2)-(3). Following first principles, the stored energy for
each mode is given by the QDFs Qu, (w) := 3Li? +
3(C1+Co)v3 and Qu, (w) := $Li? + 1C1(E+ Rpig —
Liv)® + 50203, O

When switching between modes, the trajectories of w

are in general subject to algebraic constraints modelled
via the gluing conditions. Consequently, the transition

between storage functions becomes of interest in dis-
sipative systems. The second law of thermodynamics
prevents stored energy in a dissipative system to increase
at switching instants, since the process of dissipation
cannot be reversed and energy is strictly provided by
external sources characterised by the supply rate. Con-
sequently any change in the physical stored energy
must be accounted necessarily as energy losses. This
point of view has been elaborated in [25] where the
analysis of a wide variety of physical systems exhibiting
discontinuities is presented; the same principle is also
discussed in [7], [10], [35]. This energy condition is
also used for a definition of passivity for hybrid systems
in [48], Prop. 1, where the nonincreasing condition for
multiple Lyapunov functions introduced in [2] is used
for multiple storage functions. Here we illustrate such
condition for dissipative systems from a physical point
of view using the power converter in Fig. 1.

Example 6 (Cont’d from Ex. 5). Let us compute
the changes in stored energy of the circuit at a
switching instant ¢;. Taking into account the gluing
conditions in Ex. 1 and after some straightforward
computations, the change in stored energy when
switching respectively from B; to By and vice versa
can be computed as Qu, (w)(t;) — Qu,(w)(t7) = 0,
i.e. there is no loss; and Qu,(w)(t;) — Qu, (w)(t}) =
LB +in(t]) — Lig(t;) —wa(t7)? evidently
the latter quantity is nonnegative implying that the
circuit loses energy. 0

Definition 6. Let > be a SLDS and let s € S. An N-
tuple (Qy,,...,Qu, ) is a multiple storage function for
> with respect to Qg if

B, )
) #Qu, < Qu,i=1,..,N.
2) Vw e B> st. s = s, and V 1, € Ty, it holds
Q‘Ps(tk,l)(w)(t];) - Q‘Ijs(tk)(w>(t;:) >0.

Remark 7. In condition 1) of Def. 6 we require each
mode behaviour to be ®-dissipative (see App. I-D) which
is equivalent to (), satisfying the dissipation inequality
for the i-th mode. In condition 2) we require that the
storage function does not increase when we switch from
one mode to another: switching cannot increase the
amount of stored energy in the system. O

Theorem 1. Let 3 be a SLDS and let Qs be a QDF.
Assume that there exists a multiple storage function as
in Def. 6. Then ¥ is ®-dissipative.

Proof: See App. 1. [ ]

A multiple storage function is not necessarily unique,

morever the set of all possible multiple storage functions
is a convex set.



Proposition 3. Let > be a P-dissipative SLDS. Let
the N-tuples Qv = (Qu,,...,Qu,) and Qw =
(Qq;/l,...,Qq;lN) be multiple storage functions for Y.
Then, for all 0 > o > 1, the N-tuple aQw+(1—a)Qw,
is a multiple storage function for 3.

Proof: See App. 11 [ ]
In Th. 1, we proved that the existence of a multiple
storage function as in Def. 6 is a sufficient condition for
dissipativity. In the classical theory for linear differential
behaviours, dissipativity is actually equivalent to the
existence of a storage function (see Prop. 8, in App.
I-D). In the following we show that if ® is a constant
matrix, then strict ®-dissipativity implies the existence
of a multiple storage function for SLDS.

Theorem 2. Let ® € R"Y*¥ and let 3. be a strictly ®-
dissipative SLDS with G well-defined and well-posed,
and with mode behaviours By, k = 1,...,N. There
exist storage functions Qy,, ¢ = 1,...N, for the linear
differential behaviours By, © = 1, ..., N, with respect to
Qa, such that for all t, € Ts and for all i,j5 € P, i # j,
it holds that Qg  (w)(t;) — Q\ps(tw(UJ)(t;) > 0.
Consequently, (Qw,, ..., Qu, ) is a multiple storage func-
tion for X..

Proof: See App. 1I. [ ]
Derived from strict dissipativity and the fact that for
constant supply rates, storage functions are quadratic
functions of the state (see Prop. 9 in App. I-D), we can
construct an LMI equivalent with condition 2) in Def. 6.

Lemma 1. Under the assumptions of Th. 2, let ¢;
i1 =1,..., N, be unique latent variable trajectories asso-
ciated with the external variable, i.e. w = M; (%) 4,
i = 1,..,N. Let X; € R¥®)XV¢] induce minimal
state maps for B;, i = 1,...,N, and let Qy ({;) =
Qu,(w), i = 1,...,N. Let L;,; € RR(B;)xn(B:) for
all i,5 € P, i # j, be the re-initialisations maps.
There exist K; = KZT c Ru(B)xn(Bi)  gych that
Vi(¢,m) = Xi(¢)  KiXi(n), i=1,..,N.

Moreover, the following conditions are equivalent: for
all w e BE, t, € T, and i,j € P, i # j,

1) Qu,(w)(t;) = Qu, (w)(t]) .

2) Qui(li)(t;) > Quy (€5)(ty)) -

3) K;> L], K;Li,;.

i—>j
Proof: See App. 1I. [ ]
An important consequence of Lemma 1 is the follow-
ing result.

Proposition 4. Under the assumptions of Th. 2 and
Lemma 1, if the re-initialisation maps L;_,; associated
to the switching between ‘B; to ‘Bj, for all i,j € P
and i # j, are the identity, there exists Qg such that

(Qu,Qu, ..., Qu) is a multiple storage function for ¥
with respect to Q.

Proof: See App. 1L [ ]
As a special case of Th. 2, Prop. 4 can be interpreted
in the following way. If the mode behaviours share the
same state space and the state trajectories are continu-
ous at switching instants, strict dissipativity implies the
existence of a common storage function Qg for open
systems. Consequently, note that this result is analogous
to the converse Lyapunov theorem (see Th. 2.2 of [19], p.
25), where asymptotic stability implies the existence of
a common Lyapunov function for closed systems under
analogous conditions.

C. Half-line dissipativity

When the energy absorbed by a SLDS is positive in
any arbitrary interval of time, we call such SLDS half-
line dissipative.

In order to introduce the definition and results re-
garding half-line dissipativity, we use the following
notation. Let w € B* N D,(R,R¥) and 7 € R. Let
s = sy € S whose associated set of switching instants
is Ty := {t1,t2, ..., tn, ...}, we define

[ astwyae= [ OO Qalw) dt+kz; / Qu(w) dt

+ Qo (w)dt ;
tf
(6)
where n = max{k | t; € Ts, and t;, < 7}.

Definition 7. Let Q3 be a QDFE. A SLDS X is half-
line ®-dissipative if for every 7 € R and for all w €
B> ND,(R,RY), it holds that [7 Q¢ (w) > 0.

Half-line dissipativity appears very frequently in phys-
ical systems. For instance, in n-port driven electrical
circuits we can select a external variable w := col(V, I)
consisting of a vector of voltages V := col(V,...,V},)
and currents [ := col(1y, ..., I),) across and through the
ports. We thus say that the circuit is passive if for the
supply rate defined as Qq(w) := V"1, it follows that
for all 7 and for all the trajectories of w with compact
support f_Too Qa(w) dt > 0 (cf. the classical definitions
in [1], [26]).

Proposition 5. Let X be a SLDS. If X is half-line
®-dissipative, then B;, i = 1,...N, are half-line -
dissipative linear differential behaviours.

Proof: The proof of the proposition follows readily
from the same argument used in Prop. 1. ]



Consider now the following proposition regarding
half-line dissipativity of SLDS. We consider the case
when the liveness condition is satisfied (see [46], sec. I'V-
B), namely, given ® € R"*¥ and w = col(u,y) € B>
the number of components in the input u, denoted by
m(B*), equals the number of positive eigenvalues of ®,
denoted by o4 (P).

Theorem 3. Let X be a SLDS and let & € R¥*". Assume
that o, (®) = m(B>). If there exists a multiple storage
function as in Def. 6, then ¥ is half-line ®-dissipative.

Proof: See App. 1I. [ ]

IV. COMPUTATION OF MULTIPLE STORAGE
FUNCTIONS

In this section, we develop procedures based on LMIs
to compute multiple storage functions. We first introduce
results that provide conditions based on LMIs for the
existence of a storage function for linear differential
behaviours. For practical purposes, we consider the two-
variable polynomial matrix version ®(¢,n) = ({ +
Y (¢,n) + A(¢,n) of the dissipation equality Q¢ =
%Q\y + QA (see App. I-D, Prop. 8).

Proposition 6. Let M € RYY[¢] be defined as M =
col(U,Y), such that YU is strictly proper. Let X €
R2(B)*1[¢] be a minimal state map for im M (). Write
M(&) = Sk Mg, with M; € R, i = 0,..., L
then there exist X; € RM®)*1 = 0,1,....L — 1, such
thar X (£) = 1! X ¢,

Proof: See App. 11 [ ]

Proposition 7. Under the assumptions of Prop. 6, let
® = &' € R™Y. Define M := [Mj My) and
X = [Xo Xi1]. Let K = KT € Ra(®)xa(®),
The following statements are equivalent:
D ¥ n) = X(¢Q)'KX(n) and A € RV?( 1
satisfy A(C,n) = M(Q) "M (1) — (¢ +n)¥(¢,n);

~ —_ 0 ~
2) A = MT®M — [1;€'$'%)] K {X On(%)Xl} -
£ ] .
K |o, X|.
[Olm(ss) [ (B)x1 }
Proof: See App. 1I. [ ]

Lemma 2. Under the assumptions of Prop. 6, let ® €
R"¥ and define B := im M (%) Assume that B is
®-dissipative. Then there exists K = KT e R2B)xn(®)
such that any of the statements 1) and 2) in_Prop. 7
holds, and moreover QA > 0 or equivalently A > 0.

Proof: See App. II. [ ]

The results in Lemma 2 permit to transform the
computation of storage functions into solving the ex-
pression 2) in Prop. 7 as an LMI, i.e. A >0, involving
coefficient matrices that can be straightforwardly set up
from the equations describing the laws of the system.
We now provide an analogous result for multiple storage
functions.

Theorem 4. Let ® € R"™Y and let ¥ be a SLDS with G
well-defined and well-posed. Let *Bj, := im M;, (%),
with M € R3¢, k& = 1,..N, be strictly ®-
dissipative. Let X}, € RM®)*Y€] be a minimal state
map for By, i =1,...,N, and let L;_,; € R2(B;)xn(B:)
for all i,5 € P, i # j, be the re-initialisations
maps of ¥. Denote the coefficient matrix of My(§) by
M, = [Mk,() Mk,Lk]; then that of Xk(f) can be
written as )Z'k. = [ka .. Xk,Lk_l].

There exist Kj, = K]I € Ro(Bi)xn(Br) =1 .. N,
such that

B Ot sn(s, _
k
)?,;r ~
_ K >0. 7
[len(%k)] k [On(%k)xl ch} >0 @)

Moreover, if for k,j =1,..., N, k # j, it holds that

Kp— Ly ;KL >0, (8)

then (Vi (¢, n) == Xk(C)TKka(U))k:L...,N induces a
multiple storage function for Y, and 3 is ®-dissipative.

Proof: See App. 1I. [ ]
Theorem 4 reduces the computation of multiple stor-
age functions to the solution of a system of structured
LMIs (7)-(8), a straightforward matter for standard LMI
solvers.

Example 7. Consider the switched electrical circuit in
Fig. 2. The switching occurs when at an arbitrary instant
of time, the inductor Lo is connected. We select w :=
col(V,i1) as the external variables. For simplicity we
consider C1 =1F, L1 =1H,and L, =1H.

Fig. 2. Switched electrical circuit.

e Mode behaviours: By applying first principles we can
model the mode behaviours B;, ¢ = 1,2, which can
be easily verified to be controllable. Moreover, they can
be described by observable image representations w =



4 +1
M; (%) l;, i = 1,2, with M, (%) = |:dt2d , by =
d o, 0
vy, for the first mode; and Mo (%) = [dtsz—i_ dt},
=+ 1

{5 := i9, when the inductor is connected.
o Gluing conditions: We consider the state maps acting
on the latent variables induced by X1 () := [1 ¢] T and
Xo(8) = [5 £2 1}T. The physics of the circuit im-
poses that for every t;, € T, the gluing conditions can be
expressed as Xo (%) io(t) = L12X4 (%) vi(t; ) and
X1 (%) Ul(t;) = Lo 1 X9 (%) Z'Q(tl;), where LI—)Q =
1 00
010

o LMI conditions: Define ® :

=: Lo 1.

_ 110
201 0
to the supply rate Qgp(w) = Vi. Based on Th. 4, we
construct the LMIs (7) and (8) for this case. Then using
standard LMI solvers we obtain

0.500 0 0
] ; Koi= 0 0.500 0
0 0 0.577

, corresponding

0.5 0
Kl'_[o 0.5

Thus, (X;(¢) "' K;Xi(n))i=1,2 induces a multiple storage
function for the SLDS. Note that the system is thus
dissipative according to Prop. 1 and in fact half-line
dissipative according to Th. 3, since o, (®) = m(B>) =
1. O]

V. PASSIVITY

In this section we study passive SLDS, i.e. dissipative
with respect to the positive-real supply rate, i.e. ¢ :=
1 0
2| 0
under which circumstances a multiple storage function
is also a multiple Lyapunov function in the sense of Sec.
III of [24].

We call a SLDB B> asymptotically stable if w €
B> — limy_s0o w(t) = 0. Since constant switching
signals are admissible, it follows from this definition
that for a SLDS to be asymptotically stable, all mode
behaviours ‘B; must be asymptotically stable and con-
sequently autonomous (see [24], sec. III). Consider the
following theorem obtained from [24] (Th. 1, Sec. III,
p.2042).

. In particular, we are interested in determining

Theorem 5. Let 3 be a SLDS with autonomous mode
behaviours B; € £¥, i =1,...,N. Let s = s, € S be
an admissible switching signal. Assume that there exist
ODFs Qvy,, i = 1,..., N, such that
B,
. Qu, >20,i=1,...,.N;
B
2. 4Qu, <0,i=1,...,N;

3. Vw e B* and ¥ t;j € T, Q‘I’s(f,j,ﬂ(w)(t;) >
Q\I]s(t]‘) (w) (tj)

Then Y. is asymptotically stable .

Proof: See [24], Th. 1, Sec. III, p.2042. [ ]

An N-tuple (Qu,,...,Qu,) in Th. 5 is called a
multiple Lyapunov function, and its computation has
been presented in [24].

In a dissipative SLDS the external variables include
inputs, consequently the modes are not autonomous.
However, we can associate to 3 an autonomous SLDS
as follows.

Definition 8. Let ¥ := {P,F,S,G} be a SLDS with
switched behaviour B> and w = col(u, y). The unforced
SLDS X.. associated to X is defined as X,. =
{P,F,S,G}, with switched behaviour B, = {w =
col(u,y) € B> | u = 0}.

Note that B2, is not empty, since it contains at least
the zero trajectory w = 0. The following proposition
deals with asymptotic stability of unforced SLDS as in
Def. 8.

Theorem 6. Let 3 and Y, be as in Def. 8 and let
0 I

1 1
o [Il :

] . Assume that X is strictly ®-dissipative,
then X, is asymptotically stable.

Proof: See App. 1I. [ ]

VI. STABILISATION OF POWER CONVERTERS WITH
CONSTANT POWER LOADS

We illustrate an application to our results to the
problem of stabilisation of switching power converters
(see e.g. [6]). We study networks consisting of a source
power converter feeding a constant power load, which
is a potential destabiliser in energy distribution networks
since it is not a passive element and its interconnection
with power converters may lead to an unstable operation
(see [47)).

We now show that this problem can be solved using
the dissipativity concepts studied in this paper. Consider
the power converter in Fig. 3 which corresponds to
a boost converter and the local approximation of a
constant power load consisting of a negative resistor
and a constant current source (see [29], Sec. II). In
order to prevent instability, we consider the realisation
of a passive filter (a circuit consisting of inductors,
capacitors and resistors) that when connected to the
switched network as depicted in Fig. 4, the overall circuit
results in a passive system.

We model the filter using a 1-port admittance function
Y() = ;1%, with p, ¢ € R[], or equivalently an image
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Fig. 3. Boost converter with a constant power load
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Fig. 4. Filter interconnection

representation

_M(it)

where ¢ is a latent variable associated to the internal dy-
namics of the filter and whose physical meaning can be
determined after the realisation. Applying fundamental
current and voltage laws, the mode dynamics when the
switch is in position 1 are described by

d
L—i1 =V —Rpiy,

dt

d d /L 1
So=-— —v+ 1.
C’dtv <dt>€ Rv+

When the switch is in position 2, the mode dynamics are
described by

d
L—i1=V —Rpi —v,

dt

d ay , 1

—v = —v+1.
Cdtv i1 — (dt) 0+ Rv—i—

By selecting the external and latent variables as w :
V I i v} and ( := [iy 6} the mode dynamics
can be modelled using image form representations w =
M;. (%) l, k=1,2, where

_L%—FRL 0
dY _| 0 —(z-CH)r(H)+a(F)
M1<dt> - 1 Yo t
Lo p (%)
el i e
ay _ -1 (7 - Cgx)p(g) +alz
M2<dt> . 1 Yo t
[ o r (%)

| maps are given by Li_,o

Based on Th. 4 we can construct the following set of
matrix inequalities:

]ET(I)M N [Ol}rf%%i)] Ki [Xv@ 0H(%i)><l:|
X7 z ) o
_ [lenl(%i):| K; [On(%i)xl XZ} >0; i=1,2,
with o I
2%x2 2
T { I 02><2] ’

Note that the matrices X;, ¢ = 1,2, correspond to the
coefficient matrices of state maps for the dynamical
modes and M;, ¢ = 1,2, depend on the unknown
coefficients associated to the filter. Moreover classic
results in circuit theory show that a transfer function
can be realisable as a passive circuit if and only if it is
positive-real [26], i.e. the filter must be dissipative with

respect to
10 1
I _ —
=3 [1 0} ’
hence we add the following inequality
— — 0 ~
T [P K [ b

|: )Z/T
01 xdeg(p)

(10)
]K’ [odeg(p)xl X’} >0.

The existence of solutions for (9)-(10) guarantees that the
SLDS is ®-dissipative under arbitrary switching signals.
Note that (9)-(10) is not a set of LMIs, but a set of bi-
linear matrix inequalities (BMls), for which sub-optimal
solutions can be obtained using standard softwares such
as Yalmip. However for simplicity of exposition, we
fix the coefficients of the polynomial p so as to achieve
LMIs. Such choice can be justified observing that often
we can set poles/zeros for the admittance function whose
patterns are related to important features of the filter dy-
namics such as time response, characteristic frequencies
and the structure of the electrical circuit to be obtained,
which are essential filter design considerations (see sec.
5-8 of [34]).

In order to show a numeric solution for the present
example, set the values Ry, = 0.01€2, L = 1000uH, C' =

150pF and —R = —50092. Define p(&) := &2 + 295¢ +

13200, and let q(&) := a26% +a1€ + ag be the numerator
of the admittance function. The selected purely real poles
correspond to the realisation of an RC low-pass circuit

_ (see [34], sec. 3). Compute state maps for B;, i = 1,2,

&
1 00 0 .
e.g. X1(§) = 01 ¢ ¢ =: X5(§). According to

the physics of the switched circuit, the re-initialisation
= Lo_,1 = I. Similarly, a state



map associated to the passive filter can be computed as
X' (%) = [1 5} T Note that since the re-initialisation
maps are equal to the identity, according to Prop. 4 the
storage function is unique and the set of LMIs (8) can
been omitted. Using standard LMI solvers for this choice
of p, we can compute the coefficients of the polynomial
q, consequently ¢(¢) = 10262 + 40677¢ + 3030456.
Note that in the present example, the polynomials p
and ¢ are coprime, consequently the controllability and
observability assumptions used in this paper are satisfied.
In order to ensure that this condition is satisfied in
general, an additional easy-to-construct condition based
on the Sylvester resultant can be used (see e.g. [28], p.
191).
Finally, the filter with admittance

y(¢) = 10262 + 40677¢ + 3030456
T £24295¢ + 13200 ’

can be realised using any suitable method of circuit
synthesis, e.g. using the Cauer method (see Sec. 6 of
[34]) we obtain the circuit in Fig. 5

1020 77.88Q

N
i

v z
P
—  94.45uF | 207.22;4F| b

L
2 49.69Q
4

Fig. 5. Filter realisation.

Remark 8. We can also determine the physical realisa-
tion of the auxiliary variable ¢, associated to the filter
and used for the modelling of the dynamical modes.
In order to do so note that according to Cor. 2.5.12
of [28], since p and ¢ are coprime, then there exists
a,b € R[] such that p(§)a(§) + ¢(&)b(§) = 1. Since
the coefficients of p and ¢ are known, we can easily
compute a(€) = 1.524 x 1076 4 112.148 x 1075¢ and
b(¢) = —274.224 x 107% — 1.143 x 107%¢. Finally,
recalling Remark 6.4.11 of [28], we can conclude that
since v = p(%) ¢ and iy = q(%) ¢, then ¢ =
a(%)v—i—b(%)ig. O

Remark 9. Our method can be regarded as a modifica-
tion of the output impedance of the power converter (see
Sec. 7 of [53]), in our case achieved by adding a passive
filter to the output stage of the converter. Note also that
our method concides with the “physical interpretation”
of the output impedance control based on a feedback
scheme provided in Sec. 8 of [53], where an admittance-
like function is associated with controller gains. O

VII. CONCLUSIONS

We presented a theory of dissipativity for switched
systems in which the dynamical modes are not described
in state space form, and do not necessarily share a com-
mon state space. We provided necessary and sufficient
conditions for the existence of multiple storage functions,
and a method to compute them using sets of LMIs.
We studied the notion of passivity as a special case as
well as its relationship with stability. We also showed an
application of our approach to the stabilisation problem
of a power converter with a constant power load.

APPENDIX I
BACKGROUND MATERIAL

A. Linear differential behaviours

B C €°(R,RY) is a linear time-invariant differential
behaviour if it is the set of solutions of a finite system
of constant-coefficient linear differential equations, i.e.
if there exists R € R&*¥[{] such that B = {w €
¢®(R,RY) | R(4)w = 0} =: ker R(%). If B =
ker R(%), then we call R a kernel representation of B.
We denote with £7 the set of all linear time-invariant dif-
ferential behaviours whose trajectories take their values
in the signal space R”. The behaviour B := ker R (%)
is controllable (see [28], sec. 5.2) if and only if R(\) is
full row rank for all A € C.

When ‘B is controllable, it can be also represented in

image form
d
=M|— )/
‘ (dt) |

where M € R¥¥[¢] and ¢ is an auxiliary vari-
able also called a latent variable; i.e., B = {w €
CX(R,RY) | 3 £ € €°(R,R?) such that (11) holds} =:
im M (4). The latent variable ¢ in (11) is called
observable from w if [w = M(%)E =0 = [¢{ = 0]
(this is the case if and only if M()\) € C"*! has full
column rank for all A € C, see [28], Th. 5.3.3). A con-
trollable behaviour always admits an observable image
representation. The set of linear differential controllable
behaviours whose trajectories take their values in R is
denoted by £¥ ;.

Given B € £ it may be possible to choose some
components of the external variable w freely. If such
components are maximally free (in the sense of Def.
3.3.1 of [28]), they are called input variables. It can be
shown that the number of input variables is an invariant,
denoted by m(B). Once m(*B) free variables have been
chosen, the remaining components of w are output
variables; evidently, the number p(B) := w — m(8) of
output variables is also an invariant.

(In



If B € £, is associated to an image representation
(11), there exists a permutation matrix P, such that
PM = col(U,Y), with YU ! a matrix of proper rational
functions (see [28], Sec. 3.3). This corresponds to the
permutation of the elements of the external variable as
w = (u,y) where u =U (%) ¢ is an input variable, and
y=Y (%) £ is an output variable. Moreover, it can be
shown that m(*8) = 1, i.e. the number of input variables
is equal to the dimension of ¢, see ([46], Sec. VI-A).

B. State maps

A latent variable ¢ is a state variable for %5 iff
there exist £, F' € R***, G € R**¥ such that B =
{w]3 st Ed€+F£+Gw—O} i.e. if B has a rep-
resentation of first order in ¢ and zeroth order in w. The
minimal number of state variables needed to represent ‘B
in this way is called the McMillan degree of *B, denoted
by n(*8).

A state variable for ‘B can be computed as the image
of a polynomial differential operator called a state map
(see [31],[42]). Let B € £¥, and X € R**¥[¢] be a state
map for B. A polynomial differential operator d (4),
where d € RY¥[¢], is called a (linear) function of the
state of B if there exists a constant vector f € R!*¥
such that d (%) w=fX (%) w for all w € *B.

To construct state maps for ker R (%), with R €
R¥*¥[£] nonsingular, consider the set

X(ker R) := {f e R™V[¢] | fR™! is strictly proper} .

(12)

X(ker R) is a finite-dimensional subspace of R'*¥[¢]

over R, (see [31], Prop. 8.4), of dimension n :=

deg(det(R)) (see [31], Cor. 6.7). To compute a state

map for B, choose a set of generators z; € RM¥[¢], i =

., N of X(ker R), and define X := col(z;)i=1,... N;

to obtain a minimal state map, choose {z;}=1 . N SO
that they form a basis of X(ker R).

Let (11) be an observable image representation of
B; we now summarise the main results concerning
state maps acting on the latent variable ¢. If necessary,
permute the components of w so that M = col(U,Y)
with U € R¥1[¢], det(U) # 0, and YU ! is a proper
rational matrix. Consider the finite-dimensional vector
space over R defined as

X(im M) := {r € RY¢] | U is strictly proper} .

13)
X is a state map for (11) if and only if its rows span
the vector space (13), and a minimal one if and only
if its rows form a basis for (13) (see [31], Sec. 8). It
can be shown that if (11) is observable, then n(B) =

deg(det(U)) (see Prop. 3.5.5 of [31]).

C. Quadratic differential forms

Let ® € R™V(,n); then ®((,n) = >, 1 Pril" 0,
where @35, € R"¥ is called coefficient ﬁatrix, and
the sum extends over a finite set of nonnegative in-
dices. ®((,n) induces the quadratic differential form
(QDF) actlng on Qfoo—trajectories defined by Qo (w) :=
doh, (T h YTy, L0 it~ Without loss of generality a QDF
is induced by a symmetric two-variable polynomial ma-
trix ®(¢,7), i.e. one such that ®(¢,n) = ®(n,¢)"; we
denote the set of such matrices by R¥*¥[(, 7).

Given Qvy, its derivative is the QDF Q¢ defined by
Qo (w) :== L(Qu(w)) for all w € €°(R,R¥); this holds
if and only if ®(C,7) = (¢ + n)W(C,n) (see [45], p.
1710).

B
Qo is nonnegative along B € £7, denoted by Qg >
0 if Qa(w) > 0 for all w € *B; and positive along

B, denoted by Qg ? 0, if Qo § 0 and [Qg(w) = 0]
= [w = 0. If B = C°(R,RY), then we call Qo
simply nonnegative, respectively positive. For algebraic
characterisations of these properties see [45], pp. 1712-
1713.

D. Dissipative linear differential behaviours

Denote D (R, R¥) as the subset of €>°(R, R") consist-
ing of compact support functions.

Let B € £¢ ; and let & € R¥¥[(,n]. B is called
O-dissipative if for all w € B N D(R,RY) it holds that
f Qao(w)dt > 0; and strictly ®-dissipative if there
exists € > 0 such that [* Qg (w)dt > € [ [Jw]|3 dt.
The QDF Qg is called supply rate. 5 € 2" is half-
line ®-dissipative if for every 7 € R and for all w €
B N D(R,RY) it holds that 7 Qg (w)dt > 0.

A QDF Qg is a storage function for 65 with re-

B
spect to Qg if %Q\p < Q¢. Moreover, a QDF Qa
is a dzsszpatton function for B with respect to Q¢ if

QA > 0 and f Qo (w f Qo (w)dt for all
w e BN DR, ]R") Storage functlons supply rates and
dissipation functions are associated as follows.

Proposition 8. Let B € £7 . and let & € RVV[(, 7).
The following statements are equivalent.
o B is O-dissipative.
o There exists a storage function Qg for B with
respect to Q.
o There exists a dissipation function Qa for B with
respect to Qo.
Moreover, there exists a one-to-one relation between Q) g,
Qu and Qn, defined by the dissipation equality %Qq¢ =
Qo — Qa. If B = €°(R,RY), this equality holds true
if and only if (¢ +n)¥(C,n) = (¢,n) — A(¢, 7).



Proof: See [39], Th. 4.3. [ |
According to [45], Prop. 5.2, the inequality
7. Qa(w)dt > 0 is equivalent with the condition

<I>( Jjw, jw) > 0V w € R, consequently a
dissipation function can be computed by factorising
B(—£,6) = D(=€)"D(&) with D € R**¥[¢]; note
that such factorisation is not unique. The set of all
possible storage functions is bounded from above
by the required supply Qy, and from below by
the QQo_ available storage, which can be computed
using polynomial methods, as we now show. Consider
¢ € R¥Y[(,n] such that ®(—jw, jw) > 0V w € R.
Factorize ®(—¢,&) = A(—€)TA(€) corresponding to
the anti-Hurwitz, and ®(—¢,€) = H(—&)TH(€) to
the Hurwitz spectral factorization, respectively (see

4. Then W, (C.y) = M -AQTAM

B(cn) — HOTHE
T_((m) = L

The set of storage gunctions is convex (see [44], Th.
3), i.e. if U; and W, are storage functions, so is ¥, :=
aVi+ (1 —a)¥; with0 <a <1

When the supply rate is constant, the following result
holds.

Proposition 9. Let & € R"*¥ and let B € £F ..
Define B = im M ( t)’ where M € R"¢] and
M = col(U,Y), corresponds to an input-output parition.
Fix a state map X € R**[¢] for B. Assume that B is
P-dissipative. Let ¥ € R*™[(,n] and A € R*}[¢, ] be
as in Prop. 8. There exist real symmetric matrices K and

Q of suitable sizes such that W(¢,n) = X ()T KX (n)
and A(¢,n) = col(X(¢), M(¢)) " Qcol(X (1), M(1))-

Proof: The proof follows from Th. 5.5 in [45]. W

In the following lemma, an important property of

half-line dissipative linear differential behaviours with
constant supply rates is shown.

Lemma 3. Let ® € RY™Y be a supply rate and 5 €
L8 ot Assume that o () = m(B). If B is half-line -
dissipative, then every storage function Qg for *B is such

B
that Qg > 0.
Proof: See Theorem 6.4 in [45]. [ |

APPENDIX II
PROOFS

Proof of Prop. 1: Leti € {1,...,N}; since ¥ is
(strictly) ®-dissipative and a constant switching signal
s(t) =14 for all ¢ is admissible in S, then it necessarily
follows that f * Qg (w)dt > 0 (respectively 3 € > 0 s.t.
7. Qa(w)dt > |wl||3dt ) for all w € B; of compact
support, i.e. ‘B; is (strictly) ®-dissipative. ]

Proof of Prop. 2: Since B; is (strictly) -
dissipative, according to Prop. 1, the existence of Qv,,
i =1,..., N, is guaranteed (see Prop. 8 in App. I-D).
Now integrate the inequality %Q\pi < o between a
and b, for all w € B; ND(R,RY). [

Proof of Th. 1: We consider the three possible
cases, i.e. A) |Ts|] = oo, B) 0 < |T4| < oo and C)
|Ts| = 0. Let ¢y := —oo. Use Prop. 2 and the fact that
limy—y 100 w(t) = 0 for all w € BEND,(R, RY) to obtain
the following expressions for cases A) and B), where

A) [ Qa(w) > (@Qu. (0)(t1)—Qu (W)(ED) 4t
(Qu.., 1><w><;> Qu.,,, (W)(t) + ..

B) fQ<D ) (Q‘I’sm))( )( ) Q‘I’ (11)(w)(ti‘r>) +
ST Q| (w)(t) Qu.., (W)(E))  +

(Q\Ps(ﬂl’s\—l) (w)(tﬁrg‘) - Q‘I/s(|1rs\)(w)(t|—!]_rs|))'
Since Q\I’s(tkil)(w)(tlz) - Q\Il;(fk)(w)(t;r) >0,V lr €
T,, we conclude that in both cases [ Qq(w) > 0.
Finally the claim for C) when no switching takes
place, i.e. s(t) = i for all ¢, follows readily from the
existence of a storage function )y, (see Prop. 2) and
the standard result quoted in App. I-D, Prop. 8. [ ]

B,
Proof of Prop. 3: Since Q3 > %Q\pi and

ch 2 dtQ\p/ 1 =1,...,N, it follows from standard
results regarding d15$1pative systems (see App. 1-D)

B;

that Q¢ > % (OéQ\p1 + (1 *Q)Q\y;), i = 1,...,N.
Moreover, to show that condition 2) in Def. 6 is satisfied,
let s € S and note that since Qu,, ,(w)(t,) >
Quo, (w)(tF) and Qur,, (w)(t) > Qur,, (w)(t)

for every t, € T, it follows that aQuy,,, 1)( )(t,) +

(1 - a)Quy,  (W)(ty) — aQu.,, (w)(E}) — (1 —
a)Qur, (w w)(t7) = 0. m
Proof of Th. 2: The existence of storage functions
Qu,, © = 1,..N, follows from Prop. 1 and Prop. 8
in App. I-D. To prove the rest of the claim let us
introduce first the following lemma where concepts such
as the construction of state maps in App. I-B and the
computation of storage functions in App. I-D are used.

Lemma 4. Let ® € RY*Y and let ¥ be a strictly
®-dissipative SLDS with G well-posed. Consider two
behaviours 81,89 € F, described by the observable
image representations w = M; (%) l;, 1= 1,2, respec-
tively. Consider the switching signal

s(t) == {;’

Let X; € Rn(%’?)“[ﬂ, i = 1,2, be minimal state maps
for B;, i = 1,2; and let L1, € R2(B2)x0(B1) pe the
corresponding re-initialisation map when switching from

t<o0,
t>0.



B4 to B at zero. Select a fixed but otherwise arbitrary
final state vi, corresponding to the unique initial state
Vg = Lli)Q/Ul.

There exists A1, Hs € RY™E]| such that det(A;)
and det(Hy) are respectively anti-Hurwitz and Hurwitz
polynomials; and M;(—&)T®My (&) = A1(—€) T AL()
and Ma(—€) " ®M>(€) = Ha(—€) " Ha(€).

There exist unique latent variable trajectories 01, {5 :
R — R*! such that Ay (%) /1 =0, Xy (%) El(()*) = V1,
and H2 (%) 52 = O, X2 (%) EQ(OJF) = LIHQ’UI. Conse-
quently, the external variable trajectory defined by

belongs to B>. Moreover, the final/initial state of w at
zero is v1 and L1_,ov1 respectively.

Proof: The existence of Ay, Hy € RY¥1[¢] satisfy-
ing the conditions in the first claim follows directly from
standard results in polynomial spectral factorization (see
App. I-D).

To verify that the second claim holds true, it
is enough to prove that the state space of each
mode behaviour equals the state space associated
to its supply rate spectral factor, i.e. to prove
that X(im M (%)) = X(ker Ay (%)) and
X(im M (4)) = X(ker Hy(4)). In order to do
so, we recall from Prop. 1 that if X is strictly ®-
dissipative, it follows that every behaviour in the bank is
also strictly ®-dissipative. Since there exists € > 0 such

that [ Qu(w) > e(f0 Iwlddt+ ¥ Jwl3dt):

by a Fourier-transform argument we conclude
that @/(—jw,jw) = M(—jw) ®M;(jw) >
eM;(—jw) " M;(jw) Yw € R, i = 1,2, Select

a submatrix U; € R[] of M; of maximal

determinantal degree, then M;U;~ 1, i = 1,2
is a proper rational matrix. Consequently
hmw—mo Ui(_jw)_T(I)i(_jwajw)Ui(jw)_l =
M ®M; > eM] M;_, i = 1,2, with
M, = limy oo M;(jw)U;(jw)~t Tt is easy

to check that M;_ contains I; as a submatrix,
and consequently Mi—LMiW > 0, implying that
limyy 00 Ui(—jw) ™ T @i (—jw, jw)Us(jw) ™1, i = 1,2, is
invertible and therefore Uy (—&)~T®1(—¢,&)U1 (€)™ =
Ur(=€)~ T A1(=€) T Al (U1 (), as
well as Up(—&) " Tdy(—€,&)Us (€)™ =
Up(—€)~ THy(—€) " Ha(§)Ua(€)™, have a  proper
inverse. Considering (12) and (13) in App. I-B, we
conclude that X(im M; (%)) = X(ker Ay (%)) and
X(im Mo (%)) = X(ker Ha ().

Consequently, the trajectories’ /1 € ker A; (%) and
ly € ker Hy (%) are such that X; (%) 01(07) = vy
and X (%) ¢5(0") = Li_,ov;. Finally, since the latent
variables ¢; and /5 are observable, they correspond to
a unique trajectory w € B> defined as in the Lemma
with final/initial state v; and Lj_,2v; respectively. The
lemma is proved. u

We now prove the claim of Th. 2 by contradiction. Let
X" (¢] be minimal state maps for B;, i = 1,..., N
and L;_,;, € RAB>X(B)) with j k = 1,..., N the re-
initialisation maps. Let w.l.o.g. i = 1, 7 = 2 and assume
that there exists a final/initial state vy and Li_ov;
for w € B> respectively, such that Qg, (w)(07) <
Qu, (w)(0F).

Construct latent variable trajectories ¢1,¢2 : R —
R! as in Lemma 4 corresponding to an admissible
switched trajectory w € $B*. For this trajectory it holds
that [ Qa(w) = [ Qay(01)dt + [¥ Quy(la)dt =
Qu; (41)(07) — Quy,(£2)(07) < 0; which contradicts the
fact that X is strictly ®-dissipative.

Note that it follows automatically from the latter
results that there exists an N-tuple (Qyg,,..., Qu, ) that
satisfies the conditions 1) and 2) in Def 6. The theorem
is proved. u

Proof of Lemma 1: The fact that U((,n),
i = 1,...,N, can be factorised as X;(¢)K;X;(n), i =
1,..., N, follows from Prop. 9 in App. I-D.

The equivalence of conditions 1) and 2) follows
from the fact that w = M; (%) l;, i = 1,...,N, and
the standard reformulation of QDFs in terms of latent
variables, see App. I-C. We now prove the equiva-
lence of conditions 2) and 3). Use Lemma 4 in the
proof of Th. 2 to conclude that since 3 is strictly
®-dissipative, then the final/initial states at switching
instants corresponding to /; and /; are arbitrary. Use the
factorisations W ((,n) = X;(¢Q)K;X;(n), i = 1,...,N,
to conclude that v, K;v; > vaKjvj for all 4,5 € P,
i # j. Then use the re-initialisation map to conclude
that v, K;v; > v L] _,;K;Li—jvi, which is equivalent
to condition 3). [ |

Proof of Prop. 4: The proof follows from the
fact that the re-initialisation maps are also the identity,
and since K; > K; and K; > K; for all 4,5 € P.
Consequently, K; = K; and Qy, = Qy, forall i, j € P.

|

Proof of Th. 3: Define to := —oo. Using Prop. 2
and equation (6), it follows that since limy_, o (w)(t) =

0, we obtain ["Qe(w)dt > (Qu,,, (w)(ty) —

*Note that ¢;, i = 1,2 are not trajectories with compact support,
however an approximation argument can be used to complete the
proof of the claim.



Qu.., W)+ 3(Quy, . (W)(E) -
Q\ys(ik)(w)(t:)) +  Qu,,,(w)(T). Note that
Q‘I’s(zj_l)(w)(tj_) - Q\Ils(tj)(w)(tj_) > 0, for every
t; € T,. Moreover, since every mode has the same
partition w = col(u, y), it follows that o (®) = m(*B;),
i = 1,...,N. Use Th. 6.4 in [45] to conclude that
Qu.,,,(w)(T) >0, consequently [" Qe(w) > 0. [

Proof of Prop. 6: To prove that the degree of
X (&) is less than the degree of M (), note that since
YU ! and XU~ are strictly proper (see App. I-B), we
can apply Lemma 6.3-10 of [18] and conclude that the
highest degree of each entry in X is less than the highest
degree present in M. [ ]

Proof of Prop. 7: To prove the equivalence
of statements 1) and 2) let us define SL(§) :=
[Il &L §LI;L]. The equivalence follows from

the equalities X () = [)A(/ Onxl} SL(§), EX(§) =

Onra X‘J SL(€), and M(€) = MSL(€). n
Proof of Lemma 2: Since B is ®-dissipative,
then there exists a storage function ¥((,7n), moreover
according to Prop. 9, there exists K such that ¥((,n) =
X(OTEX (™).

To prove that statements 1) and 2) in Prop. 6 hold,
it is enough to recall from Prop. 8 that there exists
a dissipation function A((,n) such that A((,n) =
M(S)T®M(n) = (C+n)¥(¢,n).

To prove the final claim define Sp(§) =
(L ¢h ¢FL). Factorise  A((,n) =
SL(OTASL(n), with A = AT e REFDIX(LADL
Then it follows from the definition of a dissipation
function that QA > 0 and consequently A > 0. [ |

Proof of Th. 4: To prove the first part of the claim
note that the degree of Xj cannot exceed that of M,
k =1,..., N, because of the same argument used in Prop.
6. Moreover solutions K, £k = 1,...N, for the LMIs
(7) exist because of the fact that B, ¢ = 1,..., N, is
strictly ®-dissipative and Lemma 2. Moreover, according
to Lemma 2 and Prop. 7 if the LMIs (7) hold, ¥ ({,n)
induces a storage function for By, k = 1, ..., V. Finally,
note that due to Lemma 1, the LMIs (8) imply condition
2) in Def. 6, then using Th. 1 we conclude that X is
d-dissipative. [ |

Proof of Th. 6: Since X is strictly ®-dissipative,
it follows from Th. 2 that there exists a multiple storage
function Qv = (Qu,, ..., Qu,) for X. Note that since
only the trajectories B, C B are permitted for
Yaut according to Def. 8, it necessarily follows that the
trajectories of its mode behaviours are also restricted as
B, = {w=rcol(u,y) € B; |u=0},i=1,..,N. We
now show that ¥, is asymptotically stable by showing
that Qg satisfies the conditions 1)-3) in Th. 5. C1. The

7

fact that Qy, 2 0,7 =1,...,N, follows directly from
B,
Lemma 3 in App. I-D, i.e. since B, C B, and Qy, > 0,

i=1,...,N, then Qy, ? 0,7=1,..,N. C2. In order
to prove that %Q\pi decreases along B/, i = 1,..., N,
use Prop. 1 to show that B,, i« = 1,..., N, is strictly
d-dissipative and consequently there exists ¢ > 0
such that Qo (w) > 4Qy,(w) + €|lw|3, i = 1,...,N.

Since, for every trajectory col(0,y) € B, it follows
that Qo (w) = 0, then 4Qy, (w) < —¢i||lw|j3 < 0, for
every w # 0. C3. Finally, note that the non increasing
condition at switching instants 3) in Th. 5 is equivalent
to condition 2) in Def. 6. |
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